path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
01 Machine Learning/scikit_examples_jupyter/classification/plot_classification_probability.ipynb
###Markdown Plot classification probabilityPlot the classification probability for different classifiers. We use a 3 classdataset, and we classify it with a Support Vector classifier, L1 and L2penalized logistic regression with either a One-Vs-Rest or multinomial setting,and Gaussian process classification.Linear SVC is not a probabilistic classifier by default but it has a built-incalibration option enabled in this example (`probability=True`).The logistic regression with One-Vs-Rest is not a multiclass classifier out ofthe box. As a result it has more trouble in separating class 2 and 3 than theother estimators. ###Code print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 10 kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. classifiers = { 'L1 logistic': LogisticRegression(C=C, penalty='l1', solver='saga', multi_class='multinomial', max_iter=10000), 'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2', solver='saga', multi_class='multinomial', max_iter=10000), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2', solver='saga', multi_class='ovr', max_iter=10000), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'GPC': GaussianProcessClassifier(kernel) } n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) accuracy = accuracy_score(y, y_pred) print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) # View probabilities: probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='w', edgecolor='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show() ###Output _____no_output_____
jupyter/pandas-tut/06-Important Methods.ipynb
###Markdown Tutorial 6: Important Methods in Pandas ###Code import pandas as pd import numpy as np s=pd.Series([1,2,3,4], index=["a","b","c","d"]) s s["a"] s2=s.reindex(["b","d","a","c","e"]) s2 s3=pd.Series(["blue","yellow","purple"], index=[0,2,4]) s3 s3.reindex(range(6),method="ffill") df=pd.DataFrame(np.arange(9).reshape(3,3), index=["a","c","d"], columns=["Tim","Tom","Kate"]) df df2=df.reindex(["d","c","b","a"]) df2 names=["Kate","Tim","Tom"] df.reindex(columns=names) df.loc[["c","d","a"]] s=pd.Series(np.arange(5.), index=["a","b","c","d","e"]) s new_s=s.drop("b") new_s s.drop(["c","d"]) data=pd.DataFrame(np.arange(16).reshape(4,4), index=["Kate","Tim", "Tom","Alex"], columns=list("ABCD")) data data.drop(["Kate","Tim"]) data.drop("A",axis=1) data.drop("Kate",axis=0) data data.mean(axis="index") data.mean(axis="columns") ###Output _____no_output_____
Algorithms/landsat_radiance.ipynb
###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The following script checks if the geehydro package has been installed. If not, it will install geehydro, which automatically install its dependencies, including earthengine-api and folium. ###Code import subprocess try: import geehydro except ImportError: print('geehydro package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geehydro']) ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet. ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('Installing geemap ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) import ee import geemap ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown Pydeck Earth Engine IntroductionThis is an introduction to using [Pydeck](https://pydeck.gl) and [Deck.gl](https://deck.gl) with [Google Earth Engine](https://earthengine.google.com/) in Jupyter Notebooks. If you wish to run this locally, you'll need to install some dependencies. Installing into a new Conda environment is recommended. To create and enter the environment, run:```conda create -n pydeck-ee -c conda-forge python jupyter notebook pydeck earthengine-api requests -ysource activate pydeck-eejupyter nbextension install --sys-prefix --symlink --overwrite --py pydeckjupyter nbextension enable --sys-prefix --py pydeck```then open Jupyter Notebook with `jupyter notebook`. Now in a Python Jupyter Notebook, let's first import required packages: ###Code from pydeck_earthengine_layers import EarthEngineLayer import pydeck as pdk import requests import ee ###Output _____no_output_____ ###Markdown AuthenticationUsing Earth Engine requires authentication. If you don't have a Google account approved for use with Earth Engine, you'll need to request access. For more information and to sign up, go to https://signup.earthengine.google.com/. If you haven't used Earth Engine in Python before, you'll need to run the following authentication command. If you've previously authenticated in Python or the command line, you can skip the next line.Note that this creates a prompt which waits for user input. If you don't see a prompt, you may need to authenticate on the command line with `earthengine authenticate` and then return here, skipping the Python authentication. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create MapNext it's time to create a map. Here we create an `ee.Image` object ###Code # Initialize objects ee_layers = [] view_state = pdk.ViewState(latitude=37.7749295, longitude=-122.4194155, zoom=10, bearing=0, pitch=45) # %% # Add Earth Engine dataset # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') ee_layers.append(EarthEngineLayer(ee_object=raw, vis_params={'bands':['B4','B3','B2'],'min':6000,'max':12000})) # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) ee_layers.append(EarthEngineLayer(ee_object=radiance, vis_params={'bands':['B4','B3','B2'],'max':90})) # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) ee_layers.append(EarthEngineLayer(ee_object=toa, vis_params={'bands':['B4','B3','B2'],'max':0.2})) ###Output _____no_output_____ ###Markdown Then just pass these layers to a `pydeck.Deck` instance, and call `.show()` to create a map: ###Code r = pdk.Deck(layers=ee_layers, initial_view_state=view_state) r.show() ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for this first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load a raw Landsat scene and display it. raw = ee.Image('LANDSAT/LC08/C01/T1/LC08_044034_20140318') Map.centerObject(raw, 10) Map.addLayer(raw, {'bands': ['B4', 'B3', 'B2'], 'min': 6000, 'max': 12000}, 'raw') # Convert the raw data to radiance. radiance = ee.Algorithms.Landsat.calibratedRadiance(raw) Map.addLayer(radiance, {'bands': ['B4', 'B3', 'B2'], 'max': 90}, 'radiance') # Convert the raw data to top-of-atmosphere reflectance. toa = ee.Algorithms.Landsat.TOA(raw) Map.addLayer(toa, {'bands': ['B4', 'B3', 'B2'], 'max': 0.2}, 'toa reflectance') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____
tests/fixtures/with_mknotebooks/docs/demo.ipynb
###Markdown A df ###Code df = pd.DataFrame({"time":np.arange(0, 10, 0.1)}) df["amplitude"] = np.sin(df.time) df.head(5) ax = df.plot() ###Output _____no_output_____
analysis/Steven1/Milestone2.ipynb
###Markdown Imports ###Code import pandas as pd import seaborn as sns import numpy as np import os import matplotlib.pyplot as plt import pandas_profiling ###Output _____no_output_____ ###Markdown 1. Load Data ###Code df = pd.read_csv("/Users/stevenzonneveld/Desktop/data301/project-group35-project/data/raw/MileStone1.csv") df ###Output _____no_output_____ ###Markdown 2. Clean Data ###Code # Checking for NaN Values nan_in_df = df.isnull().values.any() nan_in_df # No NaN Values # Dropping columns df_cleaned = df.drop(columns = ['Unnamed: 0', 'price', 'title_status', 'color', 'state'], axis = 0).sort_values(by = ['brand']) df_cleaned # Droping rows df_cleaned.drop( df_cleaned [ df_cleaned ['brand'] == 'peterbilt'].index, inplace=True) df_cleaned.drop( df_cleaned [ df_cleaned ['mileage'] == 0.0 ].index, inplace=True) df_cleaned # Don't want undriven cars / missing values. # Peterbilts are semi trucks, we are looking at cars. # Research Questions: What car brand is the longest lasting on average, based on the model year of the car and the milage ###Output _____no_output_____ ###Markdown 3. Process Data / 4. Wrangle Data --> Dropping Unnecessary Columns, per each graph. ###Code # Longest lasting by Mileage # Data Wrangling - Dropping Columns df_mileage = df_cleaned.drop(columns = ['year'], axis = 0) # Data Wrangling - Renamming Columns df_mileage = df_mileage.rename(columns = {"brand": "Manufacturer", "mileage": "Mileage"}) df_mileage ###Output _____no_output_____ ###Markdown 3. Process Data / 4. Wrangle Data --> Dropping Unnecessary Columns, per each graph. ###Code # Longest Lasting by Year df_year = df_cleaned # Data Wrangling - Dropping Columns df_year = df_year.drop(columns = ['mileage']) # Data Wrangling - Renamming Columns df_year = df_year.rename(columns = {"brand": "Manufacturer", "year": "Model Year"}) df_year ###Output _____no_output_____ ###Markdown Beginning of Method Chaining Method Chaining by Year ###Code def load_and_process_df_Method_Chain_by_Year(path_to_csv_file): df_Method_Chain_by_Year1 = ( pd.read_csv("/Users/stevenzonneveld/Desktop/data301/project-group35-project/data/raw/MileStone1.csv") .drop(columns = ['Unnamed: 0', 'price', 'title_status', 'color', 'state', 'mileage'], axis = 0) .sort_values(by = ['brand']) #.drop( df_cleaned [ df_cleaned ['brand'] == 'peterbilt'].index, inplace=True) #could not figure out how to use .drop in method chaining. .rename(columns = {"brand": "Manufacturer", "year": "Model Year"}) ) df_Method_Chain_by_Year2 = df_Method_Chain_by_Year1.drop( df_Method_Chain_by_Year1 [ df_Method_Chain_by_Year1 ['Manufacturer'] == 'peterbilt'].index) return df_Method_Chain_by_Year2 # practice code (Method chain minus the function) df_Method_Chain_by_Year1 = ( pd.read_csv("/Users/stevenzonneveld/Desktop/data301/project-group35-project/data/raw/MileStone1.csv") .drop(columns = ['Unnamed: 0', 'price', 'title_status', 'color', 'state', 'mileage'], axis = 0) .sort_values(by = ['brand']) #.drop( df_cleaned [ df_cleaned ['brand'] == 'peterbilt'].index, inplace=True) #could not figure out how to use .drop in method chaining. .rename(columns = {"brand": "Manufacturer", "year": "Model Year"}) ) df_Method_Chain_by_Year2 = df_Method_Chain_by_Year1.drop( df_Method_Chain_by_Year1 [ df_Method_Chain_by_Year1 ['Manufacturer'] == 'peterbilt'].index) df_Method_Chain_by_Year2 ###Output _____no_output_____ ###Markdown Method Chaining by Mileage ###Code def load_and_process_df_Method_Chain_by_Mileage(path_to_csv_file): df_Method_Chain_by_Mileage1 = ( pd.read_csv("/Users/stevenzonneveld/Desktop/data301/project-group35-project/data/raw/MileStone1.csv") .drop(columns = ['Unnamed: 0', 'price', 'title_status', 'color', 'state', 'year'], axis = 0) .sort_values(by = ['brand']) #.drop( df_cleaned [ df_cleaned ['brand'] == 'peterbilt'].index, inplace=True) #could not figure out how to use .drop in method chaining. #.drop( df_cleaned [ df_cleaned ['mileage'] == 0.0 ].index, inplace=True) #could not figure out how to use .drop in method chaining. .rename(columns = {"brand": "Manufacturer", "mileage": "Mileage"}) ) df_Method_Chain_by_Mileage2 = df_Method_Chain_by_Mileage1.drop( df_Method_Chain_by_Mileage1 [ df_Method_Chain_by_Mileage1 ['Manufacturer'] == 'peterbilt'].index) df_Method_Chain_by_Mileage3 = df_Method_Chain_by_Mileage2.drop( df_Method_Chain_by_Mileage2 [ df_Method_Chain_by_Mileage2 ['Mileage'] == 0.0 ].index) return df_Method_Chain_by_Mileage3 # practice code (Method chain minus the function) df_Method_Chain_by_Mileage1 = ( pd.read_csv("/Users/stevenzonneveld/Desktop/data301/project-group35-project/data/raw/MileStone1.csv") .drop(columns = ['Unnamed: 0', 'price', 'title_status', 'color', 'state', 'year'], axis = 0) .sort_values(by = ['brand']) #.drop( df_cleaned [ df_cleaned ['brand'] == 'peterbilt'].index, inplace=True) #could not figure out how to use .drop in method chaining. #.drop( df_cleaned [ df_cleaned ['mileage'] == 0.0 ].index, inplace=True) #could not figure out how to use .drop in method chaining. .rename(columns = {"brand": "Manufacturer", "mileage": "Mileage"}) ) df_Method_Chain_by_Mileage2 = df_Method_Chain_by_Mileage1.drop( df_Method_Chain_by_Mileage1 [ df_Method_Chain_by_Mileage1 ['Manufacturer'] == 'peterbilt'].index) df_Method_Chain_by_Mileage3 = df_Method_Chain_by_Mileage2.drop( df_Method_Chain_by_Mileage2 [ df_Method_Chain_by_Mileage2 ['Mileage'] == 0.0 ].index) df_Method_Chain_by_Mileage3 ###Output _____no_output_____
docs/tutorials/terraclimate.ipynb
###Markdown Complex NetCDF to Zarr Recipe: TerraClimate About the DatasetFrom http://www.climatologylab.org/terraclimate.html:> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually). What makes it trickyThis is an advanced example that illustrates the following concepts- _MultiVariable recipe_: There is one file per year for a dozen different variables.- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.- _Inconsistent size of data in input files_: This means we have to scan each input file and cache its metadata before we can start writing the target.This recipe requires a new storage target, a `metadata_cache`. In this example, this is just another directory. You could hypothetically use a database or other key/value store for this. ###Code from pangeo_forge.recipe import NetCDFtoZarrMultiVarSequentialRecipe from pangeo_forge.patterns import VariableSequencePattern import xarray as xr ###Output _____no_output_____ ###Markdown Define Filename Pattern To keep this example smaller, we just use two years instead of the whole record. ###Code target_chunks = {"lat": 1024, "lon": 1024, "time": 12} # only do two years to keep the example small; it's still big! years = list(range(1958, 1960)) variables = [ "aet", "def", "pet", "ppt", "q", "soil", "srad", "swe", "tmax", "tmin", "vap", "ws", "vpd", "PDSI", ] pattern = VariableSequencePattern( fmt_string="https://climate.northwestknowledge.net/TERRACLIMATE-DATA/TerraClimate_{variable}_{year}.nc", keys={'variable': variables, 'year': years} ) pattern ###Output _____no_output_____ ###Markdown Define Preprocessing FunctionsThese functions apply masks for each variable to remove invalid data. ###Code rename_vars = {'PDSI': 'pdsi'} mask_opts = { "PDSI": ("lt", 10), "aet": ("lt", 32767), "def": ("lt", 32767), "pet": ("lt", 32767), "ppt": ("lt", 32767), "ppt_station_influence": None, "q": ("lt", 2147483647), "soil": ("lt", 32767), "srad": ("lt", 32767), "swe": ("lt", 10000), "tmax": ("lt", 200), "tmax_station_influence": None, "tmin": ("lt", 200), "tmin_station_influence": None, "vap": ("lt", 300), "vap_station_influence": None, "vpd": ("lt", 300), "ws": ("lt", 200), } def apply_mask(key, da): """helper function to mask DataArrays based on a threshold value""" if mask_opts.get(key, None): op, val = mask_opts[key] if op == "lt": da = da.where(da < val) elif op == "neq": da = da.where(da != val) return da def preproc(ds): """custom preprocessing function for terraclimate data""" rename = {} station_influence = ds.get("station_influence", None) if station_influence is not None: ds = ds.drop_vars("station_influence") var = list(ds.data_vars)[0] if var in rename_vars: rename[var] = rename_vars[var] if "day" in ds.coords: rename["day"] = "time" if station_influence is not None: ds[f"{var}_station_influence"] = station_influence with xr.set_options(keep_attrs=True): ds[var] = apply_mask(var, ds[var]) if rename: ds = ds.rename(rename) return ds ###Output _____no_output_____ ###Markdown Define RecipeWe are now ready to define the recipe.We also specify the desired chunks of the target dataset.A key property of this recipe is `nitems_per_input=None`, which triggers caching of input metadata. ###Code chunks = {"lat": 1024, "lon": 1024, "time": 12} recipe = NetCDFtoZarrMultiVarSequentialRecipe( input_pattern=pattern, sequence_dim="time", # TODO: raise error if this is not specified target_chunks=target_chunks, nitems_per_input=None, # don't know how many timesteps in each file process_chunk=preproc ) recipe ###Output _____no_output_____ ###Markdown Define Storage TargetsSince our recipe needs to cache input metadata, we need to suply a `metadata_cache` target. ###Code import tempfile from fsspec.implementations.local import LocalFileSystem from pangeo_forge.storage import FSSpecTarget, CacheFSSpecTarget fs_local = LocalFileSystem() target_dir = tempfile.TemporaryDirectory() target = FSSpecTarget(fs_local, target_dir.name) cache_dir = tempfile.TemporaryDirectory() cache_target = CacheFSSpecTarget(fs_local, cache_dir.name) meta_dir = tempfile.TemporaryDirectory() meta_store = FSSpecTarget(fs_local, meta_dir.name) recipe.target = target recipe.input_cache = cache_target recipe.metadata_cache = meta_store recipe ###Output _____no_output_____ ###Markdown Execute with PrefectThis produces A LOT of output because we turn on logging. ###Code # logging will display some interesting information about our recipe during execution import logging import sys logging.basicConfig( format='%(asctime)s [%(levelname)s] %(name)s - %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout, ) logger = logging.getLogger("pangeo_forge.recipe") logger.setLevel(logging.INFO) from pangeo_forge.executors import PrefectPipelineExecutor pipelines = recipe.to_pipelines() executor = PrefectPipelineExecutor() plan = executor.pipelines_to_plan(pipelines) executor.execute_plan(plan) ###Output [2021-03-20 21:30:59-0400] INFO - prefect.FlowRunner | Beginning Flow run for 'Rechunker' 2021-03-20 21:30:59 [INFO] prefect.FlowRunner - Beginning Flow run for 'Rechunker' [2021-03-20 21:30:59-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper': Starting task run... 2021-03-20 21:30:59 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper': Starting task run... [2021-03-20 21:30:59-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper': Finished task run for task with final state: 'Mapped' 2021-03-20 21:30:59 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper': Finished task run for task with final state: 'Mapped' [2021-03-20 21:30:59-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper[0]': Starting task run... 2021-03-20 21:30:59 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper[0]': Starting task run... 2021-03-20 21:30:59 [INFO] pangeo_forge.recipe - Caching input ('aet', 1958) 2021-03-20 21:30:59 [INFO] pangeo_forge.recipe - Opening input 'https://climate.northwestknowledge.net/TERRACLIMATE-DATA/TerraClimate_aet_1958.nc' ###Markdown Check and Plot Target ###Code ds_target = xr.open_zarr(target.get_mapper(), consolidated=True) ds_target ###Output _____no_output_____ ###Markdown As an example calculation, we compute and plot the seasonal climatology of soil moisture. ###Code with xr.set_options(keep_attrs=True): soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean() soil_clim soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8)) ###Output /opt/miniconda3/envs/pangeo2020/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide x = np.divide(x1, x2, out) ###Markdown Complex NetCDF to Zarr Recipe: TerraClimate About the DatasetFrom http://www.climatologylab.org/terraclimate.html:> TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time-varying data. All data have monthly temporal resolution and a ~4-km (1/24th degree) spatial resolution. The data cover the period from 1958-2019. We plan to update these data periodically (annually). What makes it trickyThis is an advanced example that illustrates the following concepts- _Multiple variables in different files_: There is one file per year for a dozen different variables.- _Complex Preprocessing_: We want to apply different preprocessing depending on the variable. This example shows how.- _Inconsistent size of data in input files_: This means we have to scan each input file and cache its metadata before we can start writing the target.This recipe requires a new storage target, a `metadata_cache`. In this example, this is just another directory. You could hypothetically use a database or other key/value store for this. ###Code from pangeo_forge.recipes import XarrayZarrRecipe from pangeo_forge.patterns import FilePattern, ConcatDim, MergeDim import xarray as xr ###Output _____no_output_____ ###Markdown Define Filename Pattern To keep this example smaller, we just use two years instead of the whole record. ###Code target_chunks = {"lat": 1024, "lon": 1024, "time": 12} # only do two years to keep the example small; it's still big! years = list(range(1958, 1960)) variables = [ "aet", "def", "pet", "ppt", "q", "soil", "srad", "swe", "tmax", "tmin", "vap", "ws", "vpd", "PDSI", ] def make_filename(variable, time): return f"http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_{variable}_{time}.nc" pattern = FilePattern( make_filename, ConcatDim(name="time", keys=years), MergeDim(name="variable", keys=variables) ) pattern ###Output _____no_output_____ ###Markdown Check out the pattern: ###Code for key, filename in pattern.items(): break key, filename ###Output _____no_output_____ ###Markdown Define Preprocessing FunctionsThese functions apply masks for each variable to remove invalid data. ###Code rename_vars = {'PDSI': 'pdsi'} mask_opts = { "PDSI": ("lt", 10), "aet": ("lt", 32767), "def": ("lt", 32767), "pet": ("lt", 32767), "ppt": ("lt", 32767), "ppt_station_influence": None, "q": ("lt", 2147483647), "soil": ("lt", 32767), "srad": ("lt", 32767), "swe": ("lt", 10000), "tmax": ("lt", 200), "tmax_station_influence": None, "tmin": ("lt", 200), "tmin_station_influence": None, "vap": ("lt", 300), "vap_station_influence": None, "vpd": ("lt", 300), "ws": ("lt", 200), } def apply_mask(key, da): """helper function to mask DataArrays based on a threshold value""" if mask_opts.get(key, None): op, val = mask_opts[key] if op == "lt": da = da.where(da < val) elif op == "neq": da = da.where(da != val) return da def preproc(ds): """custom preprocessing function for terraclimate data""" rename = {} station_influence = ds.get("station_influence", None) if station_influence is not None: ds = ds.drop_vars("station_influence") var = list(ds.data_vars)[0] if var in rename_vars: rename[var] = rename_vars[var] if "day" in ds.coords: rename["day"] = "time" if station_influence is not None: ds[f"{var}_station_influence"] = station_influence with xr.set_options(keep_attrs=True): ds[var] = apply_mask(var, ds[var]) if rename: ds = ds.rename(rename) return ds ###Output _____no_output_____ ###Markdown Define RecipeWe are now ready to define the recipe.We also specify the desired chunks of the target dataset.A key property of this recipe is `nitems_per_input=None`, which triggers caching of input metadata. ###Code chunks = {"lat": 1024, "lon": 1024, "time": 12} recipe = XarrayZarrRecipe( file_pattern=pattern, target_chunks=target_chunks, process_chunk=preproc ) recipe ###Output _____no_output_____ ###Markdown Define Storage TargetsSince we did not specify `nitems_per_file` in our `ConcatDim`, the recipe needs to cache input metadata.So we need to suply a `metadata_cache` target. ###Code import tempfile from fsspec.implementations.local import LocalFileSystem from pangeo_forge.storage import FSSpecTarget, CacheFSSpecTarget fs_local = LocalFileSystem() target_dir = tempfile.TemporaryDirectory() target = FSSpecTarget(fs_local, target_dir.name) cache_dir = tempfile.TemporaryDirectory() cache_target = CacheFSSpecTarget(fs_local, cache_dir.name) meta_dir = tempfile.TemporaryDirectory() meta_store = FSSpecTarget(fs_local, meta_dir.name) recipe.target = target recipe.input_cache = cache_target recipe.metadata_cache = meta_store recipe ###Output _____no_output_____ ###Markdown Execute with PrefectThis produces A LOT of output because we turn on logging. ###Code # logging will display some interesting information about our recipe during execution import logging import sys logging.basicConfig( format='%(asctime)s [%(levelname)s] %(name)s - %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout, ) logger = logging.getLogger("pangeo_forge.recipe") logger.setLevel(logging.INFO) from pangeo_forge.executors import PrefectPipelineExecutor pipelines = recipe.to_pipelines() executor = PrefectPipelineExecutor() plan = executor.pipelines_to_plan(pipelines) executor.execute_plan(plan) ###Output [2021-04-19 10:41:07-0400] INFO - prefect.FlowRunner | Beginning Flow run for 'Rechunker' 2021-04-19 10:41:07 [INFO] prefect.FlowRunner - Beginning Flow run for 'Rechunker' [2021-04-19 10:41:07-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper': Starting task run... 2021-04-19 10:41:07 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper': Starting task run... [2021-04-19 10:41:07-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper': Finished task run for task with final state: 'Mapped' 2021-04-19 10:41:07 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper': Finished task run for task with final state: 'Mapped' [2021-04-19 10:41:07-0400] INFO - prefect.TaskRunner | Task 'MappedTaskWrapper[0]': Starting task run... 2021-04-19 10:41:07 [INFO] prefect.TaskRunner - Task 'MappedTaskWrapper[0]': Starting task run... 2021-04-19 10:41:07 [INFO] pangeo_forge.recipe - Caching input (0, 0): http://thredds.northwestknowledge.net:8080/thredds/fileServer/TERRACLIMATE_ALL/data/TerraClimate_aet_1958.nc ###Markdown Check and Plot Target ###Code ds_target = xr.open_zarr(target.get_mapper(), consolidated=True) ds_target ###Output _____no_output_____ ###Markdown As an example calculation, we compute and plot the seasonal climatology of soil moisture. ###Code with xr.set_options(keep_attrs=True): soil_clim = ds_target.soil.groupby('time.season').mean('time').coarsen(lon=12, lat=12).mean() soil_clim soil_clim.plot(col='season', col_wrap=2, robust=True, figsize=(18, 8)) ###Output /opt/miniconda3/envs/pangeo-forge/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide x = np.divide(x1, x2, out)
notebooks/07_scrape_google.ipynb
###Markdown Improve book popularity(Include genre in general search: added book_google2() in fictiondb.py) ###Code import pandas as pd # Since 'budget' is the bottle neck in dropna process, use that to narrow down the search list all_df = pd.read_pickle('../dump/all_data').dropna(subset=['budget']) all_df['date'] = all_df.release_date.dt.strftime('%Y-%m-%d') all_df.info() # Create list to search title_list = list(all_df.movie_title) author_list = list(all_df.author) date_list = list(all_df.date) genre_list = list(all_df.genre) lng = len(title_list) %run -i '../py/fictiondb.py' book_history_2 = [] for i in range(lng): book = title_list[i] author = author_list[i] date = date_list[i] genre = genre_list[i] print(i,book) info = book_google2(book,author,date,genre) book_history_2.append(info) book_history_2 book_history_2_df = pd.DataFrame(book_history_2) book_history_2_df.to_pickle('../data/book_history_2_data') ###Output _____no_output_____
examples/arpeggio.ipynb
###Markdown ArpeggioThis song is built around an arpeggiated synthesizer (`wubwub.Arpeggiator`). Named chords are used to determine the notes played by said arpeggiator. ###Code from pysndfx import AudioEffectsChain import wubwub as wb import wubwub.sounds as snd # load sounds SYNTH = snd.load('synth.elka') BASS = snd.load('bass.synth') DRUMS = snd.load('drums.house') # init the sequencer seq = wb.Sequencer(bpm=110, beats=32) # create an arpeggiator, fill it with named chords arp = seq.add_arpeggiator(sample=SYNTH['C3'], name='arp', basepitch='C3', freq=1/6, method='updown') C = wb.chord_from_name(root='C2', lengths=8) + wb.chord_from_name(root='C3', add=12) E = wb.chord_from_name(root='E2', lengths=8) + wb.chord_from_name(root='E3', add=12) F = wb.chord_from_name(root='F2', lengths=8) + wb.chord_from_name(root='F3', add=12) Fm = wb.chord_from_name(root='F2', kind='m', lengths=8) + wb.chord_from_name(root='F3', kind='m', add=12) arp[1] = C arp[9] = E arp[17] = F arp[25] = Fm arp.effects = AudioEffectsChain().reverb(reverberance=10, wet_gain=1).lowpass(5000) # create a lead synth line # use a pattern to set the rhythm # add lots of effects lead1 = seq.add_sampler(sample=SYNTH['C3'], name='lead1', basepitch='C3') melodypat = wb.Pattern([1,3,4,5,7,9], length=16) lead1.make_notes(beats=melodypat, pitches=[4, 2, 0, 7, 4, 8], lengths=[2,2,2,2,2,8]) lead1.make_notes(beats=melodypat.onmeasure(2), pitches=[9, 7, 5, 4, 0, 2], lengths=[2,2,2,2,2,8]) lead1.effects = (AudioEffectsChain() .reverb(room_scale=100, wet_gain=4, reverberance=40) .delay(delays=[500,1000,1500,2000], decays=[.7]) .lowpass(6000)) lead1.volume += 5 # create a slightly detuned second synthesize to create a chorus effect lead2 = seq.duplicate_track('lead1', newname='lead2') lead2notes = {b:n.alter(pitch=n.pitch-.4) for b, n in lead1.notedict.items()} lead2.add_fromdict(lead2notes) # add a bass note bass = seq.add_sampler(sample=BASS['fat8tone'], name='bass', basepitch='C3') bass[[1,5]] = wb.Note(pitch='C3', length=4) bass[[9,13]] = wb.Note(pitch='E3', length=4) bass[[17, 21, 25, 29]] = wb.Note(pitch='F3', length=4) bass.volume -= 12 bass.effects = AudioEffectsChain().overdrive(colour=50).reverb().lowpass(1000) # add a lonely kick drum kick = seq.add_sampler(sample=DRUMS['kick7'], name='kick') kick.make_notes_every(4) kick.make_notes_every(4, offset=-.5) kick.clean() kick.effects = AudioEffectsChain().reverb().lowpass(600) kick.volume -= 4 # build the output seq.build(overhang=4) ###Output _____no_output_____
_notebooks/2020-12-20-digits.ipynb
###Markdown JuliaでBit全探索を書く時にはdigitsを使うと便利。> Julia言語でBit全探索を実装します。- toc: true - badges: true- comments: true- categories: [AtCoder]- image: images/chart-preview.png digitsについて digits(a, base=b, pad=c)は、10進数の整数aをc桁のb進数に変換した配列を返します。例えば, ###Code n = 22 println(digits(n, base=2, pad=6)) ###Output [0, 1, 1, 0, 1, 0] ###Markdown $22 = 10110_2$ なので、正しいですね! 桁数が足りない場合は0で埋められます。 Juliaでは、これを利用して、Bit全探索を用意に実装できます。(Bit全探索については、https://algo-logic.info/rec-bit-search/ がわかりやすいのでおすすめです)具体的には以下のようなコードです。 ###Code N = 4 for i in 0:2^N - 1 pettern = digits(i, base=2, pad=N) println(pettern) end ###Output [0, 0, 0, 0] [1, 0, 0, 0] [0, 1, 0, 0] [1, 1, 0, 0] [0, 0, 1, 0] [1, 0, 1, 0] [0, 1, 1, 0] [1, 1, 1, 0] [0, 0, 0, 1] [1, 0, 0, 1] [0, 1, 0, 1] [1, 1, 0, 1] [0, 0, 1, 1] [1, 0, 1, 1] [0, 1, 1, 1] [1, 1, 1, 1] ###Markdown あとはこの各パターンについて`1 -> True`,`0 -> False`と見做して処理を行えば良いです。具体的に問題を解いてみます。  部分和問題 部分和問題とは、n 個の整数 $a_1,...,a_n$ からなる配列Aと,整数 S が与えられた時、適切な部分集合を選んで、総和をSとすることができるかを判定する問題です。例えば,```juliaA = [1, 2, 4, 5]S = 8```の時,$A_1 + A_2 + A_3 = 8$ なので、適切な部分集合を選んで総和をSとすることができました。nが小さい時は、bit全探索を用いることで実用的な速度で解くことができます。 この記事で最初に解説したように, digitsを用いて全てのパターンを列挙します。 ###Code N = 4 for i in 0:2^N - 1 pettern = digits(i, base=2, pad=N) println(pettern) end ###Output [0, 0, 0, 0] [1, 0, 0, 0] [0, 1, 0, 0] [1, 1, 0, 0] [0, 0, 1, 0] [1, 0, 1, 0] [0, 1, 1, 0] [1, 1, 1, 0] [0, 0, 0, 1] [1, 0, 0, 1] [0, 1, 0, 1] [1, 1, 0, 1] [0, 0, 1, 1] [1, 0, 1, 1] [0, 1, 1, 1] [1, 1, 1, 1] ###Markdown ここで0を `false` (つまりそれを選択しない), 1を`true`(それを選択する)とみなした時、そのパターンを表す配列を $P$ とすると、選択した要素の和は, $$dot(A, P) = (A_1 * P_1 + A_2 * P_2 + ... + A_N * P_N)$$なので、$dot(A, P)$ と表すことができます。 したがって、部分和問題は次のようなコードで解けます。とてもシンプルですね! ###Code using LinearAlgebra function solve(N, A, S) for i in 0:2^N - 1 P = digits(i, base=2, pad=N) if dot(A, P) == S return "OK, P = $P" end end return "NO" end N = 4 A = rand(1:10, N) S = rand(1:40) @show N @show A @show S solve(N, A, S) ###Output N = 4 A = [4, 5, 8, 8] S = 14 ###Markdown 計算量は、内積に$O(N)$かかり、パターンの数が$2^N$個あることから、$O(N2^N)$です。そのため、Nが大きくなると計算時間がすごいことになります。実験してみます。 ###Code using Plots; plotly() using BenchmarkTools # 最悪の計算量が知りたいので、絶対に「"No"」になるようなケースについて調べます。 # Aは全て0, 和が1とします。 function benchmark(N) times = zeros(N) S = 1 for i in 1:N A = zeros(Int, i) benchmark = @benchmark solve($i, $A, $S) times[i] = mean(benchmark.times) end return times end result = benchmark(16) p = plot(result, yaxis=:log) xlabel!("N") ylabel!("Time [ns]") ###Output _____no_output_____ ###Markdown お手本のような指数関数ありがとうございます。Nが大きくなるにつれ計算量も爆発的に大きくなるので、使う時は気をつけましょう。 ###Code clipboard(string(sprint(show, "text/html", p))) ###Output _____no_output_____
.ipynb_checkpoints/1_linear_algebra-checkpoint.ipynb
###Markdown A less obvious tool is the dot product. The dot product of two vectors is the sum oftheir componentwise products: ###Code def dot(v: Vector, w: Vector) -> float: """Computes v_1 * w_1 + ... + v_n * w_n""" assert len(v) == len(w), "vectors must be same length" return sum(v_i * w_i for v_i, w_i in zip(v, w)) assert dot([1, 2, 3], [4, 5, 6]) == 32 def sum_of_squares(v: Vector) -> float: """Returns v_1 * v_1 + ... + v_n * v_n""" return dot(v, v) assert sum_of_squares([1, 2, 3]) == 14 import math # Which we can use to compute its magnitude (or length): def magnitude(v: Vector) -> float: """Returns the magnitude ( or length) of v""" return math.sqrt(sum_of_squares(v)) assert magnitude([3, 4]) == 5 # We now have all the pieces we need to compute the distance between two vectors def squared_distance(v: Vector, w: Vector) -> float: """Computes (v_1 - w_1)**2 + ... + (v_n - w_n)**2 """ return sum_of_squares(subtract(v, w)) def distance(v: Vector, w: Vector) -> float: """Computes the distance between v and w""" return math.sqrt(squared_distance(v, w)) Matrix = List[List] from typing import Tuple A = [[1, 2, 3],[4, 5, 6]] def shape(A: Matrix) -> Tuple: """Returns (# of rows of A, # of columns of A)""" num_rows = len(A) num_cols = len(A[0]) if A else 0 # number of elements in first row, 0 is returns if empty lists of list are present return num_rows, num_cols assert shape(A) == (2, 3) def get_row(A: Matrix, i: int) -> Vector: """Returns the i-th row of A (as a Vector)""" return A[i] def get_column(A: Matrix, j:int) -> Vector: """Returns the j-th columns of A (as a Vector)""" return [A_i[j] # jth element of row vector A_i for A_i in A] # for each row vector assert get_row(A, 1) == [4, 5, 6] assert get_column(A,1) == [2, 5] from typing import Callable def make_matrix(num_rows: int, num_cols: int, entry_fn: Callable[[int, int], float]) -> Matrix: """Returns a num_rows x num_cols matrix(i, j) whose (i,j)- th entry is entry_fn(i, j)""" return [[entry_fn(i, j) # entry_fn on each i,j pair for j in range(num_cols)] # entry_fn(i,0),...,entry_fn(i,j) for i in range(num_rows)] # create one list for each i def identity_matrix(n: int) -> Matrix: """Returns the n x n identity matrix""" return make_matrix(n, n, lambda i,j: 1 if i==j else 0) assert identity_matrix(5) == [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]] ###Output _____no_output_____
03-hw-spooky-authors-exercise.ipynb
###Markdown Spooky Author Identification exerciseSpooky authors dataset. Mоже да се изтегли от тук:https://www.kaggle.com/c/spooky-author-identification ИзводиСлед направените анализи в/у feature-те по време на лекцията на курса можем да стигнем до следните наблюдения и изводи:- ...- ...Също така можем да опитаме някакъв feature engineering, "почиставне" и обработка на данните:- ...- ... Стратегия- ...- ... Започваме... ###Code %config IPCompleter.greedy=True !pip install numpy scipy matplotlib ipython scikit-learn pandas pillow mglearn ###Output Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: matplotlib in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: ipython in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: pandas in /opt/conda/lib/python3.6/site-packages Requirement already satisfied: pillow in /opt/conda/lib/python3.6/site-packages Collecting mglearn Downloading mglearn-0.1.6.tar.gz (541kB)  100% |████████████████████████████████| 542kB 944kB/s ta 0:00:01 [?25hRequirement already satisfied: six>=1.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib) Requirement already satisfied: python-dateutil in /opt/conda/lib/python3.6/site-packages (from matplotlib) Requirement already satisfied: pytz in /opt/conda/lib/python3.6/site-packages (from matplotlib) Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages/cycler-0.10.0-py3.6.egg (from matplotlib) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=1.5.6 in /opt/conda/lib/python3.6/site-packages (from matplotlib) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: decorator in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: simplegeneric>0.8 in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: pexpect; sys_platform != "win32" in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: setuptools>=18.5 in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: traitlets>=4.2 in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: pickleshare in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: pygments in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: jedi>=0.10 in /opt/conda/lib/python3.6/site-packages (from ipython) Requirement already satisfied: olefile in /opt/conda/lib/python3.6/site-packages (from pillow) Requirement already satisfied: wcwidth in /opt/conda/lib/python3.6/site-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython) Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.6/site-packages (from traitlets>=4.2->ipython) Building wheels for collected packages: mglearn Running setup.py bdist_wheel for mglearn ... [?25ldone [?25h Stored in directory: /home/jovyan/.cache/pip/wheels/79/8b/2b/17dcfb9c9b044b216a58daea9787a0637cb1ffc5b4c2a78e50 Successfully built mglearn Installing collected packages: mglearn Successfully installed mglearn-0.1.6 ###Markdown ... ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import mglearn from IPython.display import display %matplotlib inline ###Output _____no_output_____ ###Markdown ... ###Code import pandas as pd train = pd.read_csv("data/spooky-authors/train.zip", index_col=['id']) test = pd.read_csv("data/spooky-authors/test.zip", index_col=['id']) sample_submission = pd.read_csv("data/spooky-authors/sample_submission.zip", index_col=['id']) print(train.shape, test.shape, sample_submission.shape) print(set(train.columns) - set(test.columns)) train.head(5) ###Output _____no_output_____ ###Markdown ... ###Code !pip install nltk import nltk nltk.download('stopwords') params = {"features__ngram_range": [(1,1), (1,2), (1,3)], "features__analyzer": ['word'], "features__max_df": [1.0, 0.9, 0.8, 0.7, 0.6, 0.5], "features__min_df": [2, 3, 5, 10], "features__lowercase": [False, True], "features__stop_words": [None, stopwords], "features__token_pattern": [r'\w+|\,', None], "clf__alpha": [0.01, 0.1, 0.5, 1, 2] } from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import log_loss def report(results, n_top=5): for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_score # from nltk.corpus import stopwords # stopset = set(stopwords.words('english')) # from sklearn.ensemble import VotingClassifier pipeline = Pipeline([ ('features', TfidfVectorizer( # ngram_range=(1,2), min_df=2, # max_df=0.8, lowercase=False, # token_pattern=r'\w+|\,', stop_words=stopset )), ('clf', MultinomialNB( # alpha=0.01 )), ]) # print(pipeline.named_steps['features']) # print(cross_val_score(pipeline, train.text, train.author, cv=3, n_jobs=3)) # print(cross_val_score(pipeline, train.text, train.author, cv=3, n_jobs=3, # scoring='neg_log_loss')) random_search = RandomizedSearchCV(pipeline, param_distributions=params, scoring='neg_log_loss', n_iter=20, cv=3, n_jobs=4) random_search.fit(train.text, train.author) report(random_search.cv_results_) pipeline = pipeline.fit(train.text, train.author) print(pipeline.predict_proba(test[:10].text)) test_predictions = pipeline.predict_proba(test.text) print(pipeline.classes_) submit_file = pd.DataFrame(test_predictions, columns=['EAP', 'MWS', 'HPL'], index=test.index) submit_file.head(10) submit_file.to_csv("data/spooky-authors/predictions.csv") ###Output _____no_output_____
week3/Linear Algebra, Distance and Similarity.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Linear Algebra1.1&nbsp;&nbsp;Dot Products1.1.1&nbsp;&nbsp;What does a dot product conceptually mean?1.2&nbsp;&nbsp;Exercises1.3&nbsp;&nbsp;Using Scikit-Learn1.4&nbsp;&nbsp;Bag of Words Models2&nbsp;&nbsp;Distance Measures2.1&nbsp;&nbsp;Euclidean Distance2.1.1&nbsp;&nbsp;Scikit Learn3&nbsp;&nbsp;Similarity Measures4&nbsp;&nbsp;Linear Relationships4.1&nbsp;&nbsp;Pearson Correlation Coefficient4.1.1&nbsp;&nbsp;Intuition Behind Pearson Correlation Coefficient4.1.1.1&nbsp;&nbsp;When $ρ_{Χ_Υ} = 1$ or $ρ_{Χ_Υ} = -1$4.2&nbsp;&nbsp;Cosine Similarity4.2.1&nbsp;&nbsp;Shift Invariance5&nbsp;&nbsp;Exercise (20 minutes):5.0.0.1&nbsp;&nbsp;3. Define your cosine similarity functions5.0.0.2&nbsp;&nbsp;4. Get the two documents from the BoW feature space and calculate cosine similarity6&nbsp;&nbsp;Challenge: Use the Example Below to Create Your Own Cosine Similarity Function6.0.1&nbsp;&nbsp;Create a list of all the vocabulary $V$6.0.1.1&nbsp;&nbsp;Native Implementation:6.0.2&nbsp;&nbsp;Create your Bag of Words model Linear AlgebraIn the natural language processing, each document is a vector of numbers. Dot ProductsA dot product is defined as$ a \cdot b = \sum_{i}^{n} a_{i}b_{i} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + \dots + a_{n}b_{n}$The geometric definition of a dot product is $ a \cdot b = $\|\|b\|\|\|\|a\|\| What does a dot product conceptually mean?A dot product is a representation of the **similarity between two components**, because it is calculated based upon shared elements. It tells you how much one vector goes in the direction of another vector.The actual value of a dot product reflects the direction of change:* **Zero**: we don't have any growth in the original direction* **Positive** number: we have some growth in the original direction* **Negative** number: we have negative (reverse) growth in the original direction ###Code A = [0,2] B = [0,1] def dot_product(x,y): return sum(a*b for a,b in zip(x,y)) dot_product(A,B) # What will the dot product of A and B be? ###Output _____no_output_____ ###Markdown ![Correlations](images/dot_product.png "Visualization of various r values for Pearson correlation coefficient") Exercises What will the dot product of `A` and `B` be? ###Code A = [1,2] B = [2,4] dot_product(A,B) ###Output _____no_output_____ ###Markdown What will the dot product of `document_1` and `document_2` be? ###Code document_1 = [0, 0, 1] document_2 = [1, 0, 2] ###Output _____no_output_____ ###Markdown Using Scikit-Learn ###Code from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() data_corpus = ["John likes to watch movies. Mary likes movies too.", "John also likes football. Mary doesn't like football."] X = vectorizer.fit_transform(data_corpus) vectorizer.get_feature_names() ###Output _____no_output_____ ###Markdown Bag of Words Models ###Code corpus = [ "Some analysts think demand could drop this year because a large number of homeowners take on remodeling projectsafter buying a new property. With fewer homes selling, home values easing, and mortgage rates rising, they predict home renovations could fall to their lowest levels in three years.", "Most home improvement stocks are expected to report fourth-quarter earnings next month.", "The conversation boils down to how much leverage management can get out of its wide-ranging efforts to re-energize operations, branding, digital capabilities, and the menu–and, for investors, how much to pay for that.", "RMD’s software acquisitions, efficiency, and mix overcame pricing and its gross margin improved by 90 bps Y/Y while its operating margin (including amortization) improved by 80 bps Y/Y. Since RMD expects the slower international flow generator growth to continue for the next few quarters, we have lowered our organic growth estimates to the mid-single digits. " ] X = vectorizer.fit_transform(corpus).toarray() import numpy as np from sys import getsizeof zeroes = np.where(X.flatten() == 0)[0].size percent_sparse = zeroes / X.size print(f"The bag of words feature space is {round(percent_sparse * 100,2)}% sparse. \n\ That's approximately {round(getsizeof(X) * percent_sparse,2)} bytes of wasted memory. This is why sklearn uses CSR (compressed sparse rows) instead of normal matrices!") ###Output _____no_output_____ ###Markdown Distance Measures Euclidean DistanceEuclidean distances can range from 0 (completely identically) to $\infty$ (extremely dissimilar). The distance between two points, $x$ and $y$, can be defined as $d(x,y)$:$$d(x,y) = \sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^2}$$Compared to the other dominant distance measure (cosine similarity), **magnitude** plays an extremely important role. ###Code from math import sqrt def euclidean_distance_1(x,y): distance = sum((a-b)**2 for a, b in zip(x, y)) return sqrt(distance) ###Output _____no_output_____ ###Markdown There's typically an easier way to write this function that takes advantage of Numpy's vectorization capabilities: ###Code import numpy as np def euclidean_distance_2(x,y): x = np.array(x) y = np.array(y) return np.linalg.norm(x-y) ###Output _____no_output_____ ###Markdown Scikit Learn ###Code from sklearn.metrics.pairwise import euclidean_distances X = [document_1, document_2] euclidean_distances(X) ###Output _____no_output_____ ###Markdown Similarity MeasuresSimilarity measures will always range between -1 and 1. A similarity of -1 means the two objects are complete opposites, while a similarity of 1 indicates the objects are identical. Linear Relationships Pearson Correlation Coefficient* We use **ρ** when the correlation is being measured from the population, and **r** when it is being generated from a sample.* An r value of 1 represents a **perfect linear** relationship, and a value of -1 represents a perfect inverse linear relationship.The equation for Pearson's correlation coefficient is $$ρ_{Χ_Υ} = \frac{cov(X,Y)}{σ_Xσ_Y}$$ Intuition Behind Pearson Correlation Coefficient When $ρ_{Χ_Υ} = 1$ or $ρ_{Χ_Υ} = -1$This requires **$cov(X,Y) = σ_Xσ_Y$** or **$-1 * cov(X,Y) = σ_Xσ_Y$** (in the case of $ρ = -1$) . This corresponds with all the data points lying perfectly on the same line.![Correlations](images/correlation.png "Visualization of various r values for Pearson correlation coefficient") Cosine SimilarityThe cosine similarity of two vectors (each vector will usually represent one document) is a measure that calculates $ cos(\theta)$, where $\theta$ is the angle between the two vectors.Therefore, if the vectors are **orthogonal** to each other (90 degrees), $cos(90) = 0$. If the vectors are in exactly the same direction, $\theta = 0$ and $cos(0) = 1$.Cosine similiarity **does not care about the magnitude of the vector, only the direction** in which it points. This can help normalize when comparing across documents that are different in terms of word count.![Cosine Similarity](images/cos-equation.png) Shift Invariance* The Pearson correlation coefficient between X and Y does not change with you transform $X \rightarrow a + bX$ and $Y \rightarrow c + dY$, assuming $a$, $b$, $c$, and $d$ are constants and $b$ and $d$ are positive.* Cosine similarity does, however, change when transformed in this way.Exercise (20 minutes):>In Python, find the **cosine similarity** and the **Pearson correlation coefficient** of the two following sentences, assuming a **one-hot encoded binary bag of words** model. You may use a library to create the BoW feature space, but do not use libraries other than `numpy` or `scipy` to compute Pearson and cosine similarity:>`A = "John likes to watch movies. Mary likes movies too"`>`B = "John also likes to watch football games, but he likes to watch movies on occasion as well"` 3. Define your cosine similarity functions```pythonfrom scipy.spatial.distance import cosine we are importing this library to check that our own cosine similarity func worksfrom numpy import dot to calculate dot productfrom numpy.linalg import norm to calculate the normdef cosine_similarity(A, B): numerator = dot(A, B) denominator = norm(A) * norm(B) return numerator / denominatordef cosine_distance(A,B): return 1 - cosine_similarityA = [0,2,3,4,1,2]B = [1,3,4,0,0,2] check that your native implementation and 3rd party library function produce the same valuesassert round(cosine_similarity(A,B),4) == round(cosine(A,B),4)``` 4. Get the two documents from the BoW feature space and calculate cosine similarity```pythoncosine_similarity(X[0], X[1])```>0.5241424183609592 ###Code from scipy.spatial.distance import cosine from numpy import dot import numpy as np from numpy.linalg import norm def cosine_similarity(A, B): numerator = dot(A, B) denominator = norm(A) * norm(B) return numerator / denominator # remember, you take 1 - the distance to get the distance def cosine_distance(A,B): return 1 - cosine_similarity A = [0,2,3,4,1,2] B = [1,3,4,0,0,2] # check that your native implementation and 3rd party library function produce the same values assert round(cosine_similarity(A,B),4) == round(1 - cosine(A,B),4) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() # take two very similar sentences, should have high similarity # edit these sentences to become less similar, and the similarity score should decrease data_corpus = ["John likes to watch movies. Mary likes movies too.", "John also likes to watch football games"] X = vectorizer.fit_transform(data_corpus) X = X.toarray() print(vectorizer.get_feature_names()) cosine_similarity(X[0], X[1]) ###Output _____no_output_____ ###Markdown Challenge: Use the Example Below to Create Your Own Cosine Similarity Function Create a list of all the **vocabulary $V$**Using **`sklearn`**'s **`CountVectorizer`**:```pythonfrom sklearn.feature_extraction.text import CountVectorizervectorizer = CountVectorizer()data_corpus = ["John likes to watch movies. Mary likes movies too", "John also likes to watch football games, but he likes to watch movies on occasion as well"]X = vectorizer.fit_transform(data_corpus) V = vectorizer.get_feature_names()``` Native Implementation:```pythondef get_vocabulary(sentences): vocabulary = {} create an empty set - question: Why not a list? for sentence in sentences: this is a very crude form of "tokenization", would not actually use in production for word in sentence.split(" "): if word not in vocabulary: vocabulary.add(word) return vocabulary``` Create your Bag of Words model```pythonX = X.toarray()print(X)```Your console output:```python[[0 0 0 1 2 1 2 1 1 1] [1 1 1 1 1 0 0 1 0 1]]``` ###Code vectors = [[0,0,0,1,2,1,2,1,1,1], [1,1,1,1,1,0,0,1,0,1]] import math def find_norm(vector): total = 0 for element in vector: total += element ** 2 return math.sqrt(total) norm(vectors[0]) # Numpy find_norm(vectors[0]) # your own dot_product(vectors[0], vectors[1]) / (find_norm(vectors[0]) * find_norm(vectors[1])) from sklearn.metrics.pairwise import cosine_distances, cosine_similarity cosine_similarity(vectors) ###Output _____no_output_____ ###Markdown Table of Contents1&nbsp;&nbsp;Linear Algebra1.1&nbsp;&nbsp;Dot Products1.1.1&nbsp;&nbsp;What does a dot product conceptually mean?1.2&nbsp;&nbsp;Exercises1.3&nbsp;&nbsp;Using Scikit-Learn1.4&nbsp;&nbsp;Bag of Words Models2&nbsp;&nbsp;Distance Measures2.1&nbsp;&nbsp;Euclidean Distance2.1.1&nbsp;&nbsp;Scikit Learn3&nbsp;&nbsp;Similarity Measures4&nbsp;&nbsp;Linear Relationships4.1&nbsp;&nbsp;Pearson Correlation Coefficient4.1.1&nbsp;&nbsp;Intuition Behind Pearson Correlation Coefficient4.1.1.1&nbsp;&nbsp;When $ρ_{Χ_Υ} = 1$ or $ρ_{Χ_Υ} = -1$4.2&nbsp;&nbsp;Cosine Similarity4.2.1&nbsp;&nbsp;Shift Invariance5&nbsp;&nbsp;Exercise (20 minutes):5.0.0.1&nbsp;&nbsp;3. Define your cosine similarity functions5.0.0.2&nbsp;&nbsp;4. Get the two documents from the BoW feature space and calculate cosine similarity6&nbsp;&nbsp;Challenge: Use the Example Below to Create Your Own Cosine Similarity Function6.0.1&nbsp;&nbsp;Create a list of all the vocabulary $V$6.0.1.1&nbsp;&nbsp;Native Implementation:6.0.2&nbsp;&nbsp;Create your Bag of Words model Linear AlgebraIn the natural language processing, each document is a vector of numbers. Dot ProductsA dot product is defined as$ a \cdot b = \sum_{i}^{n} a_{i}b_{i} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + \dots + a_{n}b_{n}$The geometric definition of a dot product is $ a \cdot b = $\|\|b\|\|\|\|a\|\| What does a dot product conceptually mean?A dot product is a representation of the **similarity between two components**, because it is calculated based upon shared elements. It tells you how much one vector goes in the direction of another vector.The actual value of a dot product reflects the direction of change:* **Zero**: we don't have any growth in the original direction* **Positive** number: we have some growth in the original direction* **Negative** number: we have negative (reverse) growth in the original direction ###Code A = [0,2] B = [0,1] def dot_product(x,y): return sum(a*b for a,b in zip(x,y)) dot_product(A,B) # What will the dot product of A and B be? ###Output _____no_output_____ ###Markdown ![Correlations](images/dot_product.png "Visualization of various r values for Pearson correlation coefficient") Exercises What will the dot product of `A` and `B` be? ###Code A = [1,2] B = [2,4] dot_product(A,B) ###Output _____no_output_____ ###Markdown What will the dot product of `document_1` and `document_2` be? ###Code document_1 = [0, 0, 1] document_2 = [1, 0, 2] ###Output _____no_output_____ ###Markdown Using Scikit-Learn ###Code from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() data_corpus = ["John likes to watch movies. Mary likes movies too.", "John also likes football. Mary doesn't like football."] X = vectorizer.fit_transform(data_corpus) vectorizer.get_feature_names() ###Output _____no_output_____ ###Markdown Bag of Words Models ###Code corpus = [ "Some analysts think demand could drop this year because a large number of homeowners take on remodeling projectsafter buying a new property. With fewer homes selling, home values easing, and mortgage rates rising, they predict home renovations could fall to their lowest levels in three years.", "Most home improvement stocks are expected to report fourth-quarter earnings next month.", "The conversation boils down to how much leverage management can get out of its wide-ranging efforts to re-energize operations, branding, digital capabilities, and the menu–and, for investors, how much to pay for that.", "RMD’s software acquisitions, efficiency, and mix overcame pricing and its gross margin improved by 90 bps Y/Y while its operating margin (including amortization) improved by 80 bps Y/Y. Since RMD expects the slower international flow generator growth to continue for the next few quarters, we have lowered our organic growth estimates to the mid-single digits. " ] X = vectorizer.fit_transform(corpus).toarray() import numpy as np from sys import getsizeof zeroes = np.where(X.flatten() == 0)[0].size percent_sparse = zeroes / X.size print(f"The bag of words feature space is {round(percent_sparse * 100,2)}% sparse. \n\ That's approximately {round(getsizeof(X) * percent_sparse,2)} bytes of wasted memory. This is why sklearn uses CSR (compressed sparse rows) instead of normal matrices!") ###Output _____no_output_____ ###Markdown Distance Measures Euclidean DistanceEuclidean distances can range from 0 (completely identically) to $\infty$ (extremely dissimilar). The distance between two points, $x$ and $y$, can be defined as $d(x,y)$:$$d(x,y) = \sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^2}$$Compared to the other dominant distance measure (cosine similarity), **magnitude** plays an extremely important role. ###Code from math import sqrt def euclidean_distance_1(x,y): distance = sum((a-b)**2 for a, b in zip(x, y)) return sqrt(distance) ###Output _____no_output_____ ###Markdown There's typically an easier way to write this function that takes advantage of Numpy's vectorization capabilities: ###Code import numpy as np def euclidean_distance_2(x,y): x = np.array(x) y = np.array(y) return np.linalg.norm(x-y) ###Output _____no_output_____ ###Markdown Scikit Learn ###Code from sklearn.metrics.pairwise import euclidean_distances X = [document_1, document_2] euclidean_distances(X) ###Output _____no_output_____ ###Markdown Similarity MeasuresSimilarity measures will always range between -1 and 1. A similarity of -1 means the two objects are complete opposites, while a similarity of 1 indicates the objects are identical. Linear Relationships Pearson Correlation Coefficient* We use **ρ** when the correlation is being measured from the population, and **r** when it is being generated from a sample.* An r value of 1 represents a **perfect linear** relationship, and a value of -1 represents a perfect inverse linear relationship.The equation for Pearson's correlation coefficient is $$ρ_{Χ_Υ} = \frac{cov(X,Y)}{σ_Xσ_Y}$$ Intuition Behind Pearson Correlation Coefficient When $ρ_{Χ_Υ} = 1$ or $ρ_{Χ_Υ} = -1$This requires **$cov(X,Y) = σ_Xσ_Y$** or **$-1 * cov(X,Y) = σ_Xσ_Y$** (in the case of $ρ = -1$) . This corresponds with all the data points lying perfectly on the same line.![Correlations](images/correlation.png "Visualization of various r values for Pearson correlation coefficient") Cosine SimilarityThe cosine similarity of two vectors (each vector will usually represent one document) is a measure that calculates $ cos(\theta)$, where $\theta$ is the angle between the two vectors.Therefore, if the vectors are **orthogonal** to each other (90 degrees), $cos(90) = 0$. If the vectors are in exactly the same direction, $\theta = 0$ and $cos(0) = 1$.Cosine similiarity **does not care about the magnitude of the vector, only the direction** in which it points. This can help normalize when comparing across documents that are different in terms of word count.![Cosine Similarity](images/cos-equation.png) Shift Invariance* The Pearson correlation coefficient between X and Y does not change with you transform $X \rightarrow a + bX$ and $Y \rightarrow c + dY$, assuming $a$, $b$, $c$, and $d$ are constants and $b$ and $d$ are positive.* Cosine similarity does, however, change when transformed in this way.Exercise (20 minutes):>In Python, find the **cosine similarity** and the **Pearson correlation coefficient** of the two following sentences, assuming a **one-hot encoded binary bag of words** model. You may use a library to create the BoW feature space, but do not use libraries other than `numpy` or `scipy` to compute Pearson and cosine similarity:>`A = "John likes to watch movies. Mary likes movies too"`>`B = "John also likes to watch football games, but he likes to watch movies on occasion as well"` 3. Define your cosine similarity functions```pythonfrom scipy.spatial.distance import cosine we are importing this library to check that our own cosine similarity func worksfrom numpy import dot to calculate dot productfrom numpy.linalg import norm to calculate the normdef cosine_similarity(A, B): numerator = dot(A, B) denominator = norm(A) * norm(B) return numerator / denominatordef cosine_distance(A,B): return 1 - cosine_similarityA = [0,2,3,4,1,2]B = [1,3,4,0,0,2] check that your native implementation and 3rd party library function produce the same valuesassert round(cosine_similarity(A,B),4) == round(cosine(A,B),4)``` 4. Get the two documents from the BoW feature space and calculate cosine similarity```pythoncosine_similarity(X[0], X[1])```>0.5241424183609592 ###Code from scipy.spatial.distance import cosine from numpy import dot import numpy as np from numpy.linalg import norm def cosine_similarity(A, B): numerator = dot(A, B) denominator = norm(A) * norm(B) return numerator / denominator # remember, you take 1 - the distance to get the distance def cosine_distance(A,B): return 1 - cosine_similarity A = [0,2,3,4,1,2] B = [1,3,4,0,0,2] # check that your native implementation and 3rd party library function produce the same values assert round(cosine_similarity(A,B),4) == round(1 - cosine(A,B),4) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() # take two very similar sentences, should have high similarity # edit these sentences to become less similar, and the similarity score should decrease data_corpus = ["John likes to watch movies. Mary likes movies too.", "John also likes to watch football games"] X = vectorizer.fit_transform(data_corpus) X = X.toarray() print(vectorizer.get_feature_names()) cosine_similarity(X[0], X[1]) ###Output _____no_output_____ ###Markdown Challenge: Use the Example Below to Create Your Own Cosine Similarity Function Create a list of all the **vocabulary $V$**Using **`sklearn`**'s **`CountVectorizer`**:```pythonfrom sklearn.feature_extraction.text import CountVectorizervectorizer = CountVectorizer()data_corpus = ["John likes to watch movies. Mary likes movies too", "John also likes to watch football games, but he likes to watch movies on occasion as well"]X = vectorizer.fit_transform(data_corpus) V = vectorizer.get_feature_names()``` Native Implementation:```pythondef get_vocabulary(sentences): vocabulary = {} create an empty set - question: Why not a list? for sentence in sentences: this is a very crude form of "tokenization", would not actually use in production for word in sentence.split(" "): if word not in vocabulary: vocabulary.add(word) return vocabulary``` Create your Bag of Words model```pythonX = X.toarray()print(X)```Your console output:```python[[0 0 0 1 2 1 2 1 1 1] [1 1 1 1 1 0 0 1 0 1]]``` ###Code vectors = [[0,0,0,1,2,1,2,1,1,1], [1,1,1,1,1,0,0,1,0,1]] import math def find_norm(vector): total = 0 for element in vector: total += element ** 2 return math.sqrt(total) norm(vectors[0]) # Numpy find_norm(vectors[0]) # your own dot_product(vectors[0], vectors[1]) / (find_norm(vectors[0]) * find_norm(vectors[1])) from sklearn.metrics.pairwise import cosine_distances, cosine_similarity cosine_similarity(vectors) ###Output _____no_output_____
_build/jupyter_execute/contents/Tensorflow/Basics.ipynb
###Markdown Basics Let's Start - The main difference between tensors and NumPy arrays is that tensors can be used on GPUs (graphical processing units) and TPUs (tensor processing units).- The number of dimensions of a tensor is called its rank. A scalar has rank $0$, a vector has rank $1$, a matrix is rank $2$, a tensor has rank $n$.- There are $2$ ways of creating tensors. `tf.Variable()` and `tf.constant()` the difference being tensors created with `tf.constant()` are immutable, tensors created with `tf.Variable()` are mutable. `any_tensor[2].assign(7)` can be used to change a value of a specific element in the tensor, same would fail for `tf.constant()`.- There are other ways of creating tensors examples being `tf.zeros` or `tf.ones`. You can also convert numpy arrays into tensors.- Tensors can also be indexed just like Python lists.- You can an extra dimension by using `tf.newaxis` or `tf.expand_dims`- `tf.reshape()`,`tf.transpose()` allows us to reshape a tensor- Data type of a tesnor can be changed with `tf.cast(t1, dtype=tf.float16)`- You can squeeze a tensor to remove single-dimensions (dimensions with size 1) using `tf.squeeze()`. ###Code # Some common commands are as follows import tensorflow as tf print("Check TF version: ",tf.__version__) t1 = tf.constant([[10., 7.], [3., 2.], [8., 9.]], dtype=tf.float16) # by default TF creates tensors with either an int32 or float32 datatype. print("Access a specific feature of the tensor, in this case shape of t1: ",t1.shape) print("Size of t1: ", tf.size(t1)) print("Datatype of every element:", t1.dtype) print("Number of dimensions (rank):", t1.ndim) print("Shape of tensor:", t1.shape) print("Elements along axis 0 of tensor:", t1.shape[0]) print("Elements along last axis of tensor:", t1.shape[-1]) print("Total number of elements:", tf.size(t1).numpy()) # .numpy() converts to NumPy array print("Details of the tensor: ",t1) print("Index tensors: ", t1[:1,:]) import tensorflow as tf # Math operations t1 = tf.constant([[10., 7.], [3., 2.], [8., 9.]], dtype=tf.float16) # by default TF creates tensors with either an int32 or float32 datatype. print("Sum: ",t1+10) print("Substraction: ",t1-10) print("Multiplication: ",t1*10, tf.multiply(t1, 10)) print("Matrix Multiplication: ",t1 @ tf.transpose(t1)) # can also be done with tf.tensordot() # Aggregation functions print("Max: ", tf.reduce_max(t1)) # same or min, mean print("Sum: ", tf.reduce_sum(t1)) print("Max Position: ", tf.argmax(t1)) # same or min ###Output Sum: tf.Tensor( [[20. 17.] [13. 12.] [18. 19.]], shape=(3, 2), dtype=float16) Substraction: tf.Tensor( [[ 0. -3.] [-7. -8.] [-2. -1.]], shape=(3, 2), dtype=float16) Multiplication: tf.Tensor( [[100. 70.] [ 30. 20.] [ 80. 90.]], shape=(3, 2), dtype=float16) tf.Tensor( [[100. 70.] [ 30. 20.] [ 80. 90.]], shape=(3, 2), dtype=float16) Matrix Multiplication: tf.Tensor( [[149. 44. 143.] [ 44. 13. 42.] [143. 42. 145.]], shape=(3, 3), dtype=float16) Max: tf.Tensor(10.0, shape=(), dtype=float16) Sum: tf.Tensor(39.0, shape=(), dtype=float16) Max Position: tf.Tensor([0 2], shape=(2,), dtype=int64) ###Markdown Random Randomness is often used in deep learning, be it initializing weights in a Neural Network or shuffling images while feeding data to the model. ###Code random_1 = tf.random.Generator.from_seed(35) # setting seed ensures reproducibility random_1 = random_1.normal(shape = (3,2)) print("Generating tensor from a normal distribution: ", random_1) print("Shuffling the elements of the tesnor: ", tf.random.shuffle(random_1)) ###Output Generating tensor from a normal distribution: tf.Tensor( [[ 0.495291 -0.648484 ] [-1.8700892 2.7830641 ] [-0.645002 0.18022095]], shape=(3, 2), dtype=float32) Shuffling the elements of the tesnor: tf.Tensor( [[-0.645002 0.18022095] [ 0.495291 -0.648484 ] [-1.8700892 2.7830641 ]], shape=(3, 2), dtype=float32)
how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-multiclass-classification.ipynb
###Markdown Iris flower classification with scikit-learn (run model explainer locally) ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-multiclass-classification.png) Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Explain a model with the AML explain-model package1. Train a SVM classification model using Scikit-learn2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services4. Visualize the global and local explanations with the visualization dashboard. ###Code from sklearn.datasets import load_iris from sklearn import svm from azureml.explain.model.tabular_explainer import TabularExplainer ###Output _____no_output_____ ###Markdown 1. Run model explainer locally with full data Load the breast cancer diagnosis data ###Code iris = load_iris() X = iris['data'] y = iris['target'] classes = iris['target_names'] feature_names = iris['feature_names'] # Split data into train and test from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown Train a SVM classification model, which you want to explain ###Code clf = svm.SVC(gamma=0.001, C=100., probability=True) model = clf.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Explain predictions on your local machine ###Code tabular_explainer = TabularExplainer(model, x_train, features = feature_names, classes=classes) ###Output _____no_output_____ ###Markdown Explain overall model predictions (global explanation) ###Code global_explanation = tabular_explainer.explain_global(x_test) # Sorted SHAP values print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values())) # Corresponding feature names print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names())) # feature ranks (based on original order of features) print('global importance rank: {}'.format(global_explanation.global_importance_rank)) # per class feature names print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names())) # per class feature importance values print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values())) dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values())) ###Output _____no_output_____ ###Markdown Explain overall model predictions as a collection of local (instance-level) explanations ###Code # feature shap values for all features and all data points in the training data print('local importance values: {}'.format(global_explanation.local_importance_values)) ###Output _____no_output_____ ###Markdown Explain local data points (individual instances) ###Code # explain the first member of the test set instance_num = 0 local_explanation = tabular_explainer.explain_local(x_test[instance_num,:]) # get the prediction for the first member of the test set and explain why model made that prediction prediction_value = clf.predict(x_test)[instance_num] sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value] sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value] dict(zip(sorted_local_importance_names, sorted_local_importance_values)) ###Output _____no_output_____ ###Markdown Load visualization dashboard ###Code # Note you will need to have extensions enabled prior to jupyter kernel starting !jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize !jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize # Or, in Jupyter Labs, uncomment below # jupyter labextension install @jupyter-widgets/jupyterlab-manager # jupyter labextension install microsoft-mli-widget from azureml.contrib.explain.model.visualize import ExplanationDashboard ExplanationDashboard(global_explanation, model, x_test) ###Output _____no_output_____ ###Markdown Iris flower classification with scikit-learn (run model explainer locally) Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Explain a model with the AML explain-model package1. Train a SVM classification model using Scikit-learn2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services4. Visualize the global and local explanations with the visualization dashboard. ###Code from sklearn.datasets import load_iris from sklearn import svm from azureml.explain.model.tabular_explainer import TabularExplainer ###Output _____no_output_____ ###Markdown 1. Run model explainer locally with full data Load the breast cancer diagnosis data ###Code iris = load_iris() X = iris['data'] y = iris['target'] classes = iris['target_names'] feature_names = iris['feature_names'] # Split data into train and test from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown Train a SVM classification model, which you want to explain ###Code clf = svm.SVC(gamma=0.001, C=100., probability=True) model = clf.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Explain predictions on your local machine ###Code tabular_explainer = TabularExplainer(model, x_train, features = feature_names, classes=classes) ###Output _____no_output_____ ###Markdown Explain overall model predictions (global explanation) ###Code global_explanation = tabular_explainer.explain_global(x_test) # Sorted SHAP values print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values())) # Corresponding feature names print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names())) # feature ranks (based on original order of features) print('global importance rank: {}'.format(global_explanation.global_importance_rank)) # per class feature names print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names())) # per class feature importance values print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values())) dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values())) ###Output _____no_output_____ ###Markdown Explain overall model predictions as a collection of local (instance-level) explanations ###Code # feature shap values for all features and all data points in the training data print('local importance values: {}'.format(global_explanation.local_importance_values)) ###Output _____no_output_____ ###Markdown Explain local data points (individual instances) ###Code # explain the first member of the test set instance_num = 0 local_explanation = tabular_explainer.explain_local(x_test[instance_num,:]) # get the prediction for the first member of the test set and explain why model made that prediction prediction_value = clf.predict(x_test)[instance_num] sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value] sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value] dict(zip(sorted_local_importance_names, sorted_local_importance_values)) ###Output _____no_output_____ ###Markdown Load visualization dashboard ###Code from azureml.contrib.explain.model.visualize import ExplanationDashboard ExplanationDashboard(global_explanation, model, x_test) ###Output _____no_output_____ ###Markdown Iris flower classification with scikit-learn (run model explainer locally) ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-multiclass-classification.png) Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Explain a model with the AML explain-model package1. Train a SVM classification model using Scikit-learn2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services4. Visualize the global and local explanations with the visualization dashboard. ###Code from sklearn.datasets import load_iris from sklearn import svm from azureml.explain.model.tabular_explainer import TabularExplainer ###Output _____no_output_____ ###Markdown 1. Run model explainer locally with full data Load the breast cancer diagnosis data ###Code iris = load_iris() X = iris['data'] y = iris['target'] classes = iris['target_names'] feature_names = iris['feature_names'] # Split data into train and test from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown Train a SVM classification model, which you want to explain ###Code clf = svm.SVC(gamma=0.001, C=100., probability=True) model = clf.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Explain predictions on your local machine ###Code tabular_explainer = TabularExplainer(model, x_train, features = feature_names, classes=classes) ###Output _____no_output_____ ###Markdown Explain overall model predictions (global explanation) ###Code global_explanation = tabular_explainer.explain_global(x_test) # Sorted SHAP values print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values())) # Corresponding feature names print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names())) # feature ranks (based on original order of features) print('global importance rank: {}'.format(global_explanation.global_importance_rank)) # per class feature names print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names())) # per class feature importance values print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values())) dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values())) ###Output _____no_output_____ ###Markdown Explain overall model predictions as a collection of local (instance-level) explanations ###Code # feature shap values for all features and all data points in the training data print('local importance values: {}'.format(global_explanation.local_importance_values)) ###Output _____no_output_____ ###Markdown Explain local data points (individual instances) ###Code # explain the first member of the test set instance_num = 0 local_explanation = tabular_explainer.explain_local(x_test[instance_num,:]) # get the prediction for the first member of the test set and explain why model made that prediction prediction_value = clf.predict(x_test)[instance_num] sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value] sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value] dict(zip(sorted_local_importance_names, sorted_local_importance_values)) ###Output _____no_output_____ ###Markdown Load visualization dashboard ###Code from azureml.contrib.explain.model.visualize import ExplanationDashboard ExplanationDashboard(global_explanation, model, x_test) ###Output _____no_output_____
Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
###Markdown **CARE: Content-aware image restoration (2D)**---CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The CARE network uses a U-Net network architecture and allows image restoration and resolution improvement in 2D and 3D images, in a supervised manner, using noisy images as input and low-noise images as targets for training. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. **This particular notebook enables restoration of 2D datasets. If you are interested in restoring a 3D dataset, you should use the CARE 3D notebook instead.**---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, by Weigert *et al.* published in Nature Methods in 2018 (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network, please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model (Quality control dataset)**. The quality control assessment can be done directly in this notebook. **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!**Here's a common data structure that can work:* Experiment A - **Training dataset** - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - High SNR images (Training_target) - img_1.tif, img_2.tif, ... - **Quality control dataset** - Low SNR images - img_1.tif, img_2.tif - High SNR images - img_1.tif, img_2.tif - **Data to be predicted** - **Results**---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.--- 0.1 Download example data ###Code data_import = "Download example data from Biostudies" #@param ["Download example data from Biostudies", "Use my own"] if data_import: !wget -r ftp://ftp.ebi.ac.uk/biostudies/nfs/S-BSST/666/S-BSST666/Files/ZeroCostDl4Mic/Stardist_v2 --show-progress -q --cut-dirs=7 -nH -np ###Output .listing [ <=> ] 961 4.12KB/s in 0.2s Stardist_v2/.listin [ <=> ] 251 --.-KB/s in 0s Stardist_v2/Stardis [ <=> ] 480 --.-KB/s in 0s Stardist_v2/Stardis [ <=> ] 367 --.-KB/s in 0s Stardist_v2/Stardis 100%[===================>] 2.00M 4.77MB/s in 0.4s Stardist_v2/Stardis 100%[===================>] 2.00M 3.35MB/s in 0.6s Stardist_v2/Stardis [ <=> ] 367 --.-KB/s in 0s Stardist_v2/Stardis 100%[===================>] 1.00M 2.06MB/s in 0.5s Stardist_v2/Stardis 100%[===================>] 1.00M 2.76MB/s in 0.4s Stardist_v2/Stardis [ <=> ] 587 --.-KB/s in 0s Stardist_v2/Stardis 100%[===================>] 172.05M 6.07MB/s in 31s Stardist_v2/Stardis 100%[===================>] 172.05M 6.09MB/s in 34s Stardist_v2/Stardis 100%[===================>] 172.05M 5.12MB/s in 42s Stardist_v2/Stardis 100%[===================>] 172.05M 3.90MB/s in 38s Stardist_v2/Stardis [ <=> ] 5.42K --.-KB/s in 0s Stardist_v2/Stardis 100%[===================>] 2.00M 2.13MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.50MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.49MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.72MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.50MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.89MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.27MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.33MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.49MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.89MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.62MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.49MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 3.44MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 2.00M 1.89MB/s in 1.1s Stardist_v2/Stardis 100%[===================>] 2.00M 2.44MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.49MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.42MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 1.88MB/s in 1.1s Stardist_v2/Stardis 100%[===================>] 2.00M 1.66MB/s in 1.2s Stardist_v2/Stardis 100%[===================>] 2.00M 2.55MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.52MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.94MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.61MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.30MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.48MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.23MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.66MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 3.16MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 2.00M 3.08MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 2.00M 2.66MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.32MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.81MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.38MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.49MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.06MB/s in 1.0s Stardist_v2/Stardis 100%[===================>] 2.00M 2.53MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.35MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.42MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 3.04MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 1.68MB/s in 1.2s Stardist_v2/Stardis 100%[===================>] 2.00M 1.57MB/s in 1.3s Stardist_v2/Stardis 100%[===================>] 2.00M 1.27MB/s in 1.6s Stardist_v2/Stardis 100%[===================>] 2.00M 1.17MB/s in 1.7s Stardist_v2/Stardis 100%[===================>] 2.00M 1.54MB/s in 1.3s Stardist_v2/Stardis 100%[===================>] 2.00M 1.67MB/s in 1.2s Stardist_v2/Stardis [ <=> ] 5.42K --.-KB/s in 0s Stardist_v2/Stardis 100%[===================>] 1.00M 2.06MB/s in 0.5s Stardist_v2/Stardis 100%[===================>] 1.00M 1.50MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.50MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.44MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.48MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.54MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 1.00M 1.75MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 1.00M 1.54MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 1.00M 1.52MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.35MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.45MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.61MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 1.00M 1.42MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.62MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 1.00M 1.48MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.42MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.13MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 1.00M 1.45MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.50MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.45MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.53MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 1.43MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 1.76MB/s in 1.1s Stardist_v2/Stardis 100%[===================>] 2.00M 2.56MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.25MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 1.00M 1.77MB/s in 0.6s Stardist_v2/Stardis 100%[===================>] 2.00M 2.74MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 1.00M 2.16MB/s in 0.5s Stardist_v2/Stardis 100%[===================>] 1.00M 2.43MB/s in 0.4s Stardist_v2/Stardis 100%[===================>] 1.00M 2.11MB/s in 0.5s Stardist_v2/Stardis 100%[===================>] 2.00M 2.56MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.43MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.70MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.70MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 3.91MB/s in 0.5s Stardist_v2/Stardis 100%[===================>] 2.00M 2.10MB/s in 1.0s Stardist_v2/Stardis 100%[===================>] 2.00M 1.98MB/s in 1.0s Stardist_v2/Stardis 100%[===================>] 2.00M 2.38MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.09MB/s in 1.0s Stardist_v2/Stardis 100%[===================>] 2.00M 2.31MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.04MB/s in 1.0s Stardist_v2/Stardis 100%[===================>] 2.00M 2.25MB/s in 0.9s Stardist_v2/Stardis 100%[===================>] 2.00M 2.53MB/s in 0.8s Stardist_v2/Stardis 100%[===================>] 2.00M 2.70MB/s in 0.7s Stardist_v2/Stardis 100%[===================>] 2.00M 2.45MB/s in 0.8s Stardist_v2/__MACOS [ <=> ] 253 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.03s Stardist_v2/__MACOS [ <=> ] 851 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 176 --.-KB/s in 0.006s Stardist_v2/__MACOS [ <=> ] 371 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS [ <=> ] 371 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS [ <=> ] 591 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS [ <=> ] 5.51K --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.06s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.009s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.009s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.009s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.04s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS [ <=> ] 5.51K --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.001s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.008s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.002s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.009s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.008s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.03s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.01s Stardist_v2/__MACOS 100%[===================>] 212 --.-KB/s in 0.02s ###Markdown **1. Initialise the Colab session**--- **1.1. Check for GPU access**---By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelerator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime setting is correct then Google did not allocate a GPU for your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') !nvidia-smi ###Output _____no_output_____ ###Markdown **1.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown **2. Install CARE and dependencies**--- **2.1. Install key dependencies**--- ###Code #@markdown ##Install CARE and dependencies #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. !pip install wget !pip install memory_profiler !pip install fpdf #Force session restart exit(0) ###Output _____no_output_____ ###Markdown **2.2. Restart your runtime**--- ** Your Runtime has automatically restarted. This is normal.** **2.3. Load key dependencies**--- ###Code #@markdown ##Load key dependencies Notebook_version = ['1.12'] from builtins import any as b_any def get_requirements_path(): # Store requirements file in 'contents' directory current_dir = os.getcwd() dir_count = current_dir.count('/') - 1 path = '../' * (dir_count) + 'requirements.txt' return path def filter_files(file_list, filter_list): filtered_list = [] for fname in file_list: if b_any(fname.split('==')[0] in s for s in filter_list): filtered_list.append(fname) return filtered_list def build_requirements_file(before, after): path = get_requirements_path() # Exporting requirements.txt for local run !pip freeze > $path # Get minimum requirements file df = pd.read_csv(path, delimiter = "\n") mod_list = [m.split('.')[0] for m in after if not m in before] req_list_temp = df.values.tolist() req_list = [x[0] for x in req_list_temp] # Replace with package name and handle cases where import name is different to module name mod_name_list = [['sklearn', 'scikit-learn'], ['skimage', 'scikit-image']] mod_replace_list = [[x[1] for x in mod_name_list] if s in [x[0] for x in mod_name_list] else s for s in mod_list] filtered_list = filter_files(req_list, mod_replace_list) file=open(path,'w') for item in filtered_list: file.writelines(item + '\n') file.close() import sys before = [str(m) for m in sys.modules] %load_ext memory_profiler #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import tensorflow import tensorflow as tf print(tensorflow.__version__) print("Tensorflow enabled.") # ------- Variable specific to CARE ------- from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from __future__ import print_function, unicode_literals, absolute_import, division %matplotlib inline %config InlineBackend.figure_format = 'retina' # ------- Common variable to all ZeroCostDL4Mic notebooks ------- import numpy as np from matplotlib import pyplot as plt import urllib import os, random import shutil import zipfile from tifffile import imread, imsave import time import sys import wget from pathlib import Path import pandas as pd import csv from glob import glob from scipy import signal from scipy import ndimage from skimage import io from sklearn.linear_model import LinearRegression from skimage.util import img_as_uint import matplotlib as mpl from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as psnr from astropy.visualization import simple_norm from skimage import img_as_float32 from skimage.util import img_as_ubyte from tqdm import tqdm from fpdf import FPDF, HTMLMixin from datetime import datetime import subprocess from pip._internal.operations.freeze import freeze # Colors for the warning messages class bcolors: WARNING = '\033[31m' W = '\033[0m' # white (normal) R = '\033[31m' # red #Disable some of the tensorflow warnings import warnings warnings.filterwarnings("ignore") print("Libraries installed") # Check if this is the latest version of the notebook Latest_notebook_version = pd.read_csv("https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_ZeroCostDL4Mic_Release.csv") print('Notebook version: '+Notebook_version[0]) strlist = Notebook_version[0].split('.') Notebook_version_main = strlist[0]+'.'+strlist[1] if Notebook_version_main == Latest_notebook_version.columns: print("This notebook is up-to-date.") else: print(bcolors.WARNING +"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki") !pip freeze > requirements.txt #Create a pdf document with training summary def pdf_export(trained = False, augmentation = False, pretrained_model = False): # save FPDF() class into a # variable pdf #from datetime import datetime class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' day = datetime.now() datetime_str = str(day)[0:10] Header = 'Training report for '+Network+' model ('+model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') # add another cell if trained: training_time = "Training time: "+str(hour)+ "hour(s) "+str(mins)+"min(s) "+str(round(sec))+"sec(s)" pdf.cell(190, 5, txt = training_time, ln = 1, align='L') pdf.ln(1) Header_2 = 'Information for your materials and methods:' pdf.cell(190, 5, txt=Header_2, ln=1, align='L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' #print(all_packages) #Main Packages main_packages = '' version_numbers = [] for name in ['tensorflow','numpy','Keras','csbdeep']: find_name=all_packages.find(name) main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', ' #Version numbers only here: version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)]) cuda_version = subprocess.run('nvcc --version',stdout=subprocess.PIPE, shell=True) cuda_version = cuda_version.stdout.decode('utf-8') cuda_version = cuda_version[cuda_version.find(', V')+3:-1] gpu_name = subprocess.run('nvidia-smi',stdout=subprocess.PIPE, shell=True) gpu_name = gpu_name.stdout.decode('utf-8') gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10] #print(cuda_version[cuda_version.find(', V')+3:-1]) #print(gpu_name) shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape dataset_size = len(os.listdir(Training_source)) text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' if pretrained_model: text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' pdf.set_font('') pdf.set_font_size(10.) pdf.multi_cell(190, 5, txt = text, align='L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(1) pdf.cell(28, 5, txt='Augmentation: ', ln=0) pdf.set_font('') if augmentation: aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)+' by' if rotate_270_degrees != 0 or rotate_90_degrees != 0: aug_text = aug_text+'\n- rotation' if flip_left_right != 0 or flip_top_bottom != 0: aug_text = aug_text+'\n- flipping' if random_zoom_magnification != 0: aug_text = aug_text+'\n- random zoom magnification' if random_distortion != 0: aug_text = aug_text+'\n- random distortion' if image_shear != 0: aug_text = aug_text+'\n- image shearing' if skew_image != 0: aug_text = aug_text+'\n- image skewing' else: aug_text = 'No augmentation was used for training.' pdf.multi_cell(190, 5, txt=aug_text, align='L') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) if Use_Default_Advanced_Parameters: pdf.cell(200, 5, txt='Default Advanced Parameters were enabled') pdf.cell(200, 5, txt='The following parameters were used for training:') pdf.ln(1) html = """ <table width=40% style="margin-left:0px;"> <tr> <th width = 50% align="left">Parameter</th> <th width = 50% align="left">Value</th> </tr> <tr> <td width = 50%>number_of_epochs</td> <td width = 50%>{0}</td> </tr> <tr> <td width = 50%>patch_size</td> <td width = 50%>{1}</td> </tr> <tr> <td width = 50%>number_of_patches</td> <td width = 50%>{2}</td> </tr> <tr> <td width = 50%>batch_size</td> <td width = 50%>{3}</td> </tr> <tr> <td width = 50%>number_of_steps</td> <td width = 50%>{4}</td> </tr> <tr> <td width = 50%>percentage_validation</td> <td width = 50%>{5}</td> </tr> <tr> <td width = 50%>initial_learning_rate</td> <td width = 50%>{6}</td> </tr> </table> """.format(number_of_epochs,str(patch_size)+'x'+str(patch_size),number_of_patches,batch_size,number_of_steps,percentage_validation,initial_learning_rate) pdf.write_html(html) #pdf.multi_cell(190, 5, txt = text_2, align='L') pdf.set_font("Arial", size = 11, style='B') pdf.ln(1) pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_source, align = 'L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_target, align = 'L') #pdf.cell(190, 5, txt=aug_text, align='L', ln=1) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L') pdf.ln(1) pdf.cell(60, 5, txt = 'Example Training pair', ln=1) pdf.ln(1) exp_size = io.imread('/content/TrainingDataExample_CARE2D.png').shape pdf.image('/content/TrainingDataExample_CARE2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8)) pdf.ln(1) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') if augmentation: ref_3 = '- Augmentor: Bloice, Marcus D., Christof Stocker, and Andreas Holzinger. "Augmentor: an image augmentation library for machine learning." arXiv preprint arXiv:1708.04680 (2017).' pdf.multi_cell(190, 5, txt = ref_3, align='L') pdf.ln(3) reminder = 'Important:\nRemember to perform the quality control step on all newly trained models\nPlease consider depositing your training dataset on Zenodo' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(model_path+'/'+model_name+'/'+model_name+"_training_report.pdf") #Make a pdf summary of the QC results def qc_pdf_export(): class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' #model_name = os.path.basename(full_QC_model_path) day = datetime.now() datetime_str = str(day)[0:10] Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(2) pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L') pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'): pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13)) else: pdf.set_font('') pdf.set_font('Arial', size=10) pdf.multi_cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.', align='L') pdf.ln(2) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(3) pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1) pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10)) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) pdf.ln(1) html = """ <body> <font size="7" face="Courier New" > <table width=94% style="margin-left:0px;">""" with open(full_QC_model_path+'Quality Control/QC_metrics_'+QC_model_name+'.csv', 'r') as csvfile: metrics = csv.reader(csvfile) header = next(metrics) image = header[0] mSSIM_PvsGT = header[1] mSSIM_SvsGT = header[2] NRMSE_PvsGT = header[3] NRMSE_SvsGT = header[4] PSNR_PvsGT = header[5] PSNR_SvsGT = header[6] header = """ <tr> <th width = 10% align="left">{0}</th> <th width = 15% align="left">{1}</th> <th width = 15% align="center">{2}</th> <th width = 15% align="left">{3}</th> <th width = 15% align="center">{4}</th> <th width = 15% align="left">{5}</th> <th width = 15% align="center">{6}</th> </tr>""".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT) html = html+header for row in metrics: image = row[0] mSSIM_PvsGT = row[1] mSSIM_SvsGT = row[2] NRMSE_PvsGT = row[3] NRMSE_SvsGT = row[4] PSNR_PvsGT = row[5] PSNR_SvsGT = row[6] cells = """ <tr> <td width = 10% align="left">{0}</td> <td width = 15% align="center">{1}</td> <td width = 15% align="center">{2}</td> <td width = 15% align="center">{3}</td> <td width = 15% align="center">{4}</td> <td width = 15% align="center">{5}</td> <td width = 15% align="center">{6}</td> </tr>""".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3))) html = html+cells html = html+"""</body></table>""" pdf.write_html(html) pdf.ln(1) pdf.set_font('') pdf.set_font_size(10.) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') pdf.ln(3) reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf') # Build requirements file for local run after = [str(m) for m in sys.modules] build_requirements_file(before, after) ###Output _____no_output_____ ###Markdown **3. Select your parameters and paths**--- **3.1. Setting main training parameters**--- **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 5). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 128****When choosing the patch_size, the value should be i) large enough that it will enclose many instances, ii) small enough that the resulting patches fit into the RAM.** **`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 50** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 16****`number_of_steps`:** Define the number of training steps by epoch. By default or if set to zero this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patches / batch_size****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** **`initial_learning_rate`:** Input the initial value to be used as learning rate. **Default value: 0.0004** ###Code #@markdown ###Path to training images: Training_source = "" #@param {type:"string"} InputFile = Training_source+"/*.tif" Training_target = "" #@param {type:"string"} OutputFile = Training_target+"/*.tif" #Define where the patch file will be saved base = "/content" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 50#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 128#@param {type:"number"} # in pixels number_of_patches = 50#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: batch_size = 16#@param {type:"number"} number_of_steps = 0#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} initial_learning_rate = 0.0004 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 16 percentage_validation = 10 initial_learning_rate = 0.0004 #Here we define the percentage to use for validation percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so print a warning if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: "+model_name+" already exists and will be deleted in the following cell !!") print(bcolors.WARNING +"To continue training "+model_name+", choose a new model_name here, and load "+model_name+" in section 3.3"+W) # Here we disable pre-trained model by default (in case the cell is not ran) Use_pretrained_model = False # Here we disable data augmentation by default (in case the cell is not ran) Use_Data_augmentation = False print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) # Here we check that the input images contains the expected dimensions if len(x.shape) == 2: print("Image dimensions (y,x)",x.shape) if not len(x.shape) == 2: print(bcolors.WARNING +"Your images appear to have the wrong dimensions. Image dimension",x.shape) #Find image XY dimension Image_Y = x.shape[0] Image_X = x.shape[1] #Hyperparameters failsafes # Here we check that patch_size is smaller than the smallest xy dimension of the image if patch_size > min(Image_Y, Image_X): patch_size = min(Image_Y, Image_X) print (bcolors.WARNING + " Your chosen patch_size is bigger than the xy dimension of your image; therefore the patch_size chosen is now:",patch_size) # Here we check that patch_size is divisible by 8 if not patch_size % 8 == 0: patch_size = ((int(patch_size / 8)-1) * 8) print (bcolors.WARNING + " Your chosen patch_size is not divisible by 8; therefore the patch_size chosen is now:",patch_size) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Training target') plt.axis('off'); plt.savefig('/content/TrainingDataExample_CARE2D.png',bbox_inches='tight',pad_inches=0) ###Output _____no_output_____ ###Markdown **3.2. Data augmentation**--- Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it. **However, data augmentation is not a magic solution and may also introduce issues. Therefore, we recommend that you train your network with and without augmentation, and use the QC section to validate that it improves overall performances.** Data augmentation is performed here by [Augmentor.](https://github.com/mdbloice/Augmentor)[Augmentor](https://github.com/mdbloice/Augmentor) was described in the following article:Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259**Please also cite this original paper when publishing results obtained using this notebook with augmentation enabled.** ###Code #Data augmentation Use_Data_augmentation = False #@param {type:"boolean"} if Use_Data_augmentation: !pip install Augmentor import Augmentor #@markdown ####Choose a factor by which you want to multiply your original dataset Multiply_dataset_by = 30 #@param {type:"slider", min:1, max:30, step:1} Save_augmented_images = False #@param {type:"boolean"} Saving_path = "" #@param {type:"string"} Use_Default_Augmentation_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please choose the probability of the following image manipulations to be used to augment your dataset (1 = always used; 0 = disabled ): #@markdown ####Mirror and rotate images rotate_90_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} rotate_270_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_left_right = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_top_bottom = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image Zoom random_zoom = 0 #@param {type:"slider", min:0, max:1, step:0.1} random_zoom_magnification = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image distortion random_distortion = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Image shearing and skewing image_shear = 0 #@param {type:"slider", min:0, max:1, step:0.1} max_image_shear = 1 #@param {type:"slider", min:1, max:25, step:1} skew_image = 0 #@param {type:"slider", min:0, max:1, step:0.1} skew_image_magnitude = 0 #@param {type:"slider", min:0, max:1, step:0.1} if Use_Default_Augmentation_Parameters: rotate_90_degrees = 0.5 rotate_270_degrees = 0.5 flip_left_right = 0.5 flip_top_bottom = 0.5 if not Multiply_dataset_by >5: random_zoom = 0 random_zoom_magnification = 0.9 random_distortion = 0 image_shear = 0 max_image_shear = 10 skew_image = 0 skew_image_magnitude = 0 if Multiply_dataset_by >5: random_zoom = 0.1 random_zoom_magnification = 0.9 random_distortion = 0.5 image_shear = 0.2 max_image_shear = 5 if Multiply_dataset_by >25: random_zoom = 0.5 random_zoom_magnification = 0.8 random_distortion = 0.5 image_shear = 0.5 max_image_shear = 20 list_files = os.listdir(Training_source) Nb_files = len(list_files) Nb_augmented_files = (Nb_files * Multiply_dataset_by) if Use_Data_augmentation: print("Data augmentation enabled") # Here we set the path for the various folder were the augmented images will be loaded # All images are first saved into the augmented folder #Augmented_folder = "/content/Augmented_Folder" if not Save_augmented_images: Saving_path= "/content" Augmented_folder = Saving_path+"/Augmented_Folder" if os.path.exists(Augmented_folder): shutil.rmtree(Augmented_folder) os.makedirs(Augmented_folder) #Training_source_augmented = "/content/Training_source_augmented" Training_source_augmented = Saving_path+"/Training_source_augmented" if os.path.exists(Training_source_augmented): shutil.rmtree(Training_source_augmented) os.makedirs(Training_source_augmented) #Training_target_augmented = "/content/Training_target_augmented" Training_target_augmented = Saving_path+"/Training_target_augmented" if os.path.exists(Training_target_augmented): shutil.rmtree(Training_target_augmented) os.makedirs(Training_target_augmented) # Here we generate the augmented images #Load the images p = Augmentor.Pipeline(Training_source, Augmented_folder) #Define the matching images p.ground_truth(Training_target) #Define the augmentation possibilities if not rotate_90_degrees == 0: p.rotate90(probability=rotate_90_degrees) if not rotate_270_degrees == 0: p.rotate270(probability=rotate_270_degrees) if not flip_left_right == 0: p.flip_left_right(probability=flip_left_right) if not flip_top_bottom == 0: p.flip_top_bottom(probability=flip_top_bottom) if not random_zoom == 0: p.zoom_random(probability=random_zoom, percentage_area=random_zoom_magnification) if not random_distortion == 0: p.random_distortion(probability=random_distortion, grid_width=4, grid_height=4, magnitude=8) if not image_shear == 0: p.shear(probability=image_shear,max_shear_left=20,max_shear_right=20) p.sample(int(Nb_augmented_files)) print(int(Nb_augmented_files),"matching images generated") # Here we sort through the images and move them back to augmented trainning source and targets folders augmented_files = os.listdir(Augmented_folder) for f in augmented_files: if (f.startswith("_groundtruth_(1)_")): shortname_noprefix = f[17:] shutil.copyfile(Augmented_folder+"/"+f, Training_target_augmented+"/"+shortname_noprefix) if not (f.startswith("_groundtruth_(1)_")): shutil.copyfile(Augmented_folder+"/"+f, Training_source_augmented+"/"+f) for filename in os.listdir(Training_source_augmented): os.chdir(Training_source_augmented) os.rename(filename, filename.replace('_original', '')) #Here we clean up the extra files shutil.rmtree(Augmented_folder) if not Use_Data_augmentation: print(bcolors.WARNING+"Data augmentation disabled") ###Output _____no_output_____ ###Markdown **3.3. Using weights from a pre-trained model as initial weights**--- Here, you can set the the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a CARE 2D model**. This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**. In order to continue training from the point where the pre-trained model left off, it is adviseable to also **load the learning rate** that was used when the training ended. This is automatically saved for models trained with ZeroCostDL4Mic and will be loaded here. If no learning rate can be found in the model folder provided, the default learning rate will be used. ###Code # @markdown ##Loading weights from a pre-trained network Use_pretrained_model = False #@param {type:"boolean"} pretrained_model_choice = "Model_from_file" #@param ["Model_from_file"] Weights_choice = "best" #@param ["last", "best"] #@markdown ###If you chose "Model_from_file", please provide the path to the model folder: pretrained_model_path = "" #@param {type:"string"} # --------------------- Check if we load a previously trained model ------------------------ if Use_pretrained_model: # --------------------- Load the model from the choosen path ------------------------ if pretrained_model_choice == "Model_from_file": h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Download the a model provided in the XXX ------------------------ if pretrained_model_choice == "Model_name": pretrained_model_name = "Model_name" pretrained_model_path = "/content/"+pretrained_model_name print("Downloading the 2D_Demo_Model_from_Stardist_2D_paper") if os.path.exists(pretrained_model_path): shutil.rmtree(pretrained_model_path) os.makedirs(pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Add additional pre-trained models here ------------------------ # --------------------- Check the model exist ------------------------ # If the model path chosen does not contain a pretrain model then use_pretrained_model is disabled, if not os.path.exists(h5_file_path): print(bcolors.WARNING+'WARNING: weights_'+Weights_choice+'.h5 pretrained model does not exist') Use_pretrained_model = False # If the model path contains a pretrain model, we load the training rate, if os.path.exists(h5_file_path): #Here we check if the learning rate can be loaded from the quality control folder if os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): with open(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv'),'r') as csvfile: csvRead = pd.read_csv(csvfile, sep=',') #print(csvRead) if "learning rate" in csvRead.columns: #Here we check that the learning rate column exist (compatibility with model trained un ZeroCostDL4Mic bellow 1.4) print("pretrained network learning rate found") #find the last learning rate lastLearningRate = csvRead["learning rate"].iloc[-1] #Find the learning rate corresponding to the lowest validation loss min_val_loss = csvRead[csvRead['val_loss'] == min(csvRead['val_loss'])] #print(min_val_loss) bestLearningRate = min_val_loss['learning rate'].iloc[-1] if Weights_choice == "last": print('Last learning rate: '+str(lastLearningRate)) if Weights_choice == "best": print('Learning rate of best validation loss: '+str(bestLearningRate)) if not "learning rate" in csvRead.columns: #if the column does not exist, then initial learning rate is used instead bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(bestLearningRate)+' will be used instead') #Compatibility with models trained outside ZeroCostDL4Mic but default learning rate will be used if not os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(initial_learning_rate)+' will be used instead') bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate # Display info about the pretrained model to be loaded (or not) if Use_pretrained_model: print('Weights found in:') print(h5_file_path) print('will be loaded prior to training.') else: print(bcolors.WARNING+'No pretrained network will be used.') ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # --------------------- Here we delete the model folder if it already exist ------------------------ if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: Model folder already exists and has been removed !!"+W) shutil.rmtree(model_path+'/'+model_name) # --------------------- Here we load the augmented data or the raw data ------------------------ if Use_Data_augmentation: Training_source_dir = Training_source_augmented Training_target_dir = Training_target_augmented if not Use_Data_augmentation: Training_source_dir = Training_source Training_target_dir = Training_target # --------------------- ------------------------------------------------ # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source_dir], target_dir=Training_target_dir, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size #if (Use_Default_Advanced_Parameters): if (Use_Default_Advanced_Parameters) or (number_of_steps == 0): number_of_steps = int(X.shape[0]/batch_size)+1 # --------------------- Using pretrained model ------------------------ #Here we ensure that the learning rate set correctly when using pre-trained models if Use_pretrained_model: if Weights_choice == "last": initial_learning_rate = lastLearningRate if Weights_choice == "best": initial_learning_rate = bestLearningRate # --------------------- ---------------------- ------------------------ #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=initial_learning_rate) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) # --------------------- Using pretrained model ------------------------ # Load the pretrained weights if Use_pretrained_model: model_training.load_weights(h5_file_path) # --------------------- ---------------------- ------------------------ pdf_export(augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **4.2. Start Training**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches.Once training is complete, the trained model is automatically saved on your Google Drive, in the **model_path** folder that was selected in Section 3. It is however wise to download the folder from Google Drive as all data can be erased at the next training if using the same folder.**Of Note:** At the end of the training, your model will be automatically exported so it can be used in the CSBDeep Fiji plugin (Run your Network). You can find it in your model folder (TF_SavedModel.zip). In Fiji, Make sure to choose the right version of tensorflow. You can check at: Edit-- Options-- Tensorflow. Choose the version 1.4 (CPU or GPU depending on your system). ###Code #@markdown ##Start training start = time.time() # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") # copy the .npz to the model's folder shutil.copyfile(model_path+'/rawdata.npz',model_path+'/'+model_name+'/rawdata.npz') # convert the history.history dict to a pandas DataFrame: lossData = pd.DataFrame(history.history) if os.path.exists(model_path+"/"+model_name+"/Quality Control"): shutil.rmtree(model_path+"/"+model_name+"/Quality Control") os.makedirs(model_path+"/"+model_name+"/Quality Control") # The training evaluation.csv is saved (overwrites the Files if needed). lossDataCSVpath = model_path+'/'+model_name+'/Quality Control/training_evaluation.csv' with open(lossDataCSVpath, 'w') as f: writer = csv.writer(f) writer.writerow(['loss','val_loss', 'learning rate']) for i in range(len(history.history['loss'])): writer.writerow([history.history['loss'][i], history.history['val_loss'][i], history.history['lr'][i]]) # Displaying the time elapsed for training dt = time.time() - start mins, sec = divmod(dt, 60) hour, mins = divmod(mins, 60) print("Time elapsed:",hour, "hour(s)",mins,"min(s)",round(sec),"sec(s)") model_training.export_TF() print("Your model has been sucessfully exported and can now also be used in the CSBdeep Fiji plugin") pdf_export(trained = True, augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **5. Evaluate your model**---This section allows you to perform important quality checks on the validity and generalisability of the trained model. **We highly recommend to perform quality control on all newly trained models.** ###Code # model name and path #@markdown ###Do you want to assess the model you just trained ? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: QC_model_folder = "" #@param {type:"string"} #Here we define the loaded model name and path QC_model_name = os.path.basename(QC_model_folder) QC_model_path = os.path.dirname(QC_model_folder) if (Use_the_current_trained_model): QC_model_name = model_name QC_model_path = model_path full_QC_model_path = QC_model_path+'/'+QC_model_name+'/' if os.path.exists(full_QC_model_path): print("The "+QC_model_name+" network will be evaluated") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') loss_displayed = False ###Output _____no_output_____ ###Markdown **5.1. Inspection of the loss function**---First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.**Note: Plots of the losses will be shown in a linear and in a log scale. This can help visualise changes in the losses at different magnitudes. However, note that if the losses are negative the plot on the log scale will be empty. This is not an error.** ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number loss_displayed = True lossDataFromCSV = [] vallossDataFromCSV = [] with open(QC_model_path+'/'+QC_model_name+'/Quality Control/training_evaluation.csv','r') as csvfile: csvRead = csv.reader(csvfile, delimiter=',') next(csvRead) for row in csvRead: lossDataFromCSV.append(float(row[0])) vallossDataFromCSV.append(float(row[1])) epochNumber = range(len(lossDataFromCSV)) plt.figure(figsize=(15,10)) plt.subplot(2,1,1) plt.plot(epochNumber,lossDataFromCSV, label='Training loss') plt.plot(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (linear scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.subplot(2,1,2) plt.semilogy(epochNumber,lossDataFromCSV, label='Training loss') plt.semilogy(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (log scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.savefig(QC_model_path+'/'+QC_model_name+'/Quality Control/lossCurvePlots.png',bbox_inches='tight',pad_inches=0) plt.show() ###Output _____no_output_____ ###Markdown **5.2. Error mapping and quality metrics estimation**---This section will display SSIM maps and RSE maps as well as calculating total SSIM, NRMSE and PSNR metrics for all the images provided in the "Source_QC_folder" and "Target_QC_folder" !**1. The SSIM (structural similarity) map** The SSIM metric is used to evaluate whether two images contain the same structures. It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed by calculating the SSIM metric in each pixel by considering the surrounding structural similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels and with Gaussian weighting of 1.5 pixel standard deviation, see our Wiki for more info). **mSSIM** is the SSIM value calculated across the entire window of both images.**The output below shows the SSIM maps with the mSSIM****2. The RSE (Root Squared Error) map** This is a display of the root of the squared difference between the normalized predicted and target or the source and the target. In this case, a smaller RSE is better. A perfect agreement between target and prediction will lead to an RSE map showing zeros everywhere (dark).**NRMSE (normalised root mean squared error)** gives the average difference between all pixels in the images compared to each other. Good agreement yields low NRMSE scores.**PSNR (Peak signal-to-noise ratio)** is a metric that gives the difference between the ground truth and prediction (or source input) in decibels, using the peak pixel values of the prediction and the MSE between the images. The higher the score the better the agreement.**The output below shows the RSE maps with the NRMSE and PSNR values.** ###Code #@markdown ##Choose the folders that contain your Quality Control dataset Source_QC_folder = "" #@param{type:"string"} Target_QC_folder = "" #@param{type:"string"} # Create a quality control/Prediction Folder if os.path.exists(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction"): shutil.rmtree(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") os.makedirs(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") # Activate the pretrained model. model_training = CARE(config=None, name=QC_model_name, basedir=QC_model_path) # List Tif images in Source_QC_folder Source_QC_folder_tif = Source_QC_folder+"/*.tif" Z = sorted(glob(Source_QC_folder_tif)) Z = list(map(imread,Z)) print('Number of test dataset found in the folder: '+str(len(Z))) # Perform prediction on all datasets in the Source_QC folder for filename in os.listdir(Source_QC_folder): img = imread(os.path.join(Source_QC_folder, filename)) predicted = model_training.predict(img, axes='YX') os.chdir(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") imsave(filename, predicted) def ssim(img1, img2): return structural_similarity(img1,img2,data_range=1.,full=True, gaussian_weights=True, use_sample_covariance=False, sigma=1.5) def normalize(x, pmin=3, pmax=99.8, axis=None, clip=False, eps=1e-20, dtype=np.float32): """This function is adapted from Martin Weigert""" """Percentile-based image normalization.""" mi = np.percentile(x,pmin,axis=axis,keepdims=True) ma = np.percentile(x,pmax,axis=axis,keepdims=True) return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype) def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):#dtype=np.float32 """This function is adapted from Martin Weigert""" if dtype is not None: x = x.astype(dtype,copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) eps = dtype(eps) try: import numexpr x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") except ImportError: x = (x - mi) / ( ma - mi + eps ) if clip: x = np.clip(x,0,1) return x def norm_minmse(gt, x, normalize_gt=True): """This function is adapted from Martin Weigert""" """ normalizes and affinely scales an image pair such that the MSE is minimized Parameters ---------- gt: ndarray the ground truth image x: ndarray the image that will be affinely scaled normalize_gt: bool set to True of gt image should be normalized (default) Returns ------- gt_scaled, x_scaled """ if normalize_gt: gt = normalize(gt, 0.1, 99.9, clip=False).astype(np.float32, copy = False) x = x.astype(np.float32, copy=False) - np.mean(x) #x = x - np.mean(x) gt = gt.astype(np.float32, copy=False) - np.mean(gt) #gt = gt - np.mean(gt) scale = np.cov(x.flatten(), gt.flatten())[0, 1] / np.var(x.flatten()) return gt, scale * x # Open and create the csv file that will contain all the QC metrics with open(QC_model_path+"/"+QC_model_name+"/Quality Control/QC_metrics_"+QC_model_name+".csv", "w", newline='') as file: writer = csv.writer(file) # Write the header in the csv file writer.writerow(["image #","Prediction v. GT mSSIM","Input v. GT mSSIM", "Prediction v. GT NRMSE", "Input v. GT NRMSE", "Prediction v. GT PSNR", "Input v. GT PSNR"]) # Let's loop through the provided dataset in the QC folders for i in os.listdir(Source_QC_folder): if not os.path.isdir(os.path.join(Source_QC_folder,i)): print('Running QC on: '+i) # -------------------------------- Target test data (Ground truth) -------------------------------- test_GT = io.imread(os.path.join(Target_QC_folder, i)) # -------------------------------- Source test data -------------------------------- test_source = io.imread(os.path.join(Source_QC_folder,i)) # Normalize the images wrt each other by minimizing the MSE between GT and Source image test_GT_norm,test_source_norm = norm_minmse(test_GT, test_source, normalize_gt=True) # -------------------------------- Prediction -------------------------------- test_prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction",i)) # Normalize the images wrt each other by minimizing the MSE between GT and prediction test_GT_norm,test_prediction_norm = norm_minmse(test_GT, test_prediction, normalize_gt=True) # -------------------------------- Calculate the metric maps and save them -------------------------------- # Calculate the SSIM maps index_SSIM_GTvsPrediction, img_SSIM_GTvsPrediction = ssim(test_GT_norm, test_prediction_norm) index_SSIM_GTvsSource, img_SSIM_GTvsSource = ssim(test_GT_norm, test_source_norm) #Save ssim_maps img_SSIM_GTvsPrediction_32bit = np.float32(img_SSIM_GTvsPrediction) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsPrediction_'+i,img_SSIM_GTvsPrediction_32bit) img_SSIM_GTvsSource_32bit = np.float32(img_SSIM_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsSource_'+i,img_SSIM_GTvsSource_32bit) # Calculate the Root Squared Error (RSE) maps img_RSE_GTvsPrediction = np.sqrt(np.square(test_GT_norm - test_prediction_norm)) img_RSE_GTvsSource = np.sqrt(np.square(test_GT_norm - test_source_norm)) # Save SE maps img_RSE_GTvsPrediction_32bit = np.float32(img_RSE_GTvsPrediction) img_RSE_GTvsSource_32bit = np.float32(img_RSE_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsPrediction_'+i,img_RSE_GTvsPrediction_32bit) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsSource_'+i,img_RSE_GTvsSource_32bit) # -------------------------------- Calculate the RSE metrics and save them -------------------------------- # Normalised Root Mean Squared Error (here it's valid to take the mean of the image) NRMSE_GTvsPrediction = np.sqrt(np.mean(img_RSE_GTvsPrediction)) NRMSE_GTvsSource = np.sqrt(np.mean(img_RSE_GTvsSource)) # We can also measure the peak signal to noise ratio between the images PSNR_GTvsPrediction = psnr(test_GT_norm,test_prediction_norm,data_range=1.0) PSNR_GTvsSource = psnr(test_GT_norm,test_source_norm,data_range=1.0) writer.writerow([i,str(index_SSIM_GTvsPrediction),str(index_SSIM_GTvsSource),str(NRMSE_GTvsPrediction),str(NRMSE_GTvsSource),str(PSNR_GTvsPrediction),str(PSNR_GTvsSource)]) # All data is now processed saved Test_FileList = os.listdir(Source_QC_folder) # this assumes, as it should, that both source and target are named the same plt.figure(figsize=(20,20)) # Currently only displays the last computed set, from memory # Target (Ground-truth) plt.subplot(3,3,1) plt.axis('off') img_GT = io.imread(os.path.join(Target_QC_folder, Test_FileList[-1])) plt.imshow(img_GT, norm=simple_norm(img_GT, percent = 99)) plt.title('Target',fontsize=15) # Source plt.subplot(3,3,2) plt.axis('off') img_Source = io.imread(os.path.join(Source_QC_folder, Test_FileList[-1])) plt.imshow(img_Source, norm=simple_norm(img_Source, percent = 99)) plt.title('Source',fontsize=15) #Prediction plt.subplot(3,3,3) plt.axis('off') img_Prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction/", Test_FileList[-1])) plt.imshow(img_Prediction, norm=simple_norm(img_Prediction, percent = 99)) plt.title('Prediction',fontsize=15) #Setting up colours cmap = plt.cm.CMRmap #SSIM between GT and Source plt.subplot(3,3,5) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsSource = plt.imshow(img_SSIM_GTvsSource, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imSSIM_GTvsSource,fraction=0.046, pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsSource,3)),fontsize=14) plt.ylabel('SSIM maps',fontsize=20, rotation=0, labelpad=75) #SSIM between GT and Prediction plt.subplot(3,3,6) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsPrediction = plt.imshow(img_SSIM_GTvsPrediction, cmap = cmap, vmin=0,vmax=1) plt.colorbar(imSSIM_GTvsPrediction,fraction=0.046, pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsPrediction,3)),fontsize=14) #Root Squared Error between GT and Source plt.subplot(3,3,8) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsSource = plt.imshow(img_RSE_GTvsSource, cmap = cmap, vmin=0, vmax = 1) plt.colorbar(imRSE_GTvsSource,fraction=0.046,pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsSource,3))+', PSNR: '+str(round(PSNR_GTvsSource,3)),fontsize=14) #plt.title('Target vs. Source PSNR: '+str(round(PSNR_GTvsSource,3))) plt.ylabel('RSE maps',fontsize=20, rotation=0, labelpad=75) #Root Squared Error between GT and Prediction plt.subplot(3,3,9) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsPrediction = plt.imshow(img_RSE_GTvsPrediction, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imRSE_GTvsPrediction,fraction=0.046,pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsPrediction,3))+', PSNR: '+str(round(PSNR_GTvsPrediction,3)),fontsize=14) plt.savefig(full_QC_model_path+'Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0) qc_pdf_export() ###Output _____no_output_____ ###Markdown **6. Using the trained model**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **6.1. Generate prediction(s) from unseen dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: Prediction_model_folder = "" #@param {type:"string"} #Here we find the loaded model name and parent path Prediction_model_name = os.path.basename(Prediction_model_folder) Prediction_model_path = os.path.dirname(Prediction_model_folder) if (Use_the_current_trained_model): print("Using current trained network") Prediction_model_name = model_name Prediction_model_path = model_path full_Prediction_model_path = os.path.join(Prediction_model_path, Prediction_model_name) if os.path.exists(full_Prediction_model_path): print("The "+Prediction_model_name+" network will be used.") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') #Activate the pretrained model. model_training = CARE(config=None, name=Prediction_model_name, basedir=Prediction_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Data_folder): img = imread(os.path.join(Data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **6.2. Inspect the predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Data_folder)) x = imread(Data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____ ###Markdown **CARE: Content-aware image restoration (2D)**---CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The CARE network uses a U-Net network architecture and allows image restoration and resolution improvement in 2D and 3D images, in a supervised manner, using noisy images as input and low-noise images as targets for training. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. **This particular notebook enables restoration of 2D dataset. If you are interested in restoring 3D dataset, you should use the CARE 3D notebook instead.**---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, by Weigert *et al.* published in Nature Methods in 2018 (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network,please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model (Quality control dataset)**. The quality control assessment can be done directly in this notebook. **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!**Here's a common data structure that can work:* Experiment A - **Training dataset** - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - High SNR images (Training_target) - img_1.tif, img_2.tif, ... - **Quality control dataset** - Low SNR images - img_1.tif, img_2.tif - High SNR images - img_1.tif, img_2.tif - **Data to be predicted** - **Results**---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.--- **1. Initialise the Colab session**--- **1.1. Check for GPU access**---By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime setting is correct then Google did not allocate a GPU for your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') !nvidia-smi ###Output _____no_output_____ ###Markdown **1.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown **2. Install CARE and dependencies**--- ###Code Notebook_version = ['1.11'] #@markdown ##Install CARE and dependencies #Libraries contains information of certain topics. #For example the tifffile library contains information on how to handle tif-files. #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. !pip install wget !pip install memory_profiler !pip install fpdf %load_ext memory_profiler #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import tensorflow import tensorflow as tf print(tensorflow.__version__) print("Tensorflow enabled.") # ------- Variable specific to CARE ------- from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from __future__ import print_function, unicode_literals, absolute_import, division %matplotlib inline %config InlineBackend.figure_format = 'retina' # ------- Common variable to all ZeroCostDL4Mic notebooks ------- import numpy as np from matplotlib import pyplot as plt import urllib import os, random import shutil import zipfile from tifffile import imread, imsave import time import sys import wget from pathlib import Path import pandas as pd import csv from glob import glob from scipy import signal from scipy import ndimage from skimage import io from sklearn.linear_model import LinearRegression from skimage.util import img_as_uint import matplotlib as mpl from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as psnr from astropy.visualization import simple_norm from skimage import img_as_float32 from skimage.util import img_as_ubyte from tqdm import tqdm from fpdf import FPDF, HTMLMixin from datetime import datetime import subprocess from pip._internal.operations.freeze import freeze # Colors for the warning messages class bcolors: WARNING = '\033[31m' W = '\033[0m' # white (normal) R = '\033[31m' # red #Disable some of the tensorflow warnings import warnings warnings.filterwarnings("ignore") print("Libraries installed") # Check if this is the latest version of the notebook Latest_notebook_version = pd.read_csv("https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_ZeroCostDL4Mic_Release.csv") if Notebook_version == list(Latest_notebook_version.columns): print("This notebook is up-to-date.") if not Notebook_version == list(Latest_notebook_version.columns): print(bcolors.WARNING +"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki") !pip freeze > requirements.txt ###Output _____no_output_____ ###Markdown **3. Select your parameters and paths**--- **3.1. Setting main training parameters**--- **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 5). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 80****When choosing the patch_size, the value should be i) large enough that it will enclose many instances, ii) small enough that the resulting patches fit into the RAM.** **`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 100** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 16****`number_of_steps`:** Define the number of training steps by epoch. By default this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patch / batch_size****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** **`initial_learning_rate`:** Input the initial value to be used as learning rate. **Default value: 0.0004** ###Code #@markdown ###Path to training images: Training_source = "" #@param {type:"string"} InputFile = Training_source+"/*.tif" Training_target = "" #@param {type:"string"} OutputFile = Training_target+"/*.tif" #Define where the patch file will be saved base = "/content" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 50#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 80#@param {type:"number"} # in pixels number_of_patches = 100#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: batch_size = 16#@param {type:"number"} number_of_steps = 400#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} initial_learning_rate = 0.0004 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 16 percentage_validation = 10 initial_learning_rate = 0.0004 #Here we define the percentage to use for validation percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so print a warning if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: "+model_name+" already exists and will be deleted in the following cell !!") print(bcolors.WARNING +"To continue training "+model_name+", choose a new model_name here, and load "+model_name+" in section 3.3"+W) # Here we disable pre-trained model by default (in case the cell is not ran) Use_pretrained_model = False # Here we disable data augmentation by default (in case the cell is not ran) Use_Data_augmentation = False # The shape of the images. x = imread(InputFile) y = imread(OutputFile) print('Loaded Input images (number, width, length) =', x.shape) print('Loaded Output images (number, width, length) =', y.shape) print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) # Here we check that the input images contains the expected dimensions if len(x.shape) == 2: print("Image dimensions (y,x)",x.shape) if not len(x.shape) == 2: print(bcolors.WARNING +"Your images appear to have the wrong dimensions. Image dimension",x.shape) #Find image XY dimension Image_Y = x.shape[0] Image_X = x.shape[1] #Hyperparameters failsafes # Here we check that patch_size is smaller than the smallest xy dimension of the image if patch_size > min(Image_Y, Image_X): patch_size = min(Image_Y, Image_X) print (bcolors.WARNING + " Your chosen patch_size is bigger than the xy dimension of your image; therefore the patch_size chosen is now:",patch_size) # Here we check that patch_size is divisible by 8 if not patch_size % 8 == 0: patch_size = ((int(patch_size / 8)-1) * 8) print (bcolors.WARNING + " Your chosen patch_size is not divisible by 8; therefore the patch_size chosen is now:",patch_size) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Training target') plt.axis('off'); plt.savefig('/content/TrainingDataExample_CARE2D.png',bbox_inches='tight',pad_inches=0) ###Output _____no_output_____ ###Markdown **3.2. Data augmentation**--- Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it. **However, data augmentation is not a magic solution and may also introduce issues. Therefore, we recommend that you train your network with and without augmentation, and use the QC section to validate that it improves overall performances.** Data augmentation is performed here by [Augmentor.](https://github.com/mdbloice/Augmentor)[Augmentor](https://github.com/mdbloice/Augmentor) was described in the following article:Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259**Please also cite this original paper when publishing results obtained using this notebook with augmentation enabled.** ###Code #Data augmentation Use_Data_augmentation = False #@param {type:"boolean"} if Use_Data_augmentation: !pip install Augmentor import Augmentor #@markdown ####Choose a factor by which you want to multiply your original dataset Multiply_dataset_by = 2 #@param {type:"slider", min:1, max:30, step:1} Save_augmented_images = False #@param {type:"boolean"} Saving_path = "" #@param {type:"string"} Use_Default_Augmentation_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please choose the probability of the following image manipulations to be used to augment your dataset (1 = always used; 0 = disabled ): #@markdown ####Mirror and rotate images rotate_90_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} rotate_270_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_left_right = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_top_bottom = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image Zoom random_zoom = 0 #@param {type:"slider", min:0, max:1, step:0.1} random_zoom_magnification = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image distortion random_distortion = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Image shearing and skewing image_shear = 0 #@param {type:"slider", min:0, max:1, step:0.1} max_image_shear = 1 #@param {type:"slider", min:1, max:25, step:1} skew_image = 0 #@param {type:"slider", min:0, max:1, step:0.1} skew_image_magnitude = 0 #@param {type:"slider", min:0, max:1, step:0.1} if Use_Default_Augmentation_Parameters: rotate_90_degrees = 0.5 rotate_270_degrees = 0.5 flip_left_right = 0.5 flip_top_bottom = 0.5 if not Multiply_dataset_by >5: random_zoom = 0 random_zoom_magnification = 0.9 random_distortion = 0 image_shear = 0 max_image_shear = 10 skew_image = 0 skew_image_magnitude = 0 if Multiply_dataset_by >5: random_zoom = 0.1 random_zoom_magnification = 0.9 random_distortion = 0.5 image_shear = 0.2 max_image_shear = 5 skew_image = 0.2 skew_image_magnitude = 0.4 if Multiply_dataset_by >25: random_zoom = 0.5 random_zoom_magnification = 0.8 random_distortion = 0.5 image_shear = 0.5 max_image_shear = 20 skew_image = 0.5 skew_image_magnitude = 0.6 list_files = os.listdir(Training_source) Nb_files = len(list_files) Nb_augmented_files = (Nb_files * Multiply_dataset_by) if Use_Data_augmentation: print("Data augmentation enabled") # Here we set the path for the various folder were the augmented images will be loaded # All images are first saved into the augmented folder #Augmented_folder = "/content/Augmented_Folder" if not Save_augmented_images: Saving_path= "/content" Augmented_folder = Saving_path+"/Augmented_Folder" if os.path.exists(Augmented_folder): shutil.rmtree(Augmented_folder) os.makedirs(Augmented_folder) #Training_source_augmented = "/content/Training_source_augmented" Training_source_augmented = Saving_path+"/Training_source_augmented" if os.path.exists(Training_source_augmented): shutil.rmtree(Training_source_augmented) os.makedirs(Training_source_augmented) #Training_target_augmented = "/content/Training_target_augmented" Training_target_augmented = Saving_path+"/Training_target_augmented" if os.path.exists(Training_target_augmented): shutil.rmtree(Training_target_augmented) os.makedirs(Training_target_augmented) # Here we generate the augmented images #Load the images p = Augmentor.Pipeline(Training_source, Augmented_folder) #Define the matching images p.ground_truth(Training_target) #Define the augmentation possibilities if not rotate_90_degrees == 0: p.rotate90(probability=rotate_90_degrees) if not rotate_270_degrees == 0: p.rotate270(probability=rotate_270_degrees) if not flip_left_right == 0: p.flip_left_right(probability=flip_left_right) if not flip_top_bottom == 0: p.flip_top_bottom(probability=flip_top_bottom) if not random_zoom == 0: p.zoom_random(probability=random_zoom, percentage_area=random_zoom_magnification) if not random_distortion == 0: p.random_distortion(probability=random_distortion, grid_width=4, grid_height=4, magnitude=8) if not image_shear == 0: p.shear(probability=image_shear,max_shear_left=20,max_shear_right=20) if not skew_image == 0: p.skew(probability=skew_image,magnitude=skew_image_magnitude) p.sample(int(Nb_augmented_files)) print(int(Nb_augmented_files),"matching images generated") # Here we sort through the images and move them back to augmented trainning source and targets folders augmented_files = os.listdir(Augmented_folder) for f in augmented_files: if (f.startswith("_groundtruth_(1)_")): shortname_noprefix = f[17:] shutil.copyfile(Augmented_folder+"/"+f, Training_target_augmented+"/"+shortname_noprefix) if not (f.startswith("_groundtruth_(1)_")): shutil.copyfile(Augmented_folder+"/"+f, Training_source_augmented+"/"+f) for filename in os.listdir(Training_source_augmented): os.chdir(Training_source_augmented) os.rename(filename, filename.replace('_original', '')) #Here we clean up the extra files shutil.rmtree(Augmented_folder) if not Use_Data_augmentation: print(bcolors.WARNING+"Data augmentation disabled") ###Output _____no_output_____ ###Markdown **3.3. Using weights from a pre-trained model as initial weights**--- Here, you can set the the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a CARE 2D model**. This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**. In order to continue training from the point where the pre-trained model left off, it is adviseable to also **load the learning rate** that was used when the training ended. This is automatically saved for models trained with ZeroCostDL4Mic and will be loaded here. If no learning rate can be found in the model folder provided, the default learning rate will be used. ###Code # @markdown ##Loading weights from a pre-trained network Use_pretrained_model = False #@param {type:"boolean"} pretrained_model_choice = "Model_from_file" #@param ["Model_from_file"] Weights_choice = "best" #@param ["last", "best"] #@markdown ###If you chose "Model_from_file", please provide the path to the model folder: pretrained_model_path = "" #@param {type:"string"} # --------------------- Check if we load a previously trained model ------------------------ if Use_pretrained_model: # --------------------- Load the model from the choosen path ------------------------ if pretrained_model_choice == "Model_from_file": h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Download the a model provided in the XXX ------------------------ if pretrained_model_choice == "Model_name": pretrained_model_name = "Model_name" pretrained_model_path = "/content/"+pretrained_model_name print("Downloading the 2D_Demo_Model_from_Stardist_2D_paper") if os.path.exists(pretrained_model_path): shutil.rmtree(pretrained_model_path) os.makedirs(pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Add additional pre-trained models here ------------------------ # --------------------- Check the model exist ------------------------ # If the model path chosen does not contain a pretrain model then use_pretrained_model is disabled, if not os.path.exists(h5_file_path): print(bcolors.WARNING+'WARNING: weights_'+Weights_choice+'.h5 pretrained model does not exist') Use_pretrained_model = False # If the model path contains a pretrain model, we load the training rate, if os.path.exists(h5_file_path): #Here we check if the learning rate can be loaded from the quality control folder if os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): with open(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv'),'r') as csvfile: csvRead = pd.read_csv(csvfile, sep=',') #print(csvRead) if "learning rate" in csvRead.columns: #Here we check that the learning rate column exist (compatibility with model trained un ZeroCostDL4Mic bellow 1.4) print("pretrained network learning rate found") #find the last learning rate lastLearningRate = csvRead["learning rate"].iloc[-1] #Find the learning rate corresponding to the lowest validation loss min_val_loss = csvRead[csvRead['val_loss'] == min(csvRead['val_loss'])] #print(min_val_loss) bestLearningRate = min_val_loss['learning rate'].iloc[-1] if Weights_choice == "last": print('Last learning rate: '+str(lastLearningRate)) if Weights_choice == "best": print('Learning rate of best validation loss: '+str(bestLearningRate)) if not "learning rate" in csvRead.columns: #if the column does not exist, then initial learning rate is used instead bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(bestLearningRate)+' will be used instead') #Compatibility with models trained outside ZeroCostDL4Mic but default learning rate will be used if not os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(initial_learning_rate)+' will be used instead') bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate # Display info about the pretrained model to be loaded (or not) if Use_pretrained_model: print('Weights found in:') print(h5_file_path) print('will be loaded prior to training.') else: print(bcolors.WARNING+'No pretrained network will be used.') ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # --------------------- Here we delete the model folder if it already exist ------------------------ if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: Model folder already exists and has been removed !!"+W) shutil.rmtree(model_path+'/'+model_name) # --------------------- Here we load the augmented data or the raw data ------------------------ if Use_Data_augmentation: Training_source_dir = Training_source_augmented Training_target_dir = Training_target_augmented if not Use_Data_augmentation: Training_source_dir = Training_source Training_target_dir = Training_target # --------------------- ------------------------------------------------ # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source_dir], target_dir=Training_target_dir, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size if (Use_Default_Advanced_Parameters): number_of_steps= int(X.shape[0]/batch_size)+1 # --------------------- Using pretrained model ------------------------ #Here we ensure that the learning rate set correctly when using pre-trained models if Use_pretrained_model: if Weights_choice == "last": initial_learning_rate = lastLearningRate if Weights_choice == "best": initial_learning_rate = bestLearningRate # --------------------- ---------------------- ------------------------ #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=initial_learning_rate) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) # --------------------- Using pretrained model ------------------------ # Load the pretrained weights if Use_pretrained_model: model_training.load_weights(h5_file_path) # --------------------- ---------------------- ------------------------ ###Output _____no_output_____ ###Markdown **4.2. Start Training**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches.**Of Note:** At the end of the training, your model will be automatically exported so it can be used in the CSBDeep Fiji plugin (Run your Network). You can find it in your model folder (TF_SavedModel.zip). In Fiji, Make sure to choose the right version of tensorflow. You can check at: Edit-- Options-- Tensorflow. Choose the version 1.4 (CPU or GPU depending on your system). ###Code #@markdown ##Start training start = time.time() # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") # convert the history.history dict to a pandas DataFrame: lossData = pd.DataFrame(history.history) if os.path.exists(model_path+"/"+model_name+"/Quality Control"): shutil.rmtree(model_path+"/"+model_name+"/Quality Control") os.makedirs(model_path+"/"+model_name+"/Quality Control") # The training evaluation.csv is saved (overwrites the Files if needed). lossDataCSVpath = model_path+'/'+model_name+'/Quality Control/training_evaluation.csv' with open(lossDataCSVpath, 'w') as f: writer = csv.writer(f) writer.writerow(['loss','val_loss', 'learning rate']) for i in range(len(history.history['loss'])): writer.writerow([history.history['loss'][i], history.history['val_loss'][i], history.history['lr'][i]]) # Displaying the time elapsed for training dt = time.time() - start mins, sec = divmod(dt, 60) hour, mins = divmod(mins, 60) print("Time elapsed:",hour, "hour(s)",mins,"min(s)",round(sec),"sec(s)") model_training.export_TF() print("Your model has been sucessfully exported and can now also be used in the CSBdeep Fiji plugin") #Create a pdf document with training summary # save FPDF() class into a # variable pdf from datetime import datetime class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' day = datetime.now() datetime_str = str(day)[0:10] Header = 'Training report for '+Network+' model ('+model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') # add another cell training_time = "Training time: "+str(hour)+ "hour(s) "+str(mins)+"min(s) "+str(round(sec))+"sec(s)" pdf.cell(190, 5, txt = training_time, ln = 1, align='L') pdf.ln(1) Header_2 = 'Information for your materials and methods:' pdf.cell(190, 5, txt=Header_2, ln=1, align='L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' #print(all_packages) #Main Packages main_packages = '' version_numbers = [] for name in ['tensorflow','numpy','Keras','csbdeep']: find_name=all_packages.find(name) main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', ' #Version numbers only here: version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)]) cuda_version = subprocess.run('nvcc --version',stdout=subprocess.PIPE, shell=True) cuda_version = cuda_version.stdout.decode('utf-8') cuda_version = cuda_version[cuda_version.find(', V')+3:-1] gpu_name = subprocess.run('nvidia-smi',stdout=subprocess.PIPE, shell=True) gpu_name = gpu_name.stdout.decode('utf-8') gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10] #print(cuda_version[cuda_version.find(', V')+3:-1]) #print(gpu_name) shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape dataset_size = len(os.listdir(Training_source)) text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' if Use_pretrained_model: text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' pdf.set_font('') pdf.set_font_size(10.) pdf.multi_cell(190, 5, txt = text, align='L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(1) pdf.cell(28, 5, txt='Augmentation: ', ln=0) pdf.set_font('') if Use_Data_augmentation: aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)+' by' if rotate_270_degrees != 0 or rotate_90_degrees != 0: aug_text = aug_text+'\n- rotation' if flip_left_right != 0 or flip_top_bottom != 0: aug_text = aug_text+'\n- flipping' if random_zoom_magnification != 0: aug_text = aug_text+'\n- random zoom magnification' if random_distortion != 0: aug_text = aug_text+'\n- random distortion' if image_shear != 0: aug_text = aug_text+'\n- image shearing' if skew_image != 0: aug_text = aug_text+'\n- image skewing' else: aug_text = 'No augmentation was used for training.' pdf.multi_cell(190, 5, txt=aug_text, align='L') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) if Use_Default_Advanced_Parameters: pdf.cell(200, 5, txt='Default Advanced Parameters were enabled') pdf.cell(200, 5, txt='The following parameters were used for training:') pdf.ln(1) html = """ <table width=40% style="margin-left:0px;"> <tr> <th width = 50% align="left">Parameter</th> <th width = 50% align="left">Value</th> </tr> <tr> <td width = 50%>number_of_epochs</td> <td width = 50%>{0}</td> </tr> <tr> <td width = 50%>patch_size</td> <td width = 50%>{1}</td> </tr> <tr> <td width = 50%>number_of_patches</td> <td width = 50%>{2}</td> </tr> <tr> <td width = 50%>batch_size</td> <td width = 50%>{3}</td> </tr> <tr> <td width = 50%>number_of_steps</td> <td width = 50%>{4}</td> </tr> <tr> <td width = 50%>percentage_validation</td> <td width = 50%>{5}</td> </tr> <tr> <td width = 50%>initial_learning_rate</td> <td width = 50%>{6}</td> </tr> </table> """.format(number_of_epochs,str(patch_size)+'x'+str(patch_size),number_of_patches,batch_size,number_of_steps,percentage_validation,initial_learning_rate) pdf.write_html(html) #pdf.multi_cell(190, 5, txt = text_2, align='L') pdf.set_font("Arial", size = 11, style='B') pdf.ln(1) pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_source, align = 'L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_target, align = 'L') #pdf.cell(190, 5, txt=aug_text, align='L', ln=1) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L') pdf.ln(1) pdf.cell(60, 5, txt = 'Example Training pair', ln=1) pdf.ln(1) exp_size = io.imread('/content/TrainingDataExample_CARE2D.png').shape pdf.image('/content/TrainingDataExample_CARE2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8)) pdf.ln(1) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy." BioRxiv (2020).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') if Use_Data_augmentation: ref_3 = '- Augmentor: Bloice, Marcus D., Christof Stocker, and Andreas Holzinger. "Augmentor: an image augmentation library for machine learning." arXiv preprint arXiv:1708.04680 (2017).' pdf.multi_cell(190, 5, txt = ref_3, align='L') pdf.ln(3) reminder = 'Important:\nRemember to perform the quality control step on all newly trained models\nPlease consider depositing your training dataset on Zenodo' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(model_path+'/'+model_name+'/'+model_name+"_training_report.pdf") ###Output _____no_output_____ ###Markdown **4.3. Download your model(s) from Google Drive**---Once training is complete, the trained model is automatically saved on your Google Drive, in the **model_path** folder that was selected in Section 3. It is however wise to download the folder as all data can be erased at the next training if using the same folder. **5. Evaluate your model**---This section allows the user to perform important quality checks on the validity and generalisability of the trained model. **We highly recommend to perform quality control on all newly trained models.** ###Code # model name and path #@markdown ###Do you want to assess the model you just trained ? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: QC_model_folder = "" #@param {type:"string"} #Here we define the loaded model name and path QC_model_name = os.path.basename(QC_model_folder) QC_model_path = os.path.dirname(QC_model_folder) if (Use_the_current_trained_model): QC_model_name = model_name QC_model_path = model_path full_QC_model_path = QC_model_path+'/'+QC_model_name+'/' if os.path.exists(full_QC_model_path): print("The "+QC_model_name+" network will be evaluated") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') loss_displayed = False ###Output _____no_output_____ ###Markdown **5.1. Inspection of the loss function**---First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.**Note: Plots of the losses will be shown in a linear and in a log scale. This can help visualise changes in the losses at different magnitudes. However, note that if the losses are negative the plot on the log scale will be empty. This is not an error.** ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number loss_displayed = True lossDataFromCSV = [] vallossDataFromCSV = [] with open(QC_model_path+'/'+QC_model_name+'/Quality Control/training_evaluation.csv','r') as csvfile: csvRead = csv.reader(csvfile, delimiter=',') next(csvRead) for row in csvRead: lossDataFromCSV.append(float(row[0])) vallossDataFromCSV.append(float(row[1])) epochNumber = range(len(lossDataFromCSV)) plt.figure(figsize=(15,10)) plt.subplot(2,1,1) plt.plot(epochNumber,lossDataFromCSV, label='Training loss') plt.plot(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (linear scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.subplot(2,1,2) plt.semilogy(epochNumber,lossDataFromCSV, label='Training loss') plt.semilogy(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (log scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.savefig(QC_model_path+'/'+QC_model_name+'/Quality Control/lossCurvePlots.png',bbox_inches='tight',pad_inches=0) plt.show() ###Output _____no_output_____ ###Markdown **5.2. Error mapping and quality metrics estimation**---This section will display SSIM maps and RSE maps as well as calculating total SSIM, NRMSE and PSNR metrics for all the images provided in the "Source_QC_folder" and "Target_QC_folder" !**1. The SSIM (structural similarity) map** The SSIM metric is used to evaluate whether two images contain the same structures. It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed by calculating the SSIM metric in each pixel by considering the surrounding structural similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels and with Gaussian weighting of 1.5 pixel standard deviation, see our Wiki for more info). **mSSIM** is the SSIM value calculated across the entire window of both images.**The output below shows the SSIM maps with the mSSIM****2. The RSE (Root Squared Error) map** This is a display of the root of the squared difference between the normalized predicted and target or the source and the target. In this case, a smaller RSE is better. A perfect agreement between target and prediction will lead to an RSE map showing zeros everywhere (dark).**NRMSE (normalised root mean squared error)** gives the average difference between all pixels in the images compared to each other. Good agreement yields low NRMSE scores.**PSNR (Peak signal-to-noise ratio)** is a metric that gives the difference between the ground truth and prediction (or source input) in decibels, using the peak pixel values of the prediction and the MSE between the images. The higher the score the better the agreement.**The output below shows the RSE maps with the NRMSE and PSNR values.** ###Code #@markdown ##Choose the folders that contain your Quality Control dataset Source_QC_folder = "" #@param{type:"string"} Target_QC_folder = "" #@param{type:"string"} # Create a quality control/Prediction Folder if os.path.exists(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction"): shutil.rmtree(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") os.makedirs(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") # Activate the pretrained model. model_training = CARE(config=None, name=QC_model_name, basedir=QC_model_path) # List Tif images in Source_QC_folder Source_QC_folder_tif = Source_QC_folder+"/*.tif" Z = sorted(glob(Source_QC_folder_tif)) Z = list(map(imread,Z)) print('Number of test dataset found in the folder: '+str(len(Z))) # Perform prediction on all datasets in the Source_QC folder for filename in os.listdir(Source_QC_folder): img = imread(os.path.join(Source_QC_folder, filename)) predicted = model_training.predict(img, axes='YX') os.chdir(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") imsave(filename, predicted) def ssim(img1, img2): return structural_similarity(img1,img2,data_range=1.,full=True, gaussian_weights=True, use_sample_covariance=False, sigma=1.5) def normalize(x, pmin=3, pmax=99.8, axis=None, clip=False, eps=1e-20, dtype=np.float32): """This function is adapted from Martin Weigert""" """Percentile-based image normalization.""" mi = np.percentile(x,pmin,axis=axis,keepdims=True) ma = np.percentile(x,pmax,axis=axis,keepdims=True) return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype) def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):#dtype=np.float32 """This function is adapted from Martin Weigert""" if dtype is not None: x = x.astype(dtype,copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) eps = dtype(eps) try: import numexpr x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") except ImportError: x = (x - mi) / ( ma - mi + eps ) if clip: x = np.clip(x,0,1) return x def norm_minmse(gt, x, normalize_gt=True): """This function is adapted from Martin Weigert""" """ normalizes and affinely scales an image pair such that the MSE is minimized Parameters ---------- gt: ndarray the ground truth image x: ndarray the image that will be affinely scaled normalize_gt: bool set to True of gt image should be normalized (default) Returns ------- gt_scaled, x_scaled """ if normalize_gt: gt = normalize(gt, 0.1, 99.9, clip=False).astype(np.float32, copy = False) x = x.astype(np.float32, copy=False) - np.mean(x) #x = x - np.mean(x) gt = gt.astype(np.float32, copy=False) - np.mean(gt) #gt = gt - np.mean(gt) scale = np.cov(x.flatten(), gt.flatten())[0, 1] / np.var(x.flatten()) return gt, scale * x # Open and create the csv file that will contain all the QC metrics with open(QC_model_path+"/"+QC_model_name+"/Quality Control/QC_metrics_"+QC_model_name+".csv", "w", newline='') as file: writer = csv.writer(file) # Write the header in the csv file writer.writerow(["image #","Prediction v. GT mSSIM","Input v. GT mSSIM", "Prediction v. GT NRMSE", "Input v. GT NRMSE", "Prediction v. GT PSNR", "Input v. GT PSNR"]) # Let's loop through the provided dataset in the QC folders for i in os.listdir(Source_QC_folder): if not os.path.isdir(os.path.join(Source_QC_folder,i)): print('Running QC on: '+i) # -------------------------------- Target test data (Ground truth) -------------------------------- test_GT = io.imread(os.path.join(Target_QC_folder, i)) # -------------------------------- Source test data -------------------------------- test_source = io.imread(os.path.join(Source_QC_folder,i)) # Normalize the images wrt each other by minimizing the MSE between GT and Source image test_GT_norm,test_source_norm = norm_minmse(test_GT, test_source, normalize_gt=True) # -------------------------------- Prediction -------------------------------- test_prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction",i)) # Normalize the images wrt each other by minimizing the MSE between GT and prediction test_GT_norm,test_prediction_norm = norm_minmse(test_GT, test_prediction, normalize_gt=True) # -------------------------------- Calculate the metric maps and save them -------------------------------- # Calculate the SSIM maps index_SSIM_GTvsPrediction, img_SSIM_GTvsPrediction = ssim(test_GT_norm, test_prediction_norm) index_SSIM_GTvsSource, img_SSIM_GTvsSource = ssim(test_GT_norm, test_source_norm) #Save ssim_maps img_SSIM_GTvsPrediction_32bit = np.float32(img_SSIM_GTvsPrediction) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsPrediction_'+i,img_SSIM_GTvsPrediction_32bit) img_SSIM_GTvsSource_32bit = np.float32(img_SSIM_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsSource_'+i,img_SSIM_GTvsSource_32bit) # Calculate the Root Squared Error (RSE) maps img_RSE_GTvsPrediction = np.sqrt(np.square(test_GT_norm - test_prediction_norm)) img_RSE_GTvsSource = np.sqrt(np.square(test_GT_norm - test_source_norm)) # Save SE maps img_RSE_GTvsPrediction_32bit = np.float32(img_RSE_GTvsPrediction) img_RSE_GTvsSource_32bit = np.float32(img_RSE_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsPrediction_'+i,img_RSE_GTvsPrediction_32bit) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsSource_'+i,img_RSE_GTvsSource_32bit) # -------------------------------- Calculate the RSE metrics and save them -------------------------------- # Normalised Root Mean Squared Error (here it's valid to take the mean of the image) NRMSE_GTvsPrediction = np.sqrt(np.mean(img_RSE_GTvsPrediction)) NRMSE_GTvsSource = np.sqrt(np.mean(img_RSE_GTvsSource)) # We can also measure the peak signal to noise ratio between the images PSNR_GTvsPrediction = psnr(test_GT_norm,test_prediction_norm,data_range=1.0) PSNR_GTvsSource = psnr(test_GT_norm,test_source_norm,data_range=1.0) writer.writerow([i,str(index_SSIM_GTvsPrediction),str(index_SSIM_GTvsSource),str(NRMSE_GTvsPrediction),str(NRMSE_GTvsSource),str(PSNR_GTvsPrediction),str(PSNR_GTvsSource)]) # All data is now processed saved Test_FileList = os.listdir(Source_QC_folder) # this assumes, as it should, that both source and target are named the same plt.figure(figsize=(20,20)) # Currently only displays the last computed set, from memory # Target (Ground-truth) plt.subplot(3,3,1) plt.axis('off') img_GT = io.imread(os.path.join(Target_QC_folder, Test_FileList[-1])) plt.imshow(img_GT, norm=simple_norm(img_GT, percent = 99)) plt.title('Target',fontsize=15) # Source plt.subplot(3,3,2) plt.axis('off') img_Source = io.imread(os.path.join(Source_QC_folder, Test_FileList[-1])) plt.imshow(img_Source, norm=simple_norm(img_Source, percent = 99)) plt.title('Source',fontsize=15) #Prediction plt.subplot(3,3,3) plt.axis('off') img_Prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction/", Test_FileList[-1])) plt.imshow(img_Prediction, norm=simple_norm(img_Prediction, percent = 99)) plt.title('Prediction',fontsize=15) #Setting up colours cmap = plt.cm.CMRmap #SSIM between GT and Source plt.subplot(3,3,5) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsSource = plt.imshow(img_SSIM_GTvsSource, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imSSIM_GTvsSource,fraction=0.046, pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsSource,3)),fontsize=14) plt.ylabel('SSIM maps',fontsize=20, rotation=0, labelpad=75) #SSIM between GT and Prediction plt.subplot(3,3,6) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsPrediction = plt.imshow(img_SSIM_GTvsPrediction, cmap = cmap, vmin=0,vmax=1) plt.colorbar(imSSIM_GTvsPrediction,fraction=0.046, pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsPrediction,3)),fontsize=14) #Root Squared Error between GT and Source plt.subplot(3,3,8) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsSource = plt.imshow(img_RSE_GTvsSource, cmap = cmap, vmin=0, vmax = 1) plt.colorbar(imRSE_GTvsSource,fraction=0.046,pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsSource,3))+', PSNR: '+str(round(PSNR_GTvsSource,3)),fontsize=14) #plt.title('Target vs. Source PSNR: '+str(round(PSNR_GTvsSource,3))) plt.ylabel('RSE maps',fontsize=20, rotation=0, labelpad=75) #Root Squared Error between GT and Prediction plt.subplot(3,3,9) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsPrediction = plt.imshow(img_RSE_GTvsPrediction, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imRSE_GTvsPrediction,fraction=0.046,pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsPrediction,3))+', PSNR: '+str(round(PSNR_GTvsPrediction,3)),fontsize=14) plt.savefig(full_QC_model_path+'Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0) #Make a pdf summary of the QC results from datetime import datetime class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' #model_name = os.path.basename(full_QC_model_path) day = datetime.now() datetime_str = str(day)[0:10] Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(2) pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L') pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'): pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13)) else: pdf.set_font('') pdf.set_font('Arial', size=10) pdf.cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.') pdf.ln(2) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(3) pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1) pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10)) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) pdf.ln(1) html = """ <body> <font size="7" face="Courier New" > <table width=94% style="margin-left:0px;">""" with open(full_QC_model_path+'Quality Control/QC_metrics_'+QC_model_name+'.csv', 'r') as csvfile: metrics = csv.reader(csvfile) header = next(metrics) image = header[0] mSSIM_PvsGT = header[1] mSSIM_SvsGT = header[2] NRMSE_PvsGT = header[3] NRMSE_SvsGT = header[4] PSNR_PvsGT = header[5] PSNR_SvsGT = header[6] header = """ <tr> <th width = 10% align="left">{0}</th> <th width = 15% align="left">{1}</th> <th width = 15% align="center">{2}</th> <th width = 15% align="left">{3}</th> <th width = 15% align="center">{4}</th> <th width = 15% align="left">{5}</th> <th width = 15% align="center">{6}</th> </tr>""".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT) html = html+header for row in metrics: image = row[0] mSSIM_PvsGT = row[1] mSSIM_SvsGT = row[2] NRMSE_PvsGT = row[3] NRMSE_SvsGT = row[4] PSNR_PvsGT = row[5] PSNR_SvsGT = row[6] cells = """ <tr> <td width = 10% align="left">{0}</td> <td width = 15% align="center">{1}</td> <td width = 15% align="center">{2}</td> <td width = 15% align="center">{3}</td> <td width = 15% align="center">{4}</td> <td width = 15% align="center">{5}</td> <td width = 15% align="center">{6}</td> </tr>""".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3))) html = html+cells html = html+"""</body></table>""" pdf.write_html(html) pdf.ln(1) pdf.set_font('') pdf.set_font_size(10.) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy." BioRxiv (2020).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') pdf.ln(3) reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf') ###Output _____no_output_____ ###Markdown **6. Using the trained model**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **6.1. Generate prediction(s) from unseen dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: Prediction_model_folder = "" #@param {type:"string"} #Here we find the loaded model name and parent path Prediction_model_name = os.path.basename(Prediction_model_folder) Prediction_model_path = os.path.dirname(Prediction_model_folder) if (Use_the_current_trained_model): print("Using current trained network") Prediction_model_name = model_name Prediction_model_path = model_path full_Prediction_model_path = os.path.join(Prediction_model_path, Prediction_model_name) if os.path.exists(full_Prediction_model_path): print("The "+Prediction_model_name+" network will be used.") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') #Activate the pretrained model. model_training = CARE(config=None, name=Prediction_model_name, basedir=Prediction_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Data_folder): img = imread(os.path.join(Data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **6.2. Inspect the predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Data_folder)) x = imread(Data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____ ###Markdown **Content-aware image restoration (CARE) 2D**CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The network allows image denoising and resolution improvement in 2D and 3D images, in a supervised training manner. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising.---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, Nature Methods, Volume 15. pages 1090–1097(2018) by *Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân Culley, Mauricio Rocha-Martins, Fabián Segovia-Miranda, Caren Norden, Ricardo Henriques, Marino Zerial, Michele Solimena, Jochen Rink, Pavel Tomancak, Loic Royer, Florian Jug & Eugene W. Myers* (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network,please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- Before you run the notebook, please ensure that you are logged into your Google account and have the training and/or data to process in your Google Drive. For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!** You can also provide a folder that contains the data that you wish to analyse with the trained network once all training has been performed. This can include Test dataset for which you have the equivalent output and can compare to what the network provides. Here is a common data structure that can work:* Data - Training dataset - Training - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - Training - high SNR images (Training_target) - img_1.tif, img_2.tif, ... - Test dataset - Results The **Results** folder will contain the processed images, trained model and network parameters as csv file. Your original images remain unmodified.---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to run predictions on the model that was just trained.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to run the predictions on the desired model.--- **1. Set the Runtime type and mount your Google Drive**--- **1.1. Change the Runtime type**---Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime settings are correct then Google did not allocate GPU to your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') from tensorflow.python.client import device_lib device_lib.list_local_devices() ###Output _____no_output_____ ###Markdown **1.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown **2. Install CARE and Dependencies**--- ###Code #@markdown ##Install CARE and dependencies #Libraries contains information of certain topics. #For example the tifffile library contains information on how to handle tif-files. #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import tensorflow import tensorflow.compat.v1 as tf tf.disable_v2_behavior() print(tensorflow.__version__) print("Tensorflow enabled.") #Here, we import all libraries necessary for this notebook. from __future__ import print_function, unicode_literals, absolute_import, division import numpy as np import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'retina' from tifffile import imread, imsave from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from pathlib import Path import os, random import shutil import pandas as pd import csv !pip install memory_profiler %load_ext memory_profiler print("Depencies installed and imported.") ###Output _____no_output_____ ###Markdown **3. Select your paths and parameters**---The code below allows the user to enter the paths to where the training data is and to define the training parameters. **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**`visual_validation_after_training`**: If you select this option, a random image pair will be set aside from your training set and will be used to display a predicted image of the trained network next to the input and the ground-truth. This can aid in visually assessing the performance of your network after training. **Note: Your training set size will decrease by 1 if you select this option.****Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 4.3.). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 80****`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 100** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`number_of_steps`:** Define the number of training steps by epoch. By default this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patch / batch_size****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 64****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** ###Code #@markdown ###Path to training images: # base folder of GT and low images #base = "/content/gdrive/My Drive/Zero-Cost Deep-Learning to Enhance Microscopy/Notebooks to be tested/CARE 2D/Nucleus_datasets/train" base = "/content/" training_data = base+"/my_training_data.npz" # low SNR images # low = "/content/gdrive/My Drive/Work/manuscript/Ongoing Projects/Zero-Cost Deep-Learning to Enhance Microscopy/Notebooks to be tested/Training datasets/CARE (2D)/Training - Low SNR images" #@param {type:"string"} Training_source = "" #@param {type:"string"} #Input_data_folder = Training_source InputFile = Training_source+"/*.tif" # Ground truth images # GT = "/content/gdrive/My Drive/Work/manuscript/Ongoing Projects/Zero-Cost Deep-Learning to Enhance Microscopy/Notebooks to be tested/Training datasets/CARE (2D)/Training - High SNR images" #@param {type:"string"} Training_target = "" #@param {type:"string"} #Output_data_folder = Training_target OutputFile = Training_target+"/*.tif" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} #@markdown ####Use one image of the training set for visual assessment of the training: Visual_validation_after_training = True #@param {type:"boolean"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 50#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 80#@param {type:"number"} # in pixels number_of_patches = 100#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: number_of_steps = 200 #@param {type:"number"} batch_size = 64#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 64 percentage_validation = 10 percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so delete if os.path.exists(model_path+'/'+model_name): shutil.rmtree(model_path+'/'+model_name) # The shape of the images. x = imread(InputFile) y = imread(OutputFile) print('Loaded Input images (number, width, length) =', x.shape) print('Loaded Output images (number, width, length) =', y.shape) print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, interpolation='nearest') plt.title('Training target') plt.axis('off'); #protection for next cell if (Visual_validation_after_training): Cell_executed = 0 ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # The code in this cell is inspired by that from the authors' repository (https://github.com/CSBDeep/CSBDeep). if (Visual_validation_after_training): if Cell_executed == 0 : #Create a temporary file folder for immediate assessment of training results: #If the folder still exists, delete it if os.path.exists(Training_source+"/temp"): shutil.rmtree(Training_source+"/temp") if os.path.exists(Training_target+"/temp"): shutil.rmtree(Training_target+"/temp") if os.path.exists(model_path+"/temp"): shutil.rmtree(model_path+"/temp") #Create directories to move files temporarily into for assessment os.makedirs(Training_source+"/temp") os.makedirs(Training_target+"/temp") os.makedirs(model_path+"/temp") #list_source = os.listdir(os.path.join(Training_source)) #list_target = os.listdir(os.path.join(Training_target)) #Move files into the temporary source and target directories: shutil.move(Training_source+"/"+random_choice, Training_source+'/temp/'+random_choice) shutil.move(Training_target+"/"+random_choice, Training_target+'/temp/'+random_choice) # RawData Object # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source], target_dir=Training_target, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size if (Use_Default_Advanced_Parameters): number_of_steps= int(X.shape[0]/batch_size)+1 print(number_of_steps) #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=0.0004) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) if (Visual_validation_after_training): Cell_executed = 1 ###Output _____no_output_____ ###Markdown **4.2. Train the network**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches. ###Code import time start = time.time() #@markdown ##Start Training # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") if (Visual_validation_after_training): if Cell_executed == 1: #Here we predict one image validation_image = imread(Training_source+"/temp/"+random_choice) validation_test = model_training.predict(validation_image, axes='YX') os.chdir(model_path+"/temp/") imsave(random_choice+"_predicted.tif",validation_test) #Source I = imread(Training_source+"/temp/"+random_choice) #Target J = imread(Training_target+"/temp/"+random_choice) #Prediction K = imread(model_path+"/temp/"+random_choice+"_predicted.tif") #Make a plot f=plt.figure(figsize=(24,12)) plt.subplot(1,3,1) plt.imshow(I, interpolation='nearest') plt.title('Source') plt.axis('off'); plt.subplot(1,3,2) plt.imshow(J, interpolation='nearest') plt.title('Target') plt.axis('off'); plt.subplot(1,3,3) plt.imshow(K, interpolation='nearest') plt.title('Prediction') plt.axis('off'); #Move the temporary files back to their original folders shutil.move(Training_source+'/temp/'+random_choice, Training_source+"/"+random_choice) shutil.move(Training_target+'/temp/'+random_choice, Training_target+"/"+random_choice) #Delete the temporary folder shutil.rmtree(Training_target+'/temp') shutil.rmtree(Training_source+'/temp') #protection against removing data Cell_executed = 0 # Displaying the time elapsed for training dt = time.time() - start min, sec = divmod(dt, 60) hour, min = divmod(min, 60) print("Time elapsed:",hour, "hour(s)",min,"min(s)",round(sec),"sec(s)") ###Output _____no_output_____ ###Markdown **4.3. Evaluate the training**---It is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Loss** (loss) describes an error value after each epoch for the difference between the model's prediction and its ground-truth ('GT') target.**Validation loss** (val_loss) describes the same error value between the model's prediction on a validation image (taken from 'low') and compared to it's target (from 'GT').During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **loss** and **validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **validation loss** suddenly increases again an the **loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased. ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number # Create figure framesize errorfigure = plt.figure(figsize=(16,5)) # Choose the values you wish to compare. # For example, If you wish to see another values, just replace 'loss' to 'dist_loss' plot_history(history,['loss','val_loss']); errorfigure.savefig(model_path+'/training evaluation.tif') # convert the history.history dict to a pandas DataFrame: hist_df = pd.DataFrame(history.history) # The figure is saved into content/ as training evaluation.csv (refresh the Files if needed). RESULTS = model_path+'/training evaluation.csv' with open(RESULTS, 'w') as f: for key in hist_df.keys(): f.write("%s,%s\n"%(key,hist_df[key])) ###Output _____no_output_____ ###Markdown **4.4. Export model to be used with *CSBDeep Fiji plugins* and *KNIME* workflows (Experimental !!!)**---This allows you to save the trained model in a format where it can be used in the CSBDeep Fiji Plugin. See https://github.com/CSBDeep/CSBDeep_website/wiki/Your-Model-in-Fiji for details.After saving the model to your drive, download the .zip file from your google drive. Do this from your Google Drive and not in the colab interface as this takes very long. ###Code #@markdown ##Play this cell to save a Fiji-compatible model to Google Drive. # exports the trained model to Fiji. # The code is from (https://github.com/CSBDeep/CSBDeep). model_training.export_TF() ###Output _____no_output_____ ###Markdown **4.5. Download your model(s) from Google Drive**---The model and its parameters have been saved to your **model_path** on your Google Drive. It is however wise to download the folder as all data can be erased at the next training if using the same folder. **5. Use the network**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **5.1. Generate prediction from test dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Test_data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #Activate the pretrained model. #model_training = CARE(config=None, name=model_name, basedir=model_path) #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Test_data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, provide the name of the model and path to model folder: #@markdown #####During training, the model files are automatically saved inside a folder named after the parameter 'model_name' (see section 3). Provide the name of this folder as 'inference_model_name' and the path to its parent folder in 'inference_model_path'. inference_model_name = "" #@param {type:"string"} inference_model_path = "" #@param {type:"string"} if (Use_the_current_trained_model): print("Using current trained network") inference_model_name = model_name inference_model_path = model_path #training_path = model_path+"/" #Activate the pretrained model. model_training = CARE(config=None, name=inference_model_name, basedir=inference_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Test_data_folder): img = imread(os.path.join(Test_data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **5.2. Assess predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Test_data_folder)) x = imread(Test_data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____ ###Markdown **CARE: Content-aware image restoration (2D)**---CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The CARE network uses a U-Net network architecture and allows image restoration and resolution improvement in 2D and 3D images, in a supervised manner, using noisy images as input and low-noise images as targets for training. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. **This particular notebook enables restoration of 2D datasets. If you are interested in restoring a 3D dataset, you should use the CARE 3D notebook instead.**---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, by Weigert *et al.* published in Nature Methods in 2018 (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network, please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model (Quality control dataset)**. The quality control assessment can be done directly in this notebook. **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!**Here's a common data structure that can work:* Experiment A - **Training dataset** - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - High SNR images (Training_target) - img_1.tif, img_2.tif, ... - **Quality control dataset** - Low SNR images - img_1.tif, img_2.tif - High SNR images - img_1.tif, img_2.tif - **Data to be predicted** - **Results**---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.--- **1. Install CARE and dependencies**--- **1.1. Install key dependencies**--- ###Code #@markdown ##Install CARE and dependencies #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. !pip install wget !pip install memory_profiler !pip install fpdf #Force session restart exit(0) ###Output _____no_output_____ ###Markdown **1.2. Restart your runtime**---** Ignore the following message error message. Your Runtime has automatically restarted. This is normal.** **1.3. Load key dependencies**--- ###Code #@markdown ##Load key dependencies Notebook_version = '1.13' Network = 'CARE (2D)' from builtins import any as b_any def get_requirements_path(): # Store requirements file in 'contents' directory current_dir = os.getcwd() dir_count = current_dir.count('/') - 1 path = '../' * (dir_count) + 'requirements.txt' return path def filter_files(file_list, filter_list): filtered_list = [] for fname in file_list: if b_any(fname.split('==')[0] in s for s in filter_list): filtered_list.append(fname) return filtered_list def build_requirements_file(before, after): path = get_requirements_path() # Exporting requirements.txt for local run !pip freeze > $path # Get minimum requirements file df = pd.read_csv(path, delimiter = "\n") mod_list = [m.split('.')[0] for m in after if not m in before] req_list_temp = df.values.tolist() req_list = [x[0] for x in req_list_temp] # Replace with package name and handle cases where import name is different to module name mod_name_list = [['sklearn', 'scikit-learn'], ['skimage', 'scikit-image']] mod_replace_list = [[x[1] for x in mod_name_list] if s in [x[0] for x in mod_name_list] else s for s in mod_list] filtered_list = filter_files(req_list, mod_replace_list) file=open(path,'w') for item in filtered_list: file.writelines(item + '\n') file.close() import sys before = [str(m) for m in sys.modules] %load_ext memory_profiler #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import tensorflow import tensorflow as tf print(tensorflow.__version__) print("Tensorflow enabled.") # ------- Variable specific to CARE ------- from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from __future__ import print_function, unicode_literals, absolute_import, division %matplotlib inline %config InlineBackend.figure_format = 'retina' # ------- Common variable to all ZeroCostDL4Mic notebooks ------- import numpy as np from matplotlib import pyplot as plt import urllib import os, random import shutil import zipfile from tifffile import imread, imsave import time import sys import wget from pathlib import Path import pandas as pd import csv from glob import glob from scipy import signal from scipy import ndimage from skimage import io from sklearn.linear_model import LinearRegression from skimage.util import img_as_uint import matplotlib as mpl from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as psnr from astropy.visualization import simple_norm from skimage import img_as_float32 from skimage.util import img_as_ubyte from tqdm import tqdm from fpdf import FPDF, HTMLMixin from datetime import datetime import subprocess from pip._internal.operations.freeze import freeze # Colors for the warning messages class bcolors: WARNING = '\033[31m' W = '\033[0m' # white (normal) R = '\033[31m' # red #Disable some of the tensorflow warnings import warnings warnings.filterwarnings("ignore") print("Libraries installed") # Check if this is the latest version of the notebook All_notebook_versions = pd.read_csv("https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_Notebook_versions.csv", dtype=str) print('Notebook version: '+Notebook_version) Latest_Notebook_version = All_notebook_versions[All_notebook_versions["Notebook"] == Network]['Version'].iloc[0] print('Latest notebook version: '+Latest_Notebook_version) if Notebook_version == Latest_Notebook_version: print("This notebook is up-to-date.") else: print(bcolors.WARNING +"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki") !pip freeze > requirements.txt #Create a pdf document with training summary def pdf_export(trained = False, augmentation = False, pretrained_model = False): # save FPDF() class into a # variable pdf #from datetime import datetime class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' day = datetime.now() datetime_str = str(day)[0:10] Header = 'Training report for '+Network+' model ('+model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') # add another cell if trained: training_time = "Training time: "+str(hour)+ "hour(s) "+str(mins)+"min(s) "+str(round(sec))+"sec(s)" pdf.cell(190, 5, txt = training_time, ln = 1, align='L') pdf.ln(1) Header_2 = 'Information for your materials and methods:' pdf.cell(190, 5, txt=Header_2, ln=1, align='L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' #print(all_packages) #Main Packages main_packages = '' version_numbers = [] for name in ['tensorflow','numpy','Keras','csbdeep']: find_name=all_packages.find(name) main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', ' #Version numbers only here: version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)]) cuda_version = subprocess.run('nvcc --version',stdout=subprocess.PIPE, shell=True) cuda_version = cuda_version.stdout.decode('utf-8') cuda_version = cuda_version[cuda_version.find(', V')+3:-1] gpu_name = subprocess.run('nvidia-smi',stdout=subprocess.PIPE, shell=True) gpu_name = gpu_name.stdout.decode('utf-8') gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10] #print(cuda_version[cuda_version.find(', V')+3:-1]) #print(gpu_name) shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape dataset_size = len(os.listdir(Training_source)) text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' if pretrained_model: text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' pdf.set_font('') pdf.set_font_size(10.) pdf.multi_cell(190, 5, txt = text, align='L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(1) pdf.cell(28, 5, txt='Augmentation: ', ln=0) pdf.set_font('') if augmentation: aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)+' by' if rotate_270_degrees != 0 or rotate_90_degrees != 0: aug_text = aug_text+'\n- rotation' if flip_left_right != 0 or flip_top_bottom != 0: aug_text = aug_text+'\n- flipping' if random_zoom_magnification != 0: aug_text = aug_text+'\n- random zoom magnification' if random_distortion != 0: aug_text = aug_text+'\n- random distortion' if image_shear != 0: aug_text = aug_text+'\n- image shearing' else: aug_text = 'No augmentation was used for training.' pdf.multi_cell(190, 5, txt=aug_text, align='L') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) if Use_Default_Advanced_Parameters: pdf.cell(200, 5, txt='Default Advanced Parameters were enabled') pdf.cell(200, 5, txt='The following parameters were used for training:') pdf.ln(1) html = """ <table width=40% style="margin-left:0px;"> <tr> <th width = 50% align="left">Parameter</th> <th width = 50% align="left">Value</th> </tr> <tr> <td width = 50%>number_of_epochs</td> <td width = 50%>{0}</td> </tr> <tr> <td width = 50%>patch_size</td> <td width = 50%>{1}</td> </tr> <tr> <td width = 50%>number_of_patches</td> <td width = 50%>{2}</td> </tr> <tr> <td width = 50%>batch_size</td> <td width = 50%>{3}</td> </tr> <tr> <td width = 50%>number_of_steps</td> <td width = 50%>{4}</td> </tr> <tr> <td width = 50%>percentage_validation</td> <td width = 50%>{5}</td> </tr> <tr> <td width = 50%>initial_learning_rate</td> <td width = 50%>{6}</td> </tr> </table> """.format(number_of_epochs,str(patch_size)+'x'+str(patch_size),number_of_patches,batch_size,number_of_steps,percentage_validation,initial_learning_rate) pdf.write_html(html) #pdf.multi_cell(190, 5, txt = text_2, align='L') pdf.set_font("Arial", size = 11, style='B') pdf.ln(1) pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_source, align = 'L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_target, align = 'L') #pdf.cell(190, 5, txt=aug_text, align='L', ln=1) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L') pdf.ln(1) pdf.cell(60, 5, txt = 'Example Training pair', ln=1) pdf.ln(1) exp_size = io.imread('/content/TrainingDataExample_CARE2D.png').shape pdf.image('/content/TrainingDataExample_CARE2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8)) pdf.ln(1) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') if augmentation: ref_3 = '- Augmentor: Bloice, Marcus D., Christof Stocker, and Andreas Holzinger. "Augmentor: an image augmentation library for machine learning." arXiv preprint arXiv:1708.04680 (2017).' pdf.multi_cell(190, 5, txt = ref_3, align='L') pdf.ln(3) reminder = 'Important:\nRemember to perform the quality control step on all newly trained models\nPlease consider depositing your training dataset on Zenodo' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(model_path+'/'+model_name+'/'+model_name+"_training_report.pdf") #Make a pdf summary of the QC results def qc_pdf_export(): class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' #model_name = os.path.basename(full_QC_model_path) day = datetime.now() datetime_str = str(day)[0:10] Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(2) pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L') pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'): pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13)) else: pdf.set_font('') pdf.set_font('Arial', size=10) pdf.multi_cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.', align='L') pdf.ln(2) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(3) pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1) pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10)) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) pdf.ln(1) html = """ <body> <font size="7" face="Courier New" > <table width=94% style="margin-left:0px;">""" with open(full_QC_model_path+'Quality Control/QC_metrics_'+QC_model_name+'.csv', 'r') as csvfile: metrics = csv.reader(csvfile) header = next(metrics) image = header[0] mSSIM_PvsGT = header[1] mSSIM_SvsGT = header[2] NRMSE_PvsGT = header[3] NRMSE_SvsGT = header[4] PSNR_PvsGT = header[5] PSNR_SvsGT = header[6] header = """ <tr> <th width = 10% align="left">{0}</th> <th width = 15% align="left">{1}</th> <th width = 15% align="center">{2}</th> <th width = 15% align="left">{3}</th> <th width = 15% align="center">{4}</th> <th width = 15% align="left">{5}</th> <th width = 15% align="center">{6}</th> </tr>""".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT) html = html+header for row in metrics: image = row[0] mSSIM_PvsGT = row[1] mSSIM_SvsGT = row[2] NRMSE_PvsGT = row[3] NRMSE_SvsGT = row[4] PSNR_PvsGT = row[5] PSNR_SvsGT = row[6] cells = """ <tr> <td width = 10% align="left">{0}</td> <td width = 15% align="center">{1}</td> <td width = 15% align="center">{2}</td> <td width = 15% align="center">{3}</td> <td width = 15% align="center">{4}</td> <td width = 15% align="center">{5}</td> <td width = 15% align="center">{6}</td> </tr>""".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3))) html = html+cells html = html+"""</body></table>""" pdf.write_html(html) pdf.ln(1) pdf.set_font('') pdf.set_font_size(10.) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') pdf.ln(3) reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf') # Build requirements file for local run after = [str(m) for m in sys.modules] build_requirements_file(before, after) ###Output _____no_output_____ ###Markdown **2. Initialise the Colab session**--- **2.1. Check for GPU access**---By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelerator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime setting is correct then Google did not allocate a GPU for your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') !nvidia-smi ###Output _____no_output_____ ###Markdown **2.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown ** If you cannot see your files, reactivate your session by connecting to your hosted runtime.** Connect to a hosted runtime. **3. Select your parameters and paths**--- **3.1. Setting main training parameters**--- **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 5). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 128****When choosing the patch_size, the value should be i) large enough that it will enclose many instances, ii) small enough that the resulting patches fit into the RAM.** **`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 50** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 16****`number_of_steps`:** Define the number of training steps by epoch. By default or if set to zero this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patches / batch_size****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** **`initial_learning_rate`:** Input the initial value to be used as learning rate. **Default value: 0.0004** ###Code #@markdown ###Path to training images: Training_source = "" #@param {type:"string"} InputFile = Training_source+"/*.tif" Training_target = "" #@param {type:"string"} OutputFile = Training_target+"/*.tif" #Define where the patch file will be saved base = "/content" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 50#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 128#@param {type:"number"} # in pixels number_of_patches = 50#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: batch_size = 16#@param {type:"number"} number_of_steps = 0#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} initial_learning_rate = 0.0004 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 16 percentage_validation = 10 initial_learning_rate = 0.0004 #Here we define the percentage to use for validation percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so print a warning if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: "+model_name+" already exists and will be deleted in the following cell !!") print(bcolors.WARNING +"To continue training "+model_name+", choose a new model_name here, and load "+model_name+" in section 3.3"+W) # Here we disable pre-trained model by default (in case the cell is not ran) Use_pretrained_model = False # Here we disable data augmentation by default (in case the cell is not ran) Use_Data_augmentation = False print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) # Here we check that the input images contains the expected dimensions if len(x.shape) == 2: print("Image dimensions (y,x)",x.shape) if not len(x.shape) == 2: print(bcolors.WARNING +"Your images appear to have the wrong dimensions. Image dimension",x.shape) #Find image XY dimension Image_Y = x.shape[0] Image_X = x.shape[1] #Hyperparameters failsafes # Here we check that patch_size is smaller than the smallest xy dimension of the image if patch_size > min(Image_Y, Image_X): patch_size = min(Image_Y, Image_X) print (bcolors.WARNING + " Your chosen patch_size is bigger than the xy dimension of your image; therefore the patch_size chosen is now:",patch_size) # Here we check that patch_size is divisible by 8 if not patch_size % 8 == 0: patch_size = ((int(patch_size / 8)-1) * 8) print (bcolors.WARNING + " Your chosen patch_size is not divisible by 8; therefore the patch_size chosen is now:",patch_size) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Training target') plt.axis('off'); plt.savefig('/content/TrainingDataExample_CARE2D.png',bbox_inches='tight',pad_inches=0) ###Output _____no_output_____ ###Markdown **3.2. Data augmentation**--- Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it. **However, data augmentation is not a magic solution and may also introduce issues. Therefore, we recommend that you train your network with and without augmentation, and use the QC section to validate that it improves overall performances.** Data augmentation is performed here by [Augmentor.](https://github.com/mdbloice/Augmentor)[Augmentor](https://github.com/mdbloice/Augmentor) was described in the following article:Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259**Please also cite this original paper when publishing results obtained using this notebook with augmentation enabled.** ###Code #Data augmentation Use_Data_augmentation = False #@param {type:"boolean"} if Use_Data_augmentation: !pip install Augmentor import Augmentor #@markdown ####Choose a factor by which you want to multiply your original dataset Multiply_dataset_by = 5 #@param {type:"slider", min:1, max:30, step:1} Save_augmented_images = False #@param {type:"boolean"} Saving_path = "" #@param {type:"string"} Use_Default_Augmentation_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please choose the probability of the following image manipulations to be used to augment your dataset (1 = always used; 0 = disabled ): #@markdown ####Mirror and rotate images rotate_90_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} rotate_270_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_left_right = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_top_bottom = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image Zoom random_zoom = 0 #@param {type:"slider", min:0, max:1, step:0.1} random_zoom_magnification = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image distortion random_distortion = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Image shearing image_shear = 0 #@param {type:"slider", min:0, max:1, step:0.1} max_image_shear = 1 #@param {type:"slider", min:1, max:25, step:1} if Use_Default_Augmentation_Parameters: rotate_90_degrees = 0.5 rotate_270_degrees = 0.5 flip_left_right = 0.5 flip_top_bottom = 0.5 if not Multiply_dataset_by >5: random_zoom = 0 random_zoom_magnification = 0.9 random_distortion = 0 image_shear = 0 max_image_shear = 10 if Multiply_dataset_by >5: random_zoom = 0.1 random_zoom_magnification = 0.9 random_distortion = 0.5 image_shear = 0.2 max_image_shear = 5 if Multiply_dataset_by >25: random_zoom = 0.5 random_zoom_magnification = 0.8 random_distortion = 0.5 image_shear = 0.5 max_image_shear = 20 list_files = os.listdir(Training_source) Nb_files = len(list_files) Nb_augmented_files = (Nb_files * Multiply_dataset_by) if Use_Data_augmentation: print("Data augmentation enabled") # Here we set the path for the various folder were the augmented images will be loaded # All images are first saved into the augmented folder #Augmented_folder = "/content/Augmented_Folder" if not Save_augmented_images: Saving_path= "/content" Augmented_folder = Saving_path+"/Augmented_Folder" if os.path.exists(Augmented_folder): shutil.rmtree(Augmented_folder) os.makedirs(Augmented_folder) #Training_source_augmented = "/content/Training_source_augmented" Training_source_augmented = Saving_path+"/Training_source_augmented" if os.path.exists(Training_source_augmented): shutil.rmtree(Training_source_augmented) os.makedirs(Training_source_augmented) #Training_target_augmented = "/content/Training_target_augmented" Training_target_augmented = Saving_path+"/Training_target_augmented" if os.path.exists(Training_target_augmented): shutil.rmtree(Training_target_augmented) os.makedirs(Training_target_augmented) # Here we generate the augmented images #Load the images p = Augmentor.Pipeline(Training_source, Augmented_folder) #Define the matching images p.ground_truth(Training_target) #Define the augmentation possibilities if not rotate_90_degrees == 0: p.rotate90(probability=rotate_90_degrees) if not rotate_270_degrees == 0: p.rotate270(probability=rotate_270_degrees) if not flip_left_right == 0: p.flip_left_right(probability=flip_left_right) if not flip_top_bottom == 0: p.flip_top_bottom(probability=flip_top_bottom) if not random_zoom == 0: p.zoom_random(probability=random_zoom, percentage_area=random_zoom_magnification) if not random_distortion == 0: p.random_distortion(probability=random_distortion, grid_width=4, grid_height=4, magnitude=8) if not image_shear == 0: p.shear(probability=image_shear,max_shear_left=20,max_shear_right=20) p.sample(int(Nb_augmented_files)) print(int(Nb_augmented_files),"matching images generated") # Here we sort through the images and move them back to augmented trainning source and targets folders augmented_files = os.listdir(Augmented_folder) for f in augmented_files: if (f.startswith("_groundtruth_(1)_")): shortname_noprefix = f[17:] shutil.copyfile(Augmented_folder+"/"+f, Training_target_augmented+"/"+shortname_noprefix) if not (f.startswith("_groundtruth_(1)_")): shutil.copyfile(Augmented_folder+"/"+f, Training_source_augmented+"/"+f) for filename in os.listdir(Training_source_augmented): os.chdir(Training_source_augmented) os.rename(filename, filename.replace('_original', '')) #Here we clean up the extra files shutil.rmtree(Augmented_folder) if not Use_Data_augmentation: print(bcolors.WARNING+"Data augmentation disabled") ###Output _____no_output_____ ###Markdown **3.3. Using weights from a pre-trained model as initial weights**--- Here, you can set the the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a CARE 2D model**. This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**. In order to continue training from the point where the pre-trained model left off, it is adviseable to also **load the learning rate** that was used when the training ended. This is automatically saved for models trained with ZeroCostDL4Mic and will be loaded here. If no learning rate can be found in the model folder provided, the default learning rate will be used. ###Code # @markdown ##Loading weights from a pre-trained network Use_pretrained_model = False #@param {type:"boolean"} pretrained_model_choice = "Model_from_file" #@param ["Model_from_file"] Weights_choice = "best" #@param ["last", "best"] #@markdown ###If you chose "Model_from_file", please provide the path to the model folder: pretrained_model_path = "" #@param {type:"string"} # --------------------- Check if we load a previously trained model ------------------------ if Use_pretrained_model: # --------------------- Load the model from the choosen path ------------------------ if pretrained_model_choice == "Model_from_file": h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Download the a model provided in the XXX ------------------------ if pretrained_model_choice == "Model_name": pretrained_model_name = "Model_name" pretrained_model_path = "/content/"+pretrained_model_name print("Downloading the 2D_Demo_Model_from_Stardist_2D_paper") if os.path.exists(pretrained_model_path): shutil.rmtree(pretrained_model_path) os.makedirs(pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Add additional pre-trained models here ------------------------ # --------------------- Check the model exist ------------------------ # If the model path chosen does not contain a pretrain model then use_pretrained_model is disabled, if not os.path.exists(h5_file_path): print(bcolors.WARNING+'WARNING: weights_'+Weights_choice+'.h5 pretrained model does not exist') Use_pretrained_model = False # If the model path contains a pretrain model, we load the training rate, if os.path.exists(h5_file_path): #Here we check if the learning rate can be loaded from the quality control folder if os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): with open(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv'),'r') as csvfile: csvRead = pd.read_csv(csvfile, sep=',') #print(csvRead) if "learning rate" in csvRead.columns: #Here we check that the learning rate column exist (compatibility with model trained un ZeroCostDL4Mic bellow 1.4) print("pretrained network learning rate found") #find the last learning rate lastLearningRate = csvRead["learning rate"].iloc[-1] #Find the learning rate corresponding to the lowest validation loss min_val_loss = csvRead[csvRead['val_loss'] == min(csvRead['val_loss'])] #print(min_val_loss) bestLearningRate = min_val_loss['learning rate'].iloc[-1] if Weights_choice == "last": print('Last learning rate: '+str(lastLearningRate)) if Weights_choice == "best": print('Learning rate of best validation loss: '+str(bestLearningRate)) if not "learning rate" in csvRead.columns: #if the column does not exist, then initial learning rate is used instead bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(bestLearningRate)+' will be used instead') #Compatibility with models trained outside ZeroCostDL4Mic but default learning rate will be used if not os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(initial_learning_rate)+' will be used instead') bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate # Display info about the pretrained model to be loaded (or not) if Use_pretrained_model: print('Weights found in:') print(h5_file_path) print('will be loaded prior to training.') else: print(bcolors.WARNING+'No pretrained network will be used.') ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # --------------------- Here we delete the model folder if it already exist ------------------------ if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: Model folder already exists and has been removed !!"+W) shutil.rmtree(model_path+'/'+model_name) # --------------------- Here we load the augmented data or the raw data ------------------------ if Use_Data_augmentation: Training_source_dir = Training_source_augmented Training_target_dir = Training_target_augmented if not Use_Data_augmentation: Training_source_dir = Training_source Training_target_dir = Training_target # --------------------- ------------------------------------------------ # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source_dir], target_dir=Training_target_dir, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size #if (Use_Default_Advanced_Parameters): if (Use_Default_Advanced_Parameters) or (number_of_steps == 0): number_of_steps = int(X.shape[0]/batch_size)+1 # --------------------- Using pretrained model ------------------------ #Here we ensure that the learning rate set correctly when using pre-trained models if Use_pretrained_model: if Weights_choice == "last": initial_learning_rate = lastLearningRate if Weights_choice == "best": initial_learning_rate = bestLearningRate # --------------------- ---------------------- ------------------------ #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=initial_learning_rate) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) # --------------------- Using pretrained model ------------------------ # Load the pretrained weights if Use_pretrained_model: model_training.load_weights(h5_file_path) # --------------------- ---------------------- ------------------------ pdf_export(augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **4.2. Start Training**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches.Once training is complete, the trained model is automatically saved on your Google Drive, in the **model_path** folder that was selected in Section 3. It is however wise to download the folder from Google Drive as all data can be erased at the next training if using the same folder.**Of Note:** At the end of the training, your model will be automatically exported so it can be used in the CSBDeep Fiji plugin (Run your Network). You can find it in your model folder (TF_SavedModel.zip). In Fiji, Make sure to choose the right version of tensorflow. You can check at: Edit-- Options-- Tensorflow. Choose the version 1.4 (CPU or GPU depending on your system). ###Code #@markdown ##Start training start = time.time() # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") # copy the .npz to the model's folder shutil.copyfile(model_path+'/rawdata.npz',model_path+'/'+model_name+'/rawdata.npz') # convert the history.history dict to a pandas DataFrame: lossData = pd.DataFrame(history.history) if os.path.exists(model_path+"/"+model_name+"/Quality Control"): shutil.rmtree(model_path+"/"+model_name+"/Quality Control") os.makedirs(model_path+"/"+model_name+"/Quality Control") # The training evaluation.csv is saved (overwrites the Files if needed). lossDataCSVpath = model_path+'/'+model_name+'/Quality Control/training_evaluation.csv' with open(lossDataCSVpath, 'w') as f: writer = csv.writer(f) writer.writerow(['loss','val_loss', 'learning rate']) for i in range(len(history.history['loss'])): writer.writerow([history.history['loss'][i], history.history['val_loss'][i], history.history['lr'][i]]) # Displaying the time elapsed for training dt = time.time() - start mins, sec = divmod(dt, 60) hour, mins = divmod(mins, 60) print("Time elapsed:",hour, "hour(s)",mins,"min(s)",round(sec),"sec(s)") model_training.export_TF() print("Your model has been sucessfully exported and can now also be used in the CSBdeep Fiji plugin") pdf_export(trained = True, augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **5. Evaluate your model**---This section allows you to perform important quality checks on the validity and generalisability of the trained model. **We highly recommend to perform quality control on all newly trained models.** ###Code # model name and path #@markdown ###Do you want to assess the model you just trained ? Use_the_current_trained_model = False #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: QC_model_folder = "" #@param {type:"string"} #Here we define the loaded model name and path QC_model_name = os.path.basename(QC_model_folder) QC_model_path = os.path.dirname(QC_model_folder) if (Use_the_current_trained_model): QC_model_name = model_name QC_model_path = model_path full_QC_model_path = QC_model_path+'/'+QC_model_name+'/' if os.path.exists(full_QC_model_path): print("The "+QC_model_name+" network will be evaluated") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') loss_displayed = False ###Output _____no_output_____ ###Markdown **5.1. Inspection of the loss function**---First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.**Note: Plots of the losses will be shown in a linear and in a log scale. This can help visualise changes in the losses at different magnitudes. However, note that if the losses are negative the plot on the log scale will be empty. This is not an error.** ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number loss_displayed = True lossDataFromCSV = [] vallossDataFromCSV = [] with open(QC_model_path+'/'+QC_model_name+'/Quality Control/training_evaluation.csv','r') as csvfile: csvRead = csv.reader(csvfile, delimiter=',') next(csvRead) for row in csvRead: lossDataFromCSV.append(float(row[0])) vallossDataFromCSV.append(float(row[1])) epochNumber = range(len(lossDataFromCSV)) plt.figure(figsize=(15,10)) plt.subplot(2,1,1) plt.plot(epochNumber,lossDataFromCSV, label='Training loss') plt.plot(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (linear scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.subplot(2,1,2) plt.semilogy(epochNumber,lossDataFromCSV, label='Training loss') plt.semilogy(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (log scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.savefig(QC_model_path+'/'+QC_model_name+'/Quality Control/lossCurvePlots.png',bbox_inches='tight',pad_inches=0) plt.show() ###Output _____no_output_____ ###Markdown **5.2. Error mapping and quality metrics estimation**---This section will display SSIM maps and RSE maps as well as calculating total SSIM, NRMSE and PSNR metrics for all the images provided in the "Source_QC_folder" and "Target_QC_folder" !**1. The SSIM (structural similarity) map** The SSIM metric is used to evaluate whether two images contain the same structures. It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed by calculating the SSIM metric in each pixel by considering the surrounding structural similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels and with Gaussian weighting of 1.5 pixel standard deviation, see our Wiki for more info). **mSSIM** is the SSIM value calculated across the entire window of both images.**The output below shows the SSIM maps with the mSSIM****2. The RSE (Root Squared Error) map** This is a display of the root of the squared difference between the normalized predicted and target or the source and the target. In this case, a smaller RSE is better. A perfect agreement between target and prediction will lead to an RSE map showing zeros everywhere (dark).**NRMSE (normalised root mean squared error)** gives the average difference between all pixels in the images compared to each other. Good agreement yields low NRMSE scores.**PSNR (Peak signal-to-noise ratio)** is a metric that gives the difference between the ground truth and prediction (or source input) in decibels, using the peak pixel values of the prediction and the MSE between the images. The higher the score the better the agreement.**The output below shows the RSE maps with the NRMSE and PSNR values.** ###Code #@markdown ##Choose the folders that contain your Quality Control dataset Source_QC_folder = "" #@param{type:"string"} Target_QC_folder = "" #@param{type:"string"} # Create a quality control/Prediction Folder if os.path.exists(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction"): shutil.rmtree(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") os.makedirs(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") # Activate the pretrained model. model_training = CARE(config=None, name=QC_model_name, basedir=QC_model_path) # List Tif images in Source_QC_folder Source_QC_folder_tif = Source_QC_folder+"/*.tif" Z = sorted(glob(Source_QC_folder_tif)) Z = list(map(imread,Z)) print('Number of test dataset found in the folder: '+str(len(Z))) # Perform prediction on all datasets in the Source_QC folder for filename in os.listdir(Source_QC_folder): img = imread(os.path.join(Source_QC_folder, filename)) predicted = model_training.predict(img, axes='YX') os.chdir(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") imsave(filename, predicted) def ssim(img1, img2): return structural_similarity(img1,img2,data_range=1.,full=True, gaussian_weights=True, use_sample_covariance=False, sigma=1.5) def normalize(x, pmin=3, pmax=99.8, axis=None, clip=False, eps=1e-20, dtype=np.float32): """This function is adapted from Martin Weigert""" """Percentile-based image normalization.""" mi = np.percentile(x,pmin,axis=axis,keepdims=True) ma = np.percentile(x,pmax,axis=axis,keepdims=True) return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype) def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):#dtype=np.float32 """This function is adapted from Martin Weigert""" if dtype is not None: x = x.astype(dtype,copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) eps = dtype(eps) try: import numexpr x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") except ImportError: x = (x - mi) / ( ma - mi + eps ) if clip: x = np.clip(x,0,1) return x def norm_minmse(gt, x, normalize_gt=True): """This function is adapted from Martin Weigert""" """ normalizes and affinely scales an image pair such that the MSE is minimized Parameters ---------- gt: ndarray the ground truth image x: ndarray the image that will be affinely scaled normalize_gt: bool set to True of gt image should be normalized (default) Returns ------- gt_scaled, x_scaled """ if normalize_gt: gt = normalize(gt, 0.1, 99.9, clip=False).astype(np.float32, copy = False) x = x.astype(np.float32, copy=False) - np.mean(x) #x = x - np.mean(x) gt = gt.astype(np.float32, copy=False) - np.mean(gt) #gt = gt - np.mean(gt) scale = np.cov(x.flatten(), gt.flatten())[0, 1] / np.var(x.flatten()) return gt, scale * x # Open and create the csv file that will contain all the QC metrics with open(QC_model_path+"/"+QC_model_name+"/Quality Control/QC_metrics_"+QC_model_name+".csv", "w", newline='') as file: writer = csv.writer(file) # Write the header in the csv file writer.writerow(["image #","Prediction v. GT mSSIM","Input v. GT mSSIM", "Prediction v. GT NRMSE", "Input v. GT NRMSE", "Prediction v. GT PSNR", "Input v. GT PSNR"]) # Let's loop through the provided dataset in the QC folders for i in os.listdir(Source_QC_folder): if not os.path.isdir(os.path.join(Source_QC_folder,i)): print('Running QC on: '+i) # -------------------------------- Target test data (Ground truth) -------------------------------- test_GT = io.imread(os.path.join(Target_QC_folder, i)) # -------------------------------- Source test data -------------------------------- test_source = io.imread(os.path.join(Source_QC_folder,i)) # Normalize the images wrt each other by minimizing the MSE between GT and Source image test_GT_norm,test_source_norm = norm_minmse(test_GT, test_source, normalize_gt=True) # -------------------------------- Prediction -------------------------------- test_prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction",i)) # Normalize the images wrt each other by minimizing the MSE between GT and prediction test_GT_norm,test_prediction_norm = norm_minmse(test_GT, test_prediction, normalize_gt=True) # -------------------------------- Calculate the metric maps and save them -------------------------------- # Calculate the SSIM maps index_SSIM_GTvsPrediction, img_SSIM_GTvsPrediction = ssim(test_GT_norm, test_prediction_norm) index_SSIM_GTvsSource, img_SSIM_GTvsSource = ssim(test_GT_norm, test_source_norm) #Save ssim_maps img_SSIM_GTvsPrediction_32bit = np.float32(img_SSIM_GTvsPrediction) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsPrediction_'+i,img_SSIM_GTvsPrediction_32bit) img_SSIM_GTvsSource_32bit = np.float32(img_SSIM_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsSource_'+i,img_SSIM_GTvsSource_32bit) # Calculate the Root Squared Error (RSE) maps img_RSE_GTvsPrediction = np.sqrt(np.square(test_GT_norm - test_prediction_norm)) img_RSE_GTvsSource = np.sqrt(np.square(test_GT_norm - test_source_norm)) # Save SE maps img_RSE_GTvsPrediction_32bit = np.float32(img_RSE_GTvsPrediction) img_RSE_GTvsSource_32bit = np.float32(img_RSE_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsPrediction_'+i,img_RSE_GTvsPrediction_32bit) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsSource_'+i,img_RSE_GTvsSource_32bit) # -------------------------------- Calculate the RSE metrics and save them -------------------------------- # Normalised Root Mean Squared Error (here it's valid to take the mean of the image) NRMSE_GTvsPrediction = np.sqrt(np.mean(img_RSE_GTvsPrediction)) NRMSE_GTvsSource = np.sqrt(np.mean(img_RSE_GTvsSource)) # We can also measure the peak signal to noise ratio between the images PSNR_GTvsPrediction = psnr(test_GT_norm,test_prediction_norm,data_range=1.0) PSNR_GTvsSource = psnr(test_GT_norm,test_source_norm,data_range=1.0) writer.writerow([i,str(index_SSIM_GTvsPrediction),str(index_SSIM_GTvsSource),str(NRMSE_GTvsPrediction),str(NRMSE_GTvsSource),str(PSNR_GTvsPrediction),str(PSNR_GTvsSource)]) # All data is now processed saved Test_FileList = os.listdir(Source_QC_folder) # this assumes, as it should, that both source and target are named the same plt.figure(figsize=(20,20)) # Currently only displays the last computed set, from memory # Target (Ground-truth) plt.subplot(3,3,1) plt.axis('off') img_GT = io.imread(os.path.join(Target_QC_folder, Test_FileList[-1])) plt.imshow(img_GT, norm=simple_norm(img_GT, percent = 99)) plt.title('Target',fontsize=15) # Source plt.subplot(3,3,2) plt.axis('off') img_Source = io.imread(os.path.join(Source_QC_folder, Test_FileList[-1])) plt.imshow(img_Source, norm=simple_norm(img_Source, percent = 99)) plt.title('Source',fontsize=15) #Prediction plt.subplot(3,3,3) plt.axis('off') img_Prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction/", Test_FileList[-1])) plt.imshow(img_Prediction, norm=simple_norm(img_Prediction, percent = 99)) plt.title('Prediction',fontsize=15) #Setting up colours cmap = plt.cm.CMRmap #SSIM between GT and Source plt.subplot(3,3,5) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsSource = plt.imshow(img_SSIM_GTvsSource, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imSSIM_GTvsSource,fraction=0.046, pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsSource,3)),fontsize=14) plt.ylabel('SSIM maps',fontsize=20, rotation=0, labelpad=75) #SSIM between GT and Prediction plt.subplot(3,3,6) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsPrediction = plt.imshow(img_SSIM_GTvsPrediction, cmap = cmap, vmin=0,vmax=1) plt.colorbar(imSSIM_GTvsPrediction,fraction=0.046, pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsPrediction,3)),fontsize=14) #Root Squared Error between GT and Source plt.subplot(3,3,8) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsSource = plt.imshow(img_RSE_GTvsSource, cmap = cmap, vmin=0, vmax = 1) plt.colorbar(imRSE_GTvsSource,fraction=0.046,pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsSource,3))+', PSNR: '+str(round(PSNR_GTvsSource,3)),fontsize=14) #plt.title('Target vs. Source PSNR: '+str(round(PSNR_GTvsSource,3))) plt.ylabel('RSE maps',fontsize=20, rotation=0, labelpad=75) #Root Squared Error between GT and Prediction plt.subplot(3,3,9) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsPrediction = plt.imshow(img_RSE_GTvsPrediction, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imRSE_GTvsPrediction,fraction=0.046,pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsPrediction,3))+', PSNR: '+str(round(PSNR_GTvsPrediction,3)),fontsize=14) plt.savefig(full_QC_model_path+'Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0) qc_pdf_export() ###Output _____no_output_____ ###Markdown **6. Using the trained model**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **6.1. Generate prediction(s) from unseen dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = False #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: Prediction_model_folder = "" #@param {type:"string"} #Here we find the loaded model name and parent path Prediction_model_name = os.path.basename(Prediction_model_folder) Prediction_model_path = os.path.dirname(Prediction_model_folder) if (Use_the_current_trained_model): print("Using current trained network") Prediction_model_name = model_name Prediction_model_path = model_path full_Prediction_model_path = os.path.join(Prediction_model_path, Prediction_model_name) if os.path.exists(full_Prediction_model_path): print("The "+Prediction_model_name+" network will be used.") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') #Activate the pretrained model. model_training = CARE(config=None, name=Prediction_model_name, basedir=Prediction_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Data_folder): img = imread(os.path.join(Data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **6.2. Inspect the predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Data_folder)) x = imread(Data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____ ###Markdown **CARE: Content-aware image restoration (2D)**---CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The CARE network uses a U-Net network architecture and allows image restoration and resolution improvement in 2D and 3D images, in a supervised manner, using noisy images as input and low-noise images as targets for training. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. **This particular notebook enables restoration of 2D dataset. If you are interested in restoring 3D dataset, you should use the CARE 3D notebook instead.**---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, by Weigert *et al.* published in Nature Methods in 2018 (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network,please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model (Quality control dataset)**. The quality control assessment can be done directly in this notebook. **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!**Here's a common data structure that can work:* Experiment A - **Training dataset** - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - High SNR images (Training_target) - img_1.tif, img_2.tif, ... - **Quality control dataset** - Low SNR images - img_1.tif, img_2.tif - High SNR images - img_1.tif, img_2.tif - **Data to be predicted** - **Results**---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.--- **1. Initialise the Colab session**--- **1.1. Check for GPU access**---By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelerator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime setting is correct then Google did not allocate a GPU for your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') !nvidia-smi ###Output _____no_output_____ ###Markdown **1.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown **2. Install CARE and dependencies**--- ###Code Notebook_version = ['1.12'] #@markdown ##Install CARE and dependencies #Libraries contains information of certain topics. #For example the tifffile library contains information on how to handle tif-files. #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. !pip install wget !pip install memory_profiler !pip install fpdf %load_ext memory_profiler #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import sys before = [str(m) for m in sys.modules] import tensorflow import tensorflow as tf print(tensorflow.__version__) print("Tensorflow enabled.") # ------- Variable specific to CARE ------- from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from __future__ import print_function, unicode_literals, absolute_import, division %matplotlib inline %config InlineBackend.figure_format = 'retina' # ------- Common variable to all ZeroCostDL4Mic notebooks ------- import numpy as np from matplotlib import pyplot as plt import urllib import os, random import shutil import zipfile from tifffile import imread, imsave import time import sys import wget from pathlib import Path import pandas as pd import csv from glob import glob from scipy import signal from scipy import ndimage from skimage import io from sklearn.linear_model import LinearRegression from skimage.util import img_as_uint import matplotlib as mpl from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as psnr from astropy.visualization import simple_norm from skimage import img_as_float32 from skimage.util import img_as_ubyte from tqdm import tqdm from fpdf import FPDF, HTMLMixin from datetime import datetime import subprocess from pip._internal.operations.freeze import freeze # Colors for the warning messages class bcolors: WARNING = '\033[31m' W = '\033[0m' # white (normal) R = '\033[31m' # red #Disable some of the tensorflow warnings import warnings warnings.filterwarnings("ignore") print("Libraries installed") # Check if this is the latest version of the notebook Latest_notebook_version = pd.read_csv("https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Latest_ZeroCostDL4Mic_Release.csv") if Notebook_version == list(Latest_notebook_version.columns): print("This notebook is up-to-date.") if not Notebook_version == list(Latest_notebook_version.columns): print(bcolors.WARNING +"A new version of this notebook has been released. We recommend that you download it at https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki") !pip freeze > requirements.txt #Create a pdf document with training summary def pdf_export(trained = False, augmentation = False, pretrained_model = False): # save FPDF() class into a # variable pdf #from datetime import datetime class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' day = datetime.now() datetime_str = str(day)[0:10] Header = 'Training report for '+Network+' model ('+model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') # add another cell if trained: training_time = "Training time: "+str(hour)+ "hour(s) "+str(mins)+"min(s) "+str(round(sec))+"sec(s)" pdf.cell(190, 5, txt = training_time, ln = 1, align='L') pdf.ln(1) Header_2 = 'Information for your materials and methods:' pdf.cell(190, 5, txt=Header_2, ln=1, align='L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' #print(all_packages) #Main Packages main_packages = '' version_numbers = [] for name in ['tensorflow','numpy','Keras','csbdeep']: find_name=all_packages.find(name) main_packages = main_packages+all_packages[find_name:all_packages.find(',',find_name)]+', ' #Version numbers only here: version_numbers.append(all_packages[find_name+len(name)+2:all_packages.find(',',find_name)]) cuda_version = subprocess.run('nvcc --version',stdout=subprocess.PIPE, shell=True) cuda_version = cuda_version.stdout.decode('utf-8') cuda_version = cuda_version[cuda_version.find(', V')+3:-1] gpu_name = subprocess.run('nvidia-smi',stdout=subprocess.PIPE, shell=True) gpu_name = gpu_name.stdout.decode('utf-8') gpu_name = gpu_name[gpu_name.find('Tesla'):gpu_name.find('Tesla')+10] #print(cuda_version[cuda_version.find(', V')+3:-1]) #print(gpu_name) shape = io.imread(Training_source+'/'+os.listdir(Training_source)[1]).shape dataset_size = len(os.listdir(Training_source)) text = 'The '+Network+' model was trained from scratch for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' if pretrained_model: text = 'The '+Network+' model was trained for '+str(number_of_epochs)+' epochs on '+str(dataset_size*number_of_patches)+' paired image patches (image dimensions: '+str(shape)+', patch size: ('+str(patch_size)+','+str(patch_size)+')) with a batch size of '+str(batch_size)+' and a '+config.train_loss+' loss function, using the '+Network+' ZeroCostDL4Mic notebook (v '+Notebook_version[0]+') (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v '+version_numbers[0]+'), Keras (v '+version_numbers[2]+'), csbdeep (v '+version_numbers[3]+'), numpy (v '+version_numbers[1]+'), cuda (v '+cuda_version+'). The training was accelerated using a '+gpu_name+'GPU.' pdf.set_font('') pdf.set_font_size(10.) pdf.multi_cell(190, 5, txt = text, align='L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(1) pdf.cell(28, 5, txt='Augmentation: ', ln=0) pdf.set_font('') if augmentation: aug_text = 'The dataset was augmented by a factor of '+str(Multiply_dataset_by)+' by' if rotate_270_degrees != 0 or rotate_90_degrees != 0: aug_text = aug_text+'\n- rotation' if flip_left_right != 0 or flip_top_bottom != 0: aug_text = aug_text+'\n- flipping' if random_zoom_magnification != 0: aug_text = aug_text+'\n- random zoom magnification' if random_distortion != 0: aug_text = aug_text+'\n- random distortion' if image_shear != 0: aug_text = aug_text+'\n- image shearing' if skew_image != 0: aug_text = aug_text+'\n- image skewing' else: aug_text = 'No augmentation was used for training.' pdf.multi_cell(190, 5, txt=aug_text, align='L') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Parameters', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) if Use_Default_Advanced_Parameters: pdf.cell(200, 5, txt='Default Advanced Parameters were enabled') pdf.cell(200, 5, txt='The following parameters were used for training:') pdf.ln(1) html = """ <table width=40% style="margin-left:0px;"> <tr> <th width = 50% align="left">Parameter</th> <th width = 50% align="left">Value</th> </tr> <tr> <td width = 50%>number_of_epochs</td> <td width = 50%>{0}</td> </tr> <tr> <td width = 50%>patch_size</td> <td width = 50%>{1}</td> </tr> <tr> <td width = 50%>number_of_patches</td> <td width = 50%>{2}</td> </tr> <tr> <td width = 50%>batch_size</td> <td width = 50%>{3}</td> </tr> <tr> <td width = 50%>number_of_steps</td> <td width = 50%>{4}</td> </tr> <tr> <td width = 50%>percentage_validation</td> <td width = 50%>{5}</td> </tr> <tr> <td width = 50%>initial_learning_rate</td> <td width = 50%>{6}</td> </tr> </table> """.format(number_of_epochs,str(patch_size)+'x'+str(patch_size),number_of_patches,batch_size,number_of_steps,percentage_validation,initial_learning_rate) pdf.write_html(html) #pdf.multi_cell(190, 5, txt = text_2, align='L') pdf.set_font("Arial", size = 11, style='B') pdf.ln(1) pdf.cell(190, 5, txt = 'Training Dataset', align='L', ln=1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(29, 5, txt= 'Training_source:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_source, align = 'L') pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(27, 5, txt= 'Training_target:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = Training_target, align = 'L') #pdf.cell(190, 5, txt=aug_text, align='L', ln=1) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.cell(22, 5, txt= 'Model Path:', align = 'L', ln=0) pdf.set_font('') pdf.multi_cell(170, 5, txt = model_path+'/'+model_name, align = 'L') pdf.ln(1) pdf.cell(60, 5, txt = 'Example Training pair', ln=1) pdf.ln(1) exp_size = io.imread('/content/TrainingDataExample_CARE2D.png').shape pdf.image('/content/TrainingDataExample_CARE2D.png', x = 11, y = None, w = round(exp_size[1]/8), h = round(exp_size[0]/8)) pdf.ln(1) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy." BioRxiv (2020).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') if augmentation: ref_3 = '- Augmentor: Bloice, Marcus D., Christof Stocker, and Andreas Holzinger. "Augmentor: an image augmentation library for machine learning." arXiv preprint arXiv:1708.04680 (2017).' pdf.multi_cell(190, 5, txt = ref_3, align='L') pdf.ln(3) reminder = 'Important:\nRemember to perform the quality control step on all newly trained models\nPlease consider depositing your training dataset on Zenodo' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(model_path+'/'+model_name+'/'+model_name+"_training_report.pdf") #Make a pdf summary of the QC results def qc_pdf_export(): class MyFPDF(FPDF, HTMLMixin): pass pdf = MyFPDF() pdf.add_page() pdf.set_right_margin(-1) pdf.set_font("Arial", size = 11, style='B') Network = 'CARE 2D' #model_name = os.path.basename(full_QC_model_path) day = datetime.now() datetime_str = str(day)[0:10] Header = 'Quality Control report for '+Network+' model ('+QC_model_name+')\nDate: '+datetime_str pdf.multi_cell(180, 5, txt = Header, align = 'L') all_packages = '' for requirement in freeze(local_only=True): all_packages = all_packages+requirement+', ' pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(2) pdf.cell(190, 5, txt = 'Development of Training Losses', ln=1, align='L') pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape if os.path.exists(full_QC_model_path+'Quality Control/lossCurvePlots.png'): pdf.image(full_QC_model_path+'Quality Control/lossCurvePlots.png', x = 11, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/13)) else: pdf.set_font('') pdf.set_font('Arial', size=10) pdf.multi_cell(190, 5, txt='If you would like to see the evolution of the loss function during training please play the first cell of the QC section in the notebook.', align='L') pdf.ln(2) pdf.set_font('') pdf.set_font('Arial', size = 10, style = 'B') pdf.ln(3) pdf.cell(80, 5, txt = 'Example Quality Control Visualisation', ln=1) pdf.ln(1) exp_size = io.imread(full_QC_model_path+'Quality Control/QC_example_data.png').shape pdf.image(full_QC_model_path+'Quality Control/QC_example_data.png', x = 16, y = None, w = round(exp_size[1]/10), h = round(exp_size[0]/10)) pdf.ln(1) pdf.set_font('') pdf.set_font('Arial', size = 11, style = 'B') pdf.ln(1) pdf.cell(180, 5, txt = 'Quality Control Metrics', align='L', ln=1) pdf.set_font('') pdf.set_font_size(10.) pdf.ln(1) html = """ <body> <font size="7" face="Courier New" > <table width=94% style="margin-left:0px;">""" with open(full_QC_model_path+'Quality Control/QC_metrics_'+QC_model_name+'.csv', 'r') as csvfile: metrics = csv.reader(csvfile) header = next(metrics) image = header[0] mSSIM_PvsGT = header[1] mSSIM_SvsGT = header[2] NRMSE_PvsGT = header[3] NRMSE_SvsGT = header[4] PSNR_PvsGT = header[5] PSNR_SvsGT = header[6] header = """ <tr> <th width = 10% align="left">{0}</th> <th width = 15% align="left">{1}</th> <th width = 15% align="center">{2}</th> <th width = 15% align="left">{3}</th> <th width = 15% align="center">{4}</th> <th width = 15% align="left">{5}</th> <th width = 15% align="center">{6}</th> </tr>""".format(image,mSSIM_PvsGT,mSSIM_SvsGT,NRMSE_PvsGT,NRMSE_SvsGT,PSNR_PvsGT,PSNR_SvsGT) html = html+header for row in metrics: image = row[0] mSSIM_PvsGT = row[1] mSSIM_SvsGT = row[2] NRMSE_PvsGT = row[3] NRMSE_SvsGT = row[4] PSNR_PvsGT = row[5] PSNR_SvsGT = row[6] cells = """ <tr> <td width = 10% align="left">{0}</td> <td width = 15% align="center">{1}</td> <td width = 15% align="center">{2}</td> <td width = 15% align="center">{3}</td> <td width = 15% align="center">{4}</td> <td width = 15% align="center">{5}</td> <td width = 15% align="center">{6}</td> </tr>""".format(image,str(round(float(mSSIM_PvsGT),3)),str(round(float(mSSIM_SvsGT),3)),str(round(float(NRMSE_PvsGT),3)),str(round(float(NRMSE_SvsGT),3)),str(round(float(PSNR_PvsGT),3)),str(round(float(PSNR_SvsGT),3))) html = html+cells html = html+"""</body></table>""" pdf.write_html(html) pdf.ln(1) pdf.set_font('') pdf.set_font_size(10.) ref_1 = 'References:\n - ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "ZeroCostDL4Mic: an open platform to simplify access and use of Deep-Learning in Microscopy." BioRxiv (2020).' pdf.multi_cell(190, 5, txt = ref_1, align='L') ref_2 = '- CARE: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.' pdf.multi_cell(190, 5, txt = ref_2, align='L') pdf.ln(3) reminder = 'To find the parameters and other information about how this model was trained, go to the training_report.pdf of this model which should be in the folder of the same name.' pdf.set_font('Arial', size = 11, style='B') pdf.multi_cell(190, 5, txt=reminder, align='C') pdf.output(full_QC_model_path+'Quality Control/'+QC_model_name+'_QC_report.pdf') # Exporting requirements.txt for local run !pip freeze > requirements.txt after = [str(m) for m in sys.modules] # Get minimum requirements file #Add the following lines before all imports: # import sys # before = [str(m) for m in sys.modules] #Add the following line after the imports: # after = [str(m) for m in sys.modules] from builtins import any as b_any def filter_files(file_list, filter_list): filtered_list = [] for fname in file_list: if b_any(fname.split('==')[0] in s for s in filter_list): filtered_list.append(fname) return filtered_list df = pd.read_csv('requirements.txt', delimiter = "\n") mod_list = [m.split('.')[0] for m in after if not m in before] req_list_temp = df.values.tolist() req_list = [x[0] for x in req_list_temp] # Replace with package name mod_name_list = [['sklearn', 'scikit-learn'], ['skimage', 'scikit-image']] mod_replace_list = [[x[1] for x in mod_name_list] if s in [x[0] for x in mod_name_list] else s for s in mod_list] filtered_list = filter_files(req_list, mod_replace_list) file=open('CARE_2D_requirements_simple.txt','w') for item in filtered_list: file.writelines(item + '\n') file.close() ###Output _____no_output_____ ###Markdown **3. Select your parameters and paths**--- **3.1. Setting main training parameters**--- **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 5). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 80****When choosing the patch_size, the value should be i) large enough that it will enclose many instances, ii) small enough that the resulting patches fit into the RAM.** **`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 100** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 16****`number_of_steps`:** Define the number of training steps by epoch. By default this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patch / batch_size****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** **`initial_learning_rate`:** Input the initial value to be used as learning rate. **Default value: 0.0004** ###Code #@markdown ###Path to training images: Training_source = "" #@param {type:"string"} InputFile = Training_source+"/*.tif" Training_target = "" #@param {type:"string"} OutputFile = Training_target+"/*.tif" #Define where the patch file will be saved base = "/content" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 80#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 80#@param {type:"number"} # in pixels number_of_patches = 100#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: batch_size = 16#@param {type:"number"} number_of_steps = 400#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} initial_learning_rate = 0.0004 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 16 percentage_validation = 10 initial_learning_rate = 0.0004 #Here we define the percentage to use for validation percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so print a warning if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: "+model_name+" already exists and will be deleted in the following cell !!") print(bcolors.WARNING +"To continue training "+model_name+", choose a new model_name here, and load "+model_name+" in section 3.3"+W) # Here we disable pre-trained model by default (in case the cell is not ran) Use_pretrained_model = False # Here we disable data augmentation by default (in case the cell is not ran) Use_Data_augmentation = False # The shape of the images. x = imread(InputFile) y = imread(OutputFile) print('Loaded Input images (number, width, length) =', x.shape) print('Loaded Output images (number, width, length) =', y.shape) print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) # Here we check that the input images contains the expected dimensions if len(x.shape) == 2: print("Image dimensions (y,x)",x.shape) if not len(x.shape) == 2: print(bcolors.WARNING +"Your images appear to have the wrong dimensions. Image dimension",x.shape) #Find image XY dimension Image_Y = x.shape[0] Image_X = x.shape[1] #Hyperparameters failsafes # Here we check that patch_size is smaller than the smallest xy dimension of the image if patch_size > min(Image_Y, Image_X): patch_size = min(Image_Y, Image_X) print (bcolors.WARNING + " Your chosen patch_size is bigger than the xy dimension of your image; therefore the patch_size chosen is now:",patch_size) # Here we check that patch_size is divisible by 8 if not patch_size % 8 == 0: patch_size = ((int(patch_size / 8)-1) * 8) print (bcolors.WARNING + " Your chosen patch_size is not divisible by 8; therefore the patch_size chosen is now:",patch_size) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Training target') plt.axis('off'); plt.savefig('/content/TrainingDataExample_CARE2D.png',bbox_inches='tight',pad_inches=0) ###Output _____no_output_____ ###Markdown **3.2. Data augmentation**--- Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it. **However, data augmentation is not a magic solution and may also introduce issues. Therefore, we recommend that you train your network with and without augmentation, and use the QC section to validate that it improves overall performances.** Data augmentation is performed here by [Augmentor.](https://github.com/mdbloice/Augmentor)[Augmentor](https://github.com/mdbloice/Augmentor) was described in the following article:Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259**Please also cite this original paper when publishing results obtained using this notebook with augmentation enabled.** ###Code #Data augmentation Use_Data_augmentation = False #@param {type:"boolean"} if Use_Data_augmentation: !pip install Augmentor import Augmentor #@markdown ####Choose a factor by which you want to multiply your original dataset Multiply_dataset_by = 2 #@param {type:"slider", min:1, max:30, step:1} Save_augmented_images = False #@param {type:"boolean"} Saving_path = "" #@param {type:"string"} Use_Default_Augmentation_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please choose the probability of the following image manipulations to be used to augment your dataset (1 = always used; 0 = disabled ): #@markdown ####Mirror and rotate images rotate_90_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} rotate_270_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_left_right = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_top_bottom = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image Zoom random_zoom = 0 #@param {type:"slider", min:0, max:1, step:0.1} random_zoom_magnification = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image distortion random_distortion = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Image shearing and skewing image_shear = 0 #@param {type:"slider", min:0, max:1, step:0.1} max_image_shear = 1 #@param {type:"slider", min:1, max:25, step:1} skew_image = 0 #@param {type:"slider", min:0, max:1, step:0.1} skew_image_magnitude = 0 #@param {type:"slider", min:0, max:1, step:0.1} if Use_Default_Augmentation_Parameters: rotate_90_degrees = 0.5 rotate_270_degrees = 0.5 flip_left_right = 0.5 flip_top_bottom = 0.5 if not Multiply_dataset_by >5: random_zoom = 0 random_zoom_magnification = 0.9 random_distortion = 0 image_shear = 0 max_image_shear = 10 skew_image = 0 skew_image_magnitude = 0 if Multiply_dataset_by >5: random_zoom = 0.1 random_zoom_magnification = 0.9 random_distortion = 0.5 image_shear = 0.2 max_image_shear = 5 skew_image = 0.2 skew_image_magnitude = 0.4 if Multiply_dataset_by >25: random_zoom = 0.5 random_zoom_magnification = 0.8 random_distortion = 0.5 image_shear = 0.5 max_image_shear = 20 skew_image = 0.5 skew_image_magnitude = 0.6 list_files = os.listdir(Training_source) Nb_files = len(list_files) Nb_augmented_files = (Nb_files * Multiply_dataset_by) if Use_Data_augmentation: print("Data augmentation enabled") # Here we set the path for the various folder were the augmented images will be loaded # All images are first saved into the augmented folder #Augmented_folder = "/content/Augmented_Folder" if not Save_augmented_images: Saving_path= "/content" Augmented_folder = Saving_path+"/Augmented_Folder" if os.path.exists(Augmented_folder): shutil.rmtree(Augmented_folder) os.makedirs(Augmented_folder) #Training_source_augmented = "/content/Training_source_augmented" Training_source_augmented = Saving_path+"/Training_source_augmented" if os.path.exists(Training_source_augmented): shutil.rmtree(Training_source_augmented) os.makedirs(Training_source_augmented) #Training_target_augmented = "/content/Training_target_augmented" Training_target_augmented = Saving_path+"/Training_target_augmented" if os.path.exists(Training_target_augmented): shutil.rmtree(Training_target_augmented) os.makedirs(Training_target_augmented) # Here we generate the augmented images #Load the images p = Augmentor.Pipeline(Training_source, Augmented_folder) #Define the matching images p.ground_truth(Training_target) #Define the augmentation possibilities if not rotate_90_degrees == 0: p.rotate90(probability=rotate_90_degrees) if not rotate_270_degrees == 0: p.rotate270(probability=rotate_270_degrees) if not flip_left_right == 0: p.flip_left_right(probability=flip_left_right) if not flip_top_bottom == 0: p.flip_top_bottom(probability=flip_top_bottom) if not random_zoom == 0: p.zoom_random(probability=random_zoom, percentage_area=random_zoom_magnification) if not random_distortion == 0: p.random_distortion(probability=random_distortion, grid_width=4, grid_height=4, magnitude=8) if not image_shear == 0: p.shear(probability=image_shear,max_shear_left=20,max_shear_right=20) if not skew_image == 0: p.skew(probability=skew_image,magnitude=skew_image_magnitude) p.sample(int(Nb_augmented_files)) print(int(Nb_augmented_files),"matching images generated") # Here we sort through the images and move them back to augmented trainning source and targets folders augmented_files = os.listdir(Augmented_folder) for f in augmented_files: if (f.startswith("_groundtruth_(1)_")): shortname_noprefix = f[17:] shutil.copyfile(Augmented_folder+"/"+f, Training_target_augmented+"/"+shortname_noprefix) if not (f.startswith("_groundtruth_(1)_")): shutil.copyfile(Augmented_folder+"/"+f, Training_source_augmented+"/"+f) for filename in os.listdir(Training_source_augmented): os.chdir(Training_source_augmented) os.rename(filename, filename.replace('_original', '')) #Here we clean up the extra files shutil.rmtree(Augmented_folder) if not Use_Data_augmentation: print(bcolors.WARNING+"Data augmentation disabled") ###Output _____no_output_____ ###Markdown **3.3. Using weights from a pre-trained model as initial weights**--- Here, you can set the the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a CARE 2D model**. This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**. In order to continue training from the point where the pre-trained model left off, it is adviseable to also **load the learning rate** that was used when the training ended. This is automatically saved for models trained with ZeroCostDL4Mic and will be loaded here. If no learning rate can be found in the model folder provided, the default learning rate will be used. ###Code # @markdown ##Loading weights from a pre-trained network Use_pretrained_model = False #@param {type:"boolean"} pretrained_model_choice = "Model_from_file" #@param ["Model_from_file"] Weights_choice = "best" #@param ["last", "best"] #@markdown ###If you chose "Model_from_file", please provide the path to the model folder: pretrained_model_path = "" #@param {type:"string"} # --------------------- Check if we load a previously trained model ------------------------ if Use_pretrained_model: # --------------------- Load the model from the choosen path ------------------------ if pretrained_model_choice == "Model_from_file": h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Download the a model provided in the XXX ------------------------ if pretrained_model_choice == "Model_name": pretrained_model_name = "Model_name" pretrained_model_path = "/content/"+pretrained_model_name print("Downloading the 2D_Demo_Model_from_Stardist_2D_paper") if os.path.exists(pretrained_model_path): shutil.rmtree(pretrained_model_path) os.makedirs(pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Add additional pre-trained models here ------------------------ # --------------------- Check the model exist ------------------------ # If the model path chosen does not contain a pretrain model then use_pretrained_model is disabled, if not os.path.exists(h5_file_path): print(bcolors.WARNING+'WARNING: weights_'+Weights_choice+'.h5 pretrained model does not exist') Use_pretrained_model = False # If the model path contains a pretrain model, we load the training rate, if os.path.exists(h5_file_path): #Here we check if the learning rate can be loaded from the quality control folder if os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): with open(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv'),'r') as csvfile: csvRead = pd.read_csv(csvfile, sep=',') #print(csvRead) if "learning rate" in csvRead.columns: #Here we check that the learning rate column exist (compatibility with model trained un ZeroCostDL4Mic bellow 1.4) print("pretrained network learning rate found") #find the last learning rate lastLearningRate = csvRead["learning rate"].iloc[-1] #Find the learning rate corresponding to the lowest validation loss min_val_loss = csvRead[csvRead['val_loss'] == min(csvRead['val_loss'])] #print(min_val_loss) bestLearningRate = min_val_loss['learning rate'].iloc[-1] if Weights_choice == "last": print('Last learning rate: '+str(lastLearningRate)) if Weights_choice == "best": print('Learning rate of best validation loss: '+str(bestLearningRate)) if not "learning rate" in csvRead.columns: #if the column does not exist, then initial learning rate is used instead bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(bestLearningRate)+' will be used instead') #Compatibility with models trained outside ZeroCostDL4Mic but default learning rate will be used if not os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(initial_learning_rate)+' will be used instead') bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate # Display info about the pretrained model to be loaded (or not) if Use_pretrained_model: print('Weights found in:') print(h5_file_path) print('will be loaded prior to training.') else: print(bcolors.WARNING+'No pretrained network will be used.') ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # --------------------- Here we delete the model folder if it already exist ------------------------ if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: Model folder already exists and has been removed !!"+W) shutil.rmtree(model_path+'/'+model_name) # --------------------- Here we load the augmented data or the raw data ------------------------ if Use_Data_augmentation: Training_source_dir = Training_source_augmented Training_target_dir = Training_target_augmented if not Use_Data_augmentation: Training_source_dir = Training_source Training_target_dir = Training_target # --------------------- ------------------------------------------------ # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source_dir], target_dir=Training_target_dir, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size if (Use_Default_Advanced_Parameters): number_of_steps= int(X.shape[0]/batch_size)+1 # --------------------- Using pretrained model ------------------------ #Here we ensure that the learning rate set correctly when using pre-trained models if Use_pretrained_model: if Weights_choice == "last": initial_learning_rate = lastLearningRate if Weights_choice == "best": initial_learning_rate = bestLearningRate # --------------------- ---------------------- ------------------------ #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=initial_learning_rate) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) # --------------------- Using pretrained model ------------------------ # Load the pretrained weights if Use_pretrained_model: model_training.load_weights(h5_file_path) # --------------------- ---------------------- ------------------------ pdf_export(augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **4.2. Start Training**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches.Once training is complete, the trained model is automatically saved on your Google Drive, in the **model_path** folder that was selected in Section 3. It is however wise to download the folder from Google Drive as all data can be erased at the next training if using the same folder.**Of Note:** At the end of the training, your model will be automatically exported so it can be used in the CSBDeep Fiji plugin (Run your Network). You can find it in your model folder (TF_SavedModel.zip). In Fiji, Make sure to choose the right version of tensorflow. You can check at: Edit-- Options-- Tensorflow. Choose the version 1.4 (CPU or GPU depending on your system). ###Code #@markdown ##Start training start = time.time() # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") # convert the history.history dict to a pandas DataFrame: lossData = pd.DataFrame(history.history) if os.path.exists(model_path+"/"+model_name+"/Quality Control"): shutil.rmtree(model_path+"/"+model_name+"/Quality Control") os.makedirs(model_path+"/"+model_name+"/Quality Control") # The training evaluation.csv is saved (overwrites the Files if needed). lossDataCSVpath = model_path+'/'+model_name+'/Quality Control/training_evaluation.csv' with open(lossDataCSVpath, 'w') as f: writer = csv.writer(f) writer.writerow(['loss','val_loss', 'learning rate']) for i in range(len(history.history['loss'])): writer.writerow([history.history['loss'][i], history.history['val_loss'][i], history.history['lr'][i]]) # Displaying the time elapsed for training dt = time.time() - start mins, sec = divmod(dt, 60) hour, mins = divmod(mins, 60) print("Time elapsed:",hour, "hour(s)",mins,"min(s)",round(sec),"sec(s)") model_training.export_TF() print("Your model has been sucessfully exported and can now also be used in the CSBdeep Fiji plugin") pdf_export(trained = True, augmentation = Use_Data_augmentation, pretrained_model = Use_pretrained_model) ###Output _____no_output_____ ###Markdown **5. Evaluate your model**---This section allows the user to perform important quality checks on the validity and generalisability of the trained model. **We highly recommend to perform quality control on all newly trained models.** ###Code # model name and path #@markdown ###Do you want to assess the model you just trained ? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: QC_model_folder = "" #@param {type:"string"} #Here we define the loaded model name and path QC_model_name = os.path.basename(QC_model_folder) QC_model_path = os.path.dirname(QC_model_folder) if (Use_the_current_trained_model): QC_model_name = model_name QC_model_path = model_path full_QC_model_path = QC_model_path+'/'+QC_model_name+'/' if os.path.exists(full_QC_model_path): print("The "+QC_model_name+" network will be evaluated") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') loss_displayed = False ###Output _____no_output_____ ###Markdown **5.1. Inspection of the loss function**---First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.**Note: Plots of the losses will be shown in a linear and in a log scale. This can help visualise changes in the losses at different magnitudes. However, note that if the losses are negative the plot on the log scale will be empty. This is not an error.** ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number loss_displayed = True lossDataFromCSV = [] vallossDataFromCSV = [] with open(QC_model_path+'/'+QC_model_name+'/Quality Control/training_evaluation.csv','r') as csvfile: csvRead = csv.reader(csvfile, delimiter=',') next(csvRead) for row in csvRead: lossDataFromCSV.append(float(row[0])) vallossDataFromCSV.append(float(row[1])) epochNumber = range(len(lossDataFromCSV)) plt.figure(figsize=(15,10)) plt.subplot(2,1,1) plt.plot(epochNumber,lossDataFromCSV, label='Training loss') plt.plot(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (linear scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.subplot(2,1,2) plt.semilogy(epochNumber,lossDataFromCSV, label='Training loss') plt.semilogy(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (log scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.savefig(QC_model_path+'/'+QC_model_name+'/Quality Control/lossCurvePlots.png',bbox_inches='tight',pad_inches=0) plt.show() ###Output _____no_output_____ ###Markdown **5.2. Error mapping and quality metrics estimation**---This section will display SSIM maps and RSE maps as well as calculating total SSIM, NRMSE and PSNR metrics for all the images provided in the "Source_QC_folder" and "Target_QC_folder" !**1. The SSIM (structural similarity) map** The SSIM metric is used to evaluate whether two images contain the same structures. It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed by calculating the SSIM metric in each pixel by considering the surrounding structural similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels and with Gaussian weighting of 1.5 pixel standard deviation, see our Wiki for more info). **mSSIM** is the SSIM value calculated across the entire window of both images.**The output below shows the SSIM maps with the mSSIM****2. The RSE (Root Squared Error) map** This is a display of the root of the squared difference between the normalized predicted and target or the source and the target. In this case, a smaller RSE is better. A perfect agreement between target and prediction will lead to an RSE map showing zeros everywhere (dark).**NRMSE (normalised root mean squared error)** gives the average difference between all pixels in the images compared to each other. Good agreement yields low NRMSE scores.**PSNR (Peak signal-to-noise ratio)** is a metric that gives the difference between the ground truth and prediction (or source input) in decibels, using the peak pixel values of the prediction and the MSE between the images. The higher the score the better the agreement.**The output below shows the RSE maps with the NRMSE and PSNR values.** ###Code #@markdown ##Choose the folders that contain your Quality Control dataset Source_QC_folder = "" #@param{type:"string"} Target_QC_folder = "" #@param{type:"string"} # Create a quality control/Prediction Folder if os.path.exists(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction"): shutil.rmtree(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") os.makedirs(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") # Activate the pretrained model. model_training = CARE(config=None, name=QC_model_name, basedir=QC_model_path) # List Tif images in Source_QC_folder Source_QC_folder_tif = Source_QC_folder+"/*.tif" Z = sorted(glob(Source_QC_folder_tif)) Z = list(map(imread,Z)) print('Number of test dataset found in the folder: '+str(len(Z))) # Perform prediction on all datasets in the Source_QC folder for filename in os.listdir(Source_QC_folder): img = imread(os.path.join(Source_QC_folder, filename)) predicted = model_training.predict(img, axes='YX') os.chdir(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") imsave(filename, predicted) def ssim(img1, img2): return structural_similarity(img1,img2,data_range=1.,full=True, gaussian_weights=True, use_sample_covariance=False, sigma=1.5) def normalize(x, pmin=3, pmax=99.8, axis=None, clip=False, eps=1e-20, dtype=np.float32): """This function is adapted from Martin Weigert""" """Percentile-based image normalization.""" mi = np.percentile(x,pmin,axis=axis,keepdims=True) ma = np.percentile(x,pmax,axis=axis,keepdims=True) return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype) def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):#dtype=np.float32 """This function is adapted from Martin Weigert""" if dtype is not None: x = x.astype(dtype,copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) eps = dtype(eps) try: import numexpr x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") except ImportError: x = (x - mi) / ( ma - mi + eps ) if clip: x = np.clip(x,0,1) return x def norm_minmse(gt, x, normalize_gt=True): """This function is adapted from Martin Weigert""" """ normalizes and affinely scales an image pair such that the MSE is minimized Parameters ---------- gt: ndarray the ground truth image x: ndarray the image that will be affinely scaled normalize_gt: bool set to True of gt image should be normalized (default) Returns ------- gt_scaled, x_scaled """ if normalize_gt: gt = normalize(gt, 0.1, 99.9, clip=False).astype(np.float32, copy = False) x = x.astype(np.float32, copy=False) - np.mean(x) #x = x - np.mean(x) gt = gt.astype(np.float32, copy=False) - np.mean(gt) #gt = gt - np.mean(gt) scale = np.cov(x.flatten(), gt.flatten())[0, 1] / np.var(x.flatten()) return gt, scale * x # Open and create the csv file that will contain all the QC metrics with open(QC_model_path+"/"+QC_model_name+"/Quality Control/QC_metrics_"+QC_model_name+".csv", "w", newline='') as file: writer = csv.writer(file) # Write the header in the csv file writer.writerow(["image #","Prediction v. GT mSSIM","Input v. GT mSSIM", "Prediction v. GT NRMSE", "Input v. GT NRMSE", "Prediction v. GT PSNR", "Input v. GT PSNR"]) # Let's loop through the provided dataset in the QC folders for i in os.listdir(Source_QC_folder): if not os.path.isdir(os.path.join(Source_QC_folder,i)): print('Running QC on: '+i) # -------------------------------- Target test data (Ground truth) -------------------------------- test_GT = io.imread(os.path.join(Target_QC_folder, i)) # -------------------------------- Source test data -------------------------------- test_source = io.imread(os.path.join(Source_QC_folder,i)) # Normalize the images wrt each other by minimizing the MSE between GT and Source image test_GT_norm,test_source_norm = norm_minmse(test_GT, test_source, normalize_gt=True) # -------------------------------- Prediction -------------------------------- test_prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction",i)) # Normalize the images wrt each other by minimizing the MSE between GT and prediction test_GT_norm,test_prediction_norm = norm_minmse(test_GT, test_prediction, normalize_gt=True) # -------------------------------- Calculate the metric maps and save them -------------------------------- # Calculate the SSIM maps index_SSIM_GTvsPrediction, img_SSIM_GTvsPrediction = ssim(test_GT_norm, test_prediction_norm) index_SSIM_GTvsSource, img_SSIM_GTvsSource = ssim(test_GT_norm, test_source_norm) #Save ssim_maps img_SSIM_GTvsPrediction_32bit = np.float32(img_SSIM_GTvsPrediction) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsPrediction_'+i,img_SSIM_GTvsPrediction_32bit) img_SSIM_GTvsSource_32bit = np.float32(img_SSIM_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsSource_'+i,img_SSIM_GTvsSource_32bit) # Calculate the Root Squared Error (RSE) maps img_RSE_GTvsPrediction = np.sqrt(np.square(test_GT_norm - test_prediction_norm)) img_RSE_GTvsSource = np.sqrt(np.square(test_GT_norm - test_source_norm)) # Save SE maps img_RSE_GTvsPrediction_32bit = np.float32(img_RSE_GTvsPrediction) img_RSE_GTvsSource_32bit = np.float32(img_RSE_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsPrediction_'+i,img_RSE_GTvsPrediction_32bit) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsSource_'+i,img_RSE_GTvsSource_32bit) # -------------------------------- Calculate the RSE metrics and save them -------------------------------- # Normalised Root Mean Squared Error (here it's valid to take the mean of the image) NRMSE_GTvsPrediction = np.sqrt(np.mean(img_RSE_GTvsPrediction)) NRMSE_GTvsSource = np.sqrt(np.mean(img_RSE_GTvsSource)) # We can also measure the peak signal to noise ratio between the images PSNR_GTvsPrediction = psnr(test_GT_norm,test_prediction_norm,data_range=1.0) PSNR_GTvsSource = psnr(test_GT_norm,test_source_norm,data_range=1.0) writer.writerow([i,str(index_SSIM_GTvsPrediction),str(index_SSIM_GTvsSource),str(NRMSE_GTvsPrediction),str(NRMSE_GTvsSource),str(PSNR_GTvsPrediction),str(PSNR_GTvsSource)]) # All data is now processed saved Test_FileList = os.listdir(Source_QC_folder) # this assumes, as it should, that both source and target are named the same plt.figure(figsize=(20,20)) # Currently only displays the last computed set, from memory # Target (Ground-truth) plt.subplot(3,3,1) plt.axis('off') img_GT = io.imread(os.path.join(Target_QC_folder, Test_FileList[-1])) plt.imshow(img_GT, norm=simple_norm(img_GT, percent = 99)) plt.title('Target',fontsize=15) # Source plt.subplot(3,3,2) plt.axis('off') img_Source = io.imread(os.path.join(Source_QC_folder, Test_FileList[-1])) plt.imshow(img_Source, norm=simple_norm(img_Source, percent = 99)) plt.title('Source',fontsize=15) #Prediction plt.subplot(3,3,3) plt.axis('off') img_Prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction/", Test_FileList[-1])) plt.imshow(img_Prediction, norm=simple_norm(img_Prediction, percent = 99)) plt.title('Prediction',fontsize=15) #Setting up colours cmap = plt.cm.CMRmap #SSIM between GT and Source plt.subplot(3,3,5) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsSource = plt.imshow(img_SSIM_GTvsSource, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imSSIM_GTvsSource,fraction=0.046, pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsSource,3)),fontsize=14) plt.ylabel('SSIM maps',fontsize=20, rotation=0, labelpad=75) #SSIM between GT and Prediction plt.subplot(3,3,6) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsPrediction = plt.imshow(img_SSIM_GTvsPrediction, cmap = cmap, vmin=0,vmax=1) plt.colorbar(imSSIM_GTvsPrediction,fraction=0.046, pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsPrediction,3)),fontsize=14) #Root Squared Error between GT and Source plt.subplot(3,3,8) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsSource = plt.imshow(img_RSE_GTvsSource, cmap = cmap, vmin=0, vmax = 1) plt.colorbar(imRSE_GTvsSource,fraction=0.046,pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsSource,3))+', PSNR: '+str(round(PSNR_GTvsSource,3)),fontsize=14) #plt.title('Target vs. Source PSNR: '+str(round(PSNR_GTvsSource,3))) plt.ylabel('RSE maps',fontsize=20, rotation=0, labelpad=75) #Root Squared Error between GT and Prediction plt.subplot(3,3,9) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsPrediction = plt.imshow(img_RSE_GTvsPrediction, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imRSE_GTvsPrediction,fraction=0.046,pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsPrediction,3))+', PSNR: '+str(round(PSNR_GTvsPrediction,3)),fontsize=14) plt.savefig(full_QC_model_path+'Quality Control/QC_example_data.png',bbox_inches='tight',pad_inches=0) qc_pdf_export() ###Output _____no_output_____ ###Markdown **6. Using the trained model**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **6.1. Generate prediction(s) from unseen dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: Prediction_model_folder = "" #@param {type:"string"} #Here we find the loaded model name and parent path Prediction_model_name = os.path.basename(Prediction_model_folder) Prediction_model_path = os.path.dirname(Prediction_model_folder) if (Use_the_current_trained_model): print("Using current trained network") Prediction_model_name = model_name Prediction_model_path = model_path full_Prediction_model_path = os.path.join(Prediction_model_path, Prediction_model_name) if os.path.exists(full_Prediction_model_path): print("The "+Prediction_model_name+" network will be used.") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') #Activate the pretrained model. model_training = CARE(config=None, name=Prediction_model_name, basedir=Prediction_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Data_folder): img = imread(os.path.join(Data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **6.2. Inspect the predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Data_folder)) x = imread(Data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____ ###Markdown **CARE: Content-aware image restoration (2D)**---CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by [Weigert *et al.* in Nature Methods](https://www.nature.com/articles/s41592-018-0216-7). The CARE network uses a U-Net network architecture and allows image restoration and resolution improvement in 2D and 3D images, in a supervised manner, using noisy images as input and low-noise images as targets for training. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. **This particular notebook enables restoration of 2D dataset. If you are interested in restoring 3D dataset, you should use the CARE 3D notebook instead.**---*Disclaimer*:This notebook is part of the *Zero-Cost Deep-Learning to Enhance Microscopy* project (https://github.com/HenriquesLab/DeepLearning_Collab/wiki). Jointly developed by the Jacquemet (link to https://cellmig.org/) and Henriques (https://henriqueslab.github.io/) laboratories.This notebook is based on the following paper: **Content-aware image restoration: pushing the limits of fluorescence microscopy**, by Weigert *et al.* published in Nature Methods in 2018 (https://www.nature.com/articles/s41592-018-0216-7)And source code found in: https://github.com/csbdeep/csbdeepFor a more in-depth description of the features of the network,please refer to [this guide](http://csbdeep.bioimagecomputing.com/doc/) provided by the original authors of the work.We provide a dataset for the training of this notebook as a way to test its functionalities but the training and test data of the restoration experiments is also available from the authors of the original paper [here](https://publications.mpi-cbg.de/publications-sites/7207/).**Please also cite this original paper when using or developing this notebook.** **How to use this notebook?**---Video describing how to use our notebooks are available on youtube: - [**Video 1**](https://www.youtube.com/watch?v=GzD2gamVNHI&feature=youtu.be): Full run through of the workflow to obtain the notebooks and the provided test datasets as well as a common use of the notebook - [**Video 2**](https://www.youtube.com/watch?v=PUuQfP5SsqM&feature=youtu.be): Detailed description of the different sections of the notebook---**Structure of a notebook**The notebook contains two types of cell: **Text cells** provide information and can be modified by douple-clicking the cell. You are currently reading the text cell. You can create a new text by clicking `+ Text`.**Code cells** contain code and the code can be modfied by selecting the cell. To execute the cell, move your cursor on the `[ ]`-mark on the left side of the cell (play button appears). Click to execute the cell. After execution is done the animation of play button stops. You can create a new coding cell by clicking `+ Code`.---**Table of contents, Code snippets** and **Files**On the top left side of the notebook you find three tabs which contain from top to bottom:*Table of contents* = contains structure of the notebook. Click the content to move quickly between sections.*Code snippets* = contain examples how to code certain tasks. You can ignore this when using this notebook.*Files* = contain all available files. After mounting your google drive (see section 1.) you will find your files and folders here. **Remember that all uploaded files are purged after changing the runtime.** All files saved in Google Drive will remain. You do not need to use the Mount Drive-button; your Google Drive is connected in section 1.2.**Note:** The "sample data" in "Files" contains default files. Do not upload anything in here!---**Making changes to the notebook****You can make a copy** of the notebook and save it to your Google Drive. To do this click file -> save a copy in drive.To **edit a cell**, double click on the text. This will show you either the source code (in code cells) or the source text (in text cells).You can use the ``-mark in code cells to comment out parts of the code. This allows you to keep the original code piece in the cell as a comment. **0. Before getting started**--- For CARE to train, **it needs to have access to a paired training dataset**. This means that the same image needs to be acquired in the two conditions (for instance, low signal-to-noise ratio and high signal-to-noise ratio) and provided with indication of correspondence. Therefore, the data structure is important. It is necessary that all the input data are in the same folder and that all the output data is in a separate folder. The provided training dataset is already split in two folders called "Training - Low SNR images" (Training_source) and "Training - high SNR images" (Training_target). Information on how to generate a training dataset is available in our Wiki page: https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki**We strongly recommend that you generate extra paired images. These images can be used to assess the quality of your trained model (Quality control dataset)**. The quality control assessment can be done directly in this notebook. **Additionally, the corresponding input and output files need to have the same name**. Please note that you currently can **only use .tif files!**Here's a common data structure that can work:* Experiment A - **Training dataset** - Low SNR images (Training_source) - img_1.tif, img_2.tif, ... - High SNR images (Training_target) - img_1.tif, img_2.tif, ... - **Quality control dataset** - Low SNR images - img_1.tif, img_2.tif - High SNR images - img_1.tif, img_2.tif - **Data to be predicted** - **Results**---**Important note**- If you wish to **Train a network from scratch** using your own dataset (and we encourage everyone to do that), you will need to run **sections 1 - 4**, then use **section 5** to assess the quality of your model and **section 6** to run predictions using the model that you trained.- If you wish to **Evaluate your model** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 5** to assess the quality of your model.- If you only wish to **run predictions** using a model previously generated and saved on your Google Drive, you will only need to run **sections 1 and 2** to set up the notebook, then use **section 6** to run the predictions on the desired model.--- **1. Initialise the Colab session**--- **1.1. Check for GPU access**---By default, the session should be using Python 3 and GPU acceleration, but it is possible to ensure that these are set properly by doing the following:Go to **Runtime -> Change the Runtime type****Runtime type: Python 3** *(Python 3 is programming language in which this program is written)***Accelator: GPU** *(Graphics processing unit)* ###Code #@markdown ##Run this cell to check if you have GPU access %tensorflow_version 1.x import tensorflow as tf if tf.test.gpu_device_name()=='': print('You do not have GPU access.') print('Did you change your runtime ?') print('If the runtime setting is correct then Google did not allocate a GPU for your session') print('Expect slow performance. To access GPU try reconnecting later') else: print('You have GPU access') !nvidia-smi ###Output _____no_output_____ ###Markdown **1.2. Mount your Google Drive**--- To use this notebook on the data present in your Google Drive, you need to mount your Google Drive to this notebook. Play the cell below to mount your Google Drive and follow the link. In the new browser window, select your drive and select 'Allow', copy the code, paste into the cell and press enter. This will give Colab access to the data on the drive. Once this is done, your data are available in the **Files** tab on the top left of notebook. ###Code #@markdown ##Run this cell to connect your Google Drive to Colab #@markdown * Click on the URL. #@markdown * Sign in your Google Account. #@markdown * Copy the authorization code. #@markdown * Enter the authorization code. #@markdown * Click on "Files" site on the right. Refresh the site. Your Google Drive folder should now be available here as "drive". #mounts user's Google Drive to Google Colab. from google.colab import drive drive.mount('/content/gdrive') ###Output _____no_output_____ ###Markdown **2. Install CARE and dependencies**--- ###Code #@markdown ##Install CARE and dependencies #Libraries contains information of certain topics. #For example the tifffile library contains information on how to handle tif-files. #Here, we install libraries which are not already included in Colab. !pip install tifffile # contains tools to operate tiff-files !pip install csbdeep # contains tools for restoration of fluorescence microcopy images (Content-aware Image Restoration, CARE). It uses Keras and Tensorflow. !pip install wget !pip install memory_profiler %load_ext memory_profiler #Here, we import and enable Tensorflow 1 instead of Tensorflow 2. %tensorflow_version 1.x import tensorflow import tensorflow as tf print(tensorflow.__version__) print("Tensorflow enabled.") # ------- Variable specific to CARE ------- from csbdeep.utils import download_and_extract_zip_file, plot_some, axes_dict, plot_history, Path, download_and_extract_zip_file from csbdeep.data import RawData, create_patches from csbdeep.io import load_training_data, save_tiff_imagej_compatible from csbdeep.models import Config, CARE from csbdeep import data from __future__ import print_function, unicode_literals, absolute_import, division %matplotlib inline %config InlineBackend.figure_format = 'retina' # ------- Common variable to all ZeroCostDL4Mic notebooks ------- import numpy as np from matplotlib import pyplot as plt import urllib import os, random import shutil import zipfile from tifffile import imread, imsave import time import sys import wget from pathlib import Path import pandas as pd import csv from glob import glob from scipy import signal from scipy import ndimage from skimage import io from sklearn.linear_model import LinearRegression from skimage.util import img_as_uint import matplotlib as mpl from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as psnr from astropy.visualization import simple_norm from skimage import img_as_float32 from skimage.util import img_as_ubyte from tqdm import tqdm # Colors for the warning messages class bcolors: WARNING = '\033[31m' #Disable some of the tensorflow warnings import warnings warnings.filterwarnings("ignore") print("Libraries installed") ###Output _____no_output_____ ###Markdown **3. Select your parameters and paths**--- **3.1. Setting main training parameters**--- **Paths for training, predictions and results****`Training_source:`, `Training_target`:** These are the paths to your folders containing the Training_source (Low SNR images) and Training_target (High SNR images or ground truth) training data respecively. To find the paths of the folders containing the respective datasets, go to your Files on the left of the notebook, navigate to the folder containing your files and copy the path by right-clicking on the folder, **Copy path** and pasting it into the right box below.**`model_name`:** Use only my_model -style, not my-model (Use "_" not "-"). Do not use spaces in the name. Avoid using the name of an existing model (saved in the same folder) as it will be overwritten.**`model_path`**: Enter the path where your model will be saved once trained (for instance your result folder).**Training Parameters****`number_of_epochs`:**Input how many epochs (rounds) the network will be trained. Preliminary results can already be observed after a few (10-30) epochs, but a full training should run for 100-300 epochs. Evaluate the performance after training (see 5). **Default value: 50****`patch_size`:** CARE divides the image into patches for training. Input the size of the patches (length of a side). The value should be smaller than the dimensions of the image and divisible by 8. **Default value: 80****When choosing the patch_size, the value should be i) large enough that it will enclose many instances, ii) small enough that the resulting patches fit into the RAM.** **`number_of_patches`:** Input the number of the patches per image. Increasing the number of patches allows for larger training datasets. **Default value: 100** **Decreasing the patch size or increasing the number of patches may improve the training but may also increase the training time.****Advanced Parameters - experienced users only****`batch_size:`** This parameter defines the number of patches seen in each training step. Reducing or increasing the **batch size** may slow or speed up your training, respectively, and can influence network performance. **Default value: 16****`number_of_steps`:** Define the number of training steps by epoch. By default this parameter is calculated so that each patch is seen at least once per epoch. **Default value: Number of patch / batch_size****`percentage_validation`:** Input the percentage of your training dataset you want to use to validate the network during training. **Default value: 10** **`initial_learning_rate`:** Input the initial value to be used as learning rate. **Default value: 0.0004** ###Code #@markdown ###Path to training images: Training_source = "" #@param {type:"string"} InputFile = Training_source+"/*.tif" Training_target = "" #@param {type:"string"} OutputFile = Training_target+"/*.tif" #Define where the patch file will be saved base = "/content" # model name and path #@markdown ###Name of the model and path to model folder: model_name = "" #@param {type:"string"} model_path = "" #@param {type:"string"} # other parameters for training. #@markdown ###Training Parameters #@markdown Number of epochs: number_of_epochs = 50#@param {type:"number"} #@markdown Patch size (pixels) and number patch_size = 80#@param {type:"number"} # in pixels number_of_patches = 100#@param {type:"number"} #@markdown ###Advanced Parameters Use_Default_Advanced_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please input: batch_size = 16#@param {type:"number"} number_of_steps = 400#@param {type:"number"} percentage_validation = 10 #@param {type:"number"} initial_learning_rate = 0.0004 #@param {type:"number"} if (Use_Default_Advanced_Parameters): print("Default advanced parameters enabled") batch_size = 16 percentage_validation = 10 initial_learning_rate = 0.0004 #Here we define the percentage to use for validation percentage = percentage_validation/100 #here we check that no model with the same name already exist, if so delete if os.path.exists(model_path+'/'+model_name): print(bcolors.WARNING +"!! WARNING: Folder already exists and has been removed !!") shutil.rmtree(model_path+'/'+model_name) # Here we disable pre-trained model by default (in case the cell is not ran) Use_pretrained_model = False # Here we disable data augmentation by default (in case the cell is not ran) Use_Data_augmentation = False # The shape of the images. x = imread(InputFile) y = imread(OutputFile) print('Loaded Input images (number, width, length) =', x.shape) print('Loaded Output images (number, width, length) =', y.shape) print("Parameters initiated.") # This will display a randomly chosen dataset input and output random_choice = random.choice(os.listdir(Training_source)) x = imread(Training_source+"/"+random_choice) # Here we check that the input images contains the expected dimensions if len(x.shape) == 2: print("Image dimensions (y,x)",x.shape) if not len(x.shape) == 2: print(bcolors.WARNING +"Your images appear to have the wrong dimensions. Image dimension",x.shape) #Find image XY dimension Image_Y = x.shape[0] Image_X = x.shape[1] #Hyperparameters failsafes # Here we check that patch_size is smaller than the smallest xy dimension of the image if patch_size > min(Image_Y, Image_X): patch_size = min(Image_Y, Image_X) print (bcolors.WARNING + " Your chosen patch_size is bigger than the xy dimension of your image; therefore the patch_size chosen is now:",patch_size) # Here we check that patch_size is divisible by 8 if not patch_size % 8 == 0: patch_size = ((int(patch_size / 8)-1) * 8) print (bcolors.WARNING + " Your chosen patch_size is not divisible by 8; therefore the patch_size chosen is now:",patch_size) os.chdir(Training_target) y = imread(Training_target+"/"+random_choice) f=plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Training source') plt.axis('off'); plt.subplot(1,2,2) plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Training target') plt.axis('off'); ###Output _____no_output_____ ###Markdown **3.2. Data augmentation**--- Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation is not necessary for training and if your training dataset is large you should disable it. **However, data augmentation is not a magic solution and may also introduce issues. Therefore, we recommend that you train your network with and without augmentation, and use the QC section to validate that it improves overall performances.** Data augmentation is performed here by [Augmentor.](https://github.com/mdbloice/Augmentor)[Augmentor](https://github.com/mdbloice/Augmentor) was described in the following article:Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259**Please also cite this original paper when publishing results obtained using this notebook with augmentation enabled.** ###Code #Data augmentation Use_Data_augmentation = False #@param {type:"boolean"} if Use_Data_augmentation: !pip install Augmentor import Augmentor #@markdown ####Choose a factor by which you want to multiply your original dataset Multiply_dataset_by = 1 #@param {type:"slider", min:1, max:30, step:1} Save_augmented_images = False #@param {type:"boolean"} Saving_path = "" #@param {type:"string"} Use_Default_Augmentation_Parameters = True #@param {type:"boolean"} #@markdown ###If not, please choose the probability of the following image manipulations to be used to augment your dataset (1 = always used; 0 = disabled ): #@markdown ####Mirror and rotate images rotate_90_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} rotate_270_degrees = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_left_right = 0 #@param {type:"slider", min:0, max:1, step:0.1} flip_top_bottom = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image Zoom random_zoom = 0 #@param {type:"slider", min:0, max:1, step:0.1} random_zoom_magnification = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Random image distortion random_distortion = 0 #@param {type:"slider", min:0, max:1, step:0.1} #@markdown ####Image shearing and skewing image_shear = 0 #@param {type:"slider", min:0, max:1, step:0.1} max_image_shear = 1 #@param {type:"slider", min:1, max:25, step:1} skew_image = 0 #@param {type:"slider", min:0, max:1, step:0.1} skew_image_magnitude = 0 #@param {type:"slider", min:0, max:1, step:0.1} if Use_Default_Augmentation_Parameters: rotate_90_degrees = 0.5 rotate_270_degrees = 0.5 flip_left_right = 0.5 flip_top_bottom = 0.5 if not Multiply_dataset_by >5: random_zoom = 0 random_zoom_magnification = 0.9 random_distortion = 0 image_shear = 0 max_image_shear = 10 skew_image = 0 skew_image_magnitude = 0 if Multiply_dataset_by >5: random_zoom = 0.1 random_zoom_magnification = 0.9 random_distortion = 0.5 image_shear = 0.2 max_image_shear = 5 skew_image = 0.2 skew_image_magnitude = 0.4 if Multiply_dataset_by >25: random_zoom = 0.5 random_zoom_magnification = 0.8 random_distortion = 0.5 image_shear = 0.5 max_image_shear = 20 skew_image = 0.5 skew_image_magnitude = 0.6 list_files = os.listdir(Training_source) Nb_files = len(list_files) Nb_augmented_files = (Nb_files * Multiply_dataset_by) if Use_Data_augmentation: print("Data augmentation enabled") # Here we set the path for the various folder were the augmented images will be loaded # All images are first saved into the augmented folder #Augmented_folder = "/content/Augmented_Folder" if not Save_augmented_images: Saving_path= "/content" Augmented_folder = Saving_path+"/Augmented_Folder" if os.path.exists(Augmented_folder): shutil.rmtree(Augmented_folder) os.makedirs(Augmented_folder) #Training_source_augmented = "/content/Training_source_augmented" Training_source_augmented = Saving_path+"/Training_source_augmented" if os.path.exists(Training_source_augmented): shutil.rmtree(Training_source_augmented) os.makedirs(Training_source_augmented) #Training_target_augmented = "/content/Training_target_augmented" Training_target_augmented = Saving_path+"/Training_target_augmented" if os.path.exists(Training_target_augmented): shutil.rmtree(Training_target_augmented) os.makedirs(Training_target_augmented) # Here we generate the augmented images #Load the images p = Augmentor.Pipeline(Training_source, Augmented_folder) #Define the matching images p.ground_truth(Training_target) #Define the augmentation possibilities if not rotate_90_degrees == 0: p.rotate90(probability=rotate_90_degrees) if not rotate_270_degrees == 0: p.rotate270(probability=rotate_270_degrees) if not flip_left_right == 0: p.flip_left_right(probability=flip_left_right) if not flip_top_bottom == 0: p.flip_top_bottom(probability=flip_top_bottom) if not random_zoom == 0: p.zoom_random(probability=random_zoom, percentage_area=random_zoom_magnification) if not random_distortion == 0: p.random_distortion(probability=random_distortion, grid_width=4, grid_height=4, magnitude=8) if not image_shear == 0: p.shear(probability=image_shear,max_shear_left=20,max_shear_right=20) if not skew_image == 0: p.skew(probability=skew_image,magnitude=skew_image_magnitude) p.sample(int(Nb_augmented_files)) print(int(Nb_augmented_files),"matching images generated") # Here we sort through the images and move them back to augmented trainning source and targets folders augmented_files = os.listdir(Augmented_folder) for f in augmented_files: if (f.startswith("_groundtruth_(1)_")): shortname_noprefix = f[17:] shutil.copyfile(Augmented_folder+"/"+f, Training_target_augmented+"/"+shortname_noprefix) if not (f.startswith("_groundtruth_(1)_")): shutil.copyfile(Augmented_folder+"/"+f, Training_source_augmented+"/"+f) for filename in os.listdir(Training_source_augmented): os.chdir(Training_source_augmented) os.rename(filename, filename.replace('_original', '')) #Here we clean up the extra files shutil.rmtree(Augmented_folder) if not Use_Data_augmentation: print(bcolors.WARNING+"Data augmentation disabled") ###Output _____no_output_____ ###Markdown **3.3. Using weights from a pre-trained model as initial weights**--- Here, you can set the the path to a pre-trained model from which the weights can be extracted and used as a starting point for this training session. **This pre-trained model needs to be a CARE 2D model**. This option allows you to perform training over multiple Colab runtimes or to do transfer learning using models trained outside of ZeroCostDL4Mic. **You do not need to run this section if you want to train a network from scratch**. In order to continue training from the point where the pre-trained model left off, it is adviseable to also **load the learning rate** that was used when the training ended. This is automatically saved for models trained with ZeroCostDL4Mic and will be loaded here. If no learning rate can be found in the model folder provided, the default learning rate will be used. ###Code # @markdown ##Loading weights from a pre-trained network Use_pretrained_model = False #@param {type:"boolean"} pretrained_model_choice = "Model_from_file" #@param ["Model_from_file"] Weights_choice = "best" #@param ["last", "best"] #@markdown ###If you chose "Model_from_file", please provide the path to the model folder: pretrained_model_path = "" #@param {type:"string"} # --------------------- Check if we load a previously trained model ------------------------ if Use_pretrained_model: # --------------------- Load the model from the choosen path ------------------------ if pretrained_model_choice == "Model_from_file": h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Download the a model provided in the XXX ------------------------ if pretrained_model_choice == "Model_name": pretrained_model_name = "Model_name" pretrained_model_path = "/content/"+pretrained_model_name print("Downloading the 2D_Demo_Model_from_Stardist_2D_paper") if os.path.exists(pretrained_model_path): shutil.rmtree(pretrained_model_path) os.makedirs(pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) wget.download("", pretrained_model_path) h5_file_path = os.path.join(pretrained_model_path, "weights_"+Weights_choice+".h5") # --------------------- Add additional pre-trained models here ------------------------ # --------------------- Check the model exist ------------------------ # If the model path chosen does not contain a pretrain model then use_pretrained_model is disabled, if not os.path.exists(h5_file_path): print(bcolors.WARNING+'WARNING: weights_'+Weights_choice+'.h5 pretrained model does not exist') Use_pretrained_model = False # If the model path contains a pretrain model, we load the training rate, if os.path.exists(h5_file_path): #Here we check if the learning rate can be loaded from the quality control folder if os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): with open(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv'),'r') as csvfile: csvRead = pd.read_csv(csvfile, sep=',') #print(csvRead) if "learning rate" in csvRead.columns: #Here we check that the learning rate column exist (compatibility with model trained un ZeroCostDL4Mic bellow 1.4) print("pretrained network learning rate found") #find the last learning rate lastLearningRate = csvRead["learning rate"].iloc[-1] #Find the learning rate corresponding to the lowest validation loss min_val_loss = csvRead[csvRead['val_loss'] == min(csvRead['val_loss'])] #print(min_val_loss) bestLearningRate = min_val_loss['learning rate'].iloc[-1] if Weights_choice == "last": print('Last learning rate: '+str(lastLearningRate)) if Weights_choice == "best": print('Learning rate of best validation loss: '+str(bestLearningRate)) if not "learning rate" in csvRead.columns: #if the column does not exist, then initial learning rate is used instead bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(bestLearningRate)+' will be used instead') #Compatibility with models trained outside ZeroCostDL4Mic but default learning rate will be used if not os.path.exists(os.path.join(pretrained_model_path, 'Quality Control', 'training_evaluation.csv')): print(bcolors.WARNING+'WARNING: The learning rate cannot be identified from the pretrained network. Default learning rate of '+str(initial_learning_rate)+' will be used instead') bestLearningRate = initial_learning_rate lastLearningRate = initial_learning_rate # Display info about the pretrained model to be loaded (or not) if Use_pretrained_model: print('Weights found in:') print(h5_file_path) print('will be loaded prior to training.') else: print(bcolors.WARNING+'No pretrained network will be used.') ###Output _____no_output_____ ###Markdown **4. Train the network**--- **4.1. Prepare the training data and model for training**---Here, we use the information from 3. to build the model and convert the training data into a suitable format for training. ###Code #@markdown ##Create the model and dataset objects # --------------------- Here we load the augmented data or the raw data ------------------------ if Use_Data_augmentation: Training_source_dir = Training_source_augmented Training_target_dir = Training_target_augmented if not Use_Data_augmentation: Training_source_dir = Training_source Training_target_dir = Training_target # --------------------- ------------------------------------------------ # This object holds the image pairs (GT and low), ensuring that CARE compares corresponding images. # This file is saved in .npz format and later called when loading the trainig data. raw_data = data.RawData.from_folder( basepath=base, source_dirs=[Training_source_dir], target_dir=Training_target_dir, axes='CYX', pattern='*.tif*') X, Y, XY_axes = data.create_patches( raw_data, patch_filter=None, patch_size=(patch_size,patch_size), n_patches_per_image=number_of_patches) print ('Creating 2D training dataset') training_path = model_path+"/rawdata" rawdata1 = training_path+".npz" np.savez(training_path,X=X, Y=Y, axes=XY_axes) # Load Training Data (X,Y), (X_val,Y_val), axes = load_training_data(rawdata1, validation_split=percentage, verbose=True) c = axes_dict(axes)['C'] n_channel_in, n_channel_out = X.shape[c], Y.shape[c] %memit #plot of training patches. plt.figure(figsize=(12,5)) plot_some(X[:5],Y[:5]) plt.suptitle('5 example training patches (top row: source, bottom row: target)'); #plot of validation patches plt.figure(figsize=(12,5)) plot_some(X_val[:5],Y_val[:5]) plt.suptitle('5 example validation patches (top row: source, bottom row: target)'); #Here we automatically define number_of_step in function of training data and batch size if (Use_Default_Advanced_Parameters): number_of_steps= int(X.shape[0]/batch_size)+1 # --------------------- Using pretrained model ------------------------ #Here we ensure that the learning rate set correctly when using pre-trained models if Use_pretrained_model: if Weights_choice == "last": initial_learning_rate = lastLearningRate if Weights_choice == "best": initial_learning_rate = bestLearningRate # --------------------- ---------------------- ------------------------ #Here we create the configuration file config = Config(axes, n_channel_in, n_channel_out, probabilistic=True, train_steps_per_epoch=number_of_steps, train_epochs=number_of_epochs, unet_kern_size=5, unet_n_depth=3, train_batch_size=batch_size, train_learning_rate=initial_learning_rate) print(config) vars(config) # Compile the CARE model for network training model_training= CARE(config, model_name, basedir=model_path) # --------------------- Using pretrained model ------------------------ # Load the pretrained weights if Use_pretrained_model: model_training.load_weights(h5_file_path) # --------------------- ---------------------- ------------------------ ###Output _____no_output_____ ###Markdown **4.2. Start Trainning**---When playing the cell below you should see updates after each epoch (round). Network training can take some time.* **CRITICAL NOTE:** Google Colab has a time limit for processing (to prevent using GPU power for datamining). Training time must be less than 12 hours! If training takes longer than 12 hours, please decrease the number of epochs or number of patches.**Of Note:** At the end of the training, your model will be automatically exported so it can be used in the CSBDeep Fiji plugin (Run your Network). You can find it in your model folder (TF_SavedModel.zip). In Fiji, Make sure to choose the right version of tensorflow. You can check at: Edit-- Options-- Tensorflow. Choose the version 1.4 (CPU or GPU depending on your system). ###Code #@markdown ##Start training start = time.time() # Start Training history = model_training.train(X,Y, validation_data=(X_val,Y_val)) print("Training, done.") # convert the history.history dict to a pandas DataFrame: lossData = pd.DataFrame(history.history) if os.path.exists(model_path+"/"+model_name+"/Quality Control"): shutil.rmtree(model_path+"/"+model_name+"/Quality Control") os.makedirs(model_path+"/"+model_name+"/Quality Control") # The training evaluation.csv is saved (overwrites the Files if needed). lossDataCSVpath = model_path+'/'+model_name+'/Quality Control/training_evaluation.csv' with open(lossDataCSVpath, 'w') as f: writer = csv.writer(f) writer.writerow(['loss','val_loss', 'learning rate']) for i in range(len(history.history['loss'])): writer.writerow([history.history['loss'][i], history.history['val_loss'][i], history.history['lr'][i]]) # Displaying the time elapsed for training dt = time.time() - start mins, sec = divmod(dt, 60) hour, mins = divmod(mins, 60) print("Time elapsed:",hour, "hour(s)",mins,"min(s)",round(sec),"sec(s)") model_training.export_TF() print("Your model has been sucessfully exported and can now also be used in the CSBdeep Fiji plugin") ###Output _____no_output_____ ###Markdown **4.3. Download your model(s) from Google Drive**---Once training is complete, the trained model is automatically saved on your Google Drive, in the **model_path** folder that was selected in Section 3. It is however wise to download the folder as all data can be erased at the next training if using the same folder. **5. Evaluate your model**---This section allows the user to perform important quality checks on the validity and generalisability of the trained model. **We highly recommend to perform quality control on all newly trained models.** ###Code # model name and path #@markdown ###Do you want to assess the model you just trained ? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: QC_model_folder = "" #@param {type:"string"} #Here we define the loaded model name and path QC_model_name = os.path.basename(QC_model_folder) QC_model_path = os.path.dirname(QC_model_folder) if (Use_the_current_trained_model): QC_model_name = model_name QC_model_path = model_path full_QC_model_path = QC_model_path+'/'+QC_model_name+'/' if os.path.exists(full_QC_model_path): print("The "+QC_model_name+" network will be evaluated") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') ###Output _____no_output_____ ###Markdown **5.1. Inspection of the loss function**---First, it is good practice to evaluate the training progress by comparing the training loss with the validation loss. The latter is a metric which shows how well the network performs on a subset of unseen data which is set aside from the training dataset. For more information on this, see for example [this review](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381354/) by Nichols *et al.***Training loss** describes an error value after each epoch for the difference between the model's prediction and its ground-truth target.**Validation loss** describes the same error value between the model's prediction on a validation image and compared to it's target.During training both values should decrease before reaching a minimal value which does not decrease further even after more training. Comparing the development of the validation loss with the training loss can give insights into the model's performance.Decreasing **Training loss** and **Validation loss** indicates that training is still necessary and increasing the `number_of_epochs` is recommended. Note that the curves can look flat towards the right side, just because of the y-axis scaling. The network has reached convergence once the curves flatten out. After this point no further training is required. If the **Validation loss** suddenly increases again an the **Training loss** simultaneously goes towards zero, it means that the network is overfitting to the training data. In other words the network is remembering the exact patterns from the training data and no longer generalizes well to unseen data. In this case the training dataset has to be increased.**Note: Plots of the losses will be shown in a linear and in a log scale. This can help visualise changes in the losses at different magnitudes. However, note that if the losses are negative the plot on the log scale will be empty. This is not an error.** ###Code #@markdown ##Play the cell to show a plot of training errors vs. epoch number lossDataFromCSV = [] vallossDataFromCSV = [] with open(QC_model_path+'/'+QC_model_name+'/Quality Control/training_evaluation.csv','r') as csvfile: csvRead = csv.reader(csvfile, delimiter=',') next(csvRead) for row in csvRead: lossDataFromCSV.append(float(row[0])) vallossDataFromCSV.append(float(row[1])) epochNumber = range(len(lossDataFromCSV)) plt.figure(figsize=(15,10)) plt.subplot(2,1,1) plt.plot(epochNumber,lossDataFromCSV, label='Training loss') plt.plot(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (linear scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.subplot(2,1,2) plt.semilogy(epochNumber,lossDataFromCSV, label='Training loss') plt.semilogy(epochNumber,vallossDataFromCSV, label='Validation loss') plt.title('Training loss and validation loss vs. epoch number (log scale)') plt.ylabel('Loss') plt.xlabel('Epoch number') plt.legend() plt.savefig(QC_model_path+'/'+QC_model_name+'/Quality Control/lossCurvePlots.png') plt.show() ###Output _____no_output_____ ###Markdown **5.2. Error mapping and quality metrics estimation**---This section will display SSIM maps and RSE maps as well as calculating total SSIM, NRMSE and PSNR metrics for all the images provided in the "Source_QC_folder" and "Target_QC_folder" !**1. The SSIM (structural similarity) map** The SSIM metric is used to evaluate whether two images contain the same structures. It is a normalized metric and an SSIM of 1 indicates a perfect similarity between two images. Therefore for SSIM, the closer to 1, the better. The SSIM maps are constructed by calculating the SSIM metric in each pixel by considering the surrounding structural similarity in the neighbourhood of that pixel (currently defined as window of 11 pixels and with Gaussian weighting of 1.5 pixel standard deviation, see our Wiki for more info). **mSSIM** is the SSIM value calculated across the entire window of both images.**The output below shows the SSIM maps with the mSSIM****2. The RSE (Root Squared Error) map** This is a display of the root of the squared difference between the normalized predicted and target or the source and the target. In this case, a smaller RSE is better. A perfect agreement between target and prediction will lead to an RSE map showing zeros everywhere (dark).**NRMSE (normalised root mean squared error)** gives the average difference between all pixels in the images compared to each other. Good agreement yields low NRMSE scores.**PSNR (Peak signal-to-noise ratio)** is a metric that gives the difference between the ground truth and prediction (or source input) in decibels, using the peak pixel values of the prediction and the MSE between the images. The higher the score the better the agreement.**The output below shows the RSE maps with the NRMSE and PSNR values.** ###Code #@markdown ##Choose the folders that contain your Quality Control dataset Source_QC_folder = "" #@param{type:"string"} Target_QC_folder = "" #@param{type:"string"} # Create a quality control/Prediction Folder if os.path.exists(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction"): shutil.rmtree(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") os.makedirs(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") # Activate the pretrained model. model_training = CARE(config=None, name=QC_model_name, basedir=QC_model_path) # List Tif images in Source_QC_folder Source_QC_folder_tif = Source_QC_folder+"/*.tif" Z = sorted(glob(Source_QC_folder_tif)) Z = list(map(imread,Z)) print('Number of test dataset found in the folder: '+str(len(Z))) # Perform prediction on all datasets in the Source_QC folder for filename in os.listdir(Source_QC_folder): img = imread(os.path.join(Source_QC_folder, filename)) predicted = model_training.predict(img, axes='YX') os.chdir(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction") imsave(filename, predicted) def ssim(img1, img2): return structural_similarity(img1,img2,data_range=1.,full=True, gaussian_weights=True, use_sample_covariance=False, sigma=1.5) def normalize(x, pmin=3, pmax=99.8, axis=None, clip=False, eps=1e-20, dtype=np.float32): """This function is adapted from Martin Weigert""" """Percentile-based image normalization.""" mi = np.percentile(x,pmin,axis=axis,keepdims=True) ma = np.percentile(x,pmax,axis=axis,keepdims=True) return normalize_mi_ma(x, mi, ma, clip=clip, eps=eps, dtype=dtype) def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32):#dtype=np.float32 """This function is adapted from Martin Weigert""" if dtype is not None: x = x.astype(dtype,copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) eps = dtype(eps) try: import numexpr x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") except ImportError: x = (x - mi) / ( ma - mi + eps ) if clip: x = np.clip(x,0,1) return x def norm_minmse(gt, x, normalize_gt=True): """This function is adapted from Martin Weigert""" """ normalizes and affinely scales an image pair such that the MSE is minimized Parameters ---------- gt: ndarray the ground truth image x: ndarray the image that will be affinely scaled normalize_gt: bool set to True of gt image should be normalized (default) Returns ------- gt_scaled, x_scaled """ if normalize_gt: gt = normalize(gt, 0.1, 99.9, clip=False).astype(np.float32, copy = False) x = x.astype(np.float32, copy=False) - np.mean(x) #x = x - np.mean(x) gt = gt.astype(np.float32, copy=False) - np.mean(gt) #gt = gt - np.mean(gt) scale = np.cov(x.flatten(), gt.flatten())[0, 1] / np.var(x.flatten()) return gt, scale * x # Open and create the csv file that will contain all the QC metrics with open(QC_model_path+"/"+QC_model_name+"/Quality Control/QC_metrics_"+QC_model_name+".csv", "w", newline='') as file: writer = csv.writer(file) # Write the header in the csv file writer.writerow(["image #","Prediction v. GT mSSIM","Input v. GT mSSIM", "Prediction v. GT NRMSE", "Input v. GT NRMSE", "Prediction v. GT PSNR", "Input v. GT PSNR"]) # Let's loop through the provided dataset in the QC folders for i in os.listdir(Source_QC_folder): if not os.path.isdir(os.path.join(Source_QC_folder,i)): print('Running QC on: '+i) # -------------------------------- Target test data (Ground truth) -------------------------------- test_GT = io.imread(os.path.join(Target_QC_folder, i)) # -------------------------------- Source test data -------------------------------- test_source = io.imread(os.path.join(Source_QC_folder,i)) # Normalize the images wrt each other by minimizing the MSE between GT and Source image test_GT_norm,test_source_norm = norm_minmse(test_GT, test_source, normalize_gt=True) # -------------------------------- Prediction -------------------------------- test_prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction",i)) # Normalize the images wrt each other by minimizing the MSE between GT and prediction test_GT_norm,test_prediction_norm = norm_minmse(test_GT, test_prediction, normalize_gt=True) # -------------------------------- Calculate the metric maps and save them -------------------------------- # Calculate the SSIM maps index_SSIM_GTvsPrediction, img_SSIM_GTvsPrediction = ssim(test_GT_norm, test_prediction_norm) index_SSIM_GTvsSource, img_SSIM_GTvsSource = ssim(test_GT_norm, test_source_norm) #Save ssim_maps img_SSIM_GTvsPrediction_32bit = np.float32(img_SSIM_GTvsPrediction) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsPrediction_'+i,img_SSIM_GTvsPrediction_32bit) img_SSIM_GTvsSource_32bit = np.float32(img_SSIM_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/SSIM_GTvsSource_'+i,img_SSIM_GTvsSource_32bit) # Calculate the Root Squared Error (RSE) maps img_RSE_GTvsPrediction = np.sqrt(np.square(test_GT_norm - test_prediction_norm)) img_RSE_GTvsSource = np.sqrt(np.square(test_GT_norm - test_source_norm)) # Save SE maps img_RSE_GTvsPrediction_32bit = np.float32(img_RSE_GTvsPrediction) img_RSE_GTvsSource_32bit = np.float32(img_RSE_GTvsSource) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsPrediction_'+i,img_RSE_GTvsPrediction_32bit) io.imsave(QC_model_path+'/'+QC_model_name+'/Quality Control/RSE_GTvsSource_'+i,img_RSE_GTvsSource_32bit) # -------------------------------- Calculate the RSE metrics and save them -------------------------------- # Normalised Root Mean Squared Error (here it's valid to take the mean of the image) NRMSE_GTvsPrediction = np.sqrt(np.mean(img_RSE_GTvsPrediction)) NRMSE_GTvsSource = np.sqrt(np.mean(img_RSE_GTvsSource)) # We can also measure the peak signal to noise ratio between the images PSNR_GTvsPrediction = psnr(test_GT_norm,test_prediction_norm,data_range=1.0) PSNR_GTvsSource = psnr(test_GT_norm,test_source_norm,data_range=1.0) writer.writerow([i,str(index_SSIM_GTvsPrediction),str(index_SSIM_GTvsSource),str(NRMSE_GTvsPrediction),str(NRMSE_GTvsSource),str(PSNR_GTvsPrediction),str(PSNR_GTvsSource)]) # All data is now processed saved Test_FileList = os.listdir(Source_QC_folder) # this assumes, as it should, that both source and target are named the same plt.figure(figsize=(20,20)) # Currently only displays the last computed set, from memory # Target (Ground-truth) plt.subplot(3,3,1) plt.axis('off') img_GT = io.imread(os.path.join(Target_QC_folder, Test_FileList[-1])) plt.imshow(img_GT, norm=simple_norm(img_GT, percent = 99)) plt.title('Target',fontsize=15) # Source plt.subplot(3,3,2) plt.axis('off') img_Source = io.imread(os.path.join(Source_QC_folder, Test_FileList[-1])) plt.imshow(img_Source, norm=simple_norm(img_Source, percent = 99)) plt.title('Source',fontsize=15) #Prediction plt.subplot(3,3,3) plt.axis('off') img_Prediction = io.imread(os.path.join(QC_model_path+"/"+QC_model_name+"/Quality Control/Prediction/", Test_FileList[-1])) plt.imshow(img_Prediction, norm=simple_norm(img_Prediction, percent = 99)) plt.title('Prediction',fontsize=15) #Setting up colours cmap = plt.cm.CMRmap #SSIM between GT and Source plt.subplot(3,3,5) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsSource = plt.imshow(img_SSIM_GTvsSource, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imSSIM_GTvsSource,fraction=0.046, pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsSource,3)),fontsize=14) plt.ylabel('SSIM maps',fontsize=20, rotation=0, labelpad=75) #SSIM between GT and Prediction plt.subplot(3,3,6) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imSSIM_GTvsPrediction = plt.imshow(img_SSIM_GTvsPrediction, cmap = cmap, vmin=0,vmax=1) plt.colorbar(imSSIM_GTvsPrediction,fraction=0.046, pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('mSSIM: '+str(round(index_SSIM_GTvsPrediction,3)),fontsize=14) #Root Squared Error between GT and Source plt.subplot(3,3,8) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsSource = plt.imshow(img_RSE_GTvsSource, cmap = cmap, vmin=0, vmax = 1) plt.colorbar(imRSE_GTvsSource,fraction=0.046,pad=0.04) plt.title('Target vs. Source',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsSource,3))+', PSNR: '+str(round(PSNR_GTvsSource,3)),fontsize=14) #plt.title('Target vs. Source PSNR: '+str(round(PSNR_GTvsSource,3))) plt.ylabel('RSE maps',fontsize=20, rotation=0, labelpad=75) #Root Squared Error between GT and Prediction plt.subplot(3,3,9) #plt.axis('off') plt.tick_params( axis='both', # changes apply to the x-axis and y-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off left=False, # ticks along the left edge are off right=False, # ticks along the right edge are off labelbottom=False, labelleft=False) imRSE_GTvsPrediction = plt.imshow(img_RSE_GTvsPrediction, cmap = cmap, vmin=0, vmax=1) plt.colorbar(imRSE_GTvsPrediction,fraction=0.046,pad=0.04) plt.title('Target vs. Prediction',fontsize=15) plt.xlabel('NRMSE: '+str(round(NRMSE_GTvsPrediction,3))+', PSNR: '+str(round(PSNR_GTvsPrediction,3)),fontsize=14) ###Output _____no_output_____ ###Markdown **6. Using the trained model**---In this section the unseen data is processed using the trained model (in section 4). First, your unseen images are uploaded and prepared for prediction. After that your trained model from section 4 is activated and finally saved into your Google Drive. **6.1. Generate prediction(s) from unseen dataset**---The current trained model (from section 4.2) can now be used to process images. If you want to use an older model, untick the **Use_the_current_trained_model** box and enter the name and path of the model to use. Predicted output images are saved in your **Result_folder** folder as restored image stacks (ImageJ-compatible TIFF images).**`Data_folder`:** This folder should contain the images that you want to use your trained network on for processing.**`Result_folder`:** This folder will contain the predicted output images. ###Code #@markdown ### Provide the path to your dataset and to the folder where the predictions are saved, then play the cell to predict outputs from your unseen images. Data_folder = "" #@param {type:"string"} Result_folder = "" #@param {type:"string"} # model name and path #@markdown ###Do you want to use the current trained model? Use_the_current_trained_model = True #@param {type:"boolean"} #@markdown ###If not, please provide the path to the model folder: Prediction_model_folder = "" #@param {type:"string"} #Here we find the loaded model name and parent path Prediction_model_name = os.path.basename(Prediction_model_folder) Prediction_model_path = os.path.dirname(Prediction_model_folder) if (Use_the_current_trained_model): print("Using current trained network") Prediction_model_name = model_name Prediction_model_path = model_path full_Prediction_model_path = os.path.join(Prediction_model_path, Prediction_model_name) if os.path.exists(full_Prediction_model_path): print("The "+Prediction_model_name+" network will be used.") else: W = '\033[0m' # white (normal) R = '\033[31m' # red print(R+'!! WARNING: The chosen model does not exist !!'+W) print('Please make sure you provide a valid model path and model name before proceeding further.') #Activate the pretrained model. model_training = CARE(config=None, name=Prediction_model_name, basedir=Prediction_model_path) # creates a loop, creating filenames and saving them for filename in os.listdir(Data_folder): img = imread(os.path.join(Data_folder,filename)) restored = model_training.predict(img, axes='YX') os.chdir(Result_folder) imsave(filename,restored) print("Images saved into folder:", Result_folder) ###Output _____no_output_____ ###Markdown **6.2. Inspect the predicted output**--- ###Code # @markdown ##Run this cell to display a randomly chosen input and its corresponding predicted output. # This will display a randomly chosen dataset input and predicted output random_choice = random.choice(os.listdir(Data_folder)) x = imread(Data_folder+"/"+random_choice) os.chdir(Result_folder) y = imread(Result_folder+"/"+random_choice) plt.figure(figsize=(16,8)) plt.subplot(1,2,1) plt.axis('off') plt.imshow(x, norm=simple_norm(x, percent = 99), interpolation='nearest') plt.title('Input') plt.subplot(1,2,2) plt.axis('off') plt.imshow(y, norm=simple_norm(y, percent = 99), interpolation='nearest') plt.title('Predicted output'); ###Output _____no_output_____
site/en-snapshot/tensorboard/graphs.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Examining the TensorFlow Graph View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewTensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model. You can quickly view a conceptual graph of your model’s structure and ensure it matches your intended design. You can also view a op-level graph to understand how TensorFlow understands your program. Examining the op-level graph can give you insight as to how to change your model. For example, you can redesign your model if training is progressing slower than expected. This tutorial presents a quick overview of how to generate graph diagnostic data and visualize it in TensorBoard’s Graphs dashboard. You’ll define and train a simple Keras Sequential model for the Fashion-MNIST dataset and learn how to log and examine your model graphs. You will also use a tracing API to generate graph data for functions created using the new `tf.function` annotation. Setup ###Code # Load the TensorBoard notebook extension. %load_ext tensorboard from datetime import datetime from packaging import version import tensorflow as tf from tensorflow import keras print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above." import tensorboard tensorboard.__version__ # Clear any logs from previous runs !rm -rf ./logs/ ###Output _____no_output_____ ###Markdown Define a Keras modelIn this example, the classifier is a simple four-layer Sequential model. ###Code # Define the model. model = keras.models.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Download and prepare the training data. ###Code (train_images, train_labels), _ = keras.datasets.fashion_mnist.load_data() train_images = train_images / 255.0 ###Output _____no_output_____ ###Markdown Train the model and log dataBefore training, define the [Keras TensorBoard callback](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard), specifying the log directory. By passing this callback to Model.fit(), you ensure that graph data is logged for visualization in TensorBoard. ###Code # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Train the model. model.fit( train_images, train_labels, batch_size=64, epochs=5, callbacks=[tensorboard_callback]) ###Output Epoch 1/5 938/938 [==============================] - 2s 2ms/step - loss: 0.6955 - accuracy: 0.7618 Epoch 2/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4877 - accuracy: 0.8296 Epoch 3/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4458 - accuracy: 0.8414 Epoch 4/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4246 - accuracy: 0.8476 Epoch 5/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4117 - accuracy: 0.8508 ###Markdown Op-level graphStart TensorBoard and wait a few seconds for the UI to load. Select the Graphs dashboard by tapping “Graphs” at the top. ###Code %tensorboard --logdir logs ###Output _____no_output_____ ###Markdown You can also optionally use TensorBoard.dev to create a hosted, shareable experiment. ###Code !tensorboard dev upload \ --logdir logs \ --name "Sample op-level graph" \ --one_shot ###Output _____no_output_____ ###Markdown By default, TensorBoard displays the **op-level graph**. (On the left, you can see the “Default” tag selected.) Note that the graph is inverted; data flows from bottom to top, so it’s upside down compared to the code. However, you can see that the graph closely matches the Keras model definition, with extra edges to other computation nodes.Graphs are often very large, so you can manipulate the graph visualization:* Scroll to **zoom** in and out* Drag to **pan*** Double clicking toggles **node expansion** (a node can be a container for other nodes)You can also see metadata by clicking on a node. This allows you to see inputs, outputs, shapes and other details. --> --> Conceptual graphIn addition to the execution graph, TensorBoard also displays a **conceptual graph**. This is a view of just the Keras model. This may be useful if you’re reusing a saved model and you want to examine or validate its structure.To see the conceptual graph, select the “keras” tag. For this example, you’ll see a collapsed **Sequential** node. Double-click the node to see the model’s structure: --> --> Graphs of tf.functionsThe examples so far have described graphs of Keras models, where the graphs have been created by defining Keras layers and calling Model.fit().You may encounter a situation where you need to use the `tf.function` annotation to ["autograph"](https://www.tensorflow.org/guide/function), i.e., transform, a Python computation function into a high-performance TensorFlow graph. For these situations, you use **TensorFlow Summary Trace API** to log autographed functions for visualization in TensorBoard. To use the Summary Trace API:* Define and annotate a function with `tf.function`* Use `tf.summary.trace_on()` immediately before your function call site.* Add profile information (memory, CPU time) to graph by passing `profiler=True`* With a Summary file writer, call `tf.summary.trace_export()` to save the log dataYou can then use TensorBoard to see how your function behaves. ###Code # The function to be traced. @tf.function def my_func(x, y): # A simple hand-rolled layer. return tf.nn.relu(tf.matmul(x, y)) # Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = 'logs/func/%s' % stamp writer = tf.summary.create_file_writer(logdir) # Sample data for your function. x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True, profiler=True) # Call only one tf.function when tracing. z = my_func(x, y) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir) %tensorboard --logdir logs/func ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Examining the TensorFlow Graph View on TensorFlow.org Run in Google Colab View source on GitHub OverviewTensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model. You can quickly view a conceptual graph of your model’s structure and ensure it matches your intended design. You can also view a op-level graph to understand how TensorFlow understands your program. Examining the op-level graph can give you insight as to how to change your model. For example, you can redesign your model if training is progressing slower than expected. This tutorial presents a quick overview of how to generate graph diagnostic data and visualize it in TensorBoard’s Graphs dashboard. You’ll define and train a simple Keras Sequential model for the Fashion-MNIST dataset and learn how to log and examine your model graphs. You will also use a tracing API to generate graph data for functions created using the new `tf.function` annotation. Setup ###Code # Load the TensorBoard notebook extension. %load_ext tensorboard from datetime import datetime from packaging import version import tensorflow as tf from tensorflow import keras print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above." import tensorboard tensorboard.__version__ # Clear any logs from previous runs !rm -rf ./logs/ ###Output _____no_output_____ ###Markdown Define a Keras modelIn this example, the classifier is a simple four-layer Sequential model. ###Code # Define the model. model = keras.models.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Download and prepare the training data. ###Code (train_images, train_labels), _ = keras.datasets.fashion_mnist.load_data() train_images = train_images / 255.0 ###Output _____no_output_____ ###Markdown Train the model and log dataBefore training, define the [Keras TensorBoard callback](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard), specifying the log directory. By passing this callback to Model.fit(), you ensure that graph data is logged for visualization in TensorBoard. ###Code # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Train the model. model.fit( train_images, train_labels, batch_size=64, epochs=5, callbacks=[tensorboard_callback]) ###Output Epoch 1/5 938/938 [==============================] - 2s 2ms/step - loss: 0.6955 - accuracy: 0.7618 Epoch 2/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4877 - accuracy: 0.8296 Epoch 3/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4458 - accuracy: 0.8414 Epoch 4/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4246 - accuracy: 0.8476 Epoch 5/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4117 - accuracy: 0.8508 ###Markdown Op-level graphStart TensorBoard and wait a few seconds for the UI to load. Select the Graphs dashboard by tapping “Graphs” at the top. ###Code %tensorboard --logdir logs ###Output _____no_output_____ ###Markdown By default, TensorBoard displays the **op-level graph**. (On the left, you can see the “Default” tag selected.) Note that the graph is inverted; data flows from bottom to top, so it’s upside down compared to the code. However, you can see that the graph closely matches the Keras model definition, with extra edges to other computation nodes.Graphs are often very large, so you can manipulate the graph visualization:* Scroll to **zoom** in and out* Drag to **pan*** Double clicking toggles **node expansion** (a node can be a container for other nodes)You can also see metadata by clicking on a node. This allows you to see inputs, outputs, shapes and other details. Conceptual graphIn addition to the execution graph, TensorBoard also displays a **conceptual graph**. This is a view of just the Keras model. This may be useful if you’re reusing a saved model and you want to examine or validate its structure.To see the conceptual graph, select the “keras” tag. For this example, you’ll see a collapsed **Sequential** node. Double-click the node to see the model’s structure: Graphs of tf.functionsThe examples so far have described graphs of Keras models, where the graphs have been created by defining Keras layers and calling Model.fit().You may encounter a situation where you need to use the `tf.function` annotation to ["autograph"](https://www.tensorflow.org/guide/function), i.e., transform, a Python computation function into a high-performance TensorFlow graph. For these situations, you use **TensorFlow Summary Trace API** to log autographed functions for visualization in TensorBoard. To use the Summary Trace API:* Define and annotate a function with `tf.function`* Use `tf.summary.trace_on()` immediately before your function call site.* Add profile information (memory, CPU time) to graph by passing `profiler=True`* With a Summary file writer, call `tf.summary.trace_export()` to save the log dataYou can then use TensorBoard to see how your function behaves. ###Code # The function to be traced. @tf.function def my_func(x, y): # A simple hand-rolled layer. return tf.nn.relu(tf.matmul(x, y)) # Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = 'logs/func/%s' % stamp writer = tf.summary.create_file_writer(logdir) # Sample data for your function. x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True, profiler=True) # Call only one tf.function when tracing. z = my_func(x, y) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir) %tensorboard --logdir logs/func ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Examining the TensorFlow Graph View on TensorFlow.org Run in Google Colab View source on GitHub OverviewTensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model. You can quickly view a conceptual graph of your model’s structure and ensure it matches your intended design. You can also view a op-level graph to understand how TensorFlow understands your program. Examining the op-level graph can give you insight as to how to change your model. For example, you can redesign your model if training is progressing slower than expected. This tutorial presents a quick overview of how to generate graph diagnostic data and visualize it in TensorBoard’s Graphs dashboard. You’ll define and train a simple Keras Sequential model for the Fashion-MNIST dataset and learn how to log and examine your model graphs. You will also use a tracing API to generate graph data for functions created using the new `tf.function` annotation. Setup ###Code # Load the TensorBoard notebook extension. %load_ext tensorboard from datetime import datetime from packaging import version import tensorflow as tf from tensorflow import keras print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above." import tensorboard tensorboard.__version__ # Clear any logs from previous runs !rm -rf ./logs/ ###Output _____no_output_____ ###Markdown Define a Keras modelIn this example, the classifier is a simple four-layer Sequential model. ###Code # Define the model. model = keras.models.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Download and prepare the training data. ###Code (train_images, train_labels), _ = keras.datasets.fashion_mnist.load_data() train_images = train_images / 255.0 ###Output _____no_output_____ ###Markdown Train the model and log dataBefore training, define the [Keras TensorBoard callback](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard), specifying the log directory. By passing this callback to Model.fit(), you ensure that graph data is logged for visualization in TensorBoard. ###Code # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Train the model. model.fit( train_images, train_labels, batch_size=64, epochs=5, callbacks=[tensorboard_callback]) ###Output Epoch 1/5 938/938 [==============================] - 2s 2ms/step - loss: 0.6955 - accuracy: 0.7618 Epoch 2/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4877 - accuracy: 0.8296 Epoch 3/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4458 - accuracy: 0.8414 Epoch 4/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4246 - accuracy: 0.8476 Epoch 5/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4117 - accuracy: 0.8508 ###Markdown Op-level graphStart TensorBoard and wait a few seconds for the UI to load. Select the Graphs dashboard by tapping “Graphs” at the top. ###Code %tensorboard --logdir logs ###Output _____no_output_____ ###Markdown By default, TensorBoard displays the **op-level graph**. (On the left, you can see the “Default” tag selected.) Note that the graph is inverted; data flows from bottom to top, so it’s upside down compared to the code. However, you can see that the graph closely matches the Keras model definition, with extra edges to other computation nodes.Graphs are often very large, so you can manipulate the graph visualization:* Scroll to **zoom** in and out* Drag to **pan*** Double clicking toggles **node expansion** (a node can be a container for other nodes)You can also see metadata by clicking on a node. This allows you to see inputs, outputs, shapes and other details. Conceptual graphIn addition to the execution graph, TensorBoard also displays a **conceptual graph**. This is a view of just the Keras model. This may be useful if you’re reusing a saved model and you want to examine or validate its structure.To see the conceptual graph, select the “keras” tag. For this example, you’ll see a collapsed **Sequential** node. Double-click the node to see the model’s structure: Graphs of tf.functionsThe examples so far have described graphs of Keras models, where the graphs have been created by defining Keras layers and calling Model.fit().You may encounter a situation where you need to use the `tf.function` annotation to ["autograph"](https://www.tensorflow.org/guide/function), i.e., transform, a Python computation function into a high-performance TensorFlow graph. For these situations, you use **TensorFlow Summary Trace API** to log autographed functions for visualization in TensorBoard. To use the Summary Trace API:* Define and annotate a function with `tf.function`* Use `tf.summary.trace_on()` immediately before your function call site.* Add profile information (memory, CPU time) to graph by passing `profiler=True`* With a Summary file writer, call `tf.summary.trace_export()` to save the log dataYou can then use TensorBoard to see how your function behaves. ###Code # The function to be traced. @tf.function def my_func(x, y): # A simple hand-rolled layer. return tf.nn.relu(tf.matmul(x, y)) # Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = 'logs/func/%s' % stamp writer = tf.summary.create_file_writer(logdir) # Sample data for your function. x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True, profiler=True) # Call only one tf.function when tracing. z = my_func(x, y) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir) %tensorboard --logdir logs/func ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Examining the TensorFlow Graph View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewTensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model. You can quickly view a conceptual graph of your model’s structure and ensure it matches your intended design. You can also view a op-level graph to understand how TensorFlow understands your program. Examining the op-level graph can give you insight as to how to change your model. For example, you can redesign your model if training is progressing slower than expected. This tutorial presents a quick overview of how to generate graph diagnostic data and visualize it in TensorBoard’s Graphs dashboard. You’ll define and train a simple Keras Sequential model for the Fashion-MNIST dataset and learn how to log and examine your model graphs. You will also use a tracing API to generate graph data for functions created using the new `tf.function` annotation. Setup ###Code # Load the TensorBoard notebook extension. %load_ext tensorboard from datetime import datetime from packaging import version import tensorflow as tf from tensorflow import keras print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above." import tensorboard tensorboard.__version__ # Clear any logs from previous runs !rm -rf ./logs/ ###Output _____no_output_____ ###Markdown Define a Keras modelIn this example, the classifier is a simple four-layer Sequential model. ###Code # Define the model. model = keras.models.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Download and prepare the training data. ###Code (train_images, train_labels), _ = keras.datasets.fashion_mnist.load_data() train_images = train_images / 255.0 ###Output _____no_output_____ ###Markdown Train the model and log dataBefore training, define the [Keras TensorBoard callback](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard), specifying the log directory. By passing this callback to Model.fit(), you ensure that graph data is logged for visualization in TensorBoard. ###Code # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Train the model. model.fit( train_images, train_labels, batch_size=64, epochs=5, callbacks=[tensorboard_callback]) ###Output Epoch 1/5 938/938 [==============================] - 2s 2ms/step - loss: 0.6955 - accuracy: 0.7618 Epoch 2/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4877 - accuracy: 0.8296 Epoch 3/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4458 - accuracy: 0.8414 Epoch 4/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4246 - accuracy: 0.8476 Epoch 5/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4117 - accuracy: 0.8508 ###Markdown Op-level graphStart TensorBoard and wait a few seconds for the UI to load. Select the Graphs dashboard by tapping “Graphs” at the top. ###Code %tensorboard --logdir logs ###Output _____no_output_____ ###Markdown By default, TensorBoard displays the **op-level graph**. (On the left, you can see the “Default” tag selected.) Note that the graph is inverted; data flows from bottom to top, so it’s upside down compared to the code. However, you can see that the graph closely matches the Keras model definition, with extra edges to other computation nodes.Graphs are often very large, so you can manipulate the graph visualization:* Scroll to **zoom** in and out* Drag to **pan*** Double clicking toggles **node expansion** (a node can be a container for other nodes)You can also see metadata by clicking on a node. This allows you to see inputs, outputs, shapes and other details. --> --> Conceptual graphIn addition to the execution graph, TensorBoard also displays a **conceptual graph**. This is a view of just the Keras model. This may be useful if you’re reusing a saved model and you want to examine or validate its structure.To see the conceptual graph, select the “keras” tag. For this example, you’ll see a collapsed **Sequential** node. Double-click the node to see the model’s structure: --> --> Graphs of tf.functionsThe examples so far have described graphs of Keras models, where the graphs have been created by defining Keras layers and calling Model.fit().You may encounter a situation where you need to use the `tf.function` annotation to ["autograph"](https://www.tensorflow.org/guide/function), i.e., transform, a Python computation function into a high-performance TensorFlow graph. For these situations, you use **TensorFlow Summary Trace API** to log autographed functions for visualization in TensorBoard. To use the Summary Trace API:* Define and annotate a function with `tf.function`* Use `tf.summary.trace_on()` immediately before your function call site.* Add profile information (memory, CPU time) to graph by passing `profiler=True`* With a Summary file writer, call `tf.summary.trace_export()` to save the log dataYou can then use TensorBoard to see how your function behaves. ###Code # The function to be traced. @tf.function def my_func(x, y): # A simple hand-rolled layer. return tf.nn.relu(tf.matmul(x, y)) # Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = 'logs/func/%s' % stamp writer = tf.summary.create_file_writer(logdir) # Sample data for your function. x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True, profiler=True) # Call only one tf.function when tracing. z = my_func(x, y) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir) %tensorboard --logdir logs/func ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Examining the TensorFlow Graph View on TensorFlow.org Run in Google Colab View source on GitHub OverviewTensorBoard’s **Graphs dashboard** is a powerful tool for examining your TensorFlow model. You can quickly view a conceptual graph of your model’s structure and ensure it matches your intended design. You can also view a op-level graph to understand how TensorFlow understands your program. Examining the op-level graph can give you insight as to how to change your model. For example, you can redesign your model if training is progressing slower than expected. This tutorial presents a quick overview of how to generate graph diagnostic data and visualize it in TensorBoard’s Graphs dashboard. You’ll define and train a simple Keras Sequential model for the Fashion-MNIST dataset and learn how to log and examine your model graphs. You will also use a tracing API to generate graph data for functions created using the new `tf.function` annotation. Setup ###Code # Load the TensorBoard notebook extension. %load_ext tensorboard from datetime import datetime from packaging import version import tensorflow as tf from tensorflow import keras print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above." import tensorboard tensorboard.__version__ # Clear any logs from previous runs !rm -rf ./logs/ ###Output _____no_output_____ ###Markdown Define a Keras modelIn this example, the classifier is a simple four-layer Sequential model. ###Code # Define the model. model = keras.models.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(32, activation='relu'), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Download and prepare the training data. ###Code (train_images, train_labels), _ = keras.datasets.fashion_mnist.load_data() train_images = train_images / 255.0 ###Output _____no_output_____ ###Markdown Train the model and log dataBefore training, define the [Keras TensorBoard callback](https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard), specifying the log directory. By passing this callback to Model.fit(), you ensure that graph data is logged for visualization in TensorBoard. ###Code # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Train the model. model.fit( train_images, train_labels, batch_size=64, epochs=5, callbacks=[tensorboard_callback]) ###Output Epoch 1/5 938/938 [==============================] - 2s 2ms/step - loss: 0.6955 - accuracy: 0.7618 Epoch 2/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4877 - accuracy: 0.8296 Epoch 3/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4458 - accuracy: 0.8414 Epoch 4/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4246 - accuracy: 0.8476 Epoch 5/5 938/938 [==============================] - 2s 2ms/step - loss: 0.4117 - accuracy: 0.8508 ###Markdown Op-level graphStart TensorBoard and wait a few seconds for the UI to load. Select the Graphs dashboard by tapping “Graphs” at the top. ###Code %tensorboard --logdir logs ###Output _____no_output_____ ###Markdown By default, TensorBoard displays the **op-level graph**. (On the left, you can see the “Default” tag selected.) Note that the graph is inverted; data flows from bottom to top, so it’s upside down compared to the code. However, you can see that the graph closely matches the Keras model definition, with extra edges to other computation nodes.Graphs are often very large, so you can manipulate the graph visualization:* Scroll to **zoom** in and out* Drag to **pan*** Double clicking toggles **node expansion** (a node can be a container for other nodes)You can also see metadata by clicking on a node. This allows you to see inputs, outputs, shapes and other details. Conceptual graphIn addition to the execution graph, TensorBoard also displays a **conceptual graph**. This is a view of just the Keras model. This may be useful if you’re reusing a saved model and you want to examine or validate its structure.To see the conceptual graph, select the “keras” tag. For this example, you’ll see a collapsed **Sequential** node. Double-click the node to see the model’s structure: Graphs of tf.functionsThe examples so far have described graphs of Keras models, where the graphs have been created by defining Keras layers and calling Model.fit().You may encounter a situation where you need to use the `tf.function` annotation to ["autograph"](https://www.tensorflow.org/guide/function), i.e., transform, a Python computation function into a high-performance TensorFlow graph. For these situations, you use **TensorFlow Summary Trace API** to log autographed functions for visualization in TensorBoard. To use the Summary Trace API:* Define and annotate a function with `tf.function`* Use `tf.summary.trace_on()` immediately before your function call site.* Add profile information (memory, CPU time) to graph by passing `profiler=True`* With a Summary file writer, call `tf.summary.trace_export()` to save the log dataYou can then use TensorBoard to see how your function behaves. ###Code # The function to be traced. @tf.function def my_func(x, y): # A simple hand-rolled layer. return tf.nn.relu(tf.matmul(x, y)) # Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = 'logs/func/%s' % stamp writer = tf.summary.create_file_writer(logdir) # Sample data for your function. x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True, profiler=True) # Call only one tf.function when tracing. z = my_func(x, y) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir) %tensorboard --logdir logs/func ###Output _____no_output_____
kulina.ipynb
###Markdown OverviewKunci utama dari Efisiensi pengiriman adalah customer harus terassign ke kitchen yang terdekat dulu.Kami melakukannya dengan menSort customer dari jarak yang paling jauh dari titik pusat customer (sum/total lat long).Solusi tersebut belum optimal,tapi mendekati.Solusi optimal = Sort dari Outermost customer.Customer kemudian di assign ke kitchen terdekatnya, apabila sudah full maka diassign ke kitchen kedua terdekat, dst.Sehingga bisa didapat group berupa customer yang terassign ke suatu kitchen.Driver kemudian di assign per group berdasarkan degree dan jarak.Di assign tidak hanya berdasarkan jarak untuk mengoptimalkan waktu pengiriman selama 1 jam. Grouping customer to the best kitchen ###Code # Find center point of customer, buat nyari # long long_centroid = sum(customer['long'])/len(customer) # lat lat_centroid = sum(customer['lat'])/len(customer) import bokeh.plotting as bk from bokeh.plotting import figure, show, output_file bk.output_notebook() def mscatter(p, x, y, marker,color): p.scatter(x, y, marker=marker, size=10, line_color="black", fill_color=color, alpha=0.5) p = figure(title="Persebaran Customer dan Kitchen") p.grid.grid_line_color = None p.background_fill_color = "#eeeeee" #p.axis.visible = False mscatter(p, customer['long'], customer['lat'], "circle", "red") mscatter(p, long_centroid, lat_centroid, "square", "blue") show(p) wgs84_geod = Geod(ellps='WGS84') #Distance will be measured on this ellipsoid - more accurate than a spherical method katanya #Get distance between pairs of lat-lon points def Distance(lat1,lon1,lat2,lon2): az12,az21,dist = wgs84_geod.inv(lon1,lat1,lon2,lat2) return dist #Add/update a column to the data frame with the distances (in metres) customer1['dist0'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[0]]*len(customer),[kitchen['long'].iloc[0]]*len(customer)) customer1['dist1'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[1]]*len(customer),[kitchen['long'].iloc[1]]*len(customer)) customer1['dist2'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[2]]*len(customer),[kitchen['long'].iloc[2]]*len(customer)) customer1['dist3'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[3]]*len(customer),[kitchen['long'].iloc[3]]*len(customer)) customer1['dist4'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[4]]*len(customer),[kitchen['long'].iloc[4]]*len(customer)) customer1['dist5'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[5]]*len(customer),[kitchen['long'].iloc[5]]*len(customer)) customer1['dist6'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[kitchen['lat'].iloc[6]]*len(customer),[kitchen['long'].iloc[6]]*len(customer)) # Minimum distance #customer1['Minimum'] = customer1.loc[:, ['dist0', 'dist1', 'dist2', 'dist3', 'dist4', 'dist5', 'dist6']].min(axis=1) a = pd.DataFrame(np.sort(customer1[['dist0','dist1','dist2','dist3','dist4','dist5','dist6']].values)[:,:3], columns=['nearest','2nearest', '3nearest']) customer1 = customer1.join(a) customer1.head() print(kitchen1) # Find distance from customer point to central customer point customer1['distSort'] = Distance(customer1['lat'].tolist(),customer1['long'].tolist(),[lat_centroid]*len(customer),[lat_centroid]*len(customer)) #np.sqrt( (customer.long-long_centroid)**2 + (customer.lat-lat_centroid)**2) # Sort by longest distance customer1 = customer1.sort_values(['distSort'], ascending=False) customer1.reset_index(drop=True, inplace=True) customer1.head() # Data already sorted from outermost customer # For each row in the column,assign customer to the the nearest kitchen, # if the kitchen already full, assign customer to the second nearest kitchen and so on. # BELUM SELESAI YANG INI clusters = [] #masih manual cap0 = 0 cap1 = 0 cap2 = 0 cap3 = 0 cap4 = 0 cap5 = 0 cap6 = 0 cluster=8 #hanya init scndCluster=8 #hanya init for i in customer1.index: if customer1['nearest'].loc[i]==customer1['dist0'].loc[i]: cluster=0 elif customer1['nearest'].loc[i]==customer1['dist1'].loc[i]: cluster=1 elif customer1['nearest'].loc[i]==customer1['dist2'].loc[i]: cluster=2 elif customer1['nearest'].loc[i]==customer1['dist3'].loc[i]: cluster=3 elif customer1['nearest'].loc[i]==customer1['dist4'].loc[i]: cluster=4 elif customer1['nearest'].loc[i]==customer1['dist5'].loc[i]: cluster=5 # if customer1['nearest'].loc[i]==customer1['dist6'].loc[i]: # cluster=6 if customer1['2nearest'].loc[i]==customer1['dist0'].loc[i]: scndCluster=0 elif customer1['2nearest'].loc[i]==customer1['dist1'].loc[i]: scndCluster=1 elif customer1['2nearest'].loc[i]==customer1['dist2'].loc[i]: scndCluster=2 elif customer1['2nearest'].loc[i]==customer1['dist3'].loc[i]: scndCluster=3 elif customer1['2nearest'].loc[i]==customer1['dist4'].loc[i]: scndCluster=4 elif customer1['2nearest'].loc[i]==customer1['dist5'].loc[i]: scndCluster=5 # if customer1['2nearest'].loc[i]==customer1['dist6'].loc[i]: # scndCluster=6 if customer1['3nearest'].loc[i]==customer1['dist0'].loc[i]: trdCluster=0 elif customer1['3nearest'].loc[i]==customer1['dist1'].loc[i]: trdCluster=1 elif customer1['3nearest'].loc[i]==customer1['dist2'].loc[i]: trdCluster=2 elif customer1['3nearest'].loc[i]==customer1['dist3'].loc[i]: trdCluster=3 elif customer1['3nearest'].loc[i]==customer1['dist4'].loc[i]: trdCluster=4 elif customer1['3nearest'].loc[i]==customer1['dist5'].loc[i]: trdCluster=5 # if customer1['3nearest'].loc[i]==customer1['dist6'].loc[i]: # trdCluster=6 # Assign to nearest kitchen if not yet full if (cluster==0) and (cap0<100): cap0=cap0+customer1['qtyOrdered'].loc[i] elif (cluster==1) and (cap1<40): cap1=cap1+customer1['qtyOrdered'].loc[i] elif (cluster==2) and (cap2<60): cap2=cap2+customer1['qtyOrdered'].loc[i] elif (cluster==3) and (cap3<70): cap3=cap3+customer1['qtyOrdered'].loc[i] elif (cluster==4) and (cap4<80): cap4=cap4+customer1['qtyOrdered'].loc[i] elif (cluster==5) and (cap5<50): cap5=cap5+customer1['qtyOrdered'].loc[i] elif (cluster==6) and (cap6<50): cap6=cap6+customer1['qtyOrdered'].loc[i] # if full assign to 2nd nearest kitchen if (cluster==0) and (cap0>100): cluster=scndCluster scndCluster=10 elif (cluster==1) and (cap1>40): cluster=scndCluster scndCluster=10 elif (cluster==2) and (cap2>60): cluster=scndCluster scndCluster=10 elif (cluster==3) and (cap3>70): cluster=scndCluster scndCluster=10 elif (cluster==4) and (cap4>80): cluster=scndCluster scndCluster=10 elif (cluster==5) and (cap5>50): cluster=scndCluster scndCluster=10 elif (cluster==6) and (cap6>50): cluster=scndCluster scndCluster=10 # if 2nd nearest also full assign to 3rd nearest # # if (cluster==0) and (cap0>100) and (scndCluster==10): # cluster=trdCluster # trdCluster=10 # if (cluster==1) and (cap1>40) and (scndCluster==10): # cluster=trdCluster # trdCluster=10 # if (cluster==2) and (cap2>60): # cluster=trdCluster # trdCluster=10 # if (cluster==3) and (cap3>70): # cluster=trdCluster # trdCluster=10 # if (cluster==4) and (cap4>80): # cluster=trdCluster # trdCluster=10 # if (cluster==5) and (cap5>50): # cluster=trdCluster # trdCluster=10 # if (cluster==6) and (cap6>50): # cluster=trdCluster # trdCluster=10 # count if 2nd nearest if (cluster==0) and (scndCluster==10) and (trdCluster!=10): cap0=cap0+customer1['qtyOrdered'].loc[i] elif (cluster==1) and (scndCluster==10) and (trdCluster!=10): cap1=cap1+customer1['qtyOrdered'].loc[i] elif (cluster==2) and (scndCluster==10) and (trdCluster!=10): cap2=cap2+customer1['qtyOrdered'].loc[i] elif (cluster==3) and (scndCluster==10) and (trdCluster!=10): cap3=cap3+customer1['qtyOrdered'].loc[i] elif (cluster==4) and (scndCluster==10) and (trdCluster!=10): cap4=cap4+customer1['qtyOrdered'].loc[i] elif (cluster==5) and (scndCluster==10) and (trdCluster!=10): cap5=cap5+customer1['qtyOrdered'].loc[i] elif (cluster==6) and (scndCluster==10) and (trdCluster!=10): cap6=cap6+customer1['qtyOrdered'].loc[i] # count if 3rd nearest # # if (cluster==0) and (scndCluster==10) and (trdCluster==10): # cap0=cap0+customer1['qtyOrdered'].loc[i] # if (cluster==1) and (scndCluster==10) and (trdCluster==10): # cap1=cap1+customer1['qtyOrdered'].loc[i] # if (cluster==2) and (scndCluster==10) and (trdCluster==10): # cap2=cap2+customer1['qtyOrdered'].loc[i] # if (cluster==3) and (scndCluster==10) and (trdCluster==10): # cap3=cap3+customer1['qtyOrdered'].loc[i] # if (cluster==4) and (scndCluster==10) and (trdCluster==10): # cap4=cap4+customer1['qtyOrdered'].loc[i] # if (cluster==5) and (scndCluster==10) and (trdCluster==10): # cap5=cap5+customer1['qtyOrdered'].loc[i] # if (cluster==6) and (scndCluster==10) and (trdCluster==10): # cap6=cap6+customer1['qtyOrdered'].loc[i] clusters.append(cluster) customer1['cluster'] = clusters print(cap0+cap1+cap2+cap3+cap4+cap5) customer1['qtyOrdered'].sum() customer1.head() # Data visulization customer assigned to its kitchen def visualize(data): x = data['long'] y = data['lat'] Cluster = data['cluster'] fig = plt.figure() ax = fig.add_subplot(111) scatter = ax.scatter(x,y,c=Cluster, cmap=plt.cm.Paired, s=10, label='customer') ax.scatter(kitchen['long'],kitchen['lat'], s=10, c='r', marker="x", label='second') ax.set_xlabel('longitude') ax.set_ylabel('latitude') plt.colorbar(scatter) fig.show() # Visualization Example customer assigned to kitchen (without following constraint) # THIS IS ONLY EXAMPLE #y = kitchen['kitchenName'] #X = pd.DataFrame(kitchen.drop('kitchenName', axis=1)) #clf = NearestCentroid() #clf.fit(X, y) #pred = clf.predict(customer) #customer1['cluster'] = pd.Series(pred, index=customer1.index) #customer['cluster'] = pd.Series(pred, index=customer.index) visualize(customer1) # Count customer order assigned to Kitchen dapurMiji = (customer1.where(customer1['cluster'] == 0))['qtyOrdered'].sum() dapurNusantara = (customer1.where(customer1['cluster'] == 1))['qtyOrdered'].sum() familiaCatering = (customer1.where(customer1['cluster'] == 2))['qtyOrdered'].sum() pondokRawon = (customer1.where(customer1['cluster'] == 3))['qtyOrdered'].sum() roseCatering = (customer1.where(customer1['cluster'] == 4))['qtyOrdered'].sum() tigaKitchenCatering = (customer1.where(customer1['cluster'] == 5))['qtyOrdered'].sum() ummuUwais = (customer1.where(customer1['cluster'] == 6))['qtyOrdered'].sum() d = {'Dapur Miji': dapurMiji , 'Dapur Nusantara': dapurNusantara, 'Familia Catering': familiaCatering, 'Pondok Rawon': pondokRawon,'Rose Catering': roseCatering, 'Tiga Kitchen Catering': tigaKitchenCatering, 'Ummu Uwais': ummuUwais} print(customer1.cluster.value_counts()) # Print sum of assigned print(d) print(kitchen1) ###Output kitchenName long lat minCapacity maxCapacity \ 0 Dapur Miji 106.814653 -6.150735 50 100 1 Dapur Nusantara 106.834772 -6.279489 30 40 2 Familia Catering 106.793820 -6.192896 50 60 3 Pondok Rawon 106.826822 -6.224094 50 70 4 Rose Catering 106.795993 -6.157473 70 80 5 Tiga Kitchen Catering 106.847226 -6.184124 30 50 6 Ummu Uwais 106.914214 -6.256911 20 50 tolerance 0 105 1 45 2 65 3 75 4 85 5 55 6 55 ###Markdown Assign driver in group based on degree and distance ###Code # Get degree for each customer in the cluster def getDegree(data): # distance # center long lat (start of routing) center_latitude = #Tiap Kitchen center_longitude = #Tiap Kitchen degrees = [] degree = 0 # For each row in the column, for row in data['longitude']: degrees = np.rint(np.rad2deg(np.arctan2((data['latitude']-center_latitude),(data['longitude']-center_longitude)))) #center di pulogadung data['degrees'] = degrees return data # Assign driver dari kitchen ke customer berdasarkan degree dan jarak # Priority utama berdasarkan degree jadi gaada driver yang deket doang # Tapi belum dipikir gimana bisa optimize waktu harus satu jam max, tapi seenggaknya driver udah agak rata jaraknya # Kasus khusus apabila yg degree nya kecil jaraknya jauh banget, dia driver baru. # BELUM SELESAI YANG INI ###Output _____no_output_____
nbs/012_data.external.ipynb
###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil import distutils from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export # This code was adapted from https://github.com/ChangWeiTan/TSRegression. # It's used to load time series examples to demonstrate tsai's functionality. # Copyright for above source is below. # GNU GENERAL PUBLIC LICENSE # Version 3, 29 June 2007 # Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> # Everyone is permitted to copy and distribute verbatim copies # of this license document, but changing it is not allowed. # Preamble # The GNU General Public License is a free, copyleft license for # software and other kinds of works. # The licenses for most software and other practical works are designed # to take away your freedom to share and change the works. By contrast, # the GNU General Public License is intended to guarantee your freedom to # share and change all versions of a program--to make sure it remains free # software for all its users. We, the Free Software Foundation, use the # GNU General Public License for most of our software; it applies also to # any other work released this way by its authors. You can apply it to # your programs, too. # When we speak of free software, we are referring to freedom, not # price. Our General Public Licenses are designed to make sure that you # have the freedom to distribute copies of free software (and charge for # them if you wish), that you receive source code or can get it if you # want it, that you can change the software or use pieces of it in new # free programs, and that you know you can do these things. # To protect your rights, we need to prevent others from denying you # these rights or asking you to surrender the rights. Therefore, you have # certain responsibilities if you distribute copies of the software, or if # you modify it: responsibilities to respect the freedom of others. # For example, if you distribute copies of such a program, whether # gratis or for a fee, you must pass on to the recipients the same # freedoms that you received. You must make sure that they, too, receive # or can get the source code. And you must show them these terms so they # know their rights. # Developers that use the GNU GPL protect your rights with two steps: # (1) assert copyright on the software, and (2) offer you this License # giving you legal permission to copy, distribute and/or modify it. # For the developers' and authors' protection, the GPL clearly explains # that there is no warranty for this free software. For both users' and # authors' sake, the GPL requires that modified versions be marked as # changed, so that their problems will not be attributed erroneously to # authors of previous versions. # Some devices are designed to deny users access to install or run # modified versions of the software inside them, although the manufacturer # can do so. This is fundamentally incompatible with the aim of # protecting users' freedom to change the software. The systematic # pattern of such abuse occurs in the area of products for individuals to # use, which is precisely where it is most unacceptable. Therefore, we # have designed this version of the GPL to prohibit the practice for those # products. If such problems arise substantially in other domains, we # stand ready to extend this provision to those domains in future versions # of the GPL, as needed to protect the freedom of users. # Finally, every program is threatened constantly by software patents. # States should not allow patents to restrict development and use of # software on general-purpose computers, but in those that do, we wish to # avoid the special danger that patents applied to a free program could # make it effectively proprietary. To prevent this, the GPL assures that # patents cannot be used to render the program non-free. # The precise terms and conditions for copying, distribution and # modification follow. # TERMS AND CONDITIONS # 0. Definitions. # "This License" refers to version 3 of the GNU General Public License. # "Copyright" also means copyright-like laws that apply to other kinds of # works, such as semiconductor masks. # "The Program" refers to any copyrightable work licensed under this # License. Each licensee is addressed as "you". "Licensees" and # "recipients" may be individuals or organizations. # To "modify" a work means to copy from or adapt all or part of the work # in a fashion requiring copyright permission, other than the making of an # exact copy. The resulting work is called a "modified version" of the # earlier work or a work "based on" the earlier work. # A "covered work" means either the unmodified Program or a work based # on the Program. # To "propagate" a work means to do anything with it that, without # permission, would make you directly or secondarily liable for # infringement under applicable copyright law, except executing it on a # computer or modifying a private copy. Propagation includes copying, # distribution (with or without modification), making available to the # public, and in some countries other activities as well. # To "convey" a work means any kind of propagation that enables other # parties to make or receive copies. Mere interaction with a user through # a computer network, with no transfer of a copy, is not conveying. # An interactive user interface displays "Appropriate Legal Notices" # to the extent that it includes a convenient and prominently visible # feature that (1) displays an appropriate copyright notice, and (2) # tells the user that there is no warranty for the work (except to the # extent that warranties are provided), that licensees may convey the # work under this License, and how to view a copy of this License. If # the interface presents a list of user commands or options, such as a # menu, a prominent item in the list meets this criterion. # 1. Source Code. # The "source code" for a work means the preferred form of the work # for making modifications to it. "Object code" means any non-source # form of a work. # A "Standard Interface" means an interface that either is an official # standard defined by a recognized standards body, or, in the case of # interfaces specified for a particular programming language, one that # is widely used among developers working in that language. # The "System Libraries" of an executable work include anything, other # than the work as a whole, that (a) is included in the normal form of # packaging a Major Component, but which is not part of that Major # Component, and (b) serves only to enable use of the work with that # Major Component, or to implement a Standard Interface for which an # implementation is available to the public in source code form. A # "Major Component", in this context, means a major essential component # (kernel, window system, and so on) of the specific operating system # (if any) on which the executable work runs, or a compiler used to # produce the work, or an object code interpreter used to run it. # The "Corresponding Source" for a work in object code form means all # the source code needed to generate, install, and (for an executable # work) run the object code and to modify the work, including scripts to # control those activities. However, it does not include the work's # System Libraries, or general-purpose tools or generally available free # programs which are used unmodified in performing those activities but # which are not part of the work. For example, Corresponding Source # includes interface definition files associated with source files for # the work, and the source code for shared libraries and dynamically # linked subprograms that the work is specifically designed to require, # such as by intimate data communication or control flow between those # subprograms and other parts of the work. # The Corresponding Source need not include anything that users # can regenerate automatically from other parts of the Corresponding # Source. # The Corresponding Source for a work in source code form is that # same work. # 2. Basic Permissions. # All rights granted under this License are granted for the term of # copyright on the Program, and are irrevocable provided the stated # conditions are met. This License explicitly affirms your unlimited # permission to run the unmodified Program. The output from running a # covered work is covered by this License only if the output, given its # content, constitutes a covered work. This License acknowledges your # rights of fair use or other equivalent, as provided by copyright law. # You may make, run and propagate covered works that you do not # convey, without conditions so long as your license otherwise remains # in force. You may convey covered works to others for the sole purpose # of having them make modifications exclusively for you, or provide you # with facilities for running those works, provided that you comply with # the terms of this License in conveying all material for which you do # not control copyright. Those thus making or running the covered works # for you must do so exclusively on your behalf, under your direction # and control, on terms that prohibit them from making any copies of # your copyrighted material outside their relationship with you. # Conveying under any other circumstances is permitted solely under # the conditions stated below. Sublicensing is not allowed; section 10 # makes it unnecessary. # 3. Protecting Users' Legal Rights From Anti-Circumvention Law. # No covered work shall be deemed part of an effective technological # measure under any applicable law fulfilling obligations under article # 11 of the WIPO copyright treaty adopted on 20 December 1996, or # similar laws prohibiting or restricting circumvention of such # measures. # When you convey a covered work, you waive any legal power to forbid # circumvention of technological measures to the extent such circumvention # is effected by exercising rights under this License with respect to # the covered work, and you disclaim any intention to limit operation or # modification of the work as a means of enforcing, against the work's # users, your or third parties' legal rights to forbid circumvention of # technological measures. # 4. Conveying Verbatim Copies. # You may convey verbatim copies of the Program's source code as you # receive it, in any medium, provided that you conspicuously and # appropriately publish on each copy an appropriate copyright notice; # keep intact all notices stating that this License and any # non-permissive terms added in accord with section 7 apply to the code; # keep intact all notices of the absence of any warranty; and give all # recipients a copy of this License along with the Program. # You may charge any price or no price for each copy that you convey, # and you may offer support or warranty protection for a fee. # 5. Conveying Modified Source Versions. # You may convey a work based on the Program, or the modifications to # produce it from the Program, in the form of source code under the # terms of section 4, provided that you also meet all of these conditions: # a) The work must carry prominent notices stating that you modified # it, and giving a relevant date. # b) The work must carry prominent notices stating that it is # released under this License and any conditions added under section # 7. This requirement modifies the requirement in section 4 to # "keep intact all notices". # c) You must license the entire work, as a whole, under this # License to anyone who comes into possession of a copy. This # License will therefore apply, along with any applicable section 7 # additional terms, to the whole of the work, and all its parts, # regardless of how they are packaged. This License gives no # permission to license the work in any other way, but it does not # invalidate such permission if you have separately received it. # d) If the work has interactive user interfaces, each must display # Appropriate Legal Notices; however, if the Program has interactive # interfaces that do not display Appropriate Legal Notices, your # work need not make them do so. # A compilation of a covered work with other separate and independent # works, which are not by their nature extensions of the covered work, # and which are not combined with it such as to form a larger program, # in or on a volume of a storage or distribution medium, is called an # "aggregate" if the compilation and its resulting copyright are not # used to limit the access or legal rights of the compilation's users # beyond what the individual works permit. Inclusion of a covered work # in an aggregate does not cause this License to apply to the other # parts of the aggregate. # 6. Conveying Non-Source Forms. # You may convey a covered work in object code form under the terms # of sections 4 and 5, provided that you also convey the # machine-readable Corresponding Source under the terms of this License, # in one of these ways: # a) Convey the object code in, or embodied in, a physical product # (including a physical distribution medium), accompanied by the # Corresponding Source fixed on a durable physical medium # customarily used for software interchange. # b) Convey the object code in, or embodied in, a physical product # (including a physical distribution medium), accompanied by a # written offer, valid for at least three years and valid for as # long as you offer spare parts or customer support for that product # model, to give anyone who possesses the object code either (1) a # copy of the Corresponding Source for all the software in the # product that is covered by this License, on a durable physical # medium customarily used for software interchange, for a price no # more than your reasonable cost of physically performing this # conveying of source, or (2) access to copy the # Corresponding Source from a network server at no charge. # c) Convey individual copies of the object code with a copy of the # written offer to provide the Corresponding Source. This # alternative is allowed only occasionally and noncommercially, and # only if you received the object code with such an offer, in accord # with subsection 6b. # d) Convey the object code by offering access from a designated # place (gratis or for a charge), and offer equivalent access to the # Corresponding Source in the same way through the same place at no # further charge. You need not require recipients to copy the # Corresponding Source along with the object code. If the place to # copy the object code is a network server, the Corresponding Source # may be on a different server (operated by you or a third party) # that supports equivalent copying facilities, provided you maintain # clear directions next to the object code saying where to find the # Corresponding Source. Regardless of what server hosts the # Corresponding Source, you remain obligated to ensure that it is # available for as long as needed to satisfy these requirements. # e) Convey the object code using peer-to-peer transmission, provided # you inform other peers where the object code and Corresponding # Source of the work are being offered to the general public at no # charge under subsection 6d. # A separable portion of the object code, whose source code is excluded # from the Corresponding Source as a System Library, need not be # included in conveying the object code work. # A "User Product" is either (1) a "consumer product", which means any # tangible personal property which is normally used for personal, family, # or household purposes, or (2) anything designed or sold for incorporation # into a dwelling. In determining whether a product is a consumer product, # doubtful cases shall be resolved in favor of coverage. For a particular # product received by a particular user, "normally used" refers to a # typical or common use of that class of product, regardless of the status # of the particular user or of the way in which the particular user # actually uses, or expects or is expected to use, the product. A product # is a consumer product regardless of whether the product has substantial # commercial, industrial or non-consumer uses, unless such uses represent # the only significant mode of use of the product. # "Installation Information" for a User Product means any methods, # procedures, authorization keys, or other information required to install # and execute modified versions of a covered work in that User Product from # a modified version of its Corresponding Source. The information must # suffice to ensure that the continued functioning of the modified object # code is in no case prevented or interfered with solely because # modification has been made. # If you convey an object code work under this section in, or with, or # specifically for use in, a User Product, and the conveying occurs as # part of a transaction in which the right of possession and use of the # User Product is transferred to the recipient in perpetuity or for a # fixed term (regardless of how the transaction is characterized), the # Corresponding Source conveyed under this section must be accompanied # by the Installation Information. But this requirement does not apply # if neither you nor any third party retains the ability to install # modified object code on the User Product (for example, the work has # been installed in ROM). # The requirement to provide Installation Information does not include a # requirement to continue to provide support service, warranty, or updates # for a work that has been modified or installed by the recipient, or for # the User Product in which it has been modified or installed. Access to a # network may be denied when the modification itself materially and # adversely affects the operation of the network or violates the rules and # protocols for communication across the network. # Corresponding Source conveyed, and Installation Information provided, # in accord with this section must be in a format that is publicly # documented (and with an implementation available to the public in # source code form), and must require no special password or key for # unpacking, reading or copying. # 7. Additional Terms. # "Additional permissions" are terms that supplement the terms of this # License by making exceptions from one or more of its conditions. # Additional permissions that are applicable to the entire Program shall # be treated as though they were included in this License, to the extent # that they are valid under applicable law. If additional permissions # apply only to part of the Program, that part may be used separately # under those permissions, but the entire Program remains governed by # this License without regard to the additional permissions. # When you convey a copy of a covered work, you may at your option # remove any additional permissions from that copy, or from any part of # it. (Additional permissions may be written to require their own # removal in certain cases when you modify the work.) You may place # additional permissions on material, added by you to a covered work, # for which you have or can give appropriate copyright permission. # Notwithstanding any other provision of this License, for material you # add to a covered work, you may (if authorized by the copyright holders of # that material) supplement the terms of this License with terms: # a) Disclaiming warranty or limiting liability differently from the # terms of sections 15 and 16 of this License; or # b) Requiring preservation of specified reasonable legal notices or # author attributions in that material or in the Appropriate Legal # Notices displayed by works containing it; or # c) Prohibiting misrepresentation of the origin of that material, or # requiring that modified versions of such material be marked in # reasonable ways as different from the original version; or # d) Limiting the use for publicity purposes of names of licensors or # authors of the material; or # e) Declining to grant rights under trademark law for use of some # trade names, trademarks, or service marks; or # f) Requiring indemnification of licensors and authors of that # material by anyone who conveys the material (or modified versions of # it) with contractual assumptions of liability to the recipient, for # any liability that these contractual assumptions directly impose on # those licensors and authors. # All other non-permissive additional terms are considered "further # restrictions" within the meaning of section 10. If the Program as you # received it, or any part of it, contains a notice stating that it is # governed by this License along with a term that is a further # restriction, you may remove that term. If a license document contains # a further restriction but permits relicensing or conveying under this # License, you may add to a covered work material governed by the terms # of that license document, provided that the further restriction does # not survive such relicensing or conveying. # If you add terms to a covered work in accord with this section, you # must place, in the relevant source files, a statement of the # additional terms that apply to those files, or a notice indicating # where to find the applicable terms. # Additional terms, permissive or non-permissive, may be stated in the # form of a separately written license, or stated as exceptions; # the above requirements apply either way. # 8. Termination. # You may not propagate or modify a covered work except as expressly # provided under this License. Any attempt otherwise to propagate or # modify it is void, and will automatically terminate your rights under # this License (including any patent licenses granted under the third # paragraph of section 11). # However, if you cease all violation of this License, then your # license from a particular copyright holder is reinstated (a) # provisionally, unless and until the copyright holder explicitly and # finally terminates your license, and (b) permanently, if the copyright # holder fails to notify you of the violation by some reasonable means # prior to 60 days after the cessation. # Moreover, your license from a particular copyright holder is # reinstated permanently if the copyright holder notifies you of the # violation by some reasonable means, this is the first time you have # received notice of violation of this License (for any work) from that # copyright holder, and you cure the violation prior to 30 days after # your receipt of the notice. # Termination of your rights under this section does not terminate the # licenses of parties who have received copies or rights from you under # this License. If your rights have been terminated and not permanently # reinstated, you do not qualify to receive new licenses for the same # material under section 10. # 9. Acceptance Not Required for Having Copies. # You are not required to accept this License in order to receive or # run a copy of the Program. Ancillary propagation of a covered work # occurring solely as a consequence of using peer-to-peer transmission # to receive a copy likewise does not require acceptance. However, # nothing other than this License grants you permission to propagate or # modify any covered work. These actions infringe copyright if you do # not accept this License. Therefore, by modifying or propagating a # covered work, you indicate your acceptance of this License to do so. # 10. Automatic Licensing of Downstream Recipients. # Each time you convey a covered work, the recipient automatically # receives a license from the original licensors, to run, modify and # propagate that work, subject to this License. You are not responsible # for enforcing compliance by third parties with this License. # An "entity transaction" is a transaction transferring control of an # organization, or substantially all assets of one, or subdividing an # organization, or merging organizations. If propagation of a covered # work results from an entity transaction, each party to that # transaction who receives a copy of the work also receives whatever # licenses to the work the party's predecessor in interest had or could # give under the previous paragraph, plus a right to possession of the # Corresponding Source of the work from the predecessor in interest, if # the predecessor has it or can get it with reasonable efforts. # You may not impose any further restrictions on the exercise of the # rights granted or affirmed under this License. For example, you may # not impose a license fee, royalty, or other charge for exercise of # rights granted under this License, and you may not initiate litigation # (including a cross-claim or counterclaim in a lawsuit) alleging that # any patent claim is infringed by making, using, selling, offering for # sale, or importing the Program or any portion of it. # 11. Patents. # A "contributor" is a copyright holder who authorizes use under this # License of the Program or a work on which the Program is based. The # work thus licensed is called the contributor's "contributor version". # A contributor's "essential patent claims" are all patent claims # owned or controlled by the contributor, whether already acquired or # hereafter acquired, that would be infringed by some manner, permitted # by this License, of making, using, or selling its contributor version, # but do not include claims that would be infringed only as a # consequence of further modification of the contributor version. For # purposes of this definition, "control" includes the right to grant # patent sublicenses in a manner consistent with the requirements of # this License. # Each contributor grants you a non-exclusive, worldwide, royalty-free # patent license under the contributor's essential patent claims, to # make, use, sell, offer for sale, import and otherwise run, modify and # propagate the contents of its contributor version. # In the following three paragraphs, a "patent license" is any express # agreement or commitment, however denominated, not to enforce a patent # (such as an express permission to practice a patent or covenant not to # sue for patent infringement). To "grant" such a patent license to a # party means to make such an agreement or commitment not to enforce a # patent against the party. # If you convey a covered work, knowingly relying on a patent license, # and the Corresponding Source of the work is not available for anyone # to copy, free of charge and under the terms of this License, through a # publicly available network server or other readily accessible means, # then you must either (1) cause the Corresponding Source to be so # available, or (2) arrange to deprive yourself of the benefit of the # patent license for this particular work, or (3) arrange, in a manner # consistent with the requirements of this License, to extend the patent # license to downstream recipients. "Knowingly relying" means you have # actual knowledge that, but for the patent license, your conveying the # covered work in a country, or your recipient's use of the covered work # in a country, would infringe one or more identifiable patents in that # country that you have reason to believe are valid. # If, pursuant to or in connection with a single transaction or # arrangement, you convey, or propagate by procuring conveyance of, a # covered work, and grant a patent license to some of the parties # receiving the covered work authorizing them to use, propagate, modify # or convey a specific copy of the covered work, then the patent license # you grant is automatically extended to all recipients of the covered # work and works based on it. # A patent license is "discriminatory" if it does not include within # the scope of its coverage, prohibits the exercise of, or is # conditioned on the non-exercise of one or more of the rights that are # specifically granted under this License. You may not convey a covered # work if you are a party to an arrangement with a third party that is # in the business of distributing software, under which you make payment # to the third party based on the extent of your activity of conveying # the work, and under which the third party grants, to any of the # parties who would receive the covered work from you, a discriminatory # patent license (a) in connection with copies of the covered work # conveyed by you (or copies made from those copies), or (b) primarily # for and in connection with specific products or compilations that # contain the covered work, unless you entered into that arrangement, # or that patent license was granted, prior to 28 March 2007. # Nothing in this License shall be construed as excluding or limiting # any implied license or other defenses to infringement that may # otherwise be available to you under applicable patent law. # 12. No Surrender of Others' Freedom. # If conditions are imposed on you (whether by court order, agreement or # otherwise) that contradict the conditions of this License, they do not # excuse you from the conditions of this License. If you cannot convey a # covered work so as to satisfy simultaneously your obligations under this # License and any other pertinent obligations, then as a consequence you may # not convey it at all. For example, if you agree to terms that obligate you # to collect a royalty for further conveying from those to whom you convey # the Program, the only way you could satisfy both those terms and this # License would be to refrain entirely from conveying the Program. # 13. Use with the GNU Affero General Public License. # Notwithstanding any other provision of this License, you have # permission to link or combine any covered work with a work licensed # under version 3 of the GNU Affero General Public License into a single # combined work, and to convey the resulting work. The terms of this # License will continue to apply to the part which is the covered work, # but the special requirements of the GNU Affero General Public License, # section 13, concerning interaction through a network will apply to the # combination as such. # 14. Revised Versions of this License. # The Free Software Foundation may publish revised and/or new versions of # the GNU General Public License from time to time. Such new versions will # be similar in spirit to the present version, but may differ in detail to # address new problems or concerns. # Each version is given a distinguishing version number. If the # Program specifies that a certain numbered version of the GNU General # Public License "or any later version" applies to it, you have the # option of following the terms and conditions either of that numbered # version or of any later version published by the Free Software # Foundation. If the Program does not specify a version number of the # GNU General Public License, you may choose any version ever published # by the Free Software Foundation. # If the Program specifies that a proxy can decide which future # versions of the GNU General Public License can be used, that proxy's # public statement of acceptance of a version permanently authorizes you # to choose that version for the Program. # Later license versions may give you additional or different # permissions. However, no additional obligations are imposed on any # author or copyright holder as a result of your choosing to follow a # later version. # 15. Disclaimer of Warranty. # THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY # APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT # HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY # OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM # IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF # ALL NECESSARY SERVICING, REPAIR OR CORRECTION. # 16. Limitation of Liability. # IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING # WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS # THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY # GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE # USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF # DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD # PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), # EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF # SUCH DAMAGES. # 17. Interpretation of Sections 15 and 16. # If the disclaimer of warranty and limitation of liability provided # above cannot be given local legal effect according to their terms, # reviewing courts shall apply local law that most closely approximates # an absolute waiver of all civil liability in connection with the # Program, unless a warranty or assumption of liability accompanies a # copy of the Program in return for a fee. # END OF TERMS AND CONDITIONS # How to Apply These Terms to Your New Programs # If you develop a new program, and you want it to be of the greatest # possible use to the public, the best way to achieve this is to make it # free software which everyone can redistribute and change under these terms. # To do so, attach the following notices to the program. It is safest # to attach them to the start of each source file to most effectively # state the exclusion of warranty; and each file should have at least # the "copyright" line and a pointer to where the full""" notice is found. # <one line to give the program's name and a brief idea of what it does.> # Copyright (C) <year> <name of author> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # Also add information on how to contact you by electronic and paper mail. # If the program does terminal interaction, make it output a short # notice like this when it starts in an interactive mode: # <program> Copyright (C) <year> <name of author> # This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. # This is free software, and you are welcome to redistribute it # under certain conditions; type `show c' for details. # The hypothetical commands `show w' and `show c' should show the appropriate # parts of the General Public License. Of course, your program's commands # might be different; for a GUI interface, you would use an "about box". # You should also get your employer (if you work as a programmer) or school, # if any, to sign a "copyright disclaimer" for the program, if necessary. # For more information on this, and how to apply and follow the GNU GPL, see # <https://www.gnu.org/licenses/>. # The GNU General Public License does not permit incorporating your program # into proprietary programs. If your program is a subroutine library, you # may consider it more useful to permit linking proprietary applications with # the library. If this is what you want to do, use the GNU Lesser General # Public License instead of this License. But first, please read # <https://www.gnu.org/licenses/why-not-lgpl.html>. class _TsFileParseException(Exception): """ Should be rcomesaised when parsing a .ts file and the format is incorrect. """ pass def _ts2dfV2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export # This code was adapted from sktime. # It's used to load time series examples to demonstrate tsai's functionality. # Copyright for above source is below. # Copyright (c) 2019 - 2020 The sktime developers. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def _check_X( X:(pd.DataFrame, np.array), # Input data ): "Validate input data" # check np.array format if isinstance(X, np.ndarray): if X.ndim == 2: X = X.reshape(X.shape[0], 1, X.shape[1]) # check pd.DataFrame if isinstance(X, pd.DataFrame): X = _from_nested_to_3d_numpy(X) return X def _from_nested_to_3d_numpy( X:pd.DataFrame, # Nested pandas DataFrame ): "Convert nested Panel to 3D numpy Panel" # n_columns = X.shape[1] nested_col_mask = [*_are_columns_nested(X)] # If all the columns are nested in structure if nested_col_mask.count(True) == len(nested_col_mask): X_3d = np.stack( X.applymap(_convert_series_cell_to_numpy) .apply(lambda row: np.stack(row), axis=1) .to_numpy() ) # If some columns are primitive (non-nested) then first convert to # multi-indexed DataFrame where the same value of these columns is # repeated for each timepoint # Then the multi-indexed DataFrame can be converted to 3d NumPy array else: X_mi = _from_nested_to_multi_index(X) X_3d = _from_multi_index_to_3d_numpy( X_mi, instance_index="instance", time_index="timepoints" ) return X_3d def _are_columns_nested( X:pd.DataFrame # DataFrame to check for nested data structures. ): "Check whether any cells have nested structure in each DataFrame column" any_nested = _nested_cell_mask(X).any().values return any_nested def _nested_cell_mask(X): return X.applymap(_cell_is_series_or_array) def _cell_is_series_or_array(cell): return isinstance(cell, (pd.Series, np.ndarray)) def _convert_series_cell_to_numpy(cell): if isinstance(cell, pd.Series): return cell.to_numpy() else: return cell def _from_nested_to_multi_index( X: pd.DataFrame, # The nested DataFrame to convert to a multi-indexed pandas DataFrame )->pd.DataFrame: "Convert nested pandas Panel to multi-index pandas Panel" time_index_name = "timepoints" # n_columns = X.shape[1] nested_col_mask = [*_are_columns_nested(X)] instance_idxs = X.index.get_level_values(-1).unique() # n_instances = instance_idxs.shape[0] instance_index_name = "instance" instances = [] for instance_idx in instance_idxs: iidx = instance_idx instance = [ pd.DataFrame(i[1], columns=[i[0]]) for i in X.loc[iidx, :].iteritems() # noqa ] instance = pd.concat(instance, axis=1) # For primitive (non-nested column) assume the same # primitive value applies to every timepoint of the instance for col_idx, is_nested in enumerate(nested_col_mask): if not is_nested: instance.iloc[:, col_idx] = instance.iloc[:, col_idx].ffill() # Correctly assign multi-index multi_index = pd.MultiIndex.from_product( [[instance_idx], instance.index], names=[instance_index_name, time_index_name], ) instance.index = multi_index instances.append(instance) X_mi = pd.concat(instances) X_mi.columns = X.columns return X_mi def _from_multi_index_to_3d_numpy( X:pd.DataFrame, # The multi-index pandas DataFrame instance_index:str=None, # Name of the multi-index level corresponding to the DataFrame's instances time_index:str=None # Name of multi-index level corresponding to DataFrame's timepoints )->np.ndarray: "Convert pandas multi-index Panel to numpy 3D Panel." if X.index.nlevels != 2: raise ValueError("Multi-index DataFrame should have 2 levels.") if (instance_index is None) or (time_index is None): msg = "Must supply parameters instance_index and time_index" raise ValueError(msg) n_instances = len(X.groupby(level=instance_index)) # Alternative approach is more verbose # n_instances = (multi_ind_dataframe # .index # .get_level_values(instance_index) # .unique()).shape[0] n_timepoints = len(X.groupby(level=time_index)) # Alternative approach is more verbose # n_instances = (multi_ind_dataframe # .index # .get_level_values(time_index) # .unique()).shape[0] n_columns = X.shape[1] X_3d = X.values.reshape(n_instances, n_timepoints, n_columns).swapaxes(1, 2) return X_3d #export def _ts2df( full_file_path_and_name:str, # The full pathname of the .ts file to read. replace_missing_vals_with:str="NaN", # The value that missing values in the text file should be replaced with prior to parsing. ): "Load data from a .ts file into a Pandas DataFrame" # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_data_tag = False previous_timestamp_was_int = None prev_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, "r", encoding="utf-8") as file: for line in file: # Strip white space from start/end of line and change to # lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this # function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(" ") token_len = len(tokens) if token_len == 1: raise _TsFileParseException( "problemname tag requires an associated value" ) # problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(" ") token_len = len(tokens) if token_len != 2: raise _TsFileParseException( "timestamps tag requires an associated Boolean " "value" ) elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(" ") token_len = len(tokens) if token_len != 2: raise _TsFileParseException( "univariate tag requires an associated Boolean " "value" ) elif tokens[1] == "true": # univariate = True pass elif tokens[1] == "false": # univariate = False pass else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(" ") token_len = len(tokens) if token_len == 1: raise _TsFileParseException( "classlabel tag requires an associated Boolean " "value" ) if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException( "if the classlabel tag is true then class values " "must be supplied" ) has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException( "data tag should not have an associated value" ) if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been # parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided if ( not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag ): raise _TsFileParseException( "a full set of metadata has not been provided " "before the data" ) # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split # line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamp_for_dim = [] values_for_dimension = [] this_line_num_dim = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if # we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no # values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dim + 1): instance_list.append([]) instance_list[this_line_num_dim].append( pd.Series(dtype="object") ) this_line_num_dim += 1 has_another_value = False has_another_dimension = True timestamp_for_dim = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and class_labels: class_val = line[char_num:].strip() if class_val not in class_label_list: raise _TsFileParseException( "the class value '" + class_val + "' on line " + str(line_num + 1) + " is not " "valid" ) class_val_list.append(class_val) char_num = line_len has_another_value = False has_another_dimension = False timestamp_for_dim = [] values_for_dimension = [] else: # Read in the data contained within # the next tuple if line[char_num] != "(" and not class_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " does " "not " "start " "with a " "'('" ) char_num += 1 tuple_data = "" while ( char_num < line_len and line[char_num] != ")" ): tuple_data += line[char_num] char_num += 1 if ( char_num >= line_len or line[char_num] != ")" ): raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " does " "not end" " with a " "')'" ) # Read in any spaces immediately # after the current tuple char_num += 1 while char_num < line_len and str.isspace( line[char_num] ): char_num += 1 # Check if there is another value or # dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the # tuple by reading from the end of # the tuple data backwards to the # last comma last_comma_index = tuple_data.rfind(",") if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " contains a tuple that has " "no comma inside of it" ) try: value = tuple_data[last_comma_index + 1 :] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " contains a tuple that does " "not have a valid numeric " "value" ) # Check the type of timestamp that # we have timestamp = tuple_data[0:last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in # the file (not just this dimension # or case) are consistent if ( not timestamp_is_timestamp and not timestamp_is_int ): raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " contains a tuple that " "has an invalid timestamp '" + timestamp + "'" ) if ( previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int ): raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " contains tuples where the " "timestamp format is " "inconsistent" ) if ( prev_timestamp_was_timestamp is not None and prev_timestamp_was_timestamp and not timestamp_is_timestamp ): raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " contains tuples where the " "timestamp format is " "inconsistent" ) # Store the values timestamp_for_dim += [timestamp] values_for_dimension += [value] # If this was our first tuple then # we store the type of timestamp we # had if ( prev_timestamp_was_timestamp is None and timestamp_is_timestamp ): prev_timestamp_was_timestamp = True previous_timestamp_was_int = False if ( previous_timestamp_was_int is None and timestamp_is_int ): prev_timestamp_was_timestamp = False previous_timestamp_was_int = True # See if we should add the data for # this dimension if not has_another_value: if len(instance_list) < ( this_line_num_dim + 1 ): instance_list.append([]) if timestamp_is_timestamp: timestamp_for_dim = pd.DatetimeIndex( timestamp_for_dim ) instance_list[this_line_num_dim].append( pd.Series( index=timestamp_for_dim, data=values_for_dimension, ) ) this_line_num_dim += 1 timestamp_for_dim = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on " "line " + str(line_num + 1) + " ends with a ',' that " "is not followed by " "another tuple" ) elif has_another_dimension and class_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on " "line " + str(line_num + 1) + " ends with a ':' while " "it should list a class " "value" ) elif has_another_dimension and not class_labels: if len(instance_list) < (this_line_num_dim + 1): instance_list.append([]) instance_list[this_line_num_dim].append( pd.Series(dtype=np.float32) ) this_line_num_dim += 1 num_dimensions = this_line_num_dim # If this is the 1st line of data we have seen # then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dim if num_dimensions != this_line_num_dim: raise _TsFileParseException( "line " + str(line_num + 1) + " does not have the " "same number of " "dimensions as the " "previous line of " "data" ) # Check that we are not expecting some more data, # and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " ends with a ',' that is " "not followed by another " "tuple" ) elif has_another_dimension and class_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dim + 1) + " on line " + str(line_num + 1) + " ends with a ':' while it " "should list a class value" ) elif has_another_dimension and not class_labels: if len(instance_list) < (this_line_num_dim + 1): instance_list.append([]) instance_list[this_line_num_dim].append( pd.Series(dtype="object") ) this_line_num_dim += 1 num_dimensions = this_line_num_dim # If this is the 1st line of data we have seen then # note the dimensions if ( not has_another_value and num_dimensions != this_line_num_dim ): raise _TsFileParseException( "line " + str(line_num + 1) + " does not have the same " "number of dimensions as the " "previous line of data" ) # Check if we should have class values, and if so # that they are contained in those listed in the # metadata if class_labels and len(class_val_list) == 0: raise _TsFileParseException( "the cases have no associated class values" ) else: dimensions = line.split(":") # If first row then note the number of dimensions ( # that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if class_labels: num_dimensions -= 1 for _dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data # in represented in this line has this_line_num_dim = len(dimensions) if class_labels: this_line_num_dim -= 1 # All dimensions should be included for all series, # even if they are empty if this_line_num_dim != num_dimensions: raise _TsFileParseException( "inconsistent number of dimensions. " "Expecting " + str(num_dimensions) + " but have read " + str(this_line_num_dim) ) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series(dtype="object")) if class_labels: class_val_list.append(dimensions[num_dimensions].strip()) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data if metadata_started and not ( has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag ): raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data["dim_" + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if class_labels: return data, np.asarray(class_val_list) else: return data else: raise _TsFileParseException("empty file") #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." from fastai.data.external import URLs from fastdownload import download_url fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = _ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = _ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data from fastai.data.transforms import get_files PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'could not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if X_is_nan: warnings.warn('X contains nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if y_is_nan: warnings.warn('y contains nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _ts2dfV2(fname) X_train = _check_X(X_train) else: X_valid, y_valid = _ts2dfV2(fname) X_valid = _check_X(X_valid) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise _TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise _TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise _TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise _TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise _TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise _TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise _TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise _TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise _TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise _TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise _TsFileParseException("Empty file.") if len(col_names) == 0: raise _TsFileParseException("Missing attribute section.") if not found_data_section: raise _TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() nb_name = "012_data.external.ipynb" create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'couldn not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if not isinstance(X, np.ndarray): warnings.warn('X must be a np.ndarray') if X_is_nan: warnings.warn('X must not contain nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if not isinstance(y, np.ndarray): warnings.warn('y must be a np.ndarray') if y_is_nan: warnings.warn('y must not contain nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=True) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=True) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=True) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': id = 3902637 elif dsid == 'HouseholdPowerConsumption1': id = 3902704 elif dsid == 'HouseholdPowerConsumption2': id = 3902706 elif dsid == 'BenzeneConcentration': id = 3902673 elif dsid == 'BeijingPM25Quality': id = 3902671 elif dsid == 'BeijingPM10Quality': id = 3902667 elif dsid == 'LiveFuelMoistureContent': id = 3902716 elif dsid == 'FloodModeling1': id = 3902694 elif dsid == 'FloodModeling2': id = 3902696 elif dsid == 'FloodModeling3': id = 3902698 elif dsid == 'AustraliaRainfall': id = 3902654 elif dsid == 'PPGDalia': id = 3902728 elif dsid == 'IEEEPPG': id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': id = 3902688 elif dsid == 'NewsHeadlineSentiment': id = 3902718 elif dsid == 'NewsTitleSentiment': id = 3902726 elif dsid == 'Covid3Month': id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=4) except: warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=True) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=True, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except: warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=True) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=True) test_eq(len(ts), 70091) ts # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: decompress_from_url(url, target_dir=path, verbose=verbose) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=True, remove_from_disk=True) test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'could not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if X_is_nan: warnings.warn('X contains nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if y_is_nan: warnings.warn('y contains nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export # Fix to fastai issue #3485 (not deployed to pip yet) if not hasattr(pd.DataFrame,'_old_init'): pd.DataFrame._old_init = pd.DataFrame.__init__ @patch def __init__(self:pd.DataFrame, data=None, index=None, columns=None, dtype=None, copy=None): if data is not None and isinstance(data, Tensor): data = to_np(data) self._old_init(data, index=index, columns=columns, dtype=dtype, copy=copy) #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'couldn not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if not isinstance(X, np.ndarray): warnings.warn('X must be a np.ndarray') if X_is_nan: warnings.warn('X must not contain nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if not isinstance(y, np.ndarray): warnings.warn('y must be a np.ndarray') if y_is_nan: warnings.warn('y must not contain nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'couldn not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if not isinstance(X, np.ndarray): warnings.warn('X must be a np.ndarray') if X_is_nan: warnings.warn('X must not contain nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if not isinstance(y, np.ndarray): warnings.warn('y must be a np.ndarray') if y_is_nan: warnings.warn('y must not contain nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil import distutils from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." from fastai.data.external import URLs from fastdownload import download_url fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data from fastai.data.transforms import get_files PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'could not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if X_is_nan: warnings.warn('X contains nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if y_is_nan: warnings.warn('y contains nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() nb_name = "012_data.external.ipynb" create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'could not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if X_is_nan: warnings.warn('X contains nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if y_is_nan: warnings.warn('y contains nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____ ###Markdown External data> Helper functions used to download and extract common time series datasets. ###Code #export from tsai.imports import * from tsai.utils import * from tsai.data.validation import * #export from sktime.utils.data_io import load_from_tsfile_to_dataframe as ts2df from sktime.utils.validation.panel import check_X from sktime.utils.data_io import TsFileParseException #export from fastai.data.external import * from tqdm import tqdm import zipfile import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from numpy import distutils import distutils #export def decompress_from_url(url, target_dir=None, verbose=False): # Download try: pv("downloading data...", verbose) fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, fname) urlretrieve(url, tmpfile) pv("...data downloaded", verbose) # Decompress try: pv("decompressing data...", verbose) if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.unpack_archive(tmpfile, target_dir) shutil.rmtree(tmpdir) pv("...data decompressed", verbose) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not decompress file, aborting.\n") except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") #export from fastdownload import download_url def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4, verbose=False): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, dest=fname, timeout=timeout, show_progress=verbose) return fname # export def get_UCR_univariate_list(): return [ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'Beef', 'BeetleFly', 'BirdChicken', 'BME', 'Car', 'CBF', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'Earthquakes', 'ECG200', 'ECG5000', 'ECGFiveDays', 'ElectricDevices', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OliveOil', 'OSULeaf', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'PLAID', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ] test_eq(len(get_UCR_univariate_list()), 128) UTSC_datasets = get_UCR_univariate_list() UCR_univariate_list = get_UCR_univariate_list() #export def get_UCR_multivariate_list(): return [ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'EigenWorms', 'Epilepsy', 'ERing', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'Libras', 'LSST', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ] test_eq(len(get_UCR_multivariate_list()), 30) MTSC_datasets = get_UCR_multivariate_list() UCR_multivariate_list = get_UCR_multivariate_list() UCR_list = sorted(UCR_univariate_list + UCR_multivariate_list) classification_list = UCR_list TSC_datasets = classification_datasets = UCR_list len(UCR_list) #export def get_UCR_data(dsid, path='.', parent_dir='data/UCR', on_disk=True, mode='c', Xdtype='float32', ydtype=None, return_split=True, split_data=True, force_download=False, verbose=False): dsid_list = [ds for ds in UCR_list if ds.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a UCR dataset' dsid = dsid_list[0] return_split = return_split and split_data # keep return_split for compatibility. It will be replaced by split_data if dsid in ['InsectWingbeat']: warnings.warn(f'Be aware that download of the {dsid} dataset is very slow!') pv(f'Dataset: {dsid}', verbose) full_parent_dir = Path(path)/parent_dir full_tgt_dir = full_parent_dir/dsid # if not os.path.exists(full_tgt_dir): os.makedirs(full_tgt_dir) full_tgt_dir.parent.mkdir(parents=True, exist_ok=True) if force_download or not all([os.path.isfile(f'{full_tgt_dir}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): # Option A src_website = 'http://www.timeseriesclassification.com/Downloads' decompress_from_url(f'{src_website}/{dsid}.zip', target_dir=full_tgt_dir, verbose=verbose) if dsid == 'DuckDuckGeese': with zipfile.ZipFile(Path(f'{full_parent_dir}/DuckDuckGeese/DuckDuckGeese_ts.zip'), 'r') as zip_ref: zip_ref.extractall(Path(parent_dir)) if not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or not os.path.exists(full_tgt_dir/f'{dsid}_TRAIN.ts') or \ Path(full_tgt_dir/f'{dsid}_TRAIN.ts').stat().st_size == 0 or Path(full_tgt_dir/f'{dsid}_TEST.ts').stat().st_size == 0: print('It has not been possible to download the required files') if return_split: return None, None, None, None else: return None, None, None pv('loading ts files to dataframe...', verbose) X_train_df, y_train = ts2df(full_tgt_dir/f'{dsid}_TRAIN.ts') X_valid_df, y_valid = ts2df(full_tgt_dir/f'{dsid}_TEST.ts') pv('...ts files loaded', verbose) pv('preparing numpy arrays...', verbose) X_train_ = [] X_valid_ = [] for i in progress_bar(range(X_train_df.shape[-1]), display=verbose, leave=False): X_train_.append(stack_pad(X_train_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_valid_.append(stack_pad(X_valid_df[f'dim_{i}'])) # stack arrays even if they have different lengths X_train = np.transpose(np.stack(X_train_, axis=-1), (0, 2, 1)) X_valid = np.transpose(np.stack(X_valid_, axis=-1), (0, 2, 1)) X_train, X_valid = match_seq_len(X_train, X_valid) np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if return_split: if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if Xdtype is not None: X = X.astype(Xdtype) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_classification_data = get_UCR_data #hide PATH = Path('.') dsids = ['ECGFiveDays', 'AtrialFibrillation'] # univariate and multivariate for dsid in dsids: print(dsid) tgt_dir = PATH/f'data/UCR/{dsid}' if os.path.isdir(tgt_dir): shutil.rmtree(tgt_dir) test_eq(len(get_files(tgt_dir)), 0) # no file left X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir del X_train, y_train, X_valid, y_valid start = time.time() X_train, y_train, X_valid, y_valid = get_UCR_data(dsid) elapsed = time.time() - start test_eq(elapsed < 1, True) test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(len(get_files(tgt_dir, '.npy')), 6) test_eq(len(get_files(tgt_dir, '.npy')), len(get_files(tgt_dir))) # test no left file/ dir test_eq(X_train.ndim, 3) test_eq(y_train.ndim, 1) test_eq(X_valid.ndim, 3) test_eq(y_valid.ndim, 1) test_eq(X_train.dtype, np.float32) test_eq(X_train.__class__.__name__, 'memmap') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, on_disk=False) test_eq(X_train.__class__.__name__, 'ndarray') del X_train, y_train, X_valid, y_valid X_train, y_train, X_valid, y_valid = get_UCR_data('natops') dsid = 'natops' X_train, y_train, X_valid, y_valid = get_UCR_data(dsid, verbose=True) X, y, splits = get_UCR_data(dsid, split_data=False) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_eq(X[splits[0]], X_train) test_eq(y[splits[1]], y_valid) test_type(X, X_train) test_type(y, y_train) #export def check_data(X, y=None, splits=None, show_plot=True): try: X_is_nan = np.isnan(X).sum() except: X_is_nan = 'could not be checked' if X.ndim == 3: shape = f'[{X.shape[0]} samples x {X.shape[1]} features x {X.shape[-1]} timesteps]' print(f'X - shape: {shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') else: print(f'X - shape: {X.shape} type: {cls_name(X)} dtype:{X.dtype} isnan: {X_is_nan}') if X_is_nan: warnings.warn('X contains nan values') if y is not None: y_shape = y.shape y = y.ravel() if isinstance(y[0], str): n_classes = f'{len(np.unique(y))} ({len(y)//len(np.unique(y))} samples per class) {L(np.unique(y).tolist())}' y_is_nan = 'nan' in [c.lower() for c in np.unique(y)] print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} n_classes: {n_classes} isnan: {y_is_nan}') else: y_is_nan = np.isnan(y).sum() print(f'y - shape: {y_shape} type: {cls_name(y)} dtype:{y.dtype} isnan: {y_is_nan}') if y_is_nan: warnings.warn('y contains nan values') if splits is not None: _splits = get_splits_len(splits) overlap = check_splits_overlap(splits) print(f'splits - n_splits: {len(_splits)} shape: {_splits} overlap: {overlap}') if show_plot: plot_splits(splits) dsid = 'ECGFiveDays' X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) check_data(X, y, splits) check_data(X[:, 0], y, splits) y = y.astype(np.float32) check_data(X, y, splits) y[:10] = np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) splits = get_splits(y, 3) check_data(X, y, splits) check_data(X[:, 0], y, splits) y[:5]= np.nan check_data(X[:, 0], y, splits) X, y, splits = get_UCR_data(dsid, split_data=False, on_disk=False, force_download=False) #export # This code comes from https://github.com/ChangWeiTan/TSRegression. As of Jan 16th, 2021 there's no pip install available. # The following code is adapted from the python package sktime to read .ts file. class _TsFileParseException(Exception): """ Should be raised when parsing a .ts file and the format is incorrect. """ pass def _load_from_tsfile_to_dataframe2(full_file_path_and_name, return_separate_X_and_y=True, replace_missing_vals_with='NaN'): """Loads data from a .ts file into a Pandas DataFrame. Parameters ---------- full_file_path_and_name: str The full pathname of the .ts file to read. return_separate_X_and_y: bool true if X and Y values should be returned as separate Data Frames (X) and a numpy array (y), false otherwise. This is only relevant for data that replace_missing_vals_with: str The value that missing values in the text file should be replaced with prior to parsing. Returns ------- DataFrame, ndarray If return_separate_X_and_y then a tuple containing a DataFrame and a numpy array containing the relevant time-series and corresponding class values. DataFrame If not return_separate_X_and_y then a single DataFrame containing all time-series and (if relevant) a column "class_vals" the associated class values. """ # Initialize flags and variables used when parsing the file metadata_started = False data_started = False has_problem_name_tag = False has_timestamps_tag = False has_univariate_tag = False has_class_labels_tag = False has_target_labels_tag = False has_data_tag = False previous_timestamp_was_float = None previous_timestamp_was_int = None previous_timestamp_was_timestamp = None num_dimensions = None is_first_case = True instance_list = [] class_val_list = [] line_num = 0 # Parse the file # print(full_file_path_and_name) with open(full_file_path_and_name, 'r', encoding='utf-8') as file: for line in tqdm(file): # print(".", end='') # Strip white space from start/end of line and change to lowercase for use below line = line.strip().lower() # Empty lines are valid at any point in a file if line: # Check if this line contains metadata # Please note that even though metadata is stored in this function it is not currently published externally if line.startswith("@problemname"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("problemname tag requires an associated value") problem_name = line[len("@problemname") + 1:] has_problem_name_tag = True metadata_started = True elif line.startswith("@timestamps"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("timestamps tag requires an associated Boolean value") elif tokens[1] == "true": timestamps = True elif tokens[1] == "false": timestamps = False else: raise _TsFileParseException("invalid timestamps value") has_timestamps_tag = True metadata_started = True elif line.startswith("@univariate"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len != 2: raise _TsFileParseException("univariate tag requires an associated Boolean value") elif tokens[1] == "true": univariate = True elif tokens[1] == "false": univariate = False else: raise _TsFileParseException("invalid univariate value") has_univariate_tag = True metadata_started = True elif line.startswith("@classlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("classlabel tag requires an associated Boolean value") if tokens[1] == "true": class_labels = True elif tokens[1] == "false": class_labels = False else: raise _TsFileParseException("invalid classLabel value") # Check if we have any associated class values if token_len == 2 and class_labels: raise _TsFileParseException("if the classlabel tag is true then class values must be supplied") has_class_labels_tag = True class_label_list = [token.strip() for token in tokens[2:]] metadata_started = True elif line.startswith("@targetlabel"): # Check that the data has not started if data_started: raise _TsFileParseException("metadata must come before data") # Check that the associated value is valid tokens = line.split(' ') token_len = len(tokens) if token_len == 1: raise _TsFileParseException("targetlabel tag requires an associated Boolean value") if tokens[1] == "true": target_labels = True elif tokens[1] == "false": target_labels = False else: raise _TsFileParseException("invalid targetLabel value") has_target_labels_tag = True class_val_list = [] metadata_started = True # Check if this line contains the start of data elif line.startswith("@data"): if line != "@data": raise _TsFileParseException("data tag should not have an associated value") if data_started and not metadata_started: raise _TsFileParseException("metadata must come before data") else: has_data_tag = True data_started = True # If the 'data tag has been found then metadata has been parsed and data can be loaded elif data_started: # Check that a full set of metadata has been provided incomplete_regression_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_target_labels_tag or not has_data_tag incomplete_classification_meta_data = not has_problem_name_tag or not has_timestamps_tag or not has_univariate_tag or not has_class_labels_tag or not has_data_tag if incomplete_regression_meta_data and incomplete_classification_meta_data: raise _TsFileParseException("a full set of metadata has not been provided before the data") # Replace any missing values with the value specified line = line.replace("?", replace_missing_vals_with) # Check if we dealing with data that has timestamps if timestamps: # We're dealing with timestamps so cannot just split line on ':' as timestamps may contain one has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] this_line_num_dimensions = 0 line_len = len(line) char_num = 0 while char_num < line_len: # Move through any spaces while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # See if there is any more data to read in or if we should validate that read thus far if char_num < line_len: # See if we have an empty dimension (i.e. no values) if line[char_num] == ":": if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 has_another_value = False has_another_dimension = True timestamps_for_dimension = [] values_for_dimension = [] char_num += 1 else: # Check if we have reached a class label if line[char_num] != "(" and target_labels: class_val = line[char_num:].strip() # if class_val not in class_val_list: # raise _TsFileParseException( # "the class value '" + class_val + "' on line " + str( # line_num + 1) + " is not valid") class_val_list.append(float(class_val)) char_num = line_len has_another_value = False has_another_dimension = False timestamps_for_dimension = [] values_for_dimension = [] else: # Read in the data contained within the next tuple if line[char_num] != "(" and not target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not start with a '('") char_num += 1 tuple_data = "" while char_num < line_len and line[char_num] != ")": tuple_data += line[char_num] char_num += 1 if char_num >= line_len or line[char_num] != ")": raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " does not end with a ')'") # Read in any spaces immediately after the current tuple char_num += 1 while char_num < line_len and str.isspace(line[char_num]): char_num += 1 # Check if there is another value or dimension to process after this tuple if char_num >= line_len: has_another_value = False has_another_dimension = False elif line[char_num] == ",": has_another_value = True has_another_dimension = False elif line[char_num] == ":": has_another_value = False has_another_dimension = True char_num += 1 # Get the numeric value for the tuple by reading from the end of the tuple data backwards to the last comma last_comma_index = tuple_data.rfind(',') if last_comma_index == -1: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has no comma inside of it") try: value = tuple_data[last_comma_index + 1:] value = float(value) except ValueError: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that does not have a valid numeric value") # Check the type of timestamp that we have timestamp = tuple_data[0: last_comma_index] try: timestamp = int(timestamp) timestamp_is_int = True timestamp_is_timestamp = False except ValueError: timestamp_is_int = False if not timestamp_is_int: try: timestamp = float(timestamp) timestamp_is_float = True timestamp_is_timestamp = False except ValueError: timestamp_is_float = False if not timestamp_is_int and not timestamp_is_float: try: timestamp = timestamp.strip() timestamp_is_timestamp = True except ValueError: timestamp_is_timestamp = False # Make sure that the timestamps in the file (not just this dimension or case) are consistent if not timestamp_is_timestamp and not timestamp_is_int and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains a tuple that has an invalid timestamp '" + timestamp + "'") if previous_timestamp_was_float is not None and previous_timestamp_was_float and not timestamp_is_float: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_int is not None and previous_timestamp_was_int and not timestamp_is_int: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") if previous_timestamp_was_timestamp is not None and previous_timestamp_was_timestamp and not timestamp_is_timestamp: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " contains tuples where the timestamp format is inconsistent") # Store the values timestamps_for_dimension += [timestamp] values_for_dimension += [value] # If this was our first tuple then we store the type of timestamp we had if previous_timestamp_was_timestamp is None and timestamp_is_timestamp: previous_timestamp_was_timestamp = True previous_timestamp_was_int = False previous_timestamp_was_float = False if previous_timestamp_was_int is None and timestamp_is_int: previous_timestamp_was_timestamp = False previous_timestamp_was_int = True previous_timestamp_was_float = False if previous_timestamp_was_float is None and timestamp_is_float: previous_timestamp_was_timestamp = False previous_timestamp_was_int = False previous_timestamp_was_float = True # See if we should add the data for this dimension if not has_another_value: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) if timestamp_is_timestamp: timestamps_for_dimension = pd.DatetimeIndex(timestamps_for_dimension) instance_list[this_line_num_dimensions].append( pd.Series(index=timestamps_for_dimension, data=values_for_dimension)) this_line_num_dimensions += 1 timestamps_for_dimension = [] values_for_dimension = [] elif has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series(dtype=np.float32)) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and not has_another_dimension: if num_dimensions is None: num_dimensions = this_line_num_dimensions if num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check that we are not expecting some more data, and if not, store that processed above if has_another_value: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ',' that is not followed by another tuple") elif has_another_dimension and target_labels: raise _TsFileParseException( "dimension " + str(this_line_num_dimensions + 1) + " on line " + str( line_num + 1) + " ends with a ':' while it should list a class value") elif has_another_dimension and not target_labels: if len(instance_list) < (this_line_num_dimensions + 1): instance_list.append([]) instance_list[this_line_num_dimensions].append(pd.Series()) this_line_num_dimensions += 1 num_dimensions = this_line_num_dimensions # If this is the 1st line of data we have seen then note the dimensions if not has_another_value and num_dimensions != this_line_num_dimensions: raise _TsFileParseException("line " + str( line_num + 1) + " does not have the same number of dimensions as the previous line of data") # Check if we should have class values, and if so that they are contained in those listed in the metadata if target_labels and len(class_val_list) == 0: raise _TsFileParseException("the cases have no associated class values") else: dimensions = line.split(":") # If first row then note the number of dimensions (that must be the same for all cases) if is_first_case: num_dimensions = len(dimensions) if target_labels: num_dimensions -= 1 for dim in range(0, num_dimensions): instance_list.append([]) is_first_case = False # See how many dimensions that the case whose data in represented in this line has this_line_num_dimensions = len(dimensions) if target_labels: this_line_num_dimensions -= 1 # All dimensions should be included for all series, even if they are empty if this_line_num_dimensions != num_dimensions: raise _TsFileParseException("inconsistent number of dimensions. Expecting " + str( num_dimensions) + " but have read " + str(this_line_num_dimensions)) # Process the data for each dimension for dim in range(0, num_dimensions): dimension = dimensions[dim].strip() if dimension: data_series = dimension.split(",") data_series = [float(i) for i in data_series] instance_list[dim].append(pd.Series(data_series)) else: instance_list[dim].append(pd.Series()) if target_labels: class_val_list.append(float(dimensions[num_dimensions].strip())) line_num += 1 # Check that the file was not empty if line_num: # Check that the file contained both metadata and data complete_regression_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_target_labels_tag and has_data_tag complete_classification_meta_data = has_problem_name_tag and has_timestamps_tag and has_univariate_tag and has_class_labels_tag and has_data_tag if metadata_started and not complete_regression_meta_data and not complete_classification_meta_data: raise _TsFileParseException("metadata incomplete") elif metadata_started and not data_started: raise _TsFileParseException("file contained metadata but no data") elif metadata_started and data_started and len(instance_list) == 0: raise _TsFileParseException("file contained metadata but no data") # Create a DataFrame from the data parsed above data = pd.DataFrame(dtype=np.float32) for dim in range(0, num_dimensions): data['dim_' + str(dim)] = instance_list[dim] # Check if we should return any associated class labels separately if target_labels: if return_separate_X_and_y: return data, np.asarray(class_val_list) else: data['class_vals'] = pd.Series(class_val_list) return data else: return data else: raise _TsFileParseException("empty file") #export def get_Monash_regression_list(): return sorted([ "AustraliaRainfall", "HouseholdPowerConsumption1", "HouseholdPowerConsumption2", "BeijingPM25Quality", "BeijingPM10Quality", "Covid3Month", "LiveFuelMoistureContent", "FloodModeling1", "FloodModeling2", "FloodModeling3", "AppliancesEnergy", "BenzeneConcentration", "NewsHeadlineSentiment", "NewsTitleSentiment", "IEEEPPG", #"BIDMC32RR", "BIDMC32HR", "BIDMC32SpO2", "PPGDalia" # Cannot be downloaded ]) Monash_regression_list = get_Monash_regression_list() regression_list = Monash_regression_list TSR_datasets = regression_datasets = regression_list len(Monash_regression_list) #export def get_Monash_regression_data(dsid, path='./data/Monash', on_disk=True, mode='c', Xdtype='float32', ydtype=None, split_data=True, force_download=False, verbose=False, timeout=4): dsid_list = [rd for rd in Monash_regression_list if rd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a Monash dataset' dsid = dsid_list[0] full_tgt_dir = Path(path)/dsid pv(f'Dataset: {dsid}', verbose) if force_download or not all([os.path.isfile(f'{path}/{dsid}/{fn}.npy') for fn in ['X_train', 'X_valid', 'y_train', 'y_valid', 'X', 'y']]): if dsid == 'AppliancesEnergy': dset_id = 3902637 elif dsid == 'HouseholdPowerConsumption1': dset_id = 3902704 elif dsid == 'HouseholdPowerConsumption2': dset_id = 3902706 elif dsid == 'BenzeneConcentration': dset_id = 3902673 elif dsid == 'BeijingPM25Quality': dset_id = 3902671 elif dsid == 'BeijingPM10Quality': dset_id = 3902667 elif dsid == 'LiveFuelMoistureContent': dset_id = 3902716 elif dsid == 'FloodModeling1': dset_id = 3902694 elif dsid == 'FloodModeling2': dset_id = 3902696 elif dsid == 'FloodModeling3': dset_id = 3902698 elif dsid == 'AustraliaRainfall': dset_id = 3902654 elif dsid == 'PPGDalia': dset_id = 3902728 elif dsid == 'IEEEPPG': dset_id = 3902710 elif dsid == 'BIDMCRR' or dsid == 'BIDM32CRR': dset_id = 3902685 elif dsid == 'BIDMCHR' or dsid == 'BIDM32CHR': dset_id = 3902676 elif dsid == 'BIDMCSpO2' or dsid == 'BIDM32CSpO2': dset_id = 3902688 elif dsid == 'NewsHeadlineSentiment': dset_id = 3902718 elif dsid == 'NewsTitleSentiment': dset_id= 3902726 elif dsid == 'Covid3Month': dset_id = 3902690 for split in ['TRAIN', 'TEST']: url = f"https://zenodo.org/record/{dset_id}/files/{dsid}_{split}.ts" fname = Path(path)/f'{dsid}/{dsid}_{split}.ts' pv('downloading data...', verbose) try: download_data(url, fname, c_key='archive', force_download=force_download, timeout=timeout) except Exception as inst: print(inst) warnings.warn(f'Cannot download {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None pv('...download complete', verbose) try: if split == 'TRAIN': X_train, y_train = _load_from_tsfile_to_dataframe2(fname) X_train = check_X(X_train, coerce_to_numpy=True) else: X_valid, y_valid = _load_from_tsfile_to_dataframe2(fname) X_valid = check_X(X_valid, coerce_to_numpy=True) except Exception as inst: print(inst) warnings.warn(f'Cannot create numpy arrays for {dsid} dataset') if split_data: return None, None, None, None else: return None, None, None np.save(f'{full_tgt_dir}/X_train.npy', X_train) np.save(f'{full_tgt_dir}/y_train.npy', y_train) np.save(f'{full_tgt_dir}/X_valid.npy', X_valid) np.save(f'{full_tgt_dir}/y_valid.npy', y_valid) np.save(f'{full_tgt_dir}/X.npy', concat(X_train, X_valid)) np.save(f'{full_tgt_dir}/y.npy', concat(y_train, y_valid)) del X_train, X_valid, y_train, y_valid delete_all_in_dir(full_tgt_dir, exception='.npy') pv('...numpy arrays correctly saved', verbose) mmap_mode = mode if on_disk else None X_train = np.load(f'{full_tgt_dir}/X_train.npy', mmap_mode=mmap_mode) y_train = np.load(f'{full_tgt_dir}/y_train.npy', mmap_mode=mmap_mode) X_valid = np.load(f'{full_tgt_dir}/X_valid.npy', mmap_mode=mmap_mode) y_valid = np.load(f'{full_tgt_dir}/y_valid.npy', mmap_mode=mmap_mode) if Xdtype is not None: X_train = X_train.astype(Xdtype) X_valid = X_valid.astype(Xdtype) if ydtype is not None: y_train = y_train.astype(ydtype) y_valid = y_valid.astype(ydtype) if split_data: if verbose: print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_valid.shape) print('y_valid:', y_valid.shape, '\n') return X_train, y_train, X_valid, y_valid else: X = np.load(f'{full_tgt_dir}/X.npy', mmap_mode=mmap_mode) y = np.load(f'{full_tgt_dir}/y.npy', mmap_mode=mmap_mode) splits = get_predefined_splits(X_train, X_valid) if verbose: print('X :', X .shape) print('y :', y .shape) print('splits :', coll_repr(splits[0]), coll_repr(splits[1]), '\n') return X, y, splits get_regression_data = get_Monash_regression_data dsid = "Covid3Month" X_train, y_train, X_valid, y_valid = get_Monash_regression_data(dsid, on_disk=False, split_data=True, force_download=False) X, y, splits = get_Monash_regression_data(dsid, on_disk=True, split_data=False, force_download=False, verbose=True) if X_train is not None: test_eq(X_train.shape, (140, 1, 84)) if X is not None: test_eq(X.shape, (201, 1, 84)) #export def get_forecasting_list(): return sorted([ "Sunspots", "Weather" ]) forecasting_time_series = get_forecasting_list() #export def get_forecasting_time_series(dsid, path='./data/forecasting/', force_download=False, verbose=True, **kwargs): dsid_list = [fd for fd in forecasting_time_series if fd.lower() == dsid.lower()] assert len(dsid_list) > 0, f'{dsid} is not a forecasting dataset' dsid = dsid_list[0] if dsid == 'Weather': full_tgt_dir = Path(path)/f'{dsid}.csv.zip' else: full_tgt_dir = Path(path)/f'{dsid}.csv' pv(f'Dataset: {dsid}', verbose) if dsid == 'Sunspots': url = "https://storage.googleapis.com/laurencemoroney-blog.appspot.com/Sunspots.csv" elif dsid == 'Weather': url = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip' try: pv("downloading data...", verbose) if force_download: try: os.remove(full_tgt_dir) except OSError: pass download_data(url, full_tgt_dir, force_download=force_download, **kwargs) pv(f"...data downloaded. Path = {full_tgt_dir}", verbose) if dsid == 'Sunspots': df = pd.read_csv(full_tgt_dir, parse_dates=['Date'], index_col=['Date']) return df['Monthly Mean Total Sunspot Number'].asfreq('1M').to_frame() elif dsid == 'Weather': # This code comes from a great Keras time-series tutorial notebook (https://www.tensorflow.org/tutorials/structured_data/time_series) df = pd.read_csv(full_tgt_dir) df = df[5::6] # slice [start:stop:step], starting from index 5 take every 6th record. date_time = pd.to_datetime(df.pop('Date Time'), format='%d.%m.%Y %H:%M:%S') # remove error (negative wind) wv = df['wv (m/s)'] bad_wv = wv == -9999.0 wv[bad_wv] = 0.0 max_wv = df['max. wv (m/s)'] bad_max_wv = max_wv == -9999.0 max_wv[bad_max_wv] = 0.0 wv = df.pop('wv (m/s)') max_wv = df.pop('max. wv (m/s)') # Convert to radians. wd_rad = df.pop('wd (deg)')*np.pi / 180 # Calculate the wind x and y components. df['Wx'] = wv*np.cos(wd_rad) df['Wy'] = wv*np.sin(wd_rad) # Calculate the max wind x and y components. df['max Wx'] = max_wv*np.cos(wd_rad) df['max Wy'] = max_wv*np.sin(wd_rad) timestamp_s = date_time.map(datetime.timestamp) day = 24*60*60 year = (365.2425)*day df['Day sin'] = np.sin(timestamp_s * (2 * np.pi / day)) df['Day cos'] = np.cos(timestamp_s * (2 * np.pi / day)) df['Year sin'] = np.sin(timestamp_s * (2 * np.pi / year)) df['Year cos'] = np.cos(timestamp_s * (2 * np.pi / year)) df.reset_index(drop=True, inplace=True) return df else: return full_tgt_dir except Exception as inst: print(inst) warnings.warn(f"Cannot download {dsid} dataset") return ts = get_forecasting_time_series("sunspots", force_download=False) test_eq(len(ts), 3235) ts ts = get_forecasting_time_series("weather", force_download=False) if ts is not None: test_eq(len(ts), 70091) print(ts) # export Monash_forecasting_list = ['m1_yearly_dataset', 'm1_quarterly_dataset', 'm1_monthly_dataset', 'm3_yearly_dataset', 'm3_quarterly_dataset', 'm3_monthly_dataset', 'm3_other_dataset', 'm4_yearly_dataset', 'm4_quarterly_dataset', 'm4_monthly_dataset', 'm4_weekly_dataset', 'm4_daily_dataset', 'm4_hourly_dataset', 'tourism_yearly_dataset', 'tourism_quarterly_dataset', 'tourism_monthly_dataset', 'nn5_daily_dataset_with_missing_values', 'nn5_daily_dataset_without_missing_values', 'nn5_weekly_dataset', 'cif_2016_dataset', 'kaggle_web_traffic_dataset_with_missing_values', 'kaggle_web_traffic_dataset_without_missing_values', 'kaggle_web_traffic_weekly_dataset', 'solar_10_minutes_dataset', 'solar_weekly_dataset', 'electricity_hourly_dataset', 'electricity_weekly_dataset', 'london_smart_meters_dataset_with_missing_values', 'london_smart_meters_dataset_without_missing_values', 'wind_farms_minutely_dataset_with_missing_values', 'wind_farms_minutely_dataset_without_missing_values', 'car_parts_dataset_with_missing_values', 'car_parts_dataset_without_missing_values', 'dominick_dataset', 'fred_md_dataset', 'traffic_hourly_dataset', 'traffic_weekly_dataset', 'pedestrian_counts_dataset', 'hospital_dataset', 'covid_deaths_dataset', 'kdd_cup_2018_dataset_with_missing_values', 'kdd_cup_2018_dataset_without_missing_values', 'weather_dataset', 'sunspot_dataset_with_missing_values', 'sunspot_dataset_without_missing_values', 'saugeenday_dataset', 'us_births_dataset', 'elecdemand_dataset', 'solar_4_seconds_dataset', 'wind_4_seconds_dataset', 'Sunspots', 'Weather'] forecasting_list = Monash_forecasting_list # export ## Original code available at: https://github.com/rakshitha123/TSForecasting # This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in # the time series forecasting research space. # The benchmark datasets are available at: https://zenodo.org/communities/forecasting. For more details, please refer to our website: # https://forecastingdata.org/ and paper: https://arxiv.org/abs/2105.06643. # Citation: # @misc{godahewa2021monash, # author="Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", # title="Monash Time Series Forecasting Archive", # howpublished ="\url{https://arxiv.org/abs/2105.06643}", # year="2021" # } # Converts the contents in a .tsf file into a dataframe and returns it along with other meta-data of the dataset: frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths # # Parameters # full_file_path_and_name - complete .tsf file path # replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe # value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe def convert_tsf_to_dataframe(full_file_path_and_name, replace_missing_vals_with = 'NaN', value_column_name = "series_value"): col_names = [] col_types = [] all_data = {} line_count = 0 frequency = None forecast_horizon = None contain_missing_values = None contain_equal_length = None found_data_tag = False found_data_section = False started_reading_data_section = False with open(full_file_path_and_name, 'r', encoding='cp1252') as file: for line in file: # Strip white space from start/end of line line = line.strip() if line: if line.startswith("@"): # Read meta-data if not line.startswith("@data"): line_content = line.split(" ") if line.startswith("@attribute"): if (len(line_content) != 3): # Attributes have both name and type raise TsFileParseException("Invalid meta-data specification.") col_names.append(line_content[1]) col_types.append(line_content[2]) else: if len(line_content) != 2: # Other meta-data have only values raise TsFileParseException("Invalid meta-data specification.") if line.startswith("@frequency"): frequency = line_content[1] elif line.startswith("@horizon"): forecast_horizon = int(line_content[1]) elif line.startswith("@missing"): contain_missing_values = bool(distutils.util.strtobool(line_content[1])) elif line.startswith("@equallength"): contain_equal_length = bool(distutils.util.strtobool(line_content[1])) else: if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") found_data_tag = True elif not line.startswith("#"): if len(col_names) == 0: raise TsFileParseException("Missing attribute section. Attribute section must come before data.") elif not found_data_tag: raise TsFileParseException("Missing @data tag.") else: if not started_reading_data_section: started_reading_data_section = True found_data_section = True all_series = [] for col in col_names: all_data[col] = [] full_info = line.split(":") if len(full_info) != (len(col_names) + 1): raise TsFileParseException("Missing attributes/values in series.") series = full_info[len(full_info) - 1] series = series.split(",") if(len(series) == 0): raise TsFileParseException("A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol") numeric_series = [] for val in series: if val == "?": numeric_series.append(replace_missing_vals_with) else: numeric_series.append(float(val)) if (numeric_series.count(replace_missing_vals_with) == len(numeric_series)): raise TsFileParseException("All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series.") all_series.append(pd.Series(numeric_series).array) for i in range(len(col_names)): att_val = None if col_types[i] == "numeric": att_val = int(full_info[i]) elif col_types[i] == "string": att_val = str(full_info[i]) elif col_types[i] == "date": att_val = datetime.strptime(full_info[i], '%Y-%m-%d %H-%M-%S') else: raise TsFileParseException("Invalid attribute type.") # Currently, the code supports only numeric, string and date types. Extend this as required. if(att_val == None): raise TsFileParseException("Invalid attribute value.") else: all_data[col_names[i]].append(att_val) line_count = line_count + 1 if line_count == 0: raise TsFileParseException("Empty file.") if len(col_names) == 0: raise TsFileParseException("Missing attribute section.") if not found_data_section: raise TsFileParseException("Missing series information under data section.") all_data[value_column_name] = all_series loaded_data = pd.DataFrame(all_data) return loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length # export def get_Monash_forecasting_data(dsid, path='./data/forecasting/', force_download=False, remove_from_disk=False, verbose=True): pv(f'Dataset: {dsid}', verbose) dsid = dsid.lower() assert dsid in Monash_forecasting_list, f'{dsid} not available in Monash_forecasting_list' if dsid == 'm1_yearly_dataset': url = 'https://zenodo.org/record/4656193/files/m1_yearly_dataset.zip' elif dsid == 'm1_quarterly_dataset': url = 'https://zenodo.org/record/4656154/files/m1_quarterly_dataset.zip' elif dsid == 'm1_monthly_dataset': url = 'https://zenodo.org/record/4656159/files/m1_monthly_dataset.zip' elif dsid == 'm3_yearly_dataset': url = 'https://zenodo.org/record/4656222/files/m3_yearly_dataset.zip' elif dsid == 'm3_quarterly_dataset': url = 'https://zenodo.org/record/4656262/files/m3_quarterly_dataset.zip' elif dsid == 'm3_monthly_dataset': url = 'https://zenodo.org/record/4656298/files/m3_monthly_dataset.zip' elif dsid == 'm3_other_dataset': url = 'https://zenodo.org/record/4656335/files/m3_other_dataset.zip' elif dsid == 'm4_yearly_dataset': url = 'https://zenodo.org/record/4656379/files/m4_yearly_dataset.zip' elif dsid == 'm4_quarterly_dataset': url = 'https://zenodo.org/record/4656410/files/m4_quarterly_dataset.zip' elif dsid == 'm4_monthly_dataset': url = 'https://zenodo.org/record/4656480/files/m4_monthly_dataset.zip' elif dsid == 'm4_weekly_dataset': url = 'https://zenodo.org/record/4656522/files/m4_weekly_dataset.zip' elif dsid == 'm4_daily_dataset': url = 'https://zenodo.org/record/4656548/files/m4_daily_dataset.zip' elif dsid == 'm4_hourly_dataset': url = 'https://zenodo.org/record/4656589/files/m4_hourly_dataset.zip' elif dsid == 'tourism_yearly_dataset': url = 'https://zenodo.org/record/4656103/files/tourism_yearly_dataset.zip' elif dsid == 'tourism_quarterly_dataset': url = 'https://zenodo.org/record/4656093/files/tourism_quarterly_dataset.zip' elif dsid == 'tourism_monthly_dataset': url = 'https://zenodo.org/record/4656096/files/tourism_monthly_dataset.zip' elif dsid == 'nn5_daily_dataset_with_missing_values': url = 'https://zenodo.org/record/4656110/files/nn5_daily_dataset_with_missing_values.zip' elif dsid == 'nn5_daily_dataset_without_missing_values': url = 'https://zenodo.org/record/4656117/files/nn5_daily_dataset_without_missing_values.zip' elif dsid == 'nn5_weekly_dataset': url = 'https://zenodo.org/record/4656125/files/nn5_weekly_dataset.zip' elif dsid == 'cif_2016_dataset': url = 'https://zenodo.org/record/4656042/files/cif_2016_dataset.zip' elif dsid == 'kaggle_web_traffic_dataset_with_missing_values': url = 'https://zenodo.org/record/4656080/files/kaggle_web_traffic_dataset_with_missing_values.zip' elif dsid == 'kaggle_web_traffic_dataset_without_missing_values': url = 'https://zenodo.org/record/4656075/files/kaggle_web_traffic_dataset_without_missing_values.zip' elif dsid == 'kaggle_web_traffic_weekly': url = 'https://zenodo.org/record/4656664/files/kaggle_web_traffic_weekly_dataset.zip' elif dsid == 'solar_10_minutes_dataset': url = 'https://zenodo.org/record/4656144/files/solar_10_minutes_dataset.zip' elif dsid == 'solar_weekly_dataset': url = 'https://zenodo.org/record/4656151/files/solar_weekly_dataset.zip' elif dsid == 'electricity_hourly_dataset': url = 'https://zenodo.org/record/4656140/files/electricity_hourly_dataset.zip' elif dsid == 'electricity_weekly_dataset': url = 'https://zenodo.org/record/4656141/files/electricity_weekly_dataset.zip' elif dsid == 'london_smart_meters_dataset_with_missing_values': url = 'https://zenodo.org/record/4656072/files/london_smart_meters_dataset_with_missing_values.zip' elif dsid == 'london_smart_meters_dataset_without_missing_values': url = 'https://zenodo.org/record/4656091/files/london_smart_meters_dataset_without_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_with_missing_values': url = 'https://zenodo.org/record/4654909/files/wind_farms_minutely_dataset_with_missing_values.zip' elif dsid == 'wind_farms_minutely_dataset_without_missing_values': url = 'https://zenodo.org/record/4654858/files/wind_farms_minutely_dataset_without_missing_values.zip' elif dsid == 'car_parts_dataset_with_missing_values': url = 'https://zenodo.org/record/4656022/files/car_parts_dataset_with_missing_values.zip' elif dsid == 'car_parts_dataset_without_missing_values': url = 'https://zenodo.org/record/4656021/files/car_parts_dataset_without_missing_values.zip' elif dsid == 'dominick_dataset': url = 'https://zenodo.org/record/4654802/files/dominick_dataset.zip' elif dsid == 'fred_md_dataset': url = 'https://zenodo.org/record/4654833/files/fred_md_dataset.zip' elif dsid == 'traffic_hourly_dataset': url = 'https://zenodo.org/record/4656132/files/traffic_hourly_dataset.zip' elif dsid == 'traffic_weekly_dataset': url = 'https://zenodo.org/record/4656135/files/traffic_weekly_dataset.zip' elif dsid == 'pedestrian_counts_dataset': url = 'https://zenodo.org/record/4656626/files/pedestrian_counts_dataset.zip' elif dsid == 'hospital_dataset': url = 'https://zenodo.org/record/4656014/files/hospital_dataset.zip' elif dsid == 'covid_deaths_dataset': url = 'https://zenodo.org/record/4656009/files/covid_deaths_dataset.zip' elif dsid == 'kdd_cup_2018_dataset_with_missing_values': url = 'https://zenodo.org/record/4656719/files/kdd_cup_2018_dataset_with_missing_values.zip' elif dsid == 'kdd_cup_2018_dataset_without_missing_values': url = 'https://zenodo.org/record/4656756/files/kdd_cup_2018_dataset_without_missing_values.zip' elif dsid == 'weather_dataset': url = 'https://zenodo.org/record/4654822/files/weather_dataset.zip' elif dsid == 'sunspot_dataset_with_missing_values': url = 'https://zenodo.org/record/4654773/files/sunspot_dataset_with_missing_values.zip' elif dsid == 'sunspot_dataset_without_missing_values': url = 'https://zenodo.org/record/4654722/files/sunspot_dataset_without_missing_values.zip' elif dsid == 'saugeenday_dataset': url = 'https://zenodo.org/record/4656058/files/saugeenday_dataset.zip' elif dsid == 'us_births_dataset': url = 'https://zenodo.org/record/4656049/files/us_births_dataset.zip' elif dsid == 'elecdemand_dataset': url = 'https://zenodo.org/record/4656069/files/elecdemand_dataset.zip' elif dsid == 'solar_4_seconds_dataset': url = 'https://zenodo.org/record/4656027/files/solar_4_seconds_dataset.zip' elif dsid == 'wind_4_seconds_dataset': url = 'https://zenodo.org/record/4656032/files/wind_4_seconds_dataset.zip' path = Path(path) full_path = path/f'{dsid}.tsf' if not full_path.exists() or force_download: try: decompress_from_url(url, target_dir=path, verbose=verbose) except Exception as inst: print(inst) pv("converting dataframe to numpy array...", verbose) data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe(full_path) X = to3d(stack_pad(data['series_value'])) pv("...dataframe converted to numpy array", verbose) pv(f'\nX.shape: {X.shape}', verbose) pv(f'freq: {frequency}', verbose) pv(f'forecast_horizon: {forecast_horizon}', verbose) pv(f'contain_missing_values: {contain_missing_values}', verbose) pv(f'contain_equal_length: {contain_equal_length}', verbose=verbose) if remove_from_disk: os.remove(full_path) return X get_forecasting_data = get_Monash_forecasting_data dsid = 'm1_yearly_dataset' X = get_Monash_forecasting_data(dsid, force_download=False) if X is not None: test_eq(X.shape, (181, 1, 58)) #hide from tsai.imports import create_scripts from tsai.export import get_nb_name nb_name = get_nb_name() create_scripts(nb_name); ###Output _____no_output_____
Lab_4.ipynb
###Markdown Generalized Linear Regression Import and Prepare the Data Pandas provides excellent data reading and querying module,dataframe, which allows you to import structured data and perform SQL-like queries. Here we imported some house price records from Trulia. For more about extracting data from Trulia, please check my previous tutorial. We used the house prices as the dependent variable and the lot size, house area, the number of bedrooms and the number of bathrooms as the independent variables. ###Code import sklearn from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt %matplotlib inline import pandas import numpy as np df = pandas.read_excel('house_price.xlsx') # combine multipl columns into a 2D array X = np.column_stack((df.lot_size,df.area,df.bedroom,df.bathroom)) y = df.price print (X[:10]) #split data for training and testing X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3 , random_state=3) ###Output [[ 10018 1541 3 2] [ 8712 1810 4 2] [ 13504 1456 3 2] [ 10130 2903 5 4] [ 18295 2616 3 2] [204732 3850 3 2] [ 9147 1000 3 1] [ 2300 920 2 2] [ 13939 2705 3 3] [ 2291 1440 4 3]] ###Markdown Ordinary Least Squares We used a multiple linear regression model to learn the data and test the R squares on the training data and the test data. ###Code from sklearn.linear_model import LinearRegression lr = LinearRegression().fit(X_train, y_train) print("lr.coef_: {}".format(lr.coef_)) print("lr.intercept_: {}".format(lr.intercept_)) print("Training R Square: {:.2f}".format(lr.score(X_train, y_train))) print("Test R Square: {:.2f}".format(lr.score(X_test, y_test))) ###Output lr.coef_: [2.12812203e-01 4.09817896e+01 1.34769478e+04 4.47428552e+04] lr.intercept_: 16022.12534700043 Training R Square: 0.96 Test R Square: 0.71 ###Markdown The model reported the coefficients of all features, and the R square on the training data is good. However, the R square of the testing data is much lower, indicating an overfitting situation. Ridge Regression Ridge Regression reduces the complexity of linear models by imposing a penalty on the size of coefficients to push all coefficients close to 0. ###Code from sklearn.linear_model import Ridge ridge = Ridge().fit(X_train, y_train) print("Training R Square: {:.2f}".format(ridge.score(X_train, y_train))) print("Test R Square: {:.2f}".format(ridge.score(X_test, y_test))) ###Output Training R Square: 0.96 Test R Square: 0.72 ###Markdown We can increase the alpha to push all coefficients closer to 0. ###Code ridge10 = Ridge(alpha=10).fit(X_train, y_train) # set different aphpa print("Training R Square: {:.2f}".format(ridge10.score(X_train, y_train))) print("Test R Square: {:.2f}".format(ridge10.score(X_test, y_test))) ridge1000 = Ridge(alpha=1000).fit(X_train, y_train) print("Training R Square: {:.2f}".format(ridge1000.score(X_train, y_train))) print("Test R Square: {:.2f}".format(ridge1000.score(X_test, y_test))) ###Output Training R Square: 0.93 Test R Square: 0.79 ###Markdown We can visually compare the coefficients from the Ridge Regression models with different alpha. ###Code plt.plot(ridge.coef_, 's', label="Ridge alpha=1") plt.plot(ridge10.coef_, '^', label="Ridge alpha=10") plt.plot(ridge1000.coef_, 'v', label="Ridge alpha=1000") plt.plot(lr.coef_, 'o', label="LinearRegression") plt.xlabel("Coefficient index") plt.ylabel("Coefficient magnitude") plt.hlines(0, 0, len(lr.coef_)) plt.legend() ###Output _____no_output_____ ###Markdown Lasso Regression Lasso is another model that estimates sparse coefficients by push some coefficients to 0, i.e., reduce the number of coefficients. ###Code from sklearn.linear_model import Lasso lasso = Lasso().fit(X_train, y_train) print("Training set score: {:.2f}".format(lasso.score(X_train, y_train))) print("Test set score: {:.2f}".format(lasso.score(X_test, y_test))) # here we also report the number of coefficients print("Number of features used: {}".format(np.sum(lasso.coef_ != 0))) ###Output Training set score: 0.96 Test set score: 0.71 Number of features used: 4 ###Markdown We can also adjust the alpha to push some coefficients closer to 0. ###Code lasso10 = Lasso(alpha=10).fit(X_train, y_train) #set different alpha print("Training R Square: {:.2f}".format(lasso10.score(X_train, y_train))) print("Test R Square: {:.2f}".format(lasso10.score(X_test, y_test))) print("Number of features used: {}".format(np.sum(lasso10.coef_ != 0))) lasso10000 = Lasso(alpha=10000, ).fit(X_train, y_train) print("Training R Square: {:.2f}".format(lasso10000.score(X_train, y_train))) print("Test R Square: {:.2f}".format(lasso10000.score(X_test, y_test))) print("Number of features used: {}".format(np.sum(lasso10000.coef_ != 0))) ###Output Training R Square: 0.95 Test R Square: 0.73 Number of features used: 3 ###Markdown We can also check the coefficients from the Lasso Regression models with different alpha. ###Code plt.plot(lasso.coef_, 's', label="Lasso alpha=1") plt.plot(lasso10.coef_, '^', label="Lasso alpha=10") plt.plot(lasso10000.coef_, 'v', label="Lasso alpha=10000") plt.plot(lr.coef_, 'o', label="LinearRegression") plt.legend(ncol=2, loc=(0, 1.05)) plt.xlabel("Coefficient index") plt.ylabel("Coefficient magnitude") ###Output _____no_output_____
tutorials/algorithms/07_grover.ipynb
###Markdown Grover's Algorithm and Amplitude AmplificationGrover's algorithm is one of the most famous quantum algorithms introduced by Lov Grover in 1996 \[1\]. It has initially been proposed for unstructured search problems, i.e. for finding a marked element in a unstructured database. However, Grover's algorithm is now a subroutine to several other algorithms, such as Grover Adaptive Search \[2\]. For the details of Grover's algorithm, please see [Grover's Algorithm](https://qiskit.org/textbook/ch-algorithms/grover.html) in the Qiskit textbook.Qiskit implements Grover's algorithm in the `Grover` class. This class also includes the generalized version, Amplitude Amplification \[3\], and allows setting individual iterations and other meta-settings to Grover's algorithm.**References:**\[1\]: L. K. Grover, A fast quantum mechanical algorithm for database search. Proceedings 28th Annual Symposium onthe Theory of Computing (STOC) 1996, pp. 212-219.\[2\]: A. Gilliam, S. Woerner, C. Gonciulea, Grover Adaptive Search for Constrained Polynomial Binary Optimization.https://arxiv.org/abs/1912.04088\[3\]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. http://arxiv.org/abs/quant-ph/0005055 Grover's algorithmGrover's algorithm uses the Grover operator $\mathcal{Q}$ to amplify the amplitudes of the good states:$$ \mathcal{Q} = \mathcal{A}\mathcal{S_0}\mathcal{A}^\dagger \mathcal{S_f}$$Here, * $\mathcal{A}$ is the initial search state for the algorithm, which is just Hadamards, $H^{\otimes n}$ for the textbook Grover search, but can be more elaborate for Amplitude Amplification* $\mathcal{S_0}$ is the reflection about the all 0 state$$ |x\rangle \mapsto \begin{cases} -|x\rangle, &x \neq 0 \\ |x\rangle, &x = 0\end{cases}$$* $\mathcal{S_f}$ is the oracle that applies $$ |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$ &nbsp;&nbsp;&nbsp;&nbsp; where $f(x)$ is 1 if $x$ is a good state and otherwise 0.In a nutshell, Grover's algorithm applies different powers of $\mathcal{Q}$ and after each execution checks whether a good solution has been found. Running Grover's algorithm To run Grover's algorithm with the `Grover` class, firstly, we need to specify an oracle for the circuit of Grover's algorithm. In the following example, we use `QuantumCircuit` as the oracle of Grover's algorithm. However, there are several other class that we can use as the oracle of Grover's algorithm. We talk about them later in this tutorial.Note that the oracle for `Grover` mush be a _phase-flip_ oracle. That is, it multiplies the amplitudes of the of "good states" by a factor of $-1$. We explain later how to convert a _bit-flip_ oracle to a phase-flip oracle. ###Code from qiskit import QuantumCircuit from qiskit.aqua.algorithms import Grover # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm grover = Grover(oracle=oracle, good_state=good_state) # now we can have a look at the Grover operator that is used in running the algorithm grover.grover_operator.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, we specify a backend and call the `run` method of `Grover` with a backend to execute the circuits. The returned result type is a `GroverResult`. If the search was successful, the `oracle_evaluation` attribute of the result will be `True`. In this case, the most sampled measurement, `top_measurement`, is one of the "good states". Otherwise, `oracle_evaluation` will be False. ###Code from qiskit import Aer from qiskit.aqua import QuantumInstance qasm_simulator = Aer.get_backend('qasm_simulator') result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown In the example, the result of `top_measurement` is `11` which is one of "good state". Thus, we succeeded to find the answer by using `Grover`. Using the different types of classes as the oracle of `Grover`In the above example, we used `QuantumCircuit` as the oracle of `Grover`. However, we can also use `qiskit.aqua.components.oracles.Oracle`, and `qiskit.quantum_info.Statevector` as oracles.All the following examples are when $|11\rangle$ is "good state" ###Code from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=['11']) result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown Internally, the statevector is mapped to a quantum circuit: ###Code grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown The `Oracle` components in Qiskit Aqua allow for an easy construction of more complex oracles.The `Oracle` type has the interesting subclasses:* `LogicalExpressionOracle`: for parsing logical expressions such as `'~a | b'`. This is especially useful for solving 3-SAT problems and is shown in the accompanying [Grover Examples](08_grover_examples.ipynb) tutorial.* `TrutheTableOracle`: for converting binary truth tables to circuits Here we'll use the `LogicalExpressionOracle` for the simple example of finding the state $|11\rangle$, which corresponds to `'a & b'`. ###Code from qiskit.aqua.components.oracles import LogicalExpressionOracle # `Oracle` (`LogicalExpressionOracle`) as the `oracle` argument expression = '(a & b)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle=oracle) grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown You can observe, that this oracle is actually implemented with three qubits instead of two!That is because the `LogicalExpressionOracle` is not a phase-flip oracle (which flips the phase of the good state) but a bit-flip oracle. This means it flips the state of an auxiliary qubit if the other qubits satisfy the condition.For Grover's algorithm, however, we require a phase-flip oracle. To convert the bit-flip oracle to a phase-flip oracle we sandwich the controlled-NOT by $X$ and $H$ gates, as you can see in the circuit above.**Note:** This transformation from a bit-flip to a phase-flip oracle holds generally and you can use this to convert your oracle to the right representation. Amplitude amplificationGrover's algorithm uses Hadamard gates to create the uniform superposition of all the states at the beginning of the Grover operator $\mathcal{Q}$. If some information on the good states is available, it might be useful to not start in a uniform superposition but only initialize specific states. This, generalized, version of Grover's algorithm is referred to _Amplitude Amplification_.In Qiskit, the initial superposition state can easily be adjusted by setting the `state_preparation` argument. State preparationA `state_preparation` argument is used to specify a quantum circuit that prepares a quantum state for the start point of the amplitude amplification.By default, a circuit with $H^{\otimes n} $ is used to prepare uniform superposition (so it will be Grover's search). The diffusion circuit of the amplitude amplification reflects `state_preparation` automatically. ###Code import numpy as np # Specifying `state_preparation` # to prepare a superposition of |01>, |10>, and |11> oracle = QuantumCircuit(3) oracle.h(2) oracle.ccx(0,1,2) oracle.h(2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits being in state 1, thus add both possibilities for the last qubit grover = Grover(oracle=oracle, state_preparation=state_preparation, good_state=['110', '111']) # state_preparation print('state preparation circuit:') grover.grover_operator.state_preparation.draw(output='mpl') result = grover.run(quantum_instance=qasm_simulator) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Success! Top measurement: 111 ###Markdown Full flexibilityFor more advanced use, it is also possible to specify the entire Grover operator by setting the `grover_operator` argument. This might be useful if you know more efficient implementation for $\mathcal{Q}$ than the default construction via zero reflection, oracle and state preparation.The `qiskit.circuit.library.GroverOperator` can be a good starting point and offers more options for an automated construction of the Grover operator. You can for instance * set the `mcx_mode` * ignore qubits in the zero reflection by setting `reflection_qubits`* explicitly exchange the $\mathcal{S_f}, \mathcal{S_0}$ and $\mathcal{A}$ operations using the `oracle`, `zero_reflection` and `state_preparation` arguments For instance, imagine the good state is a three qubit state $|111\rangle$ but we used 2 additional qubits as auxiliary qubits. ###Code from qiskit.circuit.library import GroverOperator, ZGate oracle = QuantumCircuit(5) oracle.append(ZGate().control(2), [0, 1, 2]) oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, per default, the Grover operator implements the zero reflection on all five qubits. ###Code grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown But we know that we only need to consider the first three: ###Code grover_op = GroverOperator(oracle, reflection_qubits=[0, 1, 2], insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown Dive into other arguments of `Grover``Grover` has arguments other than `oracle` and `state_preparation`. We will explain them in this section. Specifying `good_state``good_state` is used to check whether the measurement result is correct or not internally. It can be a list of binary strings, a list of integer, `Statevector`, and Callable. If the input is a list of bitstrings, each bitstrings in the list represents a good state. If the input is a list of integer, each integer represent the index of the good state to be $|1\rangle$. If it is a `Statevector`, it represents a superposition of all good states. ###Code # a list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = ['11', '00'] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # a list of integer good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = [0, 1] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) from qiskit.quantum_info import Statevector # `Statevector` good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # Callable good state def callable_good_state(bitstr): if bitstr == "11": return True return False oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=callable_good_state) print(grover.is_good_state('11')) ###Output True ###Markdown The number of `iterations`The number of repetition of applying the Grover operator is important to obtain the correct result with Grover's algorithm. The number of iteration can be set by the `iteration` argument of `Grover`. The following inputs are supported:* an integer to specify a single power of the Grover operator that's applied* or a list of integers, in which all these different powers of the Grover operator are run consecutively and after each time we check if a correct solution has been foundAdditionally there is the `sample_from_iterations` argument. When it is `True`, instead of the specific power in `iterations`, a random integer between 0 and the value in `iteration` is used as the power Grover's operator. This approach is useful when we don't even know the number of solution.For more details of the algorithm using `sample_from_iterations`, see [4].**References:**[4]: Boyer et al., Tight bounds on quantum searching [arxiv:quant-ph/9605034](https://arxiv.org/abs/quant-ph/9605034) ###Code # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3], sample_from_iterations=True) ###Output _____no_output_____ ###Markdown When the number of solutions is known, we can also use a static method `optimal_num_iterations` to find the optimal number of iterations. Note that the output iterations is an approximate value. When the number of qubits is small, the output iterations may not be optimal. ###Code iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) iterations ###Output _____no_output_____ ###Markdown Applying `post_processing`We can apply an optional post processing to the top measurement for ease of readability. It can be used e.g. to convert from the bit-representation of the measurement `[1, 0, 1]` to a DIMACS CNF format `[1, -2, 3]`. ###Code def to_DIAMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index + 1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'],post_processing=to_DIAMACS_CNF_format) grover.post_processing([1, 0, 1]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Grover's Algorithm and Amplitude AmplificationGrover's algorithm is one of the most famous quantum algorithms introduced by Lov Grover in 1996 \[1\]. It has initially been proposed for unstructured search problems, i.e. for finding a marked element in a unstructured database. However, Grover's algorithm is now a subroutine to several other algorithms, such as Grover Adaptive Search \[2\]. For the details of Grover's algorithm, please see [Grover's Algorithm](https://qiskit.org/textbook/ch-algorithms/grover.html) in the Qiskit textbook.Qiskit implements Grover's algorithm in the `Grover` class. This class also includes the generalized version, Amplitude Amplification \[3\], and allows setting individual iterations and other meta-settings to Grover's algorithm.**References:**\[1\]: L. K. Grover, A fast quantum mechanical algorithm for database search. Proceedings 28th Annual Symposium onthe Theory of Computing (STOC) 1996, pp. 212-219. https://arxiv.org/abs/quant-ph/9605043\[2\]: A. Gilliam, S. Woerner, C. Gonciulea, Grover Adaptive Search for Constrained Polynomial Binary Optimization.https://arxiv.org/abs/1912.04088\[3\]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. http://arxiv.org/abs/quant-ph/0005055 Grover's algorithmGrover's algorithm uses the Grover operator $\mathcal{Q}$ to amplify the amplitudes of the good states:$$ \mathcal{Q} = \mathcal{A}\mathcal{S_0}\mathcal{A}^\dagger \mathcal{S_f}$$Here, * $\mathcal{A}$ is the initial search state for the algorithm, which is just Hadamards, $H^{\otimes n}$ for the textbook Grover search, but can be more elaborate for Amplitude Amplification* $\mathcal{S_0}$ is the reflection about the all 0 state$$ |x\rangle \mapsto \begin{cases} -|x\rangle, &x \neq 0 \\ |x\rangle, &x = 0\end{cases}$$* $\mathcal{S_f}$ is the oracle that applies $$ |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$ &nbsp;&nbsp;&nbsp;&nbsp; where $f(x)$ is 1 if $x$ is a good state and otherwise 0.In a nutshell, Grover's algorithm applies different powers of $\mathcal{Q}$ and after each execution checks whether a good solution has been found. Running Grover's algorithm To run Grover's algorithm with the `Grover` class, firstly, we need to specify an oracle for the circuit of Grover's algorithm. In the following example, we use `QuantumCircuit` as the oracle of Grover's algorithm. However, there are several other class that we can use as the oracle of Grover's algorithm. We talk about them later in this tutorial.Note that the oracle for `Grover` must be a _phase-flip_ oracle. That is, it multiplies the amplitudes of the of "good states" by a factor of $-1$. We explain later how to convert a _bit-flip_ oracle to a phase-flip oracle. ###Code from qiskit import QuantumCircuit from qiskit.aqua.algorithms import Grover # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm grover = Grover(oracle=oracle, good_state=good_state) # now we can have a look at the Grover operator that is used in running the algorithm grover.grover_operator.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, we specify a backend and call the `run` method of `Grover` with a backend to execute the circuits. The returned result type is a `GroverResult`. If the search was successful, the `oracle_evaluation` attribute of the result will be `True`. In this case, the most sampled measurement, `top_measurement`, is one of the "good states". Otherwise, `oracle_evaluation` will be False. ###Code from qiskit import Aer from qiskit.aqua import QuantumInstance qasm_simulator = Aer.get_backend('qasm_simulator') result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown In the example, the result of `top_measurement` is `11` which is one of "good state". Thus, we succeeded to find the answer by using `Grover`. Using the different types of classes as the oracle of `Grover`In the above example, we used `QuantumCircuit` as the oracle of `Grover`. However, we can also use `qiskit.aqua.components.oracles.Oracle`, and `qiskit.quantum_info.Statevector` as oracles.All the following examples are when $|11\rangle$ is "good state" ###Code from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=['11']) result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown Internally, the statevector is mapped to a quantum circuit: ###Code grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown The `Oracle` components in Qiskit Aqua allow for an easy construction of more complex oracles.The `Oracle` type has the interesting subclasses:* `LogicalExpressionOracle`: for parsing logical expressions such as `'~a | b'`. This is especially useful for solving 3-SAT problems and is shown in the accompanying [Grover Examples](08_grover_examples.ipynb) tutorial.* `TrutheTableOracle`: for converting binary truth tables to circuits Here we'll use the `LogicalExpressionOracle` for the simple example of finding the state $|11\rangle$, which corresponds to `'a & b'`. ###Code from qiskit.aqua.components.oracles import LogicalExpressionOracle # `Oracle` (`LogicalExpressionOracle`) as the `oracle` argument expression = '(a & b)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle=oracle) grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown You can observe, that this oracle is actually implemented with three qubits instead of two!That is because the `LogicalExpressionOracle` is not a phase-flip oracle (which flips the phase of the good state) but a bit-flip oracle. This means it flips the state of an auxiliary qubit if the other qubits satisfy the condition.For Grover's algorithm, however, we require a phase-flip oracle. To convert the bit-flip oracle to a phase-flip oracle we sandwich the controlled-NOT by $X$ and $H$ gates, as you can see in the circuit above.**Note:** This transformation from a bit-flip to a phase-flip oracle holds generally and you can use this to convert your oracle to the right representation. Amplitude amplificationGrover's algorithm uses Hadamard gates to create the uniform superposition of all the states at the beginning of the Grover operator $\mathcal{Q}$. If some information on the good states is available, it might be useful to not start in a uniform superposition but only initialize specific states. This, generalized, version of Grover's algorithm is referred to _Amplitude Amplification_.In Qiskit, the initial superposition state can easily be adjusted by setting the `state_preparation` argument. State preparationA `state_preparation` argument is used to specify a quantum circuit that prepares a quantum state for the start point of the amplitude amplification.By default, a circuit with $H^{\otimes n} $ is used to prepare uniform superposition (so it will be Grover's search). The diffusion circuit of the amplitude amplification reflects `state_preparation` automatically. ###Code import numpy as np # Specifying `state_preparation` # to prepare a superposition of |01>, |10>, and |11> oracle = QuantumCircuit(3) oracle.h(2) oracle.ccx(0,1,2) oracle.h(2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits being in state 1, thus add both possibilities for the last qubit grover = Grover(oracle=oracle, state_preparation=state_preparation, good_state=['110', '111']) # state_preparation print('state preparation circuit:') grover.grover_operator.state_preparation.draw(output='mpl') result = grover.run(quantum_instance=qasm_simulator) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Success! Top measurement: 111 ###Markdown Full flexibilityFor more advanced use, it is also possible to specify the entire Grover operator by setting the `grover_operator` argument. This might be useful if you know more efficient implementation for $\mathcal{Q}$ than the default construction via zero reflection, oracle and state preparation.The `qiskit.circuit.library.GroverOperator` can be a good starting point and offers more options for an automated construction of the Grover operator. You can for instance * set the `mcx_mode` * ignore qubits in the zero reflection by setting `reflection_qubits`* explicitly exchange the $\mathcal{S_f}, \mathcal{S_0}$ and $\mathcal{A}$ operations using the `oracle`, `zero_reflection` and `state_preparation` arguments For instance, imagine the good state is a three qubit state $|111\rangle$ but we used 2 additional qubits as auxiliary qubits. ###Code from qiskit.circuit.library import GroverOperator, ZGate oracle = QuantumCircuit(5) oracle.append(ZGate().control(2), [0, 1, 2]) oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, per default, the Grover operator implements the zero reflection on all five qubits. ###Code grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown But we know that we only need to consider the first three: ###Code grover_op = GroverOperator(oracle, reflection_qubits=[0, 1, 2], insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown Dive into other arguments of `Grover``Grover` has arguments other than `oracle` and `state_preparation`. We will explain them in this section. Specifying `good_state``good_state` is used to check whether the measurement result is correct or not internally. It can be a list of binary strings, a list of integer, `Statevector`, and Callable. If the input is a list of bitstrings, each bitstrings in the list represents a good state. If the input is a list of integer, each integer represent the index of the good state to be $|1\rangle$. If it is a `Statevector`, it represents a superposition of all good states. ###Code # a list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = ['11', '00'] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # a list of integer good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = [0, 1] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) from qiskit.quantum_info import Statevector # `Statevector` good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # Callable good state def callable_good_state(bitstr): if bitstr == "11": return True return False oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=callable_good_state) print(grover.is_good_state('11')) ###Output True ###Markdown The number of `iterations`The number of repetition of applying the Grover operator is important to obtain the correct result with Grover's algorithm. The number of iteration can be set by the `iteration` argument of `Grover`. The following inputs are supported:* an integer to specify a single power of the Grover operator that's applied* or a list of integers, in which all these different powers of the Grover operator are run consecutively and after each time we check if a correct solution has been foundAdditionally there is the `sample_from_iterations` argument. When it is `True`, instead of the specific power in `iterations`, a random integer between 0 and the value in `iteration` is used as the power Grover's operator. This approach is useful when we don't even know the number of solution.For more details of the algorithm using `sample_from_iterations`, see [4].**References:**[4]: Boyer et al., Tight bounds on quantum searching [arxiv:quant-ph/9605034](https://arxiv.org/abs/quant-ph/9605034) ###Code # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3], sample_from_iterations=True) ###Output _____no_output_____ ###Markdown When the number of solutions is known, we can also use a static method `optimal_num_iterations` to find the optimal number of iterations. Note that the output iterations is an approximate value. When the number of qubits is small, the output iterations may not be optimal. ###Code iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) iterations ###Output _____no_output_____ ###Markdown Applying `post_processing`We can apply an optional post processing to the top measurement for ease of readability. It can be used e.g. to convert from the bit-representation of the measurement `[1, 0, 1]` to a DIMACS CNF format `[1, -2, 3]`. ###Code def to_DIAMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index + 1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'],post_processing=to_DIAMACS_CNF_format) grover.post_processing([1, 0, 1]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Grover's Algorithm and Amplitude AmplificationGrover's algorithm is one of the most famous quantum algorithms introduced by Lov Grover in 1996 \[1\]. It has initially been proposed for unstructured search problems, i.e. for finding a marked element in a unstructured database. However, Grover's algorithm is now a subroutine to several other algorithms, such as Grover Adaptive Search \[2\]. For the details of Grover's algorithm, please see [Grover's Algorithm](https://qiskit.org/textbook/ch-algorithms/grover.html) in the Qiskit textbook.Qiskit implements Grover's algorithm in the `Grover` class. This class also includes the generalized version, Amplitude Amplification \[3\], and allows setting individual iterations and other meta-settings to Grover's algorithm.**References:**\[1\]: L. K. Grover, A fast quantum mechanical algorithm for database search. Proceedings 28th Annual Symposium onthe Theory of Computing (STOC) 1996, pp. 212-219. https://arxiv.org/abs/quant-ph/9605043\[2\]: A. Gilliam, S. Woerner, C. Gonciulea, Grover Adaptive Search for Constrained Polynomial Binary Optimization.https://arxiv.org/abs/1912.04088\[3\]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. http://arxiv.org/abs/quant-ph/0005055 Grover's algorithmGrover's algorithm uses the Grover operator $\mathcal{Q}$ to amplify the amplitudes of the good states:$$ \mathcal{Q} = \mathcal{A}\mathcal{S_0}\mathcal{A}^\dagger \mathcal{S_f}$$Here, * $\mathcal{A}$ is the initial search state for the algorithm, which is just Hadamards, $H^{\otimes n}$ for the textbook Grover search, but can be more elaborate for Amplitude Amplification* $\mathcal{S_0}$ is the reflection about the all 0 state$$ |x\rangle \mapsto \begin{cases} -|x\rangle, &x \neq 0 \\ |x\rangle, &x = 0\end{cases}$$* $\mathcal{S_f}$ is the oracle that applies $$ |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$ &nbsp;&nbsp;&nbsp;&nbsp; where $f(x)$ is 1 if $x$ is a good state and otherwise 0.In a nutshell, Grover's algorithm applies different powers of $\mathcal{Q}$ and after each execution checks whether a good solution has been found. Running Grover's algorithm To run Grover's algorithm with the `Grover` class, firstly, we need to specify an oracle for the circuit of Grover's algorithm. In the following example, we use `QuantumCircuit` as the oracle of Grover's algorithm. However, there are several other class that we can use as the oracle of Grover's algorithm. We talk about them later in this tutorial.Note that the oracle for `Grover` must be a _phase-flip_ oracle. That is, it multiplies the amplitudes of the of "good states" by a factor of $-1$. We explain later how to convert a _bit-flip_ oracle to a phase-flip oracle. ###Code from qiskit import QuantumCircuit from qiskit.aqua.algorithms import Grover # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm grover = Grover(oracle=oracle, good_state=good_state) # now we can have a look at the Grover operator that is used in running the algorithm grover.grover_operator.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, we specify a backend and call the `run` method of `Grover` with a backend to execute the circuits. The returned result type is a `GroverResult`. If the search was successful, the `oracle_evaluation` attribute of the result will be `True`. In this case, the most sampled measurement, `top_measurement`, is one of the "good states". Otherwise, `oracle_evaluation` will be False. ###Code from qiskit import Aer from qiskit.aqua import QuantumInstance qasm_simulator = Aer.get_backend('qasm_simulator') result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown In the example, the result of `top_measurement` is `11` which is one of "good state". Thus, we succeeded to find the answer by using `Grover`. Using the different types of classes as the oracle of `Grover`In the above example, we used `QuantumCircuit` as the oracle of `Grover`. However, we can also use `qiskit.aqua.components.oracles.Oracle`, and `qiskit.quantum_info.Statevector` as oracles.All the following examples are when $|11\rangle$ is "good state" ###Code from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=['11']) result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown Internally, the statevector is mapped to a quantum circuit: ###Code grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown The `Oracle` components in Qiskit Aqua allow for an easy construction of more complex oracles.The `Oracle` type has the interesting subclasses:* `LogicalExpressionOracle`: for parsing logical expressions such as `'~a | b'`. This is especially useful for solving 3-SAT problems and is shown in the accompanying [Grover Examples](08_grover_examples.ipynb) tutorial.* `TrutheTableOracle`: for converting binary truth tables to circuits Here we'll use the `LogicalExpressionOracle` for the simple example of finding the state $|11\rangle$, which corresponds to `'a & b'`. ###Code from qiskit.aqua.components.oracles import LogicalExpressionOracle # `Oracle` (`LogicalExpressionOracle`) as the `oracle` argument expression = '(a & b)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle=oracle) grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown You can observe, that this oracle is actually implemented with three qubits instead of two!That is because the `LogicalExpressionOracle` is not a phase-flip oracle (which flips the phase of the good state) but a bit-flip oracle. This means it flips the state of an auxiliary qubit if the other qubits satisfy the condition.For Grover's algorithm, however, we require a phase-flip oracle. To convert the bit-flip oracle to a phase-flip oracle we sandwich the controlled-NOT by $X$ and $H$ gates, as you can see in the circuit above.**Note:** This transformation from a bit-flip to a phase-flip oracle holds generally and you can use this to convert your oracle to the right representation. Amplitude amplificationGrover's algorithm uses Hadamard gates to create the uniform superposition of all the states at the beginning of the Grover operator $\mathcal{Q}$. If some information on the good states is available, it might be useful to not start in a uniform superposition but only initialize specific states. This, generalized, version of Grover's algorithm is referred to _Amplitude Amplification_.In Qiskit, the initial superposition state can easily be adjusted by setting the `state_preparation` argument. State preparationA `state_preparation` argument is used to specify a quantum circuit that prepares a quantum state for the start point of the amplitude amplification.By default, a circuit with $H^{\otimes n}$ is used to prepare uniform superposition (so it will be Grover's search). The diffusion circuit of the amplitude amplification reflects `state_preparation` automatically. ###Code import numpy as np # Specifying `state_preparation` # to prepare a superposition of |01>, |10>, and |11> oracle = QuantumCircuit(3) oracle.h(2) oracle.ccx(0,1,2) oracle.h(2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits being in state 1, thus add both possibilities for the last qubit grover = Grover(oracle=oracle, state_preparation=state_preparation, good_state=['110', '111']) # state_preparation print('state preparation circuit:') grover.grover_operator.state_preparation.draw(output='mpl') result = grover.run(quantum_instance=qasm_simulator) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Success! Top measurement: 111 ###Markdown Full flexibilityFor more advanced use, it is also possible to specify the entire Grover operator by setting the `grover_operator` argument. This might be useful if you know more efficient implementation for $\mathcal{Q}$ than the default construction via zero reflection, oracle and state preparation.The `qiskit.circuit.library.GroverOperator` can be a good starting point and offers more options for an automated construction of the Grover operator. You can for instance * set the `mcx_mode`* ignore qubits in the zero reflection by setting `reflection_qubits`* explicitly exchange the $\mathcal{S_f}, \mathcal{S_0}$ and $\mathcal{A}$ operations using the `oracle`, `zero_reflection` and `state_preparation` arguments For instance, imagine the good state is a three qubit state $|111\rangle$ but we used 2 additional qubits as auxiliary qubits. ###Code from qiskit.circuit.library import GroverOperator, ZGate oracle = QuantumCircuit(5) oracle.append(ZGate().control(2), [0, 1, 2]) oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, per default, the Grover operator implements the zero reflection on all five qubits. ###Code grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown But we know that we only need to consider the first three: ###Code grover_op = GroverOperator(oracle, reflection_qubits=[0, 1, 2], insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown Dive into other arguments of `Grover``Grover` has arguments other than `oracle` and `state_preparation`. We will explain them in this section. Specifying `good_state``good_state` is used to check whether the measurement result is correct or not internally. It can be a list of binary strings, a list of integer, `Statevector`, and Callable. If the input is a list of bitstrings, each bitstrings in the list represents a good state. If the input is a list of integer, each integer represent the index of the good state to be $|1\rangle$. If it is a `Statevector`, it represents a superposition of all good states. ###Code # a list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = ['11', '00'] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # a list of integer good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = [0, 1] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) from qiskit.quantum_info import Statevector # `Statevector` good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # Callable good state def callable_good_state(bitstr): if bitstr == "11": return True return False oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=callable_good_state) print(grover.is_good_state('11')) ###Output True ###Markdown The number of `iterations`The number of repetition of applying the Grover operator is important to obtain the correct result with Grover's algorithm. The number of iteration can be set by the `iteration` argument of `Grover`. The following inputs are supported:* an integer to specify a single power of the Grover operator that's applied* or a list of integers, in which all these different powers of the Grover operator are run consecutively and after each time we check if a correct solution has been foundAdditionally there is the `sample_from_iterations` argument. When it is `True`, instead of the specific power in `iterations`, a random integer between 0 and the value in `iteration` is used as the power Grover's operator. This approach is useful when we don't even know the number of solution.For more details of the algorithm using `sample_from_iterations`, see [4].**References:**[4]: Boyer et al., Tight bounds on quantum searching [arxiv:quant-ph/9605034](https://arxiv.org/abs/quant-ph/9605034) ###Code # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3], sample_from_iterations=True) ###Output _____no_output_____ ###Markdown When the number of solutions is known, we can also use a static method `optimal_num_iterations` to find the optimal number of iterations. Note that the output iterations is an approximate value. When the number of qubits is small, the output iterations may not be optimal. ###Code iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) iterations ###Output _____no_output_____ ###Markdown Applying `post_processing`We can apply an optional post processing to the top measurement for ease of readability. It can be used e.g. to convert from the bit-representation of the measurement `[1, 0, 1]` to a DIMACS CNF format `[1, -2, 3]`. ###Code def to_DIAMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index + 1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'],post_processing=to_DIAMACS_CNF_format) grover.post_processing([1, 0, 1]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Grover's Algorithm and Amplitude AmplificationGrover's algorithm is one of the most famous quantum algorithms introduced by Lov Grover in 1996 \[1\]. It has initially been proposed for unstructured search problems, i.e. for finding a marked element in a unstructured database. However, Grover's algorithm is now a subroutine to several other algorithms, such as Grover Adaptive Search \[2\]. For the details of Grover's algorithm, please see [Grover's Algorithm](https://qiskit.org/textbook/ch-algorithms/grover.html) in the Qiskit textbook.Qiskit implements Grover's algorithm in the `Grover` class. This class also includes the generalized version, Amplitude Amplification \[3\], and allows setting individual iterations and other meta-settings to Grover's algorithm.**References:**\[1\]: L. K. Grover, A fast quantum mechanical algorithm for database search. Proceedings 28th Annual Symposium onthe Theory of Computing (STOC) 1996, pp. 212-219.\[2\]: A. Gilliam, S. Woerner, C. Gonciulea, Grover Adaptive Search for Constrained Polynomial Binary Optimization.https://arxiv.org/abs/1912.04088\[3\]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. http://arxiv.org/abs/quant-ph/0005055 Grover's algorithmGrover's algorithm uses the Grover operator $\mathcal{Q}$ to amplify the amplitudes of the good states:$$ \mathcal{Q} = \mathcal{A}\mathcal{S_0}\mathcal{A}^\dagger \mathcal{S_f}$$Here, * $\mathcal{A}$ is the initial search state for the algorithm, which is just Hadamards, $H^{\otimes n}$ for the textbook Grover search, but can be more elaborate for Amplitude Amplification* $\mathcal{S_0}$ is the reflection about the all 0 state$$ |x\rangle \mapsto \begin{cases} -|x\rangle, &x \neq 0 \\ |x\rangle, &x = 0\end{cases}$$* $\mathcal{S_f}$ is the oracle that applies $$ |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$ &nbsp;&nbsp;&nbsp;&nbsp; where $f(x)$ is 1 if $x$ is a good state and otherwise 0.In a nutshell, Grover's algorithm applies different powers of $\mathcal{Q}$ and after each execution checks whether a good solution has been found. Running Grover's algorithm To run Grover's algorithm with the `Grover` class, firstly, we need to specify an oracle for the circuit of Grover's algorithm. In the following example, we use `QuantumCircuit` as the oracle of Grover's algorithm. However, there are several other class that we can use as the oracle of Grover's algorithm. We talk about them later in this tutorial.Note that the oracle for `Grover` must be a _phase-flip_ oracle. That is, it multiplies the amplitudes of the of "good states" by a factor of $-1$. We explain later how to convert a _bit-flip_ oracle to a phase-flip oracle. ###Code from qiskit import QuantumCircuit from qiskit.aqua.algorithms import Grover # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm grover = Grover(oracle=oracle, good_state=good_state) # now we can have a look at the Grover operator that is used in running the algorithm grover.grover_operator.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, we specify a backend and call the `run` method of `Grover` with a backend to execute the circuits. The returned result type is a `GroverResult`. If the search was successful, the `oracle_evaluation` attribute of the result will be `True`. In this case, the most sampled measurement, `top_measurement`, is one of the "good states". Otherwise, `oracle_evaluation` will be False. ###Code from qiskit import Aer from qiskit.aqua import QuantumInstance qasm_simulator = Aer.get_backend('qasm_simulator') result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown In the example, the result of `top_measurement` is `11` which is one of "good state". Thus, we succeeded to find the answer by using `Grover`. Using the different types of classes as the oracle of `Grover`In the above example, we used `QuantumCircuit` as the oracle of `Grover`. However, we can also use `qiskit.aqua.components.oracles.Oracle`, and `qiskit.quantum_info.Statevector` as oracles.All the following examples are when $|11\rangle$ is "good state" ###Code from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=['11']) result = grover.run(quantum_instance=qasm_simulator) print('Result type:', type(result)) print() print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Result type: <class 'qiskit.aqua.algorithms.amplitude_amplifiers.grover.GroverResult'> Success! Top measurement: 11 ###Markdown Internally, the statevector is mapped to a quantum circuit: ###Code grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown The `Oracle` components in Qiskit Aqua allow for an easy construction of more complex oracles.The `Oracle` type has the interesting subclasses:* `LogicalExpressionOracle`: for parsing logical expressions such as `'~a | b'`. This is especially useful for solving 3-SAT problems and is shown in the accompanying [Grover Examples](08_grover_examples.ipynb) tutorial.* `TrutheTableOracle`: for converting binary truth tables to circuits Here we'll use the `LogicalExpressionOracle` for the simple example of finding the state $|11\rangle$, which corresponds to `'a & b'`. ###Code from qiskit.aqua.components.oracles import LogicalExpressionOracle # `Oracle` (`LogicalExpressionOracle`) as the `oracle` argument expression = '(a & b)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle=oracle) grover.grover_operator.oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown You can observe, that this oracle is actually implemented with three qubits instead of two!That is because the `LogicalExpressionOracle` is not a phase-flip oracle (which flips the phase of the good state) but a bit-flip oracle. This means it flips the state of an auxiliary qubit if the other qubits satisfy the condition.For Grover's algorithm, however, we require a phase-flip oracle. To convert the bit-flip oracle to a phase-flip oracle we sandwich the controlled-NOT by $X$ and $H$ gates, as you can see in the circuit above.**Note:** This transformation from a bit-flip to a phase-flip oracle holds generally and you can use this to convert your oracle to the right representation. Amplitude amplificationGrover's algorithm uses Hadamard gates to create the uniform superposition of all the states at the beginning of the Grover operator $\mathcal{Q}$. If some information on the good states is available, it might be useful to not start in a uniform superposition but only initialize specific states. This, generalized, version of Grover's algorithm is referred to _Amplitude Amplification_.In Qiskit, the initial superposition state can easily be adjusted by setting the `state_preparation` argument. State preparationA `state_preparation` argument is used to specify a quantum circuit that prepares a quantum state for the start point of the amplitude amplification.By default, a circuit with $H^{\otimes n} $ is used to prepare uniform superposition (so it will be Grover's search). The diffusion circuit of the amplitude amplification reflects `state_preparation` automatically. ###Code import numpy as np # Specifying `state_preparation` # to prepare a superposition of |01>, |10>, and |11> oracle = QuantumCircuit(3) oracle.h(2) oracle.ccx(0,1,2) oracle.h(2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits being in state 1, thus add both possibilities for the last qubit grover = Grover(oracle=oracle, state_preparation=state_preparation, good_state=['110', '111']) # state_preparation print('state preparation circuit:') grover.grover_operator.state_preparation.draw(output='mpl') result = grover.run(quantum_instance=qasm_simulator) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement:', result.top_measurement) ###Output Success! Top measurement: 111 ###Markdown Full flexibilityFor more advanced use, it is also possible to specify the entire Grover operator by setting the `grover_operator` argument. This might be useful if you know more efficient implementation for $\mathcal{Q}$ than the default construction via zero reflection, oracle and state preparation.The `qiskit.circuit.library.GroverOperator` can be a good starting point and offers more options for an automated construction of the Grover operator. You can for instance * set the `mcx_mode` * ignore qubits in the zero reflection by setting `reflection_qubits`* explicitly exchange the $\mathcal{S_f}, \mathcal{S_0}$ and $\mathcal{A}$ operations using the `oracle`, `zero_reflection` and `state_preparation` arguments For instance, imagine the good state is a three qubit state $|111\rangle$ but we used 2 additional qubits as auxiliary qubits. ###Code from qiskit.circuit.library import GroverOperator, ZGate oracle = QuantumCircuit(5) oracle.append(ZGate().control(2), [0, 1, 2]) oracle.draw(output='mpl') ###Output _____no_output_____ ###Markdown Then, per default, the Grover operator implements the zero reflection on all five qubits. ###Code grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown But we know that we only need to consider the first three: ###Code grover_op = GroverOperator(oracle, reflection_qubits=[0, 1, 2], insert_barriers=True) grover_op.draw(output='mpl') ###Output _____no_output_____ ###Markdown Dive into other arguments of `Grover``Grover` has arguments other than `oracle` and `state_preparation`. We will explain them in this section. Specifying `good_state``good_state` is used to check whether the measurement result is correct or not internally. It can be a list of binary strings, a list of integer, `Statevector`, and Callable. If the input is a list of bitstrings, each bitstrings in the list represents a good state. If the input is a list of integer, each integer represent the index of the good state to be $|1\rangle$. If it is a `Statevector`, it represents a superposition of all good states. ###Code # a list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = ['11', '00'] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # a list of integer good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = [0, 1] grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) from qiskit.quantum_info import Statevector # `Statevector` good state oracle = QuantumCircuit(2) oracle.cz(0, 1) good_state = Statevector.from_label('11') grover = Grover(oracle=oracle, good_state=good_state) print(grover.is_good_state('11')) # Callable good state def callable_good_state(bitstr): if bitstr == "11": return True return False oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=callable_good_state) print(grover.is_good_state('11')) ###Output True ###Markdown The number of `iterations`The number of repetition of applying the Grover operator is important to obtain the correct result with Grover's algorithm. The number of iteration can be set by the `iteration` argument of `Grover`. The following inputs are supported:* an integer to specify a single power of the Grover operator that's applied* or a list of integers, in which all these different powers of the Grover operator are run consecutively and after each time we check if a correct solution has been foundAdditionally there is the `sample_from_iterations` argument. When it is `True`, instead of the specific power in `iterations`, a random integer between 0 and the value in `iteration` is used as the power Grover's operator. This approach is useful when we don't even know the number of solution.For more details of the algorithm using `sample_from_iterations`, see [4].**References:**[4]: Boyer et al., Tight bounds on quantum searching [arxiv:quant-ph/9605034](https://arxiv.org/abs/quant-ph/9605034) ###Code # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'], iterations=[1, 2, 3], sample_from_iterations=True) ###Output _____no_output_____ ###Markdown When the number of solutions is known, we can also use a static method `optimal_num_iterations` to find the optimal number of iterations. Note that the output iterations is an approximate value. When the number of qubits is small, the output iterations may not be optimal. ###Code iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) iterations ###Output _____no_output_____ ###Markdown Applying `post_processing`We can apply an optional post processing to the top measurement for ease of readability. It can be used e.g. to convert from the bit-representation of the measurement `[1, 0, 1]` to a DIMACS CNF format `[1, -2, 3]`. ###Code def to_DIAMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index + 1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) grover = Grover(oracle=oracle, good_state=['11'],post_processing=to_DIAMACS_CNF_format) grover.post_processing([1, 0, 1]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____
Reverse Solutions.ipynb
###Markdown 兩種Reverse的解法下面為使用python兩種reverse的解法,其中一種使用工具reverse,後者以數學方法為主,透過2^31作為(32 bit的整數計算) ###Code def reverse(x): y = list(str(x)) y.reverse() return int("".join(y)) class Solution: def reverse(self, x: int) -> int: # Turn the attribute to the positive sign_multiplier = 1 if x < 0: sign_multiplier = -1 x = x * sign_multiplier # assign the result parameter result = 0 # signed 32-bit integer min_int_32 = 2 ** 31 while x > 0: # Add the current digit into result # x % 10 is equal to the last digit result = result * 10 + x % 10 # Check if the result is within MaxInt32 and MinInt32 bounds if result * sign_multiplier <= -min_int_32 or result * sign_multiplier >= min_int_32-1: return 0 x = x // 10 # Restore to original sign of number (+ or -) return sign_multiplier * result ###Output _____no_output_____
python-client/examples/ApiManagerClient.ipynb
###Markdown Api Manager Example ###Code from onesaitplatform.apimanager import ApiManagerClient ###Output _____no_output_____ ###Markdown Create ApiManager ###Code HOST = "development.onesaitplatform.com" PORT = 443 TOKEN = "b32522cd73e84ddda519f1dff9627f40" #client = ApiManagerClient(host=HOST, port=PORT) client = ApiManagerClient(host=HOST) ###Output _____no_output_____ ###Markdown Set token ###Code client.setToken(TOKEN) ###Output _____no_output_____ ###Markdown Find APIs ###Code ok_find, res_find = client.find("RestaurantsAPI", "Created", "analytics") print("API finded: {}".format(ok_find)) print("Api info:") print(res_find) ###Output API finded: True Api info: [{'identification': 'RestaurantsAPI', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'EDUCATION', 'externalApi': False, 'ontologyId': 'MASTER-Ontology-Restaurant-1', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantsAPI', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/16/2019 13:01:03', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantsAPI_GET', 'description': 'id', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantsAPI_GETAll', 'description': 'all', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}], 'authentication': None}] ###Markdown List APIs ###Code ok_list, res_list = client.list("analytics") print("APIs listed {}".format(ok_list)) print("Apis info:") for api in res_list: print(api) print("*") ###Output APIs listed True Apis info: {'identification': 'RestaurantsAPI', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'EDUCATION', 'externalApi': False, 'ontologyId': 'MASTER-Ontology-Restaurant-1', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantsAPI', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/16/2019 13:01:03', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantsAPI_GET', 'description': 'id', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantsAPI_GETAll', 'description': 'all', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}], 'authentication': None} * {'identification': 'RestaurantTestApi', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'OTHER', 'externalApi': False, 'ontologyId': 'b5982b8d-e4c0-4a84-ab65-9e7d2f30e638', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantTestApi', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/12/2019 08:19:16', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantTestApi_PUT', 'description': 'update', 'operation': 'PUT', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'body', 'dataType': 'STRING', 'description': '', 'value': '', 'headerType': 'BODY', 'condition': None}, {'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_POST', 'description': 'insert', 'operation': 'POST', 'endpoint': None, 'path': '/', 'headers': [], 'queryParams': [{'name': 'body', 'dataType': 'STRING', 'description': '', 'value': '', 'headerType': 'BODY', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_GETAll', 'description': 'query', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}, {'identification': 'RestaurantTestApi_GET', 'description': 'queryby', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_DELETEID', 'description': 'delete', 'operation': 'DELETE', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}], 'authentication': None} * ###Markdown Make API request ###Code ok_request, res_request = client.request(method="GET", name="RestaurantsAPI/", version=1, body=None) print("API request: {}".format(ok_request)) print("Api request:") print(res_request) ###Output API request: True Api request: [{'_id': '5cb032da23d35d000111809d', 'Restaurant': {'address': {'building': '351', 'coord': [-73.98513559999999, 40.7676919], 'street': 'West 57 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-09-06T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-07-22T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-31T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-29T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Dj Reynolds Pub And Restaurant', 'restaurant_id': '30191841'}}, {'_id': '5cb032da23d35d000111809e', 'Restaurant': {'address': {'building': '2780', 'coord': [-73.98241999999999, 40.579505], 'street': 'Stillwell Avenue', 'zipcode': '11224'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-06-10T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-06-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-04-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-10-12T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Riviera Caterer', 'restaurant_id': '40356018'}}, {'_id': '5cb032da23d35d000111809f', 'Restaurant': {'address': {'building': '97-22', 'coord': [-73.8601152, 40.7311739], 'street': '63 Road', 'zipcode': '11374'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-11-24T00:00:00Z', 'grade': 'Z', 'score': 20}, {'date': '2013-01-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-08-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-12-15T00:00:00Z', 'grade': 'B', 'score': 25}], 'name': 'Tov Kosher Kitchen', 'restaurant_id': '40356068'}}, {'_id': '5cb032da23d35d00011180a0', 'Restaurant': {'address': {'building': '469', 'coord': [-73.961704, 40.662942], 'street': 'Flatbush Avenue', 'zipcode': '11225'}, 'borough': 'Brooklyn', 'cuisine': 'Hamburgers', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-07-01T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-08T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Wendy'S", 'restaurant_id': '30112340'}}, {'_id': '5cb032da23d35d00011180a1', 'Restaurant': {'address': {'building': '1007', 'coord': [-73.856077, 40.848447], 'street': 'Morris Park Ave', 'zipcode': '10462'}, 'borough': 'Bronx', 'cuisine': 'Bakery', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-09-11T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-01-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-23T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-03-10T00:00:00Z', 'grade': 'B', 'score': 14}], 'name': 'Morris Park Bake Shop', 'restaurant_id': '30075445'}}, {'_id': '5cb032da23d35d00011180a2', 'Restaurant': {'address': {'building': '8825', 'coord': [-73.8803827, 40.7643124], 'street': 'Astoria Boulevard', 'zipcode': '11369'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-11-15T00:00:00Z', 'grade': 'Z', 'score': 38}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-02T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-02-10T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Brunos On The Boulevard', 'restaurant_id': '40356151'}}, {'_id': '5cb032da23d35d00011180a3', 'Restaurant': {'address': {'building': '2206', 'coord': [-74.1377286, 40.6119572], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-10-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-05-20T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-24T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Kosher Island', 'restaurant_id': '40356442'}}, {'_id': '5cb032da23d35d00011180a4', 'Restaurant': {'address': {'building': '7114', 'coord': [-73.9068506, 40.6199034], 'street': 'Avenue U', 'zipcode': '11234'}, 'borough': 'Brooklyn', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-05-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-01-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-03T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-07-18T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-03-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-14T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Wilken'S Fine Food", 'restaurant_id': '40356483'}}, {'_id': '5cb032da23d35d00011180a5', 'Restaurant': {'address': {'building': '6409', 'coord': [-74.00528899999999, 40.628886], 'street': '11 Avenue', 'zipcode': '11219'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-07-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-08-16T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-08-17T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Regina Caterers', 'restaurant_id': '40356649'}}, {'_id': '5cb032da23d35d00011180a6', 'Restaurant': {'address': {'building': '1839', 'coord': [-73.9482609, 40.6408271], 'street': 'Nostrand Avenue', 'zipcode': '11226'}, 'borough': 'Brooklyn', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-10T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-07-11T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-02-23T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Taste The Tropics Ice Cream', 'restaurant_id': '40356731'}}, {'_id': '5cb032da23d35d00011180a7', 'Restaurant': {'address': {'building': '2300', 'coord': [-73.8786113, 40.8502883], 'street': 'Southern Boulevard', 'zipcode': '10460'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-05-28T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-06-19T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-06-15T00:00:00Z', 'grade': 'A', 'score': 3}], 'name': 'Wild Asia', 'restaurant_id': '40357217'}}, {'_id': '5cb032da23d35d00011180a8', 'Restaurant': {'address': {'building': '7715', 'coord': [-73.9973325, 40.61174889999999], 'street': '18 Avenue', 'zipcode': '11214'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-04-16T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-04-23T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-04-24T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2011-12-16T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'C & C Catering Service', 'restaurant_id': '40357437'}}, {'_id': '5cb032da23d35d00011180a9', 'Restaurant': {'address': {'building': '1269', 'coord': [-73.871194, 40.6730975], 'street': 'Sutter Avenue', 'zipcode': '11208'}, 'borough': 'Brooklyn', 'cuisine': 'Chinese', 'grades': [{'date': '2014-09-16T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2013-08-28T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-04-02T00:00:00Z', 'grade': 'C', 'score': 56}, {'date': '2012-08-15T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-03-28T00:00:00Z', 'grade': 'B', 'score': 27}], 'name': 'May May Kitchen', 'restaurant_id': '40358429'}}, {'_id': '5cb032da23d35d00011180aa', 'Restaurant': {'address': {'building': '1', 'coord': [-73.96926909999999, 40.7685235], 'street': 'East 66 Street', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-05-07T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-05-03T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-04-30T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-12-27T00:00:00Z', 'grade': 'A', 'score': 0}], 'name': '1 East 66Th Street Kitchen', 'restaurant_id': '40359480'}}, {'_id': '5cb032da23d35d00011180ab', 'Restaurant': {'address': {'building': '705', 'coord': [-73.9653967, 40.6064339], 'street': 'Kings Highway', 'zipcode': '11223'}, 'borough': 'Brooklyn', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-11-10T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-10-04T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-05-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-30T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': 'Seuda Foods', 'restaurant_id': '40360045'}}, {'_id': '5cb032da23d35d00011180ac', 'Restaurant': {'address': {'building': '203', 'coord': [-73.97822040000001, 40.6435254], 'street': 'Church Avenue', 'zipcode': '11218'}, 'borough': 'Brooklyn', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-01-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-11-07T00:00:00Z', 'grade': 'P', 'score': 12}, {'date': '2011-07-21T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40360076'}}, {'_id': '5cb032da23d35d00011180ad', 'Restaurant': {'address': {'building': '265-15', 'coord': [-73.7032601, 40.7386417], 'street': 'Hillside Avenue', 'zipcode': '11004'}, 'borough': 'Queens', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-10-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40361322'}}, {'_id': '5cb032da23d35d00011180ae', 'Restaurant': {'address': {'building': '6909', 'coord': [-74.0259567, 40.6353674], 'street': '3 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-08-21T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2014-03-05T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-01-10T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Nordic Delicacies', 'restaurant_id': '40361390'}}, {'_id': '5cb032da23d35d00011180af', 'Restaurant': {'address': {'building': '522', 'coord': [-73.95171, 40.767461], 'street': 'East 74 Street', 'zipcode': '10021'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-19T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2013-05-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-03-29T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Glorious Food', 'restaurant_id': '40361521'}}, {'_id': '5cb032da23d35d00011180b0', 'Restaurant': {'address': {'building': '284', 'coord': [-73.9829239, 40.6580753], 'street': 'Prospect Park West', 'zipcode': '11215'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-19T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-11-14T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-12-05T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-17T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'The Movable Feast', 'restaurant_id': '40361606'}}, {'_id': '5cb032da23d35d00011180b1', 'Restaurant': {'address': {'building': '129-08', 'coord': [-73.839297, 40.78147], 'street': '20 Avenue', 'zipcode': '11356'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-08-16T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-29T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Sal'S Deli", 'restaurant_id': '40361618'}}, {'_id': '5cb032da23d35d00011180b2', 'Restaurant': {'address': {'building': '759', 'coord': [-73.9925306, 40.7309346], 'street': 'Broadway', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-01-21T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-06-07T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Bully'S Deli", 'restaurant_id': '40361708'}}, {'_id': '5cb032da23d35d00011180b3', 'Restaurant': {'address': {'building': '3406', 'coord': [-73.94024739999999, 40.7623288], 'street': '10 Street', 'zipcode': '11106'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-03-19T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-03-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-27T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-04-05T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Steve Chu'S Deli & Grocery", 'restaurant_id': '40361998'}}, {'_id': '5cb032da23d35d00011180b4', 'Restaurant': {'address': {'building': '502', 'coord': [-73.976112, 40.786714], 'street': 'Amsterdam Avenue', 'zipcode': '10024'}, 'borough': 'Manhattan', 'cuisine': 'Chicken', 'grades': [{'date': '2014-09-15T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-09T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-04-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-15T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Harriet'S Kitchen", 'restaurant_id': '40362098'}}, {'_id': '5cb032da23d35d00011180b5', 'Restaurant': {'address': {'building': '730', 'coord': [-73.96805719999999, 40.7925587], 'street': 'Columbus Avenue', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-12T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2013-08-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-25T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-14T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'P & S Deli Grocery', 'restaurant_id': '40362264'}}, {'_id': '5cb032da23d35d00011180b6', 'Restaurant': {'address': {'building': '18', 'coord': [-73.996984, 40.72589], 'street': 'West Houston Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-04-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-05T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-03-21T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-04-27T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Angelika Film Center', 'restaurant_id': '40362274'}}, {'_id': '5cb032da23d35d00011180b7', 'Restaurant': {'address': {'building': '531', 'coord': [-73.9634876, 40.6940001], 'street': 'Myrtle Avenue', 'zipcode': '11205'}, 'borough': 'Brooklyn', 'cuisine': 'Hamburgers', 'grades': [{'date': '2014-03-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-10-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-22T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'White Castle', 'restaurant_id': '40362344'}}, {'_id': '5cb032da23d35d00011180b8', 'Restaurant': {'address': {'building': '103-05', 'coord': [-73.8642349, 40.75356], 'street': '37 Avenue', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Chinese', 'grades': [{'date': '2014-04-21T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-11-12T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-06-04T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-11-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-11T00:00:00Z', 'grade': 'P', 'score': 0}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-12-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-07-20T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Ho Mei Restaurant', 'restaurant_id': '40362432'}}, {'_id': '5cb032da23d35d00011180b9', 'Restaurant': {'address': {'building': '60', 'coord': [-74.0085357, 40.70620539999999], 'street': 'Wall Street', 'zipcode': '10005'}, 'borough': 'Manhattan', 'cuisine': 'Turkish', 'grades': [{'date': '2014-09-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'The Country Cafe', 'restaurant_id': '40362715'}}, {'_id': '5cb032da23d35d00011180ba', 'Restaurant': {'address': {'building': '195', 'coord': [-73.9246028, 40.6522396], 'street': 'East 56 Street', 'zipcode': '11203'}, 'borough': 'Brooklyn', 'cuisine': 'Caribbean', 'grades': [{'date': '2014-05-13T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-05-08T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-09-22T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-06T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Shashemene Int'L Restaura", 'restaurant_id': '40362869'}}, {'_id': '5cb032da23d35d00011180bb', 'Restaurant': {'address': {'building': '107', 'coord': [-74.00920839999999, 40.7132925], 'street': 'Church Street', 'zipcode': '10007'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-02-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-08-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-02-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-18T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Downtown Deli', 'restaurant_id': '40363021'}}, {'_id': '5cb032da23d35d00011180bc', 'Restaurant': {'address': {'building': '1006', 'coord': [-73.84856870000002, 40.8903781], 'street': 'East 233 Street', 'zipcode': '10466'}, 'borough': 'Bronx', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-07-03T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-07-11T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40363093'}}, {'_id': '5cb032da23d35d00011180bd', 'Restaurant': {'address': {'building': '56', 'coord': [-73.991495, 40.692273], 'street': 'Court Street', 'zipcode': '11201'}, 'borough': 'Brooklyn', 'cuisine': 'Donuts', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-01-19T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Dunkin' Donuts", 'restaurant_id': '40363098'}}, {'_id': '5cb032da23d35d00011180be', 'Restaurant': {'address': {'building': '7615', 'coord': [-74.0228449, 40.6281815], 'street': '5 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-24T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-18T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-04-05T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Mejlander & Mulgannon', 'restaurant_id': '40363117'}}, {'_id': '5cb032da23d35d00011180bf', 'Restaurant': {'address': {'building': '120', 'coord': [-73.9998042, 40.7251256], 'street': 'Prince Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Bakery', 'grades': [{'date': '2014-10-17T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-04-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-12-19T00:00:00Z', 'grade': 'A', 'score': 3}], 'name': "Olive'S", 'restaurant_id': '40363151'}}, {'_id': '5cb032da23d35d00011180c0', 'Restaurant': {'address': {'building': '1236', 'coord': [-73.8893654, 40.81376179999999], 'street': '238 Spofford Ave', 'zipcode': '10474'}, 'borough': 'Bronx', 'cuisine': 'Chinese', 'grades': [{'date': '2013-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-06-12T00:00:00Z', 'grade': 'B', 'score': 15}], 'name': 'Happy Garden', 'restaurant_id': '40363289'}}, {'_id': '5cb032da23d35d00011180c1', 'Restaurant': {'address': {'building': '625', 'coord': [-73.990494, 40.7569545], 'street': '8 Avenue', 'zipcode': '10018'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-09T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-01-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-07T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2011-12-13T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-09-09T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Cafe Metro', 'restaurant_id': '40363298'}}, {'_id': '5cb032da23d35d00011180c2', 'Restaurant': {'address': {'building': '1069', 'coord': [-73.902463, 40.694924], 'street': 'Wyckoff Avenue', 'zipcode': '11385'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-05-08T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-12-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-06-21T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-12-24T00:00:00Z', 'grade': 'B', 'score': 25}, {'date': '2011-10-19T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Tony'S Deli", 'restaurant_id': '40363333'}}, {'_id': '5cb032da23d35d00011180c3', 'Restaurant': {'address': {'building': '405', 'coord': [-73.97534999999999, 40.7516269], 'street': 'Lexington Avenue', 'zipcode': '10174'}, 'borough': 'Manhattan', 'cuisine': 'Sandwiches/Salads/Mixed Buffet', 'grades': [{'date': '2014-02-21T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-09-13T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-08-28T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2011-09-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-05-03T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Lexler Deli', 'restaurant_id': '40363426'}}, {'_id': '5cb032da23d35d00011180c4', 'Restaurant': {'address': {'building': '2491', 'coord': [-74.1459332, 40.6103714], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2015-01-09T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-12-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Bagels N Buns', 'restaurant_id': '40363427'}}, {'_id': '5cb032da23d35d00011180c5', 'Restaurant': {'address': {'building': '7905', 'coord': [-73.8740217, 40.7135015], 'street': 'Metropolitan Avenue', 'zipcode': '11379'}, 'borough': 'Queens', 'cuisine': 'Bagels/Pretzels', 'grades': [{'date': '2014-09-17T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-01-16T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-08-07T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-21T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-06-20T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-01-31T00:00:00Z', 'grade': 'B', 'score': 18}], 'name': 'Hot Bagels', 'restaurant_id': '40363565'}}, {'_id': '5cb032da23d35d00011180c6', 'Restaurant': {'address': {'building': '87-69', 'coord': [-73.8309503, 40.7001121], 'street': 'Lefferts Boulevard', 'zipcode': '11418'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-08-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-08-07T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-04T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2011-06-29T00:00:00Z', 'grade': 'A', 'score': 4}], 'name': 'Snack Time Grill', 'restaurant_id': '40363590'}}, {'_id': '5cb032da23d35d00011180c7', 'Restaurant': {'address': {'building': '1418', 'coord': [-73.95685019999999, 40.7753401], 'street': 'Third Avenue', 'zipcode': '10028'}, 'borough': 'Manhattan', 'cuisine': 'Continental', 'grades': [{'date': '2014-06-02T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-12-27T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-18T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2012-02-01T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-07-06T00:00:00Z', 'grade': 'B', 'score': 25}], 'name': "Lorenzo & Maria'S", 'restaurant_id': '40363630'}}, {'_id': '5cb032da23d35d00011180c8', 'Restaurant': {'address': {'building': '464', 'coord': [-73.9791458, 40.744328], 'street': '3 Avenue', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-08-05T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2014-03-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-07-09T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-30T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-01-05T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-09-26T00:00:00Z', 'grade': 'A', 'score': 0}], 'name': "Domino'S Pizza", 'restaurant_id': '40363644'}}, {'_id': '5cb032da23d35d00011180c9', 'Restaurant': {'address': {'building': '437', 'coord': [-73.975393, 40.757365], 'street': 'Madison Avenue', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-07T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-06-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-23T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Berkely', 'restaurant_id': '40363685'}}, {'_id': '5cb032da23d35d00011180ca', 'Restaurant': {'address': {'building': '1031', 'coord': [-73.9075537, 40.6438684], 'street': 'East 92 Street', 'zipcode': '11236'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-02-05T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2013-01-29T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-12-08T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Sonny'S Heros", 'restaurant_id': '40363744'}}, {'_id': '5cb032da23d35d00011180cb', 'Restaurant': {'address': {'building': '1111', 'coord': [-74.0796436, 40.59878339999999], 'street': 'Hylan Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-26T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40363834'}}, {'_id': '5cb032da23d35d00011180cc', 'Restaurant': {'address': {'building': '976', 'coord': [-73.92701509999999, 40.6620192], 'street': 'Rutland Road', 'zipcode': '11212'}, 'borough': 'Brooklyn', 'cuisine': 'Chinese', 'grades': [{'date': '2014-04-23T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-03-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-03-13T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2011-11-16T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Golden Pavillion', 'restaurant_id': '40363920'}}, {'_id': '5cb032da23d35d00011180cd', 'Restaurant': {'address': {'building': '148', 'coord': [-73.9806854, 40.7778589], 'street': 'West 72 Street', 'zipcode': '10023'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-12-08T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-05-05T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2013-04-05T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-03-30T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Domino'S Pizza", 'restaurant_id': '40363945'}}, {'_id': '5cb032da23d35d00011180ce', 'Restaurant': {'address': {'building': '364', 'coord': [-73.96084119999999, 40.8014307], 'street': 'West 110 Street', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-04T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2014-02-26T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-03-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-21T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Spoon Bread Catering', 'restaurant_id': '40364179'}}, {'_id': '5cb032da23d35d00011180cf', 'Restaurant': {'address': {'building': '1423', 'coord': [-73.9615132, 40.6253268], 'street': 'Avenue J', 'zipcode': '11230'}, 'borough': 'Brooklyn', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-12-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-12-05T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Kosher Bagel Hole', 'restaurant_id': '40364220'}}, {'_id': '5cb032da23d35d00011180d0', 'Restaurant': {'address': {'building': '0', 'coord': [-84.2040813, 9.9986585], 'street': 'Guardia Airport Parking', 'zipcode': '11371'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-05-16T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-05-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-11-02T00:00:00Z', 'grade': 'C', 'score': 32}], 'name': 'Terminal Cafe/Yankee Clipper', 'restaurant_id': '40364262'}}, {'_id': '5cb032da23d35d00011180d1', 'Restaurant': {'address': {'building': '73', 'coord': [-74.1178949, 40.5734906], 'street': 'New Dorp Plaza', 'zipcode': '10306'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-11-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-11-07T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-24T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-20T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Plaza Bagels & Deli', 'restaurant_id': '40364286'}}, {'_id': '5cb032da23d35d00011180d2', 'Restaurant': {'address': {'building': '277', 'coord': [-73.8941893, 40.8634684], 'street': 'East Kingsbridge Road', 'zipcode': '10458'}, 'borough': 'Bronx', 'cuisine': 'Chinese', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-08-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-08-17T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Happy Garden', 'restaurant_id': '40364296'}}, {'_id': '5cb032da23d35d00011180d3', 'Restaurant': {'address': {'building': '203', 'coord': [-74.15235919999999, 40.5563756], 'street': 'Giffords Lane', 'zipcode': '10308'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2015-01-05T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2014-09-11T00:00:00Z', 'grade': 'C', 'score': 39}, {'date': '2014-03-20T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-23T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'B & M Hot Bagel & Grocery', 'restaurant_id': '40364299'}}, {'_id': '5cb032da23d35d00011180d4', 'Restaurant': {'address': {'building': '94', 'coord': [-74.0061936, 40.7092038], 'street': 'Fulton Street', 'zipcode': '10038'}, 'borough': 'Manhattan', 'cuisine': 'Chicken', 'grades': [{'date': '2015-01-06T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-07-15T00:00:00Z', 'grade': 'C', 'score': 48}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-24T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-04-19T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': 'Texas Rotisserie', 'restaurant_id': '40364304'}}, {'_id': '5cb032da23d35d00011180d5', 'Restaurant': {'address': {'building': '10004', 'coord': [-74.03400479999999, 40.6127077], 'street': '4 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-12-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Philadelhia Grille Express', 'restaurant_id': '40364305'}}, {'_id': '5cb032da23d35d00011180d6', 'Restaurant': {'address': {'building': '178', 'coord': [-73.96252129999999, 40.7098035], 'street': 'Broadway', 'zipcode': '11211'}, 'borough': 'Brooklyn', 'cuisine': 'Steak', 'grades': [{'date': '2014-03-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-09-28T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-26T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-09-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-08-15T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Peter Luger Steakhouse', 'restaurant_id': '40364335'}}, {'_id': '5cb032da23d35d00011180d7', 'Restaurant': {'address': {'building': '1', 'coord': [-73.97166039999999, 40.764832], 'street': 'East 60 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-16T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-04-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-10-19T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-27T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2011-11-29T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Metropolitan Club', 'restaurant_id': '40364347'}}, {'_id': '5cb032da23d35d00011180d8', 'Restaurant': {'address': {'building': '837', 'coord': [-73.9712, 40.751703], 'street': '2 Avenue', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-22T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-09-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-26T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-04-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-10-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Palm Restaurant', 'restaurant_id': '40364355'}}, {'_id': '5cb032da23d35d00011180d9', 'Restaurant': {'address': {'building': '21', 'coord': [-73.9774394, 40.7604522], 'street': 'West 52 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-05-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-04T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': '21 Club', 'restaurant_id': '40364362'}}, {'_id': '5cb032da23d35d00011180da', 'Restaurant': {'address': {'building': '658', 'coord': [-73.81363999999999, 40.82941100000001], 'street': 'Clarence Ave', 'zipcode': '10465'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-06-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-07-11T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Manhem Club', 'restaurant_id': '40364363'}}, {'_id': '5cb032da23d35d00011180db', 'Restaurant': {'address': {'building': '1028', 'coord': [-73.966032, 40.762832], 'street': '3 Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-09-16T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-02-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-05-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-08-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-02-13T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Isle Of Capri Resturant', 'restaurant_id': '40364373'}}, {'_id': '5cb032da23d35d00011180dc', 'Restaurant': {'address': {'building': '45', 'coord': [-73.9891878, 40.7375638], 'street': 'East 18 Street', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-24T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Old Town Bar & Restaurant', 'restaurant_id': '40364389'}}, {'_id': '5cb032da23d35d00011180dd', 'Restaurant': {'address': {'building': '261', 'coord': [-73.94839189999999, 40.7224876], 'street': 'Driggs Avenue', 'zipcode': '11222'}, 'borough': 'Brooklyn', 'cuisine': 'Polish', 'grades': [{'date': '2014-05-31T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-05-10T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-02-17T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-10-14T00:00:00Z', 'grade': 'C', 'score': 54}], 'name': 'Polish National Home', 'restaurant_id': '40364404'}}, {'_id': '5cb032da23d35d00011180de', 'Restaurant': {'address': {'building': '62', 'coord': [-74.00310999999999, 40.7348888], 'street': 'Charles Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'Latin (Cuban, Dominican, Puerto Rican, South & Central American)', 'grades': [{'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-05-20T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-01-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-03T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Seville Restaurant', 'restaurant_id': '40364439'}}, {'_id': '5cb032da23d35d00011180df', 'Restaurant': {'address': {'building': '100', 'coord': [-74.0010484, 40.71599000000001], 'street': 'Centre Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-03-31T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Criminal Court Bldg Cafeteria', 'restaurant_id': '40364443'}}, {'_id': '5cb032da23d35d00011180e0', 'Restaurant': {'address': {'building': '657', 'coord': [-73.9056678, 40.7066898], 'street': 'Fairview Avenue', 'zipcode': '11385'}, 'borough': 'Queens', 'cuisine': 'German', 'grades': [{'date': '2014-03-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-12T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-21T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2011-11-25T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2011-06-22T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': 'Gottscheer Hall', 'restaurant_id': '40364449'}}, {'_id': '5cb032da23d35d00011180e1', 'Restaurant': {'address': {'building': '180', 'coord': [-73.9788694, 40.7665961], 'street': 'Central Park South', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-12-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-08-07T00:00:00Z', 'grade': 'C', 'score': 40}, {'date': '2013-07-29T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-12-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-30T00:00:00Z', 'grade': 'C', 'score': 4}, {'date': '2012-02-16T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Nyac Main Dining Room', 'restaurant_id': '40364467'}}, {'_id': '5cb032da23d35d00011180e2', 'Restaurant': {'address': {'building': '108', 'coord': [-73.98146, 40.7250067], 'street': 'Avenue B', 'zipcode': '10009'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2013-12-31T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-10-22T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-14T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': '7B Bar', 'restaurant_id': '40364518'}}, {'_id': '5cb032da23d35d00011180e3', 'Restaurant': {'address': {'building': '96-40', 'coord': [-73.86137149999999, 40.7293762], 'street': 'Queens Boulevard', 'zipcode': '11374'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-03-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-09-30T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-26T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-09-11T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2011-09-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-03-17T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Ben-Best Deli & Restaurant', 'restaurant_id': '40364529'}}, {'_id': '5cb032da23d35d00011180e4', 'Restaurant': {'address': {'building': '215', 'coord': [-73.9805679, 40.7659436], 'street': 'West 57 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-02-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-09T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-02-22T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-16T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Cafe Atelier (Art Students League)', 'restaurant_id': '40364531'}}, {'_id': '5cb032da23d35d00011180e5', 'Restaurant': {'address': {'building': '845', 'coord': [-73.965531, 40.765431], 'street': 'Lexington Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Steak', 'grades': [{'date': '2014-03-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-03-21T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-10-18T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-05-17T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': "Donohue'S Steak House", 'restaurant_id': '40364572'}}, {'_id': '5cb032da23d35d00011180e6', 'Restaurant': {'address': {'building': '311', 'coord': [-73.98621899999999, 40.763406], 'street': 'West 51 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-11-10T00:00:00Z', 'grade': 'B', 'score': 15}, {'date': '2014-04-03T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-17T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2013-02-06T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2012-07-16T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-03-08T00:00:00Z', 'grade': 'C', 'score': 7}], 'name': 'Tout Va Bien', 'restaurant_id': '40364576'}}, {'_id': '5cb032da23d35d00011180e7', 'Restaurant': {'address': {'building': '386', 'coord': [-73.9818918, 40.6901211], 'street': 'Flatbush Avenue Extension', 'zipcode': '11201'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2014-03-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-01-10T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-09-04T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Junior'S", 'restaurant_id': '40364581'}}, {'_id': '5cb032da23d35d00011180e8', 'Restaurant': {'address': {'building': '37', 'coord': [-74.138263, 40.546681], 'street': 'Mansion Ave', 'zipcode': '10308'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-04-22T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-25T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-06-09T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Great Kills Yacht Club', 'restaurant_id': '40364610'}}, {'_id': '5cb032da23d35d00011180e9', 'Restaurant': {'address': {'building': '251', 'coord': [-73.9775552, 40.7432016], 'street': 'East 31 Street', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-04-22T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-19T00:00:00Z', 'grade': 'C', 'score': 32}, {'date': '2012-05-22T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Marchis Restaurant', 'restaurant_id': '40364668'}}, {'_id': '5cb032da23d35d00011180ea', 'Restaurant': {'address': {'building': '2602', 'coord': [-73.95443709999999, 40.5877993], 'street': 'East 15 Street', 'zipcode': '11235'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-05-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-11-23T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-03-14T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2011-07-14T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': 'Towne Cafe', 'restaurant_id': '40364681'}}, {'_id': '5cb032da23d35d00011180eb', 'Restaurant': {'address': {'building': '.1-A', 'coord': [-48.9424, -16.3550032], 'street': 'East 77 St', 'zipcode': '10021'}, 'borough': 'Manhattan', 'cuisine': 'Continental', 'grades': [{'date': '2014-11-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-03T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2012-10-02T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-04-25T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Dining Room', 'restaurant_id': '40364691'}}, {'_id': '5cb032da23d35d00011180ec', 'Restaurant': {'address': {'building': '56', 'coord': [-74.004758, 40.741207], 'street': '9 Avenue', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-26T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-11-14T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Old Homestead', 'restaurant_id': '40364715'}}, {'_id': '5cb032da23d35d00011180ed', 'Restaurant': {'address': {'building': '156-71', 'coord': [-73.840437, 40.6627235], 'street': 'Crossbay Boulevard', 'zipcode': '11414'}, 'borough': 'Queens', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-10-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-10-30T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-27T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'New Park Pizzeria & Restaurant', 'restaurant_id': '40364744'}}, {'_id': '5cb032da23d35d00011180ee', 'Restaurant': {'address': {'building': '600', 'coord': [-73.7522366, 40.7766941], 'street': 'West Drive', 'zipcode': '11363'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-13T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-04-12T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-07-30T00:00:00Z', 'grade': 'B', 'score': 23}], 'name': 'Douglaston Club', 'restaurant_id': '40364858'}}, {'_id': '5cb032da23d35d00011180ef', 'Restaurant': {'address': {'building': '225', 'coord': [-73.96485799999999, 40.761899], 'street': 'East 60 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-08-11T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-14T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-01-16T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-07-12T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Serendipity 3', 'restaurant_id': '40364863'}}, {'_id': '5cb032da23d35d00011180f0', 'Restaurant': {'address': {'building': '461', 'coord': [-74.002944, 40.652779], 'street': '37 Street', 'zipcode': '11232'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-28T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-06T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Melody Lanes', 'restaurant_id': '40364889'}}, {'_id': '5cb032da23d35d00011180f1', 'Restaurant': {'address': {'building': '30-13', 'coord': [-73.9151096, 40.763377], 'street': 'Steinway Street', 'zipcode': '11103'}, 'borough': 'Queens', 'cuisine': 'Pizza', 'grades': [{'date': '2014-10-06T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-10-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-06-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Rizzo'S Fine Pizza", 'restaurant_id': '40364920'}}, {'_id': '5cb032da23d35d00011180f2', 'Restaurant': {'address': {'building': '2222', 'coord': [-73.84971759999999, 40.8304811], 'street': 'Haviland Avenue', 'zipcode': '10462'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2014-05-01T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-08T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': 'The New Starling Athletic Club Of The Bronx', 'restaurant_id': '40364956'}}, {'_id': '5cb032da23d35d00011180f3', 'Restaurant': {'address': {'building': '567', 'coord': [-74.00619499999999, 40.735663], 'street': 'Hudson Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-07-25T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-05-29T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-12-23T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'White Horse Tavern', 'restaurant_id': '40364958'}}, {'_id': '5cb032da23d35d00011180f4', 'Restaurant': {'address': {'building': '67', 'coord': [-74.0707363, 40.59321569999999], 'street': 'Olympia Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'Italian', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2011-07-23T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Crystal Room', 'restaurant_id': '40365013'}}, {'_id': '5cb032da23d35d00011180f5', 'Restaurant': {'address': {'building': '390', 'coord': [-74.07444319999999, 40.6096914], 'street': 'Hylan Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-06-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-08-30T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-10-07T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': "Labetti'S Post # 2159", 'restaurant_id': '40365022'}}, {'_id': '5cb032da23d35d00011180f6', 'Restaurant': {'address': {'building': '1', 'coord': [-73.9727638, 40.588853], 'street': 'Bouck Court', 'zipcode': '11223'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-10T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2014-06-25T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-10-23T00:00:00Z', 'grade': 'C', 'score': 28}, {'date': '2013-03-21T00:00:00Z', 'grade': 'C', 'score': 29}, {'date': '2012-06-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Shell Lanes', 'restaurant_id': '40365043'}}, {'_id': '5cb032da23d35d00011180f7', 'Restaurant': {'address': {'building': '15', 'coord': [-73.9896713, 40.7287978], 'street': 'East 7 Street', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-06-07T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-05-21T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-11T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-08-11T00:00:00Z', 'grade': 'B', 'score': 16}], 'name': "Mcsorley'S Old Ale House", 'restaurant_id': '40365075'}}, {'_id': '5cb032da23d35d00011180f8', 'Restaurant': {'address': {'building': '93', 'coord': [-73.99950489999999, 40.7169224], 'street': 'Baxter Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-12-06T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-23T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-01-12T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Forlinis Restaurant', 'restaurant_id': '40365098'}}, {'_id': '5cb032da23d35d00011180f9', 'Restaurant': {'address': {'building': '6736', 'coord': [-74.2274942, 40.5071996], 'street': 'Hylan Boulevard', 'zipcode': '10309'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-08-13T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-08-20T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2012-06-18T00:00:00Z', 'grade': 'A', 'score': 6}], 'name': 'South Shore Swimming Club', 'restaurant_id': '40365120'}}, {'_id': '5cb032da23d35d00011180fa', 'Restaurant': {'address': {'building': '331', 'coord': [-74.0037823, 40.7380122], 'street': 'West 4 Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-11-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-06-27T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-05-15T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Corner Bistro', 'restaurant_id': '40365166'}}, {'_id': '5cb032da23d35d00011180fb', 'Restaurant': {'address': {'building': '1449', 'coord': [-73.94933739999999, 40.6509823], 'street': 'Nostrand Avenue', 'zipcode': '11226'}, 'borough': 'Brooklyn', 'cuisine': 'Donuts', 'grades': [{'date': '2014-10-21T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2014-05-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-12-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-09T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2011-12-14T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Nostrand Donut Shop', 'restaurant_id': '40365226'}}, {'_id': '5cb032da23d35d00011180fc', 'Restaurant': {'address': {'building': '1616', 'coord': [-73.952449, 40.776325], 'street': '2 Avenue', 'zipcode': '10028'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-02-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-08-30T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-08-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-14T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Dorrian'S Red Hand Restaurant", 'restaurant_id': '40365239'}}, {'_id': '5cb032da23d35d00011180fd', 'Restaurant': {'address': {'building': '3', 'coord': [-73.97557069999999, 40.7596796], 'street': 'East 52 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-04-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-05T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'La Grenouille', 'restaurant_id': '40365264'}}, {'_id': '5cb032da23d35d00011180fe', 'Restaurant': {'address': {'building': '4035', 'coord': [-73.9395182, 40.8422945], 'street': 'Broadway', 'zipcode': '10032'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-04T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-01-04T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-09-15T00:00:00Z', 'grade': 'C', 'score': 60}], 'name': 'Como Pizza', 'restaurant_id': '40365280'}}, {'_id': '5cb032da23d35d00011180ff', 'Restaurant': {'address': {'building': '842', 'coord': [-73.97063700000001, 40.751495], 'street': '2 Avenue', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-22T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-05-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-05-29T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-01-05T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-08-10T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Keats Restaurant', 'restaurant_id': '40365288'}}, {'_id': '5cb032da23d35d0001118100', 'Restaurant': {'address': {'building': '146', 'coord': [-73.9973041, 40.7188698], 'street': 'Mulberry Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-09-15T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Angelo Of Mulberry St.', 'restaurant_id': '40365293'}}, {'_id': '5cb032da23d35d0001118101', 'Restaurant': {'address': {'building': '103', 'coord': [-74.001043, 40.729795], 'street': 'Macdougal Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Mexican', 'grades': [{'date': '2014-05-22T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-20T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-17T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': "Panchito'S", 'restaurant_id': '40365348'}}, {'_id': '5cb032da23d35d0001118102', 'Restaurant': {'address': {'building': '7201', 'coord': [-74.0166091, 40.6284767], 'street': '8 Avenue', 'zipcode': '11228'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2014-02-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-07-09T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-06-06T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-12-19T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'New Corner', 'restaurant_id': '40365355'}}, {'_id': '5cb032da23d35d0001118103', 'Restaurant': {'address': {'building': '15', 'coord': [-73.98126069999999, 40.7547107], 'street': 'West 43 Street', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2015-01-15T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2014-07-07T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-01-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-19T00:00:00Z', 'grade': 'C', 'score': 29}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'The Princeton Club', 'restaurant_id': '40365361'}}, {'_id': '5cb032da23d35d0001118104', 'Restaurant': {'address': {'building': '106', 'coord': [-74.0003315, 40.7274874], 'street': 'West Houston Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-31T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-03-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Arturo'S", 'restaurant_id': '40365387'}}, {'_id': '5cb032da23d35d0001118105', 'Restaurant': {'address': {'building': '405', 'coord': [-73.9646207, 40.7550069], 'street': 'East 52 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2013-12-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-08T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2012-09-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-03T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Le Perigord', 'restaurant_id': '40365414'}}, {'_id': '5cb032da23d35d0001118106', 'Restaurant': {'address': {'building': '4241', 'coord': [-73.9365108, 40.8497077], 'street': 'Broadway', 'zipcode': '10033'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-11-15T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2014-04-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-28T00:00:00Z', 'grade': 'P', 'score': 15}, {'date': '2013-08-19T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-02-20T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-08-22T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2012-01-30T00:00:00Z', 'grade': 'C', 'score': 48}], 'name': "Reynold'S Bar", 'restaurant_id': '40365423'}}, {'_id': '5cb032da23d35d0001118107', 'Restaurant': {'address': {'building': '1758', 'coord': [-74.1220973, 40.6129407], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-11-20T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2014-01-13T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2013-04-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-09T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-05-02T00:00:00Z', 'grade': 'B', 'score': 22}], 'name': "Joe & Pat'S Pizzeria", 'restaurant_id': '40365454'}}, {'_id': '5cb032da23d35d0001118108', 'Restaurant': {'address': {'building': '113', 'coord': [-73.9979214, 40.7371344], 'street': 'West 13 Street', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Spanish', 'grades': [{'date': '2014-07-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-03-27T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-14T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-03T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Spain Restaurant & Bar', 'restaurant_id': '40365472'}}, {'_id': '5cb032da23d35d0001118109', 'Restaurant': {'address': {'building': '206', 'coord': [-73.9446421, 40.7253944], 'street': 'Nassau Avenue', 'zipcode': '11222'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-19T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2014-05-09T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-06-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-17T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Palace Cafe', 'restaurant_id': '40365473'}}, {'_id': '5cb032da23d35d000111810a', 'Restaurant': {'address': {'building': '72', 'coord': [-73.92506, 40.8275556], 'street': 'East 161 Street', 'zipcode': '10451'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-04-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-11-14T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-07-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-12-31T00:00:00Z', 'grade': 'B', 'score': 15}, {'date': '2012-05-30T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-15T00:00:00Z', 'grade': 'C', 'score': 37}], 'name': 'Yankee Tavern', 'restaurant_id': '40365499'}}, {'_id': '5cb032da23d35d000111810b', 'Restaurant': {'address': {'building': '203', 'coord': [-73.99987229999999, 40.7386361], 'street': 'West 14 Street', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Donuts', 'grades': [{'date': '2014-02-11T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-08T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-05T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2012-02-22T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2011-08-08T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-03-16T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Donut Pub', 'restaurant_id': '40365525'}}, {'_id': '5cb032da23d35d000111810c', 'Restaurant': {'address': {'building': '146', 'coord': [-74.0056649, 40.7452371], 'street': '10 Avenue', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-10-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-11-23T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Moran'S Chelsea", 'restaurant_id': '40365526'}}, {'_id': '5cb032da23d35d000111810d', 'Restaurant': {'address': {'building': '229', 'coord': [-73.9590059, 40.7090147], 'street': 'Havemeyer Street', 'zipcode': '11211'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-08-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-05-20T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-09-22T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Reben Luncheonette', 'restaurant_id': '40365546'}}, {'_id': '5cb032da23d35d000111810e', 'Restaurant': {'address': {'building': '1024', 'coord': [-73.96392089999999, 40.8033908], 'street': 'Amsterdam Avenue', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-06-12T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-01-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'V & T Restaurant', 'restaurant_id': '40365577'}}, {'_id': '5cb032da23d35d000111810f', 'Restaurant': {'address': {'building': '181-08', 'coord': [-73.7867565, 40.7271312], 'street': 'Union Turnpike', 'zipcode': '11366'}, 'borough': 'Queens', 'cuisine': 'Chinese', 'grades': [{'date': '2014-10-22T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2014-04-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-13T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-01-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-13T00:00:00Z', 'grade': 'P', 'score': 2}, {'date': '2012-06-19T00:00:00Z', 'grade': 'C', 'score': 36}], 'name': 'King Yum Restaurant', 'restaurant_id': '40365592'}}, {'_id': '5cb032da23d35d0001118110', 'Restaurant': {'address': {'building': '8104', 'coord': [-73.8850023, 40.7494272], 'street': '37 Avenue', 'zipcode': '11372'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-07-07T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-02-06T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-08-14T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-20T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-02-28T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-10-25T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Jahn'S Restaurant", 'restaurant_id': '40365627'}}, {'_id': '5cb032da23d35d0001118111', 'Restaurant': {'address': {'building': '6322', 'coord': [-73.9896898, 40.6199526], 'street': '18 Avenue', 'zipcode': '11204'}, 'borough': 'Brooklyn', 'cuisine': 'Pizza', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-05-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-03-29T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'J&V Famous Pizza', 'restaurant_id': '40365632'}}, {'_id': '5cb032da23d35d0001118112', 'Restaurant': {'address': {'building': '910', 'coord': [-73.9799932, 40.7660886], 'street': 'Seventh Avenue', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2015-01-08T00:00:00Z', 'grade': 'Z', 'score': 35}, {'date': '2014-06-02T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-11-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-04T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-06-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-24T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': 'La Parisienne Diner', 'restaurant_id': '40365633'}}, {'_id': '5cb032da23d35d0001118113', 'Restaurant': {'address': {'building': '326', 'coord': [-73.989131, 40.760039], 'street': 'West 46 Street', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-09-25T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-09-11T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-04-19T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-10-26T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Joe Allen Restaurant', 'restaurant_id': '40365644'}}, {'_id': '5cb032da23d35d0001118114', 'Restaurant': {'address': {'building': '3823', 'coord': [-74.16536339999999, 40.5450793], 'street': 'Richmond Avenue', 'zipcode': '10312'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-07-15T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2013-04-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-12T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Joyce'S Tavern", 'restaurant_id': '40365692'}}, {'_id': '5cb032da23d35d0001118115', 'Restaurant': {'address': {'building': '351', 'coord': [-73.96117869999999, 40.7619226], 'street': 'East 62 Street', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-11-13T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2014-02-28T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-06-10T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Il Vagabondo Restaurant', 'restaurant_id': '40365709'}}, {'_id': '5cb032da23d35d0001118116', 'Restaurant': {'address': {'building': '319321', 'coord': [-73.988948, 40.760337], 'street': '323 W. 46Th St.', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-11-12T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-07T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': 'Barbetta Restaurant', 'restaurant_id': '40365726'}}, {'_id': '5cb032da23d35d0001118117', 'Restaurant': {'address': {'building': '2911', 'coord': [-73.982241, 40.576366], 'street': 'West 15 Street', 'zipcode': '11224'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-05-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-06T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Gargiulo'S Restaurant", 'restaurant_id': '40365784'}}, {'_id': '5cb032da23d35d0001118118', 'Restaurant': {'address': {'building': '236', 'coord': [-73.9827418, 40.7655827], 'street': 'West 56 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-12T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-08-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-28T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': "Patsy'S Italian Restaurant", 'restaurant_id': '40365789'}}, {'_id': '5cb032da23d35d0001118119', 'Restaurant': {'address': {'building': '10701', 'coord': [-73.856132, 40.743841], 'street': 'Corona Avenue', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Italian', 'grades': [{'date': '2014-07-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-27T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-02-07T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-12-28T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Parkside Restaurant', 'restaurant_id': '40365841'}}, {'_id': '5cb032da23d35d000111811a', 'Restaurant': {'address': {'building': '45-15', 'coord': [-73.91427200000001, 40.7569379], 'street': 'Broadway', 'zipcode': '11103'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-03-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-07-12T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-02-16T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Lavelle'S Admiral'S Club", 'restaurant_id': '40365844'}}, {'_id': '5cb032da23d35d000111811b', 'Restaurant': {'address': {'building': '358', 'coord': [-73.963506, 40.758273], 'street': 'East 57 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-08-11T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-22T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-07-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-24T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Neary'S Pub", 'restaurant_id': '40365871'}}, {'_id': '5cb032da23d35d000111811c', 'Restaurant': {'address': {'building': '413', 'coord': [-73.99532099999999, 40.750205], 'street': '8 Avenue', 'zipcode': '10001'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-05-12T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-11-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-06-25T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-01-23T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-09-07T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'New York Pizza Suprema', 'restaurant_id': '40365882'}}, {'_id': '5cb032da23d35d000111811d', 'Restaurant': {'address': {'building': '331', 'coord': [-73.87786539999999, 40.8724377], 'street': 'East 204 Street', 'zipcode': '10467'}, 'borough': 'Bronx', 'cuisine': 'Irish', 'grades': [{'date': '2014-08-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-26T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-09-11T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-18T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2011-10-20T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Mcdwyers Pub', 'restaurant_id': '40365893'}}, {'_id': '5cb032da23d35d000111811e', 'Restaurant': {'address': {'building': '26', 'coord': [-73.9983, 40.715051], 'street': 'Pell Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Café/Coffee/Tea', 'grades': [{'date': '2014-07-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-07-12T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-11T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-01-10T00:00:00Z', 'grade': 'P', 'score': 4}, {'date': '2012-07-27T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-27T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-08-12T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Mee Sum Coffee Shop', 'restaurant_id': '40365904'}}, {'_id': '5cb032da23d35d000111811f', 'Restaurant': {'address': {'building': '25541', 'coord': [-73.70902579999999, 40.7276012], 'street': 'Jamaica Avenue', 'zipcode': '11001'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-01-16T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-06-20T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-10T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2011-06-23T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': "Nancy'S Fire Side", 'restaurant_id': '40365938'}}, {'_id': '5cb032da23d35d0001118120', 'Restaurant': {'address': {'building': '21', 'coord': [-73.9990337, 40.7143954], 'street': 'Mott Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Chinese', 'grades': [{'date': '2014-07-28T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2013-11-19T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-16T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Hop Kee Restaurant', 'restaurant_id': '40365942'}}, {'_id': '5cb032da23d35d0001118121', 'Restaurant': {'address': {'building': '1', 'coord': [-74.0049219, 40.720699], 'street': 'Lispenard Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-07T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-10-03T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2012-09-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-13T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Nancy Whiskey Pub', 'restaurant_id': '40365968'}}, {'_id': '5cb032da23d35d0001118122', 'Restaurant': {'address': {'building': '146-09', 'coord': [-73.808593, 40.702028], 'street': 'Jamaica Avenue', 'zipcode': '11435'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-11T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-09-20T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Blarney Bar', 'restaurant_id': '40365972'}}, {'_id': '5cb032da23d35d0001118123', 'Restaurant': {'address': {'building': '16304', 'coord': [-73.78999089999999, 40.7118632], 'street': 'Jamaica Avenue', 'zipcode': '11432'}, 'borough': 'Queens', 'cuisine': 'Pizza', 'grades': [{'date': '2014-07-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-03T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-09-28T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Margherita Pizza', 'restaurant_id': '40366002'}}, {'_id': '5cb032da23d35d0001118124', 'Restaurant': {'address': {'building': '10807', 'coord': [-73.8299395, 40.5812137], 'street': 'Rockaway Beach Boulevard', 'zipcode': '11694'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-01-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-06-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-01-31T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-02-08T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Healy'S Pub", 'restaurant_id': '40366054'}}, {'_id': '5cb032da23d35d0001118125', 'Restaurant': {'address': {'building': '416', 'coord': [-73.98586209999999, 40.67017250000001], 'street': '5 Avenue', 'zipcode': '11215'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2014-04-19T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-02-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-12T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Fifth Avenue Bingo', 'restaurant_id': '40366109'}}, {'_id': '5cb032da23d35d0001118126', 'Restaurant': {'address': {'building': '524', 'coord': [-74.1402105, 40.6301893], 'street': 'Port Richmond Avenue', 'zipcode': '10302'}, 'borough': 'Staten Island', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-28T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-22T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Denino'S Pizzeria Tavern", 'restaurant_id': '40366132'}}, {'_id': '5cb032da23d35d0001118127', 'Restaurant': {'address': {'building': '2929', 'coord': [-73.942849, 40.6076256], 'street': 'Avenue R', 'zipcode': '11229'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-13T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-10-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-22T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-12-01T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2011-05-25T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Michael'S Restaurant", 'restaurant_id': '40366154'}}, {'_id': '5cb032da23d35d0001118128', 'Restaurant': {'address': {'building': '146', 'coord': [-73.9736776, 40.7535755], 'street': 'East 46 Street', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-11T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-07-31T00:00:00Z', 'grade': 'C', 'score': 53}, {'date': '2012-12-19T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-04T00:00:00Z', 'grade': 'C', 'score': 45}, {'date': '2012-01-18T00:00:00Z', 'grade': 'C', 'score': 34}, {'date': '2011-09-28T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2011-05-24T00:00:00Z', 'grade': 'C', 'score': 52}], 'name': 'Nanni Restaurant', 'restaurant_id': '40366157'}}, {'_id': '5cb032da23d35d0001118129', 'Restaurant': {'address': {'building': '119-09', 'coord': [-73.82770529999999, 40.6944628], 'street': 'Atlantic Avenue', 'zipcode': '11418'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-11-20T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-02-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-01T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2012-11-28T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-16T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': "Lenihan'S Saloon", 'restaurant_id': '40366162'}}, {'_id': '5cb032da23d35d000111812a', 'Restaurant': {'address': {'building': '4218', 'coord': [-73.8682701, 40.745683], 'street': 'Junction Boulevard', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Latin (Cuban, Dominican, Puerto Rican, South & Central American)', 'grades': [{'date': '2014-11-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-27T00:00:00Z', 'grade': 'C', 'score': 30}], 'name': 'Emilio Iii Bar', 'restaurant_id': '40366214'}}, {'_id': '5cb032da23d35d000111812b', 'Restaurant': {'address': {'building': '80', 'coord': [-74.0086833, 40.7052024], 'street': 'Beaver Street', 'zipcode': '10005'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-07-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-08-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-24T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Killarney Rose', 'restaurant_id': '40366222'}}, {'_id': '5cb032da23d35d000111812c', 'Restaurant': {'address': {'building': '13558', 'coord': [-73.8216767, 40.6689548], 'street': 'Lefferts Boulevard', 'zipcode': '11420'}, 'borough': 'Queens', 'cuisine': 'Italian', 'grades': [{'date': '2014-06-20T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-06-28T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-13T00:00:00Z', 'grade': 'C', 'score': 28}], 'name': 'Don Peppe', 'restaurant_id': '40366230'}}, {'_id': '5cb032da23d35d000111812d', 'Restaurant': {'address': {'building': '202-24', 'coord': [-73.9250442, 40.5595462], 'street': 'Rockaway Point Boulevard', 'zipcode': '11697'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-12-02T00:00:00Z', 'grade': 'Z', 'score': 18}, {'date': '2014-02-12T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2013-04-13T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-06-26T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-12-17T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Blarney Castle', 'restaurant_id': '40366356'}}, {'_id': '5cb032da23d35d000111812e', 'Restaurant': {'address': {'building': '1611', 'coord': [-73.955074, 40.599217], 'street': 'Avenue U', 'zipcode': '11229'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-07-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-10T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-02-13T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-08-16T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-29T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Three Star Restaurant', 'restaurant_id': '40366361'}}, {'_id': '5cb032da23d35d000111812f', 'Restaurant': {'address': {'building': '137', 'coord': [-73.98926, 40.7509054], 'street': 'West 33 Street', 'zipcode': '10001'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-08-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-01-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-07-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-31T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-01-26T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-11T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Blarney Rock', 'restaurant_id': '40366379'}}, {'_id': '5cb032da23d35d0001118130', 'Restaurant': {'address': {'building': '1118', 'coord': [-73.960573, 40.760982], 'street': '1 Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-24T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-09-06T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-03-20T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-04-13T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Dangerfield'S Night Club", 'restaurant_id': '40366381'}}, {'_id': '5cb032da23d35d0001118131', 'Restaurant': {'address': {'building': '433', 'coord': [-73.98306099999999, 40.7441419], 'street': 'Park Avenue South', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-12-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-07-03T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-01-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Desmond'S Tavern", 'restaurant_id': '40366396'}}, {'_id': '5cb032da23d35d0001118132', 'Restaurant': {'address': {'building': '6828', 'coord': [-73.8204154, 40.7242443], 'street': 'Main Street', 'zipcode': '11367'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-09-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-03-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-31T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2012-05-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-11-03T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Naomi Kosher Pizza', 'restaurant_id': '40366425'}}] ###Markdown Api Manager Example ###Code from onesaitplatform.apimanager import ApiManagerClient ###Output _____no_output_____ ###Markdown Create ApiManager ###Code HOST = "development.onesaitplatform.com" PORT = 443 TOKEN = "b32522cd73e84ddda519f1dff9627f40" #client = ApiManagerClient(host=HOST, port=PORT) client = ApiManagerClient(host=HOST) ###Output _____no_output_____ ###Markdown Set token ###Code client.setToken(TOKEN) ###Output _____no_output_____ ###Markdown Find APIs ###Code ok_find, res_find = client.find("RestaurantsAPI", "Created", "analytics") print("API finded: {}".format(ok_find)) print("Api info:") print(res_find) ###Output API finded: True Api info: [{'identification': 'RestaurantsAPI', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'EDUCATION', 'externalApi': False, 'ontologyId': 'MASTER-Ontology-Restaurant-1', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantsAPI', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/16/2019 13:01:03', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantsAPI_GET', 'description': 'id', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantsAPI_GETAll', 'description': 'all', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}], 'authentication': None}] ###Markdown List APIs ###Code ok_list, res_list = client.list("analytics") print("APIs listed {}".format(ok_list)) print("Apis info:") for api in res_list: print(api) print("*") ###Output APIs listed True Apis info: {'identification': 'RestaurantsAPI', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'EDUCATION', 'externalApi': False, 'ontologyId': 'MASTER-Ontology-Restaurant-1', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantsAPI', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/16/2019 13:01:03', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantsAPI_GET', 'description': 'id', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantsAPI_GETAll', 'description': 'all', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}], 'authentication': None} * {'identification': 'RestaurantTestApi', 'version': 1, 'type': 'PRIVATE', 'isPublic': None, 'category': 'OTHER', 'externalApi': False, 'ontologyId': 'b5982b8d-e4c0-4a84-ab65-9e7d2f30e638', 'endpoint': 'https://development.onesaitplatform.com/api-manager/server/api/v1/RestaurantTestApi', 'endpointExt': None, 'description': '', 'metainf': '', 'imageType': None, 'status': 'CREATED', 'creationDate': '04/12/2019 08:19:16', 'userId': 'analytics', 'operations': [{'identification': 'RestaurantTestApi_PUT', 'description': 'update', 'operation': 'PUT', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'body', 'dataType': 'STRING', 'description': '', 'value': '', 'headerType': 'BODY', 'condition': None}, {'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_POST', 'description': 'insert', 'operation': 'POST', 'endpoint': None, 'path': '/', 'headers': [], 'queryParams': [{'name': 'body', 'dataType': 'STRING', 'description': '', 'value': '', 'headerType': 'BODY', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_GETAll', 'description': 'query', 'operation': 'GET', 'endpoint': None, 'path': '', 'headers': [], 'queryParams': [], 'postProcess': None}, {'identification': 'RestaurantTestApi_GET', 'description': 'queryby', 'operation': 'GET', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}, {'identification': 'RestaurantTestApi_DELETEID', 'description': 'delete', 'operation': 'DELETE', 'endpoint': None, 'path': '/{id}', 'headers': [], 'queryParams': [{'name': 'id', 'dataType': 'STRING', 'description': '', 'value': None, 'headerType': 'PATH', 'condition': None}], 'postProcess': None}], 'authentication': None} * ###Markdown Make API request ###Code ok_request, res_request = client.request(method="GET", name="RestaurantsAPI/", version=1, body=None) print("API request: {}".format(ok_request)) print("Api request:") print(res_request) ###Output API request: True Api request: [{'_id': '5cb032da23d35d000111809d', 'Restaurant': {'address': {'building': '351', 'coord': [-73.98513559999999, 40.7676919], 'street': 'West 57 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-09-06T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-07-22T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-31T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-29T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Dj Reynolds Pub And Restaurant', 'restaurant_id': '30191841'}}, {'_id': '5cb032da23d35d000111809e', 'Restaurant': {'address': {'building': '2780', 'coord': [-73.98241999999999, 40.579505], 'street': 'Stillwell Avenue', 'zipcode': '11224'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-06-10T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-06-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-04-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-10-12T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Riviera Caterer', 'restaurant_id': '40356018'}}, {'_id': '5cb032da23d35d000111809f', 'Restaurant': {'address': {'building': '97-22', 'coord': [-73.8601152, 40.7311739], 'street': '63 Road', 'zipcode': '11374'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-11-24T00:00:00Z', 'grade': 'Z', 'score': 20}, {'date': '2013-01-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-08-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-12-15T00:00:00Z', 'grade': 'B', 'score': 25}], 'name': 'Tov Kosher Kitchen', 'restaurant_id': '40356068'}}, {'_id': '5cb032da23d35d00011180a0', 'Restaurant': {'address': {'building': '469', 'coord': [-73.961704, 40.662942], 'street': 'Flatbush Avenue', 'zipcode': '11225'}, 'borough': 'Brooklyn', 'cuisine': 'Hamburgers', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-07-01T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-08T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Wendy'S", 'restaurant_id': '30112340'}}, {'_id': '5cb032da23d35d00011180a1', 'Restaurant': {'address': {'building': '1007', 'coord': [-73.856077, 40.848447], 'street': 'Morris Park Ave', 'zipcode': '10462'}, 'borough': 'Bronx', 'cuisine': 'Bakery', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-09-11T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-01-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-23T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-03-10T00:00:00Z', 'grade': 'B', 'score': 14}], 'name': 'Morris Park Bake Shop', 'restaurant_id': '30075445'}}, {'_id': '5cb032da23d35d00011180a2', 'Restaurant': {'address': {'building': '8825', 'coord': [-73.8803827, 40.7643124], 'street': 'Astoria Boulevard', 'zipcode': '11369'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-11-15T00:00:00Z', 'grade': 'Z', 'score': 38}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-02T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-02-10T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Brunos On The Boulevard', 'restaurant_id': '40356151'}}, {'_id': '5cb032da23d35d00011180a3', 'Restaurant': {'address': {'building': '2206', 'coord': [-74.1377286, 40.6119572], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-10-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-05-20T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-24T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Kosher Island', 'restaurant_id': '40356442'}}, {'_id': '5cb032da23d35d00011180a4', 'Restaurant': {'address': {'building': '7114', 'coord': [-73.9068506, 40.6199034], 'street': 'Avenue U', 'zipcode': '11234'}, 'borough': 'Brooklyn', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-05-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-01-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-03T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-07-18T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-03-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-14T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Wilken'S Fine Food", 'restaurant_id': '40356483'}}, {'_id': '5cb032da23d35d00011180a5', 'Restaurant': {'address': {'building': '6409', 'coord': [-74.00528899999999, 40.628886], 'street': '11 Avenue', 'zipcode': '11219'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-07-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-08-16T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-08-17T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Regina Caterers', 'restaurant_id': '40356649'}}, {'_id': '5cb032da23d35d00011180a6', 'Restaurant': {'address': {'building': '1839', 'coord': [-73.9482609, 40.6408271], 'street': 'Nostrand Avenue', 'zipcode': '11226'}, 'borough': 'Brooklyn', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-10T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-07-11T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-02-23T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Taste The Tropics Ice Cream', 'restaurant_id': '40356731'}}, {'_id': '5cb032da23d35d00011180a7', 'Restaurant': {'address': {'building': '2300', 'coord': [-73.8786113, 40.8502883], 'street': 'Southern Boulevard', 'zipcode': '10460'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-05-28T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-06-19T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-06-15T00:00:00Z', 'grade': 'A', 'score': 3}], 'name': 'Wild Asia', 'restaurant_id': '40357217'}}, {'_id': '5cb032da23d35d00011180a8', 'Restaurant': {'address': {'building': '7715', 'coord': [-73.9973325, 40.61174889999999], 'street': '18 Avenue', 'zipcode': '11214'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-04-16T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-04-23T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-04-24T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2011-12-16T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'C & C Catering Service', 'restaurant_id': '40357437'}}, {'_id': '5cb032da23d35d00011180a9', 'Restaurant': {'address': {'building': '1269', 'coord': [-73.871194, 40.6730975], 'street': 'Sutter Avenue', 'zipcode': '11208'}, 'borough': 'Brooklyn', 'cuisine': 'Chinese', 'grades': [{'date': '2014-09-16T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2013-08-28T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-04-02T00:00:00Z', 'grade': 'C', 'score': 56}, {'date': '2012-08-15T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-03-28T00:00:00Z', 'grade': 'B', 'score': 27}], 'name': 'May May Kitchen', 'restaurant_id': '40358429'}}, {'_id': '5cb032da23d35d00011180aa', 'Restaurant': {'address': {'building': '1', 'coord': [-73.96926909999999, 40.7685235], 'street': 'East 66 Street', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-05-07T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-05-03T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-04-30T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-12-27T00:00:00Z', 'grade': 'A', 'score': 0}], 'name': '1 East 66Th Street Kitchen', 'restaurant_id': '40359480'}}, {'_id': '5cb032da23d35d00011180ab', 'Restaurant': {'address': {'building': '705', 'coord': [-73.9653967, 40.6064339], 'street': 'Kings Highway', 'zipcode': '11223'}, 'borough': 'Brooklyn', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-11-10T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-10-04T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-05-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-30T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': 'Seuda Foods', 'restaurant_id': '40360045'}}, {'_id': '5cb032da23d35d00011180ac', 'Restaurant': {'address': {'building': '203', 'coord': [-73.97822040000001, 40.6435254], 'street': 'Church Avenue', 'zipcode': '11218'}, 'borough': 'Brooklyn', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-01-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-11-07T00:00:00Z', 'grade': 'P', 'score': 12}, {'date': '2011-07-21T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40360076'}}, {'_id': '5cb032da23d35d00011180ad', 'Restaurant': {'address': {'building': '265-15', 'coord': [-73.7032601, 40.7386417], 'street': 'Hillside Avenue', 'zipcode': '11004'}, 'borough': 'Queens', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-10-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40361322'}}, {'_id': '5cb032da23d35d00011180ae', 'Restaurant': {'address': {'building': '6909', 'coord': [-74.0259567, 40.6353674], 'street': '3 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-08-21T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2014-03-05T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-01-10T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Nordic Delicacies', 'restaurant_id': '40361390'}}, {'_id': '5cb032da23d35d00011180af', 'Restaurant': {'address': {'building': '522', 'coord': [-73.95171, 40.767461], 'street': 'East 74 Street', 'zipcode': '10021'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-19T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2013-05-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-03-29T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Glorious Food', 'restaurant_id': '40361521'}}, {'_id': '5cb032da23d35d00011180b0', 'Restaurant': {'address': {'building': '284', 'coord': [-73.9829239, 40.6580753], 'street': 'Prospect Park West', 'zipcode': '11215'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-19T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-11-14T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-12-05T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-17T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'The Movable Feast', 'restaurant_id': '40361606'}}, {'_id': '5cb032da23d35d00011180b1', 'Restaurant': {'address': {'building': '129-08', 'coord': [-73.839297, 40.78147], 'street': '20 Avenue', 'zipcode': '11356'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-08-16T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-29T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Sal'S Deli", 'restaurant_id': '40361618'}}, {'_id': '5cb032da23d35d00011180b2', 'Restaurant': {'address': {'building': '759', 'coord': [-73.9925306, 40.7309346], 'street': 'Broadway', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-01-21T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-06-07T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Bully'S Deli", 'restaurant_id': '40361708'}}, {'_id': '5cb032da23d35d00011180b3', 'Restaurant': {'address': {'building': '3406', 'coord': [-73.94024739999999, 40.7623288], 'street': '10 Street', 'zipcode': '11106'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-03-19T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-03-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-27T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-04-05T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Steve Chu'S Deli & Grocery", 'restaurant_id': '40361998'}}, {'_id': '5cb032da23d35d00011180b4', 'Restaurant': {'address': {'building': '502', 'coord': [-73.976112, 40.786714], 'street': 'Amsterdam Avenue', 'zipcode': '10024'}, 'borough': 'Manhattan', 'cuisine': 'Chicken', 'grades': [{'date': '2014-09-15T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-09T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-04-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-15T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Harriet'S Kitchen", 'restaurant_id': '40362098'}}, {'_id': '5cb032da23d35d00011180b5', 'Restaurant': {'address': {'building': '730', 'coord': [-73.96805719999999, 40.7925587], 'street': 'Columbus Avenue', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-12T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2013-08-28T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-25T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-14T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'P & S Deli Grocery', 'restaurant_id': '40362264'}}, {'_id': '5cb032da23d35d00011180b6', 'Restaurant': {'address': {'building': '18', 'coord': [-73.996984, 40.72589], 'street': 'West Houston Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-04-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-05T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-03-21T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-04-27T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Angelika Film Center', 'restaurant_id': '40362274'}}, {'_id': '5cb032da23d35d00011180b7', 'Restaurant': {'address': {'building': '531', 'coord': [-73.9634876, 40.6940001], 'street': 'Myrtle Avenue', 'zipcode': '11205'}, 'borough': 'Brooklyn', 'cuisine': 'Hamburgers', 'grades': [{'date': '2014-03-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-10-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-22T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'White Castle', 'restaurant_id': '40362344'}}, {'_id': '5cb032da23d35d00011180b8', 'Restaurant': {'address': {'building': '103-05', 'coord': [-73.8642349, 40.75356], 'street': '37 Avenue', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Chinese', 'grades': [{'date': '2014-04-21T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-11-12T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-06-04T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-11-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-11T00:00:00Z', 'grade': 'P', 'score': 0}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-12-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-07-20T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Ho Mei Restaurant', 'restaurant_id': '40362432'}}, {'_id': '5cb032da23d35d00011180b9', 'Restaurant': {'address': {'building': '60', 'coord': [-74.0085357, 40.70620539999999], 'street': 'Wall Street', 'zipcode': '10005'}, 'borough': 'Manhattan', 'cuisine': 'Turkish', 'grades': [{'date': '2014-09-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'The Country Cafe', 'restaurant_id': '40362715'}}, {'_id': '5cb032da23d35d00011180ba', 'Restaurant': {'address': {'building': '195', 'coord': [-73.9246028, 40.6522396], 'street': 'East 56 Street', 'zipcode': '11203'}, 'borough': 'Brooklyn', 'cuisine': 'Caribbean', 'grades': [{'date': '2014-05-13T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-05-08T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-09-22T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-06T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Shashemene Int'L Restaura", 'restaurant_id': '40362869'}}, {'_id': '5cb032da23d35d00011180bb', 'Restaurant': {'address': {'building': '107', 'coord': [-74.00920839999999, 40.7132925], 'street': 'Church Street', 'zipcode': '10007'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-02-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-08-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-02-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-18T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Downtown Deli', 'restaurant_id': '40363021'}}, {'_id': '5cb032da23d35d00011180bc', 'Restaurant': {'address': {'building': '1006', 'coord': [-73.84856870000002, 40.8903781], 'street': 'East 233 Street', 'zipcode': '10466'}, 'borough': 'Bronx', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-07-03T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-07-11T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40363093'}}, {'_id': '5cb032da23d35d00011180bd', 'Restaurant': {'address': {'building': '56', 'coord': [-73.991495, 40.692273], 'street': 'Court Street', 'zipcode': '11201'}, 'borough': 'Brooklyn', 'cuisine': 'Donuts', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-01-19T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Dunkin' Donuts", 'restaurant_id': '40363098'}}, {'_id': '5cb032da23d35d00011180be', 'Restaurant': {'address': {'building': '7615', 'coord': [-74.0228449, 40.6281815], 'street': '5 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-24T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-18T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-04-05T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Mejlander & Mulgannon', 'restaurant_id': '40363117'}}, {'_id': '5cb032da23d35d00011180bf', 'Restaurant': {'address': {'building': '120', 'coord': [-73.9998042, 40.7251256], 'street': 'Prince Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Bakery', 'grades': [{'date': '2014-10-17T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-09-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-04-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-12-19T00:00:00Z', 'grade': 'A', 'score': 3}], 'name': "Olive'S", 'restaurant_id': '40363151'}}, {'_id': '5cb032da23d35d00011180c0', 'Restaurant': {'address': {'building': '1236', 'coord': [-73.8893654, 40.81376179999999], 'street': '238 Spofford Ave', 'zipcode': '10474'}, 'borough': 'Bronx', 'cuisine': 'Chinese', 'grades': [{'date': '2013-12-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-06-12T00:00:00Z', 'grade': 'B', 'score': 15}], 'name': 'Happy Garden', 'restaurant_id': '40363289'}}, {'_id': '5cb032da23d35d00011180c1', 'Restaurant': {'address': {'building': '625', 'coord': [-73.990494, 40.7569545], 'street': '8 Avenue', 'zipcode': '10018'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-09T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-01-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-07T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2011-12-13T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-09-09T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Cafe Metro', 'restaurant_id': '40363298'}}, {'_id': '5cb032da23d35d00011180c2', 'Restaurant': {'address': {'building': '1069', 'coord': [-73.902463, 40.694924], 'street': 'Wyckoff Avenue', 'zipcode': '11385'}, 'borough': 'Queens', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-05-08T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-12-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-06-21T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-12-24T00:00:00Z', 'grade': 'B', 'score': 25}, {'date': '2011-10-19T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Tony'S Deli", 'restaurant_id': '40363333'}}, {'_id': '5cb032da23d35d00011180c3', 'Restaurant': {'address': {'building': '405', 'coord': [-73.97534999999999, 40.7516269], 'street': 'Lexington Avenue', 'zipcode': '10174'}, 'borough': 'Manhattan', 'cuisine': 'Sandwiches/Salads/Mixed Buffet', 'grades': [{'date': '2014-02-21T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-09-13T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-08-28T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2011-09-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-05-03T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Lexler Deli', 'restaurant_id': '40363426'}}, {'_id': '5cb032da23d35d00011180c4', 'Restaurant': {'address': {'building': '2491', 'coord': [-74.1459332, 40.6103714], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2015-01-09T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-12-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-01-08T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Bagels N Buns', 'restaurant_id': '40363427'}}, {'_id': '5cb032da23d35d00011180c5', 'Restaurant': {'address': {'building': '7905', 'coord': [-73.8740217, 40.7135015], 'street': 'Metropolitan Avenue', 'zipcode': '11379'}, 'borough': 'Queens', 'cuisine': 'Bagels/Pretzels', 'grades': [{'date': '2014-09-17T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-01-16T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-08-07T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-21T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-06-20T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-01-31T00:00:00Z', 'grade': 'B', 'score': 18}], 'name': 'Hot Bagels', 'restaurant_id': '40363565'}}, {'_id': '5cb032da23d35d00011180c6', 'Restaurant': {'address': {'building': '87-69', 'coord': [-73.8309503, 40.7001121], 'street': 'Lefferts Boulevard', 'zipcode': '11418'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-08-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-08-07T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-04T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2011-06-29T00:00:00Z', 'grade': 'A', 'score': 4}], 'name': 'Snack Time Grill', 'restaurant_id': '40363590'}}, {'_id': '5cb032da23d35d00011180c7', 'Restaurant': {'address': {'building': '1418', 'coord': [-73.95685019999999, 40.7753401], 'street': 'Third Avenue', 'zipcode': '10028'}, 'borough': 'Manhattan', 'cuisine': 'Continental', 'grades': [{'date': '2014-06-02T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-12-27T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-18T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2012-02-01T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-07-06T00:00:00Z', 'grade': 'B', 'score': 25}], 'name': "Lorenzo & Maria'S", 'restaurant_id': '40363630'}}, {'_id': '5cb032da23d35d00011180c8', 'Restaurant': {'address': {'building': '464', 'coord': [-73.9791458, 40.744328], 'street': '3 Avenue', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-08-05T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2014-03-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-07-09T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-30T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-01-05T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-09-26T00:00:00Z', 'grade': 'A', 'score': 0}], 'name': "Domino'S Pizza", 'restaurant_id': '40363644'}}, {'_id': '5cb032da23d35d00011180c9', 'Restaurant': {'address': {'building': '437', 'coord': [-73.975393, 40.757365], 'street': 'Madison Avenue', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-07T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-06-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-06-23T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Berkely', 'restaurant_id': '40363685'}}, {'_id': '5cb032da23d35d00011180ca', 'Restaurant': {'address': {'building': '1031', 'coord': [-73.9075537, 40.6438684], 'street': 'East 92 Street', 'zipcode': '11236'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-02-05T00:00:00Z', 'grade': 'A', 'score': 0}, {'date': '2013-01-29T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-12-08T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Sonny'S Heros", 'restaurant_id': '40363744'}}, {'_id': '5cb032da23d35d00011180cb', 'Restaurant': {'address': {'building': '1111', 'coord': [-74.0796436, 40.59878339999999], 'street': 'Hylan Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'Ice Cream, Gelato, Yogurt, Ices', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-26T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Carvel Ice Cream', 'restaurant_id': '40363834'}}, {'_id': '5cb032da23d35d00011180cc', 'Restaurant': {'address': {'building': '976', 'coord': [-73.92701509999999, 40.6620192], 'street': 'Rutland Road', 'zipcode': '11212'}, 'borough': 'Brooklyn', 'cuisine': 'Chinese', 'grades': [{'date': '2014-04-23T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-03-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-03-13T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2011-11-16T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Golden Pavillion', 'restaurant_id': '40363920'}}, {'_id': '5cb032da23d35d00011180cd', 'Restaurant': {'address': {'building': '148', 'coord': [-73.9806854, 40.7778589], 'street': 'West 72 Street', 'zipcode': '10023'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-12-08T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-05-05T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2013-04-05T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-03-30T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Domino'S Pizza", 'restaurant_id': '40363945'}}, {'_id': '5cb032da23d35d00011180ce', 'Restaurant': {'address': {'building': '364', 'coord': [-73.96084119999999, 40.8014307], 'street': 'West 110 Street', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-04T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2014-02-26T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-03-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-21T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Spoon Bread Catering', 'restaurant_id': '40364179'}}, {'_id': '5cb032da23d35d00011180cf', 'Restaurant': {'address': {'building': '1423', 'coord': [-73.9615132, 40.6253268], 'street': 'Avenue J', 'zipcode': '11230'}, 'borough': 'Brooklyn', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-12-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-12-05T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Kosher Bagel Hole', 'restaurant_id': '40364220'}}, {'_id': '5cb032da23d35d00011180d0', 'Restaurant': {'address': {'building': '0', 'coord': [-84.2040813, 9.9986585], 'street': 'Guardia Airport Parking', 'zipcode': '11371'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-05-16T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-05-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-11-02T00:00:00Z', 'grade': 'C', 'score': 32}], 'name': 'Terminal Cafe/Yankee Clipper', 'restaurant_id': '40364262'}}, {'_id': '5cb032da23d35d00011180d1', 'Restaurant': {'address': {'building': '73', 'coord': [-74.1178949, 40.5734906], 'street': 'New Dorp Plaza', 'zipcode': '10306'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2014-11-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-11-07T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-24T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-20T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Plaza Bagels & Deli', 'restaurant_id': '40364286'}}, {'_id': '5cb032da23d35d00011180d2', 'Restaurant': {'address': {'building': '277', 'coord': [-73.8941893, 40.8634684], 'street': 'East Kingsbridge Road', 'zipcode': '10458'}, 'borough': 'Bronx', 'cuisine': 'Chinese', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-08-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-08-17T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Happy Garden', 'restaurant_id': '40364296'}}, {'_id': '5cb032da23d35d00011180d3', 'Restaurant': {'address': {'building': '203', 'coord': [-74.15235919999999, 40.5563756], 'street': 'Giffords Lane', 'zipcode': '10308'}, 'borough': 'Staten Island', 'cuisine': 'Delicatessen', 'grades': [{'date': '2015-01-05T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2014-09-11T00:00:00Z', 'grade': 'C', 'score': 39}, {'date': '2014-03-20T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-23T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'B & M Hot Bagel & Grocery', 'restaurant_id': '40364299'}}, {'_id': '5cb032da23d35d00011180d4', 'Restaurant': {'address': {'building': '94', 'coord': [-74.0061936, 40.7092038], 'street': 'Fulton Street', 'zipcode': '10038'}, 'borough': 'Manhattan', 'cuisine': 'Chicken', 'grades': [{'date': '2015-01-06T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-07-15T00:00:00Z', 'grade': 'C', 'score': 48}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-24T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-04-19T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': 'Texas Rotisserie', 'restaurant_id': '40364304'}}, {'_id': '5cb032da23d35d00011180d5', 'Restaurant': {'address': {'building': '10004', 'coord': [-74.03400479999999, 40.6127077], 'street': '4 Avenue', 'zipcode': '11209'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-12-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-11-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Philadelhia Grille Express', 'restaurant_id': '40364305'}}, {'_id': '5cb032da23d35d00011180d6', 'Restaurant': {'address': {'building': '178', 'coord': [-73.96252129999999, 40.7098035], 'street': 'Broadway', 'zipcode': '11211'}, 'borough': 'Brooklyn', 'cuisine': 'Steak', 'grades': [{'date': '2014-03-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-09-28T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-26T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-09-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-08-15T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Peter Luger Steakhouse', 'restaurant_id': '40364335'}}, {'_id': '5cb032da23d35d00011180d7', 'Restaurant': {'address': {'building': '1', 'coord': [-73.97166039999999, 40.764832], 'street': 'East 60 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-16T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-04-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-10-19T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-27T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2011-11-29T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Metropolitan Club', 'restaurant_id': '40364347'}}, {'_id': '5cb032da23d35d00011180d8', 'Restaurant': {'address': {'building': '837', 'coord': [-73.9712, 40.751703], 'street': '2 Avenue', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-22T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-09-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-26T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-04-30T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-10-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Palm Restaurant', 'restaurant_id': '40364355'}}, {'_id': '5cb032da23d35d00011180d9', 'Restaurant': {'address': {'building': '21', 'coord': [-73.9774394, 40.7604522], 'street': 'West 52 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-05-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-04T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': '21 Club', 'restaurant_id': '40364362'}}, {'_id': '5cb032da23d35d00011180da', 'Restaurant': {'address': {'building': '658', 'coord': [-73.81363999999999, 40.82941100000001], 'street': 'Clarence Ave', 'zipcode': '10465'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-06-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-07-11T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Manhem Club', 'restaurant_id': '40364363'}}, {'_id': '5cb032da23d35d00011180db', 'Restaurant': {'address': {'building': '1028', 'coord': [-73.966032, 40.762832], 'street': '3 Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-09-16T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-02-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-05-03T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-08-20T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-02-13T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Isle Of Capri Resturant', 'restaurant_id': '40364373'}}, {'_id': '5cb032da23d35d00011180dc', 'Restaurant': {'address': {'building': '45', 'coord': [-73.9891878, 40.7375638], 'street': 'East 18 Street', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-24T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Old Town Bar & Restaurant', 'restaurant_id': '40364389'}}, {'_id': '5cb032da23d35d00011180dd', 'Restaurant': {'address': {'building': '261', 'coord': [-73.94839189999999, 40.7224876], 'street': 'Driggs Avenue', 'zipcode': '11222'}, 'borough': 'Brooklyn', 'cuisine': 'Polish', 'grades': [{'date': '2014-05-31T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-05-10T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-02-17T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-10-14T00:00:00Z', 'grade': 'C', 'score': 54}], 'name': 'Polish National Home', 'restaurant_id': '40364404'}}, {'_id': '5cb032da23d35d00011180de', 'Restaurant': {'address': {'building': '62', 'coord': [-74.00310999999999, 40.7348888], 'street': 'Charles Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'Latin (Cuban, Dominican, Puerto Rican, South & Central American)', 'grades': [{'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-05-20T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-01-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-03T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Seville Restaurant', 'restaurant_id': '40364439'}}, {'_id': '5cb032da23d35d00011180df', 'Restaurant': {'address': {'building': '100', 'coord': [-74.0010484, 40.71599000000001], 'street': 'Centre Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-03-03T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-03-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-03-31T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Criminal Court Bldg Cafeteria', 'restaurant_id': '40364443'}}, {'_id': '5cb032da23d35d00011180e0', 'Restaurant': {'address': {'building': '657', 'coord': [-73.9056678, 40.7066898], 'street': 'Fairview Avenue', 'zipcode': '11385'}, 'borough': 'Queens', 'cuisine': 'German', 'grades': [{'date': '2014-03-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-12T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-21T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2011-11-25T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2011-06-22T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': 'Gottscheer Hall', 'restaurant_id': '40364449'}}, {'_id': '5cb032da23d35d00011180e1', 'Restaurant': {'address': {'building': '180', 'coord': [-73.9788694, 40.7665961], 'street': 'Central Park South', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-12-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-08-07T00:00:00Z', 'grade': 'C', 'score': 40}, {'date': '2013-07-29T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-12-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-30T00:00:00Z', 'grade': 'C', 'score': 4}, {'date': '2012-02-16T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Nyac Main Dining Room', 'restaurant_id': '40364467'}}, {'_id': '5cb032da23d35d00011180e2', 'Restaurant': {'address': {'building': '108', 'coord': [-73.98146, 40.7250067], 'street': 'Avenue B', 'zipcode': '10009'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2013-12-31T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-10-22T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-14T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': '7B Bar', 'restaurant_id': '40364518'}}, {'_id': '5cb032da23d35d00011180e3', 'Restaurant': {'address': {'building': '96-40', 'coord': [-73.86137149999999, 40.7293762], 'street': 'Queens Boulevard', 'zipcode': '11374'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-03-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-09-30T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-04-26T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-09-11T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2011-09-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-03-17T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Ben-Best Deli & Restaurant', 'restaurant_id': '40364529'}}, {'_id': '5cb032da23d35d00011180e4', 'Restaurant': {'address': {'building': '215', 'coord': [-73.9805679, 40.7659436], 'street': 'West 57 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-02-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-08-09T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-02-22T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-16T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Cafe Atelier (Art Students League)', 'restaurant_id': '40364531'}}, {'_id': '5cb032da23d35d00011180e5', 'Restaurant': {'address': {'building': '845', 'coord': [-73.965531, 40.765431], 'street': 'Lexington Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Steak', 'grades': [{'date': '2014-03-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-03-21T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-10-18T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2011-05-17T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': "Donohue'S Steak House", 'restaurant_id': '40364572'}}, {'_id': '5cb032da23d35d00011180e6', 'Restaurant': {'address': {'building': '311', 'coord': [-73.98621899999999, 40.763406], 'street': 'West 51 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-11-10T00:00:00Z', 'grade': 'B', 'score': 15}, {'date': '2014-04-03T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-17T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2013-02-06T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2012-07-16T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-03-08T00:00:00Z', 'grade': 'C', 'score': 7}], 'name': 'Tout Va Bien', 'restaurant_id': '40364576'}}, {'_id': '5cb032da23d35d00011180e7', 'Restaurant': {'address': {'building': '386', 'coord': [-73.9818918, 40.6901211], 'street': 'Flatbush Avenue Extension', 'zipcode': '11201'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2014-03-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-01-10T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-09-04T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Junior'S", 'restaurant_id': '40364581'}}, {'_id': '5cb032da23d35d00011180e8', 'Restaurant': {'address': {'building': '37', 'coord': [-74.138263, 40.546681], 'street': 'Mansion Ave', 'zipcode': '10308'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-04-22T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-25T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-06-09T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Great Kills Yacht Club', 'restaurant_id': '40364610'}}, {'_id': '5cb032da23d35d00011180e9', 'Restaurant': {'address': {'building': '251', 'coord': [-73.9775552, 40.7432016], 'street': 'East 31 Street', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-04-22T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-19T00:00:00Z', 'grade': 'C', 'score': 32}, {'date': '2012-05-22T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Marchis Restaurant', 'restaurant_id': '40364668'}}, {'_id': '5cb032da23d35d00011180ea', 'Restaurant': {'address': {'building': '2602', 'coord': [-73.95443709999999, 40.5877993], 'street': 'East 15 Street', 'zipcode': '11235'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-05-14T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-11-23T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-03-14T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2011-07-14T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': 'Towne Cafe', 'restaurant_id': '40364681'}}, {'_id': '5cb032da23d35d00011180eb', 'Restaurant': {'address': {'building': '.1-A', 'coord': [-48.9424, -16.3550032], 'street': 'East 77 St', 'zipcode': '10021'}, 'borough': 'Manhattan', 'cuisine': 'Continental', 'grades': [{'date': '2014-11-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-03T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2012-10-02T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-04-25T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Dining Room', 'restaurant_id': '40364691'}}, {'_id': '5cb032da23d35d00011180ec', 'Restaurant': {'address': {'building': '56', 'coord': [-74.004758, 40.741207], 'street': '9 Avenue', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-06-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-26T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-05-24T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-11-14T00:00:00Z', 'grade': 'A', 'score': 2}], 'name': 'Old Homestead', 'restaurant_id': '40364715'}}, {'_id': '5cb032da23d35d00011180ed', 'Restaurant': {'address': {'building': '156-71', 'coord': [-73.840437, 40.6627235], 'street': 'Crossbay Boulevard', 'zipcode': '11414'}, 'borough': 'Queens', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-10-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-10-30T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-27T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'New Park Pizzeria & Restaurant', 'restaurant_id': '40364744'}}, {'_id': '5cb032da23d35d00011180ee', 'Restaurant': {'address': {'building': '600', 'coord': [-73.7522366, 40.7766941], 'street': 'West Drive', 'zipcode': '11363'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-13T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-04-12T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2011-07-30T00:00:00Z', 'grade': 'B', 'score': 23}], 'name': 'Douglaston Club', 'restaurant_id': '40364858'}}, {'_id': '5cb032da23d35d00011180ef', 'Restaurant': {'address': {'building': '225', 'coord': [-73.96485799999999, 40.761899], 'street': 'East 60 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-08-11T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-14T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-01-16T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-07-12T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Serendipity 3', 'restaurant_id': '40364863'}}, {'_id': '5cb032da23d35d00011180f0', 'Restaurant': {'address': {'building': '461', 'coord': [-74.002944, 40.652779], 'street': '37 Street', 'zipcode': '11232'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-28T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-06T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-06T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Melody Lanes', 'restaurant_id': '40364889'}}, {'_id': '5cb032da23d35d00011180f1', 'Restaurant': {'address': {'building': '30-13', 'coord': [-73.9151096, 40.763377], 'street': 'Steinway Street', 'zipcode': '11103'}, 'borough': 'Queens', 'cuisine': 'Pizza', 'grades': [{'date': '2014-10-06T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-10-24T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-06-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-17T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Rizzo'S Fine Pizza", 'restaurant_id': '40364920'}}, {'_id': '5cb032da23d35d00011180f2', 'Restaurant': {'address': {'building': '2222', 'coord': [-73.84971759999999, 40.8304811], 'street': 'Haviland Avenue', 'zipcode': '10462'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2014-05-01T00:00:00Z', 'grade': 'B', 'score': 17}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-08T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': 'The New Starling Athletic Club Of The Bronx', 'restaurant_id': '40364956'}}, {'_id': '5cb032da23d35d00011180f3', 'Restaurant': {'address': {'building': '567', 'coord': [-74.00619499999999, 40.735663], 'street': 'Hudson Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-07-25T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-05-29T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-12-23T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'White Horse Tavern', 'restaurant_id': '40364958'}}, {'_id': '5cb032da23d35d00011180f4', 'Restaurant': {'address': {'building': '67', 'coord': [-74.0707363, 40.59321569999999], 'street': 'Olympia Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'Italian', 'grades': [{'date': '2014-04-24T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2011-07-23T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Crystal Room', 'restaurant_id': '40365013'}}, {'_id': '5cb032da23d35d00011180f5', 'Restaurant': {'address': {'building': '390', 'coord': [-74.07444319999999, 40.6096914], 'street': 'Hylan Boulevard', 'zipcode': '10305'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-06-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-06-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-08-30T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-10-07T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': "Labetti'S Post # 2159", 'restaurant_id': '40365022'}}, {'_id': '5cb032da23d35d00011180f6', 'Restaurant': {'address': {'building': '1', 'coord': [-73.9727638, 40.588853], 'street': 'Bouck Court', 'zipcode': '11223'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-10T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2014-06-25T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-10-23T00:00:00Z', 'grade': 'C', 'score': 28}, {'date': '2013-03-21T00:00:00Z', 'grade': 'C', 'score': 29}, {'date': '2012-06-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'Shell Lanes', 'restaurant_id': '40365043'}}, {'_id': '5cb032da23d35d00011180f7', 'Restaurant': {'address': {'building': '15', 'coord': [-73.9896713, 40.7287978], 'street': 'East 7 Street', 'zipcode': '10003'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-06-07T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-05-21T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-11T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-08-11T00:00:00Z', 'grade': 'B', 'score': 16}], 'name': "Mcsorley'S Old Ale House", 'restaurant_id': '40365075'}}, {'_id': '5cb032da23d35d00011180f8', 'Restaurant': {'address': {'building': '93', 'coord': [-73.99950489999999, 40.7169224], 'street': 'Baxter Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-12-06T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-23T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-01-12T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Forlinis Restaurant', 'restaurant_id': '40365098'}}, {'_id': '5cb032da23d35d00011180f9', 'Restaurant': {'address': {'building': '6736', 'coord': [-74.2274942, 40.5071996], 'street': 'Hylan Boulevard', 'zipcode': '10309'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-08-13T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-08-20T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2012-06-18T00:00:00Z', 'grade': 'A', 'score': 6}], 'name': 'South Shore Swimming Club', 'restaurant_id': '40365120'}}, {'_id': '5cb032da23d35d00011180fa', 'Restaurant': {'address': {'building': '331', 'coord': [-74.0037823, 40.7380122], 'street': 'West 4 Street', 'zipcode': '10014'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-11-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-06-27T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-05-15T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Corner Bistro', 'restaurant_id': '40365166'}}, {'_id': '5cb032da23d35d00011180fb', 'Restaurant': {'address': {'building': '1449', 'coord': [-73.94933739999999, 40.6509823], 'street': 'Nostrand Avenue', 'zipcode': '11226'}, 'borough': 'Brooklyn', 'cuisine': 'Donuts', 'grades': [{'date': '2014-10-21T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2014-05-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-12-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-09T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2011-12-14T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Nostrand Donut Shop', 'restaurant_id': '40365226'}}, {'_id': '5cb032da23d35d00011180fc', 'Restaurant': {'address': {'building': '1616', 'coord': [-73.952449, 40.776325], 'street': '2 Avenue', 'zipcode': '10028'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-02-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2013-08-30T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-08-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2011-09-14T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Dorrian'S Red Hand Restaurant", 'restaurant_id': '40365239'}}, {'_id': '5cb032da23d35d00011180fd', 'Restaurant': {'address': {'building': '3', 'coord': [-73.97557069999999, 40.7596796], 'street': 'East 52 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-04-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-05T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'La Grenouille', 'restaurant_id': '40365264'}}, {'_id': '5cb032da23d35d00011180fe', 'Restaurant': {'address': {'building': '4035', 'coord': [-73.9395182, 40.8422945], 'street': 'Broadway', 'zipcode': '10032'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-04T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-01-04T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2011-09-15T00:00:00Z', 'grade': 'C', 'score': 60}], 'name': 'Como Pizza', 'restaurant_id': '40365280'}}, {'_id': '5cb032da23d35d00011180ff', 'Restaurant': {'address': {'building': '842', 'coord': [-73.97063700000001, 40.751495], 'street': '2 Avenue', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-07-22T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-05-28T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-05-29T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-01-05T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-08-10T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Keats Restaurant', 'restaurant_id': '40365288'}}, {'_id': '5cb032da23d35d0001118100', 'Restaurant': {'address': {'building': '146', 'coord': [-73.9973041, 40.7188698], 'street': 'Mulberry Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-09-26T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-09-15T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Angelo Of Mulberry St.', 'restaurant_id': '40365293'}}, {'_id': '5cb032da23d35d0001118101', 'Restaurant': {'address': {'building': '103', 'coord': [-74.001043, 40.729795], 'street': 'Macdougal Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Mexican', 'grades': [{'date': '2014-05-22T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-10-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-20T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-05-17T00:00:00Z', 'grade': 'B', 'score': 20}], 'name': "Panchito'S", 'restaurant_id': '40365348'}}, {'_id': '5cb032da23d35d0001118102', 'Restaurant': {'address': {'building': '7201', 'coord': [-74.0166091, 40.6284767], 'street': '8 Avenue', 'zipcode': '11228'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2014-02-19T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-07-09T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-06-06T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-12-19T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'New Corner', 'restaurant_id': '40365355'}}, {'_id': '5cb032da23d35d0001118103', 'Restaurant': {'address': {'building': '15', 'coord': [-73.98126069999999, 40.7547107], 'street': 'West 43 Street', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2015-01-15T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2014-07-07T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-01-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-19T00:00:00Z', 'grade': 'C', 'score': 29}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'The Princeton Club', 'restaurant_id': '40365361'}}, {'_id': '5cb032da23d35d0001118104', 'Restaurant': {'address': {'building': '106', 'coord': [-74.0003315, 40.7274874], 'street': 'West Houston Street', 'zipcode': '10012'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-31T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-03-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-09-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-03-05T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': "Arturo'S", 'restaurant_id': '40365387'}}, {'_id': '5cb032da23d35d0001118105', 'Restaurant': {'address': {'building': '405', 'coord': [-73.9646207, 40.7550069], 'street': 'East 52 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'French', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2013-12-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-08T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2012-09-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-04-03T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Le Perigord', 'restaurant_id': '40365414'}}, {'_id': '5cb032da23d35d0001118106', 'Restaurant': {'address': {'building': '4241', 'coord': [-73.9365108, 40.8497077], 'street': 'Broadway', 'zipcode': '10033'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-11-15T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2014-04-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-28T00:00:00Z', 'grade': 'P', 'score': 15}, {'date': '2013-08-19T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-02-20T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2012-08-22T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2012-01-30T00:00:00Z', 'grade': 'C', 'score': 48}], 'name': "Reynold'S Bar", 'restaurant_id': '40365423'}}, {'_id': '5cb032da23d35d0001118107', 'Restaurant': {'address': {'building': '1758', 'coord': [-74.1220973, 40.6129407], 'street': 'Victory Boulevard', 'zipcode': '10314'}, 'borough': 'Staten Island', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-11-20T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2014-01-13T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2013-04-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-10-09T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2012-05-02T00:00:00Z', 'grade': 'B', 'score': 22}], 'name': "Joe & Pat'S Pizzeria", 'restaurant_id': '40365454'}}, {'_id': '5cb032da23d35d0001118108', 'Restaurant': {'address': {'building': '113', 'coord': [-73.9979214, 40.7371344], 'street': 'West 13 Street', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Spanish', 'grades': [{'date': '2014-07-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-03-27T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-14T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-03T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Spain Restaurant & Bar', 'restaurant_id': '40365472'}}, {'_id': '5cb032da23d35d0001118109', 'Restaurant': {'address': {'building': '206', 'coord': [-73.9446421, 40.7253944], 'street': 'Nassau Avenue', 'zipcode': '11222'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-11-19T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2014-05-09T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-06-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-17T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Palace Cafe', 'restaurant_id': '40365473'}}, {'_id': '5cb032da23d35d000111810a', 'Restaurant': {'address': {'building': '72', 'coord': [-73.92506, 40.8275556], 'street': 'East 161 Street', 'zipcode': '10451'}, 'borough': 'Bronx', 'cuisine': 'American', 'grades': [{'date': '2014-04-15T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-11-14T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-07-29T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-12-31T00:00:00Z', 'grade': 'B', 'score': 15}, {'date': '2012-05-30T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-09T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-15T00:00:00Z', 'grade': 'C', 'score': 37}], 'name': 'Yankee Tavern', 'restaurant_id': '40365499'}}, {'_id': '5cb032da23d35d000111810b', 'Restaurant': {'address': {'building': '203', 'coord': [-73.99987229999999, 40.7386361], 'street': 'West 14 Street', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Donuts', 'grades': [{'date': '2014-02-11T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-08T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-05T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2012-02-22T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2011-08-08T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-03-16T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Donut Pub', 'restaurant_id': '40365525'}}, {'_id': '5cb032da23d35d000111810c', 'Restaurant': {'address': {'building': '146', 'coord': [-74.0056649, 40.7452371], 'street': '10 Avenue', 'zipcode': '10011'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-10-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-09-10T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-02-05T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-11-23T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Moran'S Chelsea", 'restaurant_id': '40365526'}}, {'_id': '5cb032da23d35d000111810d', 'Restaurant': {'address': {'building': '229', 'coord': [-73.9590059, 40.7090147], 'street': 'Havemeyer Street', 'zipcode': '11211'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-08-18T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2014-01-08T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-05-20T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2012-09-20T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-09-22T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Reben Luncheonette', 'restaurant_id': '40365546'}}, {'_id': '5cb032da23d35d000111810e', 'Restaurant': {'address': {'building': '1024', 'coord': [-73.96392089999999, 40.8033908], 'street': 'Amsterdam Avenue', 'zipcode': '10025'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-06-12T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-01-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-06-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-15T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': 'V & T Restaurant', 'restaurant_id': '40365577'}}, {'_id': '5cb032da23d35d000111810f', 'Restaurant': {'address': {'building': '181-08', 'coord': [-73.7867565, 40.7271312], 'street': 'Union Turnpike', 'zipcode': '11366'}, 'borough': 'Queens', 'cuisine': 'Chinese', 'grades': [{'date': '2014-10-22T00:00:00Z', 'grade': 'B', 'score': 14}, {'date': '2014-04-09T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-13T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-01-02T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-13T00:00:00Z', 'grade': 'P', 'score': 2}, {'date': '2012-06-19T00:00:00Z', 'grade': 'C', 'score': 36}], 'name': 'King Yum Restaurant', 'restaurant_id': '40365592'}}, {'_id': '5cb032da23d35d0001118110', 'Restaurant': {'address': {'building': '8104', 'coord': [-73.8850023, 40.7494272], 'street': '37 Avenue', 'zipcode': '11372'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-07-07T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-02-06T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-08-14T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-20T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2012-02-28T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-10-25T00:00:00Z', 'grade': 'A', 'score': 10}], 'name': "Jahn'S Restaurant", 'restaurant_id': '40365627'}}, {'_id': '5cb032da23d35d0001118111', 'Restaurant': {'address': {'building': '6322', 'coord': [-73.9896898, 40.6199526], 'street': '18 Avenue', 'zipcode': '11204'}, 'borough': 'Brooklyn', 'cuisine': 'Pizza', 'grades': [{'date': '2014-12-30T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-05-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-10-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-06T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-03-29T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'J&V Famous Pizza', 'restaurant_id': '40365632'}}, {'_id': '5cb032da23d35d0001118112', 'Restaurant': {'address': {'building': '910', 'coord': [-73.9799932, 40.7660886], 'street': 'Seventh Avenue', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2015-01-08T00:00:00Z', 'grade': 'Z', 'score': 35}, {'date': '2014-06-02T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-11-25T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-12-04T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-06-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-24T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': 'La Parisienne Diner', 'restaurant_id': '40365633'}}, {'_id': '5cb032da23d35d0001118113', 'Restaurant': {'address': {'building': '326', 'coord': [-73.989131, 40.760039], 'street': 'West 46 Street', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-10T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-09-25T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-09-11T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-04-19T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-10-26T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Joe Allen Restaurant', 'restaurant_id': '40365644'}}, {'_id': '5cb032da23d35d0001118114', 'Restaurant': {'address': {'building': '3823', 'coord': [-74.16536339999999, 40.5450793], 'street': 'Richmond Avenue', 'zipcode': '10312'}, 'borough': 'Staten Island', 'cuisine': 'American', 'grades': [{'date': '2014-07-15T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2013-04-01T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-12T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Joyce'S Tavern", 'restaurant_id': '40365692'}}, {'_id': '5cb032da23d35d0001118115', 'Restaurant': {'address': {'building': '351', 'coord': [-73.96117869999999, 40.7619226], 'street': 'East 62 Street', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-11-13T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2014-02-28T00:00:00Z', 'grade': 'B', 'score': 19}, {'date': '2013-06-10T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2012-05-09T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Il Vagabondo Restaurant', 'restaurant_id': '40365709'}}, {'_id': '5cb032da23d35d0001118116', 'Restaurant': {'address': {'building': '319321', 'coord': [-73.988948, 40.760337], 'street': '323 W. 46Th St.', 'zipcode': '10036'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-11-12T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-04-27T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-12-07T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': 'Barbetta Restaurant', 'restaurant_id': '40365726'}}, {'_id': '5cb032da23d35d0001118117', 'Restaurant': {'address': {'building': '2911', 'coord': [-73.982241, 40.576366], 'street': 'West 15 Street', 'zipcode': '11224'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-05-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-06-12T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-02-06T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Gargiulo'S Restaurant", 'restaurant_id': '40365784'}}, {'_id': '5cb032da23d35d0001118118', 'Restaurant': {'address': {'building': '236', 'coord': [-73.9827418, 40.7655827], 'street': 'West 56 Street', 'zipcode': '10019'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-05-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-12T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2012-08-13T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-28T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': "Patsy'S Italian Restaurant", 'restaurant_id': '40365789'}}, {'_id': '5cb032da23d35d0001118119', 'Restaurant': {'address': {'building': '10701', 'coord': [-73.856132, 40.743841], 'street': 'Corona Avenue', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Italian', 'grades': [{'date': '2014-07-17T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-02-25T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-03-27T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-02-07T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-12-28T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Parkside Restaurant', 'restaurant_id': '40365841'}}, {'_id': '5cb032da23d35d000111811a', 'Restaurant': {'address': {'building': '45-15', 'coord': [-73.91427200000001, 40.7569379], 'street': 'Broadway', 'zipcode': '11103'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-03-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-07-12T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-02-16T00:00:00Z', 'grade': 'A', 'score': 7}], 'name': "Lavelle'S Admiral'S Club", 'restaurant_id': '40365844'}}, {'_id': '5cb032da23d35d000111811b', 'Restaurant': {'address': {'building': '358', 'coord': [-73.963506, 40.758273], 'street': 'East 57 Street', 'zipcode': '10022'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-08-11T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-22T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-07-02T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-02-02T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-08-24T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Neary'S Pub", 'restaurant_id': '40365871'}}, {'_id': '5cb032da23d35d000111811c', 'Restaurant': {'address': {'building': '413', 'coord': [-73.99532099999999, 40.750205], 'street': '8 Avenue', 'zipcode': '10001'}, 'borough': 'Manhattan', 'cuisine': 'Pizza', 'grades': [{'date': '2014-05-12T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-12-04T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2012-11-15T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-06-25T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-01-23T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-09-07T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'New York Pizza Suprema', 'restaurant_id': '40365882'}}, {'_id': '5cb032da23d35d000111811d', 'Restaurant': {'address': {'building': '331', 'coord': [-73.87786539999999, 40.8724377], 'street': 'East 204 Street', 'zipcode': '10467'}, 'borough': 'Bronx', 'cuisine': 'Irish', 'grades': [{'date': '2014-08-26T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-03-26T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2013-09-11T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-12-18T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2011-10-20T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Mcdwyers Pub', 'restaurant_id': '40365893'}}, {'_id': '5cb032da23d35d000111811e', 'Restaurant': {'address': {'building': '26', 'coord': [-73.9983, 40.715051], 'street': 'Pell Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Café/Coffee/Tea', 'grades': [{'date': '2014-07-10T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-07-12T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-02-11T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-01-10T00:00:00Z', 'grade': 'P', 'score': 4}, {'date': '2012-07-27T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-02-27T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-08-12T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Mee Sum Coffee Shop', 'restaurant_id': '40365904'}}, {'_id': '5cb032da23d35d000111811f', 'Restaurant': {'address': {'building': '25541', 'coord': [-73.70902579999999, 40.7276012], 'street': 'Jamaica Avenue', 'zipcode': '11001'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-01-16T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-06-20T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-04T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-10T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2011-06-23T00:00:00Z', 'grade': 'B', 'score': 21}], 'name': "Nancy'S Fire Side", 'restaurant_id': '40365938'}}, {'_id': '5cb032da23d35d0001118120', 'Restaurant': {'address': {'building': '21', 'coord': [-73.9990337, 40.7143954], 'street': 'Mott Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'Chinese', 'grades': [{'date': '2014-07-28T00:00:00Z', 'grade': 'B', 'score': 27}, {'date': '2013-11-19T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2013-04-30T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-10-16T00:00:00Z', 'grade': 'B', 'score': 24}, {'date': '2012-05-07T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Hop Kee Restaurant', 'restaurant_id': '40365942'}}, {'_id': '5cb032da23d35d0001118121', 'Restaurant': {'address': {'building': '1', 'coord': [-74.0049219, 40.720699], 'street': 'Lispenard Street', 'zipcode': '10013'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-10-07T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2014-05-02T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2013-10-03T00:00:00Z', 'grade': 'B', 'score': 23}, {'date': '2012-09-17T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-05-08T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2011-12-13T00:00:00Z', 'grade': 'A', 'score': 13}], 'name': 'Nancy Whiskey Pub', 'restaurant_id': '40365968'}}, {'_id': '5cb032da23d35d0001118122', 'Restaurant': {'address': {'building': '146-09', 'coord': [-73.808593, 40.702028], 'street': 'Jamaica Avenue', 'zipcode': '11435'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-07-14T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-08-05T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-03-18T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-11T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2011-09-20T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Blarney Bar', 'restaurant_id': '40365972'}}, {'_id': '5cb032da23d35d0001118123', 'Restaurant': {'address': {'building': '16304', 'coord': [-73.78999089999999, 40.7118632], 'street': 'Jamaica Avenue', 'zipcode': '11432'}, 'borough': 'Queens', 'cuisine': 'Pizza', 'grades': [{'date': '2014-07-25T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2014-02-10T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-01-03T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-01-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-09-28T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Margherita Pizza', 'restaurant_id': '40366002'}}, {'_id': '5cb032da23d35d0001118124', 'Restaurant': {'address': {'building': '10807', 'coord': [-73.8299395, 40.5812137], 'street': 'Rockaway Beach Boulevard', 'zipcode': '11694'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-01-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-06-26T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-27T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-01-31T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-02-08T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Healy'S Pub", 'restaurant_id': '40366054'}}, {'_id': '5cb032da23d35d0001118125', 'Restaurant': {'address': {'building': '416', 'coord': [-73.98586209999999, 40.67017250000001], 'street': '5 Avenue', 'zipcode': '11215'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-12-04T00:00:00Z', 'grade': 'B', 'score': 22}, {'date': '2014-04-19T00:00:00Z', 'grade': 'A', 'score': 3}, {'date': '2013-02-14T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-12T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': 'Fifth Avenue Bingo', 'restaurant_id': '40366109'}}, {'_id': '5cb032da23d35d0001118126', 'Restaurant': {'address': {'building': '524', 'coord': [-74.1402105, 40.6301893], 'street': 'Port Richmond Avenue', 'zipcode': '10302'}, 'borough': 'Staten Island', 'cuisine': 'Pizza/Italian', 'grades': [{'date': '2014-12-18T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-12-03T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-03-28T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-22T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': "Denino'S Pizzeria Tavern", 'restaurant_id': '40366132'}}, {'_id': '5cb032da23d35d0001118127', 'Restaurant': {'address': {'building': '2929', 'coord': [-73.942849, 40.6076256], 'street': 'Avenue R', 'zipcode': '11229'}, 'borough': 'Brooklyn', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-13T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-10-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-01-22T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-12T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2011-12-01T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2011-05-25T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Michael'S Restaurant", 'restaurant_id': '40366154'}}, {'_id': '5cb032da23d35d0001118128', 'Restaurant': {'address': {'building': '146', 'coord': [-73.9736776, 40.7535755], 'street': 'East 46 Street', 'zipcode': '10017'}, 'borough': 'Manhattan', 'cuisine': 'Italian', 'grades': [{'date': '2014-03-11T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-07-31T00:00:00Z', 'grade': 'C', 'score': 53}, {'date': '2012-12-19T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-06-04T00:00:00Z', 'grade': 'C', 'score': 45}, {'date': '2012-01-18T00:00:00Z', 'grade': 'C', 'score': 34}, {'date': '2011-09-28T00:00:00Z', 'grade': 'B', 'score': 18}, {'date': '2011-05-24T00:00:00Z', 'grade': 'C', 'score': 52}], 'name': 'Nanni Restaurant', 'restaurant_id': '40366157'}}, {'_id': '5cb032da23d35d0001118129', 'Restaurant': {'address': {'building': '119-09', 'coord': [-73.82770529999999, 40.6944628], 'street': 'Atlantic Avenue', 'zipcode': '11418'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-11-20T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-02-15T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2013-07-01T00:00:00Z', 'grade': 'B', 'score': 16}, {'date': '2012-11-28T00:00:00Z', 'grade': 'B', 'score': 20}, {'date': '2012-02-16T00:00:00Z', 'grade': 'B', 'score': 19}], 'name': "Lenihan'S Saloon", 'restaurant_id': '40366162'}}, {'_id': '5cb032da23d35d000111812a', 'Restaurant': {'address': {'building': '4218', 'coord': [-73.8682701, 40.745683], 'street': 'Junction Boulevard', 'zipcode': '11368'}, 'borough': 'Queens', 'cuisine': 'Latin (Cuban, Dominican, Puerto Rican, South & Central American)', 'grades': [{'date': '2014-11-21T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-09-06T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-04-04T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2012-07-27T00:00:00Z', 'grade': 'C', 'score': 30}], 'name': 'Emilio Iii Bar', 'restaurant_id': '40366214'}}, {'_id': '5cb032da23d35d000111812b', 'Restaurant': {'address': {'building': '80', 'coord': [-74.0086833, 40.7052024], 'street': 'Beaver Street', 'zipcode': '10005'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-07-29T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-08-05T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2013-03-14T00:00:00Z', 'grade': 'A', 'score': 2}, {'date': '2012-07-24T00:00:00Z', 'grade': 'A', 'score': 12}], 'name': 'Killarney Rose', 'restaurant_id': '40366222'}}, {'_id': '5cb032da23d35d000111812c', 'Restaurant': {'address': {'building': '13558', 'coord': [-73.8216767, 40.6689548], 'street': 'Lefferts Boulevard', 'zipcode': '11420'}, 'borough': 'Queens', 'cuisine': 'Italian', 'grades': [{'date': '2014-06-20T00:00:00Z', 'grade': 'A', 'score': 10}, {'date': '2013-06-07T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-06-28T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2012-01-13T00:00:00Z', 'grade': 'C', 'score': 28}], 'name': 'Don Peppe', 'restaurant_id': '40366230'}}, {'_id': '5cb032da23d35d000111812d', 'Restaurant': {'address': {'building': '202-24', 'coord': [-73.9250442, 40.5595462], 'street': 'Rockaway Point Boulevard', 'zipcode': '11697'}, 'borough': 'Queens', 'cuisine': 'American', 'grades': [{'date': '2014-12-02T00:00:00Z', 'grade': 'Z', 'score': 18}, {'date': '2014-02-12T00:00:00Z', 'grade': 'B', 'score': 21}, {'date': '2013-04-13T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-06-26T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2011-12-17T00:00:00Z', 'grade': 'A', 'score': 8}], 'name': 'Blarney Castle', 'restaurant_id': '40366356'}}, {'_id': '5cb032da23d35d000111812e', 'Restaurant': {'address': {'building': '1611', 'coord': [-73.955074, 40.599217], 'street': 'Avenue U', 'zipcode': '11229'}, 'borough': 'Brooklyn', 'cuisine': 'American', 'grades': [{'date': '2014-07-02T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2013-07-10T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-02-13T00:00:00Z', 'grade': 'A', 'score': 7}, {'date': '2012-08-16T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2012-03-29T00:00:00Z', 'grade': 'B', 'score': 24}], 'name': 'Three Star Restaurant', 'restaurant_id': '40366361'}}, {'_id': '5cb032da23d35d000111812f', 'Restaurant': {'address': {'building': '137', 'coord': [-73.98926, 40.7509054], 'street': 'West 33 Street', 'zipcode': '10001'}, 'borough': 'Manhattan', 'cuisine': 'Irish', 'grades': [{'date': '2014-08-15T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-01-21T00:00:00Z', 'grade': 'A', 'score': 5}, {'date': '2013-07-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2012-05-31T00:00:00Z', 'grade': 'A', 'score': 8}, {'date': '2012-01-26T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2011-10-11T00:00:00Z', 'grade': 'A', 'score': 5}], 'name': 'Blarney Rock', 'restaurant_id': '40366379'}}, {'_id': '5cb032da23d35d0001118130', 'Restaurant': {'address': {'building': '1118', 'coord': [-73.960573, 40.760982], 'street': '1 Avenue', 'zipcode': '10065'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-09-24T00:00:00Z', 'grade': 'A', 'score': 4}, {'date': '2013-09-06T00:00:00Z', 'grade': 'A', 'score': 6}, {'date': '2013-03-20T00:00:00Z', 'grade': 'C', 'score': 36}, {'date': '2012-04-13T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': "Dangerfield'S Night Club", 'restaurant_id': '40366381'}}, {'_id': '5cb032da23d35d0001118131', 'Restaurant': {'address': {'building': '433', 'coord': [-73.98306099999999, 40.7441419], 'street': 'Park Avenue South', 'zipcode': '10016'}, 'borough': 'Manhattan', 'cuisine': 'American', 'grades': [{'date': '2014-12-29T00:00:00Z', 'grade': 'A', 'score': 12}, {'date': '2014-07-03T00:00:00Z', 'grade': 'A', 'score': 13}, {'date': '2014-01-13T00:00:00Z', 'grade': 'A', 'score': 11}, {'date': '2013-05-02T00:00:00Z', 'grade': 'A', 'score': 9}], 'name': "Desmond'S Tavern", 'restaurant_id': '40366396'}}, {'_id': '5cb032da23d35d0001118132', 'Restaurant': {'address': {'building': '6828', 'coord': [-73.8204154, 40.7242443], 'street': 'Main Street', 'zipcode': '11367'}, 'borough': 'Queens', 'cuisine': 'Jewish/Kosher', 'grades': [{'date': '2014-09-24T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2014-03-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2013-05-31T00:00:00Z', 'grade': 'B', 'score': 26}, {'date': '2012-05-10T00:00:00Z', 'grade': 'A', 'score': 9}, {'date': '2011-11-03T00:00:00Z', 'grade': 'A', 'score': 11}], 'name': 'Naomi Kosher Pizza', 'restaurant_id': '40366425'}}]
Model backlog/Train/70-melanoma-5fold-efficientnetb6-384x384.ipynb
###Markdown Dependencies ###Code !pip install --quiet efficientnet # !pip install --quiet image-classifiers import warnings, json, re, glob, math from scripts_step_lr_schedulers import * from melanoma_utility_scripts import * from kaggle_datasets import KaggleDatasets from sklearn.model_selection import KFold import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras import optimizers, layers, metrics, losses, Model import efficientnet.tfkeras as efn # from classification_models.tfkeras import Classifiers import tensorflow_addons as tfa SEED = 0 seed_everything(SEED) warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown TPU configuration ###Code strategy, tpu = set_up_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync) AUTO = tf.data.experimental.AUTOTUNE ###Output Running on TPU grpc://10.0.0.2:8470 REPLICAS: 8 ###Markdown Model parameters ###Code config = { "HEIGHT": 384, "WIDTH": 384, "CHANNELS": 3, "BATCH_SIZE": 128, "EPOCHS": 15, "LEARNING_RATE": 3e-4, "ES_PATIENCE": 5, "N_FOLDS": 5, "N_USED_FOLDS": 1, "TTA_STEPS": 15, "BASE_MODEL": 'EfficientNetB6', "BASE_MODEL_WEIGHTS": 'noisy-student', "DATASET_PATH": 'melanoma-384x384' } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config ###Output _____no_output_____ ###Markdown Load data ###Code database_base_path = '/kaggle/input/siim-isic-melanoma-classification/' k_fold = pd.read_csv(database_base_path + 'train.csv') test = pd.read_csv(database_base_path + 'test.csv') print('Train samples: %d' % len(k_fold)) display(k_fold.head()) print(f'Test samples: {len(test)}') display(test.head()) GCS_PATH = KaggleDatasets().get_gcs_path(config['DATASET_PATH']) TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test*.tfrec') ###Output Train samples: 33126 ###Markdown Augmentations ###Code def data_augment(image, label): p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_spatial2 = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_rotation = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_pixel = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_cutout = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_spatial >= .2: if p_spatial >= .6: # Flips image['input_image'] = data_augment_spatial(image['input_image']) else: # Rotate image['input_image'] = data_augment_rotate(image['input_image']) if p_crop >= .6: # Crops image['input_image'] = data_augment_crop(image['input_image']) if p_spatial2 >= .5: if p_spatial2 >= .75: # Shift image['input_image'] = data_augment_shift(image['input_image']) else: # Shear image['input_image'] = data_augment_shear(image['input_image']) if p_pixel >= .6: # Pixel-level transforms if p_pixel >= .9: image['input_image'] = data_augment_hue(image['input_image']) elif p_pixel >= .8: image['input_image'] = data_augment_saturation(image['input_image']) elif p_pixel >= .7: image['input_image'] = data_augment_contrast(image['input_image']) else: image['input_image'] = data_augment_brightness(image['input_image']) if p_rotation >= .5: # Rotation image['input_image'] = data_augment_rotation(image['input_image']) if p_cutout >= .5: # Cutout image['input_image'] = data_augment_cutout(image['input_image']) return image, label def data_augment_tta(image, label): p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_spatial2 = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_rotation = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_spatial >= .2: if p_spatial >= .6: # Flips image['input_image'] = data_augment_spatial(image['input_image']) else: # Rotate image['input_image'] = data_augment_rotate(image['input_image']) if p_crop >= .6: # Crops image['input_image'] = data_augment_crop(image['input_image']) if p_spatial2 >= .5: if p_spatial2 >= .75: # Shift image['input_image'] = data_augment_shift(image['input_image']) else: # Shear image['input_image'] = data_augment_shear(image['input_image']) if p_rotation >= .5: # Rotation image['input_image'] = data_augment_rotation(image['input_image']) return image, label def data_augment_rotation(image, max_angle=45.): image = transform_rotation(image, config['HEIGHT'], max_angle) return image def data_augment_shift(image, h_shift=50., w_shift=50.): image = transform_shift(image, config['HEIGHT'], h_shift, w_shift) return image def data_augment_shear(image, shear=25.): image = transform_shear(image, config['HEIGHT'], shear) return image def data_augment_hue(image, max_delta=.02): image = tf.image.random_hue(image, max_delta) return image def data_augment_saturation(image, lower=.8, upper=1.2): image = tf.image.random_saturation(image, lower, upper) return image def data_augment_contrast(image, lower=.8, upper=1.2): image = tf.image.random_contrast(image, lower, upper) return image def data_augment_brightness(image, max_delta=.1): image = tf.image.random_brightness(image, max_delta) return image def data_augment_spatial(image): p_spatial = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') image = tf.image.random_flip_left_right(image) image = tf.image.random_flip_up_down(image) if p_spatial > .75: image = tf.image.transpose(image) return image def data_augment_rotate(image): p_rotate = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_rotate > .66: image = tf.image.rot90(image, k=3) # rotate 270º elif p_rotate > .33: image = tf.image.rot90(image, k=2) # rotate 180º else: image = tf.image.rot90(image, k=1) # rotate 90º return image def data_augment_crop(image): p_crop = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_crop > .8: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.7), int(config['WIDTH']*.7), config['CHANNELS']]) elif p_crop > .6: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.8), int(config['WIDTH']*.8), config['CHANNELS']]) elif p_crop > .4: image = tf.image.random_crop(image, size=[int(config['HEIGHT']*.9), int(config['WIDTH']*.9), config['CHANNELS']]) elif p_crop > .2: image = tf.image.central_crop(image, central_fraction=.8) else: image = tf.image.central_crop(image, central_fraction=.7) image = tf.image.resize(image, size=[config['HEIGHT'], config['WIDTH']]) return image def data_augment_cutout(image, min_mask_size=(int(config['HEIGHT'] * .05), int(config['HEIGHT'] * .05)), max_mask_size=(int(config['HEIGHT'] * .25), int(config['HEIGHT'] * .25))): p_cutout = tf.random.uniform([1], minval=0, maxval=1, dtype='float32') if p_cutout > .9: # 3 cut outs image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=3) elif p_cutout > .75: # 2 cut outs image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=2) else: # 1 cut out image = random_cutout(image, config['HEIGHT'], config['WIDTH'], min_mask_size=min_mask_size, max_mask_size=max_mask_size, k=1) return image ###Output _____no_output_____ ###Markdown Auxiliary functions ###Code # Datasets utility functions def read_labeled_tfrecord(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) label = tf.cast(example['target'], tf.float32) # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_meta': data}, label # returns a dataset of (image, data, label) def read_labeled_tfrecord_eval(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) label = tf.cast(example['target'], tf.float32) image_name = example['image_name'] # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_meta': data}, label, image_name # returns a dataset of (image, data, label, image_name) def load_dataset(filenames, ordered=False, buffer_size=-1): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False # disable order, increase speed dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.with_options(ignore_order) # uses data as soon as it streams in, rather than in its original order dataset = dataset.map(read_labeled_tfrecord, num_parallel_calls=buffer_size) return dataset # returns a dataset of (image, data, label) def load_dataset_eval(filenames, buffer_size=-1): dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.map(read_labeled_tfrecord_eval, num_parallel_calls=buffer_size) return dataset # returns a dataset of (image, data, label, image_name) def get_training_dataset(filenames, batch_size, buffer_size=-1): dataset = load_dataset(filenames, ordered=False, buffer_size=buffer_size) dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.repeat() # the training dataset must repeat for several epochs dataset = dataset.shuffle(2048) dataset = dataset.batch(batch_size, drop_remainder=True) # slighly faster with fixed tensor sizes dataset = dataset.prefetch(buffer_size) # prefetch next batch while training (autotune prefetch buffer size) return dataset def get_validation_dataset(filenames, ordered=True, repeated=False, batch_size=32, buffer_size=-1): dataset = load_dataset(filenames, ordered=ordered, buffer_size=buffer_size) if repeated: dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(batch_size, drop_remainder=repeated) dataset = dataset.prefetch(buffer_size) return dataset def get_eval_dataset(filenames, batch_size=32, buffer_size=-1): dataset = load_dataset_eval(filenames, buffer_size=buffer_size) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(buffer_size) return dataset # Test function def read_unlabeled_tfrecord(example, height=config['HEIGHT'], width=config['WIDTH'], channels=config['CHANNELS']): example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image'], height, width, channels) image_name = example['image_name'] # meta features data = {} data['patient_id'] = tf.cast(example['patient_id'], tf.int32) data['sex'] = tf.cast(example['sex'], tf.int32) data['age_approx'] = tf.cast(example['age_approx'], tf.int32) data['anatom_site_general_challenge'] = tf.cast(tf.one_hot(example['anatom_site_general_challenge'], 7), tf.int32) return {'input_image': image, 'input_tabular': data}, image_name # returns a dataset of (image, data, image_name) def load_dataset_test(filenames, buffer_size=-1): dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=buffer_size) # automatically interleaves reads from multiple files dataset = dataset.map(read_unlabeled_tfrecord, num_parallel_calls=buffer_size) # returns a dataset of (image, data, label, image_name) pairs if labeled=True or (image, data, image_name) pairs if labeled=False return dataset def get_test_dataset(filenames, batch_size=32, buffer_size=-1, tta=False): dataset = load_dataset_test(filenames, buffer_size=buffer_size) if tta: dataset = dataset.map(data_augment_tta, num_parallel_calls=AUTO) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(buffer_size) return dataset ###Output _____no_output_____ ###Markdown Learning rate scheduler ###Code lr_min = 1e-6 # lr_start = 5e-6 lr_max = config['LEARNING_RATE'] steps_per_epoch = 24519 // config['BATCH_SIZE'] total_steps = config['EPOCHS'] * steps_per_epoch warmup_steps = steps_per_epoch * 5 # hold_max_steps = 0 # step_decay = .8 # step_size = steps_per_epoch * 1 # rng = [i for i in range(0, total_steps, 32)] # y = [step_schedule_with_warmup(tf.cast(x, tf.float32), step_size=step_size, # warmup_steps=warmup_steps, hold_max_steps=hold_max_steps, # lr_start=lr_start, lr_max=lr_max, step_decay=step_decay) for x in rng] # sns.set(style="whitegrid") # fig, ax = plt.subplots(figsize=(20, 6)) # plt.plot(rng, y) # print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) ###Output _____no_output_____ ###Markdown Model ###Code # Initial bias pos = len(k_fold[k_fold['target'] == 1]) neg = len(k_fold[k_fold['target'] == 0]) initial_bias = np.log([pos/neg]) print('Bias') print(pos) print(neg) print(initial_bias) # class weights total = len(k_fold) weight_for_0 = (1 / neg)*(total)/2.0 weight_for_1 = (1 / pos)*(total)/2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print('Class weight') print(class_weight) def model_fn(input_shape): input_image = L.Input(shape=input_shape, name='input_image') base_model = efn.EfficientNetB6(weights=config['BASE_MODEL_WEIGHTS'], include_top=False) x = base_model(input_image) x = L.GlobalAveragePooling2D()(x) output = L.Dense(1, activation='sigmoid', name='output', bias_initializer=tf.keras.initializers.Constant(initial_bias))(x) model = Model(inputs=input_image, outputs=output) return model ###Output _____no_output_____ ###Markdown Training ###Code # Evaluation eval_dataset = get_eval_dataset(TRAINING_FILENAMES, batch_size=config['BATCH_SIZE'], buffer_size=AUTO) image_names = next(iter(eval_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(count_data_items(TRAINING_FILENAMES)))).numpy().astype('U') image_data = eval_dataset.map(lambda data, label, image_name: data) # Resample dataframe k_fold = k_fold[k_fold['image_name'].isin(image_names)] # Test NUM_TEST_IMAGES = len(test) test_preds = np.zeros((NUM_TEST_IMAGES, 1)) test_preds_last = np.zeros((NUM_TEST_IMAGES, 1)) test_dataset = get_test_dataset(TEST_FILENAMES, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, tta=True) image_names_test = next(iter(test_dataset.unbatch().map(lambda data, image_name: image_name).batch(NUM_TEST_IMAGES))).numpy().astype('U') test_image_data = test_dataset.map(lambda data, image_name: data) history_list = [] k_fold_best = k_fold.copy() kfold = KFold(config['N_FOLDS'], shuffle=True, random_state=SEED) for n_fold, (trn_idx, val_idx) in enumerate(kfold.split(TRAINING_FILENAMES)): if n_fold < config['N_USED_FOLDS']: n_fold +=1 print('\nFOLD: %d' % (n_fold)) tf.tpu.experimental.initialize_tpu_system(tpu) K.clear_session() ### Data train_filenames = np.array(TRAINING_FILENAMES)[trn_idx] valid_filenames = np.array(TRAINING_FILENAMES)[val_idx] steps_per_epoch = count_data_items(train_filenames) // config['BATCH_SIZE'] # Train model model_path = f'model_fold_{n_fold}.h5' es = EarlyStopping(monitor='val_auc', mode='max', patience=config['ES_PATIENCE'], restore_best_weights=False, verbose=1) checkpoint = ModelCheckpoint(model_path, monitor='val_auc', mode='max', save_best_only=True, save_weights_only=True) with strategy.scope(): model = model_fn((config['HEIGHT'], config['WIDTH'], config['CHANNELS'])) optimizer = tfa.optimizers.RectifiedAdam(lr=lr_max, total_steps=total_steps, warmup_proportion=(warmup_steps / total_steps), min_lr=lr_min) model.compile(optimizer, loss=losses.BinaryCrossentropy(label_smoothing=0.05), metrics=[metrics.AUC()]) history = model.fit(get_training_dataset(train_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO), validation_data=get_validation_dataset(valid_filenames, ordered=True, repeated=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO), epochs=config['EPOCHS'], steps_per_epoch=steps_per_epoch, callbacks=[checkpoint, es], # class_weight=class_weight, verbose=2).history # save last epoch weights model.save_weights('last_' + model_path) history_list.append(history) # Get validation IDs valid_dataset = get_eval_dataset(valid_filenames, batch_size=config['BATCH_SIZE'], buffer_size=AUTO) valid_image_names = next(iter(valid_dataset.unbatch().map(lambda data, label, image_name: image_name).batch(count_data_items(valid_filenames)))).numpy().astype('U') k_fold[f'fold_{n_fold}'] = k_fold.apply(lambda x: 'validation' if x['image_name'] in valid_image_names else 'train', axis=1) k_fold_best[f'fold_{n_fold}'] = k_fold_best.apply(lambda x: 'validation' if x['image_name'] in valid_image_names else 'train', axis=1) ##### Last model ##### print('Last model evaluation...') preds = model.predict(image_data) name_preds_eval = dict(zip(image_names, preds.reshape(len(preds)))) k_fold[f'pred_fold_{n_fold}'] = k_fold.apply(lambda x: name_preds_eval[x['image_name']], axis=1) print(f'Last model inference (TTA {config["TTA_STEPS"]} steps)...') for step in range(config['TTA_STEPS']): test_preds_last += model.predict(test_image_data) ##### Best model ##### print('Best model evaluation...') model.load_weights(model_path) preds = model.predict(image_data) name_preds_eval = dict(zip(image_names, preds.reshape(len(preds)))) k_fold_best[f'pred_fold_{n_fold}'] = k_fold_best.apply(lambda x: name_preds_eval[x['image_name']], axis=1) print(f'Best model inference (TTA {config["TTA_STEPS"]} steps)...') for step in range(config['TTA_STEPS']): test_preds += model.predict(test_image_data) # normalize preds test_preds /= (config['N_USED_FOLDS'] * config['TTA_STEPS']) test_preds_last /= (config['N_USED_FOLDS'] * config['TTA_STEPS']) name_preds = dict(zip(image_names_test, test_preds.reshape(NUM_TEST_IMAGES))) name_preds_last = dict(zip(image_names_test, test_preds_last.reshape(NUM_TEST_IMAGES))) test['target'] = test.apply(lambda x: name_preds[x['image_name']], axis=1) test['target_last'] = test.apply(lambda x: name_preds_last[x['image_name']], axis=1) ###Output FOLD: 1 Downloading data from https://github.com/qubvel/efficientnet/releases/download/v0.0.1/efficientnet-b6_noisy-student_notop.h5 165232640/165226952 [==============================] - 7s 0us/step Epoch 1/15 204/204 - 124s - auc: 0.5289 - loss: 0.1801 - val_auc: 0.6563 - val_loss: 0.1781 Epoch 2/15 204/204 - 94s - auc: 0.7509 - loss: 0.1716 - val_auc: 0.8024 - val_loss: 0.1723 Epoch 3/15 204/204 - 96s - auc: 0.7800 - loss: 0.1708 - val_auc: 0.8341 - val_loss: 0.1699 Epoch 4/15 204/204 - 91s - auc: 0.8125 - loss: 0.1691 - val_auc: 0.8079 - val_loss: 0.1680 Epoch 5/15 204/204 - 91s - auc: 0.8208 - loss: 0.1688 - val_auc: 0.8308 - val_loss: 0.1677 Epoch 6/15 204/204 - 95s - auc: 0.8421 - loss: 0.1663 - val_auc: 0.8871 - val_loss: 0.1643 Epoch 7/15 204/204 - 90s - auc: 0.8442 - loss: 0.1657 - val_auc: 0.8670 - val_loss: 0.1630 Epoch 8/15 204/204 - 92s - auc: 0.8796 - loss: 0.1642 - val_auc: 0.8485 - val_loss: 0.1654 Epoch 9/15 204/204 - 91s - auc: 0.8864 - loss: 0.1614 - val_auc: 0.8637 - val_loss: 0.1638 Epoch 10/15 204/204 - 93s - auc: 0.8958 - loss: 0.1607 - val_auc: 0.8841 - val_loss: 0.1636 Epoch 11/15 204/204 - 91s - auc: 0.9111 - loss: 0.1590 - val_auc: 0.8787 - val_loss: 0.1616 Epoch 00011: early stopping Last model evaluation... Last model inference (TTA 15 steps)... Best model evaluation... Best model inference (TTA 15 steps)... ###Markdown Model loss graph ###Code for n_fold in range(config['N_USED_FOLDS']): print(f'Fold: {n_fold + 1}') plot_metrics(history_list[n_fold]) ###Output Fold: 1 ###Markdown Model loss graph aggregated ###Code plot_metrics_agg(history_list, config['N_USED_FOLDS']) ###Output _____no_output_____ ###Markdown Model evaluation (best) ###Code display(evaluate_model(k_fold_best, config['N_USED_FOLDS']).style.applymap(color_map)) display(evaluate_model_Subset(k_fold_best, config['N_USED_FOLDS']).style.applymap(color_map)) ###Output _____no_output_____ ###Markdown Model evaluation (last) ###Code display(evaluate_model(k_fold, config['N_USED_FOLDS']).style.applymap(color_map)) display(evaluate_model_Subset(k_fold, config['N_USED_FOLDS']).style.applymap(color_map)) ###Output _____no_output_____ ###Markdown Confusion matrix ###Code for n_fold in range(config['N_USED_FOLDS']): n_fold += 1 pred_col = f'pred_fold_{n_fold}' train_set = k_fold_best[k_fold_best[f'fold_{n_fold}'] == 'train'] valid_set = k_fold_best[k_fold_best[f'fold_{n_fold}'] == 'validation'] print(f'Fold: {n_fold}') plot_confusion_matrix(train_set['target'], np.round(train_set[pred_col]), valid_set['target'], np.round(valid_set[pred_col])) ###Output Fold: 1 ###Markdown Visualize predictions ###Code k_fold['pred'] = 0 for n_fold in range(config['N_USED_FOLDS']): k_fold['pred'] += k_fold[f'pred_fold_{n_fold+1}'] / config['N_FOLDS'] print('Label/prediction distribution') print(f"Train positive labels: {len(k_fold[k_fold['target'] > .5])}") print(f"Train positive predictions: {len(k_fold[k_fold['pred'] > .5])}") print(f"Train positive correct predictions: {len(k_fold[(k_fold['target'] > .5) & (k_fold['pred'] > .5)])}") print('Top 10 samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('target == 1').head(10)) print('Top 10 predicted positive samples') display(k_fold[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in k_fold.columns if (c.startswith('pred_fold'))]].query('pred > .5').head(10)) ###Output Label/prediction distribution Train positive labels: 581 Train positive predictions: 0 Train positive correct predictions: 0 Top 10 samples ###Markdown Visualize test predictions ###Code print(f"Test predictions {len(test[test['target'] > .5])}|{len(test[test['target'] <= .5])}") print(f"Test predictions (last) {len(test[test['target_last'] > .5])}|{len(test[test['target_last'] <= .5])}") print('Top 10 samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].query('target > .5').head(10)) print('Top 10 positive samples (last)') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target', 'target_last'] + [c for c in test.columns if (c.startswith('pred_fold'))]].query('target_last > .5').head(10)) ###Output Test predictions 0|10982 Test predictions (last) 60|10922 Top 10 samples ###Markdown Test set predictions ###Code submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission['target'] = test['target'] submission['target_last'] = test['target_last'] submission['target_blend'] = (test['target'] * .5) + (test['target_last'] * .5) display(submission.head(10)) display(submission.describe()) ### BEST ### submission[['image_name', 'target']].to_csv('submission.csv', index=False) ### LAST ### submission_last = submission[['image_name', 'target_last']] submission_last.columns = ['image_name', 'target'] submission_last.to_csv('submission_last.csv', index=False) ### BLEND ### submission_blend = submission[['image_name', 'target_blend']] submission_blend.columns = ['image_name', 'target'] submission_blend.to_csv('submission_blend.csv', index=False) ###Output _____no_output_____
C2 Statistics and Model Creation/SOLUTIONS/SOLUTION_Tech_Fun_C2_S3_Inferential_Statistics.ipynb
###Markdown Technology Fundamentals Course 2, Session 3: Inferential Statistics**Instructor**: Wesley Beckner**Contact**: [email protected]**Teaching Assitants**: Varsha Bang, Harsha Vardhan**Contact**: [email protected], [email protected] this session we will look at the utility of EDA combined with inferential statistics.--- 6.0 Preparing Environment and Importing Data[back to top](top) 6.0.1 Import Packages[back to top](top) ###Code # The modules we've seen before import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import seaborn as sns # our stats modules import random import scipy.stats as stats import statsmodels.api as sm from statsmodels.formula.api import ols import scipy ###Output /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. ###Markdown 6.0.2 Load Dataset[back to top](top)For this session, we will use dummy datasets from sklearn. ###Code df = pd.read_csv('https://raw.githubusercontent.com/wesleybeckner/'\ 'ds_for_engineers/main/data/truffle_margin/truffle_margin_customer.csv') df descriptors = df.columns[:-2] for col in descriptors: print(col) print(df[col].unique()) print() ###Output Base Cake ['Butter' 'Cheese' 'Chiffon' 'Pound' 'Sponge' 'Tiramisu'] Truffle Type ['Candy Outer' 'Chocolate Outer' 'Jelly Filled'] Primary Flavor ['Butter Pecan' 'Ginger Lime' 'Margarita' 'Pear' 'Pink Lemonade' 'Raspberry Ginger Ale' 'Sassafras' 'Spice' 'Wild Cherry Cream' 'Cream Soda' 'Horchata' 'Kettle Corn' 'Lemon Bar' 'Orange Pineapple\tP' 'Plum' 'Orange' 'Butter Toffee' 'Lemon' 'Acai Berry' 'Apricot' 'Birch Beer' 'Cherry Cream Spice' 'Creme de Menthe' 'Fruit Punch' 'Ginger Ale' 'Grand Mariner' 'Orange Brandy' 'Pecan' 'Toasted Coconut' 'Watermelon' 'Wintergreen' 'Vanilla' 'Bavarian Cream' 'Black Licorice' 'Caramel Cream' 'Cheesecake' 'Cherry Cola' 'Coffee' 'Irish Cream' 'Lemon Custard' 'Mango' 'Sour' 'Amaretto' 'Blueberry' 'Butter Milk' 'Chocolate Mint' 'Coconut' 'Dill Pickle' 'Gingersnap' 'Chocolate' 'Doughnut'] Secondary Flavor ['Toffee' 'Banana' 'Rum' 'Tutti Frutti' 'Vanilla' 'Mixed Berry' 'Whipped Cream' 'Apricot' 'Passion Fruit' 'Peppermint' 'Dill Pickle' 'Black Cherry' 'Wild Cherry Cream' 'Papaya' 'Mango' 'Cucumber' 'Egg Nog' 'Pear' 'Rock and Rye' 'Tangerine' 'Apple' 'Black Currant' 'Kiwi' 'Lemon' 'Hazelnut' 'Butter Rum' 'Fuzzy Navel' 'Mojito' 'Ginger Beer'] Color Group ['Taupe' 'Amethyst' 'Burgundy' 'White' 'Black' 'Opal' 'Citrine' 'Rose' 'Slate' 'Teal' 'Tiffany' 'Olive'] Customer ['Slugworth' 'Perk-a-Cola' 'Fickelgruber' 'Zebrabar' "Dandy's Candies"] Date ['1/2020' '2/2020' '3/2020' '4/2020' '5/2020' '6/2020' '7/2020' '8/2020' '9/2020' '10/2020' '11/2020' '12/2020'] ###Markdown 6.1 Many Flavors of Statistical Tests https://luminousmen.com/post/descriptive-and-inferential-statistics >Descriptive statistics describes data (for example, a chart or graph) and inferential statistics allows you to make predictions (“inferences”) from that data. With inferential statistics, you take data from samples and make generalizations about a population - [statshowto](https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/inferential-statistics/:~:text=Descriptive%20statistics%20describes%20data%20(for,make%20generalizations%20about%20a%20population.)* **Moods Median Test*** [Kruskal-Wallis Test](https://sixsigmastudyguide.com/kruskal-wallis-non-parametric-hypothesis-test/) (Another comparison of Medians test)* T-Test* Analysis of Variance (ANOVA) * One Way ANOVA * Two Way ANOVA * MANOVA * Factorial ANOVAWhen do I use each of these? We will talk about this as we proceed through the examples. [This page](https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistics/nonparametrics/supporting-topics/which-test-should-i-use/) from minitab has good rules of thumb on the subject. 6.1.1 What is Mood's Median?> You can use Chi-Square to test for a goodness of fit (whether a sample of data represents a distribution) or whether two variables are related (using a contingency table, which we will create below!)**A special case of Pearon's Chi-Squared Test:** We create a table that counts the observations above and below the global median for two different groups. We then perform a *chi-squared test of significance* on this *contingency table* Null hypothesis: the Medians are all equalThe chi-square test statistic:$x^2 = \sum{\frac{(O-E)^2}{E}}$Where $O$ is the observed frequency and $E$ is the expected frequency.**Let's take an example**, say we have three shifts with the following production rates: ###Code np.random.seed(42) shift_one = [round(i) for i in np.random.normal(16, 3, 10)] shift_two = [round(i) for i in np.random.normal(24, 3, 10)] print(shift_one) print(shift_two) stat, p, m, table = scipy.stats.median_test(shift_one, shift_two, correction=False) ###Output _____no_output_____ ###Markdown what is `median_test` returning? ###Code print("The perasons chi-square test statistic: {:.2f}".format(stat)) print("p-value of the test: {:.3f}".format(p)) print("the grand median: {}".format(m)) ###Output The perasons chi-square test statistic: 7.20 p-value of the test: 0.007 the grand median: 19.5 ###Markdown Let's evaluate that test statistic ourselves by taking a look at the contingency table: ###Code table ###Output _____no_output_____ ###Markdown This is easier to make sense of if we order the shift times ###Code shift_one.sort() shift_one ###Output _____no_output_____ ###Markdown When we look at shift one, we see that 8 values are at or below the grand median. ###Code shift_two.sort() shift_two ###Output _____no_output_____ ###Markdown For shift two, only two are at or below the grand median.Since the sample sizes are the same, the expected value for both groups is the same, 5 above and 5 below the grand median. The chi-square is then:$X^2 = \frac{(2-5)^2}{5} + \frac{(8-5)^2}{5} + \frac{(8-5)^2}{5} + \frac{(2-5)^2}{5}$ ###Code (2-5)**2/5 + (8-5)**2/5 + (8-5)**2/5 + (2-5)**2/5 ###Output _____no_output_____ ###Markdown Our p-value, or the probability of observing the null-hypothsis, is under 0.05. We can conclude that these shift performances were drawn under seperate distributions.For comparison, let's do this analysis again with shifts of equal performances ###Code np.random.seed(3) shift_three = [round(i) for i in np.random.normal(16, 3, 10)] shift_four = [round(i) for i in np.random.normal(16, 3, 10)] stat, p, m, table = scipy.stats.median_test(shift_three, shift_four, correction=False) print("The pearsons chi-square test statistic: {:.2f}".format(stat)) print("p-value of the test: {:.3f}".format(p)) print("the grand median: {}".format(m)) ###Output The pearsons chi-square test statistic: 0.00 p-value of the test: 1.000 the grand median: 15.5 ###Markdown and the shift raw values: ###Code shift_three.sort() shift_four.sort() print(shift_three) print(shift_four) table ###Output _____no_output_____ ###Markdown 6.1.2 When to Use Mood's?**Mood's Median Test is highly flexible** but has the following assumptions:* Considers only one categorical factor* Response variable is continuous (our shift rates)* Data does not need to be normally distributed * But the distributions are similarly shaped* Sample sizes can be unequal and small (less than 20 observations)Other considerations:* Not as powerful as Kruskal-Wallis Test but still useful for small sample sizes or when there are outliers 6.1.2.1 Exercise: Use Mood's Median Test **Part A** Perform moods median test on Base Cake in Truffle dataWe're also going to get some practice with pandas groupby. ###Code df[['Base Cake', 'EBITDA/KG']].head() # what is returned by this groupby? gp = df.groupby('Base Cake') ###Output _____no_output_____ ###Markdown How do we find out? We could iterate through it: ###Code # seems to be a tuple of some sort for i in gp: print(i) break # the first object appears to be the group print(i[0]) # the second object appears to be the df belonging to that group print(i[1]) ###Output Butter Base Cake Truffle Type ... KG EBITDA/KG 0 Butter Candy Outer ... 53770.342593 0.500424 1 Butter Candy Outer ... 466477.578125 0.220395 2 Butter Candy Outer ... 80801.728070 0.171014 3 Butter Candy Outer ... 18046.111111 0.233025 4 Butter Candy Outer ... 19147.454268 0.480689 ... ... ... ... ... ... 1562 Butter Chocolate Outer ... 9772.200521 0.158279 1563 Butter Chocolate Outer ... 10861.245675 -0.159275 1564 Butter Chocolate Outer ... 3578.592163 0.431328 1565 Butter Jelly Filled ... 21438.187500 0.105097 1566 Butter Jelly Filled ... 15617.489115 0.185070 [456 rows x 9 columns] ###Markdown going back to our diagram from our earlier pandas session. It looks like whenever we split in the groupby method, we create separate dataframes as well as their group label:Ok, so we know `gp` is separate dataframes. How do we turn them into arrays to then pass to `median_test`? ###Code # complete this for loop for i, j in gp: # turn j into an array using the .values attribute print(i, j['EBITDA/KG'].values) # turn j into an array of the EBITDA/KG column and grab the values using .values attribute # j --> grab EBITDA/KG --> turn into an array with .values # print this to the screen ###Output Butter [ 5.00423594e-01 2.20395451e-01 1.71013869e-01 2.33024872e-01 4.80689371e-01 1.64934546e-01 2.03213256e-01 1.78681400e-01 1.25050726e-01 2.17021951e-01 7.95955185e-02 3.25042287e-01 2.17551215e-01 2.48152299e-01 -1.20503094e-02 1.47190567e-01 3.84488948e-01 2.05438764e-01 1.32190256e-01 3.23019144e-01 -9.73361477e-03 1.98397692e-01 1.67067902e-01 -2.60063690e-02 1.30365325e-01 2.36337749e-01 -9.70556780e-02 1.59051819e-01 -8.76572259e-02 -3.32199843e-02 -5.05704451e-02 -5.56458806e-02 -8.86273564e-02 4.32267857e-02 -1.88615579e-01 4.24939227e-01 9.35136847e-02 -3.43605950e-02 1.63823520e-01 2.78522916e-01 1.29207730e-01 1.79194495e-01 1.37419569e-01 1.31372653e-01 2.53275225e-01 2.26761431e-01 1.10173466e-01 1.99338787e-01 -2.01250197e-01 1.16567591e-01 1.32324984e-01 4.02912418e-01 9.35051765e-02 1.65865814e-01 2.12269112e-01 2.53461571e-01 1.89055713e-01 1.20416365e-01 3.95276612e-02 2.93121770e-01 1.40947082e-01 -1.21555832e-01 1.56455622e-01 -1.29776953e-02 -6.17934014e-02 -8.19904808e-02 -3.14711557e-02 -8.03820228e-02 1.63839981e-01 8.34406336e-02 1.49369698e-01 1.05990633e-01 1.27399979e-01 2.26634255e-01 -2.20801929e-03 -6.92044284e-02 1.74048414e-01 1.30933438e-01 1.27620323e-01 2.78652749e-01 2.14772018e-01 1.40864278e-01 1.23745138e-01 1.66586809e-01 2.91940995e-01 2.49925584e-01 8.65447719e-02 3.80907774e-01 2.70851719e-01 3.32946265e-01 9.00795862e-03 2.00960974e-01 2.72623570e-01 3.35902190e-01 1.27337723e-01 2.36618545e-01 -6.82774785e-02 3.13166906e-01 2.15752651e-01 9.29694447e-02 3.60809152e-02 2.32488112e-01 3.38200308e-02 1.70916188e-01 2.81620452e-01 -1.61981289e-01 -4.14570666e-02 1.13465970e-02 2.28733252e-01 9.87516565e-02 3.52732668e-02 6.32598661e-02 2.10300526e-01 1.98761726e-01 1.38832882e-01 2.95465366e-01 2.68022024e-01 3.22389724e-01 4.04867623e-01 2.38086167e-01 1.12586985e-01 1.94010438e-01 1.96757297e-01 1.65215620e-01 1.22730941e-02 1.14415249e-01 3.26252563e-01 1.89080695e-01 -5.11830382e-02 2.41661008e-01 2.00063672e-01 3.07633312e-01 4.20740234e-01 1.34764192e-01 -4.75993730e-02 1.52973888e-02 1.87709908e-01 7.20193743e-02 3.48745346e-02 2.77659158e-01 2.73466257e-01 1.32419725e-01 2.85933859e-02 3.99622870e-02 -7.46829380e-02 9.03915641e-02 -9.61708181e-02 7.16896946e-02 1.08714611e-01 1.18536709e-01 8.52229628e-02 4.13523715e-01 7.71194281e-01 1.73738798e-01 3.05406909e-01 1.53831064e-01 2.06911408e-01 1.13075512e-01 1.29416734e-01 1.60275533e-01 2.29962628e-01 2.50895646e-01 1.73060658e-01 2.01020670e-01 3.16227457e-01 1.57652647e-01 5.47188384e-02 2.61436808e-01 1.46570523e-01 1.58977569e-01 2.11215119e-01 1.40679855e-01 -8.00696326e-02 1.59842103e-01 2.00211820e-01 9.92221921e-02 -1.91516176e-02 -5.02510162e-02 -9.15402427e-02 4.28019215e-02 1.06537078e-01 -3.24195486e-01 1.79861627e-02 -1.29900711e-01 -1.18627679e-01 -1.26903307e-01 -1.12941251e-01 2.81344485e-01 -5.75519167e-02 1.62155727e-02 2.14084866e-01 2.05315240e-01 1.27598359e-01 1.89025252e-01 3.96820478e-01 1.20290515e-01 3.32130996e-01 1.37858897e-01 9.78393589e-02 3.51731323e-01 1.10782088e-01 2.27390210e-01 3.89559348e-01 1.74184808e-01 3.08568571e-01 1.71747215e-01 2.33275587e-01 2.56728635e-01 3.02423314e-01 2.74374851e-01 3.27629705e-02 5.61005655e-02 1.68330538e-01 1.12578506e-01 1.08314409e-02 1.33944964e-01 -2.12285231e-01 -1.21224032e-01 1.07819533e-01 3.17613330e-02 2.84300351e-01 -1.58586907e-01 1.36753020e-01 1.26197635e-01 7.40448636e-02 2.35065994e-01 -6.15319415e-02 -7.51966701e-02 4.13427726e-01 1.60539980e-01 1.09901498e-01 1.74329568e-01 1.48135527e-01 1.85728609e-01 2.85476612e-01 2.24898461e-01 1.33343564e-01 1.80618963e-01 2.03080820e-02 2.16728570e-01 1.86566493e-01 1.25929822e-01 1.79317565e-01 3.88162321e-01 2.03009067e-01 2.64872648e-01 4.95978731e-01 1.52347749e-01 -7.23596372e-02 1.29552280e-01 6.16496157e-02 1.05956924e-01 -2.71699836e-01 -5.64473565e-03 -2.50275527e-02 1.29269950e-01 -1.87247727e-01 -3.49347255e-01 -1.93280406e-01 7.87217542e-02 2.21951811e-01 7.10999656e-02 3.49382049e-02 1.48398799e-01 5.65517753e-02 1.05690961e-01 2.55476023e-01 1.28401889e-01 1.33289903e-01 1.14201836e-01 1.43169893e-01 5.69591438e-01 1.54755202e-01 1.55028578e-01 1.64827975e-01 4.67083700e-01 3.31029661e-02 1.62382617e-01 1.54156022e-01 6.55873722e-01 -5.31208735e-02 2.37122763e-01 2.71368392e-01 4.69144223e-01 1.62923984e-01 1.22718216e-01 1.68055251e-01 1.35999904e-01 2.04736813e-01 1.27146904e-01 -1.12549423e-01 3.24840692e-03 7.10375441e-02 7.90146006e-03 5.79775663e-02 -1.57867224e-01 1.33194074e-01 1.11364361e-01 1.95665062e-01 5.57144416e-02 -6.22623725e-02 2.59366443e-01 1.96512306e-02 -2.47699823e-02 3.37429602e-01 1.84628626e-01 2.42417229e-01 1.88852778e-01 2.10930109e-01 2.10416004e-01 2.81527817e-01 5.45666352e-01 1.85856370e-01 4.88939364e-01 1.29308220e-01 1.30534366e-01 4.31600221e-01 1.42478827e-01 1.11633119e-01 1.45026679e-01 2.79724659e-01 3.33422150e-01 4.92846588e-01 1.88026032e-01 4.35734950e-01 1.29765005e-01 1.36498013e-01 1.27056277e-01 2.39063615e-01 -1.49002763e-01 2.00230923e-02 1.23378339e-01 6.12350194e-02 -1.57952580e-01 5.93742728e-02 -6.88460761e-03 7.48854198e-02 6.45607765e-02 8.47908994e-03 2.15403273e-01 6.38359483e-02 -6.30232436e-04 4.09513551e-01 3.59478228e-01 1.15102395e-01 1.56907967e-01 1.60361237e-01 3.16259692e-01 4.37763243e-01 1.82457530e-01 3.12791208e-01 1.59771151e-01 -6.63636501e-02 3.37363422e-01 2.58858115e-01 1.81217734e-01 3.73234115e-02 1.44936318e-01 3.16879135e-01 4.73967251e-01 2.43696316e-01 2.73749525e-01 2.46270449e-02 2.27465471e-01 1.71915626e-01 6.96528119e-02 1.51926333e-01 1.91790172e-01 -1.70457889e-01 1.94258861e-02 1.05929285e-01 2.46869777e-01 -6.42981449e-03 1.22480623e-01 1.27650832e-01 1.23734951e-01 2.01582021e-01 7.66321281e-02 1.25943788e-01 -5.22321249e-02 2.95908687e-01 3.44925520e-01 1.07812252e-01 1.15365733e-01 2.13185926e-01 1.29626595e-01 4.15526961e-01 1.23294607e-01 1.45059294e-01 1.81411556e-01 1.06561684e-01 1.20626826e-01 2.19538968e-01 3.16034720e-01 9.72365601e-02 1.83261409e-01 1.47228661e-01 1.57946602e-01 3.83712037e-01 1.36031656e-01 3.75214905e-02 1.97768668e-02 3.06073435e-02 -1.01445936e-01 1.41457346e-01 4.89799924e-02 1.35908206e-01 2.95765484e-02 1.34596792e-01 -2.45031560e-01 9.09800159e-02 -2.80465423e-02 4.60956009e-03 4.76391647e-02 9.71343281e-02 6.71838252e-02 -1.45994631e-02 -5.39188915e-02 2.79919933e-01 2.31919186e-01 1.12801182e-01 1.13704532e-01 4.26356671e-01 1.90428244e-01 1.10496872e-01 3.31699294e-01 1.36443699e-01 1.97119264e-01 -5.57694684e-03 1.11270325e-01 4.61516648e-01 2.68630982e-01 1.00774945e-01 1.41438672e-01 3.97197924e-01 1.92009640e-01 1.34873803e-01 2.20134800e-01 1.11572142e-01 2.04669213e-02 2.21970350e-01 -1.13088611e-01 2.39645009e-01 2.70424952e-01 2.65250470e-01 7.79145265e-02 4.09394578e-03 -2.78502700e-01 -1.88647588e-02 -8.11508107e-02 2.05797599e-01 1.58278762e-01 -1.59274599e-01 4.31328198e-01 1.05097241e-01 1.85069899e-01] Cheese [0.31024611 0.71174685 0.50751806 0.46142939 0.44756216 0.34030411 0.10382401 0.33386367 0.46296368 0.64676254 0.51310951 0.41967325 0.29605687 0.41850126 0.36864453 0.5582262 0.42049747 0.39449372 0.41897671 0.30695448 0.33910074 0.31757224 0.39323566 0.4420211 0.46471088 0.70530657 0.28512715 0.58736445 0.36488057 0.82106239 0.50970246 0.90376594 0.38217046 0.45333367 0.45167657 0.35115948 0.55637042 0.52114454 0.45354709 0.79224572 0.32544919 0.06849032 0.30827338 0.39214898 0.45700653 0.39646832 0.36237725 0.47371197 0.39708762 0.31607959 0.4316696 0.78152586 0.60156046 0.79837066 0.05176626 0.40828883 0.69434929 0.39885525 0.45567959 0.44382732 0.55357404 0.33127973 0.29538841 0.50827145 0.76002093 0.8387116 0.46159887 0.4182431 0.21700543 0.15736328 0.31618931 0.47388105 0.44323638 0.4053324 0.63362771 0.42012583 0.49582874 0.49920671 0.41526695 0.45875867 0.43960576 0.80129282 0.27568184 0.15913551] Chiffon [ 1.21858343e-01 -2.31276552e-02 9.18464443e-02 2.50289033e-01 -5.91501237e-02 1.25642083e-01 1.46252162e-01 2.72813694e-01 1.38008152e-01 1.61345943e-01 1.13661894e-01 4.13249336e-01 1.39500741e-01 1.20583334e-01 1.65888636e-01 1.46040047e-01 -1.14107528e-01 2.14782308e-01 2.67154086e-02 -2.34184446e-01 4.15517880e-02 9.74031938e-02 1.60625832e-01 3.28729869e-01 -5.51110582e-02 -5.14479289e-02 1.29843330e-01 8.80520764e-02 -4.79386189e-02 3.63798458e-01 1.52387552e-01 1.35037619e-01 3.34227431e-01 2.33799637e-01 7.56293647e-02 1.96522640e-01 1.65482936e-01 3.51614087e-01 3.37735808e-01 3.33538427e-01 -4.49725725e-02 -4.25619026e-02 1.83394229e-01 -1.75028044e-03 1.20080698e-01 1.04391810e-01 5.40776461e-02 1.12891535e-01 -1.52575715e-01 5.84966270e-02 1.77161930e-01 1.77017297e-01 8.59815568e-02 6.03403396e-02 -1.53695767e-02 1.76768673e-01 2.95748619e-01 2.39682232e-01 1.22997307e-01 6.50780252e-02 2.00487390e-01 1.74528563e-01 3.21886617e-02 2.13705279e-01 6.86376721e-02 8.33547341e-02 2.74796796e-01 -5.07158091e-02 -4.84429928e-04 8.62049281e-02 7.02475345e-02 6.36241200e-02 7.94096568e-02 -1.16555238e-01 1.19969317e-01 7.19759215e-02 1.75612439e-01 3.41857571e-01 9.17704162e-02 2.65574883e-01 1.08739401e-01 1.24534261e-01 1.80974414e-01 1.10842025e-01 2.49251781e-01 6.13871762e-01 8.22906745e-02 1.08623612e-01 4.94895083e-02 -3.36986360e-02 1.76124342e-01 1.05787397e-01 -6.46956842e-02 -1.31216346e-01 -1.23043971e-01 5.94911621e-02 3.04844201e-02 4.04344988e-02 2.39073372e-01 1.06499044e-01 -8.23206990e-02 1.30534591e-01 2.14943183e-01 3.90611238e-01 3.04834209e-01 2.19561702e-01 2.74978888e-01 2.96165576e-01 2.68207392e-01 4.29832512e-02 6.38934896e-02 3.52278721e-01 2.68179206e-01 2.32450968e-01 2.10270759e-01 5.32072024e-02 4.22360609e-02 1.43364872e-01 -6.03838982e-02 2.63235851e-01 2.11645689e-01 1.59601094e-01 6.07989371e-02 1.10329657e-01 6.45146959e-02 1.69995343e-01 7.26000108e-02 1.59994162e-01 2.57372980e-01 2.02785304e-01 1.47469657e-01 1.02091933e-01 1.59127758e-01 5.04847567e-02 8.79725623e-02 8.83044372e-02 3.42132099e-02 5.96479065e-02 -2.44781745e-02 1.66214781e-01 -6.40488465e-02 -2.97878433e-02 -1.85761630e-01 1.74600131e-01 1.13405471e-01 2.25835043e-01 1.98365573e-01 1.21426113e-01 7.90042565e-03 1.41035546e-01 8.88806936e-02 1.48734867e-01 3.31603369e-01 1.73695423e-01 1.92571237e-01 1.65574916e-01 1.10631537e-01 6.40089705e-02 1.52677792e-01 2.02591244e-01 8.76656892e-02 1.80554583e-01 -1.81296026e-01 1.71943820e-01 9.75547799e-02 1.72937506e-01 1.83826001e-01 1.33485741e-01 1.35154552e-01 -9.66031422e-02 1.73405645e-01 1.00492254e-01 9.52718797e-03 1.09604252e-01 -1.37954309e-01 4.60501177e-01 1.28683778e-01 1.88093396e-01 2.03093522e-01 1.92527678e-01 3.19116764e-01 1.14801976e-01 1.37311036e-01 2.19699839e-01 8.75410371e-02 4.32131208e-02 1.09240071e-01 3.16627525e-01 -9.14249180e-02 2.00289059e-01 -7.33450479e-02 1.78344909e-01 7.82707627e-02 3.44465621e-02 4.28351783e-01 2.05981435e-01 1.44395401e-01 9.40545510e-02 6.72957569e-02 1.46842980e-01 9.90234025e-02 1.97945349e-01 8.52796848e-02 2.94398027e-01 1.52089322e-01 1.46053365e-01 6.77642392e-02 2.27347429e-01 1.08704027e-01 -1.22820453e-01 1.33917127e-01 3.04743829e-01 -1.36908488e-01 2.35855878e-01 -7.29328812e-02 1.34602838e-01 -1.07531362e-01 6.77260583e-02 7.43162379e-02 2.29050288e-01 9.87466631e-03 1.83650982e-01 -4.79982170e-02 4.33551139e-01 2.26663847e-01 7.19528059e-02 2.96940036e-01 6.09360315e-01 3.21286830e-01 1.30938550e-01 8.01044974e-01 2.87534189e-01 9.82785044e-02 -2.60778114e-01 -3.28347689e-02 1.90839908e-01 -2.76583098e-02 -2.25278602e-01 6.55441616e-02 2.10229762e-01 3.23412688e-02 -7.95661741e-02 3.96588312e-01 1.85660156e-01 -9.61954556e-02 4.51382027e-01 1.59659245e-01 1.53143391e-01 1.36332049e-01 7.46792191e-02 3.51699289e-01 4.02943998e-01 2.11485426e-01 3.10978806e-01 1.25908816e-01 1.28446699e-01 2.21492620e-01 3.38132074e-01 -1.30528198e-01 -1.34926091e-01 -7.03314041e-03 1.44183726e-01 -3.15638790e-02 1.84780081e-01 9.37495403e-02 7.57805086e-02 1.28215402e-01 1.17819064e-01 1.22257780e-02 7.52901489e-02 1.54757281e-01 1.19257089e-01 2.72782431e-01 1.52796984e-01 3.04144687e-01 7.29370147e-02 2.38916270e-01 1.60206737e-01 3.40495788e-02 2.30405489e-01 -5.52342680e-02 3.62790016e-02 4.89325632e-02 1.52314497e-02 7.58613984e-02 2.32380375e-01 3.91738218e-02 1.68845662e-01] Pound [ 0.32321607 0.38508878 0.42297863 0.34451719 0.27738627 0.24482153 0.14172564 -0.0173595 -0.01870757 0.32355307 0.28607933 0.27570462 0.29002439 0.33265454 0.20198275 0.36564746 0.47768429 0.04244718 0.26028803 0.21499723 0.41401122 0.49965754 0.3083381 0.31291979 0.10171442 0.31546809 0.20888824 0.0928985 0.15241702 0.15078056 0.53822529 0.141656 0.19875801 0.31095959 0.26115004 0.52238763 0.17481194 0.37581023 0.40559732 0.1799333 0.24178222 0.26948023 0.24040905 0.15765103 0.19455205 0.1459339 0.45075494 0.35282801 0.36375433 0.33498334 0.23111502 0.37758293 0.26414853 0.02031629 -0.08532176 0.22579867 0.15366796 -0.00912829 0.27145471 0.42720462 0.25976266 0.47013859 0.2297805 0.23338651 0.16754926 0.2412075 0.46944699 0.40067312 0.20247278 0.19655044 0.30404021 0.12816256 0.16748396 0.25186199 0.29512684 0.21036365 0.05771213 0.04225223 -0.07432231 0.20418141 0.08937287 0.38401244 0.19439379 0.15578787 0.3348507 0.33558447 0.16276681 0.26034261 0.29275909 0.25818752 0.21052719 0.21792357 0.21006737 0.27540074 0.15393335 0.1545965 0.24711151 0.31465184 0.26112959 0.33186199 0.3426386 0.27499092 0.12380227 0.01685322 0.39336257 0.42175486 0.3488756 0.29484295 0.27530805 0.3646811 0.27356843 0.02792581 0.11111569 0.19718529 0.10748888 0.00553779 0.31200243 0.1470243 0.19179442 0.12623421 0.21634481 0.20222126 0.19343959 0.26994521 -0.0495724 0.04008776 0.39031927 0.17468296 0.38091786 0.23852503 0.28186562 0.18962601 0.13859143 0.41357774 0.51768241 0.61397133 0.21448552 0.1607562 0.26383846 0.34511841 0.44946125 0.24111933 0.38131255 0.51755165 0.46657461 0.58984442 0.34826857 0.23292436 0.33127621 0.12314482 0.12743829 0.36100748 0.08223741 0.07593321 0.28849014 0.29266131 0.57693589 0.35963854 0.25674005 0.42419876 0.17426009 0.24947853 0.41144646 0.3505417 0.1453595 0.25444058 0.24083198 0.2802688 0.33430517 0.57175158 0.17699496 0.24857315 0.12806569 0.46726304 0.02195756 -0.03315828 -0.10698311 0.40384354 0.32085676 0.13137146 0.12127028 0.22501458 0.23994971 0.16164933 0.28723918 0.19613472 0.25424671 0.53352985 0.15617013 0.13363199 0.17379802 0.23837871 0.32504894 0.75742513 0.37674573 0.36790457 0.30206674 0.22176289 0.15113828 0.44639703 0.2246356 0.24925448 0.25350291 0.31175686 0.33724911 0.35643596 0.12550246 -0.18240312 0.35181627 0.41884665 -0.01710304 0.22532558 0.17841254 0.49844941 0.27227185 0.29980404 0.15476942 0.22406937 0.29049974 0.10426626 0.16885104 0.00273775 0.38720682 0.29167847 -0.11466641 0.16710221 0.13239378 0.18218465 0.1619281 0.36896349 0.22416167 0.14321535 0.20342944 0.19816102 0.16923039 0.23980651 0.14950695 0.18763079 0.2314456 0.18065398 0.72513341 0.4381927 0.3063706 0.30198679 0.68424321 0.19179253 -0.05441273 0.20607683 0.04697187 0.42209185 0.89688176 0.26588886 0.41342926 0.31032533 0.35323879 -0.16248052 0.20888861 0.32034052 0.03220128 0.30544068 0.29683875 0.1644044 0.2918579 0.19255763 0.32082358 0.30836791 0.20868915 0.28632935 0.16421954 0.11807203 0.25984075 -0.08741326 0.0195581 0.13962133 0.8191702 0.39712282 0.37241833 0.22326601 0.27309132 0.30478413 0.49010052 0.95564857 0.25887253 0.31403387 0.30973205 0.39785483 0.14237171 0.14648819 0.46166122 0.26203058 0.3038787 0.30641543 0.27497289 0.10168111 0.10909005 0.24881722 0.56269999 0.2808664 0.21827234 0.39231092 0.25439673 0.44043259 0.05585949 0.06772251 0.48326974 0.18332497 0.00709466 0.09138764 0.22765224 0.18391179 0.3151882 0.20135587 0.1970134 0.1795083 0.24481941 0.11279568 0.12359239 0.12035994 0.23725643 0.20626565 -0.13238069 0.14592134 0.22745041 0.32902301 0.20790333 0.22956102 0.55181976 0.33856839 0.16175831 0.22851344 0.23527664 0.18968501 0.25135573 0.16758549 0.32436807 0.23463334 0.52275751 0.30083867 0.31533008 0.3318652 0.30354029 0.29656873 0.25330369 0.08267882 0.31857957 0.29218788 0.27019334 0.20973553 0.30581798 0.3037418 0.07019526 0.21748189 0.22824375 0.27342359 0.09743493 0.21568052 0.14214957 0.15158143 0.190655 0.19012006 0.09454959 0.52599239 0.17690979 0.20588511 0.29518866 0.11206204 0.05541632 -0.1306972 0.06977679 0.270653 0.2803273 0.25227206 0.34930219 0.17338134 0.34734598 0.17803046 0.55178673 0.4727106 0.179678 0.18500216 0.52021697 0.4489349 0.39781507 0.14562059 0.43307102 0.31240784 0.27413817 0.2190362 0.38735826 0.20171435 -0.07810885 0.24205143 0.24026078 0.18752377 0.46486901 0.23386662 0.42296434 0.32916347 0.24195824 0.20586755 0.05482604 0.06491987 -0.09533184 0.12370986 0.12462263 0.32617149 0.3113235 0.13012888 0.30347691 0.52019857 0.20143771 0.05920849 0.04591077 -0.10847787 0.20921121 0.2027113 0.08656521 0.27785597 0.93151874 0.2603655 0.38619877 0.16019194 0.37561695 0.18520309 0.27655601 0.37138838 0.21842314 0.403135 0.24465811 0.23882034 0.14160437 0.14237542 0.34945666 0.4215184 0.24579291 0.37785612 0.35377472 0.10804025 0.35275633 0.28602091 0.38664527 0.24164303 0.46958793 0.24420113 0.47097589 0.51666776 -0.032854 0.09367494 0.23370998 0.11874117 0.25973467 0.06197103 0.26714186 0.21786156 0.27347199 0.2621909 0.18586173 0.41871719 0.19310781 0.04965107 0.03563542 -0.31577181 0.23618772 0.14820913 -0.14772189 0.12055125 0.19762764 0.5608269 0.41520575 0.25977854 0.23727075 0.17736649 0.38157878 0.16800624 0.29267396 0.1544561 0.30116502 0.14817098 0.30230718 0.12513873 0.26513452 0.24217922 0.43441077 0.4051062 0.30980097 0.09374276 -0.12477535 0.46341042 0.48595824 0.29977695 0.2157381 0.22888101 0.43379298 0.33577663 0.24533144 0.33091922 0.3585703 0.11791354 0.395184 0.3508324 0.36330316 0.19847734 0.27272467 0.1823314 0.28103009 0.18886829 0.47335529 0.42204217 0.07795239 0.1644861 0.166938 0.08497851 0.14992156 0.13242363 0.13302711 0.13621586 0.16369434 0.34999184 0.37153275 0.19894069 0.20734444 0.43345348 0.22785146 0.18064148 0.15266387 0.71659587 0.45050932 0.12070704 0.31243788 0.58460164 0.35063063 0.29290808 0.33224335 -0.08017125 0.1213992 0.25940566 0.32480667 0.45404359 0.45056863 0.24049159 0.27553437 0.28569063 0.19665626 0.18861634 0.30719515 0.02043033 0.10484632 0.2026839 0.18108911 0.3072568 0.15559446 0.40917622 0.2910387 0.21252036 0.18745794 0.08094336 0.22369671 -0.20667537 -0.07775362 0.23309588 -0.02396401 0.2426802 0.24550625 0.26726533 0.61864891 0.20158177 0.24459158 0.49158842 0.24269758 0.26872075 0.2632711 0.56159067 0.23156456 0.13964574 0.13375843 0.20490908] Sponge [0.73580257 0.73183187 0.68004424 0.72870923 0.76041478 0.71522379 0.60990968 0.83932268 0.57932365 0.54579051 0.79465664 1.50826802 0.7242606 0.44620431 0.59595697 0.7396216 0.76041558 0.59082638 0.57392993 0.59021514 0.71908453 0.72947292 0.71175378 0.67672714 0.53366892 0.72946871 0.4948195 0.61905171 0.78784887 0.66610438 0.66960562 0.78850913 0.71465054 0.6690954 0.51805207 0.72005788 0.70414236 0.6700258 0.64207815 0.8725881 0.98870797 0.65662429 0.71353141 0.70047491 0.49071003 0.75413095 0.73636842 0.76312067 0.67139827 0.80401958 0.65729027 0.69701251 0.78185858 0.88520571 0.63026251 0.79766947 0.6283201 0.58098635 0.63744721 0.51293953 0.88223351 0.66580087 0.75410702 0.93970336 0.83000237 0.68498655 0.66321435 0.64834447 0.59470426 0.63241816 0.69790741 0.73720243 0.75137394 0.59674542 0.833015 0.7144524 0.71150449 0.72541211 0.78719123 0.46557876 0.79521048 0.75380001 0.68783355 0.65243237 0.75254094 0.69527937 0.52906568 0.4393708 0.61566195 0.6027417 0.79388791 0.72645901 0.82822171 0.83614689 0.78281066 0.86053271 0.61157488 0.68184308 0.60023454 0.8649757 0.92128418 0.71457679 0.70654795 0.51146619 0.64679203 0.7012766 0.63793851 0.37486146 0.67076655 0.63159197 0.73020035 0.67160317 0.79609011 0.74849716 0.85231975 0.6806251 0.6950639 0.69823519 0.56649505 0.52117887] Tiramisu [ 0.39410473 0.51952846 0.68412982 0.20415572 0.93950367 0.46495972 0.53329274 0.38295519 0.34666474 0.32200474 0.82340501 0.18547367 -0.0338556 0.08897884 -0.17901569 1.09510291 0.37278453 0.32250226 0.25886483 0.24887151 0.44646163 0.39559448 0.16000816 0.16013681 0.17757029 0.11894748 0.15518036 0.27747575 0.39782558 0.31292385 0.79088771 0.384457 0.28597306 0.37108544 0.47871742 0.36331051 0.01629586 0.15881475 0.06454623 0.34600752 0.47649894 0.31917813 0.29944674 1.11686399 0.78062804 0.38007041 0.38885918 0.36919903 0.34348412 0.37454545 0.18412813 0.24472462 0.36089282 0.51516818 0.33285772 0.34919443 0.55326467 0.45767164 0.64846502 0.20028945 0.36675685 0.24660515 0.13730941 0.29538812 0.35009826 0.37817969 0.26484654 0.72136273 0.60404694 0.54291064 0.393219 0.37865084 0.17327122 0.31126174 0.14882122 0.2059877 0.47155327 0.60802022 0.45547079 0.35291207 0.47571532 0.46927999 0.32885089 0.44623411 0.44535224 0.20323303 0.27533903 0.29764739 0.42394079 0.28397372 0.28263452 0.28012608 0.28200062 0.32995584 0.17524124 0.36522752 0.48055322 0.09818075 0.25380091 0.94935928 0.38610721 0.23115292 0.39581731 0.25153396 0.25240126 0.63060265 0.23773134 0.21161604 0.30557517 0.03604113 0.58466124 0.20293707 0.23417331 0.4189347 0.46649045 0.65240572 0.71026355 0.67737871 1.06433212 0.59239449 0.50347069 0.19563407 0.17312944 0.3529793 0.35522799 0.74959928 0.38638603 0.67915167 0.55596793 0.78047273 0.39242498 0.27114476 0.09664842 0.37718942 -0.05965329 0.72164314 0.45291755 1.29376527 0.31212929 0.42011077 0.24865926 0.37850131 0.21314941 0.43181279] ###Markdown After you've completed the previous step, turn this into a list comprehension and pass the result to a variable called `margins` ###Code # complete the code below margins = [j['EBITDA/KG'].values for i,j in gp] ###Output _____no_output_____ ###Markdown Remember the list unpacking we did for the tic tac toe project? We're going to do the same thing here. Unpack the margins list for `median_test` and run the cell below! ###Code # complete the following line stat, p, m, table = scipy.stats.median_test(*margins, correction=False) print("The pearsons chi-square test statistic: {:.2f}".format(stat)) print("p-value of the test: {:.2e}".format(p)) print("the grand median: {:.2e}".format(m)) ###Output The pearsons chi-square test statistic: 448.81 p-value of the test: 8.85e-95 the grand median: 2.16e-01 ###Markdown **Part B** View the distributions of the data using matplotlib and seabornWhat a fantastic statistical result we found! Can we affirm our result with some visualizations? I hope so! Create a boxplot below using pandas. In your call to `df.boxplot()` the `by` parameter should be set to `Base Cake` and the `column` parameter should be set to `EBITDA/KG` ###Code # YOUR BOXPLOT HERE df.boxplot(by='Base Cake', column='EBITDA/KG') ###Output /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray ###Markdown For comparison, I've shown the boxplot below using seaborn! ###Code fig, ax = plt.subplots(figsize=(10,7)) ax = sns.boxplot(x='Base Cake', y='EBITDA/KG', data=df, color='#A0cbe8') ###Output _____no_output_____ ###Markdown **Part C** Perform Moods Median on all the other groups ###Code ls = [] for i in range(10): # for loop initiation line if i % 2 == 0: ls.append(i**2) # actual task upon each loop ls ls = [i**2 for i in range(10) if i % 2 == 0] ls # Recall the other descriptors we have descriptors for desc in descriptors: # YOUR CODE FORM MARGINS BELOW margins = [j['EBITDA/KG'].values for i,j in df.groupby(desc)] # UNPACK MARGINS INTO MEDIAN_TEST stat, p, m, table = scipy.stats.median_test(*margins, correction=False) print(desc) print("The pearsons chi-square test statistic: {:.2f}".format(stat)) print("p-value of the test: {:e}".format(p)) print("the grand median: {}".format(m), end='\n\n') ###Output Base Cake The pearsons chi-square test statistic: 448.81 p-value of the test: 8.851450e-95 the grand median: 0.2160487288076019 Truffle Type The pearsons chi-square test statistic: 22.86 p-value of the test: 1.088396e-05 the grand median: 0.2160487288076019 Primary Flavor The pearsons chi-square test statistic: 638.99 p-value of the test: 3.918933e-103 the grand median: 0.2160487288076019 Secondary Flavor The pearsons chi-square test statistic: 323.13 p-value of the test: 6.083210e-52 the grand median: 0.2160487288076019 Color Group The pearsons chi-square test statistic: 175.18 p-value of the test: 1.011412e-31 the grand median: 0.2160487288076019 Customer The pearsons chi-square test statistic: 5.66 p-value of the test: 2.257760e-01 the grand median: 0.2160487288076019 Date The pearsons chi-square test statistic: 5.27 p-value of the test: 9.175929e-01 the grand median: 0.2160487288076019 ###Markdown **Part D** Many boxplotsAnd finally, we will confirm these visually. Complete the Boxplot for each group: ###Code for desc in descriptors: fig, ax = plt.subplots(figsize=(10,5)) sns.boxplot(x=desc, y='EBITDA/KG', data=df, color='#A0cbe8', ax=ax) ###Output /usr/local/lib/python3.7/dist-packages/matplotlib/backends/backend_agg.py:214: RuntimeWarning: Glyph 9 missing from current font. /usr/local/lib/python3.7/dist-packages/matplotlib/backends/backend_agg.py:183: RuntimeWarning: Glyph 9 missing from current font. ###Markdown 6.1.3 **Enrichment**: What is a T-test?There are 1-sample and 2-sample T-tests _(note: we would use a 1-sample T-test just to determine if the sample mean is equal to a hypothesized population mean)_Within 2-sample T-tests we have **_independent_** and **_dependent_** T-tests (uncorrelated or correlated samples)For independent, two-sample T-tests:* **_Equal variance_** (or pooled) T-test * `scipy.stats.ttest_ind(equal_var=True)`* **_Unequal variance_** T-test * `scipy.stats.ttest_ind(equal_var=False)` * also called ***Welch's T-test***For dependent T-tests:* Paired (or correlated) T-test * `scipy.stats.ttest_rel`A full discussion on T-tests is outside the scope of this session, but we can refer to wikipedia for more information, including formulas on how each statistic is computed:* [student's T-test](https://en.wikipedia.org/wiki/Student%27s_t-testDependent_t-test_for_paired_samples) 6.1.4 **Enrichment**: Demonstration of T-tests[back to top](top) We'll assume our shifts are of **_equal variance_** and proceed with the appropriate **_independent two-sample_** T-test... ###Code print(shift_one) print(shift_two) ###Output [15, 15, 15, 16, 17, 18, 18, 18, 21, 21] [15, 16, 17, 18, 18, 19, 20, 20, 22, 22] ###Markdown To calculate the T-test, we follow a slightly different statistical formula:$T=\frac{\mu_1 - \mu_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$where $\mu$ are the means of the two groups, $n$ are the sample sizes and $s$ is the pooled standard deviation, also known as the cummulative variance (depending on if you square it or not):$s= \sqrt{\frac{(n_1-1)\sigma_1^2 + (n_2-1)\sigma_2^2}{n_1 + n_2 - 2}}$where $\sigma$ are the standard deviations. What you'll notice here is we are combining the two variances, we can only do this if we assume the variances are somewhat equal, this is known as the *equal variances* t-test. ###Code mean_shift_one = np.mean(shift_one) mean_shift_two = np.mean(shift_two) print(mean_shift_one, mean_shift_two) com_var = ((np.sum([(i - mean_shift_one)**2 for i in shift_one]) + np.sum([(i - mean_shift_two)**2 for i in shift_two])) / (len(shift_one) + len(shift_two)-2)) print(com_var) T = (np.abs(mean_shift_one - mean_shift_two) / ( np.sqrt(com_var/len(shift_one) + com_var/len(shift_two)))) T ###Output _____no_output_____ ###Markdown We see that this hand-computed result matches that of the `scipy` module: ###Code scipy.stats.ttest_ind(shift_two, shift_one, equal_var=True) ###Output _____no_output_____ ###Markdown **Enrichment**: 6.1.5 What are F-statistics and the F-test?The F-statistic is simply a ratio of two variances, or the ratio of _mean squares__mean squares_ is the estimate of population variance that accounts for the degrees of freedom to compute that estimate. We will explore this in the context of ANOVA 6.1.6 **Enrichment**: What is Analysis of Variance? ANOVA uses the F-test to determine whether the variability between group means is larger than the variability within the groups. If that statistic is large enough, you can conclude that the means of the groups are not equal.**The caveat is that ANOVA tells us whether there is a difference in means but it does not tell us where the difference is.** To find where the difference is between the groups, we have to conduct post-hoc tests.There are two main types:* One-way (one factor) and* Two-way (two factor) where factor is an indipendent variable| Ind A | Ind B | Dep ||-------|-------|-----|| X | H | 10 || X | I | 12 || Y | I | 11 || Y | H | 20 | ANOVA Hypotheses* _Null hypothesis_: group means are equal* _Alternative hypothesis_: at least one group mean is different form the other groups ANOVA Assumptions* Residuals (experimental error) are normally distributed (test with Shapiro-Wilk)* Homogeneity of variances (variances are equal between groups) (test with Bartlett's)* Observations are sampled independently from each other* _Note: ANOVA assumptions can be checked using test statistics (e.g. Shapiro-Wilk, Bartlett’s, Levene’s test) and the visual approaches such as residual plots (e.g. QQ-plots) and histograms._ Steps for ANOVA* Check sample sizes: equal observations must be in each group* Calculate Sum of Square between groups and within groups ($SS_B, SS_E$)* Calculate Mean Square between groups and within groups ($MS_B, MS_E$)* Calculate F value ($MS_B/MS_E$)This might be easier to see in a table:| Source of Variation | degree of freedom (Df) | Sum of squares (SS) | Mean square (MS) | F value ||-----------------------------|------------------------|---------------------|--------------------|-------------|| Between Groups | Df_b = P-1 | SS_B | MS_B = SS_B / Df_B | MS_B / MS_E || Within Groups | Df_E = P(N-1) | SS_E | MS_E = SS_E / Df_E | || total | Df_T = PN-1 | SS_T | | |Where:$$ SS_B = \sum_{i}^{P}{(\bar{y}_i-\bar{y})^2} $$$$ SS_E = \sum_{ik}^{PN}{(\bar{y}_{ik}-\bar{y}_i)^2} $$$$ SS_T = SS_B + SS_E $$Let's go back to our shift data to take an example: ###Code shifts = pd.DataFrame([shift_one, shift_two, shift_three, shift_four]).T shifts.columns = ['A', 'B', 'C', 'D'] shifts.boxplot() ###Output _____no_output_____ ###Markdown 6.1.6.0 **Enrichment**: SNS Boxplotthis is another great way to view boxplot data. Notice how sns also shows us the raw data alongside the box and whiskers using a _swarmplot_. ###Code shift_melt = pd.melt(shifts.reset_index(), id_vars=['index'], value_vars=['A', 'B', 'C', 'D']) shift_melt.columns = ['index', 'shift', 'rate'] ax = sns.boxplot(x='shift', y='rate', data=shift_melt, color='#A0cbe8') ax = sns.swarmplot(x="shift", y="rate", data=shift_melt, color='#79706e') ###Output _____no_output_____ ###Markdown Anyway back to ANOVA... ###Code fvalue, pvalue = stats.f_oneway(shifts['A'], shifts['B'], shifts['C'], shifts['D']) print(fvalue, pvalue) ###Output 10.736198592071137 3.4885909965240144e-05 ###Markdown We can get this in the format of the table we saw above: ###Code # get ANOVA table import statsmodels.api as sm from statsmodels.formula.api import ols # Ordinary Least Squares (OLS) model model = ols('rate ~ C(shift)', data=shift_melt).fit() anova_table = sm.stats.anova_lm(model, typ=2) anova_table # output (ANOVA F and p value) ###Output _____no_output_____ ###Markdown The **_Shapiro-Wilk_** test can be used to check the _normal distribution of residuals_. Null hypothesis: data is drawn from normal distribution. ###Code w, pvalue = stats.shapiro(model.resid) print(w, pvalue) ###Output 0.9800916314125061 0.6929556727409363 ###Markdown We can use **_Bartlett’s_** test to check the _Homogeneity of variances_. Null hypothesis: samples from populations have equal variances. ###Code w, pvalue = stats.bartlett(shifts['A'], shifts['B'], shifts['C'], shifts['D']) print(w, pvalue) ###Output 1.9492677462621584 0.5830028540285896 ###Markdown 6.1.6.1 ANOVA InterpretationThe _p_ value form ANOVA analysis is significant (_p_ < 0.05) and we can conclude there are significant difference between the shifts. But we do not know which shift(s) are different. For this we need to perform a post hoc test. There are a multitude of these that are beyond the scope of this discussion ([Tukey-kramer](https://www.real-statistics.com/one-way-analysis-of-variance-anova/unplanned-comparisons/tukey-kramer-test/) is one such test) 6.1.7 Putting it all togetherIn summary, there are many statistical tests at our disposal when performing inferential statistical analysis. In times like these, a simple decision tree can be extraordinarily useful!source: [scribbr](https://www.scribbr.com/statistics/statistical-tests/) 6.2 Evaluate statistical significance of product margin: a snake in the garden 6.2.1 Mood's Median on product descriptorsThe first issue we run into with moods is... what? We can only perform moods on two groups at a time. How can we get around this?Let's take a look at the category with the fewest descriptors. If we remember, this was the Truffle Types. ###Code df.columns df['Truffle Type'].unique() col = 'Truffle Type' moodsdf = pd.DataFrame() for truff in df[col].unique(): # for each group = df.loc[df[col] == truff]['EBITDA/KG'] pop = df.loc[~(df[col] == truff)]['EBITDA/KG'] stat, p, m, table = scipy.stats.median_test(group, pop) median = np.median(group) mean = np.mean(group) size = len(group) print("{}: N={}".format(truff, size)) print("Welch's T-Test for Unequal Variances") print(scipy.stats.ttest_ind(group, pop, equal_var=False)) welchp = scipy.stats.ttest_ind(group, pop, equal_var=False).pvalue print() moodsdf = pd.concat([moodsdf, pd.DataFrame([truff, stat, p, m, mean, median, size, welchp, table]).T]) moodsdf.columns = [col, 'pearsons_chi_square', 'p_value', 'grand_median', 'group_mean', 'group_median', 'size', 'welch p', 'table'] ###Output Candy Outer: N=288 Welch's T-Test for Unequal Variances Ttest_indResult(statistic=-2.7615297773427527, pvalue=0.005911048922657976) Chocolate Outer: N=1356 Welch's T-Test for Unequal Variances Ttest_indResult(statistic=4.409449025092911, pvalue=1.1932685612874952e-05) Jelly Filled: N=24 Welch's T-Test for Unequal Variances Ttest_indResult(statistic=-8.4142523067935, pvalue=7.929912531660173e-09) ###Markdown Question 1: Moods Results on Truffle Type> What do we notice about the resultant table?* **_p-values_** Most are quite small (really low probability of achieving these table results under a single distribution)* group sizes: our Jelly Filled group is relatively small ###Code sns.boxplot(x='Base Cake', y='EBITDA/KG', data=df) moodsdf.sort_values('p_value') ###Output _____no_output_____ ###Markdown We can go ahead and repeat this analysis for all of our product categories: ###Code df.columns[:5] moodsdf = pd.DataFrame() for col in df.columns[:5]: for truff in df[col].unique(): group = df.loc[df[col] == truff]['EBITDA/KG'] pop = df.loc[~(df[col] == truff)]['EBITDA/KG'] stat, p, m, table = scipy.stats.median_test(group, pop) median = np.median(group) mean = np.mean(group) size = len(group) welchp = scipy.stats.ttest_ind(group, pop, equal_var=False).pvalue moodsdf = pd.concat([moodsdf, pd.DataFrame([col, truff, stat, p, m, mean, median, size, welchp, table]).T]) moodsdf.columns = ['descriptor', 'group', 'pearsons_chi_square', 'p_value', 'grand_median', 'group_mean', 'group_median', 'size', 'welch p', 'table'] print(moodsdf.shape) moodsdf = moodsdf.loc[(moodsdf['welch p'] < 0.05) & (moodsdf['p_value'] < 0.05)].sort_values('group_median') moodsdf = moodsdf.sort_values('group_median').reset_index(drop=True) print(moodsdf.shape) moodsdf[-10:] ###Output _____no_output_____ ###Markdown 6.2.2 **Enrichment**: Broad Analysis of Categories: ANOVA Recall our "melted" shift data. It will be useful to think of getting our Truffle data in this format: ###Code shift_melt.head() df.columns = df.columns.str.replace(' ', '_') df.columns = df.columns.str.replace('/', '_') # get ANOVA table # Ordinary Least Squares (OLS) model model = ols('EBITDA_KG ~ C(Truffle_Type)', data=df).fit() anova_table = sm.stats.anova_lm(model, typ=2) anova_table # output (ANOVA F and p value) ###Output _____no_output_____ ###Markdown Recall the **_Shapiro-Wilk_** test can be used to check the _normal distribution of residuals_. Null hypothesis: data is drawn from normal distribution. ###Code w, pvalue = stats.shapiro(model.resid) print(w, pvalue) ###Output 0.9576056599617004 1.2598073820281984e-21 ###Markdown And the **_Bartlett’s_** test to check the _Homogeneity of variances_. Null hypothesis: samples from populations have equal variances. ###Code gb = df.groupby('Truffle_Type')['EBITDA_KG'] gb w, pvalue = stats.bartlett(*[gb.get_group(x) for x in gb.groups]) print(w, pvalue) ###Output 109.93252546442552 1.344173733366234e-24 ###Markdown Wow it looks like our data is not drawn from a normal distribution! Let's check this for other categories...We can wrap these in a for loop: ###Code for col in df.columns[:5]: print(col) model = ols('EBITDA_KG ~ C({})'.format(col), data=df).fit() anova_table = sm.stats.anova_lm(model, typ=2) display(anova_table) w, pvalue = stats.shapiro(model.resid) print("Shapiro: ", w, pvalue) gb = df.groupby(col)['EBITDA_KG'] w, pvalue = stats.bartlett(*[gb.get_group(x) for x in gb.groups]) print("Bartlett: ", w, pvalue) print() ###Output Base_Cake ###Markdown 6.2.3 **Enrichment**: Visual Analysis of Residuals: QQ-PlotsThis can be distressing and is often why we want visual methods to see what is going on with our data! ###Code model = ols('EBITDA_KG ~ C(Truffle_Type)', data=df).fit() #create instance of influence influence = model.get_influence() #obtain standardized residuals standardized_residuals = influence.resid_studentized_internal # res.anova_std_residuals are standardized residuals obtained from ANOVA (check above) sm.qqplot(standardized_residuals, line='45') plt.xlabel("Theoretical Quantiles") plt.ylabel("Standardized Residuals") plt.show() # histogram plt.hist(model.resid, bins='auto', histtype='bar', ec='k') plt.xlabel("Residuals") plt.ylabel('Frequency') plt.show() ###Output _____no_output_____
demo/MMPose_Tutorial.ipynb
###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install dependencies: (use cu111 because colab has CUDA 11.1) %pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # install mmcv-full thus we could use CUDA operators %pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html # install mmdet for inference demo %pip install mmdet # clone mmpose repo %rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies %pip install -r requirements.txt # install mmpose in develop mode %pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import tempfile import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, results, res_folder=None, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: results (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str, optional): The folder to save the testing results. If not specified, a temp folder will be created. Default: None. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if res_folder is not None: tmp_folder = None res_file = osp.join(res_folder, 'result_keypoints.json') else: tmp_folder = tempfile.TemporaryDirectory() res_file = osp.join(tmp_folder.name, 'result_keypoints.json') kpts = [] for result in results: preds = result['preds'] boxes = result['boxes'] image_paths = result['image_paths'] bbox_ids = result['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) if tmp_folder is not None: tmp_folder.cleanup() return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommand to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environtment !which python # install pytorch !pip install torch # install mmcv-full !pip install mmcv-full # install mmdet for inference demo !pip install mmdet # clone mmpose repo !rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies !pip install -r requirements.txt # install mmpose in develop mode !pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the cooresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, outputs, res_folder, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: outputs (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outpus. res_folder (str): Path of directory to save the results. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') res_file = os.path.join(res_folder, 'result_keypoints.json') kpts = [] for output in outputs: preds = output['preds'] boxes = output['boxes'] image_paths = output['image_paths'] bbox_ids = output['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install pytorch !pip install torch # install mmcv-full !pip install mmcv-full # install mmdet for inference demo !pip install mmdet # clone mmpose repo !rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies !pip install -r requirements.txt # install mmpose in develop mode !pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import tempfile import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, results, res_folder=None, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: results (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str, optional): The folder to save the testing results. If not specified, a temp folder will be created. Default: None. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if res_folder is not None: tmp_folder = None res_file = osp.join(res_folder, 'result_keypoints.json') else: tmp_folder = tempfile.TemporaryDirectory() res_file = osp.join(tmp_folder.name, 'result_keypoints.json') kpts = [] for result in results: preds = result['preds'] boxes = result['boxes'] image_paths = result['image_paths'] bbox_ids = result['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) if tmp_folder is not None: tmp_folder.cleanup() return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install dependencies: (use cu111 because colab has CUDA 11.1) %pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # install mmcv-full thus we could use CUDA operators %pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html # install mmdet for inference demo %pip install mmdet # clone mmpose repo %rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies %pip install -r requirements.txt # install mmpose in develop mode %pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result( pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os.path as osp from collections import OrderedDict import tempfile import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def evaluate(self, results, res_folder=None, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: results (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str, optional): The folder to save the testing results. If not specified, a temp folder will be created. Default: None. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if res_folder is not None: tmp_folder = None res_file = osp.join(res_folder, 'result_keypoints.json') else: tmp_folder = tempfile.TemporaryDirectory() res_file = osp.join(tmp_folder.name, 'result_keypoints.json') kpts = [] for result in results: preds = result['preds'] boxes = result['boxes'] image_paths = result['image_paths'] bbox_ids = result['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) if tmp_folder is not None: tmp_folder.cleanup() return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result( pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install dependencies: (use cu111 because colab has CUDA 11.1) %pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # install mmcv-full thus we could use CUDA operators %pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html # install mmdet for inference demo %pip install mmdet # clone mmpose repo %rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies %pip install -r requirements.txt # install mmpose in develop mode %pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import tempfile import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, results, res_folder=None, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: results (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str, optional): The folder to save the testing results. If not specified, a temp folder will be created. Default: None. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if res_folder is not None: tmp_folder = None res_file = osp.join(res_folder, 'result_keypoints.json') else: tmp_folder = tempfile.TemporaryDirectory() res_file = osp.join(tmp_folder.name, 'result_keypoints.json') kpts = [] for result in results: preds = result['preds'] boxes = result['boxes'] image_paths = result['image_paths'] bbox_ids = result['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) if tmp_folder is not None: tmp_folder.cleanup() return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install pytorch !pip install torch # install mmcv-full !pip install mmcv-full # install mmdet for inference demo !pip install mmdet # clone mmpose repo !rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies !pip install -r requirements.txt # install mmpose in develop mode !pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, outputs, res_folder, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: outputs (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str): Path of directory to save the results. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') res_file = os.path.join(res_folder, 'result_keypoints.json') kpts = [] for output in outputs: preds = output['preds'] boxes = output['boxes'] image_paths = output['image_paths'] bbox_ids = output['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommand to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environtment !which python # install pytorch !pip install torch # install mmcv-full !pip install mmcv-full # install mmdet for inference demo !pip install mmdet # clone mmpose repo !rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies !pip install -r requirements.txt # install mmpose in develop mode !pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu102 True torchvision version: 0.10.0+cu102 mmpose version: 0.16.0 cuda version: 10.2 compiler information: GCC 5.4 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the cooresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.top_down.topdown_base_dataset import \ TopDownBaseDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(TopDownBaseDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.annotations_path) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, outputs, res_folder, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: outputs (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outpus. res_folder (str): Path of directory to save the results. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') res_file = os.path.join(res_folder, 'result_keypoints.json') kpts = [] for output in outputs: preds = output['preds'] boxes = output['boxes'] image_paths = output['image_paths'] bbox_ids = output['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ]), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ]), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ])) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommend to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environment !which python # install dependencies: (use cu111 because colab has CUDA 11.1) %pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # install mmcv-full thus we could use CUDA operators %pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html # install mmdet for inference demo %pip install mmdet # clone mmpose repo %rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies %pip install -r requirements.txt # install mmpose in develop mode %pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu111 True torchvision version: 0.10.0+cu111 mmpose version: 0.18.0 cuda version: 11.1 compiler information: GCC 9.3 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the corresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os.path as osp from collections import OrderedDict import tempfile import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.base import Kpt2dSviewRgbImgTopDownDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(Kpt2dSviewRgbImgTopDownDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, dataset_info=None, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, dataset_info, coco_style=False, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.ann_file) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def evaluate(self, results, res_folder=None, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: results (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outputs. res_folder (str, optional): The folder to save the testing results. If not specified, a temp folder will be created. Default: None. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if res_folder is not None: tmp_folder = None res_file = osp.join(res_folder, 'result_keypoints.json') else: tmp_folder = tempfile.TemporaryDirectory() res_file = osp.join(tmp_folder.name, 'result_keypoints.json') kpts = [] for result in results: preds = result['preds'] boxes = result['boxes'] image_paths = result['image_paths'] bbox_ids = result['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) if tmp_folder is not None: tmp_folder.cleanup() return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output dataset_info = dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]) log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ])), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ], dataset_info=dict( dataset_name='coco', paper_info=dict( author= 'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', title='Microsoft coco: Common objects in context', container='European conference on computer vision', year='2014', homepage='http://cocodataset.org/'), keypoint_info=dict({ 0: dict( name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), 1: dict( name='left_eye', id=1, color=[51, 153, 255], type='upper', swap='right_eye'), 2: dict( name='right_eye', id=2, color=[51, 153, 255], type='upper', swap='left_eye'), 3: dict( name='left_ear', id=3, color=[51, 153, 255], type='upper', swap='right_ear'), 4: dict( name='right_ear', id=4, color=[51, 153, 255], type='upper', swap='left_ear'), 5: dict( name='left_shoulder', id=5, color=[0, 255, 0], type='upper', swap='right_shoulder'), 6: dict( name='right_shoulder', id=6, color=[255, 128, 0], type='upper', swap='left_shoulder'), 7: dict( name='left_elbow', id=7, color=[0, 255, 0], type='upper', swap='right_elbow'), 8: dict( name='right_elbow', id=8, color=[255, 128, 0], type='upper', swap='left_elbow'), 9: dict( name='left_wrist', id=9, color=[0, 255, 0], type='upper', swap='right_wrist'), 10: dict( name='right_wrist', id=10, color=[255, 128, 0], type='upper', swap='left_wrist'), 11: dict( name='left_hip', id=11, color=[0, 255, 0], type='lower', swap='right_hip'), 12: dict( name='right_hip', id=12, color=[255, 128, 0], type='lower', swap='left_hip'), 13: dict( name='left_knee', id=13, color=[0, 255, 0], type='lower', swap='right_knee'), 14: dict( name='right_knee', id=14, color=[255, 128, 0], type='lower', swap='left_knee'), 15: dict( name='left_ankle', id=15, color=[0, 255, 0], type='lower', swap='right_ankle'), 16: dict( name='right_ankle', id=16, color=[255, 128, 0], type='lower', swap='left_ankle') }), skeleton_info=dict({ 0: dict( link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), 1: dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), 2: dict( link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), 3: dict( link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), 4: dict( link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), 5: dict( link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), 6: dict( link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), 7: dict( link=('left_shoulder', 'right_shoulder'), id=7, color=[51, 153, 255]), 8: dict( link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), 9: dict( link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), 10: dict( link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), 11: dict( link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), 12: dict( link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), 13: dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), 14: dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), 15: dict( link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), 16: dict( link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), 17: dict( link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), 18: dict( link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) }), joint_weights=[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]))) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader ###Markdown MMPose TutorialWelcome to MMPose colab tutorial! In this tutorial, we will show you how to- perform inference with an MMPose model- train a new mmpose model with your own datasetsLet's start! Install MMPoseWe recommand to use a conda environment to install mmpose and its dependencies. And compilers `nvcc` and `gcc` are required. ###Code # check NVCC version !nvcc -V # check GCC version !gcc --version # check python in conda environtment !which python # install pytorch !pip install torch # install mmcv-full !pip install mmcv-full # install mmdet for inference demo !pip install mmdet # clone mmpose repo !rm -rf mmpose !git clone https://github.com/open-mmlab/mmpose.git %cd mmpose # install mmpose dependencies !pip install -r requirements.txt # install mmpose in develop mode !pip install -e . # Check Pytorch installation import torch, torchvision print('torch version:', torch.__version__, torch.cuda.is_available()) print('torchvision version:', torchvision.__version__) # Check MMPose installation import mmpose print('mmpose version:', mmpose.__version__) # Check mmcv installation from mmcv.ops import get_compiling_cuda_version, get_compiler_version print('cuda version:', get_compiling_cuda_version()) print('compiler information:', get_compiler_version()) ###Output torch version: 1.9.0+cu102 True torchvision version: 0.10.0+cu102 mmpose version: 0.16.0 cuda version: 10.2 compiler information: GCC 5.4 ###Markdown Inference with an MMPose modelMMPose provides high level APIs for model inference and training. ###Code import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_config = 'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py' pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_http loader ###Markdown Train a pose estimation model on a customized datasetTo train a model on a customized dataset with MMPose, there are usually three steps:1. Support the dataset in MMPose1. Create a config1. Perform training and evaluation Add a new datasetThere are two methods to support a customized dataset in MMPose. The first one is to convert the data to a supported format (e.g. COCO) and use the cooresponding dataset class (e.g. TopdownCOCODataset), as described in the [document](https://mmpose.readthedocs.io/en/latest/tutorials/2_new_dataset.htmlreorganize-dataset-to-existing-format). The second one is to add a new dataset class. In this tutorial, we give an example of the second method.We first download the demo dataset, which contains 100 samples (75 for training and 25 for validation) selected from COCO train2017 dataset. The annotations are stored in a different format from the original COCO format. ###Code # download dataset %mkdir data %cd data !wget https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmpose/datasets/coco_tiny.tar !tar -xf coco_tiny.tar %cd .. # check the directory structure !apt-get -q install tree !tree data/coco_tiny # check the annotation format import json import pprint anns = json.load(open('data/coco_tiny/train.json')) print(type(anns), len(anns)) pprint.pprint(anns[0], compact=True) ###Output <class 'list'> 75 {'bbox': [267.03, 104.32, 229.19, 320], 'image_file': '000000537548.jpg', 'image_size': [640, 480], 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 325, 160, 2, 398, 177, 2, 0, 0, 0, 437, 238, 2, 0, 0, 0, 477, 270, 2, 287, 255, 1, 339, 267, 2, 0, 0, 0, 423, 314, 2, 0, 0, 0, 355, 367, 2]} ###Markdown After downloading the data, we implement a new dataset class to load data samples for model training and validation. Assume that we are going to train a top-down pose estimation model (refer to [Top-down Pose Estimation](https://github.com/open-mmlab/mmpose/tree/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmapreadme) for a brief introduction), the new dataset class inherits `TopDownBaseDataset`. ###Code import json import os import os.path as osp from collections import OrderedDict import numpy as np from mmpose.core.evaluation.top_down_eval import (keypoint_nme, keypoint_pck_accuracy) from mmpose.datasets.builder import DATASETS from mmpose.datasets.datasets.top_down.topdown_base_dataset import \ TopDownBaseDataset @DATASETS.register_module() class TopDownCOCOTinyDataset(TopDownBaseDataset): def __init__(self, ann_file, img_prefix, data_cfg, pipeline, test_mode=False): super().__init__( ann_file, img_prefix, data_cfg, pipeline, test_mode=test_mode) # flip_pairs, upper_body_ids and lower_body_ids will be used # in some data augmentations like random flip self.ann_info['flip_pairs'] = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] self.ann_info['upper_body_ids'] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) self.ann_info['lower_body_ids'] = (11, 12, 13, 14, 15, 16) self.ann_info['joint_weights'] = None self.ann_info['use_different_joint_weights'] = False self.dataset_name = 'coco_tiny' self.db = self._get_db() def _get_db(self): with open(self.annotations_path) as f: anns = json.load(f) db = [] for idx, ann in enumerate(anns): # get image path image_file = osp.join(self.img_prefix, ann['image_file']) # get bbox bbox = ann['bbox'] center, scale = self._xywh2cs(*bbox) # get keypoints keypoints = np.array( ann['keypoints'], dtype=np.float32).reshape(-1, 3) num_joints = keypoints.shape[0] joints_3d = np.zeros((num_joints, 3), dtype=np.float32) joints_3d[:, :2] = keypoints[:, :2] joints_3d_visible = np.zeros((num_joints, 3), dtype=np.float32) joints_3d_visible[:, :2] = np.minimum(1, keypoints[:, 2:3]) sample = { 'image_file': image_file, 'center': center, 'scale': scale, 'bbox': bbox, 'rotation': 0, 'joints_3d': joints_3d, 'joints_3d_visible': joints_3d_visible, 'bbox_score': 1, 'bbox_id': idx, } db.append(sample) return db def _xywh2cs(self, x, y, w, h): """This encodes bbox(x, y, w, h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - center (np.ndarray[float32](2,)): center of the bbox (x, y). - scale (np.ndarray[float32](2,)): scale of the bbox w & h. """ aspect_ratio = self.ann_info['image_size'][0] / self.ann_info[ 'image_size'][1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) # padding to include proper amount of context scale = scale * 1.25 return center, scale def evaluate(self, outputs, res_folder, metric='PCK', **kwargs): """Evaluate keypoint detection results. The pose prediction results will be saved in `${res_folder}/result_keypoints.json`. Note: batch_size: N num_keypoints: K heatmap height: H heatmap width: W Args: outputs (list(preds, boxes, image_path, output_heatmap)) :preds (np.ndarray[N,K,3]): The first two dimensions are coordinates, score is the third dimension of the array. :boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] , scale[1],area, score] :image_paths (list[str]): For example, ['Test/source/0.jpg'] :output_heatmap (np.ndarray[N, K, H, W]): model outpus. res_folder (str): Path of directory to save the results. metric (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. Returns: dict: Evaluation results for evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['PCK', 'NME'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') res_file = os.path.join(res_folder, 'result_keypoints.json') kpts = [] for output in outputs: preds = output['preds'] boxes = output['boxes'] image_paths = output['image_paths'] bbox_ids = output['bbox_ids'] batch_size = len(image_paths) for i in range(batch_size): kpts.append({ 'keypoints': preds[i].tolist(), 'center': boxes[i][0:2].tolist(), 'scale': boxes[i][2:4].tolist(), 'area': float(boxes[i][4]), 'score': float(boxes[i][5]), 'bbox_id': bbox_ids[i] }) kpts = self._sort_and_unique_bboxes(kpts) self._write_keypoint_results(kpts, res_file) info_str = self._report_metric(res_file, metrics) name_value = OrderedDict(info_str) return name_value def _report_metric(self, res_file, metrics, pck_thr=0.3): """Keypoint evaluation. Args: res_file (str): Json file stored prediction results. metrics (str | list[str]): Metric to be performed. Options: 'PCK', 'NME'. pck_thr (float): PCK threshold, default: 0.3. Returns: dict: Evaluation results for evaluation metric. """ info_str = [] with open(res_file, 'r') as fin: preds = json.load(fin) assert len(preds) == len(self.db) outputs = [] gts = [] masks = [] for pred, item in zip(preds, self.db): outputs.append(np.array(pred['keypoints'])[:, :-1]) gts.append(np.array(item['joints_3d'])[:, :-1]) masks.append((np.array(item['joints_3d_visible'])[:, 0]) > 0) outputs = np.array(outputs) gts = np.array(gts) masks = np.array(masks) normalize_factor = self._get_normalize_factor(gts) if 'PCK' in metrics: _, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr, normalize_factor) info_str.append(('PCK', pck)) if 'NME' in metrics: info_str.append( ('NME', keypoint_nme(outputs, gts, masks, normalize_factor))) return info_str @staticmethod def _write_keypoint_results(keypoints, res_file): """Write results into a json file.""" with open(res_file, 'w') as f: json.dump(keypoints, f, sort_keys=True, indent=4) @staticmethod def _sort_and_unique_bboxes(kpts, key='bbox_id'): """sort kpts and remove the repeated ones.""" kpts = sorted(kpts, key=lambda x: x[key]) num = len(kpts) for i in range(num - 1, 0, -1): if kpts[i][key] == kpts[i - 1][key]: del kpts[i] return kpts @staticmethod def _get_normalize_factor(gts): """Get inter-ocular distance as the normalize factor, measured as the Euclidean distance between the outer corners of the eyes. Args: gts (np.ndarray[N, K, 2]): Groundtruth keypoint location. Return: np.ndarray[N, 2]: normalized factor """ interocular = np.linalg.norm( gts[:, 0, :] - gts[:, 1, :], axis=1, keepdims=True) return np.tile(interocular, [1, 2]) ###Output _____no_output_____ ###Markdown Create a config fileIn the next step, we create a config file which configures the model, dataset and runtime settings. More information can be found at [Learn about Configs](https://mmpose.readthedocs.io/en/latest/tutorials/0_config.html). A common practice to create a config file is deriving from a existing one. In this tutorial, we load a config file that trains a HRNet on COCO dataset, and modify it to adapt to the COCOTiny dataset. ###Code from mmcv import Config cfg = Config.fromfile( './configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' ) # set basic configs cfg.data_root = 'data/coco_tiny' cfg.work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' cfg.gpu_ids = range(1) cfg.seed = 0 # set log interval cfg.log_config.interval = 1 # set evaluation configs cfg.evaluation.interval = 10 cfg.evaluation.metric = 'PCK' cfg.evaluation.save_best = 'PCK' # set learning rate policy lr_config = dict( policy='step', warmup='linear', warmup_iters=10, warmup_ratio=0.001, step=[17, 35]) cfg.total_epochs = 40 # set batch size cfg.data.samples_per_gpu = 16 cfg.data.val_dataloader = dict(samples_per_gpu=16) cfg.data.test_dataloader = dict(samples_per_gpu=16) # set dataset configs cfg.data.train.type = 'TopDownCOCOTinyDataset' cfg.data.train.ann_file = f'{cfg.data_root}/train.json' cfg.data.train.img_prefix = f'{cfg.data_root}/images/' cfg.data.val.type = 'TopDownCOCOTinyDataset' cfg.data.val.ann_file = f'{cfg.data_root}/val.json' cfg.data.val.img_prefix = f'{cfg.data_root}/images/' cfg.data.test.type = 'TopDownCOCOTinyDataset' cfg.data.test.ann_file = f'{cfg.data_root}/val.json' cfg.data.test.img_prefix = f'{cfg.data_root}/images/' print(cfg.pretty_text) ###Output log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCK', save_best='PCK') optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 40 log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook')]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) model = dict( type='TopDown', pretrained= 'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256)))), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=32, out_channels=17, num_deconv_layers=0, extra=dict(final_conv_kernel=1), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ] data_root = 'data/coco_tiny' data = dict( samples_per_gpu=16, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), train=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/train.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ]), val=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ]), test=dict( type='TopDownCOCOTinyDataset', ann_file='data/coco_tiny/val.json', img_prefix='data/coco_tiny/images/', data_cfg=dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=17, num_joints=17, dataset_channel=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file= 'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' ), pipeline=[ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]) ])) work_dir = 'work_dirs/hrnet_w32_coco_tiny_256x192' gpu_ids = range(0, 1) seed = 0 ###Markdown Train and Evaluation ###Code from mmpose.datasets import build_dataset from mmpose.models import build_posenet from mmpose.apis import train_model import mmcv # build dataset datasets = [build_dataset(cfg.data.train)] # build model model = build_posenet(cfg.model) # create work_dir mmcv.mkdir_or_exist(cfg.work_dir) # train model train_model( model, datasets, cfg, distributed=False, validate=True, meta=dict()) ###Output Use load_from_http loader ###Markdown Test the trained model. Since the model is trained on a toy dataset coco-tiny, its performance would be as good as the ones in our model zoo. Here we mainly show how to inference and visualize a local model checkpoint. ###Code from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector local_runtime = False try: from google.colab.patches import cv2_imshow # for image visualization in colab except: local_runtime = True pose_checkpoint = 'work_dirs/hrnet_w32_coco_tiny_256x192/latest.pth' det_config = 'demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(cfg, pose_checkpoint) # initialize detector det_model = init_detector(det_config, det_checkpoint) img = 'tests/data/coco/000000196141.jpg' # inference detection mmdet_results = inference_detector(det_model, img) # extract person (COCO_ID=1) bounding boxes from the detection results person_results = process_mmdet_results(mmdet_results, cat_id=1) # inference pose pose_results, returned_outputs = inference_top_down_pose_model(pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset='TopDownCocoDataset') # show pose estimation results vis_result = vis_pose_result(pose_model, img, pose_results, kpt_score_thr=0., dataset='TopDownCocoDataset', show=False) # reduce image size vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) if local_runtime: from IPython.display import Image, display import tempfile import os.path as osp import cv2 with tempfile.TemporaryDirectory() as tmpdir: file_name = osp.join(tmpdir, 'pose_results.png') cv2.imwrite(file_name, vis_result) display(Image(file_name)) else: cv2_imshow(vis_result) ###Output Use load_from_local loader
data-processing-notebooks/.ipynb_checkpoints/mpd-slice-combine-checkpoint.ipynb
###Markdown Read playlists ###Code t0 = time() keys = [ 'pid', 'name', 'description', 'num_artists', 'num_albums', 'num_tracks', 'num_followers', 'duration_ms', 'collaborative', 'tracks' ] samp = 700 arr = np.empty(shape=(samp*1000,len(keys)), dtype = object) path='spotify_million_playlist_dataset/data/' filenames = os.listdir(path) for i, filename in enumerate(random.sample(sorted(filenames), samp)): if filename.startswith("mpd.slice.") and filename.endswith(".json"): fullpath = os.sep.join((path, filename)) f = open(fullpath) js = f.read() f.close() mpd_slice = json.loads(js) D = pd.DataFrame(mpd_slice['playlists'])[keys].to_numpy() arr[i*1000:(i+1)*1000,:]= D print(filename,i) # Time diff print(f"Time taken: {(time()-t0)/60}") arr[:10] ###Output _____no_output_____ ###Markdown Reading track_uri ###Code lst = [] for playlist in data['playlists'][:2]: for track in playlist['tracks']: lst.append([track['track_uri'],playlist['pid']]) t0 = time() samp = 100 lst = [] path='spotify_million_playlist_dataset/data/' filenames = os.listdir(path) for i, filename in enumerate(sorted(filenames)): if filename.startswith("mpd.slice.") and filename.endswith(".json"): fullpath = os.sep.join((path, filename)) f = open(fullpath) js = f.read() f.close() mpd_slice = json.loads(js) for playlist in mpd_slice['playlists']: for track in playlist['tracks']: lst.append([track['track_uri'],playlist['pid']]) print(filename, i) # Time diff print(f"Time taken: {(time()-t0)/60}") len(lst) lst_uri = [el[0] for el in lst if el[0]] set_uri = set(lst_uri) len(set_uri) ###Output _____no_output_____
courses/machine_learning/deepdive/06_structured/4_preproc_tft.ipynb
###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz==2018.4 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'max_num_workers': 24, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash source activate py2env conda install -y pytz pip uninstall -y google-cloud-dataflow pip install --upgrade --force tensorflow_transform==0.8.0 apache-beam[gcp] %%bash pip freeze | grep -e 'flow\|beam' ###Output _____no_output_____ ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.4.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'max_num_workers': 24, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash conda update -y -n base -c defaults conda source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz pip install apache-beam[gcp]==2.9.0 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'num_workers': 4, 'max_num_workers': 5, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash conda update -y -n base -c defaults conda source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz pip install apache-beam[gcp]==2.9.0 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'max_num_workers': 6, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash conda update -y -n base -c defaults conda source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz pip install apache-beam[gcp]==2.9.0 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'max_num_workers': 16, 'max_num_workers': 6, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming.Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %bash pip uninstall -y google-cloud-dataflow pip install --upgrade --force tensorflow_transform==0.8.0 apache-beam[gcp] %bash pip freeze | grep -e 'flow\|beam' ###Output _____no_output_____ ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.4.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print 'Launching local job ... hang on' OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print 'Launching Dataflow job {} ... hang on'.format(job_name) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'max_num_workers': 24, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print 'Processing {} data from {}'.format(step, selquery) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print "Done!" preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash conda update -y -n base -c defaults conda source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz pip install apache-beam[gcp]==2.9.0 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'num_workers': 4, 'max_num_workers': 5, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming.Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.4.0* TF 1.4 or higher* Apache Beam [GCP] 2.2.0 or higher ###Code %bash pip uninstall -y google-cloud-dataflow pip install --upgrade --force tensorflow_transform==0.4.0 apache-beam[gcp] %bash pip freeze | grep -e 'flow\|beam' ###Output _____no_output_____ ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.4.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print 'Launching local job ... hang on' OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print 'Launching Dataflow job {} ... hang on'.format(job_name) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'max_num_workers': 24, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print 'Processing {} data from {}'.format(step, selquery) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print "Done!" preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash conda update -y -n base -c defaults conda source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz pip install apache-beam[gcp]==2.9.0 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'max_num_workers': 6, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE ABS(MOD(hashmonth, 4)) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____ ###Markdown Preprocessing using tf.transform and Dataflow This notebook illustrates: Creating datasets for Machine Learning using tf.transform and DataflowWhile Pandas is fine for experimenting, for operationalization of your workflow, it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam also allows for streaming. Apache Beam only works in Python 2 at the moment, so we're going to switch to the Python 2 kernel. In the above menu, click the dropdown arrow and select `python2`. ![image.png](attachment:image.png) Then activate a Python 2 environment and install Apache Beam. Only specific combinations of TensorFlow/Beam are supported by tf.transform. So make sure to get a combo that is.* TFT 0.8.0* TF 1.8 or higher* Apache Beam [GCP] 2.5.0 or higher ###Code %%bash source activate py2env pip uninstall -y google-cloud-dataflow conda install -y pytz==2018.4 pip install apache-beam[gcp] tensorflow_transform==0.8.0 %%bash pip freeze | grep -e 'flow\|beam' ###Output apache-airflow==1.9.0 google-cloud-dataflow==2.0.0 tensorflow==1.8.0 ###Markdown You need to restart your kernel to register the new installs running the below cells ###Code import tensorflow as tf import apache_beam as beam print(tf.__version__) # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR PROJECT ID PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['REGION'] = REGION !gcloud config set project $PROJECT %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi ###Output _____no_output_____ ###Markdown Save the query from earlier The data is natality data (record of births in the US). My goal is to predict the baby's weight given a number of factors about the pregnancy and the baby's mother. Later, we will want to split the data into training and eval datasets. The hash of the year-month will be used for that. ###Code query=""" SELECT weight_pounds, is_male, mother_age, mother_race, plurality, gestation_weeks, mother_married, ever_born, cigarette_use, alcohol_use, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 """ import google.datalab.bigquery as bq df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe() df.head() ###Output _____no_output_____ ###Markdown Create ML dataset using tf.transform and Dataflow Let's use Cloud Dataflow to read in the BigQuery data and write it out as CSV files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.Note that after you launch this, the notebook won't show you progress. Go to the GCP webconsole to the Dataflow section and monitor the running job. It took about 30 minutes for me. If you wish to continue without doing this step, you can copy my preprocessed output:gsutil -m cp -r gs://cloud-training-demos/babyweight/preproc_tft gs://your-bucket/ ###Code %writefile requirements.txt tensorflow-transform==0.8.0 import datetime import apache_beam as beam import tensorflow_transform as tft from tensorflow_transform.beam import impl as beam_impl def preprocess_tft(inputs): import copy import numpy as np def center(x): return x - tft.mean(x) result = copy.copy(inputs) # shallow copy result['mother_age_tft'] = center(inputs['mother_age']) result['gestation_weeks_centered'] = tft.scale_to_0_1(inputs['gestation_weeks']) result['mother_race_tft'] = tft.string_to_int(inputs['mother_race']) return result #return inputs def cleanup(rowdict): import copy, hashlib CSV_COLUMNS = 'weight_pounds,is_male,mother_age,mother_race,plurality,gestation_weeks,mother_married,cigarette_use,alcohol_use'.split(',') STR_COLUMNS = 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') FLT_COLUMNS = 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') # add any missing columns, and correct the types def tofloat(value, ifnot): try: return float(value) except (ValueError, TypeError): return ifnot result = { k : str(rowdict[k]) if k in rowdict else 'None' for k in STR_COLUMNS } result.update({ k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k in FLT_COLUMNS }) # modify opaque numeric race code into human-readable data races = dict(zip([1,2,3,4,5,6,7,18,28,39,48], ['White', 'Black', 'American Indian', 'Chinese', 'Japanese', 'Hawaiian', 'Filipino', 'Asian Indian', 'Korean', 'Samaon', 'Vietnamese'])) if 'mother_race' in rowdict and rowdict['mother_race'] in races: result['mother_race'] = races[rowdict['mother_race']] else: result['mother_race'] = 'Unknown' # cleanup: write out only the data we that we want to train on if result['weight_pounds'] > 0 and result['mother_age'] > 0 and result['gestation_weeks'] > 0 and result['plurality'] > 0: data = ','.join([str(result[k]) for k in CSV_COLUMNS]) result['key'] = hashlib.sha224(data).hexdigest() yield result def preprocess(query, in_test_mode): import os import os.path import tempfile import tensorflow as tf from apache_beam.io import tfrecordio from tensorflow_transform.coders import example_proto_coder from tensorflow_transform.tf_metadata import dataset_metadata from tensorflow_transform.tf_metadata import dataset_schema from tensorflow_transform.beam.tft_beam_io import transform_fn_io job_name = 'preprocess-babyweight-features' + '-' + datetime.datetime.now().strftime('%y%m%d-%H%M%S') if in_test_mode: import shutil print('Launching local job ... hang on') OUTPUT_DIR = './preproc_tft' shutil.rmtree(OUTPUT_DIR, ignore_errors=True) else: print('Launching Dataflow job {} ... hang on'.format(job_name)) OUTPUT_DIR = 'gs://{0}/babyweight/preproc_tft/'.format(BUCKET) import subprocess subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split()) options = { 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'), 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'), 'job_name': job_name, 'project': PROJECT, 'region': REGION, 'max_num_workers': 16, 'teardown_policy': 'TEARDOWN_ALWAYS', 'no_save_main_session': True, 'requirements_file': 'requirements.txt' } opts = beam.pipeline.PipelineOptions(flags=[], **options) if in_test_mode: RUNNER = 'DirectRunner' else: RUNNER = 'DataflowRunner' # set up metadata raw_data_schema = { colname : dataset_schema.ColumnSchema(tf.string, [], dataset_schema.FixedColumnRepresentation()) for colname in 'key,is_male,mother_race,mother_married,cigarette_use,alcohol_use'.split(',') } raw_data_schema.update({ colname : dataset_schema.ColumnSchema(tf.float32, [], dataset_schema.FixedColumnRepresentation()) for colname in 'weight_pounds,mother_age,plurality,gestation_weeks'.split(',') }) raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.Schema(raw_data_schema)) def read_rawdata(p, step, test_mode): if step == 'train': selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) < 3'.format(query) else: selquery = 'SELECT * FROM ({}) WHERE MOD(ABS(hashmonth),4) = 3'.format(query) if in_test_mode: selquery = selquery + ' LIMIT 100' #print('Processing {} data from {}'.format(step, selquery)) return (p | '{}_read'.format(step) >> beam.io.Read(beam.io.BigQuerySource(query=selquery, use_standard_sql=True)) | '{}_cleanup'.format(step) >> beam.FlatMap(cleanup) ) # run Beam with beam.Pipeline(RUNNER, options=opts) as p: with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')): # analyze and transform training raw_data = read_rawdata(p, 'train', in_test_mode) raw_dataset = (raw_data, raw_data_metadata) transformed_dataset, transform_fn = ( raw_dataset | beam_impl.AnalyzeAndTransformDataset(preprocess_tft)) transformed_data, transformed_metadata = transformed_dataset _ = transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'train'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) # transform eval data raw_test_data = read_rawdata(p, 'eval', in_test_mode) raw_test_dataset = (raw_test_data, raw_data_metadata) transformed_test_dataset = ( (raw_test_dataset, transform_fn) | beam_impl.TransformDataset()) transformed_test_data, _ = transformed_test_dataset _ = transformed_test_data | 'WriteTestData' >> tfrecordio.WriteToTFRecord( os.path.join(OUTPUT_DIR, 'eval'), coder=example_proto_coder.ExampleProtoCoder( transformed_metadata.schema)) _ = (transform_fn | 'WriteTransformFn' >> transform_fn_io.WriteTransformFn(os.path.join(OUTPUT_DIR, 'metadata'))) job = p.run() if in_test_mode: job.wait_until_finish() print("Done!") preprocess(query, in_test_mode=False) %bash gsutil ls gs://${BUCKET}/babyweight/preproc_tft/*-00000* ###Output _____no_output_____
code/run_daily.ipynb
###Markdown Run Daily Space-Time LISA * Software dependencies ###Code import tools import pandas as pd import numpy as np import pysal as ps import multiprocessing as mp from sqlalchemy import create_engine import geopandas as gpd ###Output /Users/dani/anaconda/envs/pydata/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') ###Markdown * Data dependencies ###Code db_link ='/Users/dani/AAA/LargeData/adam_cell_phone/a10.db' shp_link = '../data/a10/a10.shp' # To be created in the process: ashp_link = '/Users/dani/Desktop/a10_agd_maxp.shp' engine = create_engine('sqlite:///'+db_link) ###Output _____no_output_____ ###Markdown * Read data in ###Code %%time a10 = pd.read_sql_query('SELECT gridcode, date_time, trafficerlang ' 'FROM data ', engine, parse_dates=['date_time']) months = a10['date_time'].apply(lambda x: str(x.year) + '-' + str(x.month)) hours = a10['date_time'].apply(lambda x: str(x.hour)) order = ps.open(shp_link.replace('.shp', '.dbf')).by_col('GRIDCODE') areas = pd.Series([poly.area for poly in ps.open(shp_link)], \ index=order) areas = areas * 1e-6 # Sq. Km ###Output CPU times: user 41.8 s, sys: 3.44 s, total: 45.2 s Wall time: 52.7 s ###Markdown * MaxPThis step removes an area with no data and joins very small polygons to adjacent ones with density as similar as possible. This is performed through an aggregation using the Max-P algorithm ###Code shp = gpd.read_file(shp_link).set_index('GRIDCODE') overall = a10.groupby('gridcode').mean() overall['area (Km2)'] = areas overall['erldens'] = overall['trafficerlang'] / overall['area (Km2)'] overall = gpd.GeoDataFrame(overall, geometry=shp['geometry'], crs=shp.crs)\ .dropna() # W wmxp = ps.queen_from_shapefile(shp_link, idVariable='GRIDCODE') wmxp.transform = 'R' wmxp.transform = 'O' # Polygon `49116` does not have data. Remove. wmxp = ps.w_subset(wmxp, [i for i in wmxp.id_order if i!=49116]) # Information matrix with hourly average day x = a10.assign(hour=hours).groupby(['gridcode', 'hour'])\ .mean()['trafficerlang']\ .unstack()\ .reindex(wmxp.id_order) # Areas for the MaxP mxp_a = overall.loc[wmxp.id_order, 'area (Km2)'].values %%time np.random.seed(1234) mxp = ps.Maxp(wmxp, x.values, 0.05, mxp_a, initial=1000) labels = pd.Series(mxp.area2region).apply(lambda x: 'a'+str(x)) ###Output CPU times: user 8.31 s, sys: 20.7 ms, total: 8.33 s Wall time: 8.38 s ###Markdown * Aggregate polygons ###Code aggd = overall.groupby(labels).sum() aggd['erldens'] = aggd['trafficerlang'] / aggd['area (Km2)'] ag_geo = overall.groupby(labels)['geometry'].apply(lambda x: x.unary_union) aggd_shp = gpd.GeoDataFrame(aggd, geometry=ag_geo, crs=overall.crs) aggd_shp.reset_index().to_file(ashp_link) ag_a10 = a10.assign(hour=hours, month=months)\ .set_index('gridcode')\ .assign(labels=labels)\ .groupby(['month', 'hour', 'labels', 'date_time'])[['trafficerlang']].sum()\ .reset_index() ###Output _____no_output_____ ###Markdown * $ST-W$ ###Code # W aw = ps.queen_from_shapefile(ashp_link, idVariable='index') aw.transform = 'R' aw.transform = 'O' # Space-Time W ats = ag_a10['hour'].unique().shape[0] %time astw = tools.w_stitch_single(aw, ats) astw.transform = 'R' ###Output CPU times: user 45 ms, sys: 3.51 ms, total: 48.5 ms Wall time: 48.5 ms ###Markdown * Expand areas ###Code aareas = aggd_shp.reset_index().set_index('index') astw_index = pd.Series(astw.id_order, \ index=[i.split('-')[1] for i in astw.id_order], \ name='astw_index') astareas = aareas.reset_index()\ .join(astw_index, on='index')\ .drop('index', axis=1)\ .set_index('astw_index')\ [['area (Km2)']] ###Output _____no_output_____ ###Markdown * Reshape for daily runs ###Code daily = ag_a10.drop('month', axis=1)\ .assign(h_gc=ag_a10['hour']+'-'+ag_a10['labels'])\ .join(astareas, on='h_gc')\ .assign(date=ag_a10['date_time'].apply(lambda x: str(x.date())))\ .set_index(['date', 'hour', 'labels']) daily['erldens'] = daily['trafficerlang'] / daily['area (Km2)'] ###Output _____no_output_____ ###Markdown * Run in parallel ###Code permutations = 1 g = daily.groupby(level='date') tasks = [(i, astw, astareas, permutations, id) for id, i in g] #pool = mp.Pool(mp.cpu_count()) %time tasks = map(tools.child_lisa, tasks) lisa_clusters = pd.concat(tasks, axis=1) #lisa_clusters.to_csv('../data/lisa_clusters_%ip.csv'%permutations)ss ###Output CPU times: user 1min 16s, sys: 227 ms, total: 1min 16s Wall time: 1min 16s
notebooks/Merge results.ipynb
###Markdown Allow relative imports ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import project_path import glob import os import random from pathlib import Path from itertools import product import pandas as pd def merge_csv(path): path_temp = Path(f'/tmp/{random.randint(10, 10000)}.csv').resolve() is_first_file = True with open(path_temp,"wb") as output_file: for subdir, dirs, files in os.walk(path): for file in files: input_path = f'{subdir}/{file}' if is_first_file: is_first_file = False with open(input_path, "rb") as input_file: output_file.write(input_file.read()) else: with open(input_path, "rb") as input_file: next(input_file) output_file.write(input_file.read()) return path_temp path_in = Path(f'../raw_results/benchmarks/').resolve() path_out = Path(f'../results/benchmarks/').resolve() path_out.mkdir(parents=True, exist_ok=True) path_out = path_out / 'other_algorithms.csv' path_temp = merge_csv(path_in) experiment_df = pd.read_csv(path_temp).reset_index(drop=True) experiment_df experiment_df.to_csv(path_out, index=None) experiments_names = dict(pd.read_csv('../experiments.csv').astype(str).values) experiments_names path_raw_results = Path('../raw_results/') path_results = Path('../results/') for exp in os.listdir(path_raw_results): name = experiments_names.get(exp, None) print(name) if name is not None: if name not in ['SBM', 'Mindsets']: path_out = path_results /'benchmarks' / f'{name}.csv' else: path_out = path_results / f'{name}.csv' path_temp = merge_csv(path_raw_results / f'{exp}') print(path_temp) experiment_df = pd.read_csv(path_temp).reset_index(drop=True).to_csv(path_out, index=None) ###Output cancer_20_bins /tmp/532.csv cancer_10_bins /tmp/5436.csv Mindsets /tmp/3053.csv 2_gaussian_blobs_sigma_1_binning /tmp/456.csv Moons_noise0.2 /tmp/374.csv SBM /tmp/2910.csv 2_gaussian_blobs_sigma_1.5_binning /tmp/3336.csv 4_gaussian_blobs_sigma_1_binning /tmp/5154.csv 4_gaussian_blobs_sigma_1.5_binning /tmp/2953.csv None
tutorials/asr/Intro_to_Transducers.ipynb
###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T < U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T < U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with prediction some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail as compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three seperate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesnt face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `experimental_fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we dont have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is suffcient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T < U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T < U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with prediction some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail as compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `experimental_fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T < U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T < U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with prediction some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail as compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three seperate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesnt face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `experimental_fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we dont have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is suffcient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____ ###Markdown Intro to TransducersBy following the earlier tutorials for Automatic Speech Recognition in NeMo, one would have probably noticed that we always end up using [Connectionist Temporal Classification (CTC) loss](https://distill.pub/2017/ctc/) in order to train the model. Speech Recognition can be formulated in many different ways, and CTC is a more popular approach because it is a monotonic loss - an acoustic feature at timestep $t_1$ and $t_2$ will correspond to a target token at timestep $u_1$ and only then $u_2$. This monotonic property significantly simplifies the training of ASR models and speeds up convergence. However, it has certain drawbacks that we will discuss below.In general, ASR can be described as a sequence-to-sequence prediction task - the original sequence is an audio sequence (often transformed into mel spectrograms). The target sequence is a sequence of characters (or subword tokens). Attention models are capable of the same sequence-to-sequence prediction tasks. They can even perform better than CTC due to their autoregressive decoding. However, they lack certain inductive biases that can be leveraged to stabilize and speed up training (such as the monotonicity exhibited by the CTC loss). Furthermore, by design, attention models require the entire sequence to be available to align the sequence to the output, thereby preventing their use for streaming inference.Then comes the [Transducer Loss](https://arxiv.org/abs/1211.3711). Proposed by Alex Graves, it aimed to resolve the issues in CTC loss while resolving the transcription accuracy issues by performing autoregressive decoding. Drawbacks of Connectionist Temporal Classification (CTC)CTC is an excellent loss to train ASR models in a stable manner but comes with certain limitations on model design. If we presume speech recognition to be a sequence-to-sequence problem, let $T$ be the sequence length of the acoustic model's output, and let $U$ be the sequence length of the target text transcript (post tokenization, either as characters or subwords). -------1) CTC imposes the limitation : $T \ge U$. Normally, this assumption is naturally valid because $T$ is generally a lot longer than the final text transcription. However, there are many cases where this assumption fails.- Acoustic model performs downsampling to such a degree that $T \ge U$. Why would we want to perform so much downsampling? For convolutions, longer sequences take more stride steps and more memory. For Attention-based models (say Conformer), there's a quadratic memory cost of computing the attention step in proportion to $T$. So more downsampling significantly helps relieve the memory requirements. There are ways to bypass this limitation, as discussed in the `ASR_with_Subword_Tokenization` notebook, but even that has limits.- The target sequence is generally very long. Think of languages such as German, which have very long translations for short English words. In the task of ASR, if there is more than 2x downsampling and character tokenization is used, the model will often fail to learn due to this CTC limitation.2) Tokens predicted by models which are trained with just CTC loss are assumed to be *conditionally independent*. This means that, unlike language models where *h*-*e*-*l*-*l* as input would probably predict *o* to complete *hello*, for CTC trained models - any character from the English alphabet has equal likelihood for prediction. So CTC trained models often have misspellings or missing tokens when transcribing the audio segment to text. - Since we often use the Word Error Rate (WER) metric when evaluating models, even a single misspelling contributes significantly to the "word" being incorrect. - To alleviate this issue, we have to resort to Beam Search via an external language model. While this often works and significantly improves transcription accuracy, it is a slow process and involves large N-gram or Neural language models. --------Let's see CTC loss's limitation (1) in action: ###Code import torch import torch.nn as nn T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_sample(T, U, V, require_grad=True): torch.manual_seed(0) acoustic_seq = torch.randn(1, T, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return acoustic_seq, acoustic_seq_len, target_seq, target_seq_len # First, we use CTC loss in the general sense. loss = torch.nn.CTCLoss(blank=V, zero_infinity=False) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) # Next, we use CTC loss with `zero_infinity` flag set. loss = torch.nn.CTCLoss(blank=V, zero_infinity=True) acoustic_seq, acoustic_seq_len, target_seq, target_seq_len = get_sample(T, U, V) # CTC loss expects acoustic sequence to be in shape (T, B, V) val = loss(acoustic_seq.transpose(1, 0), target_seq, acoustic_seq_len, target_seq_len) print("CTC Loss :", val) val.backward() print("Grad of Acoustic model (over V):", acoustic_seq.grad[0, 0, :]) ###Output _____no_output_____ ###Markdown -------As we saw, CTC loss in general case will not be able to compute the loss or the gradient when $T \ge U$. In the PyTorch specific implementation of CTC Loss, we can specify a flag `zero_infinity`, which explicitly checks for such cases, zeroes out the loss and the gradient if such a case occurs. The flag allows us to train a batch of samples where some samples may accidentally violate this limitation, but training will not halt, and gradients will not become NAN. What is the Transducer Loss ? ![](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/images/transducer.png?raw=true) A model that seeks to use the Transducer loss is composed of three models that interact with each other. They are:-------1) **Acoustic model** : This is nearly the same acoustic model used for CTC models. The output shape of these models is generally $(Batch, \, T, \, AM-Hidden)$. You will note that unlike for CTC, the output of the acoustic model is no longer passed through a decoder layer which would have the shape $(Batch, \, T, \, Vocabulary + 1)$.2) **Prediction / Decoder model** : The prediction model accepts a sequence of target tokens (in the case of ASR, text tokens) and is usually a causal auto-regressive model that is tasked with predicting some hidden feature dimension of shape $(Batch, \, U, \, Pred-Hidden)$.3) **Joint model** : This model accepts the outputs of the Acoustic model and the Prediction model and joins them to compute a joint probability distribution over the vocabulary space to compute the alignments from Acoustic sequence to Target sequence. The output of this model is of the shape $(Batch, \, T, \, U, \, Vocabulary + 1)$.--------During training, the transducer loss is computed on the output of the joint model, which computes the joint probability distribution of a target vocabulary token $v_{t, u}$ (for all $v \in V$) being predicted given the acoustic feature at timestep $t \le T$ and the prediction network features at timestep $u \le U$.--------During inference, we perform a single forward pass over the Acoustic Network to obtain the features of shape $(Batch, \, T, \, AM-Hidden)$, and autoregressively perform the forward passes of the Prediction Network and the Joint Network to decode several $u \le U$ target tokens per acoustic timestep $t \le T$. We will discuss decoding in the following sections. ---------**Note**: For an excellent in-depth explanation of how Transducer loss works, how it computes the alignment, and how the gradient of this alignment is calculated, we highly encourage you to read this post about [Sequence-to-sequence learning with Transducers by Loren Lugosch](https://lorenlugosch.github.io/posts/2020/11/transducer/).--------- Benefits of Transducer LossNow that we understand what a Transducer model is comprised of and how it is trained, the next question that comes to mind is - What is the benefit of the Transducer loss?------1) It is a monotonic loss (similar to CTC). Monotonicity speeds up convergence and does not require auxiliary losses to stabilize training (which is required when using only attention-based loss for sequence-to-sequence training).2) Autoregressive decoding enables the model to implicitly have a dependency between predicted tokens (the conditional independence assumption of CTC trained models is corrected). As such, missing characters or incorrect spellings are less frequent (but still exist since no model is perfect).3) It no longer has the $T \ge U$ limitation that CTC imposed. This is because the total joint probability distribution is calculated now - mapping every acoustic timestep $t \le T$ to one or more target timestep $u \le U$. This means that for each timestep $t$, the model has at most $U$ tokens that it can predict, and therefore in the extreme case, it can predict a total of $T \times U$ tokens! Drawbacks of Transducer LossAll of these benefits come with certain costs. As is (almost) always the case in machine learning, there is no free lunch. -------1) During training, the Joint model is required to compute a joint matrix of shape $(Batch, \, T, \, U, \, Vocabulary + 1)$. If you consider the value of these constants for a general dataset like Librispeech, $T \sim 1600$, $U \sim 450$ (with character encoding) and vocabulary $V \sim 28+1$. Considering a batch size of 32, that total memory cost comes out to roughly **2.7 GB** at float precision. The model would also need another **2.7 GB** for the gradients. Of course, the model needs more memory still for the actual Acoustic model + Prediction model + their gradients. Note, however - this issue can be *partially* resolved with some simple tricks, which are discussed in the next tutorial. Also, this memory cost is no longer an issue during inference!2) Autoregressive decoding is slow. Much slower than CTC models, which require just a simple argmax of the output tensor. So while we do get superior transcription quality, we sacrifice decoding speed. --------Let's check that RNNT loss no longer shows the limitations of CTC loss - ###Code T = 10 # acoustic sequence length U = 16 # target sequence length V = 28 # vocabulary size def get_rnnt_sample(T, U, V, require_grad=True): torch.manual_seed(0) joint_tensor = torch.randn(1, T, U + 1, V + 1, requires_grad=require_grad) acoustic_seq_len = torch.tensor([T], dtype=torch.int32) # actual seq length in padded tensor (here no padding is done) target_seq = torch.randint(low=0, high=V, size=(1, U)) target_seq_len = torch.tensor([U], dtype=torch.int32) return joint_tensor, acoustic_seq_len, target_seq, target_seq_len import nemo.collections.asr as nemo_asr joint_tensor, acoustic_seq_len, target_seq, target_seq_len = get_rnnt_sample(T, U, V) # RNNT loss expects joint tensor to be in shape (B, T, U, V) loss = nemo_asr.losses.rnnt.RNNTLoss(num_classes=V) # Uncomment to check out the keyword arguments required to call the RNNT loss print("Transducer loss input types :", loss.input_types) print() val = loss(log_probs=joint_tensor, targets=target_seq, input_lengths=acoustic_seq_len, target_lengths=target_seq_len) print("Transducer Loss :", val) val.backward() print("Grad of Acoustic model (over V):", joint_tensor.grad[0, 0, 0, :]) ###Output _____no_output_____ ###Markdown Configure a Transducer ModelWe now understand a bit more about the transducer loss. Next, we will take a deep dive into how to set up the config for a transducer model.Transducer configs contain a fair bit more detail compared to CTC configs. However, the vast majority of the defaults can be copied and pasted into your configs to have a perfectly functioning transducer model!------Let us download one of the transducer configs already available in NeMo to analyze the components. ###Code import os if not os.path.exists("contextnet_rnnt.yaml"): !wget https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/contextnet_rnnt/contextnet_rnnt.yaml from omegaconf import OmegaConf, open_dict cfg = OmegaConf.load('contextnet_rnnt.yaml') ###Output _____no_output_____ ###Markdown Model DefaultsSince the transducer model is comprised of three separate models working in unison, it is practical to have some shared section of the config. That shared section is called `model.model_defaults`. ###Code print(OmegaConf.to_yaml(cfg.model.model_defaults)) ###Output _____no_output_____ ###Markdown -------Of the many components shared here, the last three values are the primary components that a transducer model **must** possess. They are :1) `enc_hidden`: The hidden dimension of the final layer of the Encoder network.2) `pred_hidden`: The hidden dimension of the final layer of the Prediction network.3) `joint_hidden`: The hidden dimension of the intermediate layer of the Joint network.--------One can access these values inside the config by using OmegaConf interpolation as follows :```yamlmodel: ... decoder: ... prednet: pred_hidden: ${model.model_defaults.pred_hidden}``` Acoustic ModelAs we discussed before, the transducer model is comprised of three models combined. One of these models is the Acoustic (encoder) model. We should be able to drop in any CTC Acoustic model config into this section of the transducer config.The only condition that needs to be met is that **the final layer of the acoustic model must have the dimension defined in `model_defaults.enc_hidden`**. Decoder / Prediction ModelThe Prediction model is generally an autoregressive, causal model that consumes text tokens and returns embeddings that will be used by the Joint model. **This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoder)) ###Output _____no_output_____ ###Markdown ------This config will build an LSTM based Transducer Decoder model. Let us discuss some of the important arguments:1) `blank_as_pad`: In ordinary transducer models, the embedding matrix does not acknowledge the `Transducer Blank` token (similar to CTC Blank). However, this causes the autoregressive loop to be more complicated and less efficient. Instead, this flag which is set by default, will add the `Transducer Blank` token to the embedding matrix - and use it as a pad value (zeros tensor). This enables more efficient inference without harming training.2) `prednet.pred_hidden`: The hidden dimension of the LSTM and the output dimension of the Prediction network. Joint ModelThe Joint model is a simple feed-forward Multi-Layer Perceptron network. This MLP accepts the output of the Acoustic and Prediction models and computes a joint probability distribution over the entire vocabulary space.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.joint)) ###Output _____no_output_____ ###Markdown ------The Joint model config has several essential components which we discuss below :1) `log_softmax`: Due to the cost of computing softmax on such large tensors, the Numba CUDA implementation of RNNT loss will implicitly compute the log softmax when called (so its inputs should be logits). The CPU version of the loss doesn't face such memory issues so it requires log-probabilities instead. Since the behaviour is different for CPU-GPU, the `None` value will automatically switch behaviour dependent on whether the input tensor is on a CPU or GPU device.2) `preserve_memory`: This flag will call `torch.cuda.empty_cache()` at certain critical sections when computing the Joint tensor. While this operation might allow us to preserve some memory, the empty_cache() operation is tremendously slow and will slow down training by an order of magnitude or more. It is available to use but not recommended.3) `experimental_fuse_loss_wer`: This flag performs "batch splitting" and then "fused loss + metric" calculation. It will be discussed in detail in the next tutorial that will train a Transducer model.4) `fused_batch_size`: When the above flag is set to True, the model will have two distinct "batch sizes". The batch size provided in the three data loader configs (`model.*_ds.batch_size`) will now be the `Acoustic model` batch size, whereas the `fused_batch_size` will be the batch size of the `Prediction model`, the `Joint model`, the `transducer loss` module and the `decoding` module.5) `jointnet.joint_hidden`: The hidden intermediate dimension of the joint network. Transducer DecodingModels which have been trained with CTC can transcribe text simply by performing a regular argmax over the output of their decoder.For transducer-based models, the three networks must operate in a synchronized manner in order to transcribe the acoustic features.The following section of the config describes how to change the decoding logic of the transducer model.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.decoding)) ###Output _____no_output_____ ###Markdown -------The most important component at the top level is the `strategy`. It can take one of many values:1) `greedy`: This is sample-level greedy decoding. It is generally exceptionally slow as each sample in the batch will be decoded independently. For publications, this should be used alongside batch size of 1 for exact results.2) `greedy_batch`: This is the general default and should nearly match the `greedy` decoding scores (if the acoustic features are not affected by feature mixing in batch mode). Even for small batch sizes, this strategy is significantly faster than `greedy`.3) `beam`: Runs beam search with the implicit language model of the Prediction model. It will generally be quite slow, and might need some tuning of the beam size to get better transcriptions.4) `tsd`: Time synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Time synchronous decoding (TSD) execution time grows by the factor T * max_symmetric_expansions. For longer sequences, T is greater and can therefore take a long time for beams to obtain good results. TSD also requires more memory to execute.5) `alsd`: Alignment-length synchronous decoding. Please refer to the paper: [Alignment-Length Synchronous Decoding for RNN Transducer](https://ieeexplore.ieee.org/document/9053040) for details on the algorithm implemented. Alignment-length synchronous decoding (ALSD) execution time is faster than TSD, with a growth factor of T + U_max, where U_max is the maximum target length expected during execution. Generally, T + U_max < T * max_symmetric_expansions. However, ALSD beams are non-unique. Therefore it is required to use larger beam sizes to achieve the same (or close to the same) decoding accuracy as TSD. For a given decoding accuracy, it is possible to attain faster decoding via ALSD than TSD.-------Below, we discuss the various decoding strategies. Greedy DecodingWhen `strategy` is one of `greedy` or `greedy_batch`, an additional subconfig of `decoding.greedy` can be used to set an important decoding value. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.greedy)) ###Output _____no_output_____ ###Markdown -------This argument `max_symbols` is the maximum number of `target token` decoding steps $u \le U$ per acoustic timestep $t \le T$. Note that during training, this was implicitly constrained by the shape of the joint matrix (max_symbols = $U$). However, there is no such $U$ upper bound during inference (we don't have the ground truth $U$).So we explicitly set a heuristic upper bound on how many decoding steps can be performed per acoustic timestep. Generally a value of 5 and above is sufficient. Beam DecodingNext, we discuss the subconfig when `strategy` is one of `beam`, `tsd` or `alsd`. ###Code print(OmegaConf.to_yaml(cfg.model.decoding.beam)) ###Output _____no_output_____ ###Markdown ------There are several important arguments in this section :1) `beam_size`: This determines the beam size for all types of beam decoding strategy. Since this is implemented in PyTorch, large beam sizes will take exorbitant amounts of time.2) `score_norm`: Whether to normalize scores prior to pruning the beam.3) `return_best_hypothesis`: If beam search is being performed, we can choose to return just the best hypothesis or all the hypotheses.4) `tsd_max_sym_exp`: The maximum symmetric expansions allowed per timestep during beam search. Larger values should be used to attempt decoding of longer sequences, but this in turn increases execution time and memory usage.5) `alsd_max_target_len`: The maximum expected target sequence length during beam search. Larger values allow decoding of longer sequences at the expense of execution time and memory. Transducer LossFinally, we reach the Transducer loss config itself. This section configures the type of Transducer loss itself, along with possible sub-sections.**This config can be dropped into any custom transducer model with no modification.** ###Code print(OmegaConf.to_yaml(cfg.model.loss)) ###Output _____no_output_____
site/ru/r1/tutorials/keras/save_and_restore_models.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code import os import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code import os import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os import tensorflow as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code import os import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code import os import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow.compat.v1 as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels, verbose=2) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Сохранение и загрузка моделей Запусти в Google Colab Изучай код на GitHub Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует [официальной документации на английском языке](https://www.tensorflow.org/?hl=en). Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в [tensorflow/docs](https://github.com/tensorflow/docs) репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на [[email protected] list](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ru). Прогресс обучения моделей можно сохранять во время и после обучения: тренировку можно возобновить с того места, где ты остановился. Это обычно помогает избежать долгих бесперервыных сессий обучения. Сохраняя модель, ты также можешь поделиться ею с другими, чтобы они могли воспроизвести результаты ее работы. Большинство практиков машинного обучения помимо самой модели и использованных техник также публикуют:* Код, при помощи которого обучалась модель* Тренировочные веса, или параметры моделиПубликация этих данных помогает другим понять как работает модель, а также они смогут проверить как она ведет себя с новыми данными.Внимание! Будь осторожен с кодом, которому ты не доверяешь. Обязательно прочти [Как использовать TensorFlow безопасно?](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) ВариантыСуществуют разные способы сохранять модели TensorFlow - все зависит от API, которые ты использовал в своей модели. В этом уроке используется [tf.keras](https://www.tensorflow.org/r1/guide/keras), высокоуровневый API для построения и обучения моделей в TensorFlow. Для всех остальных подходов читай руководство по TensorFlow [Сохраняй и загружай модели](https://www.tensorflow.org/r1/guide/saved_model) или [Сохранение в Eager](https://www.tensorflow.org/r1/guide/eagerobject-based_saving). Настройка Настроим и импортируем зависимости Установим и импортируем TensorFlow и все зависимые библиотеки: ###Code !pip install h5py pyyaml ###Output _____no_output_____ ###Markdown Загрузим датасетМы воспользуемся [датасетом MNIST](http://yann.lecun.com/exdb/mnist/) для обучения нашей модели, чтобы показать как сохранять веса. Ускорим процесс, используя только первые 1000 образцов данных: ###Code from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals import os import tensorflow as tf from tensorflow import keras tf.__version__ (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 ###Output _____no_output_____ ###Markdown Построим модель Давай построим простую модель, на которой мы продемонстрируем как сохранять и загружать веса моделей: ###Code # Возвращает короткую последовательную модель def create_model(): model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)), keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model # Создадим модель model = create_model() model.summary() ###Output _____no_output_____ ###Markdown Сохраняем контрольные точки Основная задача заключается в том, чтобы автоматически сохранять модель как *во время*, так и *по окончании* обучения. Таким образом ты сможешь снова использовать модель без необходимости обучать ее заново, или просто продолжить с места, на котором обучение было приостановлено.Эту задачу выполняет функция обратного вызова `tf.keras.callbacks.ModelCheckpoint`. Эта функция также может быть настроена при помощи нескольких аргументов. Использование функцииОбучим нашу модель и передадим ей функцию `ModelCheckpoint`: ###Code checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Создадим контрольную точку при помощи callback функции cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) model = create_model() model.fit(train_images, train_labels, epochs = 10, validation_data = (test_images,test_labels), callbacks = [cp_callback]) # передаем callback обучению ###Output _____no_output_____ ###Markdown Это создаст одну совокупность файлов контрольных точек TensorFlow, которые обновлялись в конце каждой эпохи: ###Code !ls {checkpoint_dir} ###Output _____no_output_____ ###Markdown Теперь создадим новую необученную модель. Когда мы восстанавливаем модель только из весов, новая модель должна быть точно такой же структуры, как и старая. Поскольку архитектура модели точно такая же, мы можем опубликовать веса из другой *инстанции* модели.Также мы оценим точность новой модели на проверочных данных. Необученная модель будет лишь изредка угадывать правильную категорию обзоров фильмов (точность будет около 10%): ###Code model = create_model() loss, acc = model.evaluate(test_images, test_labels) print("Необученная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown А теперь загрузим веса из контрольной точки и проверим еще раз: ###Code model.load_weights(checkpoint_path) loss,acc = model.evaluate(test_images, test_labels) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Параметры вызова контрольной точкиУ callback функции есть несколько параметров, которые дают контрольным точкам уникальные имена, а также корректируют частоту сохранения.Обучим новую модель и укажем параметр чтобы сохранять контрольные точки через каждые 5 эпох: ###Code # Укажем эпоху в имени файла (переведем ее в строки при помощи `str.format`) checkpoint_path = "training_2/cp-{epoch:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, verbose=1, save_weights_only=True, # Сохраняем веса через каждые 5 эпох period=5) model = create_model() model.fit(train_images, train_labels, epochs = 50, callbacks = [cp_callback], validation_data = (test_images,test_labels), verbose=0) ###Output _____no_output_____ ###Markdown Теперь посмотрим на получившиеся контрольные точки и выберем последнюю: ###Code ! ls {checkpoint_dir} latest = tf.train.latest_checkpoint(checkpoint_dir) latest ###Output _____no_output_____ ###Markdown Помни: по умолчанию TensorFlow сохраняет только 5 последних контрольных точек.Для проверки восстановим модель по умолчанию и загрузим последнюю контрольную точку: ###Code model = create_model() model.load_weights(latest) loss, acc = model.evaluate(test_images, test_labels) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Как выглядят эти файлы? Код выше сохраняет веса модели как совокупность [контрольных точек](https://www.tensorflow.org/r1/guide/saved_modelsave_and_restore_variables) - форматированных файлов, которые содержат только обученные веса в двоичном формате. Они включают в себя:* Один или несколько шардов (shard, пер. "Часть данных"), в которых хранятся веса твоей модели* Индекс, который указывает какие веса хранятся в каждом шардеЕсли ты обучаешь модель на одном компьютере, то тогда у тебя будет всего один шард, оканчивающийся на `.data-00000-of-00001` Сохраняем веса вручнуюВыше мы посмотрели как загружать веса в модель.Сохранять веса вручную так же просто, просто воспользуйся методом `Model.save_weights`: ###Code # Сохраняем веса model.save_weights('./checkpoints/my_checkpoint') # Восстанавливаем веса model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss,acc = model.evaluate(test_images, test_labels) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Сохраняем модель целикомТы также можешь сохранить модель целиком в единый файл, который будет содержать все веса, конфигурацию модели и даже оптимизатор конфигурации (однако это зависит от выбранных параметров). Это позволит тебе восстановить модель и продолжить обучение позже, ровно с того момента, где ты остановился, и без правки изначального кода.Сохранять рабочую модель полностью весьма полезно. Например, ты можешь потом восстановить ее в TensorFlow.js ([HDF5](https://js.tensorflow.org/r1/tutorials/import-keras.html), [Сохраненные модели](https://js.tensorflow.org/r1/tutorials/import-saved-model.html)) и затем обучать и запускать ее в веб-браузерах, или конвертировать ее в формат для мобильных устройств, используя TensorFlow Lite ([HDF5](https://www.tensorflow.org/lite/convert/python_apiexporting_a_tfkeras_file_), [Сохраненные модели](https://www.tensorflow.org/lite/convert/python_apiexporting_a_savedmodel_)) Сохраняем в формате HDF5В Keras есть встроенный формат для сохранения модель при помощи стандарта [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format). Для наших целей сохраненная модель будет использована как единый двоичный объект *blob*. ###Code model = create_model() # Используй keras.optimizer чтобы восстановить оптимизатор из файла HDF5 model.compile(optimizer=keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) # Сохраним модель полностью в единый HDF5 файл model.save('my_model.h5') ###Output _____no_output_____ ###Markdown Теперь воссоздадим модель из этого файла: ###Code # Воссоздадим точно такую же модель, включая веса и оптимизатор: new_model = keras.models.load_model('my_model.h5') new_model.summary() ###Output _____no_output_____ ###Markdown Проверим ее точность: ###Code loss, acc = new_model.evaluate(test_images, test_labels) print("Восстановленная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____ ###Markdown Данная техника сохраняет все:* Веса модели* Конфигурацию (ее структуру)* Параметры оптимизатораKeras сохраняет модель путем исследования ее архитектуры. В настоящее время он не может сохранять оптимизаторы TensorFlow из `tf.train`. В случае их использования нужно скомпилировать модель еще раз после загрузки. Таким образом ты получишь параметры оптимизатора. Сохраняем как `saved_model` Обрати внимание: этот метод сохранения моделей `tf.keras` является экспериментальным и может измениться в будущих версиях. Построим новую модель: ###Code model = create_model() model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown Создадим `saved_model`: ###Code saved_model_path = tf.contrib.saved_model.save_keras_model(model, "./saved_models") ###Output _____no_output_____ ###Markdown Сохраненные модели будут помещены в папку и отмечены текущей датой и временем в названии: ###Code !ls saved_models/ ###Output _____no_output_____ ###Markdown Загрузим новую модель Keras из уже сохраненной: ###Code new_model = tf.contrib.saved_model.load_keras_model(saved_model_path) new_model ###Output _____no_output_____ ###Markdown Запустим загруженную модель: ###Code # Оптимизатор не был восстановлен, поэтому мы укажим новый new_model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) loss, acc = new_model.evaluate(test_images, test_labels) print("Загруженная модель, точность: {:5.2f}%".format(100*acc)) ###Output _____no_output_____
wordle-analysis-p1.ipynb
###Markdown First things firstLet's import all the fun stuff that lets us do the really fun stuff. ###Code import os import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt from pylab import rcParams INDIR = "/kaggle/input" OUTDIR = "/kaggle/working" DBNAME = "words.db" rcParams['figure.figsize'] = 16,9 pd.options.plotting.backend = "matplotlib" sns.set(style="darkgrid") figs = {} ###Output _____no_output_____ ###Markdown Prepping the dataWe're going to load our words from the word lists that we copied from the source code. There are two lists, one which seems to be a list of played words and ones that have yet to be released. ###Code playable_words = pd.read_json("../input/wordle-word-list/played_words.json") other_words = pd.read_json("../input/wordle-word-list/unplayed_words.json") playable_words[1] = True other_words[1] = False words = pd.concat([playable_words, other_words]) words.columns = ["name", "playable"] words.reset_index() words.describe() ###Output _____no_output_____ ###Markdown First Heuristic: Letter RankIt's pretty simple: we're going to find out how often each letter is used in the entire wordle word list and rank them using a barplot. Once that is done, we'll check to see if there are any words spelled using the top 5 letters in the word list. ###Code from itertools import chain game1 = {} letters = pd.Series(chain.from_iterable(words["name"])) letter_counts = letters.value_counts() ax = sns.barplot( x=letter_counts.index, y=letter_counts, color='#69b3a2' ) ax.set_xlabel("Letters") ax.set_ylabel("Frequency") ax.set_title("Letter Ranking") figs["letter_ranking.png"] = ax.figure ###Output _____no_output_____ ###Markdown From the above, we can see that the top 5 letters are: s, e, a, o and r. Given that information, let's try and find out if there are any words spelled using all five letters. ###Code def contains_all(letters): return lambda word: set(letters) <= set(word) all_top5_letters = words["name"].apply(contains_all("seaor")) words[all_top5_letters] ###Output _____no_output_____ ###Markdown The result is the following three words:1. arose2. aeros3. soare First turn ###Code def contains_any(letters): return lambda word: len(set(letters) & set(word)) > 0 any_top5_letter = words["name"].apply(contains_any("seaor")) words_turn1 = words[any_top5_letter] words_turn1.describe() ###Output _____no_output_____ ###Markdown So what does that mean for us? Well, let's look at the worst possible scenario: that we get no yellow or green tiles. In this case, we've still managed to do away with a great deal of the problem space, out of a total 12,972 words we've eliminated 12,395. Using only 1/6th of the time given to us, we've eliminated 95% of the problem space. Let's filter for any possible words using the next 5 most common letters. Second Turn The next five most frequent letters according to our chart are i, l, t, n and u. Same as above, we'll check the remaining words in the list and see if all five letters can be used to play a word. ###Code remaining_words = words[~any_top5_letter] all_next5_letters = remaining_words["name"].apply(contains_all("intlu")) remaining_words[all_next5_letters] ###Output _____no_output_____ ###Markdown So we have two words that use the letters ranking 6 through 10. Again, our worst case scenario is that none of these letters our in the secret word. How many possibilities have we eliminated? ###Code any_next5_letters = remaining_words["name"].apply(contains_any("until")) words_turn2 = remaining_words[any_next5_letters] words_turn2.describe() ###Output _____no_output_____ ###Markdown Two turns done, and we have eliminated 12,969 (12,395 + 574) words. By turn 3, this means that we have the following possiblities left. Even if we ignore the clues dropped by the game, in three more turns, we'll have the answer (assuming we actually know these words). ###Code remaining_words = remaining_words[~any_next5_letters] remaining_words first_game = pd.DataFrame.from_dict({ "Turn 1": words_turn1["name"].count(), "Turn 2": words_turn2["name"].count(), "Remaining": remaining_words["name"].count() }, orient="index", columns=["Words"]) ax = sns.barplot( x=first_game.index, y=first_game.Words, color='#69b3a2' ) #ax.set_xlabel("Letters") ax.set_ylabel("Words") ax.set_title("Game 1 results") figs["first_game_result.png"] = ax.figure first_game ###Output _____no_output_____ ###Markdown Second Heuristic: Et tu Brute-force-usOur first heuristic used the most common letters to find words that could match against. The thing is, a (good) heuristic gives us an answer that is good enough. So did our heuristic give us the word that eliminates the most ###Code def count_matches(words): return lambda word: words.apply( contains_any(word) ).value_counts()[True] # remove the word itself from number of matches words["starter_score"] = words["name"].apply(count_matches(words["name"])) words[words["starter_score"] == words["starter_score"].max()] ###Output _____no_output_____ ###Markdown As it turns out, there are two words in the word list that just barely outperform our starter words consisting of the top 5 letter (and I have no idea what they mean):1. Stoae2. Toeas Turn 1Since we already know how many words we rule out by playing either of the words above, we can go directly to figuring out what our options are for turn 2 in case we don't match any letters at all. ###Code any_top5_letter = words["name"].apply(contains_any("stoae")) remaining_words = words[~any_top5_letter].copy() remaining_words["starter_score"] = remaining_words["name"].apply(count_matches(remaining_words["name"])) remaining_words[remaining_words["starter_score"] == remaining_words["starter_score"].max()] ###Output _____no_output_____ ###Markdown We get three words that match the most remaining words. In fact, they match all the remaining words except one. Turn 2We can play one of the three words above to find out what the last word is: grrrl.I was not expecting that. ###Code any_next5_letters = remaining_words["name"].apply(contains_any("unify")) remaining_words = remaining_words[~any_next5_letters] remaining_words ###Output _____no_output_____ ###Markdown It would seem that the second method outperforms the first. We're guaranteed to figure the wordle out even if the first two turns don't reveal any green or yellow tiles. ###Code second_game = pd.DataFrame.from_dict({ "Turn 1": 12417, "Turn 2": 554, "Remaining": 1 }, orient="index", columns=["Words"]) ax = sns.barplot( x=second_game.index, y=second_game.Words, color='#69b3a2' ) #ax.set_xlabel("Letters") ax.set_ylabel("Words") ax.set_title("Game 2 results") figs["second_game_result.png"] = ax.figure second_game ###Output _____no_output_____ ###Markdown When you assume, you make ...Having done all the analysis above, can we say that the second heuristic is better than the first?1. Is the worst case scenario really the worst case scenario? How can we find out?2. How do does discovering a yellow or green tile change the likelihood of other letters appearing in the wordle?3. How do you even compare two heuristics or techniques?4. Is there a great starter word?5. We're assuming that the player knows ALL the words in the wordle word list. Final Thoughts (Work in progress) ###Code matches = words[words['name'].apply(contains_all('sta'))] matches = matches[~matches['name'].apply(contains_any('oe'))] ###Output _____no_output_____ ###Markdown Don't mind meJust saving the plots ###Code for name, figure in figs.items(): figure.savefig(name) ###Output _____no_output_____
coding_act_3.ipynb
###Markdown Coding act 3 ###Code #Python program to inverse and transpose a 3x3 matrix import numpy as np A = np.array([[1,-2,3],[4,25,17],[8,9,-10]]) print(A,"\n") #transposing the matrix B = np.transpose(A) print(B) #inversing the matrix B = np.linalg.inv(A) print(B) #Python program to inverse and transpose a 4x4 matrix C = np.array([[1,2,3,-4],[4,5,-6,7],[8,9,-10,11],[12,13,14,-15]]) print(C,"\n") #tansposing the matrix D = np.transpose(C) print(D,"\n") #inversing the matrix invC = np.linalg.inv(C) print(invC) ###Output [[ 1 2 3 -4] [ 4 5 -6 7] [ 8 9 -10 11] [ 12 13 14 -15]] [[ 1 4 8 12] [ 2 5 9 13] [ 3 -6 -10 14] [ -4 7 11 -15]] [[-0.59090909 -1.125 0.625 0.09090909] [ 0.54545455 1. -0.5 -0.04545455] [-0.68181818 1.375 -0.875 0.18181818] [-0.63636364 1.25 -0.75 0.13636364]]
docs/jupyter/canvas-test.ipynb
###Markdown Canvas Drawing Test ###Code from ipycanvas import Canvas canvas = Canvas(width=200, height=200) canvas.fill_rect(25, 25, 100, 100) canvas.clear_rect(45, 45, 60, 60) canvas.stroke_rect(50, 50, 50, 50) canvas ###Output _____no_output_____
exp2021-02/exp2021-02.ipynb
###Markdown Image processing Load an image to numpy ###Code from typing import List import PIL from PIL import Image, ImagePalette import numpy as np print('Pillow Version:', PIL.__version__) import pandas as pd ###Output Pillow Version: 8.1.0 ###Markdown Let's create a helper to manipulate the image with a palette ###Code class ImageReaderHelper: def __init__(self, name: str): self.name = name def load(self): self.img = Image.open(f'{self.name}.png').convert('P') self.palette = self.img.getpalette() self.img_arr = np.asarray(self.img) self.palette_arr = np.asarray(self.palette).reshape(256, 3) print(self.palette_arr) print(f"{self.name} shape: {self.img_arr.shape} dtype: {self.img_arr.dtype}") print(f"{self.name} palette: {self.palette_arr.shape} dtype: {self.palette_arr.dtype}") print('Unique colors used from palette in the image') self.colors_used = np.unique(self.img_arr) print(self.colors_used) print('Unique RGB colors used') self.min_color_idx = np.amin(self.colors_used) self.max_color_idx = np.amax(self.colors_used) print(f'Color index range: {self.min_color_idx} to {self.max_color_idx}') def print_palette_info(self): rgb_colors_used = self.palette_arr[self.min_color_idx:self.max_color_idx+1] print(rgb_colors_used) color_id, color_frequency = np.unique(self.img_arr, return_counts = True) print('Color frequency') print(color_frequency) def get_pixels(self): return self.img_arr def get_colors(self): return self.palette_arr def get_shuffle_colors(self): new_palette_arr = self.palette_arr[self.min_color_idx:self.max_color_idx+1].copy() np.random.shuffle(new_palette_arr) return new_palette_arr veg2020 = ImageReaderHelper('vegetation2020') veg2020.load() ###Output [[254 254 254] [ 2 2 2] [232 232 232] [215 215 215] [ 23 23 23] [ 55 71 97] [199 199 200] [183 183 183] [ 39 39 39] [167 167 168] [ 55 55 55] [135 135 136] [151 151 151] [ 71 71 71] [119 119 119] [ 87 87 87] [103 103 103] [ 72 87 110] [142 151 165] [107 119 138] [ 87 101 122] [180 186 195] [122 132 150] [188 194 202] [155 163 176] [217 220 225] [ 97 109 130] [222 225 229] [ 95 107 128] [ 64 79 104] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0] [ 0 0 0]] vegetation2020 shape: (1080, 1920) dtype: uint8 vegetation2020 palette: (256, 3) dtype: int64 Unique colors used from palette in the image [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29] Unique RGB colors used Color index range: 0 to 29 ###Markdown Understand the paletteWe can check the how many colors from the palette are been used in the entire image. For vegetation2020, it is a palette of 30 colors. ###Code veg2020.print_palette_info() ###Output [[254 254 254] [ 2 2 2] [232 232 232] [215 215 215] [ 23 23 23] [ 55 71 97] [199 199 200] [183 183 183] [ 39 39 39] [167 167 168] [ 55 55 55] [135 135 136] [151 151 151] [ 71 71 71] [119 119 119] [ 87 87 87] [103 103 103] [ 72 87 110] [142 151 165] [107 119 138] [ 87 101 122] [180 186 195] [122 132 150] [188 194 202] [155 163 176] [217 220 225] [ 97 109 130] [222 225 229] [ 95 107 128] [ 64 79 104]] Color frequency [1882788 52211 17195 12337 10959 10353 10175 8440 8384 7944 7288 7085 6974 6744 6633 6514 6427 846 789 674 526 507 474 363 352 305 118 94 62 39] ###Markdown Change the palette ###Code class ImageWriteHelper: def __init__(self, name: str): self.name = name def set_colors(self,colors: List): # Palette would be provided as [(R, G, B), ..] self.colors = colors def set_pixels(self,pixels: List): self.pixels = np.asarray(pixels).astype(np.uint8) def _create_image_palette(self): # The list must be aligned by channel (All R values must be contiguous in the list before G and B values.) colors = np.asarray(self.colors).astype(np.uint8).flatten() r_colors = colors[0::3] g_colors = colors[1::3] b_colors = colors[2::3] cols_palette = np.concatenate((r_colors, g_colors, b_colors), axis=None).tolist() img_palette = ImagePalette.ImagePalette(mode='RGB', palette=cols_palette, size=len(cols_palette)) return img_palette def _create_image(self): new_img = Image.fromarray(self.pixels, 'P') new_img.putpalette(self._create_image_palette()) return new_img def save(self): self._create_image().save(f"{self.name}.png") img_rand_palette = ImageWriteHelper('img-exp-random-palette') img_rand_palette.set_pixels(veg2020.get_pixels()) img_rand_palette.set_colors(veg2020.get_shuffle_colors()) img_rand_palette.save() ###Output _____no_output_____ ###Markdown Create a tri-colors grid image ###Code col_white = (255, 255, 255) col_black = (0, 0, 0) col_grey = (85, 86, 87) col_navy = (0,0,128) img_grid = ImageWriteHelper('img-exp-grid') img_grid.set_colors([col_white, col_black, col_grey]) pix_grid = np.ones((1080, 1920)) select_color = lambda i, j : 1 if i % 30 <10 and j % 30 < 10 else (2 if i % 30 > 20 and j % 30 > 20 else 0) for i in range(1080): for j in range(1920): pix_grid[i, j]= select_color(i, j) print(pix_grid) img_grid.set_pixels(pix_grid) img_grid.save() ###Output [[1. 1. 1. ... 0. 0. 0.] [1. 1. 1. ... 0. 0. 0.] [1. 1. 1. ... 0. 0. 0.] ... [0. 0. 0. ... 2. 2. 2.] [0. 0. 0. ... 2. 2. 2.] [0. 0. 0. ... 2. 2. 2.]] ###Markdown Convert an image with palette to monochrome ###Code img_converted_mono = ImageWriteHelper('img-exp-converted-monochrome') img_converted_mono.set_colors([col_white, col_black, col_grey]) img_converted_mono_shape = veg2020.get_pixels().shape it_pix_converted_mono = np.nditer(veg2020.get_pixels(), flags=['multi_index']) pix_converted_mono = np.array([1 if v >0 else 0 for v in it_pix_converted_mono]).reshape(img_converted_mono_shape) img_converted_mono.set_pixels(pix_converted_mono) img_converted_mono.save() ###Output _____no_output_____ ###Markdown Add two images ###Code img_exp_add = ImageWriteHelper('img-exp-add') img_exp_add.set_colors([col_white, col_black, col_grey, col_navy]) pixel_exp_add = pix_converted_mono + pix_grid img_exp_add.set_pixels(pixel_exp_add) img_exp_add.save() ###Output _____no_output_____
laboratorio/lezione2-01ott21/lezione2-python-sequenze.ipynb
###Markdown Python - Sequenze (Stringa, Lista e Tupla)> Definizione di sequenza> Costruzione di una *sequenza*> Dimensione di una *sequenza*> Accesso agli elementi di una *sequenza*> Concatenazione di *sequenze*> Ripetizione di una *sequenza*> Scansione degli elementi di una *sequenza*> Aggiornamento di una lista> Assegnamento multiplo> List comprehension Definizione di *sequenza*Stringhe, liste e tuple sono ***sequenze***, cioé oggetti su cui si può iterare e i cui elementi sono indicizzati tramite posizione.**Stringa**: sequenza di caratteri- oggetto di tipo `str`- oggetto ___immutabile___---**Lista**: sequenza di valori (oggetti) anche di tipo diverso- oggetto di tipo `list`- oggetto ***mutabile*****Tupla**: sequenza di valori (oggetti) anche di tipo diverso- oggetto di tipo `tuple`- oggetto ***immutabile*** Costruzione di una *sequenza* Costruzione di una stringa- tramite letterale (sequenza di caratteri racchiusi tra singoli apici `'` o doppi apici `"`)- tramite funzione `str()` Letterale con doppi apici: ###Code print("ciao") ###Output ciao ###Markdown Letterale con singoli apici: ###Code print('ciao') ###Output ciao ###Markdown Singoli apici nel valore della stringa: ###Code print('\'ciao\'') print("'ciao'") ###Output 'ciao' ###Markdown Doppi apici nel valore della stringa: ###Code print("\"ciao\"") print('"ciao"') ###Output "ciao" ###Markdown *Newline* `\n` nel valore della stringa: ###Code print('ciao\nciao') ###Output ciao ciao ###Markdown Costruzione della stringa vuota: ###Code "" '' ###Output _____no_output_____ ###Markdown Esempi di costruzione tramite funzione `str()` Stringa vuota: ###Code str() ###Output _____no_output_____ ###Markdown Costruzione con letterale stringa: ###Code str("ciao") ###Output _____no_output_____ ###Markdown Costruzione con espressione aritmetica: ###Code str(3+4) ###Output _____no_output_____ ###Markdown Costruzione con espressione di confronto: ###Code str(34 > 0) ###Output _____no_output_____ ###Markdown **NOTA BENE**: il valore restituito dalla chiamata `str(34 >0)` è la stringa dei caratteri `T`, `r`, `u` ed `e` e non il valore `True` di tipo `bool`. Costruzione di una lista- tramite letterale `[value1, value2, ..., valueN]`- tramite funzione `list()` Esempi di costruzione tramite letterale Lista vuota: ###Code [] ###Output _____no_output_____ ###Markdown Lista di un solo valore: ###Code [4] ###Output _____no_output_____ ###Markdown Lista di tre valori dello stesso tipo: ###Code [1,2,3] ###Output _____no_output_____ ###Markdown Lista di tre valori di tipo diverso: ###Code [10, 7.8, "ab"] ###Output _____no_output_____ ###Markdown Lista di tre valori di tipo diverso di cui il terzo di tipo `list` (lista annidata): ###Code [10, 7.8, [True, "ab"]] ###Output _____no_output_____ ###Markdown Esempi di costruzione tramite la funzione `list()` Lista vuota: ###Code list() ###Output _____no_output_____ ###Markdown Costruzione con stringa: ###Code list("abcde") ###Output _____no_output_____ ###Markdown Costruzione con lista: ###Code list([1,2,3,4]) ###Output _____no_output_____ ###Markdown Costruzione di una tupla- tramite letterale `(value1, value2, ..., valueN)`- tramite la funzione `tuple()` Esempi di costruzione tramite letterale Tupla vuota: ###Code () ###Output _____no_output_____ ###Markdown Tupla di un solo valore: ###Code (4,) ###Output _____no_output_____ ###Markdown Tupla di tre valori dello stesso tipo: ###Code (1,2,3) ###Output _____no_output_____ ###Markdown Tupla di tre valori di tipo diverso: ###Code (10, 7.8, "ab") ###Output _____no_output_____ ###Markdown Tupla di quattro valori di tipo diverso di cui il terzo di tipo `list` (lista annidata) e il quarto di tipo `tuple` (tupla annidata): ###Code (10, 7.8, [1,2], (3,4)) ###Output _____no_output_____ ###Markdown **NOTA BENE**: le parentesi tonde nel letterale di una tupla sono opzionali (non possono però essere omesse nel caso di letterale di una tupla vuota). ###Code 10, 7.8, [1,2], (3,4) ###Output _____no_output_____ ###Markdown Esempi di costruzione tramite la funzione `tuple()` Tupla vuota: ###Code tuple() ###Output _____no_output_____ ###Markdown Costruzione con stringa: ###Code tuple("abcde") ###Output _____no_output_____ ###Markdown Costruzione con lista: ###Code tuple([1,2,3]) ###Output _____no_output_____ ###Markdown Costruzione con tupla: ###Code tuple((1,2,3)) ###Output _____no_output_____ ###Markdown Dimensione di una *sequenza* La funzione `len()` restituisce la dimensione della *sequenza* passata come argomento.Dimensione di una stringa: ###Code len("abcde") ###Output _____no_output_____ ###Markdown Dimensione di una lista: ###Code len([1,2,3,4]) ###Output _____no_output_____ ###Markdown Dimensione di una tupla: ###Code len((1,2,3,4,5)) ###Output _____no_output_____ ###Markdown Accesso agli elementi di una *sequenza* Le posizioni degli elementi all'interno di una *sequenza* sono indicate tramite:- indici positivi - 0: posizione del primo elemento - 1: posizione del secondo elemento - ... - dimensione della sequenza decrementato di 1: posizione dell'ultimo elemento - indici negativi - -1: posizione dell'ultimo elemento - -2: posizione del penultimo elemento - ... - negazione aritmetica della dimensione della sequenza: posizione del primo elemento Accesso a un solo elemento di una *sequenza* L'espressione: my_sequence[some_index] restituisce l'elemento della *sequenza* `my_sequence` in posizione `some_index`. **Esempi di accesso a un carattere di una stringa** Accesso al quinto carattere tramite indice positivo: ###Code stringa = 'Hello world!' stringa[4] ###Output _____no_output_____ ###Markdown **NOTA BENE**: `stringa[4]` restituisce un oggetto di tipo `str`. Accesso al quinto carattere tramite indice negativo: ###Code stringa = 'Hello world!' stringa[-8] ###Output _____no_output_____ ###Markdown **Esempi di accesso a un elemento di una lista** Accesso al quarto elemento tramite indice positivo: ###Code lista = [1, 2, 3, [4, 5]] lista[3] ###Output _____no_output_____ ###Markdown Accesso al primo elemento della lista annidata: ###Code lista = [1, 2, 3, [4, 5]] lista[3][0] ###Output _____no_output_____ ###Markdown Accesso al primo elemento tramite indice negativo: ###Code lista = [1, 2, 3, [4, 5]] lista[-4] ###Output _____no_output_____ ###Markdown **Esempi di accesso a un elemento di una tupla** Accesso al terzo elemento tramite indice positivo: ###Code tupla = (1, 2, 3, 4) tupla[2] ###Output _____no_output_____ ###Markdown Accesso all'ultimo elemento tramite indice negativo: ###Code tupla = (1, 2, 3, 4) tupla[-1] ###Output _____no_output_____ ###Markdown Accesso a elementi consecutivi di una *sequenza* (*slicing1*) L'epressione: my_sequence[start_index:end_index] restituisce gli elementi della *sequenza* `my_sequence` da quello in posizione `start_index` fino a quello in posizione `end_index-1`. **Esempi di accesso a caratteri consecutivi di una stringa (sottostringa)**Accesso alla sottostringa dal terzo al settimo carattere tramite indici positivi: ###Code stringa = 'Hello world!' stringa[2:7] ###Output _____no_output_____ ###Markdown Accesso alla sottostringa dal terzo al settimo carattere tramite indici negativi: ###Code stringa = 'Hello world!' stringa[-10:-5] ###Output _____no_output_____ ###Markdown Accesso al prefisso dei primi tre caratteri tramite indici positivi: ###Code stringa = 'Hello world!' stringa[0:3] stringa = 'Hello world!' stringa[:3] ###Output _____no_output_____ ###Markdown Accesso al suffisso che parte dal nono carattere tramite indici positivi: ###Code stringa = 'Hello world!' stringa[8:len(stringa)] stringa = 'Hello world!' stringa[8:] ###Output _____no_output_____ ###Markdown Ottenere una copia della stringa: ###Code stringa = 'Hello world!' stringa[0:len(stringa)] stringa = 'Hello world!' stringa[:] ###Output _____no_output_____ ###Markdown **Esempi di accesso a elementi consecutivi di una lista/tupla (sottolista/sottotupla)** Accesso alla sottolista dal terzo al quarto elemento tramite indici positivi: ###Code lista = [1, 2, 3, 4, 5, 6] lista[2:4] ###Output _____no_output_____ ###Markdown Accesso al suffisso di lista che parte dal terzo elemento tramite indici positivi: ###Code lista = [1, 2, 3, 4, 5, 6] lista[2:] ###Output _____no_output_____ ###Markdown Accesso al prefisso di tupla dei primi quattro elementi tramite indici positivi: ###Code tupla = (1, 2, 3, 4, 5, 6) tupla[:4] ###Output _____no_output_____ ###Markdown Accesso a elementi non consecutivi di una *sequenza* (*slicing2*) L'epressione: my_sequence[start_index:end_index:step] equivale a- considerare la sottosequenza di elementi consecutivi `my_sequence[start_index:end_index]` e- restituire di questa sottosequenza gli elementi a partire dal primo, saltando ogni volta `step-1` elementi**Esempi di accesso a caratteri non consecutivi di una stringa**Accesso ai caratteri a partire dal secondo, saltando ogni volta due caratteri e terminando non oltre il settimo: ###Code stringa = 'xAxxBxxCxx' stringa[1:8:3] ###Output _____no_output_____ ###Markdown Lo *slicing* con passo può essere utilizzato per invertire una sequenza: ###Code stringa = 'Hello world!' stringa[::-1] lista = [1, 2, 3, 4, 5, 6, 7, 8, 9] lista[::-1] ###Output _____no_output_____ ###Markdown Concatenazione di *sequenze*L'espressione: my_sequence1 + my_sequence2 + ... + my_sequenceN restituisce la concatenazione di N sequenze dello stesso tipo. ###Code "ciao " + "mondo" [1,2] + [3,4,5] (1,2) + (3,4,5) ###Output _____no_output_____ ###Markdown Ripetizione di una *sequenza*L'espressione: my_sequence * times restituisce la ripetizione di `my_sequence` per `times` volte. ###Code "ciao " * 4 [1,2] * 4 (1,2) * 4 ###Output _____no_output_____ ###Markdown Scansione degli elementi una *sequenza* Operatore `in` L'espressione: my_element in my_sequence restituisce `True` se `my_element` è presente in `my_sequence`, altrimenti restituisce `False`Controllo della presenza del carattere `H`: ###Code stringa = 'Hello world!' "H" in stringa ###Output _____no_output_____ ###Markdown Controllo della presenza della sottostringa `world` nella stringa: ###Code stringa = 'Hello world!' "llo" in stringa ###Output _____no_output_____ ###Markdown Controllo della presenza della stringa `ca` nella lista: ###Code lista = [1, 2, 'acaa', 10.5] "ca" in lista ###Output _____no_output_____ ###Markdown Controllo della presenza della lista `[1,2]` nella lista: ###Code lista = [1, 2, 'acaa', 10.5] [1,2] in lista ###Output _____no_output_____ ###Markdown Scansione con operatore `in` **Sintassi di scansione di una *sequenza***: for element in my_sequence: do_something - `my_sequence`: *sequenza* da scandire da sinistra a destra- `element`: variabile di scansione- `do_something`: blocco di istruzioni da eseguire per ogni elemento considerato **Regola**:- le istruzioni in `do_something` devono essere indentate 4 volte rispetto alla riga di intestazioneScansione e stampa a video dei caratteri della stringa: ###Code stringa = 'world' for c in stringa: print(c) ###Output w o r l d ###Markdown Scansione e stampa a video degli elementi della lista: ###Code lista = [3, 45.6, 'ciao'] for element in lista: print(element) ###Output 3 45.6 ciao ###Markdown Scansione e stampa a video degli elementi della tupla: ###Code tupla = 3, 45.6, 'ciao' for element in tupla: print(element) ###Output 3 45.6 ciao ###Markdown Aggiornamento di una lista Aggiornamento di un elemento di una lista L'istruzione: my_list[some_index] = new_value sostituisce l'elemento della lista `my_list` in posizione `some_index` con il nuovo valore `new_value`.Sostituzione del quarto elemento della lista con il valore 0: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[3] = 0 lista ###Output _____no_output_____ ###Markdown Aggiornamento di più elementi di una lista Le istruzioni: my_list[start_index:end_index] = new_list my_list[start_index:end_index:step] = new_list sostituiscono la sottolista di `my_list` ottenuta tramite *slicing* con la lista `new_list`. Sostituzione dei tre elementi consecutivi dal quarto al sesto della lista: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[3:6] = ['*', '*', '*'] lista ###Output _____no_output_____ ###Markdown Cancellazione dei tre elementi consecutivi dal quarto al sesto della lista: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[3:6] = [] lista ###Output _____no_output_____ ###Markdown Inserimento di tre elementi asterisco prima del secondo elemento: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[1:1] = ['*', '*', '*'] lista ###Output _____no_output_____ ###Markdown Aggiunta in coda di tre elementi asterisco: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[len(lista):len(lista)] = ['*', '*', '*'] lista ###Output _____no_output_____ ###Markdown Aggiunta in testa di tre elementi asterisco: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[:0] = ['*', '*', '*'] lista ###Output _____no_output_____ ###Markdown Aggiornamento al valore 0 degli elementi in posizione di indice pari: ###Code lista = [1, 2, 3, 4, 5, 6, 7] lista[::2] = [0, 0, 0, 0] lista ###Output _____no_output_____ ###Markdown Cancellazione di un elemento di una lista con l'operatore `del` L'istruzione: del my_list[some_index] rimuove dalla lista `my_list` l'elemento in posizione di indice `some_index`. Cancellazione del terzo elemento della lista: ###Code lista = [1, 2, 3, 4] del lista[2] lista ###Output _____no_output_____ ###Markdown Cancellazione di più elementi di una lista con l'operatore `del` Le istruzioni: del my_list[start_index:end_index] del my_list[start_index:end_index:step]rimuovono dalla lista `my_list` gli elementi prodotti dall'operazione di *slicing*.Cancellazione degli elementi dal terzo al quinto: ###Code lista = [1, 2, 3, 4, 5, 6, 7, 8] del lista[2:5] lista ###Output _____no_output_____ ###Markdown Cancellazione degli elementi in posizione dispari: ###Code lista = [0, 1, 2, 3, 4, 5, 6, 7] del lista[1::2] lista ###Output _____no_output_____ ###Markdown Assegnamento multiplo L'istruzione di assegnamento: (my_var1, my_var2, ..., my_varN) = my_sequence assegna alle N variabili specificate nella tupla a sinistra i valori della *sequenza* `my_sequence` specificata a destra.Le parentesi sono opzionali: my_var1, my_var2, ..., my_varN = my_sequence**NOTA BENE**: `my_sequence` deve avere dimensione pari a N.Assegnamento dei quattro caratteri della stringa "1234" a quattro variabili diverse: ###Code v1, v2, v3, v4 = "1234" v4 ###Output _____no_output_____ ###Markdown Assegnamento dei quattro elementi della lista `[1,2,3,4]` a quattro variabili diverse: ###Code v1, v2, v3, v4 = [1,2,3,4] v4 ###Output _____no_output_____ ###Markdown Assegnamento dei quattro elementi della tupla `(1,2,3,4)` a quattro variabili diverse: ###Code v1, v2, v3, v4 = 1,2,3,4 ###Output _____no_output_____ ###Markdown Scambiare il valore tra due variabili: ###Code v1,v2 = v2,v1 v2 ###Output _____no_output_____ ###Markdown Scandire una lista di tuple di due elementi stampando ogni volta i due elementi separatamente: ###Code lista = [(1, 2), (3, 4), (5, 6)] for (a,b) in lista: print(str(a)+' '+str(b)) ###Output 1 2 3 4 5 6 ###Markdown List comprehension L'istruzione: [some_expression for element in my_sequence if condition] equivale a scrivere: for element in my_sequence: if condition: some_expression con la differenza che i valori restituiti da `some_expression` vengono restituiti tutti in un oggetto di tipo `list`.**NB**: la clausola if è opzionale.Data una lista, scrivere la list comprehension che produce la lista degli elementi di valore pari incrementati di 1: ###Code lista = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [element+1 for element in lista if element % 2 == 0] ###Output _____no_output_____ ###Markdown Data una lista, scrivere la list comprehension che produce la lista dei caratteri concatenati alla cifra 1: ###Code stringa = 'ciao' [e+"1" for e in stringa] ###Output _____no_output_____ ###Markdown La list comprehension nella sua sintassi più generale: [some_expression for e1 in my_seq1 for e2 in my_se2 ... for eN in my_seqN if condition] equivale a scrivere: for e1 in my_seq1: for e2 in my_seq2: ... for eN in my_seqN: if condition: some_expression Scrivere la list comprehension che produce la lista delle stringhe ottenute combinando tra di loro in tutti i modi possibili i caratteri della stringa, gli elementi (valori interi) della lista e gli elementi (caratteri) della tupla: ###Code stringa = 'ciao' lista = [1, 2, 3, 4] tupla = ('a', 'b', 'c') [x+str(y)+z for x in stringa for y in lista for z in tupla] ###Output _____no_output_____
align_your_own.ipynb
###Markdown So, show me how to align two vector spaces for myself! No problem. We're going to run through the example given in the README again, and show you how to learn your own transformation to align the French vector space to the Russian vector space.First, let's define a few simple functions... ###Code import numpy as np from fasttext import FastVector # from https://stackoverflow.com/questions/21030391/how-to-normalize-array-numpy def normalized(a, axis=-1, order=2): """Utility function to normalize the rows of a numpy array.""" l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2==0] = 1 return a / np.expand_dims(l2, axis) def make_training_matrices(source_dictionary, target_dictionary, bilingual_dictionary): """ Source and target dictionaries are the FastVector objects of source/target languages. bilingual_dictionary is a list of translation pair tuples [(source_word, target_word), ...]. """ source_matrix = [] target_matrix = [] for (source, target) in bilingual_dictionary: if source in source_dictionary and target in target_dictionary: source_matrix.append(source_dictionary[source]) target_matrix.append(target_dictionary[target]) # return training matrices return np.array(source_matrix), np.array(target_matrix) def learn_transformation(source_matrix, target_matrix, normalize_vectors=True): """ Source and target matrices are numpy arrays, shape (dictionary_length, embedding_dimension). These contain paired word vectors from the bilingual dictionary. """ # optionally normalize the training vectors if normalize_vectors: source_matrix = normalized(source_matrix) target_matrix = normalized(target_matrix) # perform the SVD product = np.matmul(source_matrix.transpose(), target_matrix) U, s, V = np.linalg.svd(product) # return orthogonal transformation which aligns source language to the target return np.matmul(U, V) ###Output _____no_output_____ ###Markdown Now we load the French and Russian word vectors, and evaluate the similarity of "chat" and "кот": ###Code # seem to only work for Python 2 fr_dictionary = FastVector(vector_file='wiki.id.vec') ru_dictionary = FastVector(vector_file='wiki.ms.vec') fr_vector = fr_dictionary["keretaapi"] ru_vector = ru_dictionary["melatih"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) fr_vector = fr_dictionary["china"] ru_vector = ru_dictionary["china"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) ###Output 0.06021251543834871 ###Markdown "chat" and "кот" both mean "cat", so they should be highly similar; clearly the two word vector spaces are not yet aligned. To align them, we need a bilingual dictionary of French and Russian translation pairs. As it happens, this is a great opportunity to show you something truly amazing...Many words appear in the vocabularies of more than one language; words like "alberto", "london" and "presse". These words usually mean similar things in each language. Therefore we can form a bilingual dictionary, by simply extracting every word that appears in both the French and Russian vocabularies. ###Code ru_words = set(ru_dictionary.word2id.keys()) fr_words = set(fr_dictionary.word2id.keys()) overlap = list(ru_words & fr_words) bilingual_dictionary = [(entry, entry) for entry in overlap] ###Output _____no_output_____ ###Markdown Let's align the French vectors to the Russian vectors, using only this "free" dictionary that we acquired without any bilingual expert knowledge. ###Code # form the training matrices source_matrix, target_matrix = make_training_matrices( fr_dictionary, ru_dictionary, bilingual_dictionary) # learn and apply the transformation transform = learn_transformation(source_matrix, target_matrix) fr_dictionary.apply_transform(transform) ###Output _____no_output_____ ###Markdown Finally, we re-evaluate the similarity of "chat" and "кот": ###Code fr_vector = fr_dictionary["keretaapi"] ru_vector = ru_dictionary["melatih"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) fr_vector = fr_dictionary["china"] ru_vector = ru_dictionary["china"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) ###Output 0.7430311431667744 ###Markdown So, show me how to align two vector spaces for myself! No problem. We're going to run through the example given in the README again, and show you how to learn your own transformation to align the French vector space to the Russian vector space.First, let's define a few simple functions... ###Code import numpy as np from fasttext import FastVector # from https://stackoverflow.com/questions/21030391/how-to-normalize-array-numpy def normalized(a, axis=-1, order=2): """Utility function to normalize the rows of a numpy array.""" l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2==0] = 1 return a / np.expand_dims(l2, axis) def make_training_matrices(source_dictionary, target_dictionary, bilingual_dictionary): """ Source and target dictionaries are the FastVector objects of source/target languages. bilingual_dictionary is a list of translation pair tuples [(source_word, target_word), ...]. """ source_matrix = [] target_matrix = [] for (source, target) in bilingual_dictionary: if source in source_dictionary and target in target_dictionary: source_matrix.append(source_dictionary[source]) target_matrix.append(target_dictionary[target]) # return training matrices return np.array(source_matrix), np.array(target_matrix) def learn_transformation(source_matrix, target_matrix, normalize_vectors=True): """ Source and target matrices are numpy arrays, shape (dictionary_length, embedding_dimension). These contain paired word vectors from the bilingual dictionary. """ # optionally normalize the training vectors if normalize_vectors: source_matrix = normalized(source_matrix) target_matrix = normalized(target_matrix) # perform the SVD product = np.matmul(source_matrix.transpose(), target_matrix) U, s, V = np.linalg.svd(product) # return orthogonal transformation which aligns source language to the target return np.matmul(U, V) ###Output _____no_output_____ ###Markdown Now we load the French and Russian word vectors, and evaluate the similarity of "chat" and "кот": ###Code fr_dictionary = FastVector(vector_file='wiki.fr.vec') ru_dictionary = FastVector(vector_file='wiki.ru.vec') fr_vector = fr_dictionary["chat"] ru_vector = ru_dictionary["кот"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) ###Output reading word vectors from wiki.fr.vec reading word vectors from wiki.ru.vec 0.0238620125217 ###Markdown "chat" and "кот" both mean "cat", so they should be highly similar; clearly the two word vector spaces are not yet aligned. To align them, we need a bilingual dictionary of French and Russian translation pairs. As it happens, this is a great opportunity to show you something truly amazing...Many words appear in the vocabularies of more than one language; words like "alberto", "london" and "presse". These words usually mean similar things in each language. Therefore we can form a bilingual dictionary, by simply extracting every word that appears in both the French and Russian vocabularies. ###Code ru_words = set(ru_dictionary.word2id.keys()) fr_words = set(fr_dictionary.word2id.keys()) overlap = list(ru_words & fr_words) bilingual_dictionary = [(entry, entry) for entry in overlap] ###Output _____no_output_____ ###Markdown Let's align the French vectors to the Russian vectors, using only this "free" dictionary that we acquired without any bilingual expert knowledge. ###Code # form the training matrices source_matrix, target_matrix = make_training_matrices( fr_dictionary, ru_dictionary, bilingual_dictionary) # learn and apply the transformation transform = learn_transformation(source_matrix, target_matrix) fr_dictionary.apply_transform(transform) ###Output _____no_output_____ ###Markdown Finally, we re-evaluate the similarity of "chat" and "кот": ###Code fr_vector = fr_dictionary["chat"] ru_vector = ru_dictionary["кот"] print(FastVector.cosine_similarity(fr_vector, ru_vector)) ###Output 0.377368048895
lab/00_Warmup/01_Basic model with a Builtin Algorithm.ipynb
###Markdown Training/Optimizing a basic model with a Built Algorithm Summary:This exercise is about executing all the steps of the Machine Learning development pipeline, using some features SageMaker offers. We'll use here a public dataset called iris. The dataset and the model aren't the focus of this exercise. The idea here is to see how SageMaker can accelerate your work and avoid wasting your time with tasks that aren't related to your business. So, we'll do the following: Table of contents1. [Train/deploy/test a multiclass model using XGBoost](part1)2. [Optimize the model](part2)3. [Run batch predictions](part3)4. [Check the monitoring results, created in **Part 1**](part4) 1. Train deploy and test[(back to top)](contents) Let's start by importing the dataset and visualize it ###Code %matplotlib inline import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import datasets sns.set(color_codes=True) iris = datasets.load_iris() X=iris.data y=iris.target dataset = np.insert(iris.data, 0, iris.target,axis=1) df = pd.DataFrame(data=dataset, columns=['iris_id'] + iris.feature_names) ## We'll also save the dataset, with header, give we'll need to create a baseline for the monitoring df.to_csv('full_dataset.csv', sep=',', index=None) df['species'] = df['iris_id'].map(lambda x: 'setosa' if x == 0 else 'versicolor' if x == 1 else 'virginica') df.head() df.describe() ###Output _____no_output_____ ###Markdown Checking the class distribution ###Code ax = df.groupby(df['species'])['species'].count().plot(kind='bar') x_offset = -0.05 y_offset = 0 for p in ax.patches: b = p.get_bbox() val = "{}".format(int(b.y1 + b.y0)) ax.annotate(val, ((b.x0 + b.x1)/2 + x_offset, b.y1 + y_offset)) ###Output _____no_output_____ ###Markdown Correlation Matrix ###Code corr = df.corr() f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(corr, annot=True, fmt="f", xticklabels=corr.columns.values, yticklabels=corr.columns.values, ax=ax); ###Output _____no_output_____ ###Markdown Pairplots & histograms ###Code sns.pairplot(df.drop(['iris_id'], axis=1), hue='species', size=2.5,diag_kind="kde"); ###Output /usr/local/lib/python3.6/site-packages/seaborn/axisgrid.py:2071: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) ###Markdown Now with linear regression ###Code sns.pairplot(df.drop(['iris_id'], axis=1), kind="reg", hue='species', size=2.5,diag_kind="kde"); ###Output /usr/local/lib/python3.6/site-packages/seaborn/axisgrid.py:2071: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) ###Markdown Fit a plot a kernel density estimate.We can see in this dimension an overlaping between **versicolor** and **virginica**. This is a better representation of what we identified above. ###Code tmp_df = df[(df.iris_id==0.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Blues", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==1.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Greens", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==2.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Reds", shade=False, shade_lowest=False) plt.xlabel('species') ###Output _____no_output_____ ###Markdown Ok. Petal length and petal width have the highest linear correlation with our label. Also, sepal width seems to be useless, considering the linear correlation with our label.Since versicolor and virginica cannot be split linearly, we need a more versatile algorithm to create a better classifier. In this case, we'll use XGBoost, a tree ensable that can give us a good model for predicting the flower. Ok, now let's split the dataset into training and test ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42, stratify=y) ###Output _____no_output_____ ###Markdown First we build the datasets with *X* and *y* for train and test: ###Code iris_train = pd.concat([X_train, y_train], axis = 1, ignore_index = True) iris_test = pd.concat([X_test, y_train], axis = 1, ignore_index = True) ###Output _____no_output_____ ###Markdown Then we save the datasets: ###Code iris_train.to_csv('iris_train.csv', index = False) iris_test.to_csv('iris_test.csv', index = False) ###Output _____no_output_____ ###Markdown Now it's time to train our model with the builtin algorithm XGBoost ###Code import sagemaker import boto3 from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri from sklearn.model_selection import train_test_split role = get_execution_role() prefix='mlops/iris' # Retrieve the default bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() ###Output _____no_output_____ ###Markdown We will launch an async job to create the baseline for the monitoring processA baseline is a what the monitoring will consider **normal**. The training dataset with which you trained the model is usually a good baseline dataset. Note that the training dataset data schema and the inference dataset schema should exactly match (i.e. the number and order of the features).From the training dataset you can ask Amazon SageMaker to suggest a set of baseline constraints and generate descriptive statistics to explore the data. For this example, upload the training dataset that was used to train the pre-trained model included in this example. If you already have it in Amazon S3, you can directly point to it. ###Code from sagemaker.model_monitor import DefaultModelMonitor from sagemaker.model_monitor.dataset_format import DatasetFormat endpoint_monitor = DefaultModelMonitor( role=role, instance_count=1, instance_type='ml.m5.xlarge', volume_size_in_gb=20, max_runtime_in_seconds=3600, ) endpoint_monitor.suggest_baseline( baseline_dataset='full_dataset.csv', dataset_format=DatasetFormat.csv(header=True), output_s3_uri='s3://{}/{}/monitoring/baseline'.format(bucket, prefix), wait=False, logs=False ) ###Output _____no_output_____ ###Markdown Ok. Let's continue, upload the dataset and train the model ###Code # Upload the dataset to an S3 bucket input_train = sagemaker_session.upload_data(path='iris_train.csv', key_prefix='%s/data' % prefix) input_test = sagemaker_session.upload_data(path='iris_test.csv', key_prefix='%s/data' % prefix) train_data = sagemaker.session.s3_input(s3_data=input_train,content_type="csv") test_data = sagemaker.session.s3_input(s3_data=input_test,content_type="csv") ###Output _____no_output_____ ###Markdown **Note:** If there are other packages you want to use with your script, you can include a requirements.txt file in the same directory as your training script to install other dependencies at runtime. Both requirements.txt and your training script should be put in the same folder. You must specify this folder in `source_dir` argument when creating the estimator. ###Code # get the URI for new container container_uri = get_image_uri(boto3.Session().region_name, 'xgboost', repo_version='0.90-2'); # Create the estimator xgb = sagemaker.estimator.Estimator(container_uri, role, train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path='s3://{}/{}/output'.format(bucket, prefix), sagemaker_session=sagemaker_session) # Set the hyperparameters xgb.set_hyperparameters(eta=0.1, max_depth=10, gamma=4, num_class=len(np.unique(y)), alpha=10, min_child_weight=6, silent=0, objective='multi:softmax', num_round=30) ###Output _____no_output_____ ###Markdown Train the model ###Code %%time # takes around 3min 11s xgb.fit({'train': train_data, 'validation': test_data, }) ###Output _____no_output_____ ###Markdown Deploy the model and create an endpoint for itThe following action will: * get the assets from the job we just ran and then create an input in the Models Catalog * create a endpoint configuration (a metadata for our final endpoint) * create an enpoint, which is our model wrapped in a format of a WebService After that we'll be able to call our deployed endpoint for doing predictions ###Code %%time # Enable log capturing in the endpoint data_capture_configuration = sagemaker.model_monitor.data_capture_config.DataCaptureConfig( enable_capture=True, sampling_percentage=100, destination_s3_uri='s3://{}/{}/monitoring'.format(bucket, prefix), sagemaker_session=sagemaker_session ) xgb_predictor = xgb.deploy( initial_instance_count=1, instance_type='ml.m4.xlarge', data_capture_config=data_capture_configuration ) ###Output _____no_output_____ ###Markdown Alright, now that we have deployed the endpoint, with data capturing enabled, it's time to setup the monitorLet's start by configuring our predictor ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score endpoint_name = xgb_predictor.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] xgb_predictor.content_type = 'text/csv' xgb_predictor.serializer = csv_serializer xgb_predictor.deserializer = None ###Output _____no_output_____ ###Markdown *Monitoring*:- We will generate a **baseline** for the monitoring. Yes, we can monitor a deployed model by collecting logs from the payload and the model output. SageMaker can suggest some statistics and constraints that can be used to compare with the collected data. Then we can see some **metrics** related to the **model performance**.- We'll also create a monitoring scheduler. With this scheduler, SageMaker will parse the logs from time to time to compute the metrics we need. Given it takes some time to get the results, we'll check these metrics at the end of the exercice, in **Part 4**. And then, we need to create a **Monitoring Schedule** for our endpoint. The command below will create a cron scheduler that will process the log each hour, then we can see how well our model is going. ###Code from sagemaker.model_monitor import CronExpressionGenerator from time import gmtime, strftime endpoint_monitor.create_monitoring_schedule( endpoint_input=endpoint_name, output_s3_uri='s3://{}/{}/monitoring/reports'.format(bucket, prefix), statistics=endpoint_monitor.baseline_statistics(), constraints=endpoint_monitor.suggested_constraints(), schedule_cron_expression=CronExpressionGenerator.hourly(), enable_cloudwatch_metrics=True, ) ###Output _____no_output_____ ###Markdown Just take a look on the baseline created/sugested by SageMaker for your datasetThis set of statistics and constraints will be used by the Monitoring Scheduler to compare the incoming data with what is considered **normal**. Each invalid payload sent to the endpoint will be considered a violation. ###Code baseline_job = endpoint_monitor.latest_baselining_job schema_df = pd.io.json.json_normalize(baseline_job.baseline_statistics().body_dict["features"]) constraints_df = pd.io.json.json_normalize(baseline_job.suggested_constraints().body_dict["features"]) report_df = schema_df.merge(constraints_df) report_df.drop([ 'numerical_statistics.distribution.kll.buckets', 'numerical_statistics.distribution.kll.sketch.data', 'numerical_statistics.distribution.kll.sketch.parameters.c' ], axis=1).head(10) ###Output _____no_output_____ ###Markdown Start generating some artificial trafficThe cell below starts a thread to send some traffic to the endpoint. Note that you need to stop the kernel to terminate this thread. If there is no traffic, the monitoring jobs are marked as `Failed` since there is no data to process. ###Code import random import time from threading import Thread traffic_generator_running=True def invoke_endpoint_forever(): print('Invoking endpoint forever!') while traffic_generator_running: ## This will create an invalid set of features ## The idea is to violate two monitoring constraings: not_null and data_drift null_idx = random.randint(0,3) sample = [random.randint(500,2000) / 100.0 for i in range(4)] sample[null_idx] = None xgb_predictor.predict(sample) time.sleep(0.5) print('Endpoint invoker has stopped') Thread(target = invoke_endpoint_forever).start() ###Output _____no_output_____ ###Markdown Now, let's do a basic test with the deployed endpointIn this test, we'll use a helper object called predictor. This object is always returned from a **Deploy** call. The predictor is just for testing purposes and we'll not use it inside our real application. ###Code predictions_test = [ float(xgb_predictor.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown Then, let's test the API for our trained modelThis is how your application will call the endpoint. Using boto3 for getting a sagemaker runtime client and then we'll call invoke_endpoint ###Code from sagemaker.predictor import csv_serializer sm = boto3.client('sagemaker-runtime') resp = sm.invoke_endpoint( EndpointName=endpoint_name, ContentType='text/csv', Body=csv_serializer(X_test[0]) ) prediction = float(resp['Body'].read().decode('utf-8')) print('Predicted class: %.1f for [%s]' % (prediction, csv_serializer(X_test[0])) ) ###Output _____no_output_____ ###Markdown 2. Model optimization with Hyperparameter Tuning[(back to top)](contents) Hyperparameter Tuning Jobs A.K.A. Hyperparameter Optimization Let's tune our model before using it for our batch predictionWe know that the iris dataset is an easy challenge. We can achieve a better score with XGBoost. However, we don't want to wast time testing all the possible variations of the hyperparameters in order to optimize the training process.Instead, we'll use the Sagemaker's tuning feature. For that, we'll use the same estimator, but let's create a Tuner and ask it for optimize the model for us. ###Code from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner hyperparameter_ranges = {'eta': ContinuousParameter(0, 1), 'min_child_weight': ContinuousParameter(1, 10), 'alpha': ContinuousParameter(0, 2), 'gamma': ContinuousParameter(0, 10), 'max_depth': IntegerParameter(1, 10)} objective_metric_name = 'validation:merror' tuner = HyperparameterTuner(xgb, objective_metric_name, hyperparameter_ranges, max_jobs=20, max_parallel_jobs=4, objective_type='Minimize') tuner.fit({'train': train_data, 'validation': test_data, }) tuner.wait() job_name = tuner.latest_tuning_job.name attached_tuner = HyperparameterTuner.attach(job_name) xgb_predictor2 = attached_tuner.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') first_endpoint_name = endpoint_name endpoint_name = xgb_predictor2.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown A simple test before we move on ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor2.content_type = 'text/csv' xgb_predictor2.serializer = csv_serializer xgb_predictor2.deserializer = None predictions_test = [ float(xgb_predictor2.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown 3. Batch prediction[(back to top)](contents) Batch transform jobIf you have a file with the samples you want to predict, just upload that file to an S3 bucket and start a Batch Transform job. For this task, you don't need to deploy an endpoint. Sagemaker will create all the resources needed to do this batch prediction, save the results into an S3 bucket and then it will destroy the resources automatically for you ###Code batch_dataset_filename='batch_dataset.csv' with open(batch_dataset_filename, 'w') as csv: for x_ in X: line = ",".join( list(map(str, x_)) ) csv.write( line + "\n" ) csv.flush() csv.close() input_batch = sagemaker_session.upload_data(path=batch_dataset_filename, key_prefix='%s/data' % prefix) import sagemaker # Initialize the transformer object transformer=sagemaker.transformer.Transformer( base_transform_job_name='mlops-iris', model_name=model_name, instance_count=1, instance_type='ml.c4.xlarge', output_path='s3://{}/{}/batch_output'.format(bucket, prefix), ) # To start a transform job: transformer.transform(input_batch, content_type='text/csv', split_type='Line') # Then wait until transform job is completed transformer.wait() import boto3 predictions_filename='iris_predictions.csv' s3 = boto3.client('s3') s3.download_file(bucket, '{}/batch_output/{}.out'.format(prefix, batch_dataset_filename), predictions_filename) df2 = pd.read_csv(predictions_filename, sep=',', encoding='utf-8',header=None, names=[ 'predicted_iris_id']) df3 = df.copy() df3['predicted_iris_id'] = df2['predicted_iris_id'] df3.head() from sklearn.metrics import f1_score score = f1_score(df3['iris_id'], df3['predicted_iris_id'],labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix cnf_matrix = confusion_matrix(df3['iris_id'], df3['predicted_iris_id']) f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(cnf_matrix, annot=True, fmt="f", mask=np.zeros_like(cnf_matrix, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) ###Output _____no_output_____ ###Markdown 4. Check the monitoring results[(back to top)](contents)The HPO took something like 20 minutes to run. The batch prediction, 3-5 more. It is probably enough time to have at least one execution of the monitor schedule. Since we created a thread for generating **invalid** features, we must have some data drift detected in our monitoring. Let's check ###Code mon_executions = endpoint_monitor.list_executions() print("We created a hourly schedule above and it will kick off executions ON the hour (plus 0 - 20 min buffer.\nWe will have to wait till we hit the hour...") while len(mon_executions) == 0: print("Waiting for the 1st execution to happen...") time.sleep(60) mon_executions = endpoint_monitor.list_executions() print('OK. we have %d execution(s) now' % len(mon_executions)) import time import pandas as pd from IPython.display import display, HTML def print_constraint_violations(): violations = endpoint_monitor.latest_monitoring_constraint_violations() pd.set_option('display.max_colwidth', -1) constraints_df = pd.io.json.json_normalize(violations.body_dict["violations"]) display(HTML(constraints_df.head(10).to_html())) while True: resp = mon_executions[-1].describe() status = resp['ProcessingJobStatus'] msg = resp['ExitMessage'] if status == 'InProgress': time.sleep(30) elif status == 'Completed': print("Finished: %s" % msg) print_constraint_violations() break else: print("Error: %s" % msg) break ###Output _____no_output_____ ###Markdown You can also check these metrics on CloudWatch. Just open the CloudWatch console, click on **Metrics**, then select: All -> aws/sagemaker/Endpoints/data-metrics -> Endpoint, MonitoringScheduleUse the *endpoint_monitor* name to filter the metrics Cleaning up ###Code traffic_generator_running=False time.sleep(3) endpoint_monitor.delete_monitoring_schedule() time.sleep(10) # wait for 10 seconds before trying to delete the endpoint xgb_predictor.delete_endpoint() xgb_predictor2.delete_endpoint() ###Output _____no_output_____ ###Markdown Training/Optimizing a basic model with a Built AlgorithmThis exercise is about manually execute all the steps of the Machine Learning development pipeline. We'll use here a public dataset called iris. The dataset and the model aren't the focus of this exercise. The idea here is to see how Sagemaker can accelerate your work and void wasting your time with tasks that aren't related to your business. So, we'll do the following: - Train/deploy/test a multiclass model using XGBoost - Optimize the model - Run batch predictions PART 1 - Train deploy and test Let's start by importing the dataset and visualize it ###Code %matplotlib inline import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import datasets sns.set(color_codes=True) iris = datasets.load_iris() X=iris.data y=iris.target dataset = np.insert(iris.data, 0, iris.target,axis=1) df = pd.DataFrame(data=dataset, columns=['iris_id'] + iris.feature_names) df['species'] = df['iris_id'].map(lambda x: 'setosa' if x == 0 else 'versicolor' if x == 1 else 'virginica') df.head() df.describe() ###Output _____no_output_____ ###Markdown Checking the class distribution ###Code ax = df.groupby(df['species'])['species'].count().plot(kind='bar') x_offset = -0.05 y_offset = 0 for p in ax.patches: b = p.get_bbox() val = "{}".format(int(b.y1 + b.y0)) ax.annotate(val, ((b.x0 + b.x1)/2 + x_offset, b.y1 + y_offset)) ###Output _____no_output_____ ###Markdown Correlation Matrix ###Code corr = df.corr() f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(corr, annot=True, fmt="f", xticklabels=corr.columns.values, yticklabels=corr.columns.values, ax=ax) ###Output _____no_output_____ ###Markdown Pairplots & histograms ###Code sns.pairplot(df.drop(['iris_id'], axis=1), hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Now with linear regression ###Code sns.pairplot(df.drop(['iris_id'], axis=1), kind="reg", hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Fit and plot a univariate or bivariate kernel density estimate. ###Code tmp_df = df[(df.iris_id==0.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Reds", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==2.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Blues", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==1.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Greens", shade=False, shade_lowest=False) plt.xlabel('species') ###Output _____no_output_____ ###Markdown Ok. Petal length and petal width have the highest linear correlation with our label. Also, sepal width seems to be useless, considering the linear correlation with our label.Since versicolor and virginica cannot be split linearly, we need a more versatile algorithm to create a better classifier. In this case, we'll use XGBoost, a tree ensable that can give us a good model for predicting the flower. Ok, now let's split the dataset into training and test ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42, stratify=y) with open('iris_train.csv', 'w') as csv: for x_,y_ in zip(X_train, y_train): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() with open('iris_test.csv', 'w') as csv: for x_,y_ in zip(X_test, y_test): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() ###Output _____no_output_____ ###Markdown Now it's time to train our model with the builtin algorithm XGBoost ###Code import sagemaker import boto3 from sagemaker import get_execution_role from sklearn.model_selection import train_test_split role = get_execution_role() prefix='mlops/iris' # Retrieve the default bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() # Upload the dataset to an S3 bucket input_train = sagemaker_session.upload_data(path='iris_train.csv', key_prefix='%s/data' % prefix) input_test = sagemaker_session.upload_data(path='iris_test.csv', key_prefix='%s/data' % prefix) train_data = sagemaker.session.s3_input(s3_data=input_train,content_type="csv") test_data = sagemaker.session.s3_input(s3_data=input_test,content_type="csv") containers = {'us-west-2': '433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest', 'us-east-1': '811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:latest', 'us-east-2': '825641698319.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest', 'eu-west-1': '685385470294.dkr.ecr.eu-west-1.amazonaws.com/xgboost:latest'} # Create the estimator xgb = sagemaker.estimator.Estimator(containers[boto3.Session().region_name], role, train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path='s3://{}/{}/output'.format(bucket, prefix), sagemaker_session=sagemaker_session) # Set the hyperparameters xgb.set_hyperparameters(eta=0.1, max_depth=10, gamma=4, reg_lambda=10, num_class=len(np.unique(y)), alpha=10, min_child_weight=6, silent=0, objective='multi:softmax', num_round=30) ###Output _____no_output_____ ###Markdown Train the model ###Code %%time # takes around 3min 11s xgb.fit({'train': train_data, 'validation': test_data, }) ###Output _____no_output_____ ###Markdown Deploy the model and create an endpoint for itThe following action will: * get the assets from the job we just ran and then create an input in the Models Catalog * create a endpoint configuration (a metadata for our final endpoint) * create an enpoint, which is our model wrapped in a format of a WebService After that we'll be able to call our deployed endpoint for doing predictions ###Code %%time xgb_predictor = xgb.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') endpoint_name = xgb_predictor.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown Now, let's do a basic test with the deployed endpointIn this test, we'll use a helper object called predictor. This object is always returned from a **Deploy** call. The predictor is just for testing purposes and we'll not use it inside our real application. ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor.content_type = 'text/csv' xgb_predictor.serializer = csv_serializer xgb_predictor.deserializer = None predictions_test = [ float(xgb_predictor.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown Then, let's test the API for our trained modelThis is how your application will call the endpoint. Using boto3 for getting a sagemaker runtime client and then we'll call invoke_endpoint ###Code sm = boto3.client('sagemaker-runtime') from sagemaker.predictor import csv_serializer resp = sm.invoke_endpoint( EndpointName=endpoint_name, ContentType='text/csv', Body=csv_serializer(X_test[0]) ) prediction = float(resp['Body'].read().decode('utf-8')) print('Predicted class: %.1f for [%s]' % (prediction, csv_serializer(X_test[0])) ) ###Output _____no_output_____ ###Markdown PART 2 - Model optimization with Hyperparameter Tuning Hyperparameter Tuning Jobs A.K.A. Hyperparameter Optimization Let's tune our model before using it for our batch predictionWe know that the iris dataset is an easy challenge. We can achieve a better score with XGBoost. However, we don't want to wast time testing all the possible variations of the hyperparameters in order to optimize the training process.Instead, we'll use the Sagemaker's tuning feature. For that, we'll use the same estimator, but let's create a Tuner and ask it for optimize the model for us. ###Code from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner hyperparameter_ranges = {'eta': ContinuousParameter(0, 1), 'min_child_weight': ContinuousParameter(1, 10), 'alpha': ContinuousParameter(0, 2), 'gamma': ContinuousParameter(0, 10), 'max_depth': IntegerParameter(1, 10)} objective_metric_name = 'validation:merror' tuner = HyperparameterTuner(xgb, objective_metric_name, hyperparameter_ranges, max_jobs=20, max_parallel_jobs=4, objective_type='Minimize') tuner.fit({'train': train_data, 'validation': test_data, }) tuner.wait() job_name = tuner.latest_tuning_job.name attached_tuner = HyperparameterTuner.attach(job_name) xgb_predictor2 = attached_tuner.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') first_endpoint_name = endpoint_name endpoint_name = xgb_predictor2.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown A simple test before we move on ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor2.content_type = 'text/csv' xgb_predictor2.serializer = csv_serializer xgb_predictor2.deserializer = None predictions_test = [ float(xgb_predictor2.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown PART 3 - Batch Prediction Batch transform jobIf you have a file with the samples you want to predict, just upload that file to an S3 bucket and start a Batch Transform job. For this task, you don't need to deploy an endpoint. Sagemaker will create all the resources needed to do this batch prediction, save the results into an S3 bucket and then it will destroy the resources automatically for you ###Code batch_dataset_filename='batch_dataset.csv' with open(batch_dataset_filename, 'w') as csv: for x_ in X: line = ",".join( list(map(str, x_)) ) csv.write( line + "\n" ) csv.flush() csv.close() input_batch = sagemaker_session.upload_data(path=batch_dataset_filename, key_prefix='%s/data' % prefix) import sagemaker # Initialize the transformer object transformer=sagemaker.transformer.Transformer( base_transform_job_name='mlops-iris', model_name=model_name, instance_count=1, instance_type='ml.c4.xlarge', output_path='s3://{}/{}/batch_output'.format(bucket, prefix), ) # To start a transform job: transformer.transform(input_batch, content_type='text/csv', split_type='Line') # Then wait until transform job is completed transformer.wait() import boto3 predictions_filename='iris_predictions.csv' s3 = boto3.client('s3') s3.download_file(bucket, '{}/batch_output/{}.out'.format(prefix, batch_dataset_filename), predictions_filename) df2 = pd.read_csv(predictions_filename, sep=',', encoding='utf-8',header=None, names=[ 'predicted_iris_id']) df3 = df.copy() df3['predicted_iris_id'] = df2['predicted_iris_id'] df3.head() from sklearn.metrics import f1_score score = f1_score(df3['iris_id'], df3['predicted_iris_id'],labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix cnf_matrix = confusion_matrix(df3['iris_id'], df3['predicted_iris_id']) f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(cnf_matrix, annot=True, fmt="f", mask=np.zeros_like(cnf_matrix, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) ###Output _____no_output_____ ###Markdown Cleaning up ###Code sagemaker.delete_endpoint(EndpointName=endpoint_name) sagemaker.delete_endpoint(EndpointName=first_endpoint_name) ###Output _____no_output_____ ###Markdown Training/Optimizing a basic model with a Built AlgorithmThis exercise is about manually execute all the steps of the Machine Learning development pipeline. We'll use here a public dataset called iris. The dataset and the model aren't the focus of this exercise. The idea here is to see how Sagemaker can accelerate your work and void wasting your time with tasks that aren't related to your business. So, we'll do the following: - Train/deploy/test a multiclass model using XGBoost - Optimize the model - Run batch predictions PART 1 - Train deploy and test Let's start by importing the dataset and visualize it ###Code %matplotlib inline import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import datasets sns.set(color_codes=True) iris = datasets.load_iris() X=iris.data y=iris.target dataset = np.insert(iris.data, 0, iris.target,axis=1) df = pd.DataFrame(data=dataset, columns=['iris_id'] + iris.feature_names) df['species'] = df['iris_id'].map(lambda x: 'setosa' if x == 0 else 'versicolor' if x == 1 else 'virginica') df.head() df.describe() ###Output _____no_output_____ ###Markdown Checking the class distribution ###Code ax = df.groupby(df['species'])['species'].count().plot(kind='bar') x_offset = -0.05 y_offset = 0 for p in ax.patches: b = p.get_bbox() val = "{}".format(int(b.y1 + b.y0)) ax.annotate(val, ((b.x0 + b.x1)/2 + x_offset, b.y1 + y_offset)) ###Output _____no_output_____ ###Markdown Correlation Matrix ###Code corr = df.corr() f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(corr, annot=True, fmt="f", xticklabels=corr.columns.values, yticklabels=corr.columns.values, ax=ax) ###Output _____no_output_____ ###Markdown Pairplots & histograms ###Code sns.pairplot(df.drop(['iris_id'], axis=1), hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Now with linear regression ###Code sns.pairplot(df.drop(['iris_id'], axis=1), kind="reg", hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Fit and plot a univariate or bivariate kernel density estimate. ###Code tmp_df = df[(df.iris_id==0.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Reds", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==2.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Blues", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==1.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Greens", shade=False, shade_lowest=False) plt.xlabel('species') ###Output _____no_output_____ ###Markdown Ok. Petal length and petal width have the highest linear correlation with our label. Also, sepal width seems to be useless, considering the linear correlation with our label.Since versicolor and virginica cannot be split linearly, we need a more versatile algorithm to create a better classifier. In this case, we'll use XGBoost, a tree ensable that can give us a good model for predicting the flower. Ok, now let's split the dataset into training and test ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42, stratify=y) with open('iris_train.csv', 'w') as csv: for x_,y_ in zip(X_train, y_train): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() with open('iris_test.csv', 'w') as csv: for x_,y_ in zip(X_test, y_test): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() ###Output _____no_output_____ ###Markdown Now it's time to train our model with the builtin algorithm XGBoost ###Code import sagemaker import boto3 from sagemaker import get_execution_role from sklearn.model_selection import train_test_split role = get_execution_role() prefix='mlops/iris' # Retrieve the default bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() # Upload the dataset to an S3 bucket input_train = sagemaker_session.upload_data(path='iris_train.csv', key_prefix='%s/data' % prefix) input_test = sagemaker_session.upload_data(path='iris_test.csv', key_prefix='%s/data' % prefix) train_data = sagemaker.session.s3_input(s3_data=input_train,content_type="csv") test_data = sagemaker.session.s3_input(s3_data=input_test,content_type="csv") containers = {'us-west-2': '433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest', 'us-east-1': '811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:latest', 'us-east-2': '825641698319.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest', 'eu-west-1': '685385470294.dkr.ecr.eu-west-1.amazonaws.com/xgboost:latest'} # Create the estimator xgb = sagemaker.estimator.Estimator(containers[boto3.Session().region_name], role, train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path='s3://{}/{}/output'.format(bucket, prefix), sagemaker_session=sagemaker_session) # Set the hyperparameters xgb.set_hyperparameters(eta=0.1, max_depth=10, gamma=4, reg_lambda=10, num_class=len(np.unique(y)), alpha=10, min_child_weight=6, silent=0, objective='multi:softmax', num_round=30) ###Output _____no_output_____ ###Markdown Train the model ###Code %%time # takes around 3min 11s xgb.fit({'train': train_data, 'validation': test_data, }) ###Output _____no_output_____ ###Markdown Deploy the model and create an endpoint for itThe following action will: * get the assets from the job we just ran and then create an input in the Models Catalog * create a endpoint configuration (a metadata for our final endpoint) * create an enpoint, which is our model wrapped in a format of a WebService After that we'll be able to call our deployed endpoint for doing predictions ###Code %%time xgb_predictor = xgb.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') endpoint_name = xgb_predictor.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown Now, let's do a basic test with the deployed endpointIn this test, we'll use a helper object called predictor. This object is always returned from a **Deploy** call. The predictor is just for testing purposes and we'll not use it inside our real application. ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor.content_type = 'text/csv' xgb_predictor.serializer = csv_serializer xgb_predictor.deserializer = None predictions_test = [ float(xgb_predictor.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown Then, let's test the API for our trained modelThis is how your application will call the endpoint. Using boto3 for getting a sagemaker runtime client and then we'll call invoke_endpoint ###Code sm = boto3.client('sagemaker-runtime') from sagemaker.predictor import csv_serializer resp = sm.invoke_endpoint( EndpointName=endpoint_name, ContentType='text/csv', Body=csv_serializer(X_test[0]) ) prediction = float(resp['Body'].read().decode('utf-8')) print('Predicted class: %.1f for [%s]' % (prediction, csv_serializer(X_test[0])) ) ###Output _____no_output_____ ###Markdown PART 2 - Model optimization with Hyperparameter Tuning Hyperparameter Tuning Jobs A.K.A. Hyperparameter Optimization Let's tune our model before using it for our batch predictionWe know that the iris dataset is an easy challenge. We can achieve a better score with XGBoost. However, we don't want to wast time testing all the possible variations of the hyperparameters in order to optimize the training process.Instead, we'll use the Sagemaker's tuning feature. For that, we'll use the same estimator, but let's create a Tuner and ask it for optimize the model for us. ###Code from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner hyperparameter_ranges = {'eta': ContinuousParameter(0, 1), 'min_child_weight': ContinuousParameter(1, 10), 'alpha': ContinuousParameter(0, 2), 'gamma': ContinuousParameter(0, 10), 'max_depth': IntegerParameter(1, 10)} objective_metric_name = 'validation:merror' tuner = HyperparameterTuner(xgb, objective_metric_name, hyperparameter_ranges, max_jobs=20, max_parallel_jobs=4, objective_type='Minimize') tuner.fit({'train': train_data, 'validation': test_data, }) tuner.wait() job_name = tuner.latest_tuning_job.name attached_tuner = HyperparameterTuner.attach(job_name) xgb_predictor2 = attached_tuner.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') first_endpoint_name = endpoint_name endpoint_name = xgb_predictor2.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown A simple test before we move on ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor2.content_type = 'text/csv' xgb_predictor2.serializer = csv_serializer xgb_predictor2.deserializer = None predictions_test = [ float(xgb_predictor2.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown PART 3 - Batch Prediction Batch transform jobIf you have a file with the samples you want to predict, just upload that file to an S3 bucket and start a Batch Transform job. For this task, you don't need to deploy an endpoint. Sagemaker will create all the resources needed to do this batch prediction, save the results into an S3 bucket and then it will destroy the resources automatically for you ###Code batch_dataset_filename='batch_dataset.csv' with open(batch_dataset_filename, 'w') as csv: for x_ in X: line = ",".join( list(map(str, x_)) ) csv.write( line + "\n" ) csv.flush() csv.close() input_batch = sagemaker_session.upload_data(path=batch_dataset_filename, key_prefix='%s/data' % prefix) import sagemaker # Initialize the transformer object transformer=sagemaker.transformer.Transformer( base_transform_job_name='mlops-iris', model_name=model_name, instance_count=1, instance_type='ml.c4.xlarge', output_path='s3://{}/{}/batch_output'.format(bucket, prefix), ) # To start a transform job: transformer.transform(input_batch, content_type='text/csv', split_type='Line') # Then wait until transform job is completed transformer.wait() import boto3 predictions_filename='iris_predictions.csv' s3 = boto3.client('s3') s3.download_file(bucket, '{}/batch_output/{}.out'.format(prefix, batch_dataset_filename), predictions_filename) df2 = pd.read_csv(predictions_filename, sep=',', encoding='utf-8',header=None, names=[ 'predicted_iris_id']) df3 = df.copy() df3['predicted_iris_id'] = df2['predicted_iris_id'] df3.head() from sklearn.metrics import f1_score score = f1_score(df3['iris_id'], df3['predicted_iris_id'],labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix cnf_matrix = confusion_matrix(df3['iris_id'], df3['predicted_iris_id']) f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(cnf_matrix, annot=True, fmt="f", mask=np.zeros_like(cnf_matrix, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) ###Output _____no_output_____ ###Markdown Cleaning up ###Code xgb_predictor.delete_endpoint() xgb_predictor2.delete_endpoint() ###Output _____no_output_____ ###Markdown Training/Optimizing a basic model with a Built AlgorithmThis exercise is about executing all the steps of the Machine Learning development pipeline, using some features SageMaker offers. We'll use here a public dataset called iris. The dataset and the model aren't the focus of this exercise. The idea here is to see how SageMaker can accelerate your work and avoid wasting your time with tasks that aren't related to your business. So, we'll do the following: - **PART 1** - Train/deploy/test a multiclass model using XGBoost - *Monitoring*: - We will generate a **baseline** for the monitoring. Yes, we can monitor a deployed model by collecting logs from the payload and the model output. SageMaker can suggest some statistics and constraints that can be used to compare with the collected data. Then we can see some **metrics** related to the **model performance**. - We'll also create a monitoring scheduler. With this scheduler, SageMaker will parse the logs from time to time to compute the metrics we need. Given it takes some time to get the results, we'll check these metrics at the end of the exercice, in **Part 4**. - **PART 2** - Optimize the model - **PART 3** - Run batch predictions - **PART 4** - Check the monitoring results, created in **Part 1** PART 1 - Train deploy and test Let's start by importing the dataset and visualize it ###Code %matplotlib inline import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import datasets sns.set(color_codes=True) iris = datasets.load_iris() X=iris.data y=iris.target dataset = np.insert(iris.data, 0, iris.target,axis=1) df = pd.DataFrame(data=dataset, columns=['iris_id'] + iris.feature_names) ## We'll also save the dataset, with header, give we'll need to create a baseline for the monitoring df.to_csv('full_dataset.csv', sep=',', index=None) df['species'] = df['iris_id'].map(lambda x: 'setosa' if x == 0 else 'versicolor' if x == 1 else 'virginica') df.head() df.describe() ###Output _____no_output_____ ###Markdown Checking the class distribution ###Code ax = df.groupby(df['species'])['species'].count().plot(kind='bar') x_offset = -0.05 y_offset = 0 for p in ax.patches: b = p.get_bbox() val = "{}".format(int(b.y1 + b.y0)) ax.annotate(val, ((b.x0 + b.x1)/2 + x_offset, b.y1 + y_offset)) ###Output _____no_output_____ ###Markdown Correlation Matrix ###Code corr = df.corr() f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(corr, annot=True, fmt="f", xticklabels=corr.columns.values, yticklabels=corr.columns.values, ax=ax) ###Output _____no_output_____ ###Markdown Pairplots & histograms ###Code sns.pairplot(df.drop(['iris_id'], axis=1), hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Now with linear regression ###Code sns.pairplot(df.drop(['iris_id'], axis=1), kind="reg", hue='species', size=2.5,diag_kind="kde") ###Output _____no_output_____ ###Markdown Fit a plot a kernel density estimate.We can see in this dimension an overlaping between **versicolor** and **virginica**. This is a better representation of what we identified above. ###Code tmp_df = df[(df.iris_id==0.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Blues", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==1.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Greens", shade=False, shade_lowest=False) tmp_df = df[(df.iris_id==2.0)] sns.kdeplot(tmp_df['petal width (cm)'], tmp_df['petal length (cm)'], bw='silverman', cmap="Reds", shade=False, shade_lowest=False) plt.xlabel('species') ###Output _____no_output_____ ###Markdown Ok. Petal length and petal width have the highest linear correlation with our label. Also, sepal width seems to be useless, considering the linear correlation with our label.Since versicolor and virginica cannot be split linearly, we need a more versatile algorithm to create a better classifier. In this case, we'll use XGBoost, a tree ensable that can give us a good model for predicting the flower. Ok, now let's split the dataset into training and test ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42, stratify=y) with open('iris_train.csv', 'w') as csv: for x_,y_ in zip(X_train, y_train): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() with open('iris_test.csv', 'w') as csv: for x_,y_ in zip(X_test, y_test): line = "%s,%s" % (y_, ",".join( list(map(str, x_)) ) ) csv.write( line + "\n" ) csv.flush() csv.close() ###Output _____no_output_____ ###Markdown Now it's time to train our model with the builtin algorithm XGBoost ###Code import sagemaker import boto3 from sagemaker import get_execution_role from sagemaker.amazon.amazon_estimator import get_image_uri from sklearn.model_selection import train_test_split role = get_execution_role() prefix='mlops/iris' # Retrieve the default bucket sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() ###Output _____no_output_____ ###Markdown We will launch an async job to create the baseline for the monitoring processA baseline is a what the monitoring will consider **normal**. The training dataset with which you trained the model is usually a good baseline dataset. Note that the training dataset data schema and the inference dataset schema should exactly match (i.e. the number and order of the features).From the training dataset you can ask Amazon SageMaker to suggest a set of baseline constraints and generate descriptive statistics to explore the data. For this example, upload the training dataset that was used to train the pre-trained model included in this example. If you already have it in Amazon S3, you can directly point to it. ###Code from sagemaker.model_monitor import DefaultModelMonitor from sagemaker.model_monitor.dataset_format import DatasetFormat endpoint_monitor = DefaultModelMonitor( role=role, instance_count=1, instance_type='ml.m5.xlarge', volume_size_in_gb=20, max_runtime_in_seconds=3600, ) endpoint_monitor.suggest_baseline( baseline_dataset='full_dataset.csv', dataset_format=DatasetFormat.csv(header=True), output_s3_uri='s3://{}/{}/monitoring/baseline'.format(bucket, prefix), wait=False, logs=False ) ###Output _____no_output_____ ###Markdown Ok. Let's continue, upload the dataset and train the model ###Code # Upload the dataset to an S3 bucket input_train = sagemaker_session.upload_data(path='iris_train.csv', key_prefix='%s/data' % prefix) input_test = sagemaker_session.upload_data(path='iris_test.csv', key_prefix='%s/data' % prefix) train_data = sagemaker.session.s3_input(s3_data=input_train,content_type="csv") test_data = sagemaker.session.s3_input(s3_data=input_test,content_type="csv") # get the URI for new container container_uri = get_image_uri(boto3.Session().region_name, 'xgboost', repo_version='0.90-1'); # Create the estimator xgb = sagemaker.estimator.Estimator(container_uri, role, train_instance_count=1, train_instance_type='ml.m4.xlarge', output_path='s3://{}/{}/output'.format(bucket, prefix), sagemaker_session=sagemaker_session) # Set the hyperparameters xgb.set_hyperparameters(eta=0.1, max_depth=10, gamma=4, num_class=len(np.unique(y)), alpha=10, min_child_weight=6, silent=0, objective='multi:softmax', num_round=30) ###Output _____no_output_____ ###Markdown Train the model ###Code %%time # takes around 3min 11s xgb.fit({'train': train_data, 'validation': test_data, }) ###Output _____no_output_____ ###Markdown Deploy the model and create an endpoint for itThe following action will: * get the assets from the job we just ran and then create an input in the Models Catalog * create a endpoint configuration (a metadata for our final endpoint) * create an enpoint, which is our model wrapped in a format of a WebService After that we'll be able to call our deployed endpoint for doing predictions ###Code %%time # Enable log capturing in the endpoint data_capture_configuration = sagemaker.model_monitor.data_capture_config.DataCaptureConfig( enable_capture=True, sampling_percentage=100, destination_s3_uri='s3://{}/{}/monitoring'.format(bucket, prefix), sagemaker_session=sagemaker_session ) xgb_predictor = xgb.deploy( initial_instance_count=1, instance_type='ml.m4.xlarge', data_capture_config=data_capture_configuration ) ###Output _____no_output_____ ###Markdown Alright, now that we have deployed the endpoint, with data capturing enabled, it's time to setup the monitorLet's start by configuring our predictor ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score endpoint_name = xgb_predictor.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] xgb_predictor.content_type = 'text/csv' xgb_predictor.serializer = csv_serializer xgb_predictor.deserializer = None ###Output _____no_output_____ ###Markdown And then, we need to create a **Monitoring Schedule** for our endpoint. The command below will create a cron scheduler that will process the log each hour, then we can see how well our model is going. ###Code from sagemaker.model_monitor import CronExpressionGenerator from time import gmtime, strftime endpoint_monitor.create_monitoring_schedule( endpoint_input=endpoint_name, output_s3_uri='s3://{}/{}/monitoring/reports'.format(bucket, prefix), statistics=endpoint_monitor.baseline_statistics(), constraints=endpoint_monitor.suggested_constraints(), schedule_cron_expression=CronExpressionGenerator.hourly(), enable_cloudwatch_metrics=True, ) ###Output _____no_output_____ ###Markdown Just take a look on the baseline created/sugested by SageMaker for your datasetThis set of statistics and constraints will be used by the Monitoring Scheduler to compare the incoming data with what is considered **normal**. Each invalid payload sent to the endpoint will be considered a violation. ###Code baseline_job = endpoint_monitor.latest_baselining_job schema_df = pd.io.json.json_normalize(baseline_job.baseline_statistics().body_dict["features"]) constraints_df = pd.io.json.json_normalize(baseline_job.suggested_constraints().body_dict["features"]) report_df = schema_df.merge(constraints_df) report_df.drop([ 'numerical_statistics.distribution.kll.buckets', 'numerical_statistics.distribution.kll.sketch.data', 'numerical_statistics.distribution.kll.sketch.parameters.c' ], axis=1).head(10) ###Output _____no_output_____ ###Markdown Start generating some artificial trafficThe cell below starts a thread to send some traffic to the endpoint. Note that you need to stop the kernel to terminate this thread. If there is no traffic, the monitoring jobs are marked as `Failed` since there is no data to process. ###Code import random import time from threading import Thread traffic_generator_running=True def invoke_endpoint_forever(): print('Invoking endpoint forever!') while traffic_generator_running: ## This will create an invalid set of features ## The idea is to violate two monitoring constraings: not_null and data_drift null_idx = random.randint(0,3) sample = [random.randint(500,2000) / 100.0 for i in range(4)] sample[null_idx] = None xgb_predictor.predict(sample) time.sleep(0.5) print('Endpoint invoker has stopped') Thread(target = invoke_endpoint_forever).start() ###Output _____no_output_____ ###Markdown Now, let's do a basic test with the deployed endpointIn this test, we'll use a helper object called predictor. This object is always returned from a **Deploy** call. The predictor is just for testing purposes and we'll not use it inside our real application. ###Code predictions_test = [ float(xgb_predictor.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown Then, let's test the API for our trained modelThis is how your application will call the endpoint. Using boto3 for getting a sagemaker runtime client and then we'll call invoke_endpoint ###Code from sagemaker.predictor import csv_serializer sm = boto3.client('sagemaker-runtime') resp = sm.invoke_endpoint( EndpointName=endpoint_name, ContentType='text/csv', Body=csv_serializer(X_test[0]) ) prediction = float(resp['Body'].read().decode('utf-8')) print('Predicted class: %.1f for [%s]' % (prediction, csv_serializer(X_test[0])) ) ###Output _____no_output_____ ###Markdown PART 2 - Model optimization with Hyperparameter Tuning Hyperparameter Tuning Jobs A.K.A. Hyperparameter Optimization Let's tune our model before using it for our batch predictionWe know that the iris dataset is an easy challenge. We can achieve a better score with XGBoost. However, we don't want to wast time testing all the possible variations of the hyperparameters in order to optimize the training process.Instead, we'll use the Sagemaker's tuning feature. For that, we'll use the same estimator, but let's create a Tuner and ask it for optimize the model for us. ###Code from sagemaker.tuner import IntegerParameter, CategoricalParameter, ContinuousParameter, HyperparameterTuner hyperparameter_ranges = {'eta': ContinuousParameter(0, 1), 'min_child_weight': ContinuousParameter(1, 10), 'alpha': ContinuousParameter(0, 2), 'gamma': ContinuousParameter(0, 10), 'max_depth': IntegerParameter(1, 10)} objective_metric_name = 'validation:merror' tuner = HyperparameterTuner(xgb, objective_metric_name, hyperparameter_ranges, max_jobs=20, max_parallel_jobs=4, objective_type='Minimize') tuner.fit({'train': train_data, 'validation': test_data, }) tuner.wait() job_name = tuner.latest_tuning_job.name attached_tuner = HyperparameterTuner.attach(job_name) xgb_predictor2 = attached_tuner.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge') first_endpoint_name = endpoint_name endpoint_name = xgb_predictor2.endpoint model_name = boto3.client('sagemaker').describe_endpoint_config( EndpointConfigName=endpoint_name )['ProductionVariants'][0]['ModelName'] ###Output _____no_output_____ ###Markdown A simple test before we move on ###Code from sagemaker.predictor import csv_serializer from sklearn.metrics import f1_score xgb_predictor2.content_type = 'text/csv' xgb_predictor2.serializer = csv_serializer xgb_predictor2.deserializer = None predictions_test = [ float(xgb_predictor2.predict(x).decode('utf-8')) for x in X_test] score = f1_score(y_test,predictions_test,labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) ###Output _____no_output_____ ###Markdown PART 3 - Batch Prediction Batch transform jobIf you have a file with the samples you want to predict, just upload that file to an S3 bucket and start a Batch Transform job. For this task, you don't need to deploy an endpoint. Sagemaker will create all the resources needed to do this batch prediction, save the results into an S3 bucket and then it will destroy the resources automatically for you ###Code batch_dataset_filename='batch_dataset.csv' with open(batch_dataset_filename, 'w') as csv: for x_ in X: line = ",".join( list(map(str, x_)) ) csv.write( line + "\n" ) csv.flush() csv.close() input_batch = sagemaker_session.upload_data(path=batch_dataset_filename, key_prefix='%s/data' % prefix) import sagemaker # Initialize the transformer object transformer=sagemaker.transformer.Transformer( base_transform_job_name='mlops-iris', model_name=model_name, instance_count=1, instance_type='ml.c4.xlarge', output_path='s3://{}/{}/batch_output'.format(bucket, prefix), ) # To start a transform job: transformer.transform(input_batch, content_type='text/csv', split_type='Line') # Then wait until transform job is completed transformer.wait() import boto3 predictions_filename='iris_predictions.csv' s3 = boto3.client('s3') s3.download_file(bucket, '{}/batch_output/{}.out'.format(prefix, batch_dataset_filename), predictions_filename) df2 = pd.read_csv(predictions_filename, sep=',', encoding='utf-8',header=None, names=[ 'predicted_iris_id']) df3 = df.copy() df3['predicted_iris_id'] = df2['predicted_iris_id'] df3.head() from sklearn.metrics import f1_score score = f1_score(df3['iris_id'], df3['predicted_iris_id'],labels=[0.0,1.0,2.0],average='micro') print('F1 Score(micro): %.1f' % (score * 100.0)) %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix cnf_matrix = confusion_matrix(df3['iris_id'], df3['predicted_iris_id']) f, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(cnf_matrix, annot=True, fmt="f", mask=np.zeros_like(cnf_matrix, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) ###Output _____no_output_____ ###Markdown PART 4 - Checking the monitoring resultsThe HPO took something like 20 minutes to run. The batch prediction, 3-5 more. It is probably enough time to have at least one execution of the monitor schedule. Since we created a thread for generating **invalid** features, we must have some data drift detected in our monitoring. Let's check ###Code mon_executions = endpoint_monitor.list_executions() print("We created a hourly schedule above and it will kick off executions ON the hour (plus 0 - 20 min buffer.\nWe will have to wait till we hit the hour...") while len(mon_executions) == 0: print("Waiting for the 1st execution to happen...") time.sleep(60) mon_executions = endpoint_monitor.list_executions() print('OK. we have %d execution(s) now' % len(mon_executions)) import time tries=5 constraints_df = None while tries > 0: tries -= 1 try: violations = endpoint_monitor.latest_monitoring_constraint_violations() pd.set_option('display.max_colwidth', -1) constraints_df = pd.io.json.json_normalize(violations.body_dict["violations"]) tries=0 except Exception as e: time.sleep(2) constraints_df.head(10) ###Output _____no_output_____ ###Markdown You can also check these metrics on CloudWatch. Just open the CloudWatch console, click on **Metrics**, then select: All -> aws/sagemaker/Endpoints/data-metrics -> Endpoint, MonitoringScheduleUse the *endpoint_monitor* name to filter the metrics Cleaning up ###Code traffic_generator_running=False time.sleep(3) endpoint_monitor.delete_monitoring_schedule() time.sleep(10) # wait for 10 seconds before trying to delete the endpoint xgb_predictor.delete_endpoint() xgb_predictor2.delete_endpoint() ###Output _____no_output_____
pandas/03.03-Operations-in-Pandas.ipynb
###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!**No changes were made to the contents of this notebook from the original.* Operating on Data in Pandas One of the essential pieces of NumPy is the ability to perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.).Pandas inherits much of this functionality from NumPy, and the ufuncs that we introduced in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) are key to this.Pandas includes a couple useful twists, however: for unary operations like negation and trigonometric functions, these ufuncs will *preserve index and column labels* in the output, and for binary operations such as addition and multiplication, Pandas will automatically *align indices* when passing the objects to the ufunc.This means that keeping the context of data and combining data from different sources–both potentially error-prone tasks with raw NumPy arrays–become essentially foolproof ones with Pandas.We will additionally see that there are well-defined operations between one-dimensional ``Series`` structures and two-dimensional ``DataFrame`` structures. Ufuncs: Index PreservationBecause Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas ``Series`` and ``DataFrame`` objects.Let's start by defining a simple ``Series`` and ``DataFrame`` on which to demonstrate this: ###Code import pandas as pd import numpy as np rng = np.random.RandomState(42) ser = pd.Series(rng.randint(0, 10, 4)) ser df = pd.DataFrame(rng.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D']) df ###Output _____no_output_____ ###Markdown If we apply a NumPy ufunc on either of these objects, the result will be another Pandas object *with the indices preserved:* ###Code np.exp(ser) ###Output _____no_output_____ ###Markdown Or, for a slightly more complex calculation: ###Code np.sin(df * np.pi / 4) ###Output _____no_output_____ ###Markdown Any of the ufuncs discussed in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) can be used in a similar manner. UFuncs: Index AlignmentFor binary operations on two ``Series`` or ``DataFrame`` objects, Pandas will align indices in the process of performing the operation.This is very convenient when working with incomplete data, as we'll see in some of the examples that follow. Index alignment in SeriesAs an example, suppose we are combining two different data sources, and find only the top three US states by *area* and the top three US states by *population*: ###Code area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 'California': 423967}, name='area') population = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127}, name='population') ###Output _____no_output_____ ###Markdown Let's see what happens when we divide these to compute the population density: ###Code population / area ###Output _____no_output_____ ###Markdown The resulting array contains the *union* of indices of the two input arrays, which could be determined using standard Python set arithmetic on these indices: ###Code area.index | population.index ###Output _____no_output_____ ###Markdown Any item for which one or the other does not have an entry is marked with ``NaN``, or "Not a Number," which is how Pandas marks missing data (see further discussion of missing data in [Handling Missing Data](03.04-Missing-Values.ipynb)).This index matching is implemented this way for any of Python's built-in arithmetic expressions; any missing values are filled in with NaN by default: ###Code A = pd.Series([2, 4, 6], index=[0, 1, 2]) B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + B ###Output _____no_output_____ ###Markdown If using NaN values is not the desired behavior, the fill value can be modified using appropriate object methods in place of the operators.For example, calling ``A.add(B)`` is equivalent to calling ``A + B``, but allows optional explicit specification of the fill value for any elements in ``A`` or ``B`` that might be missing: ###Code A.add(B, fill_value=0) ###Output _____no_output_____ ###Markdown Index alignment in DataFrameA similar type of alignment takes place for *both* columns and indices when performing operations on ``DataFrame``s: ###Code A = pd.DataFrame(rng.randint(0, 20, (2, 2)), columns=list('AB')) A B = pd.DataFrame(rng.randint(0, 10, (3, 3)), columns=list('BAC')) B A + B ###Output _____no_output_____ ###Markdown Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result are sorted.As was the case with ``Series``, we can use the associated object's arithmetic method and pass any desired ``fill_value`` to be used in place of missing entries.Here we'll fill with the mean of all values in ``A`` (computed by first stacking the rows of ``A``): ###Code fill = A.stack().mean() A.add(B, fill_value=fill) ###Output _____no_output_____ ###Markdown The following table lists Python operators and their equivalent Pandas object methods:| Python Operator | Pandas Method(s) ||-----------------|---------------------------------------|| ``+`` | ``add()`` || ``-`` | ``sub()``, ``subtract()`` || ``*`` | ``mul()``, ``multiply()`` || ``/`` | ``truediv()``, ``div()``, ``divide()``|| ``//`` | ``floordiv()`` || ``%`` | ``mod()`` || ``**`` | ``pow()`` | Ufuncs: Operations Between DataFrame and SeriesWhen performing operations between a ``DataFrame`` and a ``Series``, the index and column alignment is similarly maintained.Operations between a ``DataFrame`` and a ``Series`` are similar to operations between a two-dimensional and one-dimensional NumPy array.Consider one common operation, where we find the difference of a two-dimensional array and one of its rows: ###Code A = rng.randint(10, size=(3, 4)) A A - A[0] ###Output _____no_output_____ ###Markdown According to NumPy's broadcasting rules (see [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)), subtraction between a two-dimensional array and one of its rows is applied row-wise.In Pandas, the convention similarly operates row-wise by default: ###Code df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] ###Output _____no_output_____ ###Markdown If you would instead like to operate column-wise, you can use the object methods mentioned earlier, while specifying the ``axis`` keyword: ###Code df.subtract(df['R'], axis=0) ###Output _____no_output_____ ###Markdown Note that these ``DataFrame``/``Series`` operations, like the operations discussed above, will automatically align indices between the two elements: ###Code halfrow = df.iloc[0, ::2] halfrow df - halfrow ###Output _____no_output_____ ###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!**No changes were made to the contents of this notebook from the original.* Operating on Data in Pandas One of the essential pieces of NumPy is the ability to perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.).Pandas inherits much of this functionality from NumPy, and the ufuncs that we introduced in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) are key to this.Pandas includes a couple useful twists, however: for unary operations like negation and trigonometric functions, these ufuncs will *preserve index and column labels* in the output, and for binary operations such as addition and multiplication, Pandas will automatically *align indices* when passing the objects to the ufunc.This means that keeping the context of data and combining data from different sources–both potentially error-prone tasks with raw NumPy arrays–become essentially foolproof ones with Pandas.We will additionally see that there are well-defined operations between one-dimensional ``Series`` structures and two-dimensional ``DataFrame`` structures. Ufuncs: Index PreservationBecause Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas ``Series`` and ``DataFrame`` objects.Let's start by defining a simple ``Series`` and ``DataFrame`` on which to demonstrate this: ###Code import pandas as pd import numpy as np rng = np.random.RandomState(42) ser = pd.Series(rng.randint(0, 10, 4)) ser df = pd.DataFrame(rng.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D']) df ###Output _____no_output_____ ###Markdown If we apply a NumPy ufunc on either of these objects, the result will be another Pandas object *with the indices preserved:* ###Code np.exp(ser) ###Output _____no_output_____ ###Markdown Or, for a slightly more complex calculation: ###Code np.sin(df * np.pi / 4) ###Output _____no_output_____ ###Markdown Any of the ufuncs discussed in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) can be used in a similar manner. UFuncs: Index AlignmentFor binary operations on two ``Series`` or ``DataFrame`` objects, Pandas will align indices in the process of performing the operation.This is very convenient when working with incomplete data, as we'll see in some of the examples that follow. Index alignment in SeriesAs an example, suppose we are combining two different data sources, and find only the top three US states by *area* and the top three US states by *population*: ###Code area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 'California': 423967}, name='area') population = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127}, name='population') ###Output _____no_output_____ ###Markdown Let's see what happens when we divide these to compute the population density: ###Code population / area ###Output _____no_output_____ ###Markdown The resulting array contains the *union* of indices of the two input arrays, which could be determined using standard Python set arithmetic on these indices: ###Code area.index | population.index ###Output _____no_output_____ ###Markdown Any item for which one or the other does not have an entry is marked with ``NaN``, or "Not a Number," which is how Pandas marks missing data (see further discussion of missing data in [Handling Missing Data](03.04-Missing-Values.ipynb)).This index matching is implemented this way for any of Python's built-in arithmetic expressions; any missing values are filled in with NaN by default: ###Code A = pd.Series([2, 4, 6], index=[0, 1, 2]) B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + B ###Output _____no_output_____ ###Markdown If using NaN values is not the desired behavior, the fill value can be modified using appropriate object methods in place of the operators.For example, calling ``A.add(B)`` is equivalent to calling ``A + B``, but allows optional explicit specification of the fill value for any elements in ``A`` or ``B`` that might be missing: ###Code A.add(B, fill_value=0) ###Output _____no_output_____ ###Markdown Index alignment in DataFrameA similar type of alignment takes place for *both* columns and indices when performing operations on ``DataFrame``s: ###Code A = pd.DataFrame(rng.randint(0, 20, (2, 2)), columns=list('AB')) A B = pd.DataFrame(rng.randint(0, 10, (3, 3)), columns=list('BAC')) B A + B ###Output _____no_output_____ ###Markdown Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result are sorted.As was the case with ``Series``, we can use the associated object's arithmetic method and pass any desired ``fill_value`` to be used in place of missing entries.Here we'll fill with the mean of all values in ``A`` (computed by first stacking the rows of ``A``): ###Code fill = A.stack().mean() A.add(B, fill_value=fill) ###Output _____no_output_____ ###Markdown The following table lists Python operators and their equivalent Pandas object methods:| Python Operator | Pandas Method(s) ||-----------------|---------------------------------------|| ``+`` | ``add()`` || ``-`` | ``sub()``, ``subtract()`` || ``*`` | ``mul()``, ``multiply()`` || ``/`` | ``truediv()``, ``div()``, ``divide()``|| ``//`` | ``floordiv()`` || ``%`` | ``mod()`` || ``**`` | ``pow()`` | Ufuncs: Operations Between DataFrame and SeriesWhen performing operations between a ``DataFrame`` and a ``Series``, the index and column alignment is similarly maintained.Operations between a ``DataFrame`` and a ``Series`` are similar to operations between a two-dimensional and one-dimensional NumPy array.Consider one common operation, where we find the difference of a two-dimensional array and one of its rows: ###Code A = rng.randint(10, size=(3, 4)) A A - A[0] ###Output _____no_output_____ ###Markdown According to NumPy's broadcasting rules (see [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)), subtraction between a two-dimensional array and one of its rows is applied row-wise.In Pandas, the convention similarly operates row-wise by default: ###Code df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] ###Output _____no_output_____ ###Markdown If you would instead like to operate column-wise, you can use the object methods mentioned earlier, while specifying the ``axis`` keyword: ###Code df.subtract(df['R'], axis=0) ###Output _____no_output_____ ###Markdown Note that these ``DataFrame``/``Series`` operations, like the operations discussed above, will automatically align indices between the two elements: ###Code halfrow = df.iloc[0, ::2] halfrow df - halfrow ###Output _____no_output_____ ###Markdown *This notebook contains an excerpt from the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).**The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!**No changes were made to the contents of this notebook from the original.* Operating on Data in Pandas One of the essential pieces of NumPy is the ability to perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.).Pandas inherits much of this functionality from NumPy, and the ufuncs that we introduced in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) are key to this.Pandas includes a couple useful twists, however: for unary operations like negation and trigonometric functions, these ufuncs will *preserve index and column labels* in the output, and for binary operations such as addition and multiplication, Pandas will automatically *align indices* when passing the objects to the ufunc.This means that keeping the context of data and combining data from different sources–both potentially error-prone tasks with raw NumPy arrays–become essentially foolproof ones with Pandas.We will additionally see that there are well-defined operations between one-dimensional ``Series`` structures and two-dimensional ``DataFrame`` structures. Ufuncs: Index PreservationBecause Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas ``Series`` and ``DataFrame`` objects.Let's start by defining a simple ``Series`` and ``DataFrame`` on which to demonstrate this: ###Code import pandas as pd import numpy as np rng = np.random.RandomState(42) ser = pd.Series(rng.randint(0, 10, 4)) ser df = pd.DataFrame(rng.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D']) df ###Output _____no_output_____ ###Markdown If we apply a NumPy ufunc on either of these objects, the result will be another Pandas object *with the indices preserved:* ###Code np.exp(ser) ###Output _____no_output_____ ###Markdown Or, for a slightly more complex calculation: ###Code np.sin(df * np.pi / 4) ###Output _____no_output_____ ###Markdown Any of the ufuncs discussed in [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb) can be used in a similar manner. UFuncs: Index AlignmentFor binary operations on two ``Series`` or ``DataFrame`` objects, Pandas will align indices in the process of performing the operation.This is very convenient when working with incomplete data, as we'll see in some of the examples that follow. Index alignment in SeriesAs an example, suppose we are combining two different data sources, and find only the top three US states by *area* and the top three US states by *population*: ###Code area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 'California': 423967}, name='area') population = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127}, name='population') ###Output _____no_output_____ ###Markdown Let's see what happens when we divide these to compute the population density: ###Code population / area ###Output _____no_output_____ ###Markdown The resulting array contains the *union* of indices of the two input arrays, which could be determined using standard Python set arithmetic on these indices: ###Code area.index | population.index ###Output _____no_output_____ ###Markdown Any item for which one or the other does not have an entry is marked with ``NaN``, or "Not a Number," which is how Pandas marks missing data (see further discussion of missing data in [Handling Missing Data](03.04-Missing-Values.ipynb)).This index matching is implemented this way for any of Python's built-in arithmetic expressions; any missing values are filled in with NaN by default: ###Code A = pd.Series([2, 4, 6], index=[0, 1, 2]) B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + B ###Output _____no_output_____ ###Markdown If using NaN values is not the desired behavior, the fill value can be modified using appropriate object methods in place of the operators.For example, calling ``A.add(B)`` is equivalent to calling ``A + B``, but allows optional explicit specification of the fill value for any elements in ``A`` or ``B`` that might be missing: ###Code A.add(B, fill_value=0) ###Output _____no_output_____ ###Markdown Index alignment in DataFrameA similar type of alignment takes place for *both* columns and indices when performing operations on ``DataFrame``s: ###Code A = pd.DataFrame(rng.randint(0, 20, (2, 2)), columns=list('AB')) A B = pd.DataFrame(rng.randint(0, 10, (3, 3)), columns=list('BAC')) B A + B ###Output _____no_output_____ ###Markdown Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result are sorted.As was the case with ``Series``, we can use the associated object's arithmetic method and pass any desired ``fill_value`` to be used in place of missing entries.Here we'll fill with the mean of all values in ``A`` (computed by first stacking the rows of ``A``): ###Code fill = A.stack().mean() A.add(B, fill_value=fill) ###Output _____no_output_____ ###Markdown The following table lists Python operators and their equivalent Pandas object methods:| Python Operator | Pandas Method(s) ||-----------------|---------------------------------------|| ``+`` | ``add()`` || ``-`` | ``sub()``, ``subtract()`` || ``*`` | ``mul()``, ``multiply()`` || ``/`` | ``truediv()``, ``div()``, ``divide()``|| ``//`` | ``floordiv()`` || ``%`` | ``mod()`` || ``**`` | ``pow()`` | Ufuncs: Operations Between DataFrame and SeriesWhen performing operations between a ``DataFrame`` and a ``Series``, the index and column alignment is similarly maintained.Operations between a ``DataFrame`` and a ``Series`` are similar to operations between a two-dimensional and one-dimensional NumPy array.Consider one common operation, where we find the difference of a two-dimensional array and one of its rows: ###Code A = rng.randint(10, size=(3, 4)) A A - A[0] ###Output _____no_output_____ ###Markdown According to NumPy's broadcasting rules (see [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)), subtraction between a two-dimensional array and one of its rows is applied row-wise.In Pandas, the convention similarly operates row-wise by default: ###Code df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] ###Output _____no_output_____ ###Markdown If you would instead like to operate column-wise, you can use the object methods mentioned earlier, while specifying the ``axis`` keyword: ###Code df.subtract(df['R'], axis=0) ###Output _____no_output_____ ###Markdown Note that these ``DataFrame``/``Series`` operations, like the operations discussed above, will automatically align indices between the two elements: ###Code halfrow = df.iloc[0, ::2] halfrow df - halfrow ###Output _____no_output_____
database/tasks/How to plot interaction effects of treatments/Python, using Matplotlib and Seaborn.ipynb
###Markdown ---author: Krtin Juneja ([email protected])--- The solution below uses an example dataset about the teeth of 10 guinea pigs at three Vitamin C dosage levels (in mg) with two delivery methods (orange juice vs. ascorbic acid). (See how to quickly load some sample data.) ###Code from rdatasets import data df = data('ToothGrowth') ###Output _____no_output_____ ###Markdown To plot the interaction effects among tooth length, supplement, and dosage, we can use the `pointplot` function in the Seaborn package. ###Code import seaborn as sns import matplotlib.pyplot as plt sns.pointplot(x='dose',y='len',hue='supp',data=df) plt.legend(loc='lower right') # Default is upper right, which overlaps the data here. plt.show() ###Output _____no_output_____
notebooks/4_PandasDataWrangling.ipynb
###Markdown Data Wrangling Contents:* String formatting (f-strings)* Regular expressions (regex)* Pandas (Reading/writing CSV) String formatting Instead of writing a series of `print()` statements with multiple arguments, or concatenating (by `+`) strings, you can also use a Python string formatting method, called `f-strings`. More information can be read in PEP 498: https://www.python.org/dev/peps/pep-0498/ You can define a string as a template by inserting `{ }` characters with a variable name or expression in between. For this to work, you have to type an `f` in front of the `'`, `"` or `"""` start of the string definition. When defined, the string will read with the string value of the variable or the expression filled in. ```pythonname = "Joe"text = f"My name is {name}."```Again, if you need a `'` or `"` in your expression, use the other variant in the Python source code to declare the string. Writing:```pythonf'This is my {example}.'```is equivalent to:```pythonf"This is my {example}."``` ###Code name = "Joe" text = f"My name is {name}." print(text) day = "Monday" weather = "Sunny" n_messages = 8 test_dict = {'test': 'test_value'} text = f""" Today is {day}. The weather is {weather.lower()} and you have {n_messages} unread messages. The first three letters of the weekday: {day[:3]} An example expression is: {15 ** 2 = } """ text = f'Test by selecting key: {test_dict["test"]}' print(text) ###Output _____no_output_____ ###Markdown --- Regular expressions Using regular expressions can be very useful when working with texts. It is a powerful search mechanism by which you can search on patterns, instead of 'exact matches'. But, they can be difficult to grasp, at first sight.A **regular expression**, for instance, allows you to substitute all digits in a text, following another text sequence, or to find all urls, phone numbers, or email addresses. Or any text, that meets a particular condition.See the Python manual for the `re` module for more info: https://docs.python.org/3/library/re.htmlYou can/should use a cheatsheet when writing a regular expression. A nice website to write and test them is: https://regex101.com/. Some examples of commonly used expressions:* `\d` for all digits 0-9* `\w` for any word character* `[abc]` for a set of characters (here: a, b, c)* `.` any character* `?` the preceding character/pattern 0 or 1 times* `*` the preceding character/pattern 0 or multiple times* `+` the preceding character/pattern 1 or multiple times* `{1,2}` 1 or 2 times* `^` the start of the string* `$` the end of the string* `|` or* `()` capture group (only return this part)In many text editors (e.g. VSCode) there is also an option to search (and replace) with the help of regular expressions. Python has a regex module built in. When working with a regular expression, you have to import it first: ###Code import re ###Output _____no_output_____ ###Markdown You can use a regular expression for **finding** occurences in a text. Let's say we want to filter out all web urls in a text: ###Code text = """ There are various search engines on the web. There is https://www.google.com/, but also https://www.bing.com/. A more privacy friendly alternative is https://duckduckgo.com/. And who remembers http://www.altavista.com/? """ re.findall(r'https?://.+?/', text) # Copied from https://www.imdb.com/search/title/?groups=top_250&sort=user_rating text = """ 1. The Shawshank Redemption (1994) 12 | 142 min | Drama 9,3 Rate this 80 Metascore Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency. Director: Frank Darabont | Stars: Tim Robbins, Morgan Freeman, Bob Gunton, William Sadler Votes: 2.355.643 | Gross: $28.34M 2. The Godfather (1972) 16 | 175 min | Crime, Drama 9,2 Rate this 100 Metascore An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son. Director: Francis Ford Coppola | Stars: Marlon Brando, Al Pacino, James Caan, Diane Keaton Votes: 1.630.157 | Gross: $134.97M 3. The Dark Knight (2008) 16 | 152 min | Action, Crime, Drama 9,0 Rate this 84 Metascore When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice. Director: Christopher Nolan | Stars: Christian Bale, Heath Ledger, Aaron Eckhart, Michael Caine Votes: 2.315.134 | Gross: $534.86M """ titles = re.findall(r'\d{1,2}\. (.+)', text) titles ###Output _____no_output_____ ###Markdown QuizTry to get a list of all directors. And the gross income. ###Code # All directors # Gross income ###Output _____no_output_____ ###Markdown Or, you can use a regular expression to **replace** a character sequence. This is an equivalent to the `.replace()` function, but allows more variance in the string matching. ###Code text = """ Tim Robbins Morgan Freeman Bob Gunton William Sadler Marlon Brando Al Pacino James Caan Diane Keaton Christian Bale Heath Ledger Aaron Eckhart Michael Caine """ # Hint: test this with https://regex101.com/ new_text = re.sub(r"(?:(\w)\w+) (\w+)", r"\1. \2", text) print(new_text) ###Output _____no_output_____ ###Markdown --- Data wrangling with Pandas CSV (in Pandas)The other often used file type is CSV (Comma Separated Values), or variants, such as TSV (Tab Separated Values). Python includes another built-in module to deal with these files: the `csv` module. But, we will be using the `Pandas` module, the go-to package for data analysis, that you already imported and updated in Notebook 0. A CSV file is similar to an Excel or Google Docs spreadsheet, but more limited in markup and functionality (e.g. you cannot store Excel functions). It is just a text file in which individual entries correspond to lines, and columns are separated by a comma. You can always open a CSV file with a text editor, and this also makes it so easy to store and share data with.For the rest of the notebook we will see how to work with the two main data types in `pandas`: the `DataFrame` and a `Series`.Information on functions and modules of Pandas cannot be found in the Python manual online, as it is an external package. Instead, you can refer to https://pandas.pydata.org/pandas-docs/stable/index.html . `DataFrame`What is a `pandas.DataFrame`? A `DataFrame` is a collection of `Series` having the same length and whose indexes are in sync. A *collection* means that each column of a dataframe is a series. You can also see it as a spreadheet in memory, that also allows for inclusion of Python objects. We first have to import the package. It's a convention to do this like so with Pandas, which makes the elements from this package (classes, functions, methods) available under its abbreviation `pd`: ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Next is loading the data. The following data comes from Wikipedia and was [automatically](https://query.wikidata.org/%0ASELECT%20DISTINCT%20%3FmovieLabel%20%3Fimdb%20%28MIN%28%3FpublicationYear%29%20as%20%3Fyear%29%20%28year%28%3Fdate%29%20as%20%3Faward_year%29%20%28group_concat%28DISTINCT%20%3FdirectorLabel%3Bseparator%3D%22%2C%20%22%29%20as%20%3Fdirectors%20%29%20%28group_concat%28DISTINCT%20%3FcompanyLabel%3Bseparator%3D%22%2C%20%22%29%20as%20%3Fcompanies%29%20%3Fmale_cast%20%3Ffemale_cast%20WHERE%20%7B%0A%20%20%0A%20%20%7B%0A%20%20%3Fmovie%20p%3AP166%20%3Fawardstatement%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP345%20%3Fimdb%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP577%20%3Fpublication%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP57%20%3Fdirector%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP272%20%3Fcompany%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP31%20wd%3AQ11424%20.%0A%20%20%0A%20%20%3Fawardstatement%20ps%3AP166%20wd%3AQ102427%20%3B%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pq%3AP585%20%3Fdate%20.%0A%20%20%7D%0A%20%20%0A%20%20BIND%28year%28%3Fpublication%29%20as%20%3FpublicationYear%29%0A%20%20%0A%20%20%7B%0A%20%20%20%20%20SELECT%20%3Fmovie%20%28COUNT%28%3Fcast_member%29%20AS%20%3Fmale_cast%29%20WHERE%20%7B%0A%20%20%20%20%20%20%3Fmovie%20wdt%3AP161%20%3Fcast_member%20.%0A%20%20%20%20%20%20%3Fcast_member%20wdt%3AP21%20wd%3AQ6581097%20.%0A%20%20%20%20%7D%20GROUP%20BY%20%3Fmovie%0A%7D%20%7B%0A%20%20%20%20SELECT%20%3Fmovie%20%28COUNT%28%3Fcast_member%29%20AS%20%3Ffemale_cast%29%20WHERE%20%7B%0A%20%20%20%20%20%20%3Fmovie%20wdt%3AP161%20%3Fcast_member%20.%0A%20%20%20%20%20%20%3Fcast_member%20wdt%3AP21%20wd%3AQ6581072%20.%0A%20%20%20%20%7D%20GROUP%20BY%20%3Fmovie%0A%20%20%7D%0A%20%20%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%20%0A%20%20%20%20bd%3AserviceParam%20wikibase%3Alanguage%20%22en%22%20.%0A%20%20%20%20%3Fmovie%20rdfs%3Alabel%20%3FmovieLabel%20.%0A%20%20%20%20%3Fdirector%20rdfs%3Alabel%20%3FdirectorLabel%20.%0A%20%20%20%20%3Fcompany%20rdfs%3Alabel%20%3FcompanyLabel%20.%20%0A%20%20%7D%0A%7D%20%0A%0AGROUP%20BY%20%3FmovieLabel%20%3Fimdb%20%3Fdate%20%3Fmale_cast%20%3Ffemale_cast%0AORDER%20BY%20%3Fyear%20) retreived. It is an overview of all movies that have won an Academy Award for Best Picture, including some extra data for the movie: a link to the IMDB, the publication and award year, the director(s), production company and the number of male and female actors in the cast. It can be that this data is incorrect, because this information is not entered in Wikipedia. You can find this file in `data/academyawards.csv`. Download it from the repository and save it in the data folder if you don't have it. Reading in a csv with pandas is easy. We call the `pd.read_csv()` function with the file path as argument. Pandas takes care of opening and closing the file, so a `with` statement is not needed. The contents of the csv file are then read in a Pandas DataFrame object. We can store this in the variable `df`. Calling this variable in a Jypyter Notebook gives back a nicely formatted table with the first and last 5 rows of the file. ###Code df = pd.read_csv('data/academyawards.csv', encoding='utf-8') df ###Output _____no_output_____ ###Markdown Think of a `DataFrame` as an in-memory spreadsheet that you can analyse and manipulate programmatically. Or, think of it as a table in which every line is a data entry, and every column holds specific information on this data.These columns can also be seen as lists of values. They are ordered and the index of an element corresponds with the index of the data entry. The collection of all such columns is what makes the DataFrame. One column in a table is represented by a Pandas `Series`, which collects observations about a given variable. Multiple columns are a `DataFrame`. A DataFrame therefore is a collection of lists (=columns), or `Series`.If you look for other methods on `pd` you can call, you'll also see that there is an `pd.read_excel()` option to read spreadsheets in `.xls` or `.xlsx`. You can also use this, if you have these kind of files. StatisticsNow that we loaded our DataFrame, we can make pandas print some statistics on the file. ###Code df.head(1) # First 5 rows df.tail() # Last 5 rows df.describe() # Descriptive statistics ###Output _____no_output_____ ###Markdown As you can see by what they return, these methods return another DataFrame with some descriptive statistics on the file, such as the number of entries (count), the mean of the numerical values, the standard deviation, minimum and maximum values, and the 25th, 50th, and 75th percentiles. The `.info()` method can also be informative. It gives you information about a dataframe:- how much space does it take in memory?- what is the datatype of each column?- how many records are there?- how many `null` values does each column contain (!)? ###Code df.info() ###Output _____no_output_____ ###Markdown Pandas automatically interprets which datatypes are used in the file, but this is not always correct. Especially if you have empty fields in the DataFrame, any other integers get interpreted as float. Every column has one datatype. You can check them separately by requesting the `.dtypes` argument on the `df`. The 'object' type is a string in this file, 'int64' is an integer. ###Code df.dtypes ###Output _____no_output_____ ###Markdown We expect different datatypes for the description-dataframe: ###Code description_df = df.describe() description_df.dtypes ###Output _____no_output_____ ###Markdown Slicing and selecting `df['column1']`You can select a single column by calling this column name as if the DataFrame was a dictionary. A single column from a DataFrame returns a `Series` object. ###Code df print(type(df['movie'])) df['movie'] ###Output _____no_output_____ ###Markdown The `Series` object is very similar to a `list`: ###Code movies = df['movie'] print("Length:", len(movies)) print() for n, movie in enumerate(movies[:10], 1): print(n, movie, sep='\t') ###Output _____no_output_____ ###Markdown `df[['column1', 'column2']]`We can also slice a DataFrame by calling multiple column names as one list: ###Code df[['movie', 'imdb']] ###Output _____no_output_____ ###Markdown Looping over DataFrames You might expect that if you loop through a DataFrame, you get all the rows. Sadly, it is not that simple, because we now have data in two dimensions. We instead get all the column names (or the first row of the dataframe): ###Code for r in df: print(r) ###Output _____no_output_____ ###Markdown `zip(df['column1', df['column2')`Going over these items in a `for` loop needs a different approach. The built-in `zip()` function ([manual](https://docs.python.org/3/library/functions.htmlzip)) takes two iterables of even length and creates a new iterable of tuples. The number of arguments/iterables that you give to `zip()` determines the length of the tuples. ###Code list1 = ['a', 'b', 'c'] list2 = [1, 2, 3] list(zip(list1, list2)) n = 0 for movie, imdb in zip(df['movie'], df['imdb']): if n > 9: break # stop flooding the Notebook print(movie, "http://www.imdb.com/title/" + imdb, sep='\t') n += 1 ###Output _____no_output_____ ###Markdown `.to_dict(orient='record')`Or, accessing all entries in a convenient way, as a python dictionary for instance, can be done with the `.to_dict(orient='records')` method: ###Code df.head(1) for r in df.to_dict(orient='records'): print(r) print() name = r['movie'] year = r['year'] won = r['award_year'] print("The movie " + name + " was produced in " + str(year) + " and won in " + str(won) + ".") print() break # To not flood the notebook, only print the first ###Output _____no_output_____ ###Markdown `.iterrows()`Or you can use the `.iterrows()` method, which gives you tuples of the index of the row, and the row itself as `Series` object: ###Code for n, r in df.iterrows(): name = r.movie # You can use a dot notation here year = r.year won = r.award_year print(f"The movie {name} was produced in {year} and won in {won}.") print() break # To not flood the notebook, only print the first ###Output _____no_output_____ ###Markdown --- Analysis ###Code df df.mean() ###Output _____no_output_____ ###Markdown You already saw above that you could get statistics by calling `.describe()` on a DataFrame. You can also get these metrics for individual columns. Let's ask the maximum number of male and female actors in the cast of a movie: ###Code df['female_cast'].max() df['male_cast'].max() ###Output _____no_output_____ ###Markdown You can also apply these operations to multiple columns at once. You get a `Series` object back. ###Code df.max() df[['male_cast', 'female_cast']] slice_df = df[['male_cast', 'female_cast']] slice_df.max() ###Output _____no_output_____ ###Markdown To find the corresponding movie title, we can ask Pandas to give us the record in which these maxima occur. This is done through `df.loc`. This works by asking: "Give me all the locations (=rows) for which a value in a specified column is equal to this value". ###Code df df[['male_cast', 'female_cast']].max() df[df['female_cast'] > 10] for column_name, value in df[['male_cast', 'female_cast']].max().items(): print("Movie with maximum for", column_name, value) row = df.loc[df[column_name] == value] print(row.movie) print() ###Output _____no_output_____ ###Markdown Other functions that can be used are for instance `.mean()`, `.median()`, `.std()` and `.sum()`. ###Code df['female_cast'].mean() df['male_cast'].mean() df['female_cast'].sum() df['male_cast'].sum() df ###Output _____no_output_____ ###Markdown Pandas also understands dates, but you have to tell it to interpret a column as such. We can change the `year` column in-place so that it is not interpreted as integer, but as a date object. In this case, since we only have the year available, and not a full date such as `2021-02-22` (YYYY-mm-dd), we have to specify the format. Typing `%Y` as string is shorthand for `YYYY`. It returns a full date, so every month and day are set to January first. ###Code df['year'] = pd.to_datetime(df['year'], format='%Y') df['award_year'] = pd.to_datetime(df['award_year'], format='%Y') df['year'] df ###Output _____no_output_____ ###Markdown PlottingLet's try to make some graphs from our data, for instance the number of male/female actors over time. We now have a year column that is interpreted as time by Pandas. These values can figure as values on a x-axis in a graph. The y-axis would then give info on the number of male and female actors in the movie. First, we set an **index** for the DataFrame. This determines how the data can be accessed. Normally, this is a range of 0 untill the number of rows. But, you can change this, so that we can analyse the dataframe on a time index. ###Code # Select only what we need df_actors = df[['award_year', 'male_cast', 'female_cast']] df_actors df_actors = df_actors.set_index('award_year') df_actors ###Output _____no_output_____ ###Markdown Then simply call `.plot()` on your newly created DataFrame! ###Code df_actors.plot(figsize=(15,10)) ###Output _____no_output_____ ###Markdown There are tons of parameters, functions, methods, transformations you can use on DataFrames and also on this plotting function. Luckily, plenty of guides and examples can be found on the internet. Grouping ###Code df ###Output _____no_output_____ ###Markdown Some directors have won multiple Oscars. To find out which, we have to count the number of rows in the DataFrame that include the same director. There is a Pandas function for this: `.count()`. Calling this on the DataFrame itself would give us the total number of rows only, per column. Therefore, we have to tell Pandas that we want to group by a particular column, say 'directors'. ###Code df.groupby('directors') ###Output _____no_output_____ ###Markdown It does not give back something nicely formatted or interpretable. It's just another Python object. The object returned by `groupby` is a `DataFrameGroupBy` **not** a normal `DataFrame`.However, some methods of the latter work also on the former, e.g. `.head()` and `.tail()`. Let's call the `.count()` on this object: ###Code df.groupby('directors').count() ###Output _____no_output_____ ###Markdown Remember that this counts the numer of rows. As we know that each row is one movie, we can trim this down to: ###Code director_counts = df.groupby('directors').count()['movie'] director_counts ###Output _____no_output_____ ###Markdown Now, get all directors that have won an Oscar more than once by specifying a conditional operator: ###Code director_counts[director_counts > 1] list(director_counts.items()) for i, value in director_counts.items(): print(i, value) ###Output _____no_output_____ ###Markdown Adding a column If we want to get the total number of actors per movie, we have to sum the values from the `male_cast` and `female_cast` columns. You can do this in a for loop, by going over every row (like we saw above), but you can also sum the individual columns. Pandas will then add up the values with the same index and will return a new Series of the same length with the values summed. ###Code df df['male_cast'] + df['female_cast'] total_cast = df['male_cast'] + df['female_cast'] total_cast ###Output _____no_output_____ ###Markdown Then, we add it as a column in our original dataframe. The only requirement for adding a column to a DataFrame is that the length of the Series or list is the same as that of the DataFrame. ###Code df['total_cast'] = total_cast df ###Output _____no_output_____ ###Markdown Optionally, we can sort the DataFrame by column. For instance, from high to low (`ascending=False`) for the newly created `total_cast` column. ###Code df_sorted = df.sort_values('total_cast', ascending=False) df_sorted ###Output _____no_output_____ ###Markdown Saving back the file Use one of the `.to_csv()` or `.to_excel` functions to save the DataFrame. Again, no `with` statement needed, just a file path (and an encoding). ###Code df_sorted.to_csv('stuff/academyawards_sum.csv', encoding='utf-8') df_sorted.to_excel('stuff/academyawards_sum.xlsx') ###Output _____no_output_____ ###Markdown You need to specify `index=False` if you want to prevent a standard index (0,1,2,3...) to be saved in the file as well. ###Code df_sorted.to_csv('stuff/academyawards_sum.csv', encoding='utf-8', index=False) ###Output _____no_output_____ ###Markdown Open the contents in Excel, LibreOffice Calc, or another program to read spreadsheets! --- Data wrangling (example)We can take a look at another example. We consider a dataset of tweets from Elon Musk, SpaceX and Tesla founder, and ask the following questions:* When is Elon most actively tweeting?While this question is a bit trivial, it will allow us to learn how to wrangle data. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Load dataset Let's read in a CSV file containing an export of [Elon Musk's tweets](https://twitter.com/elonmusk), exported from Twitter's API. ###Code dataset_path = 'data/elonmusk_tweets.csv' df = pd.read_csv(dataset_path, encoding='utf-8') df df.info() ###Output _____no_output_____ ###Markdown Let's give this dataset a bit more structure:- The `id` column can be transformed into the dataframe's index, thus enabling us e.g. to select a tweet by id;- The column `created_at` contains a timestamp, thus it can easily be converted into a `datetime` value ###Code df.set_index('id', drop=True, inplace=True) df df.created_at = pd.to_datetime(df.created_at) df.info() df ###Output _____no_output_____ ###Markdown --- Selection Renaming columns An operation on dataframes that you'll find yourself doing very often is to rename the columns. The first way of renaming columns is by manipulating directly the dataframe's index via the `columns` property. ###Code df.columns ###Output _____no_output_____ ###Markdown We can change the column names by assigning to `columns` a list having as values the new column names.**NB**: the size of the list and new number of colums must match! ###Code # here we renamed the column `text` => `tweet` df.columns = ['created_at', 'tweet'] # let's check that the change did take place df.head() ###Output _____no_output_____ ###Markdown The second way of renaming colums is to use the method `rename()` of a dataframe. The `columns` parameter takes a dictionary of mappings between old and new column names.```pythonmapping_dict = { "old_column_name": "new_column_name"}``` ###Code # let's change column `tweet` => `text` df = df.rename(columns={"tweet": "text"}) df.head() ###Output _____no_output_____ ###Markdown **Question**: in which cases is it more convenient to use the second method over the first? Selecting columns ###Code # this selects one single column and returns as a Series df["created_at"].head() type(df["created_at"]) # whereas this syntax selects one single column # but returns a Dataframe df[["created_at"]].head() type(df[["created_at"]]) ###Output _____no_output_____ ###Markdown Selecting rowsFiltering rows in `pandas` is done by means of `[ ]`, which can contain the row number as well as a condition for the selection. ###Code df[0:2] ###Output _____no_output_____ ###Markdown TransformationThe two main functions used to manipulate and transform values in a dataframe are:- `.map()` (on Series only!)- `.apply()`In this section we'll be using both to enrich our datasets with useful information (useful for exploration, for later visualizations, etc.). Add link to original tweet The `map()` method can be called on a column, as well as on the dataframe's index.When passed as a parameter to `map`, an 'anonymous' lambda function `lambda` can be used to transform any value from that column into another one. ###Code df['tweet_link'] = df.index.map(lambda x: f'https://twitter.com/i/web/status/{x}') ###Output _____no_output_____ ###Markdown Or, maybe it is easier with a list comprehension: ###Code df['tweet_link'] = [f'https://twitter.com/i/web/status/{x}' for x in df.index] df ###Output _____no_output_____ ###Markdown Add colums with mentions ###Code import re def find_mentions(tweet_text): """ Find all @ mentions in a tweet and return them as a list. """ regex = r'@[a-zA-Z0-9_]{1,15}' mentions = re.findall(regex, tweet_text) return mentions df['tweet_mentions'] = df.text.apply(find_mentions) df['n_mentions'] = df.tweet_mentions.apply(len) df.head() ###Output _____no_output_____ ###Markdown Add column with week day and hour ###Code def day_of_week(t): """ Get the week day name from a week day integer. """ if t == 0: return "Monday" elif t == 1: return "Tuesday" elif t == 2: return "Wednesday" elif t == 3: return "Thursday" elif t == 4: return "Friday" elif t == 5: return "Saturday" elif t == 6: return "Sunday" df["week_day"] = df.created_at.dt.weekday df["week_day_name"] = df["week_day"].apply(day_of_week) ###Output _____no_output_____ ###Markdown Or, there is a built-in function in Pandas that gives back the day name: ###Code df["week_day_name"] = df.created_at.dt.day_name() df.head(3) ###Output _____no_output_____ ###Markdown Add column with day hour ###Code df.created_at.dt? df.created_at.dt.hour.head() df["day_hour"] = df.created_at.dt.hour display_cols = ['created_at', 'week_day', 'day_hour'] df[display_cols].head(4) ###Output _____no_output_____ ###Markdown Multiple conditions ###Code # AND condition with `&` df[ (df.week_day_name == 'Saturday') & (df.n_mentions == 0) ].shape # Equivalent expression with `query()` df.query("week_day_name == 'Saturday' and n_mentions == 0").shape # OR condition with `|` df[ (df.week_day_name == 'Saturday') | (df.n_mentions == 0) ].shape ###Output _____no_output_____ ###Markdown Aggregation ###Code df.agg({'n_mentions': ['min', 'max', 'sum']}) ###Output _____no_output_____ ###Markdown Grouping ###Code group_by_day = df.groupby('week_day') # The head of a DataFrameGroupBy consists of the first # n records for each group (see `help(grp_by_day.head)`) group_by_day.head(1) ###Output _____no_output_____ ###Markdown `agg` is used to pass an aggregation function to be applied to each group resulting from `groupby`.Here we are interested in how many tweets there are for each group, so we pass `len()` to an 'aggregate'. This is similar to the `.count()` method. ###Code group_by_day.agg(len) ###Output _____no_output_____ ###Markdown However, we are not interested in having the count for all columns. Rather we want to create a new dataframe with renamed column names. ###Code group_by_day.agg({'text': len}).rename({'text': 'tweet_count'}, axis='columns') ###Output _____no_output_____ ###Markdown By label (column) Previously we've added a column indicating on which day of the week a given tweet appeared. ###Code groupby_result_as_series = df.groupby('day_hour')['text'].count() groupby_result_as_series groupby_result_as_df = df.groupby('day_hour')[['text']]\ .count()\ .rename({'text': 'count'}, axis='columns') groupby_result_as_df.head() ###Output _____no_output_____ ###Markdown By series or dict ###Code df.groupby? # here we pass the groups as a series df.groupby(df.created_at.dt.day).agg({'text':len}).head() # here we pass the groups as a series df.groupby(df.created_at.dt.day)[['text']].count().head() df.groupby(df.created_at.dt.hour)[['text']].count().head() ###Output _____no_output_____ ###Markdown By multiple labels (columns) ###Code # Here we group based on the values of two columns # instead of one x = df.groupby(['week_day', 'day_hour'])[['text']].count() x.head() ###Output _____no_output_____ ###Markdown Aggregation methods**Summary**:- `count`: Number of non-NA values- `sum`: Sum of non-NA values- `mean`: Mean of non-NA values- `median`: Arithmetic median of non-NA values- `std`, `var`: standard deviation and variance- `min`, `max`: Minimum and maximum of non-NA values You can also use these in an aggregation functions within a groupby: ###Code df.groupby('week_day').agg( { # each key in this dict specifies # a given column 'n_mentions':[ # the list contains aggregation functions # to be applied to this column 'count', 'mean', 'min', 'max', 'std', 'var' ] } ) ###Output _____no_output_____ ###Markdown Sorting To sort the values of a dataframe we use its `sort_values` method:- `by`: specifies the name of the column to be used for sorting- `ascending` (default = `True`): specifies whether the sorting should be *ascending* (A-Z, 0-9) or `descending` (Z-A, 9-0) ###Code df.sort_values(by='created_at', ascending=True).head() df.sort_values(by='n_mentions', ascending=False).head() ###Output _____no_output_____ ###Markdown SaveBefore continuing with the plotting, let's save our enhanced dataframe, so that we can come back to it without having to redo the same manipulations on it.`pandas` provides a number of handy functions to export dataframes in a variety of formats. Here we use `.to_pickle()` to serialize the dataframe into a binary format, by using behind the scenes Python's `pickle` library. ###Code df.to_pickle("stuff/musk_tweets_enhanced.pickle") ###Output _____no_output_____ ###Markdown Part 2 ###Code df = pd.read_pickle("stuff/musk_tweets_enhanced.pickle") ###Output _____no_output_____ ###Markdown `describe()` The default behavior is to include only column with numerical values ###Code df.describe() ###Output _____no_output_____ ###Markdown A trick to include more values is to exclude the datatype on which it breaks, which in our case is `list`. ###Code df.describe(exclude=[list]) df.created_at.describe(datetime_is_numeric=True) df['week_day_name'] = df['week_day_name'].astype('category') df.describe(exclude=['object']) ###Output _____no_output_____ ###Markdown Plotting ###Code # Not needed in newest Pandas version %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown HistogramsThey are useful to see the distribution of a certain variable in your dataset. ###Code df.groupby(['n_mentions'])[['text']].count() plt.figure(figsize=(10, 6)) plt.hist(df.n_mentions, bins='auto', rwidth=1.0) plt.title('Distribution of the number of mentions per tweet') plt.ylabel("Tweets") plt.xlabel("Mentions (per tweet)") plt.show() plt.figure(figsize=(10, 6)) plt.hist(df.day_hour, bins='auto', rwidth=0.6) plt.title('Distribution of the number of mentions per tweet') plt.ylabel("Tweets") plt.xlabel("Hour of the day") plt.show() df_2017 = df[df.created_at.dt.year == 2017] plt.figure(figsize=(10, 6)) plt.hist(df_2017.day_hour, bins='auto', rwidth=0.6) plt.title('Year 2017') plt.ylabel("Tweets") plt.xlabel("Hour of the day") plt.show() ###Output _____no_output_____ ###Markdown So far we have used directly `matplotlib` to generate our plots.`pandas`'s dataframes provide some methods that directly call `matplotlib`'s API behind the scenes:- `hist()` for histograms- `boxplot()` for boxplots- `plot()` for other types of plots (specified with e.g. `any='scatter'`) By passing the `by` parameter to e.g. `hist()` it is possible to produce one histogram plot of a given variable for each value in another column. Let's see how we can plot the number of mentions by year: ###Code df['year'] = df.created_at.dt.year axes = df.hist(column='day_hour', by='year', figsize=(10,10)) ###Output _____no_output_____ ###Markdown Bar chartsThey are useful to plot categorical data. ###Code plt.bar? tweets_by_weekday = df.groupby(df.created_at.dt.weekday)[['text']].count() week_days = [ "Mon", "Tue", "Wed", "Thur", "Fri", "Sat", "Sun" ] plt.figure(figsize=(8, 6)) # specify the type of plot and the labels # for the y axis (the bars) plt.bar( tweets_by_weekday.index, tweets_by_weekday.text, tick_label=week_days, width=0.5 ) # give a title to the plot plt.title('Elon Musk\'s week on Twitter') # give a label to the axes plt.ylabel("Number of tweets") plt.xlabel("Week day") plt.show() ###Output _____no_output_____ ###Markdown Box plots![box plot explained](https://github.com/bloemj/2022-coding-the-humanities/blob/master/notebooks/images/eda-boxplot.png?raw=1) Outliers, missing valuesAn *outlier* is an observation far from the center of mass of the distribution. It might be an error or a genuine observation: this distinction requires domain knowledge. Outliers infuence the outcomes of several statistics and machine learning methods: it is important to decide how to deal with them.A *missing value* is an observation without a value. There can be many reasons for a missing value: the value might not exist (hence its absence is informative and it should be left empty) or might not be known (hence the value is existing but missing in the dataset and it should be marked as NA).*One way to think about the difference is with this Zen-like koan: An explicit missing value is the presence of an absence; an implicit missing value is the absence of a presence.* ###Code tweets_by_weekday tweets_by_weekday.describe() tweets_by_weekday.boxplot() plt.bar? df.head(3) df[['day_hour']].describe() df[['day_hour']].quantile(.25) df.boxplot? df[['day_hour', 'week_day_name']].boxplot( by='week_day_name', grid=False, figsize=(8,6), fontsize=10 ) # give a title to the plot plt.title('') # give a label to the axes plt.xlabel("Day of the week") plt.show() df[['day_hour', 'week_day']].boxplot( by='week_day', grid=True, # just to show the difference with/without figsize=(8,6), fontsize=10 ) # give a title to the plot plt.title('') # give a label to the axes plt.xlabel("Day of the week") plt.show() ###Output _____no_output_____ ###Markdown Exercise 1.* Create a function that calculates the frequency of hashtags in tweets.* Test it on toy examples, to make sure it works.* Apply it to Elon Musk's tweets.* List the top 10 hashtags in the dataset. ###Code # Your code here. ###Output _____no_output_____ ###Markdown Exercise 2.Read the file `data/adams-hhgttg.txt` and:- Count the number of occurrences per distinct word in the text.- Create a data frame with two columns: word and counts.- Plot the histogram of the word frequencies and think about what is happening. ###Code # Your code here. ###Output _____no_output_____ ###Markdown Data Wrangling Contents:* String formatting (f-strings)* Regular expressions (regex)* Pandas (Reading/writing CSV) String formatting Instead of writing a series of `print()` statements with multiple arguments, or concatenating (by `+`) strings, you can also use a Python string formatting method, called `f-strings`. More information can be read in PEP 498: https://www.python.org/dev/peps/pep-0498/ You can define a string as a template by inserting `{ }` characters with a variable name or expression in between. For this to work, you have to type an `f` in front of the `'`, `"` or `"""` start of the string definition. When defined, the string will read with the string value of the variable or the expression filled in. ```pythonname = "Joe"text = f"My name is {name}."```Again, if you need a `'` or `"` in your expression, use the other variant in the Python source code to declare the string. Writing:```pythonf'This is my {example}.'```is equivalent to:```pythonf"This is my {example}."``` ###Code name = "Joe" text = f"My name is {name}." print(text) day = "Monday" weather = "Sunny" n_messages = 8 test_dict = {'test': 'test_value'} text = f""" Today is {day}. The weather is {weather.lower()} and you have {n_messages} unread messages. The first three letters of the weekday: {day[:3]} An example expression is: {15 ** 2 = } """ text = f'Test by selecting key: {test_dict["test"]}' print(text) ###Output _____no_output_____ ###Markdown --- Regular expressions Using regular expressions can be very useful when working with texts. It is a powerful search mechanism by which you can search on patterns, instead of 'exact matches'. But, they can be difficult to grasp, at first sight.A **regular expression**, for instance, allows you to substitute all digits in a text, following another text sequence, or to find all urls, phone numbers, or email addresses. Or any text, that meets a particular condition.See the Python manual for the `re` module for more info: https://docs.python.org/3/library/re.htmlYou can/should use a cheatsheet when writing a regular expression. A nice website to write and test them is: https://regex101.com/. Some examples of commonly used expressions:* `\d` for all digits 0-9* `\w` for any word character* `[abc]` for a set of characters (here: a, b, c)* `.` any character* `?` the preceding character/pattern 0 or 1 times* `*` the preceding character/pattern 0 or multiple times* `+` the preceding character/pattern 1 or multiple times* `{1,2}` 1 or 2 times* `^` the start of the string* `$` the end of the string* `|` or* `()` capture group (only return this part)In many text editors (e.g. VSCode) there is also an option to search (and replace) with the help of regular expressions. Python has a regex module built in. When working with a regular expression, you have to import it first: ###Code import re ###Output _____no_output_____ ###Markdown You can use a regular expression for **finding** occurences in a text. Let's say we want to filter out all web urls in a text: ###Code text = """ There are various search engines on the web. There is https://www.google.com/, but also https://www.bing.com/. A more privacy friendly alternative is https://duckduckgo.com/. And who remembers http://www.altavista.com/? """ re.findall(r'https?://.+?/', text) # Copied from https://www.imdb.com/search/title/?groups=top_250&sort=user_rating text = """ 1. The Shawshank Redemption (1994) 12 | 142 min | Drama 9,3 Rate this 80 Metascore Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency. Director: Frank Darabont | Stars: Tim Robbins, Morgan Freeman, Bob Gunton, William Sadler Votes: 2.355.643 | Gross: $28.34M 2. The Godfather (1972) 16 | 175 min | Crime, Drama 9,2 Rate this 100 Metascore An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son. Director: Francis Ford Coppola | Stars: Marlon Brando, Al Pacino, James Caan, Diane Keaton Votes: 1.630.157 | Gross: $134.97M 3. The Dark Knight (2008) 16 | 152 min | Action, Crime, Drama 9,0 Rate this 84 Metascore When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice. Director: Christopher Nolan | Stars: Christian Bale, Heath Ledger, Aaron Eckhart, Michael Caine Votes: 2.315.134 | Gross: $534.86M """ titles = re.findall(r'\d{1,2}\. (.+)', text) titles ###Output _____no_output_____ ###Markdown QuizTry to get a list of all directors. And the gross income. ###Code # All directors # Gross income ###Output _____no_output_____ ###Markdown Or, you can use a regular expression to **replace** a character sequence. This is an equivalent to the `.replace()` function, but allows more variance in the string matching. ###Code text = """ Tim Robbins Morgan Freeman Bob Gunton William Sadler Marlon Brando Al Pacino James Caan Diane Keaton Christian Bale Heath Ledger Aaron Eckhart Michael Caine """ # Hint: test this with https://regex101.com/ new_text = re.sub(r"(?:(\w)\w+) (\w+)", r"\1. \2", text) print(new_text) ###Output _____no_output_____ ###Markdown --- Data wrangling with Pandas CSV (in Pandas)The other often used file type is CSV (Comma Separated Values), or variants, such as TSV (Tab Separated Values). Python includes another built-in module to deal with these files: the `csv` module. But, we will be using the `Pandas` module, the go-to package for data analysis, that you already imported and updated in Notebook 0. A CSV file is similar to an Excel or Google Docs spreadsheet, but more limited in markup and functionality (e.g. you cannot store Excel functions). It is just a text file in which individual entries correspond to lines, and columns are separated by a comma. You can always open a CSV file with a text editor, and this also makes it so easy to store and share data with.For the rest of the notebook we will see how to work with the two main data types in `pandas`: the `DataFrame` and a `Series`.Information on functions and modules of Pandas cannot be found in the Python manual online, as it is an external package. Instead, you can refer to https://pandas.pydata.org/pandas-docs/stable/index.html . `DataFrame`What is a `pandas.DataFrame`? A `DataFrame` is a collection of `Series` having the same length and whose indexes are in sync. A *collection* means that each column of a dataframe is a series. You can also see it as a spreadheet in memory, that also allows for inclusion of Python objects. We first have to import the package. It's a convention to do this like so with Pandas, which makes the elements from this package (classes, functions, methods) available under its abbreviation `pd`: ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Next is loading the data. The following data comes from Wikipedia and was [automatically](https://query.wikidata.org/%0ASELECT%20DISTINCT%20%3FmovieLabel%20%3Fimdb%20%28MIN%28%3FpublicationYear%29%20as%20%3Fyear%29%20%28year%28%3Fdate%29%20as%20%3Faward_year%29%20%28group_concat%28DISTINCT%20%3FdirectorLabel%3Bseparator%3D%22%2C%20%22%29%20as%20%3Fdirectors%20%29%20%28group_concat%28DISTINCT%20%3FcompanyLabel%3Bseparator%3D%22%2C%20%22%29%20as%20%3Fcompanies%29%20%3Fmale_cast%20%3Ffemale_cast%20WHERE%20%7B%0A%20%20%0A%20%20%7B%0A%20%20%3Fmovie%20p%3AP166%20%3Fawardstatement%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP345%20%3Fimdb%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP577%20%3Fpublication%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP57%20%3Fdirector%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP272%20%3Fcompany%20%3B%0A%20%20%20%20%20%20%20%20%20wdt%3AP31%20wd%3AQ11424%20.%0A%20%20%0A%20%20%3Fawardstatement%20ps%3AP166%20wd%3AQ102427%20%3B%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pq%3AP585%20%3Fdate%20.%0A%20%20%7D%0A%20%20%0A%20%20BIND%28year%28%3Fpublication%29%20as%20%3FpublicationYear%29%0A%20%20%0A%20%20%7B%0A%20%20%20%20%20SELECT%20%3Fmovie%20%28COUNT%28%3Fcast_member%29%20AS%20%3Fmale_cast%29%20WHERE%20%7B%0A%20%20%20%20%20%20%3Fmovie%20wdt%3AP161%20%3Fcast_member%20.%0A%20%20%20%20%20%20%3Fcast_member%20wdt%3AP21%20wd%3AQ6581097%20.%0A%20%20%20%20%7D%20GROUP%20BY%20%3Fmovie%0A%7D%20%7B%0A%20%20%20%20SELECT%20%3Fmovie%20%28COUNT%28%3Fcast_member%29%20AS%20%3Ffemale_cast%29%20WHERE%20%7B%0A%20%20%20%20%20%20%3Fmovie%20wdt%3AP161%20%3Fcast_member%20.%0A%20%20%20%20%20%20%3Fcast_member%20wdt%3AP21%20wd%3AQ6581072%20.%0A%20%20%20%20%7D%20GROUP%20BY%20%3Fmovie%0A%20%20%7D%0A%20%20%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%20%0A%20%20%20%20bd%3AserviceParam%20wikibase%3Alanguage%20%22en%22%20.%0A%20%20%20%20%3Fmovie%20rdfs%3Alabel%20%3FmovieLabel%20.%0A%20%20%20%20%3Fdirector%20rdfs%3Alabel%20%3FdirectorLabel%20.%0A%20%20%20%20%3Fcompany%20rdfs%3Alabel%20%3FcompanyLabel%20.%20%0A%20%20%7D%0A%7D%20%0A%0AGROUP%20BY%20%3FmovieLabel%20%3Fimdb%20%3Fdate%20%3Fmale_cast%20%3Ffemale_cast%0AORDER%20BY%20%3Fyear%20) retreived. It is an overview of all movies that have won an Academy Award for Best Picture, including some extra data for the movie: a link to the IMDB, the publication and award year, the director(s), production company and the number of male and female actors in the cast. It can be that this data is incorrect, because this information is not entered in Wikipedia. You can find this file in `data/academyawards.csv`. Download it from the repository and save it in the data folder if you don't have it. Reading in a csv with pandas is easy. We call the `pd.read_csv()` function with the file path as argument. Pandas takes care of opening and closing the file, so a `with` statement is not needed. The contents of the csv file are then read in a Pandas DataFrame object. We can store this in the variable `df`. Calling this variable in a Jypyter Notebook gives back a nicely formatted table with the first and last 5 rows of the file. ###Code df = pd.read_csv('data/academyawards.csv', encoding='utf-8') df ###Output _____no_output_____ ###Markdown Think of a `DataFrame` as an in-memory spreadsheet that you can analyse and manipulate programmatically. Or, think of it as a table in which every line is a data entry, and every column holds specific information on this data.These columns can also be seen as lists of values. They are ordered and the index of an element corresponds with the index of the data entry. The collection of all such columns is what makes the DataFrame. One column in a table is represented by a Pandas `Series`, which collects observations about a given variable. Multiple columns are a `DataFrame`. A DataFrame therefore is a collection of lists (=columns), or `Series`.If you look for other methods on `pd` you can call, you'll also see that there is an `pd.read_excel()` option to read spreadsheets in `.xls` or `.xlsx`. You can also use this, if you have these kind of files. StatisticsNow that we loaded our DataFrame, we can make pandas print some statistics on the file. ###Code df.head(1) # First 5 rows df.tail() # Last 5 rows df.describe() # Descriptive statistics ###Output _____no_output_____ ###Markdown As you can see by what they return, these methods return another DataFrame with some descriptive statistics on the file, such as the number of entries (count), the mean of the numerical values, the standard deviation, minimum and maximum values, and the 25th, 50th, and 75th percentiles. The `.info()` method can also be informative. It gives you information about a dataframe:- how much space does it take in memory?- what is the datatype of each column?- how many records are there?- how many `null` values does each column contain (!)? ###Code df.info() ###Output _____no_output_____ ###Markdown Pandas automatically interprets which datatypes are used in the file, but this is not always correct. Especially if you have empty fields in the DataFrame, any other integers get interpreted as float. Every column has one datatype. You can check them separately by requesting the `.dtypes` argument on the `df`. The 'object' type is a string in this file, 'int64' is an integer. ###Code df.dtypes ###Output _____no_output_____ ###Markdown We expect different datatypes for the description-dataframe: ###Code description_df = df.describe() description_df.dtypes ###Output _____no_output_____ ###Markdown Slicing and selecting `df['column1']`You can select a single column by calling this column name as if the DataFrame was a dictionary. A single column from a DataFrame returns a `Series` object. ###Code df print(type(df['movie'])) df['movie'] ###Output _____no_output_____ ###Markdown The `Series` object is very similar to a `list`: ###Code movies = df['movie'] print("Length:", len(movies)) print() for n, movie in enumerate(movies[:10], 1): print(n, movie, sep='\t') ###Output _____no_output_____ ###Markdown `df[['column1', 'column2']]`We can also slice a DataFrame by calling multiple column names as one list: ###Code df[['movie', 'imdb']] ###Output _____no_output_____ ###Markdown Looping over DataFrames `zip(df['column1', df['column2')`Going over these items in a `for` loop needs a different approach. The built-in `zip()` function ([manual](https://docs.python.org/3/library/functions.htmlzip)) takes two iterables of even length and creates a new iterable of tuples. The number of arguments/iterables that you give to `zip()` determines the length of the tuples. ###Code list1 = ['a', 'b', 'c'] list2 = [1, 2, 3] list(zip(list1, list2)) n = 0 for movie, imdb in zip(df['movie'], df['imdb']): if n > 9: break # stop flooding the Notebook print(movie, "http://www.imdb.com/title/" + imdb, sep='\t') n += 1 ###Output _____no_output_____ ###Markdown `.to_dict(orient='record')`Or, accessing all entries in a convenient way, as a python dictionary for instance, can be done with the `.to_dict(orient='records')` method: ###Code df.head(1) for r in df.to_dict(orient='records'): print(r) print() name = r['movie'] year = r['year'] won = r['award_year'] print("The movie " + name + " was produced in " + str(year) + " and won in " + str(won) + ".") print() break # To not flood the notebook, only print the first ###Output _____no_output_____ ###Markdown `.iterrows()`Or you can use the `.iterrows()` method, which gives you tuples of the index of the row, and the row itself as `Series` object: ###Code for n, r in df.iterrows(): name = r.movie # You can use a dot notation here year = r.year won = r.award_year print(f"The movie {name} was produced in {year} and won in {won}.") print() break # To not flood the notebook, only print the first ###Output _____no_output_____ ###Markdown --- Analysis ###Code df df.mean() ###Output _____no_output_____ ###Markdown You already saw above that you could get statistics by calling `.describe()` on a DataFrame. You can also get these metrics for individual columns. Let's ask the maximum number of male and female actors in the cast of a movie: ###Code df['female_cast'].max() df['male_cast'].max() ###Output _____no_output_____ ###Markdown You can also apply these operations to multiple columns at once. You get a `Series` object back. ###Code df.max() df[['male_cast', 'female_cast']] slice_df = df[['male_cast', 'female_cast']] slice_df.max() ###Output _____no_output_____ ###Markdown To find the corresponding movie title, we can ask Pandas to give us the record in which these maxima occur. This is done through `df.loc`. This works by asking: "Give me all the locations (=rows) for which a value in a specified column is equal to this value". ###Code df df[['male_cast', 'female_cast']].max() df[df['female_cast'] > 10] for column_name, value in df[['male_cast', 'female_cast']].max().items(): print("Movie with maximum for", column_name, value) row = df.loc[df[column_name] == value] print(row.movie) print() ###Output _____no_output_____ ###Markdown Other functions that can be used are for instance `.mean()`, `.median()`, `.std()` and `.sum()`. ###Code df['female_cast'].mean() df['male_cast'].mean() df['female_cast'].sum() df['male_cast'].sum() df ###Output _____no_output_____ ###Markdown Pandas also understands dates, but you have to tell it to interpret a column as such. We can change the `year` column in-place so that it is not interpreted as integer, but as a date object. In this case, since we only have the year available, and not a full date such as `2021-02-22` (YYYY-mm-dd), we have to specify the format. Typing `%Y` as string is shorthand for `YYYY`. It returns a full date, so every month and day are set to January first. ###Code df['year'] = pd.to_datetime(df['year'], format='%Y') df['award_year'] = pd.to_datetime(df['award_year'], format='%Y') df['year'] df ###Output _____no_output_____ ###Markdown PlottingLet's try to make some graphs from our data, for instance the number of male/female actors over time. We now have a year column that is interpreted as time by Pandas. These values can figure as values on a x-axis in a graph. The y-axis would then give info on the number of male and female actors in the movie. First, we set an **index** for the DataFrame. This determines how the data can be accessed. Normally, this is a range of 0 untill the number of rows. But, you can change this, so that we can analyse the dataframe on a time index. ###Code # Select only what we need df_actors = df[['award_year', 'male_cast', 'female_cast']] df_actors df_actors = df_actors.set_index('award_year') df_actors ###Output _____no_output_____ ###Markdown Then simply call `.plot()` on your newly created DataFrame! ###Code df_actors.plot(figsize=(15,10)) ###Output _____no_output_____ ###Markdown There are tons of parameters, functions, methods, transformations you can use on DataFrames and also on this plotting function. Luckily, plenty of guides and examples can be found on the internet. Grouping ###Code df ###Output _____no_output_____ ###Markdown Some directors have won multiple Oscars. To find out which, we have to count the number of rows in the DataFrame that include the same director. There is a Pandas function for this: `.count()`. Calling this on the DataFrame itself would give us the total number of rows only, per column. Therefore, we have to tell Pandas that we want to group by a particular column, say 'directors'. ###Code df.groupby('directors') ###Output _____no_output_____ ###Markdown It does not give back something nicely formatted or interpretable. It's just another Python object. The object returned by `groupby` is a `DataFrameGroupBy` **not** a normal `DataFrame`.However, some methods of the latter work also on the former, e.g. `.head()` and `.tail()`. Let's call the `.count()` on this object: ###Code df.groupby('directors').count() ###Output _____no_output_____ ###Markdown Remember that this counts the numer of rows. As we know that each row is one movie, we can trim this down to: ###Code director_counts = df.groupby('directors').count()['movie'] director_counts ###Output _____no_output_____ ###Markdown Now, get all directors that have won an Oscar more than once by specifying a conditional operator: ###Code director_counts[director_counts > 1] list(director_counts.items()) for i, value in director_counts.items(): print(i, value) ###Output _____no_output_____ ###Markdown Adding a column If we want to get the total number of actors per movie, we have to sum the values from the `male_cast` and `female_cast` columns. You can do this in a for loop, by going over every row (like we saw above), but you can also sum the individual columns. Pandas will then add up the values with the same index and will return a new Series of the same length with the values summed. ###Code df df['male_cast'] + df['female_cast'] total_cast = df['male_cast'] + df['female_cast'] total_cast ###Output _____no_output_____ ###Markdown Then, we add it as a column in our original dataframe. The only requirement for adding a column to a DataFrame is that the length of the Series or list is the same as that of the DataFrame. ###Code df['total_cast'] = total_cast df ###Output _____no_output_____ ###Markdown Optionally, we can sort the DataFrame by column. For instance, from high to low (`ascending=False`) for the newly created `total_cast` column. ###Code df_sorted = df.sort_values('total_cast', ascending=False) df_sorted ###Output _____no_output_____ ###Markdown Saving back the file Use one of the `.to_csv()` or `.to_excel` functions to save the DataFrame. Again, no `with` statement needed, just a file path (and an encoding). ###Code df_sorted.to_csv('stuff/academyawards_sum.csv', encoding='utf-8') df_sorted.to_excel('stuff/academyawards_sum.xlsx') ###Output _____no_output_____ ###Markdown You need to specify `index=False` if you want to prevent a standard index (0,1,2,3...) to be saved in the file as well. ###Code df_sorted.to_csv('stuff/academyawards_sum.csv', encoding='utf-8', index=False) ###Output _____no_output_____ ###Markdown Open the contents in Excel, LibreOffice Calc, or another program to read spreadsheets! --- Data wrangling (example)We can take a look at another example. We consider a dataset of tweets from Elon Musk, SpaceX and Tesla founder, and ask the following questions:* When is Elon most actively tweeting?While this question is a bit trivial, it will allow us to learn how to wrangle data. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Load dataset Let's read in a CSV file containing an export of [Elon Musk's tweets](https://twitter.com/elonmusk), exported from Twitter's API. ###Code dataset_path = 'data/elonmusk_tweets.csv' df = pd.read_csv(dataset_path, encoding='utf-8') df df.info() ###Output _____no_output_____ ###Markdown Let's give this dataset a bit more structure:- The `id` column can be transformed into the dataframe's index, thus enabling us e.g. to select a tweet by id;- The column `created_at` contains a timestamp, thus it can easily be converted into a `datetime` value ###Code df.set_index('id', drop=True, inplace=True) df df.created_at = pd.to_datetime(df.created_at) df.info() df ###Output _____no_output_____ ###Markdown --- Selection Renaming columns An operation on dataframes that you'll find yourself doing very often is to rename the columns. The first way of renaming columns is by manipulating directly the dataframe's index via the `columns` property. ###Code df.columns ###Output _____no_output_____ ###Markdown We can change the column names by assigning to `columns` a list having as values the new column names.**NB**: the size of the list and new number of colums must match! ###Code # here we renamed the column `text` => `tweet` df.columns = ['created_at', 'tweet'] # let's check that the change did take place df.head() ###Output _____no_output_____ ###Markdown The second way of renaming colums is to use the method `rename()` of a dataframe. The `columns` parameter takes a dictionary of mappings between old and new column names.```pythonmapping_dict = { "old_column_name": "new_column_name"}``` ###Code # let's change column `tweet` => `text` df = df.rename(columns={"tweet": "text"}) df.head() ###Output _____no_output_____ ###Markdown **Question**: in which cases is it more convenient to use the second method over the first? Selecting columns ###Code # this selects one single column and returns as a Series df["created_at"].head() type(df["created_at"]) # whereas this syntax selects one single column # but returns a Dataframe df[["created_at"]].head() type(df[["created_at"]]) ###Output _____no_output_____ ###Markdown Selecting rowsFiltering rows in `pandas` is done by means of `[ ]`, which can contain the row number as well as a condition for the selection. ###Code df[0:2] ###Output _____no_output_____ ###Markdown TransformationThe two main functions used to manipulate and transform values in a dataframe are:- `.map()` (on Series only!)- `.apply()`In this section we'll be using both to enrich our datasets with useful information (useful for exploration, for later visualizations, etc.). Add link to original tweet The `map()` method can be called on a column, as well as on the dataframe's index.When passed as a parameter to `map`, an 'anonymous' lambda function `lambda` can be used to transform any value from that column into another one. ###Code df['tweet_link'] = df.index.map(lambda x: f'https://twitter.com/i/web/status/{x}') ###Output _____no_output_____ ###Markdown Or, maybe it is easier with a list comprehension: ###Code df['tweet_link'] = [f'https://twitter.com/i/web/status/{x}' for x in df.index] df ###Output _____no_output_____ ###Markdown Add colums with mentions ###Code import re def find_mentions(tweet_text): """ Find all @ mentions in a tweet and return them as a list. """ regex = r'@[a-zA-Z0-9_]{1,15}' mentions = re.findall(regex, tweet_text) return mentions df['tweet_mentions'] = df.text.apply(find_mentions) df['n_mentions'] = df.tweet_mentions.apply(len) df.head() ###Output _____no_output_____ ###Markdown Add column with week day and hour ###Code def day_of_week(t): """ Get the week day name from a week day integer. """ if t == 0: return "Monday" elif t == 1: return "Tuesday" elif t == 2: return "Wednesday" elif t == 3: return "Thursday" elif t == 4: return "Friday" elif t == 5: return "Saturday" elif t == 6: return "Sunday" df["week_day"] = df.created_at.dt.weekday df["week_day_name"] = df["week_day"].apply(day_of_week) ###Output _____no_output_____ ###Markdown Or, there is a built-in function in Pandas that gives back the day name: ###Code df["week_day_name"] = df.created_at.dt.day_name() df.head(3) ###Output _____no_output_____ ###Markdown Add column with day hour ###Code df.created_at.dt? df.created_at.dt.hour.head() df["day_hour"] = df.created_at.dt.hour display_cols = ['created_at', 'week_day', 'day_hour'] df[display_cols].head(4) ###Output _____no_output_____ ###Markdown Multiple conditions ###Code # AND condition with `&` df[ (df.week_day_name == 'Saturday') & (df.n_mentions == 0) ].shape # Equivalent expression with `query()` df.query("week_day_name == 'Saturday' and n_mentions == 0").shape # OR condition with `|` df[ (df.week_day_name == 'Saturday') | (df.n_mentions == 0) ].shape ###Output _____no_output_____ ###Markdown Aggregation ###Code df.agg({'n_mentions': ['min', 'max', 'sum']}) ###Output _____no_output_____ ###Markdown Grouping ###Code group_by_day = df.groupby('week_day') # The head of a DataFrameGroupBy consists of the first # n records for each group (see `help(grp_by_day.head)`) group_by_day.head(1) ###Output _____no_output_____ ###Markdown `agg` is used to pass an aggregation function to be applied to each group resulting from `groupby`.Here we are interested in how many tweets there are for each group, so we pass `len()` to an 'aggregate'. This is similar to the `.count()` method. ###Code group_by_day.agg(len) ###Output _____no_output_____ ###Markdown However, we are not interested in having the count for all columns. Rather we want to create a new dataframe with renamed column names. ###Code group_by_day.agg({'text': len}).rename({'text': 'tweet_count'}, axis='columns') ###Output _____no_output_____ ###Markdown By label (column) Previously we've added a column indicating on which day of the week a given tweet appeared. ###Code groupby_result_as_series = df.groupby('day_hour')['text'].count() groupby_result_as_series groupby_result_as_df = df.groupby('day_hour')[['text']]\ .count()\ .rename({'text': 'count'}, axis='columns') groupby_result_as_df.head() ###Output _____no_output_____ ###Markdown By series or dict ###Code df.groupby? # here we pass the groups as a series df.groupby(df.created_at.dt.day).agg({'text':len}).head() # here we pass the groups as a series df.groupby(df.created_at.dt.day)[['text']].count().head() df.groupby(df.created_at.dt.hour)[['text']].count().head() ###Output _____no_output_____ ###Markdown By multiple labels (columns) ###Code # Here we group based on the values of two columns # instead of one x = df.groupby(['week_day', 'day_hour'])[['text']].count() x.head() ###Output _____no_output_____ ###Markdown Aggregation methods**Summary**:- `count`: Number of non-NA values- `sum`: Sum of non-NA values- `mean`: Mean of non-NA values- `median`: Arithmetic median of non-NA values- `std`, `var`: standard deviation and variance- `min`, `max`: Minimum and maximum of non-NA values You can also use these in an aggregation functions within a groupby: ###Code df.groupby('week_day').agg( { # each key in this dict specifies # a given column 'n_mentions':[ # the list contains aggregation functions # to be applied to this column 'count', 'mean', 'min', 'max', 'std', 'var' ] } ) ###Output _____no_output_____ ###Markdown Sorting To sort the values of a dataframe we use its `sort_values` method:- `by`: specifies the name of the column to be used for sorting- `ascending` (default = `True`): specifies whether the sorting should be *ascending* (A-Z, 0-9) or `descending` (Z-A, 9-0) ###Code df.sort_values(by='created_at', ascending=True).head() df.sort_values(by='n_mentions', ascending=False).head() ###Output _____no_output_____ ###Markdown SaveBefore continuing with the plotting, let's save our enhanced dataframe, so that we can come back to it without having to redo the same manipulations on it.`pandas` provides a number of handy functions to export dataframes in a variety of formats. Here we use `.to_pickle()` to serialize the dataframe into a binary format, by using behind the scenes Python's `pickle` library. ###Code df.to_pickle("stuff/musk_tweets_enhanced.pickle") ###Output _____no_output_____ ###Markdown Part 2 ###Code df = pd.read_pickle("stuff/musk_tweets_enhanced.pickle") ###Output _____no_output_____ ###Markdown `describe()` The default behavior is to include only column with numerical values ###Code df.describe() ###Output _____no_output_____ ###Markdown A trick to include more values is to exclude the datatype on which it breaks, which in our case is `list`. ###Code df.describe(exclude=[list]) df.created_at.describe(datetime_is_numeric=True) df['week_day_name'] = df['week_day_name'].astype('category') df.describe(exclude=['object']) ###Output _____no_output_____ ###Markdown Plotting ###Code # Not needed in newest Pandas version %matplotlib inline import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown HistogramsThey are useful to see the distribution of a certain variable in your dataset. ###Code df.groupby(['n_mentions'])[['text']].count() plt.figure(figsize=(10, 6)) plt.hist(df.n_mentions, bins='auto', rwidth=1.0) plt.title('Distribution of the number of mentions per tweet') plt.ylabel("Tweets") plt.xlabel("Mentions (per tweet)") plt.show() plt.figure(figsize=(10, 6)) plt.hist(df.day_hour, bins='auto', rwidth=0.6) plt.title('Distribution of the number of mentions per tweet') plt.ylabel("Tweets") plt.xlabel("Hour of the day") plt.show() df_2017 = df[df.created_at.dt.year == 2017] plt.figure(figsize=(10, 6)) plt.hist(df_2017.day_hour, bins='auto', rwidth=0.6) plt.title('Year 2017') plt.ylabel("Tweets") plt.xlabel("Hour of the day") plt.show() ###Output _____no_output_____ ###Markdown So far we have used directly `matplotlib` to generate our plots.`pandas`'s dataframes provide some methods that directly call `matplotlib`'s API behind the scenes:- `hist()` for histograms- `boxplot()` for boxplots- `plot()` for other types of plots (specified with e.g. `any='scatter'`) By passing the `by` parameter to e.g. `hist()` it is possible to produce one histogram plot of a given variable for each value in another column. Let's see how we can plot the number of mentions by year: ###Code df['year'] = df.created_at.dt.year axes = df.hist(column='day_hour', by='year', figsize=(10,10)) ###Output _____no_output_____ ###Markdown Bar chartsThey are useful to plot categorical data. ###Code plt.bar? tweets_by_weekday = df.groupby(df.created_at.dt.weekday)[['text']].count() week_days = [ "Mon", "Tue", "Wed", "Thur", "Fri", "Sat", "Sun" ] plt.figure(figsize=(8, 6)) # specify the type of plot and the labels # for the y axis (the bars) plt.bar( tweets_by_weekday.index, tweets_by_weekday.text, tick_label=week_days, width=0.5 ) # give a title to the plot plt.title('Elon Musk\'s week on Twitter') # give a label to the axes plt.ylabel("Number of tweets") plt.xlabel("Week day") plt.show() ###Output _____no_output_____ ###Markdown Box plots![box plot explained](images/eda-boxplot.png) Outliers, missing valuesAn *outlier* is an observation far from the center of mass of the distribution. It might be an error or a genuine observation: this distinction requires domain knowledge. Outliers infuence the outcomes of several statistics and machine learning methods: it is important to decide how to deal with them.A *missing value* is an observation without a value. There can be many reasons for a missing value: the value might not exist (hence its absence is informative and it should be left empty) or might not be known (hence the value is existing but missing in the dataset and it should be marked as NA).*One way to think about the difference is with this Zen-like koan: An explicit missing value is the presence of an absence; an implicit missing value is the absence of a presence.* ###Code tweets_by_weekday tweets_by_weekday.describe() tweets_by_weekday.boxplot() plt.bar? df.head(3) df[['day_hour']].describe() df[['day_hour']].quantile(.25) df.boxplot? df[['day_hour', 'week_day_name']].boxplot( by='week_day_name', grid=False, figsize=(8,6), fontsize=10 ) # give a title to the plot plt.title('') # give a label to the axes plt.xlabel("Day of the week") plt.show() df[['day_hour', 'week_day']].boxplot( by='week_day', grid=True, # just to show the difference with/without figsize=(8,6), fontsize=10 ) # give a title to the plot plt.title('') # give a label to the axes plt.xlabel("Day of the week") plt.show() ###Output _____no_output_____ ###Markdown Exercise 1.* Create a function that calculates the frequency of hashtags in tweets.* Test it on toy examples, to make sure it works.* Apply it to Elon Musk's tweets.* List the top 10 hashtags in the dataset. ###Code # Your code here. ###Output _____no_output_____ ###Markdown Exercise 2.Read the file `data/adams-hhgttg.txt` and:- Count the number of occurrences per distinct word in the text.- Create a data frame with two columns: word and counts.- Plot the histogram of the word frequencies and think about what is happening. ###Code # Your code here. ###Output _____no_output_____
g3-p5-Ajuste-MrvsZ.ipynb
###Markdown Problema 5 En este ejercicio se quiere ver como se comporta la magnitud absoluta en la banda r en función del redshift para las galaxias de la muestra. La magnitud absoluta para cada galaxia se puede calcular usando la aproximación:$$M = m - 25 - 5.log_{10}(\frac{c.z}{H})$$ Ec (1)donde r es la magnitud aparente, c=300000 km/s es la velocidad de la luz y H=75 (km/s)/Mpc la constante de Hubble. En este ejercicio se pide considerar los valores $m_r < 17.5$, por lo tanto se tiene m=r y M=$M_r$. Se comienza importando los datos necesario de la tabla de datos: la magnitud aparente r y el resdhift de cada galaxia. ###Code from math import * import numpy as np import matplotlib.pyplot as plt #import random import seaborn as sns sns.set() #defino la petroMag_r (columna 5) r = np.genfromtxt('Tabla2_g3.csv', delimiter=',', usecols=5) #defino el redshift (columna 6) z = np.genfromtxt('Tabla2_g3.csv', delimiter=',', usecols=6) #calculo magnitud absoluta para cada galaxia c=300000 #km/s H=75 #km/s /Mpc z2=[] Mr=[] for i in range(len(z)): if (-9999 != r[i]) and (r[i] < 17.5): #hay valores de Mr que dan -9999 que no los considero y pido mr<17.5 M = r[i] - 25 - 5 * log10((c * z[i]) / H) z2.append(z[i]) Mr.append(M) else: None #grafico para ver la forma plt.figure(figsize=(11,6)) plt.scatter(z2, Mr, s=20, color='orchid') plt.ylim(-24,-16) plt.title('Magnitud absoluta vs. Redshift') plt.xlabel('z') plt.ylabel('$M_r$') plt.show() ###Output _____no_output_____ ###Markdown Se quiere ajustar los puntos del borde, aquellos que envuelven el resto de puntos. Para ello se realiza un programa para identificarlos.Se comienza dividiendo al resdshinf en n bines y para cada uno de ellos se calcula el valor máximo de la magnitud absoluta en ese intervalo. Luego se grafica ese $M_r$ máximo del intervalo con el valor extremo izquierdo del bin. ###Code n=50 bin_z=np.linspace(min(z2), max(z2), n) Mr_max=[] #lista que va a guardar las Mr máximas z3=[] for i in range(len(bin_z)-1): #recorro los bines, pongo -1 por que sino cuando sume hasta i+1 se rompe lista_i=[] #lista para cada i=bin for j in range(len(z2)): #recorro el z2 if (bin_z[i] <= z2[j]) and (z2[j] < bin_z[i+1]): #condicion para que esté adentro del bin lista_i.append(Mr[j]) #lo agrego a una lista #print(len(lista_i)) if (len(lista_i) != 0): #le indico que no considere estos valores sino no le gusta x=max(lista_i) #busco el máximo para cada bin Mr_max.append(x) z3.append(bin_z[i]) #grafico los valores a ajustar plt.figure(figsize=(11,6)) plt.scatter(z2, Mr, s=20, color='orchid', label='Muestra') plt.scatter(z3, Mr_max, marker='x', color='black', label='Puntos a ajustar') plt.ylim(-24,-16) plt.xlabel('z') plt.ylabel('$M_r$') plt.legend(loc='best') plt.show() ###Output _____no_output_____ ###Markdown Se puede ver que los puntos a ajustar dependen del número de bineado 'n' elegido para el redshift: si son pocos puntos puese ser que no sean suficientes para realizar el ajuste, mientras que si son muchos se introduce mucho ruido en los mismos. Se toma n=50. Se propone para ajustar la envolvente de puntos la Ec (1), donde m (magnitud aparente) es el parámentro a ajustar. ###Code #defino funcion de ajuste def func(m): lista=[] for i in range(len(z3)): lista.append(m-25- 5 * log10((c * z3[i]) / H)) return lista ###Output _____no_output_____ ###Markdown Se le dan distintos valores de m para ver cual es la mejor curva de ajuste: ###Code plt.figure(figsize=(11,6)) plt.scatter(z2, Mr, s=20, color='orchid', label='Muestra') plt.scatter(z3, Mr_max, marker='x', color='black', label='Puntos a ajustar') plt.plot(z3, func(m=17.2), label='m=17.2') plt.plot(z3, func(m=17.3), label='m=17.3') plt.plot(z3, func(m=17.4), label='m=17.4') plt.plot(z3, func(m=17.5), label='m=17.5') plt.plot(z3, func(m=17.6), label='m=17.6') plt.ylim(-24,-16) plt.xlabel('z') plt.ylabel('$M_r$') plt.legend(loc='best') plt.show() ###Output _____no_output_____ ###Markdown Al variar m, la función de ajuste sube y baja en el eje de $M_r$. Para ver cual es la que mejor ajusta a los puntos, se calcula para cada m el valor de $\chi^2$ entre los valores de func(i,m) con Mr_max(i) para cada i en z3. ###Code #funcion chi-cuadrado def chi2(x): chi=0 for i in range(len(z3)): chi=chi+((x[i] - Mr_max[i])**2/Mr_max[i]) return chi #veo los valores para las funciones graficadas print('chi2 para m=17.2:', chi2(func(m=17.2))) print('chi2 para m=17.3:', chi2(func(m=17.3))) print('chi2 para m=17.4:', chi2(func(m=17.4))) print('chi2 para m=17.5:', chi2(func(m=17.5))) print('chi2 para m=17.6:', chi2(func(m=17.6))) ###Output chi2 para m=17.2: -0.19989430498627536 chi2 para m=17.3: -0.19072394317666652 chi2 para m=17.4: -0.22232237135734098 chi2 para m=17.5: -0.29468958952830093 chi2 para m=17.6: -0.40782559768954596
Supriya Kumari1.ipynb
###Markdown Writing Your First Python CodeEstimated time needed: **25** minutes ObjectivesAfter completing this lab you will be able to:* Write basic code in Python* Work with various types of data in Python* Convert the data from one type to another* Use expressions and variables to perform operations Table of Contents Say "Hello" to the world in Python What version of Python are we using? Writing comments in Python Errors in Python Does Python know about your error before it runs your code? Exercise: Your First Program Types of objects in Python Integers Floats Converting from one object type to a different object type Boolean data type Exercise: Types Expressions and Variables Expressions Exercise: Expressions Variables Exercise: Expression and Variables in Python Estimated time needed: 25 min Say "Hello" to the world in Python When learning a new programming language, it is customary to start with an "hello world" example. As simple as it is, this one line of code will ensure that we know how to print a string in output and how to execute code within cells in a notebook. [Tip]: To execute the Python code in the code cell below, click on the cell to select it and press Shift + Enter. ###Code # Try your first Python output print('Hello, Python!') ###Output Hello, Python! ###Markdown After executing the cell above, you should see that Python prints Hello, Python!. Congratulations on running your first Python code! [Tip:] print() is a function. You passed the string 'Hello, Python!' as an argument to instruct Python on what to print. What version of Python are we using? There are two popular versions of the Python programming language in use today: Python 2 and Python 3. The Python community has decided to move on from Python 2 to Python 3, and many popular libraries have announced that they will no longer support Python 2. Since Python 3 is the future, in this course we will be using it exclusively. How do we know that our notebook is executed by a Python 3 runtime? We can look in the top-right hand corner of this notebook and see "Python 3". We can also ask Python directly and obtain a detailed answer. Try executing the following code: ###Code # Check the Python Version import sys print(sys.version) ###Output 3.6.13 | packaged by conda-forge | (default, Feb 19 2021, 05:36:01) [GCC 9.3.0] ###Markdown [Tip:] sys is a built-in module that contains many system-specific parameters and functions, including the Python version in use. Before using it, we must explictly import it. Writing comments in Python In addition to writing code, note that it's always a good idea to add comments to your code. It will help others understand what you were trying to accomplish (the reason why you wrote a given snippet of code). Not only does this help other people understand your code, it can also serve as a reminder to you when you come back to it weeks or months later. To write comments in Python, use the number symbol before writing your comment. When you run your code, Python will ignore everything past the on a given line. ###Code # Practice on writing comments print('Hello, Python!') # This line prints a string print('Hi') ###Output Hello, Python! Hi ###Markdown After executing the cell above, you should notice that This line prints a string did not appear in the output, because it was a comment (and thus ignored by Python). The second line was also not executed because print('Hi') was preceded by the number sign () as well! Since this isn't an explanatory comment from the programmer, but an actual line of code, we might say that the programmer commented out that second line of code. Errors in Python Everyone makes mistakes. For many types of mistakes, Python will tell you that you have made a mistake by giving you an error message. It is important to read error messages carefully to really understand where you made a mistake and how you may go about correcting it.For example, if you spell print as frint, Python will display an error message. Give it a try: ###Code # Print string as error message frint("Hello, Python!") ###Output _____no_output_____ ###Markdown The error message tells you: where the error occurred (more useful in large notebook cells or scripts), and what kind of error it was (NameError) Here, Python attempted to run the function frint, but could not determine what frint is since it's not a built-in function and it has not been previously defined by us either. You'll notice that if we make a different type of mistake, by forgetting to close the string, we'll obtain a different error (i.e., a SyntaxError). Try it below: ###Code # Try to see built-in error message print("Hello, Python!) ###Output _____no_output_____ ###Markdown Does Python know about your error before it runs your code? Python is what is called an interpreted language. Compiled languages examine your entire program at compile time, and are able to warn you about a whole class of errors prior to execution. In contrast, Python interprets your script line by line as it executes it. Python will stop executing the entire program when it encounters an error (unless the error is expected and handled by the programmer, a more advanced subject that we'll cover later on in this course). Try to run the code in the cell below and see what happens: ###Code # Print string and error to see the running order print("This will be printed") frint("This will cause an error") print("This will NOT be printed") ###Output This will be printed ###Markdown Exercise: Your First Program Generations of programmers have started their coding careers by simply printing "Hello, world!". You will be following in their footsteps.In the code cell below, use the print() function to print out the phrase: Hello, world! ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell print("Hello, world") ###Output Hello, world ###Markdown Click here for the solution```pythonprint("Hello, world!")``` Now, let's enhance your code with a comment. In the code cell below, print out the phrase: Hello, world! and comment it with the phrase Print the traditional hello world all in one line of code. ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell print('Hello, world!') #Print the traditional hello world ###Output Hello, world! ###Markdown Click here for the solution```pythonprint("Hello, world!") Print the traditional hello world``` Types of objects in Python Python is an object-oriented language. There are many different types of objects in Python. Let's start with the most common object types: strings, integers and floats. Anytime you write words (text) in Python, you're using character strings (strings for short). The most common numbers, on the other hand, are integers (e.g. -1, 0, 100) and floats, which represent real numbers (e.g. 3.14, -42.0). The following code cells contain some examples. ###Code # Integer 11 # Float 2.14 # String "Hello, Python 101!" ###Output _____no_output_____ ###Markdown You can get Python to tell you the type of an expression by using the built-in type() function. You'll notice that Python refers to integers as int, floats as float, and character strings as str. ###Code # Type of 12 type(12) # Type of 2.14 type(2.14) # Type of "Hello, Python 101!" type("Hello, Python 101!") ###Output _____no_output_____ ###Markdown In the code cell below, use the type() function to check the object type of 12.0. ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell type(12.0) ###Output _____no_output_____ ###Markdown Click here for the solution```pythontype(12.0)``` Integers Here are some examples of integers. Integers can be negative or positive numbers: We can verify this is the case by using, you guessed it, the type() function: ###Code # Print the type of -1 type(-1) # Print the type of 4 type(4) # Print the type of 0 type(0) ###Output _____no_output_____ ###Markdown Floats Floats represent real numbers; they are a superset of integer numbers but also include "numbers with decimals". There are some limitations when it comes to machines representing real numbers, but floating point numbers are a good representation in most cases. You can learn more about the specifics of floats for your runtime environment, by checking the value of sys.float_info. This will also tell you what's the largest and smallest number that can be represented with them.Once again, can test some examples with the type() function: ###Code # Print the type of 1.0 type(1.0) # Notice that 1 is an int, and 1.0 is a float # Print the type of 0.5 type(0.5) # Print the type of 0.56 type(0.56) # System settings about float type sys.float_info ###Output _____no_output_____ ###Markdown Converting from one object type to a different object type You can change the type of the object in Python; this is called typecasting. For example, you can convert an integer into a float (e.g. 2 to 2.0).Let's try it: ###Code # Verify that this is an integer type(2) ###Output _____no_output_____ ###Markdown Converting integers to floatsLet's cast integer 2 to float: ###Code # Convert 2 to a float float(2) # Convert integer 2 to a float and check its type type(float(2)) ###Output _____no_output_____ ###Markdown When we convert an integer into a float, we don't really change the value (i.e., the significand) of the number. However, if we cast a float into an integer, we could potentially lose some information. For example, if we cast the float 1.1 to integer we will get 1 and lose the decimal information (i.e., 0.1): ###Code # Casting 1.1 to integer will result in loss of information int(1.1) ###Output _____no_output_____ ###Markdown Converting from strings to integers or floats Sometimes, we can have a string that contains a number within it. If this is the case, we can cast that string that represents a number into an integer using int(): ###Code # Convert a string into an integer int('1') ###Output _____no_output_____ ###Markdown But if you try to do so with a string that is not a perfect match for a number, you'll get an error. Try the following: ###Code # Convert a string into an integer with error int('1.0') ###Output _____no_output_____ ###Markdown You can also convert strings containing floating point numbers into float objects: ###Code # Convert the string "1.2" into a float float('1.2 people') ###Output _____no_output_____ ###Markdown [Tip:] Note that strings can be represented with single quotes ('1.2') or double quotes ("1.2"), but you can't mix both (e.g., "1.2'). Converting numbers to strings If we can convert strings to numbers, it is only natural to assume that we can convert numbers to strings, right? ###Code # Convert an integer to a string str(1) ###Output _____no_output_____ ###Markdown And there is no reason why we shouldn't be able to make floats into strings as well: ###Code # Convert a float to a string str(1.2) ###Output _____no_output_____ ###Markdown Boolean data type Boolean is another important type in Python. An object of type Boolean can take on one of two values: True or False: ###Code # Value true True ###Output _____no_output_____ ###Markdown Notice that the value True has an uppercase "T". The same is true for False (i.e. you must use the uppercase "F"). ###Code # Value false False ###Output _____no_output_____ ###Markdown When you ask Python to display the type of a boolean object it will show bool which stands for boolean: ###Code # Type of True type(True) # Type of False type(False) ###Output _____no_output_____ ###Markdown We can cast boolean objects to other data types. If we cast a boolean with a value of True to an integer or float we will get a one. If we cast a boolean with a value of False to an integer or float we will get a zero. Similarly, if we cast a 1 to a Boolean, you get a True. And if we cast a 0 to a Boolean we will get a False. Let's give it a try: ###Code # Convert True to int int(True) # Convert 1 to boolean bool(1) # Convert 0 to boolean bool(0) # Convert True to float float(True) ###Output _____no_output_____ ###Markdown Exercise: Types What is the data type of the result of: 6 / 2? ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell type(6/2) ###Output _____no_output_____ ###Markdown Click here for the solution```pythontype(6/2) float``` What is the type of the result of: 6 // 2? (Note the double slash //.) ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell type(6//2) ###Output _____no_output_____ ###Markdown Click here for the solution```pythontype(6//2) int, as the double slashes stand for integer division ``` Expression and Variables Expressions Expressions in Python can include operations among compatible types (e.g., integers and floats). For example, basic arithmetic operations like adding multiple numbers: ###Code # Addition operation expression 43 + 60 + 16 + 41 ###Output _____no_output_____ ###Markdown We can perform subtraction operations using the minus operator. In this case the result is a negative number: ###Code # Subtraction operation expression 50 - 60 ###Output _____no_output_____ ###Markdown We can do multiplication using an asterisk: ###Code # Multiplication operation expression 5 * 5 ###Output _____no_output_____ ###Markdown We can also perform division with the forward slash: ###Code # Division operation expression 25 / 5 # Division operation expression 25 / 6 ###Output _____no_output_____ ###Markdown As seen in the quiz above, we can use the double slash for integer division, where the result is rounded down to the nearest integer: ###Code # Integer division operation expression 25 // 5 # Integer division operation expression 25 // 6 ###Output _____no_output_____ ###Markdown Exercise: Expression Let's write an expression that calculates how many hours there are in 160 minutes: ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell 160/60 160//60 ###Output _____no_output_____ ###Markdown Click here for the solution```python160/60 Or 160//60``` Python follows well accepted mathematical conventions when evaluating mathematical expressions. In the following example, Python adds 30 to the result of the multiplication (i.e., 120). ###Code # Mathematical expression 30 + 2 * 60 ###Output _____no_output_____ ###Markdown And just like mathematics, expressions enclosed in parentheses have priority. So the following multiplies 32 by 60. ###Code # Mathematical expression (30 + 2) * 60 ###Output _____no_output_____ ###Markdown Variables Just like with most programming languages, we can store values in variables, so we can use them later on. For example: ###Code # Store value into variable x = 43 + 60 + 16 + 41 x ###Output _____no_output_____ ###Markdown To see the value of x in a Notebook, we can simply place it on the last line of a cell: ###Code # Print out the value in variable x ###Output _____no_output_____ ###Markdown We can also perform operations on x and save the result to a new variable: ###Code # Use another variable to store the result of the operation between variable and value y = x / 60 y ###Output _____no_output_____ ###Markdown If we save a value to an existing variable, the new value will overwrite the previous value: ###Code # Overwrite variable with new value x = x / 60 x ###Output _____no_output_____ ###Markdown It's a good practice to use meaningful variable names, so you and others can read the code and understand it more easily: ###Code # Name the variables meaningfully total_min = 43 + 42 + 57 # Total length of albums in minutes total_min # Name the variables meaningfully total_hours = total_min / 60 # Total length of albums in hours total_hours ###Output _____no_output_____ ###Markdown In the cells above we added the length of three albums in minutes and stored it in total_min. We then divided it by 60 to calculate total length total_hours in hours. You can also do it all at once in a single expression, as long as you use parenthesis to add the albums length before you divide, as shown below. ###Code # Complicate expression total_hours = (43 + 42 + 57) / 60 # Total hours in a single expression total_hours ###Output _____no_output_____ ###Markdown If you'd rather have total hours as an integer, you can of course replace the floating point division with integer division (i.e., //). Exercise: Expression and Variables in Python What is the value of x where x = 3 + 2 * 2 ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell x= 3+2*2 x ###Output _____no_output_____ ###Markdown Click here for the solution```python7``` What is the value of y where y = (3 + 2) * 2? ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell y= (3+2)*2 y ###Output _____no_output_____ ###Markdown Click here for the solution```python10``` What is the value of z where z = x + y? ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell z=x+y z ###Output _____no_output_____
dmu1/dmu1_ml_Herschel-Stripe-82/1.5_PanSTARRS-3SS.ipynb
###Markdown Herschel Stripe 82 master catalogue Preparation of Pan-STARRS1 - 3pi Steradian Survey (3SS) dataThis catalogue comes from `dmu0_PanSTARRS1-3SS`.In the catalogue, we keep:- The `uniquePspsSTid` as unique object identifier;- The r-band position which is given for all the sources;- The grizy `FApMag` aperture magnitude (see below);- The grizy `FKronMag` as total magnitude.The Pan-STARRS1-3SS catalogue provides for each band an aperture magnitude defined as “In PS1, an 'optimal' aperture radius is determined based on the local PSF. The wings of the same analytic PSF are then used to extrapolate the flux measured inside this aperture to a 'total' flux.”The observations used for the catalogue where done between 2010 and 2015 ([ref](https://confluence.stsci.edu/display/PANSTARRS/PS1+Image+data+products)).**TODO**: Check if the detection flag can be used to know in which bands an object was detected to construct the coverage maps.**TODO**: Check for stellarity. ###Code from herschelhelp_internal import git_version print("This notebook was run with herschelhelp_internal version: \n{}".format(git_version())) %matplotlib inline #%config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) from collections import OrderedDict import os from astropy import units as u from astropy.coordinates import SkyCoord from astropy.table import Column, Table import numpy as np from herschelhelp_internal.flagging import gaia_flag_column from herschelhelp_internal.masterlist import nb_astcor_diag_plot, remove_duplicates from herschelhelp_internal.utils import astrometric_correction, mag_to_flux OUT_DIR = os.environ.get('TMP_DIR', "./data_tmp") try: os.makedirs(OUT_DIR) except FileExistsError: pass RA_COL = "ps1_ra" DEC_COL = "ps1_dec" ###Output _____no_output_____ ###Markdown I - Column selection ###Code imported_columns = OrderedDict({ "objID": "ps1_id", "raMean": "ps1_ra", "decMean": "ps1_dec", "gFApMag": "m_ap_gpc1_g", "gFApMagErr": "merr_ap_gpc1_g", "gFKronMag": "m_gpc1_g", "gFKronMagErr": "merr_gpc1_g", "rFApMag": "m_ap_gpc1_r", "rFApMagErr": "merr_ap_gpc1_r", "rFKronMag": "m_gpc1_r", "rFKronMagErr": "merr_gpc1_r", "iFApMag": "m_ap_gpc1_i", "iFApMagErr": "merr_ap_gpc1_i", "iFKronMag": "m_gpc1_i", "iFKronMagErr": "merr_gpc1_i", "zFApMag": "m_ap_gpc1_z", "zFApMagErr": "merr_ap_gpc1_z", "zFKronMag": "m_gpc1_z", "zFKronMagErr": "merr_gpc1_z", "yFApMag": "m_ap_gpc1_y", "yFApMagErr": "merr_ap_gpc1_y", "yFKronMag": "m_gpc1_y", "yFKronMagErr": "merr_gpc1_y" }) catalogue = Table.read("../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_Herschel-Stripe-82_v2.fits")[list(imported_columns)] for column in imported_columns: catalogue[column].name = imported_columns[column] epoch = 2012 # Clean table metadata catalogue.meta = None # Adding flux and band-flag columns for col in catalogue.colnames: if col.startswith('m_'): errcol = "merr{}".format(col[1:]) # -999 is used for missing values catalogue[col][catalogue[col] < -900] = np.nan catalogue[errcol][catalogue[errcol] < -900] = np.nan flux, error = mag_to_flux(np.array(catalogue[col]), np.array(catalogue[errcol])) # Fluxes are added in µJy catalogue.add_column(Column(flux * 1.e6, name="f{}".format(col[1:]))) catalogue.add_column(Column(error * 1.e6, name="f{}".format(errcol[1:]))) # Band-flag column if "ap" not in col: catalogue.add_column(Column(np.zeros(len(catalogue), dtype=bool), name="flag{}".format(col[1:]))) # TODO: Set to True the flag columns for fluxes that should not be used for SED fitting. catalogue[:10].show_in_notebook() ###Output _____no_output_____ ###Markdown II - Removal of duplicated sources We remove duplicated objects from the input catalogues. ###Code SORT_COLS = ['merr_ap_gpc1_r', 'merr_ap_gpc1_g', 'merr_ap_gpc1_i', 'merr_ap_gpc1_z', 'merr_ap_gpc1_y'] FLAG_NAME = 'ps1_flag_cleaned' nb_orig_sources = len(catalogue) catalogue = remove_duplicates(catalogue, RA_COL, DEC_COL, sort_col=SORT_COLS, flag_name=FLAG_NAME) nb_sources = len(catalogue) print("The initial catalogue had {} sources.".format(nb_orig_sources)) print("The cleaned catalogue has {} sources ({} removed).".format(nb_sources, nb_orig_sources - nb_sources)) print("The cleaned catalogue has {} sources flagged as having been cleaned".format(np.sum(catalogue[FLAG_NAME]))) ###Output /opt/anaconda3/envs/herschelhelp_internal/lib/python3.6/site-packages/astropy/table/column.py:1096: MaskedArrayFutureWarning: setting an item on a masked array which has a shared mask will not copy the mask and also change the original mask array in the future. Check the NumPy 1.11 release notes for more information. ma.MaskedArray.__setitem__(self, index, value) ###Markdown III - Astrometry correctionWe match the astrometry to the Gaia one. We limit the Gaia catalogue to sources with a g band flux between the 30th and the 70th percentile. Some quick tests show that this give the lower dispersion in the results. ###Code gaia = Table.read("../../dmu0/dmu0_GAIA/data/GAIA_Herschel-Stripe-82.fits") gaia_coords = SkyCoord(gaia['ra'], gaia['dec']) nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec, near_ra0=True) delta_ra, delta_dec = astrometric_correction( SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), gaia_coords, near_ra0=True ) print("RA correction: {}".format(delta_ra)) print("Dec correction: {}".format(delta_dec)) catalogue[RA_COL] += delta_ra.to(u.deg) catalogue[DEC_COL] += delta_dec.to(u.deg) nb_astcor_diag_plot(catalogue[RA_COL], catalogue[DEC_COL], gaia_coords.ra, gaia_coords.dec, near_ra0=True) ###Output _____no_output_____ ###Markdown IV - Flagging Gaia objects ###Code catalogue.add_column( gaia_flag_column(SkyCoord(catalogue[RA_COL], catalogue[DEC_COL]), epoch, gaia) ) GAIA_FLAG_NAME = "ps1_flag_gaia" catalogue['flag_gaia'].name = GAIA_FLAG_NAME print("{} sources flagged.".format(np.sum(catalogue[GAIA_FLAG_NAME] > 0))) ###Output 881634 sources flagged. ###Markdown V - Flagging objects near bright stars VI - Saving to disk ###Code catalogue.write("{}/PS1.fits".format(OUT_DIR), overwrite=True) ###Output _____no_output_____
Cap01/JupyterNotebook-ManualUsuario.ipynb
###Markdown Manual Jupyter Notebook:https://athena.brynmawr.edu/jupyter/hub/dblank/public/Jupyter%20Notebook%20Users%20Manual.ipynb Jupyter Notebook Users ManualThis page describes the functionality of the [Jupyter](http://jupyter.org) electronic document system. Jupyter documents are called "notebooks" and can be seen as many things at once. For example, notebooks allow:* creation in a **standard web browser*** direct **sharing*** using **text with styles** (such as italics and titles) to be explicitly marked using a [wikitext language](http://en.wikipedia.org/wiki/Wiki_markup)* easy creation and display of beautiful **equations*** creation and execution of interactive embedded **computer programs*** easy creation and display of **interactive visualizations**Jupyter notebooks (previously called "IPython notebooks") are thus interesting and useful to different groups of people:* readers who want to view and execute computer programs* authors who want to create executable documents or documents with visualizations Table of Contents* [1. Getting to Know your Jupyter Notebook's Toolbar](1.-Getting-to-Know-your-Jupyter-Notebook's-Toolbar)* [2. Different Kinds of Cells](2.-Different-Kinds-of-Cells) * [2.1 Code Cells](2.1-Code-Cells) * [2.1.1 Code Cell Layout](2.1.1-Code-Cell-Layout) * [2.1.1.1 Row Configuration (Default Setting)](2.1.1.1-Row-Configuration-%28Default-Setting%29) * [2.1.1.2 Cell Tabbing](2.1.1.2-Cell-Tabbing) * [2.1.1.3 Column Configuration](2.1.1.3-Column-Configuration) * [2.2 Markdown Cells](2.2-Markdown-Cells) * [2.3 Raw Cells](2.3-Raw-Cells) * [2.4 Header Cells](2.4-Header-Cells) * [2.4.1 Linking](2.4.1-Linking) * [2.4.2 Automatic Section Numbering and Table of Contents Support](2.4.2-Automatic-Section-Numbering-and-Table-of-Contents-Support) * [2.4.2.1 Automatic Section Numbering](2.4.2.1-Automatic-Section-Numbering) * [2.4.2.2 Table of Contents Support](2.4.2.2-Table-of-Contents-Support) * [2.4.2.3 Using Both Automatic Section Numbering and Table of Contents Support](2.4.2.3-Using-Both-Automatic-Section-Numbering-and-Table-of-Contents-Support)* [3. Keyboard Shortcuts](3.-Keyboard-Shortcuts)* [4. Using Markdown Cells for Writing](4.-Using-Markdown-Cells-for-Writing) * [4.1 Block Elements](4.1-Block-Elements) * [4.1.1 Paragraph Breaks](4.1.1-Paragraph-Breaks) * [4.1.2 Line Breaks](4.1.2-Line-Breaks) * [4.1.2.1 Hard-Wrapping and Soft-Wrapping](4.1.2.1-Hard-Wrapping-and-Soft-Wrapping) * [4.1.2.2 Soft-Wrapping](4.1.2.2-Soft-Wrapping) * [4.1.2.3 Hard-Wrapping](4.1.2.3-Hard-Wrapping) * [4.1.3 Headers](4.1.3-Headers) * [4.1.4 Block Quotes](4.1.4-Block-Quotes) * [4.1.4.1 Standard Block Quoting](4.1.4.1-Standard-Block-Quoting) * [4.1.4.2 Nested Block Quoting](4.1.4.2-Nested-Block-Quoting) * [4.1.5 Lists](4.1.5-Lists) * [4.1.5.1 Ordered Lists](4.1.5.1-Ordered-Lists) * [4.1.5.2 Bulleted Lists](4.1.5.2-Bulleted-Lists) * [4.1.6 Section Breaks](4.1.6-Section-Breaks) * [4.2 Backslash Escape](4.2-Backslash-Escape) * [4.3 Hyperlinks](4.3-Hyperlinks) * [4.3.1 Automatic Links](4.3.1-Automatic-Links) * [4.3.2 Standard Links](4.3.2-Standard-Links) * [4.3.3 Standard Links With Mouse-Over Titles](4.3.3-Standard-Links-With-Mouse-Over-Titles) * [4.3.4 Reference Links](4.3.4-Reference-Links) * [4.3.5 Notebook-Internal Links](4.3.5-Notebook-Internal-Links) * [4.3.5.1 Standard Notebook-Internal Links Without Mouse-Over Titles](4.3.5.1-Standard-Notebook-Internal-Links-Without-Mouse-Over-Titles) * [4.3.5.2 Standard Notebook-Internal Links With Mouse-Over Titles](4.3.5.2-Standard-Notebook-Internal-Links-With-Mouse-Over-Titles) * [4.3.5.3 Reference-Style Notebook-Internal Links](4.3.5.3-Reference-Style-Notebook-Internal-Links) * [4.4 Tables](4.4-Tables) * [4.4.1 Cell Justification](4.4.1-Cell-Justification) * [4.5 Style and Emphasis](4.5-Style-and-Emphasis) * [4.6 Other Characters](4.6-Other-Characters) * [4.7 Including Code Examples](4.7-Including-Code-Examples) * [4.8 Images](4.8-Images) * [4.8.1 Images from the Internet](4.8.1-Images-from-the-Internet) * [4.8.1.1 Reference-Style Images from the Internet](4.8.1.1-Reference-Style-Images-from-the-Internet) * [4.9 LaTeX Math](4.9-LaTeX-Math)* [5. Bibliographic Support](5.-Bibliographic-Support) * [5.1 Creating a Bibtex Database](5.1-Creating-a-Bibtex-Database) * [5.1.1 External Bibliographic Databases](5.1.1-External-Bibliographic-Databases) * [5.1.2 Internal Bibliographic Databases](5.1.2-Internal-Bibliographic-Databases) * [5.1.2.1 Hiding Your Internal Database](5.1.2.1-Hiding-Your-Internal-Database) * [5.1.3 Formatting Bibtex Entries](5.1.3-Formatting-Bibtex-Entries) * [5.2 Cite Commands and Citation IDs](5.2-Cite-Commands-and-Citation-IDs)* [6. Turning Your Jupyter Notebook into a Slideshow](6.-Turning-Your-Jupyter-Notebook-into-a-Slideshow) 1. Getting to Know your Jupyter Notebook's Toolbar At the top of your Jupyter Notebook window there is a toolbar. It looks like this: ![](images/jupytertoolbar.png) Below is a table which helpfully pairs a picture of each of the items in your toolbar with a corresponding explanation of its function. Button|Function-|-![](images/jupytertoolbarsave.png)|This is your save button. You can click this button to save your notebook at any time, though keep in mind that Jupyter Notebooks automatically save your progress very frequently. ![](images/jupytertoolbarnewcell.png)|This is the new cell button. You can click this button any time you want a new cell in your Jupyter Notebook. ![](images/jupytertoolbarcutcell.png)|This is the cut cell button. If you click this button, the cell you currently have selected will be deleted from your Notebook. ![](images/jupytertoolbarcopycell.png)|This is the copy cell button. If you click this button, the currently selected cell will be duplicated and stored in your clipboard. ![](images/jupytertoolbarpastecell.png)|This is the past button. It allows you to paste the duplicated cell from your clipboard into your notebook. ![](images/jupytertoolbarupdown.png)|These buttons allow you to move the location of a selected cell within a Notebook. Simply select the cell you wish to move and click either the up or down button until the cell is in the location you want it to be.![](images/jupytertoolbarrun.png)|This button will "run" your cell, meaning that it will interpret your input and render the output in a way that depends on [what kind of cell] [cell kind] you're using. ![](images/jupytertoolbarstop.png)|This is the stop button. Clicking this button will stop your cell from continuing to run. This tool can be useful if you are trying to execute more complicated code, which can sometimes take a while, and you want to edit the cell before waiting for it to finish rendering. ![](images/jupytertoolbarrestartkernel.png)|This is the restart kernel button. See your kernel documentation for more information.![](images/jupytertoolbarcellkind.png)|This is a drop down menu which allows you to tell your Notebook how you want it to interpret any given cell. You can read more about the [different kinds of cells] [cell kind] in the following section. ![](images/jupytertoolbartoolbartype.png)|Individual cells can have their own toolbars. This is a drop down menu from which you can select the type of toolbar that you'd like to use with the cells in your Notebook. Some of the options in the cell toolbar menu will only work in [certain kinds of cells][cell kind]. "None," which is how you specify that you do not want any cell toolbars, is the default setting. If you select "Edit Metadata," a toolbar that allows you to edit data about [Code Cells][code cells] directly will appear in the corner of all the Code cells in your notebook. If you select "Raw Cell Format," a tool bar that gives you several formatting options will appear in the corner of all your [Raw Cells][raw cells]. If you want to view and present your notebook as a slideshow, you can select "Slideshow" and a toolbar that enables you to organize your cells in to slides, sub-slides, and slide fragments will appear in the corner of every cell. Go to [this section][slideshow] for more information on how to create a slideshow out of your Jupyter Notebook. ![](images/jupytertoolbarsectionmove.png)|These buttons allow you to move the location of an entire section within a Notebook. Simply select the Header Cell for the section or subsection you wish to move and click either the up or down button until the section is in the location you want it to be. If your have used [Automatic Section Numbering][section numbering] or [Table of Contents Support][table of contents] remember to rerun those tools so that your section numbers or table of contents reflects your Notebook's new organization. ![](images/jupytertoolbarsectionnumbering.png)|Clicking this button will automatically number your Notebook's sections. For more information, check out the Reference Guide's [section on Automatic Section Numbering][section numbering].![](images/jupytertoolbartableofcontents.png)|Clicking this button will generate a table of contents using the titles you've given your Notebook's sections. For more information, check out the Reference Guide's [section on Table of Contents Support][table of contents].![](images/jupytertoolbarbib.png)|Clicking this button will search your document for [cite commands][] and automatically generate intext citations as well as a references cell at the end of your Notebook. For more information, you can read the Reference Guide's [section on Bibliographic Support][bib support].![](images/jupytertoolbartab.png)|Clicking this button will toggle [cell tabbing][], which you can learn more about in the Reference Guides' [section on the layout options for Code Cells][cell layout].![](images/jupytertoolbarcollumn.png)|Clicking this button will toggle the [collumn configuration][] for Code Cells, which you can learn more about in the Reference Guides' [section on the layout options for Code Cells][cell layout].![](images/jupytertoolbarspellcheck.png)|Clicking this button will toggle spell checking. Spell checking only works in unrendered [Markdown Cells][] and [Header Cells][]. When spell checking is on all incorrectly spelled words will be underlined with a red squiggle. Keep in mind that the dictionary cannot tell what are [Markdown][md writing] commands and what aren't, so it will occasionally underline a correctly spelled word surrounded by asterisks, brackets, or other symbols that have specific meaning in Markdown. [cell kind]: 2.-Different-Kinds-of-Cells "Different Kinds of Cells"[code cells]: 2.1-Code-Cells "Code Cells"[raw cells]: 2.3-Raw-Cells "Raw Cells"[slideshow]: 6.-Turning-Your-Jupyter-Notebook-into-a-Slideshow "Turning Your Jupyter Notebook Into a Slideshow"[section numbering]: 2.4.2.1-Automatic-Section-Numbering[table of contents]: 2.4.2.2-Table-of-Contents-Support[cell tabbing]: 2.1.1.2-Cell-Tabbing[cell layout]: 2.1.1-Code-Cell-Layout[bib support]: 5.-Bibliographic-Support[cite commands]: 5.2-Cite-Commands-and-Citation-IDs[md writing]: 4.-Using-Markdown-Cells-for-Writing[collumn configuration]: 2.1.1.3-Column-Configuration[Markdown Cells]: 2.2-Markdown-Cells[Header Cells]: 2.4-Header-Cells 2. Different Kinds of Cells There are essentially four kinds of cells in your Jupyter notebook: Code Cells, Markdown Cells, Raw Cells, and Header Cells, though there are six levels of Header Cells. 2.1 Code Cells By default, Jupyter Notebooks' Code Cells will execute Python. Jupyter Notebooks generally also support JavaScript, Python, HTML, and Bash commands. For a more comprehensive list, see your Kernel's documentation. 2.1.1 Code Cell Layout Code cells have both an input and an output component. You can view these components in three different ways. 2.1.1.1 Row Configuration (Default Setting) Unless you specific otherwise, your Code Cells will always be configured this way, with both the input and output components appearing as horizontal rows and with the input above the output. Below is an example of a Code Cell in this default setting: ###Code 2 + 3 ###Output _____no_output_____ ###Markdown 2.1.1.2 Cell Tabbing Cell tabbing allows you to look at the input and output components of a cell separately. It also allows you to hide either component behind the other, which can be usefull when creating visualizations of data. Below is an example of a tabbed Code Cell: ###Code 2+3 ###Output _____no_output_____ ###Markdown 2.1.1.3 Column Configuration Like the row configuration, the column layout option allows you to look at both the input and the output components at once. In the column layout, however, the two components appear beside one another, with the input on the left and the output on the right. Below is an example of a Code Cell in the column configuration: ###Code 2+3 ###Output _____no_output_____
notebooks/statistics.ipynb
###Markdown Finchat: StatisticsSee detailed information and the labels for the data and columns from the readme file. ###Code import pandas as pd import numpy as np import matplotlib.pylab as plt import seaborn as sns from collections import Counter from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # Loading the corpus chat_data = pd.read_csv('../finchat-corpus/finchat_chat_conversations.csv') meta_data = pd.read_csv('../finchat-corpus/finchat_meta_data.csv') chat_data.dtypes meta_data.dtypes ###Output _____no_output_____ ###Markdown The number of conversation and participants. ###Code print('The number of the conversations:') print(chat_data['CHAT_ID'].unique().size) print(meta_data['CHAT_ID'].unique().size) print('The number of the users:') print(chat_data['SPEAKER_ID'].unique().size) ###Output The number of the conversations: 86 85 The number of the users: 64 ###Markdown Topic and group statistics ###Code # Changing types meta_data["GROUP"] = meta_data["GROUP"].astype('category') meta_data["TOPIC"] = meta_data["TOPIC"].astype('category') meta_data["OFFTOPIC"] = meta_data["OFFTOPIC"].astype('category') meta_data[['Q1', 'Q2', 'Q3', 'Q4', 'Q5']] = meta_data[['Q1', 'Q2', 'Q3', 'Q4', 'Q5']].astype('category') print('groups') print(meta_data["GROUP"].value_counts()) print() print('topics') print(meta_data["TOPIC"].value_counts()) print() print('offtopics') print(meta_data["OFFTOPIC"].value_counts()) print() ###Output groups 1 82 3 61 2 20 Name: GROUP, dtype: int64 topics sports 44 literature 31 tv 24 traveling 24 food 18 movies 14 music 8 Name: TOPIC, dtype: int64 offtopics 0 137 school 12 jokes 4 miscellaneous 3 career 3 literature 2 technology 1 sports 1 Name: OFFTOPIC, dtype: int64 ###Markdown Filter into smaller setsChoose only specific user group or topic to analyze. ###Code # Filter by topic #meta_subset = meta_data.loc[meta_data['TOPIC'] == 'tv'] #chat_id_list = meta_subset['CHAT_ID'].tolist() #chat_subset = chat_data.loc[chat_data['CHAT_ID'].isin(chat_id_list)] # Filter by group # University staff = 1, university student = 2, high schooler = 3 #meta_subset = meta_data.loc[meta_data['GROUP'] == 3] #chat_id_list = meta_subset['CHAT_ID'].tolist() #chat_subset = chat_data.loc[chat_data['CHAT_ID'].isin(chat_id_list)] # Everything: No subset chat_id_list = meta_data['CHAT_ID'].tolist() meta_subset = meta_data chat_subset = chat_data ###Output _____no_output_____ ###Markdown Clean text ###Code # Clean text from commas etc to compute word statistics sentences = chat_subset['TEXT'].tolist() sentences_clean = [] word_list_text = '' for sentence in sentences: for ch in ['.','!','?',')','(',':',',']: if ch in sentence: sentence = sentence.replace(ch,'') sentences_clean.append(sentence.lower()) word_list_text = word_list_text+" "+sentence.lower() word_list = word_list_text.split() ###Output _____no_output_____ ###Markdown Words Common words ###Code word_count = Counter(word_list).most_common() #print(word_count) # Generate a word cloud image stopwords=[] wordcloud = WordCloud(background_color="white", width=1600, height=1000).generate(word_list_text) plt.figure( figsize=(20,10) ) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.figure(figsize=[10,10]) plt.show() ###Output _____no_output_____ ###Markdown Word length ###Code # Word lengths word_lengths = [] #np.zeros(30) for word in word_list: #ord_lengths[len(word)] += 1 word_lengths.append(len(word)) if len(word) > 25: print(word) #plt.hist(word_lengths, bins=range(20)) #plt.xticks(range(20)) #plt.xlabel('word length') #plt.ylabel('word count') #plt.title('word lengths in corpus') print('') print('average word length:', np.mean(word_lengths)) # Word length distribution sns.distplot(word_lengths, kde=False, norm_hist=True); plt.xlim(0, 20) plt.tight_layout() ###Output _____no_output_____ ###Markdown Statistics Turns per conversation ###Code # for each conversation # see how many times the speaker id changes turn_counter = np.zeros(len(chat_id_list)) for i in range(len(chat_id_list)): chat = chat_data.loc[chat_data['CHAT_ID'] == chat_id_list[i]] speaker_id_list = chat['SPEAKER_ID'].tolist() prev_id = 0 for j in speaker_id_list: if prev_id != j: turn_counter[i] += 1 prev_id = j turn_counter[i] = np.floor(turn_counter[i]/2) print(np.mean(turn_counter)) ###Output 14.05521472392638 ###Markdown Words in corpus ###Code # Words in corpus len(word_list) ###Output _____no_output_____ ###Markdown Characters in corpus ###Code total_char = 0 for word in word_list: total_char += len(word) print(total_char) ###Output 125121 ###Markdown Messages in corpus ###Code print(len(sentences)) ###Output 3628 ###Markdown Conversations ###Code print('The number of the conversations:') print(chat_subset['CHAT_ID'].unique().size) ###Output The number of the conversations: 85 ###Markdown Questionaire scoresAnalyze questionaire scores. See readme documentation of the corpus for actual questions. ###Code # Answers for each question print(meta_subset["Q1"].value_counts()) print(meta_subset["Q2"].value_counts()) print(meta_subset["Q3"].value_counts()) print(meta_subset["Q4"].value_counts()) print(meta_subset["Q5"].value_counts()) ###Output 1 120 2 43 Name: Q1, dtype: int64 1 157 2 6 Name: Q2, dtype: int64 1 128 2 35 Name: Q3, dtype: int64 3 92 1 33 2 22 0 16 Name: Q4, dtype: int64 3 97 1 35 0 16 2 15 Name: Q5, dtype: int64 ###Markdown The rate of interesting conversations ###Code print(meta_subset["Q1"].value_counts()/sum(meta_subset["Q1"].value_counts())) # All Questions print(meta_subset["Q1"].value_counts()/sum(meta_subset["Q1"].value_counts())) print(meta_subset["Q2"].value_counts()/sum(meta_subset["Q2"].value_counts())) print(meta_subset["Q3"].value_counts()/sum(meta_data["Q3"].value_counts())) print(meta_subset["Q4"].value_counts(sort=False)/sum(meta_subset["Q4"].value_counts())) print(meta_subset["Q5"].value_counts(sort=False)/sum(meta_subset["Q5"].value_counts())) ###Output 1 0.736196 2 0.263804 Name: Q1, dtype: float64 1 0.96319 2 0.03681 Name: Q2, dtype: float64 1 0.785276 2 0.214724 Name: Q3, dtype: float64 0 0.098160 1 0.202454 2 0.134969 3 0.564417 Name: Q4, dtype: float64 0 0.098160 1 0.214724 2 0.092025 3 0.595092 Name: Q5, dtype: float64 ###Markdown Pie plots ###Code # Pie charts for question Q1-Q3. # For whole data set. Change meta_data -> meta_subset if want to plot for filtered subset. ######## Q1 # Pie chart labels = ['Yes', 'No'] sizes = np.array(meta_data["Q1"].value_counts()) #colors colors = ['#ff9999','#66b3ff'] colors = ['tomato','lightskyblue'] #explsion explode = (0.05,0.05) fig1, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(9,3.5)) ax1.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax1.set_title('Conversation was interesting.') # Equal aspect ratio ensures that pie is drawn as a circle ax1.axis('equal') plt.tight_layout() #plt.show() ######## Q2 sizes2 = np.array(meta_data["Q2"].value_counts()) ax2.pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax2.set_title('I was listened to.') # Equal aspect ratio ensures that pie is drawn as a circle ax2.axis('equal') plt.tight_layout() #plt.show() ######## Q3 sizes3 = np.array(meta_data["Q3"].value_counts()) ax3.pie(sizes3, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax3.set_title('Stayed on topic.') # Equal aspect ratio ensures that pie is drawn as a circle ax3.axis('equal') plt.tight_layout() # Save plot #plt.savefig('figs/q1_q2_q3_pie.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown More details ###Code # Adding disagreement # Q1 diff_list = [] pos_sum = 0 # both thought interesting neg_sum = 0 # both thought not interesting diff_sum = 0 # # disagreement no_fb = 0 for chatid in chat_id_list: meta_conv = meta_data.loc[meta_data['CHAT_ID'] == chatid] #meta_conv = meta_data.loc[meta_data['CHAT_ID'].isin(chatid)] # Q1 scores = meta_conv['Q1'].tolist() if len(scores) == 2: diff_list.append(abs(scores[0]-scores[1])) if scores[0] + scores[1] == 2: pos_sum += 1 elif scores[0] + scores[1] == 4: neg_sum += 1 else: diff_sum += 1 else: #print(scores) no_fb += 1 # Participants who both agreed that conversation vas intresting or not interesting. #print(1-sum(diff_list)/len(diff_list)) #print('interesting') #print(pos_sum/(pos_sum+neg_sum+diff_sum)) #print('not interesting') #print(neg_sum/(pos_sum+neg_sum+diff_sum)) #print('disagreement') #print(diff_sum/(pos_sum+neg_sum+diff_sum)) labels = ['Interesting', 'Not interesting', 'Disagreed'] sizes = np.array([pos_sum, neg_sum, diff_sum]) colors = ['tomato', 'lightskyblue','lightgray'] fig1, ax1 = plt.subplots(1,1, figsize=(7,3)) ax1.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax1.set_title('Was conversation interesting?') # Equal aspect ratio ensures that pie is drawn as a circle ax1.axis('equal') plt.tight_layout() #plt.savefig('figs/q1_pie_wdis_staff.png', bbox_inches='tight', dpi=300) # Similarties between answers for Q4 and Q5 q4_q5_same_sum = 0 q4_q5_notsame_sum = 0 q4_agreed_i = 0 # individual q4_agreed_b = 0 # both q4_disa_i = 0 q4_disa_b = 0 q4_disa = 0 q5_agreed_i = 0 # individual q5_agreed_b = 0 # both q5_disa = 0 pos_sun = 0 diff_sum = 0 count=0 for chatid in chat_id_list: # Q4 and Q5 have same answer for same person meta_conv = meta_data.loc[meta_data['CHAT_ID'] == chatid] scores_q4 = meta_conv['Q4'].tolist() scores_q5 = meta_conv['Q5'].tolist() if len(scores_q4) == 2: if scores_q4[0] == scores_q5[0]: q4_q5_same_sum += 1 else: q4_q5_notsame_sum += 1 if scores_q4[1] == scores_q5[1]: q4_q5_same_sum += 1 else: q4_q5_notsame_sum += 1 # For same conversation both agreed with the leader: # answers 1, 2 OR 3, 3. Q4 if scores_q4[0] != scores_q4[1] and scores_q4[0] != 3 and scores_q4[1] != 3: q4_agreed_i += 1 elif scores_q4[0] == scores_q4[1] and scores_q4[0] == 3: q4_agreed_b += 1 elif scores_q4[0] != scores_q4[1] and (scores_q4[0] == 3 or scores_q4[1] == 3): q4_disa_b += 1 else: q4_disa += 1 # For same conversation both agreed with the leader: # answers 1, 2 OR 3, 3. Q5 if scores_q5[0] != scores_q5[1] and scores_q5[0] != 3 and scores_q5[1] != 3: q5_agreed_i += 1 elif scores_q5[0] == scores_q5[1] and scores_q5[0] == 3: q5_agreed_b += 1 else: q5_disa += 1 else: count+=1 print('Asking more question and leading conversation (own opinion)') print(q4_q5_same_sum/(q4_q5_same_sum+q4_q5_notsame_sum)) print('Agreeing who is asking the questions (Q4)') print((q4_agreed_b+q4_agreed_i)/(q4_agreed_i+q4_agreed_b+q4_disa)) print('Agreeing who is the leader (5)') print((q5_agreed_i+q5_agreed_b)/(q5_agreed_i+q5_agreed_b+q5_disa)) # Plots with disagreement and no answers. # Combine font = {'family' : 'sans-serif', 'weight' : 'normal', 'size' : 11.5} plt.rc('font', **font) ######## Q1 #explsion explode = (0.05,0.05) fig1, [ax1, ax2, ax3] = plt.subplots(1,3, figsize=(10,3.5)) labels = ['Yes', 'No', 'Disagreed'] sizes = np.array([pos_sum, neg_sum, diff_sum]) colors = ['tomato', 'lightskyblue','lightgray'] ax1.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90, textprops={'fontsize': 13}) ax1.set_title('1. Conversation was interesting.') # Equal aspect ratio ensures that pie is drawn as a circle ax1.axis('equal') plt.tight_layout() # Q4 & Q5 # Pie chart labels = ['No answer', 'Me', 'Partner', 'Both'] sizes = np.array(meta_data["Q4"].value_counts(sort=False)) #colors #colors = ['#ff9999','#66b3ff'] colors = ['lightgray', 'tomato','lightskyblue','lightgreen'] ax2.set_title('2. Asked more questions.') ax2.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90, textprops={'fontsize': 13}) # Equal aspect ratio ensures that pie is drawn as a circle ax2.axis('equal') plt.tight_layout() #plt.show() ##### Q5 sizes2 = np.array(meta_data["Q5"].value_counts(sort=False)) ax3.pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90, textprops={'fontsize': 13}) ax3.set_title('3. Leader of the conversation.') # Equal aspect ratio ensures that pie is drawn as a circle ax3.axis('equal') plt.tight_layout() #axs[1, 2].axis('off') plt.savefig('questionnairre_pies_smaller_fixed.png', bbox_inches='tight', dpi=300) # Pie plots for Q4 & Q5 # For whole set. Change meta_data -> meta_subset if want to plot for subset. # Pie chart labels = ['No answer', 'Me', 'Partner', 'Both'] sizes = np.array(meta_data["Q4"].value_counts(sort=False)) #colors #colors = ['#ff9999','#66b3ff'] colors = ['lightgray', 'tomato','lightskyblue','lightgreen'] fig1, (ax1, ax2) = plt.subplots(1,2, figsize=(7,3)) ax1.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax1.set_title('Who asked more question?') # Equal aspect ratio ensures that pie is drawn as a circle ax1.axis('equal') plt.tight_layout() #plt.show() ##### Q5 sizes2 = np.array(meta_data["Q5"].value_counts(sort=False)) ax2.pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) ax2.set_title('Who was leading the conversation?') # Equal aspect ratio ensures that pie is drawn as a circle ax2.axis('equal') plt.tight_layout() # Save plot #plt.savefig('figs/q4_q5_pie.png', bbox_inches='tight', dpi=300) # Combined plots. font = {'family' : 'sans-serif', 'weight' : 'normal', 'size' : 11.5} plt.rc('font', **font) ######## Q1 #explsion explode = (0.05,0.05) fig1, axs = plt.subplots(2,3, figsize=(9,7)) labels = ['Yes', 'No', 'Disagreed'] sizes = np.array([pos_sum, neg_sum, diff_sum]) colors = ['tomato', 'lightskyblue','lightgray'] axs[0, 0].pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90, textprops={'fontsize': 14}) axs[0, 0].set_title('1. Was conversation interesting?') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 0].axis('equal') plt.tight_layout() ######## Q2 # Pie chart labels = ['Yes', 'No'] #colors colors = ['#ff9999','#66b3ff'] colors = ['tomato','lightskyblue'] sizes2 = np.array(meta_data["Q2"].value_counts()) axs[0, 1].pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[0, 1].set_title('2. I was listened to.') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 1].axis('equal') plt.tight_layout() #plt.show() ######## Q3 sizes3 = np.array(meta_data["Q3"].value_counts()) axs[0, 2].pie(sizes3, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[0, 2].set_title('3. Stayed on topic.') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 2].axis('equal') plt.tight_layout() # Q4 & Q5 # Pie chart labels = ['No answer', 'Me', 'Partner', 'Both'] sizes = np.array(meta_data["Q4"].value_counts(sort=False)) #colors #colors = ['#ff9999','#66b3ff'] colors = ['lightgray', 'tomato','lightskyblue','lightgreen'] axs[1, 0].set_title('4. Asked more questions.') axs[1, 0].pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) # Equal aspect ratio ensures that pie is drawn as a circle axs[1, 0].axis('equal') plt.tight_layout() #plt.show() ##### Q5 sizes2 = np.array(meta_data["Q5"].value_counts(sort=False)) axs[1, 1].pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[1, 1].set_title('5. Learder of the conversation.') # Equal aspect ratio ensures that pie is drawn as a circle axs[1, 1].axis('equal') plt.tight_layout() axs[1, 2].axis('off') #plt.savefig('figs/questionnairre_pies.png', bbox_inches='tight', dpi=300) # Combine font = {'family' : 'sans-serif', 'weight' : 'normal', 'size' : 11.5} plt.rc('font', **font) ######## Q1 #explsion explode = (0.05,0.05) fig1, axs = plt.subplots(2,3, figsize=(9,7)) labels = ['Yes', 'No', 'Disagreed'] sizes = np.array([pos_sum, neg_sum, diff_sum]) colors = ['tomato', 'lightskyblue','lightgray'] axs[0, 0].pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90, textprops={'fontsize': 14}) axs[0, 0].set_title('1. Was conversation interesting?') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 0].axis('equal') plt.tight_layout() ######## Q2 # Pie chart labels = ['Yes', 'No'] #colors colors = ['#ff9999','#66b3ff'] colors = ['tomato','lightskyblue'] sizes2 = np.array(meta_data["Q2"].value_counts()) axs[0, 1].pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[0, 1].set_title('2. I was listened to.') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 1].axis('equal') plt.tight_layout() #plt.show() ######## Q3 sizes3 = np.array(meta_data["Q3"].value_counts()) axs[0, 2].pie(sizes3, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[0, 2].set_title('3. Stayed on topic.') # Equal aspect ratio ensures that pie is drawn as a circle axs[0, 2].axis('equal') plt.tight_layout() # Q4 & Q5 # Pie chart labels = ['No answer', 'Me', 'Partner', 'Both'] sizes = np.array(meta_data["Q4"].value_counts(sort=False)) #colors #colors = ['#ff9999','#66b3ff'] colors = ['lightgray', 'tomato','lightskyblue','lightgreen'] axs[1, 0].set_title('4. Asked more questions.') axs[1, 0].pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) # Equal aspect ratio ensures that pie is drawn as a circle axs[1, 0].axis('equal') plt.tight_layout() #plt.show() ##### Q5 sizes2 = np.array(meta_data["Q5"].value_counts(sort=False)) axs[1, 1].pie(sizes2, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90) axs[1, 1].set_title('5. Learder of the conversation.') # Equal aspect ratio ensures that pie is drawn as a circle axs[1, 1].axis('equal') plt.tight_layout() axs[1, 2].axis('off') #plt.savefig('figs/questionnairre_pies_.png', bbox_inches='tight', dpi=300) # Select group # #meta_subset = meta_data.loc[meta_data['GROUP'] == 1] #chat_id_list = meta_subset['CHAT_ID'].tolist() #chat_subset = chat_data.loc[chat_data['CHAT_ID'].isin(chat_id_list)] #chat_id_list = chat_subset['CHAT_ID'].unique().tolist() # Use all #chat_id_list = chat_data['CHAT_ID'].unique().tolist() # Commoness between question answers scores_q4 = np.array(meta_data['Q4'].tolist()) # 3 = both scores_q1 = np.array(meta_data['Q1'].tolist()) # 1 = yes print(np.unique(scores_q1,return_counts=True)) count = 0 for i in range(len(scores_q1)): if scores_q1[i] == 1 and scores_q4[i] == 2: count += 1 print(count/len(scores_q1)) print(count/120) # both ask questions and is interesting = 44% / 60% # i asked more and is interesting = 14% / 19 % # partner asked more and is interestin = 10 / 14% ###Output (array([1, 2]), array([120, 43])) 0.10429447852760736 0.14166666666666666 ###Markdown Alternative to pies ###Code category_names = ['Yes', 'Disagree', 'No'] sizes = [26,4,11] sizes2 = [157,0,6] sizes3 = [128,0,35] results = { 'Question 1': sizes, 'Question 2': sizes2, 'Question 3': sizes3 } def survey(results, category_names): """ Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """ labels = list(results.keys()) data = np.array(list(results.values())) data_cum = data.cumsum(axis=1) category_colors = plt.get_cmap('RdYlGn')( np.linspace(0.15, 0.85, data.shape[1])) fig, ax = plt.subplots(figsize=(9.2, 5)) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, np.sum(data, axis=1).max()) for i, (colname, color) in enumerate(zip(category_names, category_colors)): widths = data[:, i] starts = data_cum[:, i] - widths ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color) xcenters = starts + widths / 2 r, g, b, _ = color text_color = 'white' if r * g * b < 0.5 else 'darkgrey' for y, (x, c) in enumerate(zip(xcenters, widths)): ax.text(x, y, str(int(c)), ha='center', va='center', color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc='lower left', fontsize='small') return fig, ax survey(results, category_names) plt.show() print(sizes3) ###Output [128 35] ###Markdown Get Statistics---using custom api for Onos `http://:8181/onos/ddos-detection/statistic/chi/values`this entry return an array of 10 statistic valuesformat example```json{ "statistic_values": { "0": { "Timestamp": "21:37:43", "Cantidad de trafico observado - bytes": "32663", "Chi value - bytes": "0.0", "Cantidad de trafico observado - paquetes": "361", "Chi value - paquetes": "0.0" }, ... }``` ###Code import time import datetime import requests import numpy as np import matplotlib.pyplot as plt from matplotlib import animation, rc from IPython.display import HTML #plt.rcParams['animation.html'] = 'jshtml' user ='karaf' passw = 'karaf' ip_onos = '192.168.1.13' path = f'http://{ip_onos}:8181/onos/ddos-detection/statistic/chi/values' step = 'Timestamp' byte = 'Cantidad de trafico observado - bytes' pkts = 'Cantidad de trafico observado - paquetes' ###Output _____no_output_____ ###Markdown First set up the figure, the axis, and the plot element we want to animate ###Code fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(1,1,1) ax.set_xlabel('bytes') ax.set_ylabel('time stamp') interval = 40000 # 10 seconds def animate(i): time.sleep(10) r = requests.get(path, auth=(user, passw)) if r.status_code == 200: x = [] y = [] statss = r.json()['statistic_values'] for key , value in statss.items(): y.append(int(value[byte])) x.append(datetime.datetime.strptime(value[step], '%H:%M:%S')) ax.clear() ax.plot(x, y) anim = animation.FuncAnimation( fig, func=animate, frames=6, interval=600) rc('animation', html='html5') anim ###Output _____no_output_____ ###Markdown Number of translations per languageWe use DBpedia set because there are all the questions presented (558) ###Code test = read_json("../data/qald_9_plus_test_dbpedia.json") train = read_json("../data/qald_9_plus_train_dbpedia.json") show_stats(train) show_stats(test) ###Output en 150 de 176 ru 348 uk 176 lt 186 be 155 ba 117 hy 20 fr 26 ###Markdown Number of Wikipedia queries ###Code test = read_json("../data/qald_9_plus_test_wikidata.json") train = read_json("../data/qald_9_plus_train_wikidata.json") len(train['questions']) len(test['questions']) ###Output _____no_output_____
notebooks/official/ml_metadata/sdk-metric-parameter-tracking-for-locally-trained-models.ipynb
###Markdown Run in Colab View on GitHub Open in Vertex AI Workbench Vertex AI: Track parameters and metrics for locally trained models OverviewThis notebook demonstrates how to track metrics and parameters for ML training jobs and analyze this metadata using Vertex SDK for Python. DatasetIn this notebook, we will train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). ObjectiveIn this notebook, you will learn how to use Vertex SDK for Python to: * Track parameters and metrics for a locally trained model. * Extract and perform analysis for all parameters and metrics within an Experiment. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Vertex AI Workbench notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesRun the following commands to install the Vertex SDK for Python. ###Code import sys if "google.colab" in sys.modules: USER_FLAG = "" else: USER_FLAG = "--user" ! pip3 install -U tensorflow==2.8 $USER_FLAG ! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Vertex AI Workbench notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebooks, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Import libraries and define constants Import required libraries. ###Code import matplotlib.pyplot as plt import pandas as pd from google.cloud import aiplatform from tensorflow.python.keras import Sequential, layers from tensorflow.python.keras.utils import data_utils ###Output _____no_output_____ ###Markdown Define some constants ###Code EXPERIMENT_NAME = "" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if REGION == "[your-region]": REGION = "us-central1" ###Output _____no_output_____ ###Markdown If EXEPERIMENT_NAME is not set, set a default one below: ###Code if EXPERIMENT_NAME == "" or EXPERIMENT_NAME is None: EXPERIMENT_NAME = "my-experiment-" + TIMESTAMP ###Output _____no_output_____ ###Markdown ConceptsTo better understanding how parameters and metrics are stored and organized, we'd like to introduce the following concepts: ExperimentExperiments describe a context that groups your runs and the artifacts you create into a logical session. For example, in this notebook you create an Experiment and log data to that experiment. RunA run represents a single path/avenue that you executed while performing an experiment. A run includes artifacts that you used as inputs or outputs, and parameters that you used in this execution. An Experiment can contain multiple runs. Getting started tracking parameters and metricsYou can use the Vertex SDK for Python to track metrics and parameters for models trained locally. In the following example, you train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). Load and process the training dataset Download and process the dataset. ###Code def read_data(uri): dataset_path = data_utils.get_file("auto-mpg.data", uri) column_names = [ "MPG", "Cylinders", "Displacement", "Horsepower", "Weight", "Acceleration", "Model Year", "Origin", ] raw_dataset = pd.read_csv( dataset_path, names=column_names, na_values="?", comment="\t", sep=" ", skipinitialspace=True, ) dataset = raw_dataset.dropna() dataset["Origin"] = dataset["Origin"].map( lambda x: {1: "USA", 2: "Europe", 3: "Japan"}.get(x) ) dataset = pd.get_dummies(dataset, prefix="", prefix_sep="") return dataset dataset = read_data( "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" ) ###Output _____no_output_____ ###Markdown Split dataset for training and testing. ###Code def train_test_split(dataset, split_frac=0.8, random_state=0): train_dataset = dataset.sample(frac=split_frac, random_state=random_state) test_dataset = dataset.drop(train_dataset.index) train_labels = train_dataset.pop("MPG") test_labels = test_dataset.pop("MPG") return train_dataset, test_dataset, train_labels, test_labels train_dataset, test_dataset, train_labels, test_labels = train_test_split(dataset) ###Output _____no_output_____ ###Markdown Normalize the features in the dataset for better model performance. ###Code def normalize_dataset(train_dataset, test_dataset): train_stats = train_dataset.describe() train_stats = train_stats.transpose() def norm(x): return (x - train_stats["mean"]) / train_stats["std"] normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) return normed_train_data, normed_test_data normed_train_data, normed_test_data = normalize_dataset(train_dataset, test_dataset) ###Output _____no_output_____ ###Markdown Define ML model and training function ###Code def train( train_data, train_labels, num_units=64, activation="relu", dropout_rate=0.0, validation_split=0.2, epochs=1000, ): model = Sequential( [ layers.Dense( num_units, activation=activation, input_shape=[len(train_dataset.keys())], ), layers.Dropout(rate=dropout_rate), layers.Dense(num_units, activation=activation), layers.Dense(1), ] ) model.compile(loss="mse", optimizer="adam", metrics=["mae", "mse"]) print(model.summary()) history = model.fit( train_data, train_labels, epochs=epochs, validation_split=validation_split ) return model, history ###Output _____no_output_____ ###Markdown Initialize the Vertex AI SDK for Python and create an ExperimentInitialize the *client* for Vertex AI and create an experiment. ###Code aiplatform.init(project=PROJECT_ID, location=REGION, experiment=EXPERIMENT_NAME) ###Output _____no_output_____ ###Markdown Start several model training runsTraining parameters and metrics are logged for each run. ###Code parameters = [ {"num_units": 16, "epochs": 3, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.2}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.2}, ] for i, params in enumerate(parameters): aiplatform.start_run(run=f"auto-mpg-local-run-{i}") aiplatform.log_params(params) model, history = train( normed_train_data, train_labels, num_units=params["num_units"], activation="relu", epochs=params["epochs"], dropout_rate=params["dropout_rate"], ) aiplatform.log_metrics( {metric: values[-1] for metric, values in history.history.items()} ) loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) aiplatform.log_metrics({"eval_loss": loss, "eval_mae": mae, "eval_mse": mse}) ###Output _____no_output_____ ###Markdown Extract parameters and metrics into a dataframe for analysis We can also extract all parameters and metrics associated with any Experiment into a dataframe for further analysis. ###Code experiment_df = aiplatform.get_experiment_df() experiment_df ###Output _____no_output_____ ###Markdown Visualizing an experiment's parameters and metrics ###Code plt.rcParams["figure.figsize"] = [15, 5] ax = pd.plotting.parallel_coordinates( experiment_df.reset_index(level=0), "run_name", cols=[ "param.num_units", "param.dropout_rate", "param.epochs", "metric.loss", "metric.val_loss", "metric.eval_loss", ], color=["blue", "green", "pink", "red"], ) ax.set_yscale("symlog") ax.legend(bbox_to_anchor=(1.0, 0.5)) ###Output _____no_output_____ ###Markdown Visualizing experiments in Cloud Console Run the following to get the URL of Vertex AI Experiments for your project. ###Code print("Vertex AI Experiments:") print( f"https://console.cloud.google.com/ai/platform/experiments/experiments?folder=&organizationId=&project={PROJECT_ID}" ) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub Open in Vertex AI Workbench Vertex AI: Track parameters and metrics for locally trained models OverviewThis notebook demonstrates how to track metrics and parameters for ML training jobs and analyze this metadata using Vertex SDK for Python. DatasetIn this notebook, we will train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). ObjectiveIn this notebook, you learn how to use `Vertex ML Metadata` to track training parameters and evaluation metrics.This tutorial uses the following Google Cloud ML services:- `Vertex ML Metadata`- `Vertex AI Experiments`The steps performed include:- Track parameters and metrics for a locally trained model.- Extract and perform analysis for all parameters and metrics within an Experiment. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Vertex AI Workbench notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. InstallationInstall the packages required for executing this notebook. ###Code import os # The Vertex AI Workbench Notebook product has specific requirements IS_WORKBENCH_NOTEBOOK = os.getenv("DL_ANACONDA_HOME") and not os.getenv("VIRTUAL_ENV") IS_USER_MANAGED_WORKBENCH_NOTEBOOK = os.path.exists( "/opt/deeplearning/metadata/env_version" ) # Vertex AI Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_WORKBENCH_NOTEBOOK: USER_FLAG = "--user" ! pip3 install --upgrade google-cloud-aiplatform {USER_FLAG} -q ! pip3 install -U tensorflow==2.8 {USER_FLAG} -q ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} # Get your GCP project id from gcloud shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend that you choose the region closest to you.- Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You may not use a multi-regional bucket for training with Vertex AI. Not all regions provide support for all Vertex AI services.Learn more about [Vertex AI regions](https://cloud.google.com/vertex-ai/docs/general/locations) ###Code REGION = "us-central1" # @param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Vertex AI Workbench notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebooks, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Import libraries and define constants Import required libraries. ###Code import matplotlib.pyplot as plt import pandas as pd from google.cloud import aiplatform from tensorflow.python.keras import Sequential, layers from tensorflow.python.keras.utils import data_utils ###Output _____no_output_____ ###Markdown Define some constants ###Code EXPERIMENT_NAME = "" # @param {type:"string"} ###Output _____no_output_____ ###Markdown If EXEPERIMENT_NAME is not set, set a default one below: ###Code if EXPERIMENT_NAME == "" or EXPERIMENT_NAME is None: EXPERIMENT_NAME = "my-experiment-" + TIMESTAMP ###Output _____no_output_____ ###Markdown ConceptsTo better understanding how parameters and metrics are stored and organized, we'd like to introduce the following concepts: ExperimentExperiments describe a context that groups your runs and the artifacts you create into a logical session. For example, in this notebook you create an Experiment and log data to that experiment. RunA run represents a single path/avenue that you executed while performing an experiment. A run includes artifacts that you used as inputs or outputs, and parameters that you used in this execution. An Experiment can contain multiple runs. Getting started tracking parameters and metricsYou can use the Vertex SDK for Python to track metrics and parameters for models trained locally. In the following example, you train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). Load and process the training dataset Download and process the dataset. ###Code def read_data(uri): dataset_path = data_utils.get_file("auto-mpg.data", uri) column_names = [ "MPG", "Cylinders", "Displacement", "Horsepower", "Weight", "Acceleration", "Model Year", "Origin", ] raw_dataset = pd.read_csv( dataset_path, names=column_names, na_values="?", comment="\t", sep=" ", skipinitialspace=True, ) dataset = raw_dataset.dropna() dataset["Origin"] = dataset["Origin"].map( lambda x: {1: "USA", 2: "Europe", 3: "Japan"}.get(x) ) dataset = pd.get_dummies(dataset, prefix="", prefix_sep="") return dataset dataset = read_data( "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" ) ###Output _____no_output_____ ###Markdown Split dataset for training and testing. ###Code def train_test_split(dataset, split_frac=0.8, random_state=0): train_dataset = dataset.sample(frac=split_frac, random_state=random_state) test_dataset = dataset.drop(train_dataset.index) train_labels = train_dataset.pop("MPG") test_labels = test_dataset.pop("MPG") return train_dataset, test_dataset, train_labels, test_labels train_dataset, test_dataset, train_labels, test_labels = train_test_split(dataset) ###Output _____no_output_____ ###Markdown Normalize the features in the dataset for better model performance. ###Code def normalize_dataset(train_dataset, test_dataset): train_stats = train_dataset.describe() train_stats = train_stats.transpose() def norm(x): return (x - train_stats["mean"]) / train_stats["std"] normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) return normed_train_data, normed_test_data normed_train_data, normed_test_data = normalize_dataset(train_dataset, test_dataset) ###Output _____no_output_____ ###Markdown Define ML model and training function ###Code def train( train_data, train_labels, num_units=64, activation="relu", dropout_rate=0.0, validation_split=0.2, epochs=1000, ): model = Sequential( [ layers.Dense( num_units, activation=activation, input_shape=[len(train_dataset.keys())], ), layers.Dropout(rate=dropout_rate), layers.Dense(num_units, activation=activation), layers.Dense(1), ] ) model.compile(loss="mse", optimizer="adam", metrics=["mae", "mse"]) print(model.summary()) history = model.fit( train_data, train_labels, epochs=epochs, validation_split=validation_split ) return model, history ###Output _____no_output_____ ###Markdown Initialize the Vertex AI SDK for Python and create an ExperimentInitialize the *client* for Vertex AI and create an experiment. ###Code aiplatform.init(project=PROJECT_ID, location=REGION, experiment=EXPERIMENT_NAME) ###Output _____no_output_____ ###Markdown Start several model training runsTraining parameters and metrics are logged for each run. ###Code parameters = [ {"num_units": 16, "epochs": 3, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.2}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.2}, ] for i, params in enumerate(parameters): aiplatform.start_run(run=f"auto-mpg-local-run-{i}") aiplatform.log_params(params) model, history = train( normed_train_data, train_labels, num_units=params["num_units"], activation="relu", epochs=params["epochs"], dropout_rate=params["dropout_rate"], ) aiplatform.log_metrics( {metric: values[-1] for metric, values in history.history.items()} ) loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) aiplatform.log_metrics({"eval_loss": loss, "eval_mae": mae, "eval_mse": mse}) ###Output _____no_output_____ ###Markdown Extract parameters and metrics into a dataframe for analysis We can also extract all parameters and metrics associated with any Experiment into a dataframe for further analysis. ###Code experiment_df = aiplatform.get_experiment_df() experiment_df ###Output _____no_output_____ ###Markdown Visualizing an experiment's parameters and metrics ###Code plt.rcParams["figure.figsize"] = [15, 5] ax = pd.plotting.parallel_coordinates( experiment_df.reset_index(level=0), "run_name", cols=[ "param.num_units", "param.dropout_rate", "param.epochs", "metric.loss", "metric.val_loss", "metric.eval_loss", ], color=["blue", "green", "pink", "red"], ) ax.set_yscale("symlog") ax.legend(bbox_to_anchor=(1.0, 0.5)) ###Output _____no_output_____ ###Markdown Visualizing experiments in Cloud Console Run the following to get the URL of Vertex AI Experiments for your project. ###Code print("Vertex AI Experiments:") print( f"https://console.cloud.google.com/ai/platform/experiments/experiments?folder=&organizationId=&project={PROJECT_ID}" ) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub Vertex AI: Track parameters and metrics for locally trained models OverviewThis notebook demonstrates how to track metrics and parameters for ML training jobs and analyze this metadata using Vertex AI SDK. DatasetIn this notebook, we will train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). ObjectiveIn this notebook, you will learn how to use Vertex AI SDK to: * Track parameters and metrics for a locally trainined model. * Extract and perform analysis for all parameters and metrics within an Experiment. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Vertex AI Workbench notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesRun the following commands to install the Vertex AI SDK and packages used in this notebook. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install Vertex AI SDK and tensorflow for training and evaluation model. ###Code ! pip install {USER_FLAG} --upgrade tensorflow ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Vertex AI Workbench notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "AI Platform"into the filter box, and select **AI Platform Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebooks, then don't execute this code IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Import libraries and define constants Import required libraries. ###Code import matplotlib.pyplot as plt import pandas as pd from google.cloud import aiplatform from tensorflow.python.keras import Sequential, layers from tensorflow.python.lib.io import file_io ###Output _____no_output_____ ###Markdown Define some constants ###Code EXPERIMENT_NAME = "" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown If EXEPERIMENT_NAME is not set, set a default one below: ###Code if EXPERIMENT_NAME == "" or EXPERIMENT_NAME is None: EXPERIMENT_NAME = "my-experiment-" + TIMESTAMP ###Output _____no_output_____ ###Markdown ConceptsTo better understanding how parameters and metrics are stored and organized, we'd like to introduce the following concepts: ExperimentExperiments describe a context that groups your runs and the artifacts you create into a logical session. For example, in this notebook you create an Experiment and log data to that experiment. RunA run represents a single path/avenue that you executed while performing an experiment. A run includes artifacts that you used as inputs or outputs, and parameters that you used in this execution. An Experiment can contain multiple runs. Getting started tracking parameters and metricsYou can use the Vertex AI SDK to track metrics and parameters for models trained locally. In the following example, you train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). Load and process the training dataset Download and process the dataset. ###Code def read_data(file_path): column_names = [ "MPG", "Cylinders", "Displacement", "Horsepower", "Weight", "Acceleration", "Model Year", "Origin", ] with file_io.FileIO(file_path, "r") as f: raw_dataset = pd.read_csv( f, names=column_names, na_values="?", comment="\t", sep=" ", skipinitialspace=True, ) dataset = raw_dataset.dropna() dataset["Origin"] = dataset["Origin"].map( lambda x: {1: "USA", 2: "Europe", 3: "Japan"}.get(x) ) dataset = pd.get_dummies(dataset, prefix="", prefix_sep="") return dataset dataset = read_data("gs://cloud-samples-data/ai-platform/auto_mpg/auto-mpg.data") ###Output _____no_output_____ ###Markdown Split dataset for training and testing. ###Code def train_test_split(dataset, split_frac=0.8, random_state=0): train_dataset = dataset.sample(frac=split_frac, random_state=random_state) test_dataset = dataset.drop(train_dataset.index) train_labels = train_dataset.pop("MPG") test_labels = test_dataset.pop("MPG") return train_dataset, test_dataset, train_labels, test_labels train_dataset, test_dataset, train_labels, test_labels = train_test_split(dataset) ###Output _____no_output_____ ###Markdown Normalize the features in the dataset for better model performance. ###Code def normalize_dataset(train_dataset, test_dataset): train_stats = train_dataset.describe() train_stats = train_stats.transpose() def norm(x): return (x - train_stats["mean"]) / train_stats["std"] normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) return normed_train_data, normed_test_data normed_train_data, normed_test_data = normalize_dataset(train_dataset, test_dataset) ###Output _____no_output_____ ###Markdown Define ML model and training function ###Code def train( train_data, train_labels, num_units=64, activation="relu", dropout_rate=0.0, validation_split=0.2, epochs=1000, ): model = Sequential( [ layers.Dense( num_units, activation=activation, input_shape=[len(train_dataset.keys())], ), layers.Dropout(rate=dropout_rate), layers.Dense(num_units, activation=activation), layers.Dense(1), ] ) model.compile(loss="mse", optimizer="adam", metrics=["mae", "mse"]) print(model.summary()) history = model.fit( train_data, train_labels, epochs=epochs, validation_split=validation_split ) return model, history ###Output _____no_output_____ ###Markdown Initialize the Vertex AI SDK for Python and create an ExperimentInitialize the *client* for Vertex AI and create an experiment. ###Code aiplatform.init(project=PROJECT_ID, location=REGION, experiment=EXPERIMENT_NAME) ###Output _____no_output_____ ###Markdown Start several model training runsTraining parameters and metrics are logged for each run. ###Code parameters = [ {"num_units": 16, "epochs": 3, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.2}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.2}, ] for i, params in enumerate(parameters): aiplatform.start_run(run=f"auto-mpg-local-run-{i}") aiplatform.log_params(params) model, history = train( normed_train_data, train_labels, num_units=params["num_units"], activation="relu", epochs=params["epochs"], dropout_rate=params["dropout_rate"], ) aiplatform.log_metrics( {metric: values[-1] for metric, values in history.history.items()} ) loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) aiplatform.log_metrics({"eval_loss": loss, "eval_mae": mae, "eval_mse": mse}) ###Output _____no_output_____ ###Markdown Extract parameters and metrics into a dataframe for analysis We can also extract all parameters and metrics associated with any Experiment into a dataframe for further analysis. ###Code experiment_df = aiplatform.get_experiment_df() experiment_df ###Output _____no_output_____ ###Markdown Visualizing an experiment's parameters and metrics ###Code plt.rcParams["figure.figsize"] = [15, 5] ax = pd.plotting.parallel_coordinates( experiment_df.reset_index(level=0), "run_name", cols=[ "param.num_units", "param.dropout_rate", "param.epochs", "metric.loss", "metric.val_loss", "metric.eval_loss", ], color=["blue", "green", "pink", "red"], ) ax.set_yscale("symlog") ax.legend(bbox_to_anchor=(1.0, 0.5)) ###Output _____no_output_____ ###Markdown Visualizing experiments in Cloud Console Run the following to get the URL of Vertex AI Experiments for your project. ###Code print("Vertex AI Experiments:") print( f"https://console.cloud.google.com/ai/platform/experiments/experiments?folder=&organizationId=&project={PROJECT_ID}" ) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub Vertex AI: Track parameters and metrics for locally trained models OverviewThis notebook demonstrates how to track metrics and parameters for ML training jobs and analyze this metadata using Vertex AI SDK. DatasetIn this notebook, we will train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). ObjectiveIn this notebook, you will learn how to use Vertex AI SDK to: * Track parameters and metrics for a locally trainined model. * Extract and perform analysis for all parameters and metrics within an Experiment. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or AI Platform Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesRun the following commands to install the Vertex AI SDK and packages used in this notebook. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install Vertex AI SDK and tensorflow for training and evaluation model. ###Code ! pip install {USER_FLAG} --upgrade tensorflow ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using AI Platform Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "AI Platform"into the filter box, and select **AI Platform Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebooks, then don't execute this code IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Import libraries and define constants Import required libraries. ###Code import matplotlib.pyplot as plt import pandas as pd from google.cloud import aiplatform from tensorflow.python.keras import Sequential, layers from tensorflow.python.lib.io import file_io ###Output _____no_output_____ ###Markdown Define some constants ###Code EXPERIMENT_NAME = "" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown If EXEPERIMENT_NAME is not set, set a default one below: ###Code if EXPERIMENT_NAME == "" or EXPERIMENT_NAME is None: EXPERIMENT_NAME = "my-experiment-" + TIMESTAMP ###Output _____no_output_____ ###Markdown ConceptsTo better understanding how parameters and metrics are stored and organized, we'd like to introduce the following concepts: ExperimentExperiments describe a context that groups your runs and the artifacts you create into a logical session. For example, in this notebook you create an Experiment and log data to that experiment. RunA run represents a single path/avenue that you executed while performing an experiment. A run includes artifacts that you used as inputs or outputs, and parameters that you used in this execution. An Experiment can contain multiple runs. Getting started tracking parameters and metricsYou can use the Vertex AI SDK to track metrics and parameters for models trained locally. In the following example, you train a simple distributed neural network (DNN) model to predict automobile's miles per gallon (MPG) based on automobile information in the [auto-mpg dataset](https://www.kaggle.com/devanshbesain/exploration-and-analysis-auto-mpg). Load and process the training dataset Download and process the dataset. ###Code def read_data(file_path): column_names = [ "MPG", "Cylinders", "Displacement", "Horsepower", "Weight", "Acceleration", "Model Year", "Origin", ] with file_io.FileIO(file_path, "r") as f: raw_dataset = pd.read_csv( f, names=column_names, na_values="?", comment="\t", sep=" ", skipinitialspace=True, ) dataset = raw_dataset.dropna() dataset["Origin"] = dataset["Origin"].map( lambda x: {1: "USA", 2: "Europe", 3: "Japan"}.get(x) ) dataset = pd.get_dummies(dataset, prefix="", prefix_sep="") return dataset dataset = read_data("gs://cloud-samples-data/ai-platform/auto_mpg/auto-mpg.data") ###Output _____no_output_____ ###Markdown Split dataset for training and testing. ###Code def train_test_split(dataset, split_frac=0.8, random_state=0): train_dataset = dataset.sample(frac=split_frac, random_state=random_state) test_dataset = dataset.drop(train_dataset.index) train_labels = train_dataset.pop("MPG") test_labels = test_dataset.pop("MPG") return train_dataset, test_dataset, train_labels, test_labels train_dataset, test_dataset, train_labels, test_labels = train_test_split(dataset) ###Output _____no_output_____ ###Markdown Normalize the features in the dataset for better model performance. ###Code def normalize_dataset(train_dataset, test_dataset): train_stats = train_dataset.describe() train_stats = train_stats.transpose() def norm(x): return (x - train_stats["mean"]) / train_stats["std"] normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) return normed_train_data, normed_test_data normed_train_data, normed_test_data = normalize_dataset(train_dataset, test_dataset) ###Output _____no_output_____ ###Markdown Define ML model and training function ###Code def train( train_data, train_labels, num_units=64, activation="relu", dropout_rate=0.0, validation_split=0.2, epochs=1000, ): model = Sequential( [ layers.Dense( num_units, activation=activation, input_shape=[len(train_dataset.keys())], ), layers.Dropout(rate=dropout_rate), layers.Dense(num_units, activation=activation), layers.Dense(1), ] ) model.compile(loss="mse", optimizer="adam", metrics=["mae", "mse"]) print(model.summary()) history = model.fit( train_data, train_labels, epochs=epochs, validation_split=validation_split ) return model, history ###Output _____no_output_____ ###Markdown Initialize the Model Builder SDK and create an ExperimentInitialize the *client* for Vertex AI and create an experiment. ###Code aiplatform.init(project=PROJECT_ID, location=REGION, experiment=EXPERIMENT_NAME) ###Output _____no_output_____ ###Markdown Start several model training runsTraining parameters and metrics are logged for each run. ###Code parameters = [ {"num_units": 16, "epochs": 3, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 16, "epochs": 10, "dropout_rate": 0.2}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.1}, {"num_units": 32, "epochs": 10, "dropout_rate": 0.2}, ] for i, params in enumerate(parameters): aiplatform.start_run(run=f"auto-mpg-local-run-{i}") aiplatform.log_params(params) model, history = train( normed_train_data, train_labels, num_units=params["num_units"], activation="relu", epochs=params["epochs"], dropout_rate=params["dropout_rate"], ) aiplatform.log_metrics( {metric: values[-1] for metric, values in history.history.items()} ) loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2) aiplatform.log_metrics({"eval_loss": loss, "eval_mae": mae, "eval_mse": mse}) ###Output _____no_output_____ ###Markdown Extract parameters and metrics into a dataframe for analysis We can also extract all parameters and metrics associated with any Experiment into a dataframe for further analysis. ###Code experiment_df = aiplatform.get_experiment_df() experiment_df ###Output _____no_output_____ ###Markdown Visualizing an experiment's parameters and metrics ###Code plt.rcParams["figure.figsize"] = [15, 5] ax = pd.plotting.parallel_coordinates( experiment_df.reset_index(level=0), "run_name", cols=[ "param.num_units", "param.dropout_rate", "param.epochs", "metric.loss", "metric.val_loss", "metric.eval_loss", ], color=["blue", "green", "pink", "red"], ) ax.set_yscale("symlog") ax.legend(bbox_to_anchor=(1.0, 0.5)) ###Output _____no_output_____ ###Markdown Visualizing experiments in Cloud Console Run the following to get the URL of Vertex AI Experiments for your project. ###Code print("Vertex AI Experiments:") print( f"https://console.cloud.google.com/ai/platform/experiments/experiments?folder=&organizationId=&project={PROJECT_ID}" ) ###Output _____no_output_____
use-cases/create_wikidata/Wikidata-Subsets.ipynb
###Markdown Generating Subsets of Wikidata Batch InvocationExample batch command. The second argument is a notebook where the output will be stored. You can load it to see progress.UPDATE EXAMPLE INVOCATION```papermill Wikidata\ Useful\ Files.ipynb useful-files.out.ipynb \-p wiki_file /Volumes/GoogleDrive/Shared\ drives/KGTK-public-graphs/wikidata-20200803-v3/all.tsv.gz \-p label_file /Volumes/GoogleDrive/Shared\ drives/KGTK-public-graphs/wikidata-20200803-v3/part.label.en.tsv.gz \-p item_file /Volumes/GoogleDrive/Shared\ drives/KGTK-public-graphs/wikidata-20200803-v3/part.wikibase-item.tsv.gz \-p property_item_file /Volumes/GoogleDrive/Shared\ drives/KGTK-public-graphs/wikidata-20200803-v3/part.property.wikibase-item.tsv.gz \-p qual_file /Volumes/GoogleDrive/Shared\ drives/KGTK-public-graphs/wikidata-20200803-v3/qual.tsv.gz \-p output_path \-p output_folder useful_files_v4 \-p temp_folder temp.useful_files_v4 \-p delete_database no \-p compute_pagerank no \-p languages es,ru,zh-cn ``` ###Code import io import os import subprocess import sys import numpy as np import pandas as pd import papermill as pm from kgtk.configure_kgtk_notebooks import ConfigureKGTK from kgtk.functions import kgtk, kypher input_path = "/data/amandeep/wikidata-20220505/import-wikidata/data" output_path = "/data/amandeep" kgtk_path = "/data/amandeep/Github/kgtk" graph_cache_path = None project_name = "wikidata-20220505-dwd-v4" files = 'isa,p279star' # Classes to remove remove_classes = "Q7318358,Q13442814" useful_files_notebook = "Wikidata-Useful-Files.ipynb" notebooks_folder = f"{kgtk_path}/use-cases" languages = "en,ru,es,zh-cn,de,it,nl,pl,fr,pt,sv" debug = False files = files.split(',') languages = languages.split(',') ck = ConfigureKGTK(files, kgtk_path=kgtk_path) ck.configure_kgtk(input_graph_path=input_path, output_path=output_path, project_name=project_name, graph_cache_path=graph_cache_path) ck.print_env_variables() ck.load_files_into_cache() ###Output kgtk query --graph-cache /data/amandeep/wikidata-20220505-dwd-v4/temp.wikidata-20220505-dwd-v4/wikidata.sqlite3.db -i "/data/amandeep/wikidata-20220505/import-wikidata/data/claims.tsv.gz" --as claims -i "/data/amandeep/wikidata-20220505/import-wikidata/data/labels.tsv.gz" --as label_all -i "/data/amandeep/wikidata-20220505/import-wikidata/data/aliases.tsv.gz" --as alias_all -i "/data/amandeep/wikidata-20220505/import-wikidata/data/descriptions.tsv.gz" --as description_all -i "/data/amandeep/wikidata-20220505/import-wikidata/data/claims.wikibase-item.tsv.gz" --as item -i "/data/amandeep/wikidata-20220505/import-wikidata/data/qualifiers.tsv.gz" --as qualifiers -i "/data/amandeep/wikidata-20220505/import-wikidata/data/metadata.property.datatypes.tsv.gz" --as datatypes -i "/data/amandeep/wikidata-20220505/import-wikidata/data/metadata.types.tsv.gz" --as types -i "/data/amandeep/wikidata-20220505/import-wikidata/data/derived.isa.tsv.gz" --as isa -i "/data/amandeep/wikidata-20220505/import-wikidata/data/derived.P279star.tsv.gz" --as p279star --limit 3 id node1 label node2 rank node2;wikidatatype P10-P1628-32b85d-7927ece6-0 P10 P1628 "http://www.w3.org/2006/vcard/ns#Video" normal url P10-P1628-acf60d-b8950832-0 P10 P1628 "https://schema.org/video" normal url P10-P1629-Q34508-bcc39400-0 P10 P1629 Q34508 normal wikibase-item ###Markdown Preview the input files It is always a good practice to peek a the files to make sure the column headings are what we expect ###Code !zcat $claims | head ###Output id node1 label node2 rank node2;wikidatatype P10-P1628-32b85d-7927ece6-0 P10 P1628 "http://www.w3.org/2006/vcard/ns#Video" normal url P10-P1628-acf60d-b8950832-0 P10 P1628 "https://schema.org/video" normal url P10-P1629-Q34508-bcc39400-0 P10 P1629 Q34508 normal wikibase-item P10-P1630-53947a-fbe9093e-0 P10 P1630 "https://commons.wikimedia.org/wiki/File:$1" normal string P10-P1659-P1651-c4068028-0 P10 P1659 P1651 normal wikibase-property P10-P1659-P18-5e4b9c4f-0 P10 P1659 P18 normal wikibase-property P10-P1659-P4238-d21d1ac0-0 P10 P1659 P4238 normal wikibase-property P10-P1659-P51-86aca4c5-0 P10 P1659 P51 normal wikibase-property P10-P1855-Q15075950-7eff6d65-0 P10 P1855 Q15075950 normal wikibase-item gzip: stdout: Broken pipe ###Markdown Creating a list of all the items we want to remove Compute the items to be removed Compose the kypher command to remove the classes ###Code !zcat $isa | head | col ###Output node1 label node2 P10 isa Q18610173 P10 isa Q19847637 P1000 isa Q18608871 P10000 isa Q19833377 P10000 isa Q89560413 P10001 isa Q107738007 gzip: P10001 isa Q64221137 P10002 isa Q93433126 stdout: Broken pipe P10003 isa Q108914651 ###Markdown Run the command, the items to remove will be in file `{temp}/items.remove.tsv.gz` ###Code classes = ", ".join(list(map(lambda x: '"{}"'.format(x), remove_classes.replace(" ", "").split(",")))) classes kypher(f""" -i isa -i p279star -o "$TEMP"/items.remove.tsv.gz --match 'isa: (n1)-[:isa]->(c), p279star: (c)-[]->(class)' --where 'class in [{classes}]' --return 'distinct n1, "p31_p279star" as label, class as node2' --order-by 'n1' """) ###Output _____no_output_____ ###Markdown Preview the file ###Code !zcat < "$TEMP"/items.remove.tsv.gz | head | col !zcat < "$TEMP"/items.remove.tsv.gz | wc ###Output 39873936 119621808 1314915334 ###Markdown Collect all the classes of items we will remove, just as a sanity check ###Code !$kypher -i "$TEMP"/items.remove.tsv.gz \ --match '()-[]->(n2)' \ --return 'distinct n2' \ --limit 10 ###Output node2 Q13442814 Q7318358 ###Markdown Create the reduced edges file Remove the items from the all.tsv and the label, alias and description filesWe will be left with `reduced` files where the edges do not have the unwanted items. We have to remove them from the node1 and node2 positions, so we need to run the ifnotexists commands twice.Before we start preview the files to see the column headings and check whether they look sorted. ###Code !zcat "$TEMP"/items.remove.tsv.gz | head | col ###Output node1 label node2 gzip: Q100000005 p31_p279star Q13442814 Q100000009 p31_p279star Q13442814 stdout: Broken pipe Q100000015 p31_p279star Q13442814 Q100000022 p31_p279star Q13442814 Q100000031 p31_p279star Q13442814 Q100000044 p31_p279star Q13442814 Q100000056 p31_p279star Q13442814 Q100000066 p31_p279star Q13442814 Q100000074 p31_p279star Q13442814 ###Markdown Remove from the full set of edges those edges that have a `node1` present in `items.remove.tsv` ###Code kgtk("""ifnotexists -i $claims -o "$TEMP"/item.edges.reduced.tsv.gz --filter-on "$TEMP"/items.remove.tsv.gz --input-keys node1 --filter-keys node1 --presorted """) ###Output _____no_output_____ ###Markdown From the remaining edges, remove those that have a `node2` present in `items.remove.tsv` ###Code kgtk(f"""sort -i "$TEMP"/item.edges.reduced.tsv.gz -o "$TEMP"/item.edges.reduced.sorted.tsv.gz --extra '--parallel 24 --buffer-size 30% --temporary-directory {os.environ['TEMP']}' --columns node2 label node1 id""") kgtk("""ifnotexists -i $TEMP/item.edges.reduced.sorted.tsv.gz -o $TEMP/item.edges.reduced.2.tsv.gz --filter-on $TEMP/items.remove.tsv.gz --input-keys node2 --filter-keys node1 --presorted""") ###Output _____no_output_____ ###Markdown Create a file with the labels, for all the languages specified, **FIX THIS** ###Code kgtk("""ifnotexists -i $label_all -o "$TEMP"/label.all.edges.reduced.tsv.gz --filter-on "$TEMP"/items.remove.tsv.gz --input-keys node1 --filter-keys node1 --presorted""") kgtk(f"""sort -i $TEMP/label.all.edges.reduced.tsv.gz --extra '--parallel 24 --buffer-size 30% --temporary-directory {os.environ['TEMP']}' -o $OUT/labels.tsv.gz""") ###Output _____no_output_____ ###Markdown Create a file with the aliases, for all the languages specified ###Code kgtk("""ifnotexists -i $alias_all -o $TEMP/alias.all.edges.reduced.tsv.gz --filter-on $TEMP/items.remove.tsv.gz --input-keys node1 --filter-keys node1 --presorted""") kgtk(f"""sort -i $TEMP/alias.all.edges.reduced.tsv.gz --extra '--parallel 24 --buffer-size 30% --temporary-directory {os.environ['TEMP']}' -o $OUT/aliases.tsv.gz""") ###Output _____no_output_____ ###Markdown Create a file with the descriptions, for all the languages specified ###Code kgtk("""ifnotexists -i $description_all -o $TEMP/description.all.edges.reduced.tsv.gz --filter-on $TEMP/items.remove.tsv.gz --input-keys node1 --filter-keys node1 --presorted""") kgtk(f"""sort -i $TEMP/description.all.edges.reduced.tsv.gz --extra '--parallel 24 --buffer-size 30% --temporary-directory {os.environ['TEMP']}' -o $OUT/descriptions.tsv.gz""") ###Output _____no_output_____ ###Markdown Produce the output files for claims, labels, aliases and descriptions ###Code kgtk(f"""sort -i $TEMP/item.edges.reduced.2.tsv.gz --extra '--parallel 24 --buffer-size 30% --temporary-directory {os.environ['TEMP']}' -o $OUT/claims.tsv.gz""") ###Output _____no_output_____ ###Markdown Create the reduced qualifiers fileWe do this by finding all the ids of the reduced edges file, and then selecting out from `qual.tsv`We need to join by id, so we need to sort both files by id, node1, label, node2:- `$qualifiers` - `$OUT/claims.tsv.gz` ###Code if debug: !zcat < "$qualifiers" | head | column -t -s $'\t' ###Output gzip: id node1 label node2 node2;wikidatatype P10-P1630-53947a-fbe9093e-0-P407-Q20923490-0 P10-P1630-53947a-fbe9093e-0 P407 Q20923490 wikibase-item stdout: Broken pipe P10-P1855-Q15075950-7eff6d65-0-P10-54b214-0 P10-P1855-Q15075950-7eff6d65-0 P10 "Smoorverliefd 12 september.webm" commonsMedia P10-P1855-Q15075950-7eff6d65-0-P3831-Q622550-0 P10-P1855-Q15075950-7eff6d65-0 P3831 Q622550 wikibase-item P10-P1855-Q4504-a69d2c73-0-P10-bef003-0 P10-P1855-Q4504-a69d2c73-0 P10 "Komodo dragons video.ogv" commonsMedia P10-P1855-Q69063653-c8cdb04c-0-P10-6fb08f-0 P10-P1855-Q69063653-c8cdb04c-0 P10 "Couch Commander.webm" commonsMedia P10-P1855-Q825197-555592a4-0-P10-8a982d-0 P10-P1855-Q825197-555592a4-0 P10 "Elephants Dream (2006).webm" commonsMedia P10-P2302-Q21502404-d012aef4-0-P1793-1f3adb-0 P10-P2302-Q21502404-d012aef4-0 P1793 "(?i).+\\.(webm\|ogv\|ogg\|gif\|svg)" string P10-P2302-Q21502404-d012aef4-0-P2316-Q21502408-0 P10-P2302-Q21502404-d012aef4-0 P2316 Q21502408 wikibase-item P10-P2302-Q21502404-d012aef4-0-P2916-cb0917-0 P10-P2302-Q21502404-d012aef4-0 P2916 'filename with extension: webm, ogg, ogv, or gif (case insensitive)'@en monolingualtext ###Markdown Run `ifexists` to select out the quals for the edges in `{out}/wikidataos.qual.tsv.gz`. Note that we use `node1` in the qualifier file, matching to `id` in the `wikidataos.all.tsv` file. ###Code kgtk("""ifexists -i $qualifiers -o $OUT/qualifiers.tsv.gz --filter-on $OUT/claims.tsv.gz --input-keys node1 --filter-keys id --presorted""") ###Output _____no_output_____ ###Markdown Look at the final output for qualifiers ###Code if debug: !zcat $OUT/qualifiers.tsv.gz | head | col !ls -l "$OUT" ###Output total 34220224 -rw-r--r-- 1 amandeep isdstaff 2214529468 May 14 20:50 aliases.tsv.gz -rw-r--r-- 1 amandeep isdstaff 11594856613 May 15 04:31 claims.tsv.gz -rw-r--r-- 1 amandeep isdstaff 12667243225 May 15 03:52 descriptions.tsv.gz -rw-r--r-- 1 amandeep isdstaff 6007956701 May 14 20:09 labels.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2556913530 May 15 05:28 qualifiers.tsv.gz drwxr-xr-x 2 amandeep isdstaff 288 May 15 04:31 temp.wikidata-20220505-dwd-v4 ###Markdown Copy the property datatypes and metadata types file over ###Code !cp $datatypes $OUT/metadata.property.datatypes.tsv.gz ###Output _____no_output_____ ###Markdown Filter out edges from metdata types file ###Code kgtk("""ifexists -i "$types" -o $OUT/metadata.types.tsv.gz --filter-on $OUT/claims.tsv.gz --input-keys node1 --filter-keys node1 --presorted""") ###Output _____no_output_____ ###Markdown Get the sitelinks as well, the sitelinks are not in claims.tsv.gz ###Code kgtk("""ifexists -i "$GRAPH/sitelinks.tsv.gz" -o "$OUT/sitelinks.tsv.gz" --filter-on "$OUT/claims.tsv.gz" --input-keys node1 --filter-keys node1 --presorted""") ###Output _____no_output_____ ###Markdown Contruct the cat command to generate `all.tsv.gz` ###Code kgtk("""cat -i "$OUT/labels.tsv.gz" -i "$OUT/aliases.tsv.gz" -i "$OUT/descriptions.tsv.gz" -i "$OUT/claims.tsv.gz" -i "$OUT/qualifiers.tsv.gz" -i "$OUT/metadata.property.datatypes.tsv.gz" -i "$OUT/metadata.types.tsv.gz" -i "$OUT/sitelinks.tsv.gz" -o "$OUT/all.tsv.gz" """) ###Output _____no_output_____ ###Markdown Run the Partitions Notebook ###Code pm.execute_notebook( "partition-wikidata.ipynb", os.environ["TEMP"] + "/partition-wikidata.out.ipynb", parameters=dict( wikidata_input_path = os.environ["OUT"] + "/all.tsv.gz", wikidata_parts_path = os.environ["OUT"] + "/parts", temp_folder_path = os.environ["OUT"] + "/parts/temp", sort_extras = "--buffer-size 30% --temporary-directory $OUT/parts/temp", verbose = False, gzip_command = 'gzip' ) ) ###Output _____no_output_____ ###Markdown copy the `claims.wikibase-item.tsv` file from the `parts` folder ###Code !cp $OUT/parts/claims.wikibase-item.tsv.gz $OUT ###Output _____no_output_____ ###Markdown RUN the Useful Files notebook ###Code pm.execute_notebook( f'{useful_files_notebook}', os.environ["TEMP"] + "/Wikidata-Useful-Files-Out.ipynb", parameters=dict( output_path = os.environ["OUT"], input_path = os.environ["OUT"], kgtk_path = kgtk_path, compute_pagerank=True, compute_degrees=True, compute_isa_star=True, compute_p31p279_star=True, debug=False ) ) ###Output _____no_output_____ ###Markdown Sanity checks ###Code if debug: !$kypher -i $OUT/claims.tsv.gz \ --match '(n1:Q368441)-[l]->(n2)' \ --limit 10 \ | col if debug: !$kypher -i $OUT/claims.tsv.gz \ --match '(n1:P131)-[l]->(n2)' \ --limit 10 \ | col ###Output _____no_output_____ ###Markdown Summary of results ###Code !ls -lh $OUT/*.tsv.gz ###Output -rw-r--r-- 1 amandeep isdstaff 175M May 16 04:59 /data/amandeep/wikidata-20220505-dwd-v4/aliases.en.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2.0G May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/aliases.tsv.gz -rw-r--r-- 1 amandeep isdstaff 39G May 15 22:08 /data/amandeep/wikidata-20220505-dwd-v4/all.tsv.gz -rw-r--r-- 1 amandeep isdstaff 184M May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.commonsMedia.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2.5G May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.external-id.tsv.gz -rw-r--r-- 1 amandeep isdstaff 779K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.geo-shape.tsv.gz -rw-r--r-- 1 amandeep isdstaff 227M May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.globe-coordinate.tsv.gz -rw-r--r-- 1 amandeep isdstaff 689K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.math.tsv.gz -rw-r--r-- 1 amandeep isdstaff 295M May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.monolingualtext.tsv.gz -rw-r--r-- 1 amandeep isdstaff 28K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.musical-notation.tsv.gz -rw-r--r-- 1 amandeep isdstaff 88 May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.other.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2.0G May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.quantity.tsv.gz -rw-r--r-- 1 amandeep isdstaff 1.1G May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.string.tsv.gz -rw-r--r-- 1 amandeep isdstaff 421K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.tabular-data.tsv.gz -rw-r--r-- 1 amandeep isdstaff 301M May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.time.tsv.gz -rw-r--r-- 1 amandeep isdstaff 11G May 16 04:42 /data/amandeep/wikidata-20220505-dwd-v4/claims.tsv.gz -rw-r--r-- 1 amandeep isdstaff 123M May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.url.tsv.gz -rw-r--r-- 1 amandeep isdstaff 115K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.wikibase-form.tsv.gz -rw-r--r-- 1 amandeep isdstaff 3.6G May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.wikibase-item.tsv.gz -rw-r--r-- 1 amandeep isdstaff 75K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.wikibase-lexeme.tsv.gz -rw-r--r-- 1 amandeep isdstaff 643K May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.wikibase-property.tsv.gz -rw-r--r-- 1 amandeep isdstaff 965 May 16 07:06 /data/amandeep/wikidata-20220505-dwd-v4/claims.wikibase-sense.tsv.gz -rw-r--r-- 1 amandeep isdstaff 12G May 17 03:41 /data/amandeep/wikidata-20220505-dwd-v4/derived.isastar.tsv.gz -rw-r--r-- 1 amandeep isdstaff 189M May 16 13:27 /data/amandeep/wikidata-20220505-dwd-v4/derived.isa.tsv.gz -rw-r--r-- 1 amandeep isdstaff 699M May 16 13:05 /data/amandeep/wikidata-20220505-dwd-v4/derived.P279star.tsv.gz -rw-r--r-- 1 amandeep isdstaff 42M May 16 11:23 /data/amandeep/wikidata-20220505-dwd-v4/derived.P279.tsv.gz -rw-r--r-- 1 amandeep isdstaff 12G May 17 17:49 /data/amandeep/wikidata-20220505-dwd-v4/derived.P31P279star.tsv.gz -rw-r--r-- 1 amandeep isdstaff 717M May 16 11:22 /data/amandeep/wikidata-20220505-dwd-v4/derived.P31.tsv.gz -rw-r--r-- 1 amandeep isdstaff 395M May 16 06:01 /data/amandeep/wikidata-20220505-dwd-v4/descriptions.en.tsv.gz -rw-r--r-- 1 amandeep isdstaff 12G May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/descriptions.tsv.gz -rw-r--r-- 1 amandeep isdstaff 640M May 16 06:30 /data/amandeep/wikidata-20220505-dwd-v4/labels.en.tsv.gz -rw-r--r-- 1 amandeep isdstaff 5.6G May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/labels.tsv.gz -rw-r--r-- 1 amandeep isdstaff 79M May 17 21:15 /data/amandeep/wikidata-20220505-dwd-v4/metadata.in_degree.tsv.gz -rw-r--r-- 1 amandeep isdstaff 357M May 17 20:44 /data/amandeep/wikidata-20220505-dwd-v4/metadata.out_degree.tsv.gz -rw-r--r-- 1 amandeep isdstaff 559M May 17 18:52 /data/amandeep/wikidata-20220505-dwd-v4/metadata.pagerank.directed.tsv.gz -rw-r--r-- 1 amandeep isdstaff 770M May 17 19:59 /data/amandeep/wikidata-20220505-dwd-v4/metadata.pagerank.undirected.tsv.gz -rw-r--r-- 1 amandeep isdstaff 53K May 16 01:21 /data/amandeep/wikidata-20220505-dwd-v4/metadata.property.datatypes.tsv.gz -rw-r--r-- 1 amandeep isdstaff 271M May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/metadata.types.tsv.gz -rw-r--r-- 1 amandeep isdstaff 16M May 16 07:12 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.commonsMedia.tsv.gz -rw-r--r-- 1 amandeep isdstaff 151M May 16 07:22 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.external-id.tsv.gz -rw-r--r-- 1 amandeep isdstaff 29K May 16 07:27 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.geo-shape.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2.9M May 16 07:32 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.globe-coordinate.tsv.gz -rw-r--r-- 1 amandeep isdstaff 87K May 16 07:38 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.math.tsv.gz -rw-r--r-- 1 amandeep isdstaff 6.8M May 16 07:43 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.monolingualtext.tsv.gz -rw-r--r-- 1 amandeep isdstaff 1.8K May 16 07:48 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.musical-notation.tsv.gz -rw-r--r-- 1 amandeep isdstaff 900M May 16 07:58 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.quantity.tsv.gz -rw-r--r-- 1 amandeep isdstaff 530M May 16 08:07 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.string.tsv.gz -rw-r--r-- 1 amandeep isdstaff 201K May 16 08:12 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.tabular-data.tsv.gz -rw-r--r-- 1 amandeep isdstaff 16M May 16 08:18 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.time.tsv.gz -rw-r--r-- 1 amandeep isdstaff 2.5G May 16 04:52 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.tsv.gz -rw-r--r-- 1 amandeep isdstaff 35M May 16 08:23 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.url.tsv.gz -rw-r--r-- 1 amandeep isdstaff 1.1K May 16 08:28 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.wikibase-form.tsv.gz -rw-r--r-- 1 amandeep isdstaff 695M May 16 08:44 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.wikibase-item.tsv.gz -rw-r--r-- 1 amandeep isdstaff 9.3K May 16 08:49 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.wikibase-lexeme.tsv.gz -rw-r--r-- 1 amandeep isdstaff 21K May 16 08:54 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.wikibase-property.tsv.gz -rw-r--r-- 1 amandeep isdstaff 1.6K May 16 08:58 /data/amandeep/wikidata-20220505-dwd-v4/qualifiers.wikibase-sense.tsv.gz -rw-r--r-- 1 amandeep isdstaff 88 May 16 06:33 /data/amandeep/wikidata-20220505-dwd-v4/sitelinks.en.tsv.gz -rw-r--r-- 1 amandeep isdstaff 99 May 16 06:33 /data/amandeep/wikidata-20220505-dwd-v4/sitelinks.qualifiers.en.tsv.gz -rw-r--r-- 1 amandeep isdstaff 96 May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/sitelinks.qualifiers.tsv.gz -rw-r--r-- 1 amandeep isdstaff 1.8G May 16 01:22 /data/amandeep/wikidata-20220505-dwd-v4/sitelinks.tsv.gz
notebooks/thresholds-add-cids.ipynb
###Markdown Add CIDS to parsed_threshold_data_in_air.csv ###Code import pandas as pd import pyrfume from pyrfume.odorants import get_cid, get_cids from rickpy import ProgressBar df = pyrfume.load_data('thresholds/parsed_threshold_data_in_air.csv') df = df.set_index('canonical SMILES') smiles_cids = get_cids(df.index, kind='SMILES') df = df.join(pd.Series(smiles_cids, name='CID')) df.head() from rdkit.Chem import MolFromSmiles, MolToSmiles df['SMILES'] = df.index p = ProgressBar(len(smiles_cids)) for i, (old, cid) in enumerate(smiles_cids.items()): p.animate(i, status=old) if cid == 0: mol = MolFromSmiles(old) if mol is None: new = '' else: new = MolToSmiles(mol, isomericSmiles=True) if old != new: cid = get_cid(new, kind='SMILES') df.loc[old, ['SMILES', 'CID']] = [new, cid] p.animate(i+1, status='Done') df[df['SMILES']==''] ozone_smiles = ozone_cid = get_cid('[O-][O+]=O', kind='SMILES') df.loc['O=[O]=O', ['SMILES', 'CID']] = [ozone_smiles, ozone_cid] df = df.set_index('CID').drop(['ez_smiles'], axis=1) df = df.rename(columns={'author': 'year', 'year': 'author'}) df.head() pyrfume.save_data(df, 'thresholds/parsed_threshold_data_in_air_fixed.csv') ###Output _____no_output_____
Credit Card Fraud Detection assignment.ipynb
###Markdown Credit Card Fraud Detection:: Download dataset from this link:https://www.kaggle.com/mlg-ulb/creditcardfraud Description about dataset:: The datasets contains transactions made by credit cards in September 2013 by european cardholders.This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. WORKFLOW : 1.Load Data2.Check Missing Values ( If Exist ; Fill each record with mean of its feature )3.Standardized the Input Variables. 4.Split into 50% Training(Samples,Labels) , 30% Test(Samples,Labels) and 20% Validation Data(Samples,Labels).5.Model : input Layer (No. of features ), 3 hidden layers including 10,8,6 unit & Output Layer with activation function relu/tanh (check by experiment).6.Compilation Step (Note : Its a Binary problem , select loss , metrics according to it)7.Train the Model with Epochs (100).8.If the model gets overfit tune your model by changing the units , No. of layers , epochs , add dropout layer or add Regularizer according to the need .9.Prediction should be > 92%10.Evaluation Step11Prediction Task:: Identify fraudulent credit card transactions. ###Code import pandas as pd # loadind data file = 'creditcard.csv' cc_data = pd.read_csv(file) cc_data = pd.DataFrame(cc_data) cc_data cc_data.head() cc_data.describe() cc_data.info() # to confirm about null values # data distribution into X & y X = cc_data.loc[:, cc_data.columns != 'Class'] y = cc_data.Class # Split into 50% Training(Samples,Labels) , 30% Test(Samples,Labels) and 20% Validation Data(Samples,Labels). from sklearn.model_selection import train_test_split # ratios for the whole dataset. train_ratio = 0.5 test_ratio = 0.3 validation_ratio = 0.2 # using train test split method x_remaining, x_test, y_remaining, y_test = train_test_split(X, y, test_size=test_ratio) # validation ratio from remaining dataset. remaining = 1 - test_ratio validation_adjusted = validation_ratio / remaining # train and validation splits x_train, x_validation, y_train, y_validation = train_test_split(x_remaining, y_remaining, test_size=validation_adjusted) print(x_train.shape, y_train.shape, x_test.shape, y_test.shape, x_validation.shape, y_validation.shape) # model creation and training import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import * model = Sequential() tf.keras.backend.set_floatx('float64') model.add(tf.keras.layers.Dense(16, activation='relu')) model.add(tf.keras.layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, validation_data=(x_validation, y_validation)) ###Output Epoch 1/100 4451/4451 [==============================] - 8s 2ms/step - loss: 7.6426 - accuracy: 0.9963 - val_loss: 2.9872 - val_accuracy: 0.9983 Epoch 2/100 4451/4451 [==============================] - 7s 2ms/step - loss: 3.5244 - accuracy: 0.9964 - val_loss: 0.0974 - val_accuracy: 0.9939 Epoch 3/100 4451/4451 [==============================] - 8s 2ms/step - loss: 3.6054 - accuracy: 0.9961 - val_loss: 1.1088 - val_accuracy: 0.9982 Epoch 4/100 4451/4451 [==============================] - 8s 2ms/step - loss: 3.1665 - accuracy: 0.9962 - val_loss: 0.1564 - val_accuracy: 0.9968 Epoch 5/100 4451/4451 [==============================] - 8s 2ms/step - loss: 2.7538 - accuracy: 0.9964 - val_loss: 0.2018 - val_accuracy: 0.9883 Epoch 6/100 4451/4451 [==============================] - 9s 2ms/step - loss: 2.9331 - accuracy: 0.9966 - val_loss: 0.9958 - val_accuracy: 0.9983 Epoch 7/100 4451/4451 [==============================] - 9s 2ms/step - loss: 2.2481 - accuracy: 0.9965 - val_loss: 0.1648 - val_accuracy: 0.9962 Epoch 8/100 4451/4451 [==============================] - 9s 2ms/step - loss: 2.3553 - accuracy: 0.9967 - val_loss: 1.8224 - val_accuracy: 0.9985 Epoch 9/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.6336 - accuracy: 0.9971 - val_loss: 1.1124 - val_accuracy: 0.9985 Epoch 10/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.7988 - accuracy: 0.9973 - val_loss: 0.4405 - val_accuracy: 0.9637 Epoch 11/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.9826 - accuracy: 0.9970 - val_loss: 0.2357 - val_accuracy: 0.9985 Epoch 12/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.4688 - accuracy: 0.9972 - val_loss: 4.7987 - val_accuracy: 0.9984 Epoch 13/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.5460 - accuracy: 0.9973 - val_loss: 1.7267 - val_accuracy: 0.9986 Epoch 14/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.3524 - accuracy: 0.9972 - val_loss: 0.2254 - val_accuracy: 0.9984 Epoch 15/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.3034 - accuracy: 0.9973 - val_loss: 0.4511 - val_accuracy: 0.9988 Epoch 16/100 4451/4451 [==============================] - 7s 2ms/step - loss: 1.4981 - accuracy: 0.9976 - val_loss: 0.1794 - val_accuracy: 0.9984 Epoch 17/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.1188 - accuracy: 0.9975 - val_loss: 1.8823 - val_accuracy: 0.9986 Epoch 18/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.5484 - accuracy: 0.9974 - val_loss: 3.6194 - val_accuracy: 0.9984 Epoch 19/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.1093 - accuracy: 0.9979 - val_loss: 0.1721 - val_accuracy: 0.9986 Epoch 20/100 4451/4451 [==============================] - 8s 2ms/step - loss: 1.0012 - accuracy: 0.9974 - val_loss: 1.6799 - val_accuracy: 0.9986 Epoch 21/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.7255 - accuracy: 0.9975 - val_loss: 0.1488 - val_accuracy: 0.9984 Epoch 22/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.7440 - accuracy: 0.9976 - val_loss: 1.1986 - val_accuracy: 0.9985 Epoch 23/100 4451/4451 [==============================] - 7s 2ms/step - loss: 0.8144 - accuracy: 0.9977 - val_loss: 0.1188 - val_accuracy: 0.9990 Epoch 24/100 4451/4451 [==============================] - 7s 2ms/step - loss: 0.8950 - accuracy: 0.9975 - val_loss: 2.5671 - val_accuracy: 0.9984 Epoch 25/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.7938 - accuracy: 0.9979 - val_loss: 0.1546 - val_accuracy: 0.9987 Epoch 26/100 4451/4451 [==============================] - 7s 2ms/step - loss: 0.5884 - accuracy: 0.9977 - val_loss: 0.6092 - val_accuracy: 0.9987 Epoch 27/100 4451/4451 [==============================] - 7s 2ms/step - loss: 0.4694 - accuracy: 0.9979 - val_loss: 0.0996 - val_accuracy: 0.9988 Epoch 28/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.6198 - accuracy: 0.9980 - val_loss: 1.0428 - val_accuracy: 0.9985 Epoch 29/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.4245 - accuracy: 0.9981 - val_loss: 0.1854 - val_accuracy: 0.9990 Epoch 30/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.3659 - accuracy: 0.9982 - val_loss: 0.2747 - val_accuracy: 0.9990 Epoch 31/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.3990 - accuracy: 0.9980 - val_loss: 1.0235 - val_accuracy: 0.9984 Epoch 32/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.3540 - accuracy: 0.9979 - val_loss: 0.0256 - val_accuracy: 0.9992 Epoch 33/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.2975 - accuracy: 0.9979 - val_loss: 0.3110 - val_accuracy: 0.9984 Epoch 34/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.1517 - accuracy: 0.9983 - val_loss: 0.0093 - val_accuracy: 0.9992 Epoch 35/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0247 - accuracy: 0.9989 - val_loss: 0.0066 - val_accuracy: 0.9989 Epoch 36/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0108 - accuracy: 0.9986 - val_loss: 0.0117 - val_accuracy: 0.9984 Epoch 37/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0138 - accuracy: 0.9984 - val_loss: 0.0131 - val_accuracy: 0.9984 Epoch 38/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0120 - accuracy: 0.9984 - val_loss: 0.0121 - val_accuracy: 0.9984 Epoch 39/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0132 - accuracy: 0.9984 - val_loss: 0.0122 - val_accuracy: 0.9983 Epoch 40/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0144 - accuracy: 0.9984 - val_loss: 0.2542 - val_accuracy: 0.9984 Epoch 41/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0146 - accuracy: 0.9985 - val_loss: 0.0130 - val_accuracy: 0.9983 Epoch 42/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0128 - accuracy: 0.9984 - val_loss: 0.0137 - val_accuracy: 0.9990 Epoch 43/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0134 - accuracy: 0.9984 - val_loss: 0.0120 - val_accuracy: 0.9984 Epoch 44/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0115 - accuracy: 0.9984 - val_loss: 0.0117 - val_accuracy: 0.9983 Epoch 45/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0118 - accuracy: 0.9984 - val_loss: 0.0130 - val_accuracy: 0.9984 Epoch 46/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0173 - accuracy: 0.9984 - val_loss: 0.0125 - val_accuracy: 0.9984 Epoch 47/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0141 - accuracy: 0.9984 - val_loss: 0.0127 - val_accuracy: 0.9984 Epoch 48/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0127 - accuracy: 0.9984 - val_loss: 0.0126 - val_accuracy: 0.9984 Epoch 49/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0161 - accuracy: 0.9984 - val_loss: 0.0118 - val_accuracy: 0.9984 Epoch 50/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0143 - accuracy: 0.9984 - val_loss: 0.0126 - val_accuracy: 0.9984 Epoch 51/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0127 - accuracy: 0.9984 - val_loss: 0.0127 - val_accuracy: 0.9984 Epoch 52/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0178 - accuracy: 0.9985 - val_loss: 0.0123 - val_accuracy: 0.9984 Epoch 53/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0121 - accuracy: 0.9984 - val_loss: 0.0121 - val_accuracy: 0.9984 Epoch 54/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0130 - accuracy: 0.9984 - val_loss: 0.0126 - val_accuracy: 0.9984 Epoch 55/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0127 - accuracy: 0.9983 - val_loss: 0.0121 - val_accuracy: 0.9984 Epoch 56/100 4451/4451 [==============================] - 8s 2ms/step - loss: 0.0114 - accuracy: 0.9984 - val_loss: 0.0124 - val_accuracy: 0.9984 Epoch 57/100 ###Markdown Evaluation ###Code results = model.evaluate(x_test, y_test) ###Output 2671/2671 [==============================] - 3s 1ms/step - loss: 0.0279 - accuracy: 0.9982 ###Markdown Predictions ###Code pred = model.predict(x_validation) pred # as accuracy is 99.8 % on evaluation ###Output _____no_output_____
ipeds-completions-reader.ipynb
###Markdown SetupLoad libraries, set matplotlib to inline plotting, and create constants for analysis ###Code %matplotlib inline from io import BytesIO from zipfile import ZipFile from urllib.request import urlopen import pyodbc as db import numpy as np import pandas as pd from pandas import DataFrame, Series import matplotlib.pyplot as plt import seaborn as sns start_year = 2000 end_year = 2005 years = [i for i in range(start_year, end_year + 1)] # key columns indices = ["unitid", "date_key", "year", "cipcode", "awlevel", "majornum"] # value columns cols = ["cnralm", "cnralw", "cunknm", "cunknw", "chispm", "chispw", "caianm", "caianw", "casiam", "casiaw", "cbkaam", "cbkaaw", "cnhpim", "cnhpiw", "cwhitm", "cwhitw", "c2morm", "c2morw"] def fix_cols(dat, year): dat.columns = [colname.lower() for colname in list(dat.columns.values)] if year < 2001: dat["majornum"] = 1 dat["cnralm"] = pd.to_numeric(dat["crace01"], errors = "coerce", downcast = "integer") dat["cnralw"] = pd.to_numeric(dat["crace02"], errors = "coerce", downcast = "integer") dat["cunknm"] = pd.to_numeric(dat["crace13"], errors = "coerce", downcast = "integer") dat["cunknw"] = pd.to_numeric(dat["crace14"], errors = "coerce", downcast = "integer") dat["chispm"] = pd.to_numeric(dat["crace09"], errors = "coerce", downcast = "integer") dat["chispw"] = pd.to_numeric(dat["crace10"], errors = "coerce", downcast = "integer") dat["caianm"] = pd.to_numeric(dat["crace05"], errors = "coerce", downcast = "integer") dat["caianw"] = pd.to_numeric(dat["crace06"], errors = "coerce", downcast = "integer") dat["casiam"] = pd.to_numeric(dat["crace07"], errors = "coerce", downcast = "integer") dat["casiaw"] = pd.to_numeric(dat["crace08"], errors = "coerce", downcast = "integer") dat["cbkaam"] = pd.to_numeric(dat["crace03"], errors = "coerce", downcast = "integer") dat["cbkaaw"] = pd.to_numeric(dat["crace04"], errors = "coerce", downcast = "integer") dat["cnhpim"] = 0 dat["cnhpiw"] = 0 dat["cwhitm"] = pd.to_numeric(dat["crace11"], errors = "coerce", downcast = "integer") dat["cwhitw"] = pd.to_numeric(dat["crace12"], errors = "coerce", downcast = "integer") dat["c2morm"] = 0 dat["c2morw"] = 0 elif year in range(2001, 2008): dat["cnralm"] = pd.to_numeric(dat["crace01"], errors = "coerce", downcast = "integer") dat["cnralw"] = pd.to_numeric(dat["crace02"], errors = "coerce", downcast = "integer") dat["cunknm"] = pd.to_numeric(dat["crace13"], errors = "coerce", downcast = "integer") dat["cunknw"] = pd.to_numeric(dat["crace14"], errors = "coerce", downcast = "integer") dat["chispm"] = pd.to_numeric(dat["crace09"], errors = "coerce", downcast = "integer") dat["chispw"] = pd.to_numeric(dat["crace10"], errors = "coerce", downcast = "integer") dat["caianm"] = pd.to_numeric(dat["crace05"], errors = "coerce", downcast = "integer") dat["caianw"] = pd.to_numeric(dat["crace06"], errors = "coerce", downcast = "integer") dat["casiam"] = pd.to_numeric(dat["crace07"], errors = "coerce", downcast = "integer") dat["casiaw"] = pd.to_numeric(dat["crace08"], errors = "coerce", downcast = "integer") dat["cbkaam"] = pd.to_numeric(dat["crace03"], errors = "coerce", downcast = "integer") dat["cbkaaw"] = pd.to_numeric(dat["crace04"], errors = "coerce", downcast = "integer") dat["cnhpim"] = 0 dat["cnhpiw"] = 0 dat["cwhitm"] = pd.to_numeric(dat["crace11"], errors = "coerce", downcast = "integer") dat["cwhitw"] = pd.to_numeric(dat["crace12"], errors = "coerce", downcast = "integer") dat["c2morm"] = 0 dat["c2morw"] = 0 elif year in range(2008, 2011): dat["cnralm"] = pd.to_numeric(dat["cnralm"], errors = "coerce", downcast = "integer") dat["cnralw"] = pd.to_numeric(dat["cnralw"], errors = "coerce", downcast = "integer") dat["cunknm"] = pd.to_numeric(dat["cunknm"], errors = "coerce", downcast = "integer") dat["cunknw"] = pd.to_numeric(dat["cunknw"], errors = "coerce", downcast = "integer") dat["chispm"] = pd.to_numeric(dat["dvchsm"], errors = "coerce", downcast = "integer") dat["chispw"] = pd.to_numeric(dat["dvchsw"], errors = "coerce", downcast = "integer") dat["caianm"] = pd.to_numeric(dat["dvcaim"], errors = "coerce", downcast = "integer") dat["caianw"] = pd.to_numeric(dat["dvcaiw"], errors = "coerce", downcast = "integer") dat["casiam"] = pd.to_numeric(dat["dvcapm"], errors = "coerce", downcast = "integer") dat["casiaw"] = pd.to_numeric(dat["dvcapw"], errors = "coerce", downcast = "integer") dat["cbkaam"] = pd.to_numeric(dat["dvcbkm"], errors = "coerce", downcast = "integer") dat["cbkaaw"] = pd.to_numeric(dat["dvcbkw"], errors = "coerce", downcast = "integer") dat["cnhpim"] = 0 dat["cnhpiw"] = 0 dat["cwhitm"] = pd.to_numeric(dat["dvcwhm"], errors = "coerce", downcast = "integer") dat["cwhitw"] = pd.to_numeric(dat["dvcwhw"], errors = "coerce", downcast = "integer") dat["c2morm"] = pd.to_numeric(dat["c2morm"], errors = "coerce", downcast = "integer") dat["c2morw"] = pd.to_numeric(dat["c2morw"], errors = "coerce", downcast = "integer") elif year > 2010: dat["cnralm"] = pd.to_numeric(dat["cnralm"], errors = "coerce", downcast = "integer") dat["cnralw"] = pd.to_numeric(dat["cnralw"], errors = "coerce", downcast = "integer") dat["cunknm"] = pd.to_numeric(dat["cunknm"], errors = "coerce", downcast = "integer") dat["cunknw"] = pd.to_numeric(dat["cunknw"], errors = "coerce", downcast = "integer") dat["chispm"] = pd.to_numeric(dat["chispm"], errors = "coerce", downcast = "integer") dat["chispw"] = pd.to_numeric(dat["chispw"], errors = "coerce", downcast = "integer") dat["caianm"] = pd.to_numeric(dat["caianm"], errors = "coerce", downcast = "integer") dat["caianw"] = pd.to_numeric(dat["caianw"], errors = "coerce", downcast = "integer") dat["casiam"] = pd.to_numeric(dat["casiam"], errors = "coerce", downcast = "integer") dat["casiaw"] = pd.to_numeric(dat["casiaw"], errors = "coerce", downcast = "integer") dat["cbkaam"] = pd.to_numeric(dat["cbkaam"], errors = "coerce", downcast = "integer") dat["cbkaaw"] = pd.to_numeric(dat["cbkaaw"], errors = "coerce", downcast = "integer") dat["cnhpim"] = pd.to_numeric(dat["cnhpim"], errors = "coerce", downcast = "integer") dat["cnhpiw"] = pd.to_numeric(dat["cnhpiw"], errors = "coerce", downcast = "integer") dat["cwhitm"] = pd.to_numeric(dat["cwhitm"], errors = "coerce", downcast = "integer") dat["cwhitw"] = pd.to_numeric(dat["cwhitw"], errors = "coerce", downcast = "integer") dat["c2morm"] = pd.to_numeric(dat["c2morm"], errors = "coerce", downcast = "integer") dat["c2morw"] = pd.to_numeric(dat["c2morw"], errors = "coerce", downcast = "integer") years ###Output _____no_output_____ ###Markdown Read DataRead data file from NCES website for each year selected, set column names to lower case for sanity, reduce to needed columns, and fill NaN with zero. Show data frame shape (to ###Code df = DataFrame() for year in years: # prior to 2014, admissions was reported in the IPEDS-IC survey rather than IPEDS-ADM url = "https://nces.ed.gov/ipeds/datacenter/data/c" + str(year) + "_a.zip" file_name = "c" + str(year) + "_a.csv" resp = urlopen(url) zipfile = ZipFile(BytesIO(resp.read())) myfile = zipfile.open(file_name) temp = pd.read_csv(myfile, low_memory = True, encoding = "iso-8859-1") fix_cols(temp, year) temp["year"] = year temp["date_key"] = (year * 10000) + 1015 temp = pd.concat((temp[indices], temp[cols]), axis = 1) df = pd.concat([df, temp], sort = True) temp = None # replace NaN with zero df = df.fillna(0) df.shape ###Output _____no_output_____ ###Markdown Look At Summaries ###Code df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 173137 entries, 0 to 173136 Data columns (total 24 columns): awlevel 173137 non-null int64 c2morm 173137 non-null int64 c2morw 173137 non-null int64 caianm 173137 non-null int16 caianw 173137 non-null int16 casiam 173137 non-null int16 casiaw 173137 non-null int16 cbkaam 173137 non-null int16 cbkaaw 173137 non-null int16 chispm 173137 non-null int16 chispw 173137 non-null int16 cipcode 173137 non-null float64 cnhpim 173137 non-null int64 cnhpiw 173137 non-null int64 cnralm 173137 non-null int16 cnralw 173137 non-null int16 cunknm 173137 non-null int16 cunknw 173137 non-null int16 cwhitm 173137 non-null int16 cwhitw 173137 non-null int16 date_key 173137 non-null int64 majornum 173137 non-null int64 unitid 173137 non-null int64 year 173137 non-null int64 dtypes: float64(1), int16(14), int64(9) memory usage: 17.8 MB ###Markdown Look at first and last cases ###Code df.iloc[[0, 1, 2, 3, 4, -5, -4, -3, -2, -1],:] ###Output _____no_output_____ ###Markdown Look for potential structural issues Zero applications, non-zero admissions ###Code # zero apps, non-zero admits df.loc[(df["applcn"] == 0) & (df["admssn"] > 0), :] ###Output _____no_output_____ ###Markdown Zero admissions, non-zero enrollment ###Code # zero admits, non-zero enrollment df.loc[(df["admssn"] == 0) & (df["enrlt"] > 0), :] ###Output _____no_output_____ ###Markdown Sum of men and women applications is greater than total applications ###Code # total applications less than sum of parts df.loc[df["applcn"] < df["applcnm"] + df["applcnw"],:] ###Output _____no_output_____ ###Markdown Calculate unknown sex categoriesCalculate an unknown variable to accomodate those institutions where the total applications, admissions, and enrollment are greater than the sum of their headcounts of men and women. This will ensure that the details roll up to the total in the final long format data frame. ###Code # calculate unknowns df["applcnu"] = df["applcn"] - (df["applcnm"] + df["applcnw"]) df["admssnu"] = df["admssn"] - (df["admssnm"] + df["admssnw"]) df["enrlu"] = df["enrlt"] - (df["enrlm"] + df["enrlw"]) df.loc[df["applcnu"] > 0, ["applcn", "applcnm", "applcnw", "applcnu"]].head() ###Output _____no_output_____ ###Markdown Convert From Wide to LongMelt the DataFrame, pivoting value columns into a single column. Create a field column to identify type of value.Create a sex column to identify values by sex. ###Code # reshape from wide to long format adm_long = pd.melt(df, id_vars = ["unitid", "date_key"], value_vars = ["applcnm", "applcnw", "applcnu", "admssnm", "admssnw", "admssnu", "enrlm", "enrlw", "enrlu"], value_name = "count") # field indicator adm_long["field"] = np.where(adm_long["variable"].str.slice(0, 3) == "app", "applications", "unknown") adm_long["field"] = np.where(adm_long["variable"].str.slice(0, 3) == "adm", "admissions", adm_long["field"]) adm_long["field"] = np.where(adm_long["variable"].str.slice(0, 3) == "enr", "enrollment", adm_long["field"]) # sex indicator adm_long["sex"] = np.where(adm_long["variable"].str.slice(-1) == "w", "women", "unknown") adm_long["sex"] = np.where(adm_long["variable"].str.slice(-1) == "m", "men", adm_long["sex"]) adm_long.iloc[[0, 1, 2, 3, 4, -5, -4, -3, -2, -1],:] ###Output _____no_output_____ ###Markdown Inspect Field ValuesCheck for unknown. If there is an unknown value here, something has changed in naming conventions. ###Code adm_long["field"].value_counts() ###Output _____no_output_____ ###Markdown Add Demographic KeyThis adds a demographic key for warehousing. The first 5 characters are all set to "unkn" because IPEDS-ADM does not collect race/ethnicity. ###Code adm_long["demographic_key"] = "unknu" adm_long["demographic_key"] = np.where(adm_long["sex"] == "men", "unknm", adm_long["demographic_key"]) adm_long["demographic_key"] = np.where(adm_long["sex"] == "women", "unknw", adm_long["demographic_key"]) adm_long["demographic_key"].value_counts() ###Output _____no_output_____ ###Markdown Pivot Long Data to Final FormatPivot and aggregate (sum) the count column, converting the field variable back into three measures: applications, admissions, and enrollment. For warehousing, we will eventually drop the sex field, but it is kept here for data checking purposes. ###Code adm = adm_long.pivot_table(index=["unitid", "date_key", "demographic_key", "sex"], columns='field', values='count', aggfunc = np.sum, fill_value = 0).reset_index() # remove institutions with no applications adm = adm.loc[adm["applications"] > 0] adm.iloc[[0, 1, 2, 3, 4, -5, -4, -3, -2, -1],:] ###Output _____no_output_____ ###Markdown Write Data to Warehouse (later) Create Some Variables and Do Basic Exploration ###Code adm["acceptance_rate"] = adm["admissions"] / adm["applications"] adm["yield_rate"] = adm["enrollment"] / adm["admissions"] adm["isUNL"] = np.where(adm["unitid"] == 181464, "UNL", "Others") # & (adm["acceptance_rate"] > 0) & (adm["acceptance_rate"] <= 1.0) & (adm["yield_rate"] > 0) & (adm["yield_rate"] <= 1.0) cases = (adm["date_key"] == 20171015) & (adm["acceptance_rate"] < 1.0) & (adm["yield_rate"] < 1.0) viz_set = adm[cases] viz_set.shape # Set theme sns.set_style('darkgrid') sns.jointplot(x = "acceptance_rate", y = "yield_rate", data = viz_set, kind="hex", color="#4CB391") ###Output _____no_output_____
numbers_recognition_1.ipynb
###Markdown evaluate save ###Code joblib.dump(model, "hand_written_digits_recognition.joblib") ###Output _____no_output_____
data/Seq2Seq_Simple.ipynb
###Markdown Simple Seq2Seq machine translation using GRU based encoder-decoder architecture ###Code import torch from torch import nn import numpy as np import time ###Output _____no_output_____ ###Markdown Preparing the dataset for Machine Translation ###Code from ProcessData import * ###Output Go. Va ! Hi. Salut ! go . va ! hi . salut ! run ! cours ! run ! courez ! who ? qui ? wow ! ça alors ! ['stop', '!'] ['stop', '!'] ['i', 'try', '.'] ["j'essaye", '.'] Batch of 2 sentences: X: tensor([[ 6, 124, 4, 3, 1, 1, 1, 1], [ 6, 18, 101, 4, 3, 1, 1, 1]], dtype=torch.int32) valid lengths for X: tensor([4, 5]) Y: tensor([[ 6, 27, 7, 0, 4, 3, 1, 1], [ 6, 7, 158, 4, 3, 1, 1, 1]], dtype=torch.int32) valid lengths for Y: tensor([6, 5]) {'<unk>': 0, '<pad>': 1, '<bos>': 2, '<eos>': 3, '.': 4, '!': 5, 'i': 6, "i'm": 7, 'it': 8, 'go': 9, 'tom': 10, '?': 11, 'me': 12, 'get': 13, 'be': 14, 'up': 15, 'come': 16, 'we': 17, 'am': 18, 'this': 19, 'lost': 20, 'on': 21, 'won': 22, 'us': 23, "it's": 24, 'down': 25, 'no': 26, 'nice': 27, 'away': 28, 'you': 29, 'back': 30, 'try': 31, 'way': 32, 'fair': 33, 'out': 34, 'lazy': 35, 'help': 36, 'hold': 37, 'off': 38, 'grab': 39, 'how': 40, 'who': 41, 'got': 42, 'calm': 43, 'call': 44, 'he': 45, 'a': 46, 'good': 47, 'job': 48, 'did': 49, 'use': 50, 'over': 51, "don't": 52, 'forget': 53, 'run': 54, 'in': 55, 'home': 56, 'fun': 57, "he's": 58, 'sure': 59, 'here': 60, 'stop': 61, 'cool': 62, 'drive': 63, 'fat': 64, 'shut': 65, 'wake': 66, 'leave': 67, 'sit': 68, 'can': 69, 'fire': 70, 'cheers': 71, 'now': 72, 'left': 73, 'ok': 74, 'ask': 75, 'drop': 76, 'hang': 77, "i'll": 78, 'keep': 79, 'tell': 80, 'him': 81, 'ahead': 82, 'hurry': 83, 'fine': 84, 'died': 85, 'taste': 86, 'they': 87, 'watch': 88, 'what': 89, 'feel': 90, 'that': 91, 'beg': 92, 'hug': 93, 'fell': 94, 'really': 95, 'quit': 96, 'tried': 97, 'wet': 98, 'kiss': 99, 'still': 100, 'busy': 101, 'free': 102, 'late': 103, 'okay': 104, 'may': 105, 'she': 106, 'came': 107, 'terrific': 108, 'catch': 109, 'win': 110, 'follow': 111, 'cringed': 112, 'hi': 113, 'wait': 114, 'hello': 115, 'see': 116, 'attack': 117, 'hop': 118, 'know': 119, 'paid': 120, 'slow': 121, 'runs': 122, 'agree': 123, 'dozed': 124, 'stood': 125, 'swore': 126, 'hit': 127, 'ill': 128, 'sad': 129, 'join': 130, ',': 131, 'too': 132, 'open': 133, 'show': 134, 'take': 135, 'wash': 136, 'them': 137, 'man': 138, 'beats': 139, 'find': 140, 'fix': 141, 'have': 142, 'phoned': 143, 'refuse': 144, 'rested': 145, 'saw': 146, 'stayed': 147, 'cold': 148, 'deaf': 149, 'full': 150, 'game': 151, 'rich': 152, 'sick': 153, 'tidy': 154, 'ugly': 155, 'weak': 156, 'well': 157, "i've": 158, 'works': 159, 'his': 160, 'new': 161, "let's": 162, 'look': 163, 'marry': 164, 'save': 165, 'speak': 166, 'trust': 167, 'some': 168, 'warn': 169, 'for': 170, 'write': 171, 'seated': 172, 'soon': 173, 'dogs': 174, 'bark': 175, 'die': 176, 'excuse': 177, 'ready': 178, 'to': 179, 'bed': 180, 'luck': 181, 'is': 182, "how's": 183} {'<unk>': 0, '<pad>': 1, '<bos>': 2, '<eos>': 3, '.': 4, '!': 5, 'je': 6, 'suis': 7, 'tom': 8, '?': 9, "j'ai": 10, 'nous': 11, 'ça': 12, "c'est": 13, 'est': 14, 'à': 15, 'va': 16, 'bien': 17, 'il': 18, 'en': 19, 'soyez': 20, 'j’ai': 21, 'pas': 22, 'un': 23, 'qui': 24, 'gagné': 25, 'sois': 26, 'me': 27, 'tomber': 28, 'la': 29, 'ne': 30, 'ceci': 31, 'de': 32, 'vais': 33, 'bon': 34, 'venez': 35, 'le': 36, 'chez': 37, "j'en": 38, 'avons': 39, 'calme': 40, 'viens': 41, 'vous': 42, 'a': 43, 'moi': 44, 'au': 45, "l'ai": 46, 'emporté': 47, 'perdu': 48, 'allez': 49, 'plus': 50, 'fait': 51, 'comme': 52, 'ici': 53, 'feu': 54, 'maintenant': 55, 'compris': 56, 'sais': 57, 'gentil': 58, 'dégage': 59, 'malade': 60, 'fûmes': 61, 'été': 62, 'elle': 63, 'assieds-toi': 64, 'salut': 65, 'cours': 66, 'vas-y': 67, 'question': 68, 'juste': 69, 'entrez': 70, 'laisse': 71, 'chercher': 72, 'pars': 73, 'maison': 74, 'tiens': 75, 'tenez': 76, 'fais': 77, 'réveille-toi': 78, 'suis-je': 79, 'trouve': 80, 'trouvez': 81, 'boulot': 82, 'les': 83, "m'en": 84, 'paresseux': 85, 'certain': 86, 'puis-je': 87, 'aller': 88, 'asseyez-vous': 89, 'pouvons-nous': 90, 'attrape': 91, 'attrapez': 92, 'courez': 93, 'attends': 94, 'attendez': 95, 'poursuis': 96, 'continuez': 97, 'santé': 98, 'merci': 99, ',': 100, 'pigé': 101, 'capté': 102, 'dans': 103, 'tes': 104, 'bras': 105, 'tombé': 106, 'parti': 107, 'partie': 108, 'payé': 109, 'hors': 110, 'aucune': 111, 'essaye': 112, 'demande': 113, 'fantastique': 114, 'calmes': 115, 'détendu': 116, 'équitable': 117, 'gentille': 118, 'entre': 119, 'laissez': 120, 'sortez': 121, 'sors': 122, 'te': 123, 'faire': 124, 'foutre': 125, 'rentrez': 126, 'rentre': 127, 'doucement': 128, 'peu': 129, 'court': 130, 'aide-moi': 131, 'du': 132, 'debout': 133, 'signe': 134, 'gras': 135, 'gros': 136, 'triste': 137, 'mouillé': 138, 'joignez-vous': 139, 'ferme-la': 140, 'tard': 141, 'réveillez-vous': 142, 'battus': 143, 'battues': 144, 'défaits': 145, 'défaites': 146, 'tu': 147, 'recule\u2009': 148, 'reculez': 149, 'homme': 150, 'appelle': 151, 'rouler': 152, 'lâche-toi': 153, 'aide': 154, 'fais-moi': 155, 'refuse': 156, 'vu': 157, 'occupé': 158, 'froid': 159, 'ai': 160, 'libre': 161, 'retard': 162, 'fainéant': 163, 'paresseuse': 164, 'fainéante': 165, 'porte': 166, 'riche': 167, 'sûr': 168, 'faible': 169, 'bizarre': 170, 'allons-y': 171, 'partir': 172, 'y': 173, 'fort': 174, 'ils': 175, 'gagnèrent': 176, 'elles': 177, 'ont': 178, 'venu': 179, 'mort': 180, 'confiance': 181, 'quoi': 182, "qu'est-ce": 183, "qu'on": 184, "s'est": 185, 'calmez-vous': 186, 'bientôt': 187, 'chiens': 188, 'aboient': 189, 'touche': 190, 'oublie': 191, 'oublie-le': 192, 'emploi': 193, 'lit': 194, 'bonne': 195, 'chance': 196, 'comment': 197, 'prie': 198, 'mouvement': 199, 'recul': 200} ###Markdown Encoder ###Code class Seq2SeqEncoder(nn.Module): """The RNN encoder for sequence to sequence learning.""" def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0): super(Seq2SeqEncoder, self).__init__() # Embedding layer self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=dropout, batch_first=True) def forward(self, X): # Input X: (`batch_size`, `num_steps`, `input_size`) X = self.embedding(X) # After embedding X: (`batch_size`, `num_steps`, `embed_size`) # When batch_first is True: # in RNN models, the first axis corresponds to batch_size # the second axis corresponds to num_steps # the first axis corresponds to embed_dim # When state is not mentioned, it defaults to zeros output, state = self.rnn(X) # `output` shape: (`batch_size`, `num_steps`, `num_hiddens`) # `state` shape: (`num_layers`, `batch_size`, `num_hiddens`) return output, state encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=1) encoder.eval() X = torch.zeros((5, 4), dtype=torch.long) enc_output, enc_state = encoder(X) print(enc_output.shape) print(enc_state.shape) ###Output torch.Size([5, 4, 16]) torch.Size([1, 5, 16]) ###Markdown Decoder ###Code class Seq2SeqDecoder(nn.Module): """The RNN decoder for sequence to sequence learning.""" def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0): super(Seq2SeqDecoder, self).__init__() self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout,batch_first=True) self.dense = nn.Linear(num_hiddens, vocab_size) def forward(self, X, state): # Inputs: # X : (`batch_size`, `num_steps`, `input_size`) # initial hidden state : (`num_layers`, `batch_size`, `num_hiddens`) , # This comes from hidden state output from encoder. X = self.embedding(X) # After embedding X: (`batch_size`, `num_steps`, `embed_size`) # Context is last layer hidden state from last timestep of encoder # last layer hidden state from last time step of encoder last_layer_state = state[-1] # shape (`batch_size`,`num_hiddens`) # context is last timestep hidden state of encoder. # Broadcast `context` so it has the same `num_steps` as `X` context = last_layer_state.repeat(X.shape[1], 1, 1).permute(1,0,2) # context has now shape (`batch_size`,`num_steps`,`num_hiddens`) # concat(X,context) = X_and_context of shape (`batch_size`,`num_steps`,`emb_dim + num_hiddens`) X_and_context = torch.cat((X, context), 2) output, state = self.rnn(X_and_context, state) # output : (`batch_size`,`num_steps`,`num_hiddens`) # state : (`num_layers`,`batch_size`,`num_hiddens`), this is final timestep hidden state of decoder output = self.dense(output) # final output of decoder : # `output` shape: (`batch_size`, `num_steps`, `vocab_size`) # `state` shape: (`num_layers`, `batch_size`, `num_hiddens`) return output, state decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=1) decoder.eval() output, state = decoder(X, enc_state) output.shape, state.shape # You can feed input consisting of a single timestep as well. dec_X = torch.from_numpy(np.zeros((5,1))).long() print(dec_X.shape) # batch_size=5, num_steps=1 output, state = decoder(dec_X, enc_state) output.shape, state.shape ###Output torch.Size([5, 1]) ###Markdown Putting encoder and decoder together ###Code class EncoderDecoder(nn.Module): """The base class for the encoder-decoder architecture.""" def __init__(self, encoder, decoder): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, enc_X, dec_X): enc_output, enc_state = self.encoder(enc_X) return self.decoder(dec_X, enc_state) encoder_decoder = EncoderDecoder(encoder,decoder) encoder_decoder.eval() ###Output _____no_output_____ ###Markdown Allow parts of sequence to be masked as we have variable length sequences ###Code def sequence_mask(X, valid_len, value=0): """Mask irrelevant entries in sequences.""" maxlen = X.size(1) mask = torch.arange((maxlen),device=X.device)[None, :] < valid_len[:, None] X[~mask] = value return X X = torch.tensor([[1, 2, 3], [4, 5, 6]]) valid_lens = torch.tensor([1, 2]) print('Input has 2 sequences :\n',X) print('Assume that first sequence has 1 valid elements, second sequence has 2 valid elements', valid_lens) print('After masking:\n',sequence_mask(X, valid_lens)) ###Output Input has 2 sequences : tensor([[1, 2, 3], [4, 5, 6]]) Assume that first sequence has 1 valid elements, second sequence has 2 valid elements tensor([1, 2]) After masking: tensor([[1, 0, 0], [4, 5, 0]]) ###Markdown Build cross entropy loss using masked sequences ###Code class MaskedSoftmaxCELoss(nn.CrossEntropyLoss): """The softmax cross-entropy loss with masks.""" # `pred` shape: (`batch_size`, `num_steps`, `vocab_size`) # `label` shape: (`batch_size`, `num_steps`) # `valid_len` shape: (`batch_size`,) def forward(self, pred, label, valid_len): weights = torch.ones_like(label) weights = sequence_mask(weights, valid_len).float() self.reduction='none' unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(pred.permute(0, 2, 1), label) weighted_loss = (unweighted_loss * weights).mean(dim=1) return weighted_loss loss = MaskedSoftmaxCELoss() ###Output _____no_output_____ ###Markdown Prepare for training ###Code embed_size = 32 num_hiddens = 32 num_layers = 2 dropout = 0.1 batch_size = 64 num_steps = 10 lr = 0.005 num_epochs = 300 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('device=',device) data_path = '../data/fra-eng/fra.txt' train_iter, src_vocab, tgt_vocab = load_data_nmt(data_path, batch_size, num_steps) encoder = Seq2SeqEncoder( len(src_vocab), embed_size, num_hiddens, num_layers, dropout ) decoder = Seq2SeqDecoder( len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout ) net = EncoderDecoder(encoder, decoder) net.eval() ###Output device= cuda:0 ###Markdown Initialize weights in GRU layers of encoder and decoder ###Code def xavier_init_weights(m): if type(m) == nn.Linear: nn.init.xavier_uniform_(m.weight) if type(m) == nn.GRU: #initialize biases and weights for name, param in m.named_parameters(): if 'bias' in name: nn.init.constant(param, 0.0) elif 'weight' in name: nn.init.xavier_uniform_(m._parameters[name]) net.apply(xavier_init_weights) net.to(device) optimizer = torch.optim.Adam(net.parameters(), lr=lr) loss = MaskedSoftmaxCELoss() net.train() ###Output /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:8: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_. ###Markdown Training ###Code class Accumulator: """For accumulating sums over `n` variables.""" def __init__(self, n): self.data = [0.0] * n def add(self, *args): self.data = [a + float(b) for a, b in zip(self.data, args)] def reset(self): self.data = [0.0] * len(self.data) def __getitem__(self, idx): return self.data[idx] def grad_clipping(net, theta): """Clip the gradient.""" if isinstance(net, nn.Module): params = [p for p in net.parameters() if p.requires_grad] else: params = net.params norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params)) if norm > theta: for param in params: param.grad[:] *= theta / norm cum_losses = [] for epoch in range(num_epochs): start_time = time.time() metric = Accumulator(2) # Sum of training loss, no. of tokens for batch in train_iter: X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch] bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0], device=device).reshape(-1, 1) dec_input = torch.cat([bos, Y[:, :-1]], 1) # Teacher forcing Y_hat, _ = net(X, dec_input) l = loss(Y_hat, Y, Y_valid_len) l.sum().backward() # Make the loss scalar for `backward` grad_clipping(net, 1) num_tokens = Y_valid_len.sum() optimizer.step() with torch.no_grad(): metric.add(l.sum(), num_tokens) if (epoch + 1) % 10 == 0: print(epoch+1,metric[0] / metric[1]) cum_losses.append(metric[0] / metric[1]) elapsed_time = time.time() - start_time print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / elapsed_time:.1f} 'f'tokens/sec on {str(device)}') ###Output 10 0.2090059375725408 20 0.1508961954908735 30 0.1133520789898929 40 0.08690908657946206 50 0.07063316426282791 60 0.060021722659216487 70 0.05148320665325719 80 0.044760870867852666 90 0.039765634578027766 100 0.0361578657795059 110 0.0323923955232034 120 0.030629563359752598 130 0.02831386459572772 140 0.027698246806871697 150 0.02605452747712779 160 0.025122531799292386 170 0.02461659434460036 180 0.023439871518924356 190 0.022659589061114038 200 0.022360768012294897 210 0.021564902962778836 220 0.021263796998871824 230 0.021205942258268114 240 0.02060909357562585 250 0.020626334025605556 260 0.020763019181198605 270 0.020957735334499197 280 0.020493817395086787 290 0.020140862192801725 300 0.02038786731241069 loss 0.020, 29684.8 tokens/sec on cuda:0 ###Markdown Plot the loss over epochs ###Code import matplotlib.pyplot as plt X = range(len(cum_losses)) plt.plot(X, cum_losses) plt.show() ###Output _____no_output_____ ###Markdown Prediction ###Code def translate_a_sentence(src_sentence, src_vocab, bos_token, num_steps): # First process the src_sentence, tokenize and truncate/pad it. #src_sentence : a sentence to translate #Tokenize the sentence src_sentence_words = src_sentence.lower().split(' ') print('src sentence words = ',src_sentence_words) src_tokens = src_vocab[src_sentence.lower().split(' ')] src_tokens = src_tokens + [src_vocab['<eos>']] print('src_tokens = ',src_tokens) enc_valid_len = torch.tensor([len(src_tokens)], device=device) #Truncate the sentence to num_steps if the sentence is longer. If shorter, pad the sentence. print('Truncating/padding to length',num_steps) padding_token = src_vocab['<pad>'] if len(src_tokens) > num_steps: line[:num_steps] # Truncate #Pad src_tokens = src_tokens + [padding_token] * (num_steps - len(src_tokens)) print('After truncating/padding',src_tokens,'\n') # Next convert the src_tokens to a tensor to be fed to the decoder one word at a timestep # Covert src_tokens to a tesnor, add the batch axis enc_X = torch.unsqueeze(torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0) # Now shape of enc_X : (`batch_size` , `num_steps`) = (1,10) # Pass it through the encoder enc_output, enc_state = net.encoder(enc_X) # feed the decoder one word token at a time # prepare the first token for decoder : beginning of sentence dec_X = torch.unsqueeze(torch.tensor([tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0) #Initialize input state for the decoder to be the final timestep state of the encoder dec_input_state = enc_state output_token_seq = [] for _ in range(num_steps): curr_output, curr_dec_state = decoder(dec_X, dec_input_state) dec_input_state = curr_dec_state # curr_output is of shape (`batch_size`, `num_steps`, `len(tgt_vocab)`) = (1,10,201) # Use the token with the highest prediction likelihood as the input of the decoder for the next time step dec_X = curr_output.argmax(dim=2) #next timestep input for decoder #remove batch_size dimension as we are working with single sentences pred = dec_X.squeeze(dim=0).type(torch.int32).item() #eos predicted, stop if pred == tgt_vocab['<eos>']: break output_token_seq.append(pred) return output_token_seq ###Output _____no_output_____ ###Markdown Lets look for some translation ###Code english_batch = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .'] french_batch = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .'] bos_token = tgt_vocab['<bos>'] for eng_sent, fr_sent in zip(english_batch,french_batch): fr_sent_predicted_tokens = translate_a_sentence(eng_sent, src_vocab, bos_token, num_steps) fr_sent_predicted = ' '.join(tgt_vocab.to_tokens(fr_sent_predicted_tokens)) print(f'Actual translation: english:{eng_sent} => french:{fr_sent}') print(f'Predicted translation: english:{eng_sent} => french:{fr_sent_predicted}') print('-------------------------------------------------------------------') ###Output src sentence words = ['go', '.'] src_tokens = [9, 4, 3] Truncating/padding to length 10 After truncating/padding [9, 4, 3, 1, 1, 1, 1, 1, 1, 1] Actual translation: english:go . => french:va ! Predicted translation: english:go . => french:va au gagné ? ------------------------------------------------------------------- src sentence words = ['i', 'lost', '.'] src_tokens = [6, 20, 4, 3] Truncating/padding to length 10 After truncating/padding [6, 20, 4, 3, 1, 1, 1, 1, 1, 1] Actual translation: english:i lost . => french:j'ai perdu . Predicted translation: english:i lost . => french:j'ai perdu . ------------------------------------------------------------------- src sentence words = ["he's", 'calm', '.'] src_tokens = [58, 43, 4, 3] Truncating/padding to length 10 After truncating/padding [58, 43, 4, 3, 1, 1, 1, 1, 1, 1] Actual translation: english:he's calm . => french:il est calme . Predicted translation: english:he's calm . => french:il est mouillé ! ------------------------------------------------------------------- src sentence words = ["i'm", 'home', '.'] src_tokens = [7, 56, 4, 3] Truncating/padding to length 10 After truncating/padding [7, 56, 4, 3, 1, 1, 1, 1, 1, 1] Actual translation: english:i'm home . => french:je suis chez moi . Predicted translation: english:i'm home . => french:je suis chez moi <unk> . -------------------------------------------------------------------
data_for_writeup.ipynb
###Markdown This notebook has all of the numbers and plots I used in the writeup. I tried to keep it reasonably organized but I was also a bit lazy, so some code might be sloppy hard to follow... sorry. load libraries and data ###Code from nltk.sentiment.vader import SentimentIntensityAnalyzer from googleapiclient import discovery import utils import os import json import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from scipy.stats import ttest_ind import pickle guest_df = utils.load_guest_list_file(apply_filters=True) # vader sentiment analyzer sia = SentimentIntensityAnalyzer() # perspective API api_key = open(utils.perspective_api_key_file).read().split()[0] api = discovery.build('commentanalyzer', 'v1alpha1', developerKey=api_key) ###Output _____no_output_____ ###Markdown I'm going to use R for some visualizations because ggplot kicks matplotlib's butt. ###Code %load_ext rpy2.ipython # install R packages with conda: conda install -c r r-ggplot2 %%capture %%R library(ggplot2) library(dplyr) library(readr) library(tidyr) df <- read_csv("./guest_list.csv") %>% # these same filters are applied to the pandas dataframe filter(!is.na(video_id), guest != "holiday special", guest != "Stephen Colbert") df$season <- factor(df$season) df$female_flag <- factor(df$female_flag) ###Output _____no_output_____ ###Markdown Chrissy Teigen examples ###Code # load comments file video_id = guest_df.loc[guest_df['guest'] == 'Chrissy Teigen', 'video_id'].values[0] comment_file = os.path.join(utils.comment_dir, f'comments-{video_id}.json') comments = [c['commentText'] for c in json.load(open(comment_file, 'r')) if 'commentText' in c] def get_scores(text): sent = sia.polarity_scores(text)['compound'] analyze_request = { 'comment': {'text': text}, 'requestedAttributes': {'TOXICITY': {}, 'SEVERE_TOXICITY': {}}, 'languages': ['en'] } response = api.comments().analyze(body=analyze_request).execute() tox_score = response['attributeScores']['TOXICITY']['summaryScore']['value'] sev_tox_score = response['attributeScores']['SEVERE_TOXICITY']['summaryScore']['value'] out = f'\nsentiment score: {sent}' out += f'\ntoxicity: {tox_score}' out += f'\nsevere toxicity: {sev_tox_score}' return out c1 = comments[2288] print(c1) print(get_scores(c1)) c2 = comments[232] print(c2) print(get_scores(c2)) c3 = comments[6042] print(c3) print(get_scores(c3)) ###Output Hell nooo eat the DAM wing. You knew you were going to Hot Ones. What. waste of wing. SHAME Delete a the episode. Retake of season 7 episode 1 SMH. sentiment score: -0.9356 toxicity: 0.76644164 severe toxicity: 0.5029349 ###Markdown sentiment analysis I'm using a metric that I'm calling positive ratio, defined as $$ positive\_ratio = \frac{\text{ of positive comments}}{\text{ of negative comments}} $$where positive comments have sentiment scores greater than 0 and negative comments have scores less than 0. As an example, a video with twice as many positive comments as negative would have a positive ratio of 2.The benefit to using positive ratio is that it removes the effect of neutral comments. Many comments in the dataset have sentiment scores of exactly 0, and all of those 0 values can dilute a metric like average sentiment score.The downside to using positive ratio is that it ignores the magnitude of sentiment scores. For example, a comment with sentiment score 0.1 has the same effect on positive ratio as a comment with sentiment score 0.9.Due to the large number of neutral comments, I decided that positive ratio was the most appropriate metric for this dataset. In any case, the results are pretty similar with any metric. ###Code %%R -w 700 -h 350 p <- df %>% mutate(female_flag = if_else(female_flag == 0, ' male', ' female')) %>% filter(season != 1) %>% ggplot() + geom_density(aes(x=positive_ratio, color=female_flag, fill=female_flag), alpha=0.2) + labs(title="Positive Ratio for Female vs. Male Guests", x="positive ratio") + expand_limits(x=0) + theme_light(base_size=14) + theme(plot.title=element_text(hjust = 0.5), legend.title=element_blank()) ggsave(filename='./visualizations/positive_ratio_by_male_female.png', plot=p) p df = guest_df[guest_df['season'] != 1] f_vals = df[df['female_flag'] == 1]['positive_ratio'] m_vals = df[df['female_flag'] == 0]['positive_ratio'] print(f'female guest positive ratio: {round(f_vals.mean(), 3)}') print(f'male guest positive ratio : {round(m_vals.mean(), 3)}') ttest_ind(m_vals, f_vals) ###Output _____no_output_____ ###Markdown toxicity scores ###Code %%R -w 700 -h 350 p <- df %>% mutate(female_flag = if_else(female_flag == 0, ' male', ' female')) %>% filter(season != 1) %>% rename(toxicity = mean_toxicity, `severe toxicity` = mean_severe_toxicity) %>% gather("metric", "value", c("toxicity", "severe toxicity")) %>% mutate(metric = factor(metric, levels=c("toxicity", "severe toxicity"))) %>% ggplot() + geom_density(aes(x=value, color=female_flag, fill=female_flag), alpha=0.2) + labs(title="Perspective Toxicity Scores for Female vs. Male Guests", x="score") + expand_limits(x=0) + expand_limits(x=0.5) + facet_grid(. ~ metric) + theme_light(base_size=14) + theme(plot.title=element_text(hjust = 0.5), legend.title=element_blank()) ggsave(filename='./visualizations/toxicity_scores_by_male_female.png', plot=p) p df = guest_df[guest_df['season'] != 1] f_tox = df[df['female_flag'] == 1]['mean_toxicity'] m_tox = df[df['female_flag'] == 0]['mean_toxicity'] f_sev_tox = df[df['female_flag'] == 1]['mean_severe_toxicity'] m_sev_tox = df[df['female_flag'] == 0]['mean_severe_toxicity'] print(f'female guest average toxicity: {round(f_tox.mean(), 3)}') print(f'male guest average toxicity : {round(m_tox.mean(), 3)}') print(f'female guest average severe toxicity: {round(f_sev_tox.mean(), 3)}') print(f'male guest average severe toxicity : {round(m_sev_tox.mean(), 3)}') ttest_ind(m_tox, f_tox) ttest_ind(m_sev_tox, f_sev_tox) ###Output _____no_output_____ ###Markdown why exclude season 1 from sentiment analysis? Far lower average sentiment score than later seasons. Show was still finding its stride and had some structural and aesthetic differences from later seasons. Some major outliers (especially the infamous DJ Khaled episode). ###Code %%R -w 700 -h 350 p <- df %>% ggplot() + geom_density(aes(x=positive_ratio, color=season, fill=season), alpha=0.1) + labs(title="Positive Ratio by Season", x="positive ratio") + expand_limits(x=0) + theme_light(base_size=14) + theme(plot.title=element_text(hjust = 0.5)) ggsave(filename='./visualizations/positive_ratio_by_season.png', plot=p) p ###Output _____no_output_____ ###Markdown word usage ###Code pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.max_colwidth', 50) word_df = pickle.load(open('./data/gender_analysis_bigram.pickle', 'rb')) f_top_100 = word_df[['token', 'z_score']].rename(columns={'token': 'female'}).head(100) m_top_100 = word_df[['token', 'z_score']].rename(columns={'token': 'male'}).sort_index(ascending=False).reset_index(drop=True).head(100) f_top_100.join(m_top_100, lsuffix='_f', rsuffix='_m') ###Output _____no_output_____
notebooks/introduction_jupyter-notebook.ipynb
###Markdown Jupyter NotebookThis notebook was adapted from https://github.com/oesteban/biss2016 and is originally based on https://github.com/jvns/pandas-cookbook.[Jupyter Notebook](http://jupyter.org/) started as a web application, based on [IPython](https://ipython.org/) that can run Python code directly in the webbrowser. Now, Jupyter Notebook can handle over 40 programming languages and is *the* interactive, open source web application to run any scientific code.You might also want to try a new Jupyter environment [JupyterLab](https://github.com/jupyterlab/jupyterlab). How to run a cellFirst, we need to explain how to run cells. Try to run the cell below! ###Code import pandas as pd print("Hi! This is a cell. Click on it and press the ▶ button above to run it") ###Output _____no_output_____ ###Markdown You can also run a cell with `Ctrl+Enter` or `Shift+Enter`. Experiment a bit with that. Tab Completion One of the most useful things about Jupyter Notebook is its tab completion. Try this: click just after `read_csv(` in the cell below and press `Shift+Tab` 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option. ###Code pd.read_csv( ###Output _____no_output_____ ###Markdown After the first time, you should see this:![](../static/images/jupyter_tab-once.png)After the second time:![](../static/images/jupyter_tab-twice.png)After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the `read_csv` function:![](../static/images/jupyter_tab-4-times.png)I find this amazingly useful. I think of this as "the more confused I am, the more times I should press `Shift+Tab`".Okay, let's try tab completion for function names! ###Code pd.r ###Output _____no_output_____ ###Markdown You should see this:![](../static/images/jupyter_function-completion.png) Get HelpThere's an additional way on how you can reach the help box shown above after the fourth `Shift+Tab` press. Instead, you can also use `obj?` or `obj??` to get help or more help for an object. ###Code pd.read_csv? ###Output _____no_output_____ ###Markdown Writing codeWriting code in the notebook is pretty normal. ###Code def print_10_nums(): for i in range(10): print(i) print_10_nums() ###Output _____no_output_____ ###Markdown If you messed something up and want to revert to an older version of a code in a cell, use `Ctrl+Z` or to go than back `Ctrl+Y`.For a full list of all keyboard shortcuts, click on the small keyboard icon in the notebook header or click on `Help > Keyboard Shortcuts`. Saving a NotebookJupyter Notebooks autosave, so you don't have to worry about losing code too much. At the top of the page you can usually see the current save status:- Last Checkpoint: 2 minutes ago (unsaved changes)- Last Checkpoint: a few seconds ago (autosaved)If you want to save a notebook on purpose, either click on `File > Save and Checkpoint` or press `Ctrl+S`. Magic functions IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.Some useful magic functions are:Magic Name | Effect---------- | -------------------------------------------------------------%env | Get, set, or list environment variables%pdb | Control the automatic calling of the pdb interactive debugger%pylab | Load numpy and matplotlib to work interactively%%debug | Activates debugging mode in cell%%html | Render the cell as a block of HTML%%latex | Render the cell as a block of latex%%sh | %%sh script magic%%time | Time execution of a Python statement or expressionYou can run `%magic` to get a list of magic functions or `%quickref` for a reference sheet. Example 1: Let's see how long a specific command takes with `%time` or `%%time`: ###Code %time result = sum([x for x in range(10**6)]) ###Output _____no_output_____ ###Markdown Example 2: Let's use `%%latex` to render a block of latex ###Code %%latex $$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} \mathrm{d} x$$ ###Output _____no_output_____ ###Markdown Jupyter NotebookThis notebook was adapted from https://github.com/oesteban/biss2016 and is originally based on https://github.com/jvns/pandas-cookbook.[Jupyter Notebook](http://jupyter.org/) started as a web application, based on [IPython](https://ipython.org/) that can run Python code directly in the webbrowser. Now, Jupyter Notebook can handle over 40 programming languages and is *the* interactive, open source web application to run any scientific code.You might also want to try a new Jupyter environment [JupyterLab](https://github.com/jupyterlab/jupyterlab). How to run a cellFirst, we need to explain how to run cells. Try to run the cell below! ###Code import pandas as pd print("Hi! This is a cell. Click on it and press the ▶ button above to run it") ###Output _____no_output_____ ###Markdown You can also run a cell with `Ctrl+Enter` or `Shift+Enter`. Experiment a bit with that. Tab Completion One of the most useful things about Jupyter Notebook is its tab completion. Try this: click just after `read_csv(` in the cell below and press `Shift+Tab` 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option. ###Code # NBVAL_SKIP # Use TAB completion for function info pd.read_csv( ###Output _____no_output_____ ###Markdown After the first time, you should see this:![](../static/images/jupyter_tab-once.png)After the second time:![](../static/images/jupyter_tab-twice.png)After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the `read_csv` function:![](../static/images/jupyter_tab-4-times.png)I find this amazingly useful. I think of this as "the more confused I am, the more times I should press `Shift+Tab`".Okay, let's try tab completion for function names! ###Code # NBVAL_SKIP # Use TAB completion to see possible function names pd.r ###Output _____no_output_____ ###Markdown You should see this:![](../static/images/jupyter_function-completion.png) Get HelpThere's an additional way on how you can reach the help box shown above after the fourth `Shift+Tab` press. Instead, you can also use `obj?` or `obj??` to get help or more help for an object. ###Code pd.read_csv? ###Output _____no_output_____ ###Markdown Writing codeWriting code in the notebook is pretty normal. ###Code def print_10_nums(): for i in range(10): print(i) print_10_nums() ###Output _____no_output_____ ###Markdown If you messed something up and want to revert to an older version of a code in a cell, use `Ctrl+Z` or to go than back `Ctrl+Y`.For a full list of all keyboard shortcuts, click on the small keyboard icon in the notebook header or click on `Help > Keyboard Shortcuts`. Saving a NotebookJupyter Notebooks autosave, so you don't have to worry about losing code too much. At the top of the page you can usually see the current save status:- Last Checkpoint: 2 minutes ago (unsaved changes)- Last Checkpoint: a few seconds ago (autosaved)If you want to save a notebook on purpose, either click on `File > Save and Checkpoint` or press `Ctrl+S`. Magic functions IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.Some useful magic functions are:Magic Name | Effect---------- | -------------------------------------------------------------%env | Get, set, or list environment variables%pdb | Control the automatic calling of the pdb interactive debugger%pylab | Load numpy and matplotlib to work interactively%%debug | Activates debugging mode in cell%%html | Render the cell as a block of HTML%%latex | Render the cell as a block of latex%%sh | %%sh script magic%%time | Time execution of a Python statement or expressionYou can run `%magic` to get a list of magic functions or `%quickref` for a reference sheet. Example 1Let's see how long a specific command takes with `%time` or `%%time`: ###Code %time result = sum([x for x in range(10**6)]) ###Output _____no_output_____ ###Markdown Example 2Let's use `%%latex` to render a block of latex ###Code %%latex $$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} \mathrm{d} x$$ ###Output _____no_output_____ ###Markdown Jupyter NotebookThis notebook was adapted from https://github.com/oesteban/biss2016 and is originally based on https://github.com/jvns/pandas-cookbook.[Jupyter Notebook](http://jupyter.org/) started as a web application, based on [IPython](https://ipython.org/) that can run Python code directly in the web browser. Now, Jupyter Notebook can handle over 40 programming languages and is *the* interactive, open source web application to run any scientific code.You might also want to try a new Jupyter environment [JupyterLab](https://github.com/jupyterlab/jupyterlab). How to run a cellFirst, we need to explain how to run cells. Try to run the cell below! ###Code import pandas as pd print("Hi! This is a cell. Click on it and press the ▶ button above to run it") ###Output Hi! This is a cell. Click on it and press the ▶ button above to run it ###Markdown You can also run a cell with `Ctrl+Enter` or `Shift+Enter`. Experiment a bit with that. Tab Completion One of the most useful things about Jupyter Notebook is its tab completion. Try this: click just after `read_csv(` in the cell below and press `Shift+Tab` 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option. ###Code # NBVAL_SKIP # Use TAB completion for function info pd.read_csv( ###Output _____no_output_____ ###Markdown After the first time, you should see this:![](../static/images/jupyter_tab-once.png)After the second time:![](../static/images/jupyter_tab-twice.png)After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the `read_csv` function:![](../static/images/jupyter_tab-4-times.png)I find this amazingly useful. I think of this as "the more confused I am, the more times I should press `Shift+Tab`".Okay, let's try tab completion for function names! ###Code # NBVAL_SKIP # Use TAB completion to see possible function names pd.r ###Output _____no_output_____ ###Markdown You should see this:![](../static/images/jupyter_function-completion.png) Get HelpThere's an additional way on how you can reach the help box shown above after the fourth `Shift+Tab` press. Instead, you can also use `obj?` or `obj??` to get help or more help for an object. ###Code pd.read_csv? ###Output _____no_output_____ ###Markdown Writing codeWriting code in the notebook is pretty normal. ###Code def print_10_nums(): for i in range(10): print(i) print_10_nums() ###Output _____no_output_____ ###Markdown If you messed something up and want to revert to an older version of a code in a cell, use `Ctrl+Z` or to go than back `Ctrl+Y`.For a full list of all keyboard shortcuts, click on the small keyboard icon in the notebook header or click on `Help > Keyboard Shortcuts`. Saving a NotebookJupyter Notebooks autosave, so you don't have to worry about losing code too much. At the top of the page you can usually see the current save status:- Last Checkpoint: 2 minutes ago (unsaved changes)- Last Checkpoint: a few seconds ago (autosaved)If you want to save a notebook on purpose, either click on `File > Save and Checkpoint` or press `Ctrl+S`. Magic functions IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.Some useful magic functions are:Magic Name | Effect---------- | -------------------------------------------------------------%env | Get, set, or list environment variables%pdb | Control the automatic calling of the pdb interactive debugger%pylab | Load numpy and matplotlib to work interactively%%debug | Activates debugging mode in cell%%html | Render the cell as a block of HTML%%latex | Render the cell as a block of latex%%sh | %%sh script magic%%time | Time execution of a Python statement or expressionYou can run `%magic` to get a list of magic functions or `%quickref` for a reference sheet. Example 1Let's see how long a specific command takes with `%time` or `%%time`: ###Code %time result = sum([x for x in range(10**6)]) ###Output _____no_output_____ ###Markdown Example 2Let's use `%%latex` to render a block of latex ###Code %%latex $$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} \mathrm{d} x$$ ###Output _____no_output_____ ###Markdown Jupyter NotebookThis notebook was adapted from https://github.com/oesteban/biss2016 and is originally based on https://github.com/jvns/pandas-cookbook.[Jupyter Notebook](http://jupyter.org/) started as a web application, based on [IPython](https://ipython.org/) that can run Python code directly in the webbrowser. Now, Jupyter Notebook can handle over 40 programming languages and is *the* interactive, open source web application to run any scientific code.You might also want to try a new Jupyter environment [JupyterLab](https://github.com/jupyterlab/jupyterlab). How to run a cellFirst, we need to explain how to run cells. Try to run the cell below! ###Code import pandas as pd print("Hi! This is a cell. Click on it and press the ▶ button above to run it") ###Output _____no_output_____ ###Markdown You can also run a cell with `Ctrl+Enter` or `Shift+Enter`. Experiment a bit with that. Tab Completion One of the most useful things about Jupyter Notebook is its tab completion. Try this: click just after `read_csv(` in the cell below and press `Shift+Tab` 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option. ###Code pd.read_csv( ###Output _____no_output_____ ###Markdown After the first time, you should see this:![](../static/images/jupyter_tab-once.png)After the second time:![](../static/images/jupyter_tab-twice.png)After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the `read_csv` function:![](../static/images/jupyter_tab-4-times.png)I find this amazingly useful. I think of this as "the more confused I am, the more times I should press `Shift+Tab`".Okay, let's try tab completion for function names! ###Code pd.r ###Output _____no_output_____ ###Markdown You should see this:![](../static/images/jupyter_function-completion.png) Get HelpThere's an additional way on how you can reach the help box shown above after the fourth `Shift+Tab` press. Instead, you can also use `obj?` or `obj??` to get help or more help for an object. ###Code pd.read_csv? ###Output _____no_output_____ ###Markdown Writing codeWriting code in the notebook is pretty normal. ###Code def print_10_nums(): for i in range(10): print(i) print_10_nums() ###Output _____no_output_____ ###Markdown If you messed something up and want to revert to an older version of a code in a cell, use `Ctrl+Z` or to go than back `Ctrl+Y`.For a full list of all keyboard shortcuts, click on the small keyboard icon in the notebook header or click on `Help > Keyboard Shortcuts`. Saving a NotebookJupyter Notebooks autosave, so you don't have to worry about losing code too much. At the top of the page you can usually see the current save status:- Last Checkpoint: 2 minutes ago (unsaved changes)- Last Checkpoint: a few seconds ago (autosaved)If you want to save a notebook on purpose, either click on `File > Save and Checkpoint` or press `Ctrl+S`. Magic functions IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.Some useful magic functions are:Magic Name | Effect---------- | -------------------------------------------------------------%env | Get, set, or list environment variables%pdb | Control the automatic calling of the pdb interactive debugger%pylab | Load numpy and matplotlib to work interactively%%debug | Activates debugging mode in cell%%html | Render the cell as a block of HTML%%latex | Render the cell as a block of latex%%sh | %%sh script magic%%time | Time execution of a Python statement or expressionYou can run `%magic` to get a list of magic functions or `%quickref` for a reference sheet. Example 1: Let's see how long a specific command takes with `%time` or `%%time`: ###Code %time result = sum([x for x in range(10**6)]) ###Output _____no_output_____ ###Markdown Example 2: Let's use `%%latex` to render a block of latex ###Code %%latex $$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} \mathrm{d} x$$ ###Output _____no_output_____ ###Markdown Jupyter NotebookThis notebook was adapted from https://github.com/oesteban/biss2016 and is originally based on https://github.com/jvns/pandas-cookbook.[Jupyter Notebook](http://jupyter.org/) started as a web application, based on [IPython](https://ipython.org/) that can run Python code directly in the webbrowser. Now, Jupyter Notebook can handle over 40 programming languages and is *the* interactive, open source web application to run any scientific code.You might also want to try a new Jupyter environment [JupyterLab](https://github.com/jupyterlab/jupyterlab). How to run a cellFirst, we need to explain how to run cells. Try to run the cell below! ###Code import pandas as pd print("Hi! This is a cell. Click on it and press the ▶ button above to run it") ###Output Hi! This is a cell. Click on it and press the ▶ button above to run it ###Markdown You can also run a cell with `Ctrl+Enter` or `Shift+Enter`. Experiment a bit with that. Tab Completion One of the most useful things about Jupyter Notebook is its tab completion. Try this: click just after `read_csv(` in the cell below and press `Shift+Tab` 4 times, slowly. Note that if you're using JupyterLab you don't have an additional help box option. ###Code # NBVAL_SKIP # Use TAB completion for function info pd.read_csv( ###Output _____no_output_____ ###Markdown After the first time, you should see this:![](../static/images/jupyter_tab-once.png)After the second time:![](../static/images/jupyter_tab-twice.png)After the fourth time, a big help box should pop up at the bottom of the screen, with the full documentation for the `read_csv` function:![](../static/images/jupyter_tab-4-times.png)I find this amazingly useful. I think of this as "the more confused I am, the more times I should press `Shift+Tab`".Okay, let's try tab completion for function names! ###Code # NBVAL_SKIP # Use TAB completion to see possible function names pd.r ###Output _____no_output_____ ###Markdown You should see this:![](../static/images/jupyter_function-completion.png) Get HelpThere's an additional way on how you can reach the help box shown above after the fourth `Shift+Tab` press. Instead, you can also use `obj?` or `obj??` to get help or more help for an object. ###Code pd.read_csv? ###Output _____no_output_____ ###Markdown Writing codeWriting code in the notebook is pretty normal. ###Code def print_10_nums(): for i in range(10): print(i) print_10_nums() ###Output _____no_output_____ ###Markdown If you messed something up and want to revert to an older version of a code in a cell, use `Ctrl+Z` or to go than back `Ctrl+Y`.For a full list of all keyboard shortcuts, click on the small keyboard icon in the notebook header or click on `Help > Keyboard Shortcuts`. Saving a NotebookJupyter Notebooks autosave, so you don't have to worry about losing code too much. At the top of the page you can usually see the current save status:- Last Checkpoint: 2 minutes ago (unsaved changes)- Last Checkpoint: a few seconds ago (autosaved)If you want to save a notebook on purpose, either click on `File > Save and Checkpoint` or press `Ctrl+S`. Magic functions IPython has all kinds of magic functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%.Some useful magic functions are:Magic Name | Effect---------- | -------------------------------------------------------------%env | Get, set, or list environment variables%pdb | Control the automatic calling of the pdb interactive debugger%pylab | Load numpy and matplotlib to work interactively%%debug | Activates debugging mode in cell%%html | Render the cell as a block of HTML%%latex | Render the cell as a block of latex%%sh | %%sh script magic%%time | Time execution of a Python statement or expressionYou can run `%magic` to get a list of magic functions or `%quickref` for a reference sheet. Example 1Let's see how long a specific command takes with `%time` or `%%time`: ###Code %time result = sum([x for x in range(10**6)]) ###Output _____no_output_____ ###Markdown Example 2Let's use `%%latex` to render a block of latex ###Code %%latex $$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} \mathrm{d} x$$ ###Output _____no_output_____
tutorials/tutorial04_visualize.ipynb
###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib or rllab. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[How to visualize using SUMO with rllab](2.3---Using-SUMO-with-rllab)[**_Example: visualize data on a ring trained using RLlib_**](2.4---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sumo_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, 1500, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.4 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output _____no_output_____ ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output _____no_output_____ ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output _____no_output_____ ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/sumo/sugiyama.py ###Output _____no_output_____ ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output _____no_output_____ ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output _____no_output_____ ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output _____no_output_____ ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/simulate.py ring ###Output _____no_output_____ ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing and replaying the results of Flow experiments run using RL. The process of visualizing results breaks down into two main components:- reward plotting- policy replayNote that this tutorial only talks about visualization using sumo, and not other simulators like Aimsun. Visualization with RLlib Plotting RewardSimilarly to how rllab handles reward plotting, RLlib supports reward visualization over the period of training using `tensorboard`. `tensorboard` takes one command-line input, `--logdir`, which is an rllib result directory (usually located within an experiment directory inside your `ray_results` directory). An example function call is below. ###Code ! tensorboard --logdir /ray_results/experiment_dir/result/directory ###Output _____no_output_____ ###Markdown If you do not wish to use `tensorboard`, you can also use the `flow/visualize/plot_ray_results.py` file. It takes as arguments the path to the `progress.csv` file located inside your experiment results directory, and the name(s) of the column(s) to plot. If you do not know what the name of the columns are, simply do not put any and a list of all available columns will be displayed to you. Example usage: ###Code ! plot_ray_results.py /ray_results/experiment_dir/progress.csv training/return-average training/return-min ###Output _____no_output_____ ###Markdown Replaying a Trained Policy The tool to replay a policy trained using RLlib is located in `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results, and second the number of the checkpoint you wish to visualize. There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. ###Code ! python ../../flow/visualize/visualizer_rllib.py /ray_results/experiment_dir/result/directory 1 ###Output _____no_output_____ ###Markdown Data Collection and AnalysisAny Flow experiment can output its results to a CSV file containing the contents of SUMO's built-in `emission.xml` files, specifying speed, position, time, fuel consumption, and many other metrics for all vehicles in a network over time. This section describes how to generate those `emission.csv` files when replaying and analyzing a trained policy. RLlib ###Code # --emission_to_csv does the same as above ! python ../../flow/visualize/visualizer_rllib.py results/sample_checkpoint 1 --gen_emission ###Output _____no_output_____ ###Markdown Exercise 04: Visualizing Experiment Results This tutorial describes the process of visualizing and replaying the results of Flow experiments run using RL. The process of visualizing results breaks down into two main components:- reward plotting- policy replayFurthermore, visualization is different depending on whether your experiments were run using rllab or RLlib. Accordingly, this tutorial is divided in two parts (one for rllab and one for RLlib). rllab Plotting Reward An essential step in evaluating the effectiveness and training progress of RL agents is visualization of reward. rllab includes a tool to plot the _average cumulative reward per rollout_ against _iteration number_ to show training progress. This "reward plot" can be generated for just one experiment or many. The tool to be called is rllab's `frontend.py`, which is inside the directory `rllab/viskit/` (assuming a user is already inside the directory `rllab-multiagent`). `frontend.py` requires only one command-line input: the path to the result directory that a user wants to visualize. The directory should contain a `progress.csv` and `params.json` file—pickle files containing per-iteration results are not necessary. An example call to `frontend.py` is below. Click on the link to http://localhost:5000 to view reward over time. ###Code ! python ../../../rllab/viskit/frontend.py /path/to/result/directory ###Output _____no_output_____ ###Markdown Replaying a Trained Policy Flow includes a tool for visualizing a trained policy in its environment using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations, and rewards in order to produce desired behavior. The visualizer also generates plots of observations and a plot of reward over the course of the rollout. The tool to be called is `visualizer_rllab.py` within `flow/visualize` (assuming a user is already inside the parent directory `flow`). `visualizer_rllab.py` requires one command-line input and has three additional optional arguments. The required input is the path to the pickle file to be visualized (this is usually within an rllab result directory). The optional inputs are: - `--num_rollouts`, the number of rollouts to be visualized. The default value is 100. This argument takes integer input.- `--plotname`, the name of the plot generated by the visualizer. The default value is `traffic_plot`. This argument takes string input.- `--emission_to_csv`, whether to convert SUMO's emission file into a CSV file. Emission files will be discussed later in this tutorial. By default, emission CSV files are not stored. `--emission_to_csv` is a flag and takes no input.An example call to `visualizer_rllab.py` is below. ###Code ! python ../../flow/visualize/visualizer_rllab.py /path/to/result.pkl --num_rollouts 1 --plotname plot_test --emission_to_csv ###Output _____no_output_____ ###Markdown RLlib Plotting RewardSimilarly to how rllab handles reward plotting, RLlib supports reward visualization over the period of training using `tensorboard`. `tensorboard` takes one command-line input, `--logdir`, which is an rllib result directory (usually located within an experiment directory inside your `ray_results` directory). An example function call is below. ###Code ! tensorboard /ray_results/experiment_dir/result/directory ###Output _____no_output_____ ###Markdown Replaying a Trained Policy ###Code ! python ../../flow/visualize/visualizer_rllib.py /ray_results/experiment_dir/result/directory 1 ###Output _____no_output_____ ###Markdown Data Collection and AnalysisAny Flow experiment can output its results to a CSV file containing the contents of SUMO's built-in `emission.xml` files, specifying speed, position, time, fuel consumption, and many other metrics for all vehicles in a network over time. This section describes how to generate those `emission.csv` files when replaying and analyzing a trained policy. rllab ###Code # Calling the visualizer with the flag --emission_to_csv replays the policy and creates an emission file ! python ../../flow/visualize/visualizer_rllab.py path/to/result.pkl --emission_to_csv ###Output _____no_output_____ ###Markdown The generated `emission.csv` is placed in the directory `test_time_rollout/` inside the directory from which you've just run the visualizer. That emission file can be opened in Excel, loaded in Python and plotted, and more. RLlib ###Code # --emission_to_csv does the same as above ! python ../../flow/visualize/visualizer_rllib.py results/sample_checkpoint 1 --emission_to_csv ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing and replaying the results of Flow experiments run using RL. The process of visualizing results breaks down into two main components:- reward plotting- policy replayNote that this tutorial only talks about visualization using sumo, and not other simulators like Aimsun. Visualization with RLlib Plotting RewardSimilarly to how rllab handles reward plotting, RLlib supports reward visualization over the period of training using `tensorboard`. `tensorboard` takes one command-line input, `--logdir`, which is an rllib result directory (usually located within an experiment directory inside your `ray_results` directory). An example function call is below. ###Code ! tensorboard --logdir /ray_results/dirthatcontainsallcheckpoints/ ###Output _____no_output_____ ###Markdown If you do not wish to use `tensorboard`, you can also use the `flow/visualize/plot_ray_results.py` file. It takes as arguments the path to the `progress.csv` file located inside your experiment results directory, and the name(s) of the column(s) to plot. If you do not know what the name of the columns are, simply do not put any and a list of all available columns will be displayed to you. Example usage: ###Code ! plot_ray_results.py /ray_results/experiment_dir/progress.csv training/return-average training/return-min ###Output _____no_output_____ ###Markdown Replaying a Trained Policy The tool to replay a policy trained using RLlib is located in `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results, and second the number of the checkpoint you wish to visualize. There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. ###Code ! python ../../flow/visualize/visualizer_rllib.py /ray_results/dirthatcontainsallcheckpoints/ 1 ###Output _____no_output_____ ###Markdown Data Collection and AnalysisAny Flow experiment can output its results to a CSV file containing the contents of SUMO's built-in `emission.xml` files, specifying speed, position, time, fuel consumption, and many other metrics for all vehicles in a network over time. This section describes how to generate those `emission.csv` files when replaying and analyzing a trained policy. RLlib ###Code # --emission_to_csv does the same as above ! python ../../flow/visualize/visualizer_rllib.py results/sample_checkpoint 1 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output _____no_output_____ ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output _____no_output_____ ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output _____no_output_____ ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/sumo/sugiyama.py ###Output _____no_output_____ ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing and replaying the results of Flow experiments run using RL. The process of visualizing results breaks down into two main components:- reward plotting- policy replayFurthermore, visualization is different depending on whether your experiments were run using rllab or RLlib. Accordingly, this tutorial is divided in two parts (one for rllab and one for RLlib). rllab Plotting Reward An essential step in evaluating the effectiveness and training progress of RL agents is visualization of reward. rllab includes a tool to plot the _average cumulative reward per rollout_ against _iteration number_ to show training progress. This "reward plot" can be generated for just one experiment or many. The tool to be called is rllab's `frontend.py`, which is inside the directory `rllab/viskit/` (assuming a user is already inside the directory `rllab-multiagent`). `frontend.py` requires only one command-line input: the path to the result directory that a user wants to visualize. The directory should contain a `progress.csv` and `params.json` file—pickle files containing per-iteration results are not necessary. An example call to `frontend.py` is below. Click on the link to http://localhost:5000 to view reward over time. ###Code ! python ../../../rllab/viskit/frontend.py /path/to/result/directory ###Output _____no_output_____ ###Markdown Replaying a Trained Policy Flow includes a tool for visualizing a trained policy in its environment using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations, and rewards in order to produce desired behavior. The visualizer also generates plots of observations and a plot of reward over the course of the rollout. The tool to be called is `visualizer_rllab.py` within `flow/visualize` (assuming a user is already inside the parent directory `flow`). `visualizer_rllab.py` requires one command-line input and has three additional optional arguments. The required input is the path to the pickle file to be visualized (this is usually within an rllab result directory). The optional inputs are: - `--num_rollouts`, the number of rollouts to be visualized. The default value is 100. This argument takes integer input.- `--plotname`, the name of the plot generated by the visualizer. The default value is `traffic_plot`. This argument takes string input.- `--emission_to_csv`, whether to convert SUMO's emission file into a CSV file. Emission files will be discussed later in this tutorial. By default, emission CSV files are not stored. `--emission_to_csv` is a flag and takes no input.An example call to `visualizer_rllab.py` is below. ###Code ! python ../../flow/visualize/visualizer_rllab.py /path/to/result.pkl --num_rollouts 1 --plotname plot_test --emission_to_csv ###Output _____no_output_____ ###Markdown RLlib Plotting RewardSimilarly to how rllab handles reward plotting, RLlib supports reward visualization over the period of training using `tensorboard`. `tensorboard` takes one command-line input, `--logdir`, which is an rllib result directory (usually located within an experiment directory inside your `ray_results` directory). An example function call is below. ###Code ! tensorboard /ray_results/experiment_dir/result/directory ###Output _____no_output_____ ###Markdown Replaying a Trained Policy ###Code ! python ../../flow/visualize/visualizer_rllib.py /ray_results/experiment_dir/result/directory 1 ###Output _____no_output_____ ###Markdown Data Collection and AnalysisAny Flow experiment can output its results to a CSV file containing the contents of SUMO's built-in `emission.xml` files, specifying speed, position, time, fuel consumption, and many other metrics for all vehicles in a network over time. This section describes how to generate those `emission.csv` files when replaying and analyzing a trained policy. rllab ###Code # Calling the visualizer with the flag --emission_to_csv replays the policy and creates an emission file ! python ../../flow/visualize/visualizer_rllab.py path/to/result.pkl --emission_to_csv ###Output _____no_output_____ ###Markdown The generated `emission.csv` is placed in the directory `test_time_rollout/` inside the directory from which you've just run the visualizer. That emission file can be opened in Excel, loaded in Python and plotted, and more. RLlib ###Code # --emission_to_csv does the same as above ! python ../../flow/visualize/visualizer_rllib.py results/sample_checkpoint 1 --emission-to-csv ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output /home/bill/flow/tutorials ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output Columns are: episode_reward_max, episode_reward_min, episode_reward_mean, episode_len_mean, episodes_this_iter, timesteps_this_iter, done, timesteps_total, episodes_total, training_iteration, experiment_id, date, timestamp, time_this_iter_s, time_total_s, pid, hostname, node_ip, time_since_restore, timesteps_since_restore, iterations_since_restore, num_healthy_workers, trial_id, sampler_perf/mean_env_wait_ms, sampler_perf/mean_processing_ms, sampler_perf/mean_inference_ms, info/num_steps_trained, info/num_steps_sampled, info/sample_time_ms, info/load_time_ms, info/grad_time_ms, info/update_time_ms, perf/cpu_util_percent, perf/ram_util_percent, info/learner/default_policy/cur_kl_coeff, info/learner/default_policy/cur_lr, info/learner/default_policy/total_loss, info/learner/default_policy/policy_loss, info/learner/default_policy/vf_loss, info/learner/default_policy/vf_explained_var, info/learner/default_policy/kl, info/learner/default_policy/entropy, info/learner/default_policy/entropy_coeff ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output 2021-10-18 10:17:55,055 WARNING services.py:597 -- setpgrp failed, processes may not be cleaned up properly: [Errno 1] Operation not permitted. 2021-10-18 10:17:55,056 INFO resource_spec.py:216 -- Starting Ray with 5.22 GiB memory available for workers and up to 2.63 GiB for objects. You can adjust these settings with ray.init(memory=<bytes>, object_store_memory=<bytes>). 2021-10-18 10:17:55,454 INFO trainer.py:371 -- Tip: set 'eager': true or the --eager flag to enable TensorFlow eager execution 2021-10-18 10:17:57,277 INFO rollout_worker.py:770 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7fbad5cb37b8>} 2021-10-18 10:17:57,277 INFO rollout_worker.py:771 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7fbad5cb3550>} 2021-10-18 10:17:57,277 INFO rollout_worker.py:372 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7fbad5d029e8>} 2021-10-18 10:17:57,279 INFO multi_gpu_optimizer.py:93 -- LocalMultiGPUOptimizer devices ['/cpu:0'] 2021-10-18 10:17:58,648 WARNING util.py:45 -- Install gputil for GPU system monitoring. Traceback (most recent call last): File "../flow/visualize/visualizer_rllib.py", line 386, in <module> visualizer_rllib(args) File "../flow/visualize/visualizer_rllib.py", line 155, in visualizer_rllib agent.restore(checkpoint) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/tune/trainable.py", line 341, in restore self._restore(checkpoint_path) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 559, in _restore self.__setstate__(extra_data) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 161, in __setstate__ Trainer.__setstate__(self, state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 855, in __setstate__ self.workers.local_worker().restore(state["worker"]) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 712, in restore self.policy_map[pid].set_state(state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/policy.py", line 250, in set_state self.set_weights(state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/tf_policy.py", line 269, in set_weights return self._variables.set_weights(weights) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/experimental/tf_utils.py", line 186, in set_weights self.assignment_nodes[name] for name in new_weights.keys() AttributeError: 'numpy.ndarray' object has no attribute 'keys' ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/simulate.py ring ###Output Error during start: Traceback (most recent call last): File "/home/bill/flow/flow/core/kernel/simulation/traci.py", line 251, in start_simulation traci_connection.setOrder(0) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 348, in setOrder self._sendExact() File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 99, in _sendExact raise FatalTraCIError("connection closed by SUMO") traci.exceptions.FatalTraCIError: connection closed by SUMO Error during teardown: [Errno 3] No such process Error during start: Traceback (most recent call last): File "/home/bill/flow/flow/core/kernel/simulation/traci.py", line 251, in start_simulation traci_connection.setOrder(0) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 348, in setOrder self._sendExact() File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 99, in _sendExact raise FatalTraCIError("connection closed by SUMO") traci.exceptions.FatalTraCIError: connection closed by SUMO Error during teardown: [Errno 3] No such process Error during start: Traceback (most recent call last): File "/home/bill/flow/flow/core/kernel/simulation/traci.py", line 251, in start_simulation traci_connection.setOrder(0) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 348, in setOrder self._sendExact() File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 99, in _sendExact raise FatalTraCIError("connection closed by SUMO") traci.exceptions.FatalTraCIError: connection closed by SUMO Error during teardown: [Errno 3] No such process FATAL: exception not rethrown Retrying in 1 seconds Could not connect to TraCI server at localhost:57889 [Errno 111] Connection refused Retrying in 2 seconds Could not connect to TraCI server at localhost:57889 [Errno 111] Connection refused Retrying in 3 seconds Could not connect to TraCI server at localhost:57889 [Errno 111] Connection refused Retrying in 4 seconds Could not connect to TraCI server at localhost:57889 [Errno 111] Connection refused Retrying in 5 seconds ^C Traceback (most recent call last): File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/__init__.py", line 68, in connect return Connection(host, port, proc) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/connection.py", line 54, in __init__ self._socket.connect((host, port)) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "../examples/simulate.py", line 93, in <module> exp.run(flags.num_runs, convert_to_csv=flags.gen_emission) File "/home/bill/flow/flow/core/experiment.py", line 142, in run state = self.env.reset() File "/home/bill/flow/flow/envs/ring/accel.py", line 177, in reset obs = super().reset() File "/home/bill/flow/flow/envs/base.py", line 439, in reset self.restart_simulation(self.sim_params) File "/home/bill/flow/flow/envs/base.py", line 264, in restart_simulation network=self.k.network, sim_params=self.sim_params) File "/home/bill/flow/flow/core/kernel/simulation/traci.py", line 250, in start_simulation traci_connection = traci.connect(port, numRetries=100) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/traci/__init__.py", line 74, in connect time.sleep(wait) KeyboardInterrupt ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output 2021-10-18 10:16:44,145 WARNING services.py:597 -- setpgrp failed, processes may not be cleaned up properly: [Errno 1] Operation not permitted. 2021-10-18 10:16:44,146 INFO resource_spec.py:216 -- Starting Ray with 5.18 GiB memory available for workers and up to 2.59 GiB for objects. You can adjust these settings with ray.init(memory=<bytes>, object_store_memory=<bytes>). 2021-10-18 10:16:44,481 INFO trainer.py:371 -- Tip: set 'eager': true or the --eager flag to enable TensorFlow eager execution 2021-10-18 10:16:46,306 INFO rollout_worker.py:770 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7feab4437710>} 2021-10-18 10:16:46,306 INFO rollout_worker.py:771 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7feab44374a8>} 2021-10-18 10:16:46,306 INFO rollout_worker.py:372 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7feab4437320>} 2021-10-18 10:16:46,308 INFO multi_gpu_optimizer.py:93 -- LocalMultiGPUOptimizer devices ['/cpu:0'] 2021-10-18 10:16:47,678 WARNING util.py:45 -- Install gputil for GPU system monitoring. Traceback (most recent call last): File "../flow/visualize/visualizer_rllib.py", line 386, in <module> visualizer_rllib(args) File "../flow/visualize/visualizer_rllib.py", line 155, in visualizer_rllib agent.restore(checkpoint) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/tune/trainable.py", line 341, in restore self._restore(checkpoint_path) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 559, in _restore self.__setstate__(extra_data) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 161, in __setstate__ Trainer.__setstate__(self, state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 855, in __setstate__ self.workers.local_worker().restore(state["worker"]) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 712, in restore self.policy_map[pid].set_state(state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/policy.py", line 250, in set_state self.set_weights(state) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/rllib/policy/tf_policy.py", line 269, in set_weights return self._variables.set_weights(weights) File "/home/bill/anaconda3/envs/flow/lib/python3.7/site-packages/ray/experimental/tf_utils.py", line 186, in set_weights self.assignment_nodes[name] for name in new_weights.keys() AttributeError: 'numpy.ndarray' object has no attribute 'keys' ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. 本教程描述了可视化流实验结果的过程,以及重放它们的过程。**Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training.**注意:**本教程只适用于您使用sumo作为模拟器的情况。我们目前不支持使用Aimsun时的策略重放和数据收集。唯一的例外是奖励计划,它独立于你在训练中是否使用过相扑或漫无目的的。 1. Visualization components 可视化组成 The visualization of simulation results breaks down into three main components:仿真结果可视化主要分为三个部分:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.** *奖励绘制**:奖励函数可视化是评价RL agent有效性和训练进度的重要步骤。- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **策略重放**:流包括使用SUMO的GUI可视化训练过的策略的工具。这使得可以对策略进行更细粒度的分析,而不仅仅是对其累积的奖励,这反过来又允许用户调整操作、观察和奖励,以产生一些期望的行为。视觉化者还会生成观察图和奖励函数图。- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel).- **数据收集与分析**:任何流量实验都可以将其模拟数据输出到CSV文件“emission.csv ',包含sumo内置的'发射'内容xml的文件。该文件包含各种数据,如速度、位置、时间、燃料消耗和网络中每辆车的许多其他指标,以及模拟的每个时间步长。一旦你产生了“排放”。您可以使用Python的[csv库](https://docs.python.org/3/library/csv.html)(或使用Excel)打开它并读取它包含的数据。 Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. 可视化是不同的,这取决于你使用的强化学习库,如果有的话。因此,本教程的其余部分将解释如何在不使用RL库、RLlib或稳定基线的情况下绘制奖励、重放策略和收集数据。 **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 如何可视化 2.1 - Using SUMO without training _In this case, since there is no training, there is no reward to plot and no policy to replay._在这种情况下,因为没有训练,所以没有奖励去策划,也没有政策去重播 Data collection and analysis 数据收集与分析SUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance:SUMO-only实验可以无缝生成排放CSV文件:首先,你必须告诉相扑产生“emission.xml"的文件。您可以通过在模拟参数(“SumoParams”类)中指定“emission_path”来实现这一点,该参数是生成排放文件的路径。例如: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:然后,您必须告诉Flow将这些XML发射文件转换为CSV文件。为此,将' convert_to_csv=True '传递给实验对象的' run '方法。例如:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files.在运行实验时,Flow现在将自动在sumo生成的XML文件旁边创建CSV文件。 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. RLlib支持在训练期间使用“tensorboard”命令进行奖励可视化。它接受一个命令行参数'——logdir ',这是一个RLlib结果目录。默认情况下,它将位于' ~/ray_results '目录下的实验目录中。An example call would look like:一个示例调用如下:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.如果您想要选择多个实验,还可以运行“tensorboard—logdir ~/ray_results”。If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:如果你不想使用“tensorboard”,另一种方法是使用我们的“flow/ visual/plot_ray_results.py"工具。它作为参数:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).通往“progress.csv'文件位于您的实验结果目录中(' ~/ray_results/…'),-您希望绘制的列的名称(奖励或其他东西)。An example call would look like:一个示例调用如下:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:如果您不知道列的名称,请运行该命令,而不指定任何列:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you.所有可用列的列表将显示给您。 Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).使用RLlib训练的策略回放工具位于“flow/ visualizer_rllib.py”处。它作为参数,首先是实验结果的路径(默认位于' ~/ray_results '中),其次是您希望可视化的检查点的数量(对应于实验结果目录中的文件夹' checkpoint_ ')。An example call would look like this:一个示例调用是这样的:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. 还可以通过运行“visualizer_rllib.py——help”了解其他可选参数。 Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).模拟数据的生成方法与不经过训练的生成方法相同(2.1—使用—sumo—不经过训练)。If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.如果您需要在培训后生成模拟数据,您可以运行上面提到的策略重播,并添加“—gen-emission”参数。An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output /home/ryc/flow/tutorials ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).“flow/tutorials/data/trained_ring”文件夹包含使用RLlib对一个代理进行200次迭代后在“ray_results”中生成的数据(实验可以在“flow/examples/ RLlib / izing_the_ering .py”中找到)。Let's first have a look at what's available in the `progress.csv` file:让我们先来看看“progress.csv”中有哪些内容: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output Columns are: episode_reward_max, episode_reward_min, episode_reward_mean, episode_len_mean, episodes_this_iter, timesteps_this_iter, done, timesteps_total, episodes_total, training_iteration, experiment_id, date, timestamp, time_this_iter_s, time_total_s, pid, hostname, node_ip, time_since_restore, timesteps_since_restore, iterations_since_restore, num_healthy_workers, trial_id, sampler_perf/mean_env_wait_ms, sampler_perf/mean_processing_ms, sampler_perf/mean_inference_ms, info/num_steps_trained, info/num_steps_sampled, info/sample_time_ms, info/load_time_ms, info/grad_time_ms, info/update_time_ms, perf/cpu_util_percent, perf/ram_util_percent, info/learner/default_policy/cur_kl_coeff, info/learner/default_policy/cur_lr, info/learner/default_policy/total_loss, info/learner/default_policy/policy_loss, info/learner/default_policy/vf_loss, info/learner/default_policy/vf_explained_var, info/learner/default_policy/kl, info/learner/default_policy/entropy, info/learner/default_policy/entropy_coeff ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries:这给了我们一个我们可以画的所有东西的列表。让我们来画出奖励和它的边界: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times).我们可以看到策略在迭代50之前已经收敛了。现在让我们看看这个策略是什么样的。运行以下脚本,然后单击绿色箭头运行模拟(您可能需要多次单击)。 ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output _____no_output_____ ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation:RL代理正确地稳定了戒指!事实上,在没有RL代理的情况下,车辆开始形成走走停停的波,这大大减慢了交通,正如你在这个模拟中看到的: ###Code !python ../examples/simulate.py ring ###Output _____no_output_____ ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200.在训练的环形文件夹中,每20次迭代生成一个检查点。尝试运行前面的第二个命令,但将200替换为20。在奖励图上,您可以看到在迭代20时奖励已经相当高了,但是还没有收敛,因此代理的表现会比迭代200时稍差一些。 That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command:这就是这个例子!你可以自由地在“流/可视化”中尝试其他脚本。使用“——help”参数运行它们,它应该会告诉您如何使用它。此外,如果你需要训练环的发射文件,你可以通过运行以下命令获得: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=0.1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output _____no_output_____ ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output _____no_output_____ ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib notebook # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 ###Output _____no_output_____ ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/simulate.py ring ###Output _____no_output_____ ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 2000 --gen_emission ###Output _____no_output_____ ###Markdown Tutorial 04: Visualizing Experiment Results This tutorial describes the process of visualizing the results of Flow experiments, and of replaying them. **Note:** This tutorial is only relevant if you use SUMO as a simulator. We currently do not support policy replay nor data collection when using Aimsun. The only exception is for reward plotting, which is independent on whether you have used SUMO or Aimsun during training. 1. Visualization components The visualization of simulation results breaks down into three main components:- **reward plotting**: Visualization of the reward function is an essential step in evaluating the effectiveness and training progress of RL agents.- **policy replay**: Flow includes tools for visualizing trained policies using SUMO's GUI. This enables more granular analysis of policies beyond their accrued reward, which in turn allows users to tweak actions, observations and rewards in order to produce some desired behavior. The visualizers also generate plots of observations and a plot of the reward function over the course of the rollout.- **data collection and analysis**: Any Flow experiment can output its simulation data to a CSV file, `emission.csv`, containing the contents of SUMO's built-in `emission.xml` files. This file contains various data such as the speed, position, time, fuel consumption and many other metrics for every vehicle in the network and at each time step of the simulation. Once you have generated the `emission.csv` file, you can open it and read the data it contains using Python's [csv library](https://docs.python.org/3/library/csv.html) (or using Excel). Visualization is different depending on which reinforcement learning library you are using, if any. Accordingly, the rest of this tutorial explains how to plot rewards, replay policies and collect data when using either no RL library, RLlib, or stable-baselines. **Contents:**[How to visualize using SUMO without training](2.1---Using-SUMO-without-training)[How to visualize using SUMO with RLlib](2.2---Using-SUMO-with-RLlib)[**_Example: visualize data on a ring trained using RLlib_**](2.3---Example:-Visualize-data-on-a-ring-trained-using-RLlib) 2. How to visualize 2.1 - Using SUMO without training_In this case, since there is no training, there is no reward to plot and no policy to replay._ Data collection and analysisSUMO-only experiments can generate emission CSV files seamlessly:First, you have to tell SUMO to generate the `emission.xml` files. You can do that by specifying `emission_path` in the simulation parameters (class `SumoParams`), which is the path where the emission files will be generated. For instance: ###Code from flow.core.params import SumoParams sim_params = SumoParams(sim_step=1, render=True, emission_path='data') ###Output _____no_output_____ ###Markdown Then, you have to tell Flow to convert these XML emission files into CSV files. To do that, pass in `convert_to_csv=True` to the `run` method of your experiment object. For instance:```pythonexp.run(1, convert_to_csv=True)``` When running experiments, Flow will now automatically create CSV files next to the SUMO-generated XML files. 2.2 - Using SUMO with RLlib Reward plottingRLlib supports reward visualization over the period of the training using the `tensorboard` command. It takes one command-line parameter, `--logdir`, which is an RLlib result directory. By default, it would be located within an experiment directory inside your `~/ray_results` directory. An example call would look like:`tensorboard --logdir ~/ray_results/experiment_dir/result/directory`You can also run `tensorboard --logdir ~/ray_results` if you want to select more than just one experiment.If you do not wish to use `tensorboard`, an other way is to use our `flow/visualize/plot_ray_results.py` tool. It takes as arguments:- the path to the `progress.csv` file located inside your experiment results directory (`~/ray_results/...`),- the name(s) of the column(s) you wish to plot (reward or other things).An example call would look like:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv training/return-average training/return-min`If you do not know what the names of the columns are, run the command without specifying any column:`flow/visualize/plot_ray_results.py ~/ray_results/experiment_dir/result/progress.csv`and the list of all available columns will be displayed to you. Policy replayThe tool to replay a policy trained using RLlib is located at `flow/visualize/visualizer_rllib.py`. It takes as argument, first the path to the experiment results (by default located within `~/ray_results`), and secondly the number of the checkpoint you wish to visualize (which correspond to the folder `checkpoint_` inside the experiment results directory).An example call would look like this:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1`There are other optional parameters which you can learn about by running `visualizer_rllib.py --help`. Data collection and analysisSimulation data can be generated the same way as it is done [without training](2.1---Using-SUMO-without-training).If you need to generate simulation data after the training, you can run a policy replay as mentioned above, and add the `--gen-emission` parameter.An example call would look like:`python flow/visualize/visualizer_rllib.py ~/ray_results/experiment_dir/result/directory 1 --gen_emission` 2.3 - Example: Visualize data on a ring trained using RLlib ###Code !pwd # make sure you are in the flow/tutorials folder ###Output /home/roberto/flow/tutorials ###Markdown The folder `flow/tutorials/data/trained_ring` contains the data generated in `ray_results` after training an agent on a ring scenario for 200 iterations using RLlib (the experiment can be found in `flow/examples/rllib/stabilizing_the_ring.py`).Let's first have a look at what's available in the `progress.csv` file: ###Code !python ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv ###Output Columns are: episode_reward_max, episode_reward_min, episode_reward_mean, episode_len_mean, episodes_this_iter, timesteps_this_iter, done, timesteps_total, episodes_total, training_iteration, experiment_id, date, timestamp, time_this_iter_s, time_total_s, pid, hostname, node_ip, time_since_restore, timesteps_since_restore, iterations_since_restore, num_healthy_workers, trial_id, sampler_perf/mean_env_wait_ms, sampler_perf/mean_processing_ms, sampler_perf/mean_inference_ms, info/num_steps_trained, info/num_steps_sampled, info/sample_time_ms, info/load_time_ms, info/grad_time_ms, info/update_time_ms, perf/cpu_util_percent, perf/ram_util_percent, info/learner/default_policy/cur_kl_coeff, info/learner/default_policy/cur_lr, info/learner/default_policy/total_loss, info/learner/default_policy/policy_loss, info/learner/default_policy/vf_loss, info/learner/default_policy/vf_explained_var, info/learner/default_policy/kl, info/learner/default_policy/entropy, info/learner/default_policy/entropy_coeff ###Markdown This gives us a list of everything that we can plot. Let's plot the reward and its boundaries: ###Code %matplotlib inline # if this doesn't display anything, try with "%matplotlib inline" instead %run ../flow/visualize/plot_ray_results.py data/trained_ring/progress.csv \ episode_reward_mean episode_reward_min episode_reward_max ###Output _____no_output_____ ###Markdown We can see that the policy had already converged by the iteration 50.Now let's see what this policy looks like. Run the following script, then click on the green arrow to run the simulation (you may have to click several times). ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 200000 ###Output /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 2020-05-25 19:07:51,527 INFO node.py:498 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2020-05-25_19-07-51_527459_28558/logs. 2020-05-25 19:07:51,633 INFO services.py:409 -- Waiting for redis server at 127.0.0.1:32073 to respond... 2020-05-25 19:07:51,757 INFO services.py:409 -- Waiting for redis server at 127.0.0.1:27886 to respond... 2020-05-25 19:07:51,761 INFO services.py:809 -- Starting Redis shard with 3.33 GB max memory. 2020-05-25 19:07:51,800 INFO node.py:512 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2020-05-25_19-07-51_527459_28558/logs. 2020-05-25 19:07:51,802 INFO services.py:1475 -- Starting the Plasma object store with 5.0 GB memory using /dev/shm. 2020-05-25 19:07:51,864 ERROR log_sync.py:34 -- Log sync requires cluster to be setup with `ray up`. 2020-05-25 19:07:51,879 WARNING ppo.py:143 -- FYI: By default, the value function will not share layers with the policy model ('vf_share_layers': False). 2020-05-25 19:07:53,017 INFO rollout_worker.py:319 -- Creating policy evaluation worker 0 on CPU (please ignore any CUDA init errors) 2020-05-25 19:07:53.018642: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2020-05-25 19:07:53.077303: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-05-25 19:07:53.077517: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties: name: GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:01:00.0 totalMemory: 3.95GiB freeMemory: 3.48GiB 2020-05-25 19:07:53.077533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0 2020-05-25 19:07:53.405984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-05-25 19:07:53.406012: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958] 0 2020-05-25 19:07:53.406021: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N 2020-05-25 19:07:53.406091: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3202 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1) 2020-05-25 19:07:53,667 INFO dynamic_tf_policy.py:324 -- Initializing loss function with dummy input: { 'action_prob': <tf.Tensor 'default_policy/action_prob:0' shape=(?,) dtype=float32>, 'actions': <tf.Tensor 'default_policy/actions:0' shape=(?, 1) dtype=float32>, 'advantages': <tf.Tensor 'default_policy/advantages:0' shape=(?,) dtype=float32>, 'behaviour_logits': <tf.Tensor 'default_policy/behaviour_logits:0' shape=(?, 2) dtype=float32>, 'dones': <tf.Tensor 'default_policy/dones:0' shape=(?,) dtype=bool>, 'new_obs': <tf.Tensor 'default_policy/new_obs:0' shape=(?, 3) dtype=float32>, 'obs': <tf.Tensor 'default_policy/observation:0' shape=(?, 3) dtype=float32>, 'prev_actions': <tf.Tensor 'default_policy/action:0' shape=(?, 1) dtype=float32>, 'prev_rewards': <tf.Tensor 'default_policy/prev_reward:0' shape=(?,) dtype=float32>, 'rewards': <tf.Tensor 'default_policy/rewards:0' shape=(?,) dtype=float32>, 'value_targets': <tf.Tensor 'default_policy/value_targets:0' shape=(?,) dtype=float32>, 'vf_preds': <tf.Tensor 'default_policy/vf_preds:0' shape=(?,) dtype=float32>} /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:100: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " 2020-05-25 19:07:54,416 INFO rollout_worker.py:742 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7f4db52fcf60>} 2020-05-25 19:07:54,416 INFO rollout_worker.py:743 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7f4db52fcc18>} 2020-05-25 19:07:54,416 INFO rollout_worker.py:356 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7f4db52fcac8>} 2020-05-25 19:07:54,420 INFO multi_gpu_optimizer.py:93 -- LocalMultiGPUOptimizer devices ['/cpu:0'] 2020-05-25 19:07:56,332 WARNING util.py:47 -- Install gputil for GPU system monitoring. ----------------------- ring length: 268 v_max: 5.5194978538368025 ----------------------- Traceback (most recent call last): File "../flow/visualize/visualizer_rllib.py", line 386, in <module> visualizer_rllib(args) File "../flow/visualize/visualizer_rllib.py", line 204, in visualizer_rllib state = env.reset() File "/home/roberto/flow/flow/envs/ring/wave_attenuation.py", line 210, in reset return super().reset() File "/home/roberto/flow/flow/envs/base.py", line 528, in reset self.k.vehicle.update_vehicle_colors() File "/home/roberto/flow/flow/core/kernel/vehicle/traci.py", line 1060, in update_vehicle_colors if self._color_by_speed: AttributeError: 'TraCIVehicle' object has no attribute '_color_by_speed' ###Markdown The RL agent is properly stabilizing the ring! Indeed, without an RL agent, the vehicles start forming stop-and-go waves which significantly slows down the traffic, as you can see in this simulation: ###Code !python ../examples/simulate.py ring ###Output Round 0, return: 424.12213238365126 Average, std returns: 424.12213238365126, 0.0 Average, std velocities: 2.883939027587335, 0.0 Average, std outflows: 0.0, 0.0 Total time: 8.959779739379883 steps/second: 287.013183011324 ###Markdown In the trained ring folder, there is a checkpoint generated every 20 iterations. Try to run the second previous command but replace 200 by 20. On the reward plot, you can see that the reward is already quite high at iteration 20, but hasn't converged yet, so the agent will perform a little less well than at iteration 200. That's it for this example! Feel free to play around with the other scripts in `flow/visualize`. Run them with the `--help` parameter and it should tell you how to use it. Also, if you need the emission file for the trained ring, you can obtain it by running the following command: ###Code !python ../flow/visualize/visualizer_rllib.py data/trained_ring 200 --horizon 20000 --gen_emission ###Output /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 2020-05-25 19:15:39,796 INFO node.py:498 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2020-05-25_19-15-39_795951_29026/logs. 2020-05-25 19:15:39,902 INFO services.py:409 -- Waiting for redis server at 127.0.0.1:36303 to respond... 2020-05-25 19:15:40,026 INFO services.py:409 -- Waiting for redis server at 127.0.0.1:62275 to respond... 2020-05-25 19:15:40,029 INFO services.py:809 -- Starting Redis shard with 3.33 GB max memory. 2020-05-25 19:15:40,083 INFO node.py:512 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2020-05-25_19-15-39_795951_29026/logs. 2020-05-25 19:15:40,085 INFO services.py:1475 -- Starting the Plasma object store with 5.0 GB memory using /dev/shm. 2020-05-25 19:15:40,144 ERROR log_sync.py:34 -- Log sync requires cluster to be setup with `ray up`. 2020-05-25 19:15:40,160 WARNING ppo.py:143 -- FYI: By default, the value function will not share layers with the policy model ('vf_share_layers': False). 2020-05-25 19:15:41,277 INFO rollout_worker.py:319 -- Creating policy evaluation worker 0 on CPU (please ignore any CUDA init errors) 2020-05-25 19:15:41.278186: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2020-05-25 19:15:41.335262: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-05-25 19:15:41.335489: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties: name: GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62 pciBusID: 0000:01:00.0 totalMemory: 3.95GiB freeMemory: 3.49GiB 2020-05-25 19:15:41.335506: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0 2020-05-25 19:15:41.657799: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-05-25 19:15:41.657826: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958] 0 2020-05-25 19:15:41.657832: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N 2020-05-25 19:15:41.657902: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3215 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1) 2020-05-25 19:15:41,917 INFO dynamic_tf_policy.py:324 -- Initializing loss function with dummy input: { 'action_prob': <tf.Tensor 'default_policy/action_prob:0' shape=(?,) dtype=float32>, 'actions': <tf.Tensor 'default_policy/actions:0' shape=(?, 1) dtype=float32>, 'advantages': <tf.Tensor 'default_policy/advantages:0' shape=(?,) dtype=float32>, 'behaviour_logits': <tf.Tensor 'default_policy/behaviour_logits:0' shape=(?, 2) dtype=float32>, 'dones': <tf.Tensor 'default_policy/dones:0' shape=(?,) dtype=bool>, 'new_obs': <tf.Tensor 'default_policy/new_obs:0' shape=(?, 3) dtype=float32>, 'obs': <tf.Tensor 'default_policy/observation:0' shape=(?, 3) dtype=float32>, 'prev_actions': <tf.Tensor 'default_policy/action:0' shape=(?, 1) dtype=float32>, 'prev_rewards': <tf.Tensor 'default_policy/prev_reward:0' shape=(?,) dtype=float32>, 'rewards': <tf.Tensor 'default_policy/rewards:0' shape=(?,) dtype=float32>, 'value_targets': <tf.Tensor 'default_policy/value_targets:0' shape=(?,) dtype=float32>, 'vf_preds': <tf.Tensor 'default_policy/vf_preds:0' shape=(?,) dtype=float32>} /home/roberto/anaconda3/envs/flow/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:100: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " 2020-05-25 19:15:42,637 INFO rollout_worker.py:742 -- Built policy map: {'default_policy': <ray.rllib.policy.tf_policy_template.PPOTFPolicy object at 0x7fd5882b7fd0>} 2020-05-25 19:15:42,637 INFO rollout_worker.py:743 -- Built preprocessor map: {'default_policy': <ray.rllib.models.preprocessors.NoPreprocessor object at 0x7fd5882b7c88>} 2020-05-25 19:15:42,637 INFO rollout_worker.py:356 -- Built filter map: {'default_policy': <ray.rllib.utils.filter.NoFilter object at 0x7fd5882b7b38>} 2020-05-25 19:15:42,640 INFO multi_gpu_optimizer.py:93 -- LocalMultiGPUOptimizer devices ['/cpu:0'] 2020-05-25 19:15:44,493 WARNING util.py:47 -- Install gputil for GPU system monitoring. ----------------------- ring length: 266 v_max: 5.42459972166245 ----------------------- Traceback (most recent call last): File "../flow/visualize/visualizer_rllib.py", line 386, in <module> visualizer_rllib(args) File "../flow/visualize/visualizer_rllib.py", line 204, in visualizer_rllib state = env.reset() File "/home/roberto/flow/flow/envs/ring/wave_attenuation.py", line 210, in reset return super().reset() File "/home/roberto/flow/flow/envs/base.py", line 528, in reset self.k.vehicle.update_vehicle_colors() File "/home/roberto/flow/flow/core/kernel/vehicle/traci.py", line 1060, in update_vehicle_colors if self._color_by_speed: AttributeError: 'TraCIVehicle' object has no attribute '_color_by_speed'
Python_Stock/Technical_Indicators/Tenkan_Sen.ipynb
###Markdown Tenkan-Sen (Conversion Line) https://www.investopedia.com/terms/t/tenkansen.asp ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # fix_yahoo_finance is used to fetch data import fix_yahoo_finance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-01-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() # Tenkan-sen (Conversion Line): (9-Period High + 9-Period Low)/2)) Nine_Period_High = df['High'].rolling(window=9).max() Nine_Period_Low = df['Low'].rolling(window=9).min() df['Tenkan_Sen'] = (Nine_Period_High + Nine_Period_Low)/2 plt.figure(figsize=(14,8)) plt.plot(df['Adj Close']) plt.plot(df['Tenkan_Sen'], color='red') plt.title('Moving Maximum Price Indicator of Stock') plt.legend() plt.xlabel('Date') plt.ylabel('Price') plt.show() ###Output _____no_output_____ ###Markdown Candlestick with Tenkan-Sen ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = pd.to_datetime(dfc['Date']) dfc['Date'] = dfc['Date'].apply(mdates.date2num) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(2, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.plot(df['Tenkan_Sen'], color='orange') ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax1.legend() ax2 = plt.subplot(2, 1, 2) df['VolumePositive'] = df['Open'] < df['Adj Close'] ax2.bar(df.index, df['Volume'], color=df.VolumePositive.map({True: 'g', False: 'r'}), label='macdhist') ax2.grid() ax2.set_ylabel('Volume') ax2.set_xlabel('Date') ###Output _____no_output_____ ###Markdown Tenkan-Sen (Conversion Line) https://www.investopedia.com/terms/t/tenkansen.asp ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # yfinance is used to fetch data import yfinance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-01-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() # Tenkan-sen (Conversion Line): (9-Period High + 9-Period Low)/2)) Nine_Period_High = df['High'].rolling(window=9).max() Nine_Period_Low = df['Low'].rolling(window=9).min() df['Tenkan_Sen'] = (Nine_Period_High + Nine_Period_Low)/2 plt.figure(figsize=(14,8)) plt.plot(df['Adj Close']) plt.plot(df['Tenkan_Sen'], color='red') plt.title('Moving Maximum Price Indicator of Stock') plt.legend() plt.xlabel('Date') plt.ylabel('Price') plt.show() ###Output _____no_output_____ ###Markdown Candlestick with Tenkan-Sen ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = pd.to_datetime(dfc['Date']) dfc['Date'] = dfc['Date'].apply(mdates.date2num) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(2, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.plot(df['Tenkan_Sen'], color='orange') ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax1.legend() ax2 = plt.subplot(2, 1, 2) df['VolumePositive'] = df['Open'] < df['Adj Close'] ax2.bar(df.index, df['Volume'], color=df.VolumePositive.map({True: 'g', False: 'r'}), label='macdhist') ax2.grid() ax2.set_ylabel('Volume') ax2.set_xlabel('Date') ###Output _____no_output_____
parkinsons disease.ipynb
###Markdown Libraries ###Code !pip install xgboost import pandas as pd import numpy as np import os, sys from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from xgboost import XGBClassifier # Read The Data data = pd.read_csv("parkinsons.data") data.shape data.head() data.isnull().sum() data.nunique() data.dtypes data.describe() ###Output _____no_output_____ ###Markdown ---------------Here we can see that there is great difference between values of different columns...So, we have to rescale the values ###Code X = data.drop(['name', 'status'], axis=1) y = data['status'] # Scaler init scaler = MinMaxScaler((-1, 1)) X = scaler.fit_transform(X) # split the data bw training and testing data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 22) # initialize classifier clf = XGBClassifier() %time clf.fit(X_train, y_train) y_pred = clf.predict(X_test) metrics.accuracy_score(y_pred, y_test)*100 ###Output _____no_output_____
Data Science and Machine Learning/Machine-Learning-In-Python-THOROUGH/CLARUSWAY/STATISTICS/Statistics_Session_2.ipynb
###Markdown Population and Sample ###Code import numpy as np np.random.seed(42) population=np.random.randint(0,50,10000) population len(population) np.random.seed(42) sample=np.random.choice(population, 100) np.random.seed(42) sample_1000=np.random.choice(population, 1000) len(sample) len(sample_1000) sample sample.mean() sample_1000.mean() population.mean() np.random.seed(42) for i in range(20): sample=np.random.choice(population, 100) print(sample.mean()) np.random.seed(42) sample_means=[] for i in range(20): sample=np.random.choice(population, 10000) sample_means.append(sample.mean()) sample_means np.mean(sample_means) population.mean() sum(sample_means)/len(sample_means) ###Output _____no_output_____ ###Markdown Skewness and Kurtosis ###Code import numpy as np from scipy.stats import kurtosis, skew from scipy import stats import matplotlib.pyplot as plt x=np.random.normal(0,2,1000) # print(excess kurtosis of normal distribution (should be 0): {}'.format( kurtosis(x) )) # print(skewness of normal distribution (should be 0): {}'.format( skew(x) )) #In finance, high excess kurtosis is an indication of high risk. plt.hist(x,bins=100); x=np.random.normal(0,2,1000000) # print(excess kurtosis of normal distribution (should be 0): {}'.format( kurtosis(x) )) # print(skewness of normal distribution (should be 0): {}'.format( skew(x) )) #In finance, high excess kurtosis is an indication of high risk. plt.hist(x,bins=100); kurtosis(x) skew(x) shape, scale = 2, 2 s=np.random.gamma(shape,scale, 1000) plt.hist(s, bins=100); shape, scale = 2, 2 s=np.random.gamma(shape,scale, 100000) plt.hist(s, bins=100); kurtosis(s) skew(s) shape, scale = 6, 2 s=np.random.gamma(shape,scale, 100000) plt.hist(s, bins=100); kurtosis(s) skew(s) ###Output _____no_output_____
10_Applied_Data_Science_Capstone/04_EDA_with_SQL.ipynb
###Markdown Assignment: SQL Notebook for Peer AssignmentEstimated time needed: **60** minutes. IntroductionUsing this Python notebook you will:1. Understand the Spacex DataSet2. Load the dataset into the corresponding table in a Db2 database3. Execute SQL queries to answer assignment questions Overview of the DataSetSpaceX has gained worldwide attention for a series of historic milestones.It is the only private company ever to return a spacecraft from low-earth orbit, which it first accomplished in December 2010.SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars wheras other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.Therefore if we can determine if the first stage will land, we can determine the cost of a launch.This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.This dataset includes a record for each payload carried during a SpaceX mission into outer space. Download the datasetsThis assignment requires you to load the spacex dataset.In many cases the dataset to be analyzed is available as a .CSV (comma separated values) file, perhaps on the internet. Click on the link below to download and save the dataset (.CSV file):Spacex DataSet Store the dataset in database table**it is highly recommended to manually load the table using the database console LOAD tool in DB2**.Now open the Db2 console, open the LOAD tool, Select / Drag the .CSV file for the dataset, Next create a New Table, and then follow the steps on-screen instructions to load the data. Name the new table as follows:**SPACEXDATASET****Follow these steps while using old DB2 UI which is having Open Console Screen****Note:While loading Spacex dataset, ensure that detect datatypes is disabled. Later click on the pencil icon(edit option).**1. Change the Date Format by manually typing DD-MM-YYYY and timestamp format as DD-MM-YYYY HH\:MM:SS. Here you should place the cursor at Date field and manually type as DD-MM-YYYY.2. Change the PAYLOAD_MASS\_\_KG\_ datatype to INTEGER. **Changes to be considered when having DB2 instance with the new UI having Go to UI screen*** Refer to this insruction in this link for viewing the new Go to UI screen.* Later click on **Data link(below SQL)** in the Go to UI screen and click on **Load Data** tab.* Later browse for the downloaded spacex file.* Once done select the schema andload the file. ###Code %%capture --no-display !pip install sqlalchemy==1.3.9 !pip install ibm_db_sa !pip install ipython-sql ###Output _____no_output_____ ###Markdown Connect to the databaseLet us first load the SQL extension and establish a connection with the database ###Code %load_ext sql %config SqlMagic.displaycon = False ###Output _____no_output_____ ###Markdown **DB2 magic in case of old UI service credentials.**In the next cell enter your db2 connection string. Recall you created Service Credentials for your Db2 instance before. From the **uri** field of your Db2 service credentials copy everything after db2:// (except the double quote at the end) and paste it in the cell below after ibm_db_sa://in the following format**%sql ibm_db_sa://my-username:my-password\@my-hostname:my-port/my-db-name****DB2 magic in case of new UI service credentials.** * Use the following format.* Add security=SSL at the end**%sql ibm_db_sa://my-username:my-password\@my-hostname:my-port/my-db-name?security=SSL** ###Code import os from dotenv import load_dotenv load_dotenv('../.env') my_username=os.environ.get('my_username') my_password=os.environ.get('my_password') my_hostname=os.environ.get('my_hostname') my_port=os.environ.get('my_port') my_db_name=os.environ.get('my_db_name') sql_connection= "ibm_db_sa://{0}:{1}@{2}:{3}/{4}?security=SSL".format(my_username,my_password,my_hostname,my_port,my_db_name) %sql $sql_connection ###Output _____no_output_____ ###Markdown TasksNow write and execute SQL queries to solve the assignment tasks. Task 1 Display the names of the unique launch sites in the space mission ###Code %sql select distinct(launch_site) from spacex ###Output Done. ###Markdown Task 2 Display 5 records where launch sites begin with the string 'CCA' ###Code %sql select * from spacex where launch_site like 'CCA%' limit 5 ###Output Done. ###Markdown Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) ###Code %sql select sum(payload_mass__kg_) as "Total mass carried by 'NASA (CRS)'" from spacex where customer like 'NASA (CRS)' ###Output Done. ###Markdown Task 4 Display average payload mass carried by booster version F9 v1.1 ###Code %sql select avg(payload_mass__kg_) as "Average payload mass carried by booster 'F9 v.1.1'" from spacex where booster_version like 'F9 v1.1' ###Output Done. ###Markdown Task 5 List the date when the first successful landing outcome in ground pad was acheived.*Hint:Use min function* ###Code %sql select min(date) as "First time success landing in ground pad" from spacex where landing__outcome like 'Success (ground pad)' ###Output Done. ###Markdown Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 ###Code %sql select booster_version as "Booster version" from spacex where landing__outcome like 'Success (drone ship)' and payload_mass__kg_ between 4000 and 6000 ###Output Done. ###Markdown Task 7 List the total number of successful and failure mission outcomes ###Code %sql select mission_outcome as "Mission Outcome", count(mission_outcome) as "Nº of times" from spacex group by mission_outcome ###Output Done. ###Markdown Task 8 List the names of the booster_versions which have carried the maximum payload mass. Use a subquery ###Code %sql select booster_version from spacex where payload_mass__kg_=(select max(payload_mass__kg_) from spacex) ###Output Done. ###Markdown Task 9 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015 ###Code %sql select booster_version, launch_site from spacex where year(date)=2015 and landing__outcome like 'Failure (drone ship)' ###Output Done. ###Markdown Task 10 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order ###Code %sql select landing__outcome as "Landing Outcome", count(landing__outcome) as "Nº of times" from spacex where date between '2010-06-04' and '2017-03-20' group by landing__outcome order by 2 desc ###Output Done.
module3-make-explanatory-visualizations/LS_DS_124_Sequence_your_narrative_Assignment.ipynb
###Markdown _Lambda School Data Science_ Sequence Your Narrative - AssignmentToday we will create a sequence of visualizations inspired by [Hans Rosling's 200 Countries, 200 Years, 4 Minutes](https://www.youtube.com/watch?v=jbkSRLYSojo).Using this [data from Gapminder](https://github.com/open-numbers/ddf--gapminder--systema_globalis/):- [Income Per Person (GDP Per Capital, Inflation Adjusted) by Geo & Time](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv)- [Life Expectancy (in Years) by Geo & Time](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv)- [Population Totals, by Geo & Time](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--population_total--by--geo--time.csv)- [Entities](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv)- [Concepts](https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv) Objectives- sequence multiple visualizations- combine qualitative anecdotes with quantitative aggregatesLinks- [Hans Rosling’s TED talks](https://www.ted.com/speakers/hans_rosling)- [Spiralling global temperatures from 1850-2016](https://twitter.com/ed_hawkins/status/729753441459945474)- "[The Pudding](https://pudding.cool/) explains ideas debated in culture with visual essays."- [A Data Point Walks Into a Bar](https://lisacharlotterost.github.io/2016/12/27/datapoint-in-bar/): a thoughtful blog post about emotion and empathy in data storytelling ASSIGNMENT 1. Replicate the Lesson Code2. Take it further by using the same gapminder dataset to create a sequence of visualizations that combined tell a story of your choosing.Get creative! Use text annotations to call out specific countries, maybe: change how the points are colored, change the opacity of the points, change their sized, pick a specific time window. Maybe only work with a subset of countries, change fonts, change background colors, etc. make it your own! ###Code # TODO #!pip install --upgrade seaborn import seaborn as sns sns.__version__ %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd income = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv') lifespan = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--life_expectancy_years--by--geo--time.csv') population = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--datapoints--population_total--by--geo--time.csv') entities = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--entities--geo--country.csv') concepts = pd.read_csv('https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/ddf--concepts.csv') income.shape, lifespan.shape, population.shape, entities.shape, concepts.shape income.head() income.sample(10) lifespan.head() lifespan.sample(10) population.head() population.sample(10) entities.head() concepts.head() df_1 = pd.DataFrame({'Student': ['Peter', 'Zach', 'Jane'], 'Math Test Score': [75, 89, 82]}) df_1 df_2 = pd.DataFrame({'Student': ['Alice', 'Peter', 'Jane'], 'Biology Test Score': [78, 87, 90]}) df_2 pd.merge(df_1, df_2, on='Student', how='right') df_3 = pd.DataFrame({'Name': ['Alice', 'Andrew', 'Jane'], 'Chemistry Test Scores': ['A', 'B', 'C']}) df_3 df_4 = pd.merge(df_2, df_3, left_on='Student', right_on='Name').drop(columns=['Student']) df_4 income.shape lifespan.shape df = pd.merge(income, lifespan) df.shape df = pd.merge(income, lifespan, on=['geo', 'time'], how='inner') df.shape df.head() df = pd.merge(df, population) df.head() entities.head() subset_cols = ['country', 'name', 'world_4region', 'world_6region'] merged = pd.merge(df, entities[subset_cols], left_on='geo', right_on='country') merged = merged.drop(columns=['geo']) merged.head() mapping_1 = { 'time': 'year', 'country': 'country_code', 'income_per_person_gdppercapita_ppp_inflation_adjusted': 'income', 'population_total': 'population', 'world_4region': '4region', 'world_6region': '6region', 'life_expectancy_years': 'lifespan' } mapping_2 = {'name': 'country'} merged = merged.rename(columns=mapping_1) merged = merged.rename(columns=mapping_2) merged.head() merged.dtypes merged.describe() merged.describe(exclude='number') merged['country'].value_counts() ###Output _____no_output_____ ###Markdown STRETCH OPTIONS 1. Animate!- [How to Create Animated Graphs in Python](https://towardsdatascience.com/how-to-create-animated-graphs-in-python-bb619cc2dec1)- Try using [Plotly](https://plot.ly/python/animations/)!- [The Ultimate Day of Chicago Bikeshare](https://chrisluedtke.github.io/divvy-data.html) (Lambda School Data Science student)- [Using Phoebe for animations in Google Colab](https://colab.research.google.com/github/phoebe-project/phoebe2-docs/blob/2.1/tutorials/animations.ipynb) 2. Study for the Sprint Challenge- Concatenate DataFrames- Merge DataFrames- Reshape data with `pivot_table()` and `.melt()`- Be able to reproduce a FiveThirtyEight graph using Matplotlib or Seaborn. 3. Work on anything related to your portfolio site / Data Storytelling Project ###Code # TODO ###Output _____no_output_____
D6_EDA_欄位的資料類型介紹及處理/Day_006_HW.ipynb
###Markdown [作業目標]- 仿造範例的 One Hot Encoding, 將指定的資料進行編碼- 請閱讀 [One Hot Encoder vs Label Encoder](https://medium.com/@contactsunny/label-encoder-vs-one-hot-encoder-in-machine-learning-3fc273365621) [作業重點]- 將 sub_train 進行 One Hot Encoding 編碼 (In[4], Out[4]) ###Code import os import numpy as np import pandas as pd # 設定 data_path, 並讀取 app_train dir_data = '../data/' f_app_train = os.path.join(dir_data, 'application_train.csv') app_train = pd.read_csv(f_app_train) ###Output _____no_output_____ ###Markdown 作業將下列部分資料片段 sub_train 使用 One Hot encoding, 並觀察轉換前後的欄位數量 (使用 shape) 與欄位名稱 (使用 head) 變化 ###Code sub_train = pd.DataFrame(app_train['WEEKDAY_APPR_PROCESS_START']) print(sub_train.shape) sub_train.head() """ Your Code Here """ sub_train = pd.get_dummies(sub_train) sub_train.head(10) sub_train.shape ###Output _____no_output_____
Data wrangling - Duplicate transactions.ipynb
###Markdown Data Pre-processing ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import timedelta df = pd.read_json('transactions.json',lines=True,orient='records') # Replacing null values with NaN df = df.replace(r'^\s*$', np.nan, regex=True) # Dropping with features with zero entries df.drop(['echoBuffer','merchantCity','merchantState','merchantZip','posOnPremises','recurringAuthInd'], axis=1,inplace=True) # Creating Date and Time Column df['Date']=df['transactionDateTime'].apply(lambda x: x.split('T')[0]) df['Time']=df['transactionDateTime'].apply(lambda x: x.split('T')[1]) def concat(x): y=str('T') + str(x) return y df.reset_index(drop=False,inplace=True) df['transactionKey']=df['index'].apply(lambda x: concat(x)) df.drop(['index'],axis=1,inplace=True) df.head() ###Output _____no_output_____ ###Markdown Identifying Reversed transactions ###Code df['transactionType'].isnull().sum() #Replacing missing values in transactionType as 'PURCHASE' df['transactionType']=df['transactionType'].fillna(value='PURCHASE') # Creating Timestamp column df.Date=pd.to_datetime(df.Date) df['Timestamp']=pd.to_datetime(df.Date.astype(str)+' '+df.Time.astype(str)) # Sorting data in ascending order with respect to customerId, merchantName, Timestamp data=df[['customerId','merchantName','transactionAmount','transactionType','transactionKey','Timestamp']] data=data.sort_values(by=['customerId','merchantName','Timestamp'],ascending=True) data.head() # Removing transactions with ADDRESS_VERIFICATION type since, there transaction amount is $0 data=data.reset_index(drop=True) data=data[-(data.transactionType=='ADDRESS_VERIFICATION')] data=data.reset_index(drop=True) ###Output _____no_output_____ ###Markdown Considering the purchase and reversal transaction are consecutive ###Code reverse = data.loc[data['transactionType']=='REVERSAL'] reverse.head() purchase_index = reverse.index.values.astype(int)-1 purchase = data.iloc[purchase_index] purchase.head() purchase_index=pd.DataFrame(purchase_index) purchase_index.columns=['Purchase_Index'] reverse_index=pd.DataFrame(reverse_index) reverse_index.columns=['Reverse_Index'] purchase_amount=pd.DataFrame(purchase['transactionAmount'].values) purchase_amount.columns=['Purchase_Amount'] reverse_amount=pd.DataFrame(reverse['transactionAmount'].values) reverse_amount.columns=['Reversal_Amount'] # Creating DataFrame to check reversal transactions chk=pd.concat([purchase_index,reverse_index,purchase_amount,reverse_amount],axis=1) chk.head() chk['new'] = np.where((chk['Purchase_Amount'] == chk['Reversal_Amount']), True, False) chk.head() chk.new.value_counts() ###Output _____no_output_____ ###Markdown By checking the consecutive transactions, I was able to track 12665 reversal transactions. ###Code tracked = chk.loc[chk['new']==True] ###Output _____no_output_____ ###Markdown Creating DataFrame for all tracked reversal transactions ###Code track_index=np.concatenate((tracked['Purchase_Index'], tracked['Reverse_Index'])) track_reverse=data.iloc[track_index] track_reverse=track_reverse.sort_values(by=['customerId','merchantName','Timestamp'],ascending=True) track_reverse.head() track_reverse.transactionType.value_counts() ###Output _____no_output_____ ###Markdown I was able to track 12665 reverse transactions out of the 20303 transactions ###Code track_reverse.groupby(['transactionType']).sum()['transactionAmount'] reverse.groupby(['transactionType']).sum()['transactionAmount'] ###Output _____no_output_____ ###Markdown The transaction amount of tracked reversal transactions is $1907433.62 The overall transaction amount of reverse transactions is $2821792.5 7638 transactions were not tracked with transaction amount of $914,358.88 Identifying Multi-swipe transactions To identify multi-swipes, I am initially sorting the DataFrame in ascending order with respect to cusromerId, merchantName and Timestamp. The sorted data is available from previous. Then, to identify the multi-swipe transaction, I subset data with all the duplicate transactions and then classify the multi-swipe transactions with time difference less than 180 seconds. ###Code # Removing Reverse transactions mst=data.reset_index(drop=True) mst=mst[-(data.transactionType=='REVERSAL')] mst=mst.reset_index(drop=True) mst.head() k=mst.loc[:,['customerId','merchantName','transactionAmount','transactionType']] k.head() # Finding duplicate transactions duplicate = k.duplicated(keep=False) Duplicate=pd.DataFrame(duplicate) Duplicate.columns=['Duplicate'] a=pd.concat([mst,Duplicate],axis=1) a.head() # Subsetting the data with duplicate transactions only b = a.loc[a['Duplicate']==True] b.head() # Calculating time difference between the transactions b['difference']=b.Timestamp.diff() b.head() z = timedelta(0,0) z td = timedelta(0,180) td # Checking for timedifference less than 180 seconds b['multi_swipe']=(b['difference']<td) & (b['difference']>z) #Sub-setting data with multi-swipe transactions only multi_swipe = b.loc[b['multi_swipe']==True] multi_swipe.head() multi_swipe.transactionType.value_counts() # Calculating total mutli-swipe transaction amount leaving the first transaction multi_swipe.sum()['transactionAmount'] ###Output _____no_output_____
docs/source/tutorials/2-creating-light-curves/2-3-how-to-use-cbvcorrector.ipynb
###Markdown Removing noise from Kepler, K2, and TESS light curves using Cotrending Basis Vectors (`CBVCorrector`) Cotrending Basis Vectors (CBVs) are generated in the PDC component of the Kepler/K2/TESS pipeline and are used to remove systematic trends in light curves. They are built from the most common systematic trends observed in each PDC Unit of Work (Quarter for Kepler, Campaign for K2 and Sector for TESS). Each Kepler and K2 module output and each TESS CCD has its own set of CBVs. You can read an introduction to the CBVs in [Demystifying Kepler Data](https://arxiv.org/pdf/1207.3093.pdf) or to greater detail in the [Kepler Data Processing Handbook](https://archive.stsci.edu/kepler/manuals/KSCI-19081-003-KDPH.pdf). The same basic method to generate CBVs is used for all three missions.This tutorial provides examples of how to utilize the various CBVs to clean lightcurves of common trends experienced by all targets. The technique exploits two goodness metrics that characterize the performance of the fit. [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html) inherits the [RegressionCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.html?highlight=regressioncorrector) class in LightKurve. It is recommend to first read the tutorial on [obtaining the CBVs](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html) before reading this tutorial. Cotrending Basis Vector Types There are three basic types of CBVs: - **Single-Scale** contains all systematic trends combined in a single set of basis vectors. - **Multi-Scale** contains systematic trends in specific wavelet-based band passes. There are usually three sets of multi-scale basis vectors in three bands.- **Spike** contains only short impulsive spike systematics.There are two different correction methods in PDC: Single-Scale and Multi-Scale. Single-Scale performs the correction in a single bandpass. Multi-Scale performs the correction in three separate wavelet-based bandpasses. Both corrections are performed in PDC but we can only export a single PDC light curve for each target. So, PDC must choose which of the two to export on a per-target basis. Generally speaking, single-scale performs better at preserving longer period signals. But at periods close to transiting planet durations multi-scale performs better at preserving signals. PDC therefore mostly chooses multi-scale for use within the planet finding pipeline and for the archive. You can find in the light curve FITS header which PDC method was chosen (keyword “PDCMETHD”). Additionally, a seperate correction is alway performed to remove short impulsive systematic spikes.For an individual's research needs, the mission supplied PDC lightcurves might not be ideal and so the CBVs are provided to the user to perform their own correction. All three CBV types are provided at MAST for TESS, however only Single-Scale is provided at MAST for Kepler and K2. Also for Kepler and K2, Cotrending Basis Vectors are supplied for only the 30-minute target cadence. Obtaining the CBVs One can directly obtain the CBVs with `download_tess_cbvs` and `downlaod_kepler_cbvs`. However when generating a [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector) object the appropriate CBVs are automatically downloaded from MAST and aligned to the lightcurve. Let's generate this object for a particularily interesting TESS variable target. We first download the SAP lightcurve. ###Code from lightkurve import search_lightcurve import numpy as np import matplotlib.pyplot as plt lc = search_lightcurve('TIC 99180739', author='SPOC', sector=10).download(flux_column='sap_flux') ###Output _____no_output_____ ###Markdown Next, we create a `CBVCorrector` object. This will download the CBVs appropriate for this target and store them in the `CBVCorrector` object. In the case of TESS, this means the CBVs associated with the CCD this target is on and for Sector 10. ###Code from lightkurve.correctors import CBVCorrector cbvCorrector = CBVCorrector(lc) ###Output _____no_output_____ ###Markdown Let's look at the CBVs downloaded. ###Code cbvCorrector.cbvs ###Output _____no_output_____ ###Markdown We see that there are a total of 5 sets of CBVs, all associated with TESS Sector 10, Camera 1 and CCD 1. The number of CBVs per type is also given. Let's plot the Single-Scale CBVs, which contain all systematics combined. ###Code cbvCorrector.cbvs[0].plot(); ###Output _____no_output_____ ###Markdown The first several CBVs contain most of the systematics. The latter CBVs pose a greater risk of injecting more noise than helping. The default behavior in CBVCorrector is to use the first 8 CBVs. Assessing Over- and Under-Fitting with the Goodness Metrics Two very common issues when fitting a model to a data set it over-fitting and under-fitting. Over-fitting occurs when the model has too many degrees of freedom and fits the data _at all costs_, instead of just modelling the physical process it is attempting to model. This can exhibit itself in different ways, depending on the system and application. In the case of fitting systematic trend basis vectors to a time series, over-fitting can result in the basis vectors removing intrinsic signals in the times series instead of just the systematics. It can also result in introduced broad-band noise. This can be particularily prominant in an unconstrained least-squares fit. A least-squares fit only cares about minimizing it's loss function, which is the Root Mean Square error. In the course of minimizing the RMS, narrow-band power representing the systematic trends are exchanged for broad-band noise intrinsic in the basis vectors. This results in the overall RMS decreasing but the noise in the time series increasing, resulting in the obscuration of the signals under interest. A very common method to inhibit over-fitting is to introduce a regularization term in the loss function. This constrains the fit and effectively reduces the degrees of freedom.Under-fitting occurs when the model has too few degrees of freedom and fails to adequately model the physical process it is attempting to model. In the case of fitting systematic trend basis vectors to a time series, under-fitting can result in residual systematics. Under-fitting can either be the result of the basis vectors not adequately representing the systematics or, placing too great of a restriction on the model during fitting. The regularization technique used to inhibit over-fitting can therefore result in under-fitting. The ideal fit will balance the counter-acting phenomena of over- and under-fitting. To this end, a method can be developed to measure the degree to which these two phenomena occur.PDC has two **Goodness Metrics** to assess over- and under-fitting:- **Over-fitting metric**: Measures the introduced noise in the light curve after the correction. It does so by measuring the broad-band power spectrum via a Lomb-Scargle Periodogram both before and after the correction. If power has increased after the correction then this is an indication the CBV fit has over-fitted and introduced noise. The metric treats all frequencies equally when measuring power increase; from one frequency separation to the Nyquist frequency. This metric is callibrated such that a metric value of 0.5 means the introduced noise due to over-fitting is at the same power level as the uncertainties in the light curve.- **Under-fitting metric**: Measures the mean residual target to target Pearson correlation between the target under study and a selection of neighboring targets. This metric will find and download a selection of neighboring SPOC SAP targets in RA and Decl. until a minimum number is found. The metric is callibrated such that a value of 0.95 means the residual correlations in the target is equivalent to chance correlations of White Gaussian Noise._The Goodness Metrics are not perfect!_ They are an estimate of over- and under-fitting and are to be used as a guideline along other other metrics to assess the quality of your light curve. The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. The 'CBVCorrector' has convenience wrappers for the two metrics and so they do not need to be called directly, as we will show below. Example Correction with CBVCorrector to Inhibit Over-Fitting There are four correction methods within `CBVCorrector`:- **correct**: Performs a numerical correction using the LightKurve [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) method while optimizing the L2-Norm regularization penalty term using the goodness metrics as the Loss Function.- **correct_gaussian_prior**: Performs an analytical correction using the LightKurve [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) method while setting the L2-Norm (Ridge Regression) regularization penalty term as the Gaussian prior.- **correct_elasticnet**: Performs the correction using Scikit-Learn's [ElasticNet](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html), which combines both an L1- and L2-Norm regularization.- **correct_regressioncorrector**: Performs the standard [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) correction. RegressionCorrector is the superclass to CBVCorrector and this is a "passthrough" method to access the superclass `correct` method.If you are unfamilar with L1-Norm (LASSO) and L2-Norm (Ridge Regression) regularization then there are [severel](https://www.statlearning.com/), [excellent](https://press.princeton.edu/books/hardcover/9780691198309/statistics-data-mining-and-machine-learning-in-astronomy), [introductions](https://en.wikipedia.org/wiki/Regularization_(mathematics)). You can read how a L2-norm relates to a Gaussian prior in a linear design matrix in [this reference](https://katbailey.github.io/post/from-both-sides-now-the-math-of-linear-regression/).The default method is `correct` and generally speaking, one can use just this method to obtain a good fit. The other methods are for advanced usage.We'll start with `correct_gaussian_prior` in order to introduce the concepts. Doing so will allow us to force a very weak regularization term (alpha=1e-4) as an illustration. ###Code # Select which CBVs to use in the correction cbv_type = ['SingleScale', 'Spike'] # Select which CBV indices to use # Use the first 8 SingleScale and all Spike CBVS cbv_indices = [np.arange(1,9), 'ALL'] # Perform the correction cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown First note that CBVCorrector always fits a constant term in the model, but the constant is never subtracted in the resultant corrected flux. The median flux value of the light curve is always preserved.At first sight, this looks like a good correction. Both the Single-Scale and Spike basis vectors are being utilized to fit out as much of the signal as possible. The corrected light curve is indeed flatter. But this was essentially an unrestricted least-squares correction and we may have _over-fitted_. The very strong lips right at the beginning of each orbit is probably a chance correlation between the star's inherent stellar variability and the thermal settling systematic that is common in Kepler and TESS lightcurves. Let's look at the CBVCorrector goodness metrics to determine if this is the case. ###Code # Note: this cell will be slow to run print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) ###Output _____no_output_____ ###Markdown The first time you run the under-fitting goodness metric it will download the SPOC SAP light curves of targets in the neighborhood around the target under study in order to estimate the residual systematics (they are stored in the CBVCorrector object for subsequent computations). A goodness metric of 0.8 or above is generally considered good. In this case, it looks like we over-fitted (over-fitting metric = 0.71). Even though the corrected light curve looks better, our metric is telling us we probably injected signals into our lightcurve and we should not trust this really nice looking curve. Perhaps we can do better if we _regularize_ the fit. Using the Goodness Metrics to Optimize the Fit We will start by performing a scan of the over- and under-fit goodness metrics as a function of the L2-Norm regularization term, alpha. ###Code cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown This scan also plots the last used alpha parameter as a vertical black line (alpha=1e-4 in our case). We are clearly not optimizing this fit for both over- and under-fitting. Let's use the `correct` numerical optimizer to try to optimize the fit. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Much better! We see the thermal settling systematic is still being removed, but the stellar variabity is better preserved. Note that the optimizer did not set the alpha parameter at exactly the red and blue curve intersection point. The default target goodness scores is 0.8 or above, which is fulfilled at alpha=1.45e-1. If we want to optimize the fit even more, by perhaps ensuring we are not over-fitting at all, then we can adjust the target over and under scores to emphasize which metric we are more interested in. Below we more greatly emphasize improving the over-fitting metric by setting the target to 0.9. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.9, target_under_score=0.5) cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown We are now perhaps biasing too far towards under-fitting, but depending on your research interests, this might be best. No Single Best Answer Example Let's now look at another example, this time where there is no clear single best answer. Again, we will use the Single-Scale and Spike basis vectors for the correction and begin with low regularization. ###Code lc = search_lightcurve('TIC 38574307', author='SPOC', sector=2).download(flux_column='sap_flux') cbvCorrector = CBVCorrector(lc) cbv_type = ['SingleScale', 'Spike'] cbv_indices = [np.arange(1,9), 'ALL'] cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown At first sight, this looks good. The long term trends have been removed and the periodic noisy bits have been removed with the spike basis vectors. But did we really do a good job? ###Code print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Hmm... The over-fitting goodness metric says we are severely over-fitting. Not only that, there appears to not be an Alpha parameter that brings both goodness metrics above 0.8. And yet, the fit looks really good. What's going on here? Let's zoom in on the correction. ###Code pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see in the top plot that the _SingleScale_ correction has comperable noise to the _original_ light curve. This means the correction is injecting high frequency noise at comperable amplitude to the original signal. We have indeed over-fitted! The goodness metrics perform a _broad-band_ analysis of over- and under-fitting. Even though our eyes did not see the high frequency noise injection, the goodness metrics did. So, what should be done? It depends on what you are trying to investigate. If you are only looking at the low frequency signals in the data then perhaps you don't care about the high frequency noise injection. If you really do care about the high frequency signals then you should increase the Alpha parameter, or set the target goodness scores as we do below (target_over_score=0.8, target_under_score=0.5). ###Code # Optimize the fit but overemphasize the importance of not over-fitting. cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.8, target_under_score=0.5) cbvCorrector.diagnose() cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); # Again, zoom in to see the detail pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see now that the high frequency noise injection is small compared to the original amplitudes in the lightkurve. We barely removed any of the systematics and are now under-fitting, but that might be the best we can do if we want to ensure low noise injection. ...Or Can We Still Do Better? Perhaps we are using the incorrect CBVs for this target. Below is a tuned multi-step fit where we first fit the multi-scale Band 2 CBVs then the Spike CBVs. The multi-scale band 2 CBVs contain intermediate frequency systematic signals. They should not inject high frequency noise. We also utilize the `correct_elasticnet` corrector, which allows us to add in a L1-Norm term (Lasso Regularization). L1-Norm helps snap some basis vector fit coefficients to zero and can result in a more stable, less noisy fit. The result is a much better compromise between over- and under-fitting. The spikes are not well removed but increasing the weight on the Spike CBV removal results in over-fitting. We can also try the multi-scale band 3 CBVs, which contain high frequency systematics, but the over-fitting metric indicates using them results in even greater over-fitting. The resultant is now much better than what we achieved above but more tuning and optimization could possibly get us even closer to an ideal fit. ###Code # Fit to the Multi-Scale Band 2 CBVs with ElasticNet to add in a L1-Norm (Lasso) term cbvCorrector.correct_elasticnet(cbv_type=['MultiScale.2'], cbv_indices=[np.arange(1,9)], alpha=1.0e-7, l1_ratio=0.5) ax = cbvCorrector.diagnose() ax[0].set_title('Result of First Correction to MultiScale.2 CBVs'); # Set the corrected LC as the initial LC in a new CBVCorrector object before moving to the next correction. # You could instead just reassign to the first cbvCorrector object, if you do not wish to save the original. cbvCorrectorIter2 = cbvCorrector.copy() cbvCorrectorIter2.lc = cbvCorrectorIter2.corrected_lc.copy() # Fit to the Spike Basis Vectors, using an L1-Norm term. cbvCorrectorIter2.correct_elasticnet(cbv_type=['Spike'], cbv_indices=['ALL'], alpha=2.0e-5, l1_ratio=0.7) ax = cbvCorrectorIter2.diagnose() ax[0].set_title('Result of Second Correction to Spike CBVs'); # Compute the final goodness metrics compared to the original lightcurve. # This requires us to copy the original light curve into cbvCorrectorIter2.lc so that the goodness metrics compares the corrected_lc to the proper initial light curve. cbvCorrectorIter2.lc = cbvCorrector.lc.copy() print('Over-fitting Metric: {}'.format(cbvCorrectorIter2.over_fitting_metric())) print('Under-fitting Metric: {}'.format(cbvCorrectorIter2.under_fitting_metric())) # Plot the final correction _, ax = plt.subplots(1, figsize=(10, 6)) cbvCorrectorIter2.lc.plot(ax=ax, normalize=False, alpha=0.2, label='Original') cbvCorrectorIter2.corrected_lc[~cbvCorrectorIter2.cadence_mask].scatter( normalize=False, c='r', marker='x', s=10, label='Outliers', ax=ax) cbvCorrectorIter2.corrected_lc.plot(normalize=False, label='Corrected', ax=ax, c='k') ax.set_title('Comparison between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown So, which CBVs are best to use? There is no one single answer, but generally speaking, the Multi-Scale Basis vectors are more versatile. The trade-off is there are also more of them, which means more degrees of freedom in your fit. More degrees of freedom can result in more over-fitting without proper regularization. It is recommened the user tries different combinations of CBVs and use objective metrics to decide which fit is the best for their particular needs. Using the Goodness Metrics and CBVCorrector with other Design Matrices The Goodness Metrics and CBVCorrector can also be used in conjunction with other external design matrices. Let's work on a famous planet example to show how the CBVCorrector can be utilized to imporove the generated light curve. We will begin by using [search_tesscut](https://docs.lightkurve.org/reference/api/lightkurve.search_tesscut.html?highlight=search_tesscut) to extract an FFI light curve for HAT-P 11 and then create a DesignMatrix using the background pixels. ###Code # HAT-P 11b from lightkurve import search_tesscut from lightkurve.correctors import DesignMatrix search_result = search_tesscut('HAT-P-11', sector=14) tpf = search_result.download(cutout_size=20) # Create a simple thresholded aperture mask aper = tpf.create_threshold_mask(threshold=15, reference_pixel='center') # Generate a simple aperture photometry light curve raw_lc = tpf.to_lightcurve(aperture_mask=aper) # Create a design matrix using PCA components from the cutout background dm = DesignMatrix(tpf.flux[:, ~aper], name='pixel regressors').pca(5).append_constant() ###Output _____no_output_____ ###Markdown The [DesignMatrix](https://docs.lightkurve.org/reference/api/lightkurve.correctors.DesignMatrix.html?highlight=designmatrixlightkurve.correctors.DesignMatrix) `dm` now contains the common trends in the background pixels in the data. We will first try to fit the pixel-based design matrix using an unrestricted least-squares fit (I.e. a very weak regularization by setting alpha to a small number). We tell CBVCorrector to only use the external design matrix with `ext_dm=`. When we generate the CBVCorrector object the CBVs will be downloaded, but the CBVs are for 2-minute cadence and not the 30-minute FFIs. We therefore use the `interpolate_cbvs=True` option to tell the CBVCorrector to interpolate the CBVs to the light curve cadence. ###Code # Generate the CBVCorrector object and interpolate the downloaded CBVs to the light curve cadence cbvcorrector = CBVCorrector(raw_lc, interpolate_cbvs=True) # Perform an unrestricted least-squares fit using only the pixel-derived design matrix. cbvcorrector.correct_gaussian_prior(cbv_type=None, cbv_indices=None, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_just_pixel_dm = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown The least-squares fit did remove the background flux trend and at first sight the resultant might look good, but the over-fitting goodness metric is `0.08`. That's not very good! It looks like we are dramatically over-fitting. We can see this in the bottom plot where the corrected curve has more high-frequency noise than the original. Let's now add in the multi-scale basis vectors and see if we can do better. Note that we are joint fitting the CBVs and the external pixel-derived design matrix. ###Code cbv_type = ['MultiScale.1', 'MultiScale.2', 'MultiScale.3','Spike'] cbv_indices = [np.arange(1,9), np.arange(1,9), np.arange(1,9), 'ALL'] cbvcorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_joint_fit = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown That looks a lot better! Could we do a bit better by adding in a regualrization term? Let's do a goodness metric scan. ###Code cbvcorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm); ###Output _____no_output_____ ###Markdown There are a couple observations to make here. First, the under-fitting metric has a very good score throughout the regularization scan. This is because the under-fitting metric compares the corrected light curve to neighboring targets in RA and Decl. that are archived as 2-minute SAP-flux targets. _The SAP flux already has the background removed_ so the neighoring targets do not contain the very large background trends. The under-fitting metric is therefore not very helpful. In the next run we will disable the under-fitting metric in the optimization (by setting target_under_score=-1).We see the over-fitting metric is not a simple function of the regularization factor _alpha_. This can happen due to the interaction of the various basis vectors during fitting when regularization is applied. We see a minima (most over-fitting) at about alpha=1e-1. Once alpha moves above this value we begin to over-constrain the fit which results in gradually less removal of systematics. The under-fitting metric should be an indicator that we are going too far constraining the fit, and indeed, we do see the under-fitting metric degrades slightly beginning at alpha=1e-1.We will now try to optimize the fit and account for these two issues by 1) setting the bounds on the alpha parameter (`alpha_bounds=[1e-6, 1e-2]`) and 2) disregarding the under-fitting metric (`target_under_score=-1`). ###Code # Optimize the fit but ignore the under-fitting metric and set bounds on the alpha parameter. cbvcorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha_bounds=[1e-6, 1e-2], target_over_score=0.8, target_under_score=-1) cbvcorrector.diagnose(); print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) ###Output _____no_output_____ ###Markdown This is looking like a pretty good light curve. However, the CDPP increased a little as we optimized the over-fitting metric. Which correction to use may depend on your application. Since we are interested in the transiting planet, we will choose the corrected light curve with the lowest CDPP. Below we compare the light curve between just using the pixel-derived design matrix to also adding in the CBVs as a joint, regularized fit. ###Code _, ax = plt.subplots(3, figsize=(10, 6)) cbvcorrector.lc.plot(ax=ax[0], normalize=False, label='Uncorrected LC', c='k') corrected_lc_just_pixel_dm.plot(normalize=False, label='Pixel-Level Corrected; CDPP={0:.1f}'.format(corrected_lc_just_pixel_dm.estimate_cdpp()), ax=ax[1], c='m') corrected_lc_joint_fit.plot(normalize=False, label='Joint Fit Corrected; CDPP={0:.1f}'.format(corrected_lc_joint_fit.estimate_cdpp()), ax=ax[2], c='b') ax[0].set_title('Comparison Between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown The superiority of the bottom curve is blatantly obvious. We can clearly see HAT-P 11b on it's 4.9 day period orbit. Our over-fitting metric settled at about 0.35 indicating we might still be over-fitting and should keep that in mind. However the low CDPP indicates the over-fitting is probably not over transit time-scales. Some final comments on CBVCorrector Application to Kepler vs K2 vs TESS CBVCorrector works equally across Kepler, K2 and TESS. However the Multi-Scale and Spike basis vectors are only available for TESS[1](fn1). For K2, the [PLDCorrector](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-3-k2-pldcorrector.html) and [SFFCorrector](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-3-k2-sffcorrector.html) classes might work better than `CBVCorrector`.If you want to just get the CBVs but not generate a CBVCorrector object then use the functions _download_kepler_cbvs_ and _download_tess_cbvs_ within the cbvcorrector module as explained [here](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html). 1 Unfortunately, the Multi-Scale and Spike CBVs are not archived at MAST for Kepler/K2. Applicability of the Over- and Under-fitting Goodness Metrics The under-fitting metric computes the correlation between the corrected light curve and a selection of neighboring SPOC SAP light curves. If the light curve you are trying to correct was not generated by the SPOC pipeline (I.e. not a SAP light curve), then the neighboring SAP light curves might not contain the same instrumental systematics and the under-fitting metric might not properly measure when under-fitting is occuring. The over-fitting metric examines the periodogram of the light curve before and after the correction and is therefore indifferent to how the light curve was generated. It simply looks to see if noise was injected into the light curve. The over-fitting metric is therefore much more generally applicable.The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. A savvy expert user can use these and other quality metrics to generate their own Loss Function for optimizing a fit. Aligning versus Interpolating CBVs By default, all loaded CBVS in `CBVCorrector` are "aligned" to the light curve cadence numbers (`CBVCorrector.lc.cadenceno`). This means only cadence numbers that exist in both the CBVs and the light curve will have values in the returned CBVs. All cadence numbers that exist in the light curve but not in the CBVs will have NaNs returned for the CBVs on those cadences and the Gap Indicator set to True. Any cadences in the CBVs not in the light curve will be removed from the CBVs.If the light curve cadences do not overlap well with the CBVs then you can set `interpolate_cbvs=True` when generating the `CBVCorrector` object. Doing so will generate interpolated CBV values for all cadences in the light curve. If the light curve has cadences past either end of the cadences in the CBVs then one must extrapolate. A second argument, `extrapolate_cbvs`, can be used to also extrapolate the CBV values to the light curve cadences. If `extrapolate_cbvs=False` then the exterior values are set to NaNs, which will probably result is a very poor fit.**Warning**: *The safest method is to align*. This will not generate any new values for the CBVs. Interpolation can be potentially dangerous. Interpolation uses Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), which can be more stable than a simple spline, but no interpolation method works in all situations. Extrapolation is even more dangerious, which is why an extra parameter must be set if one desires to extrapolate. *Be sure to manually examine the extrapolated CBVs before use!* Joint Fitting By including the `ext_dm=` parameter in the `correct_*` methods we allow for joint fitting between the CBVs and other design matrices. Generally speaking, if fitting a collection of different models to a system, joint fitting is ideal. For example, if performing transit analysis one could add in a transit model to the joint fit to get the best transit recovery. The fit coefficient to the transit model is stored in the `CBVCorrector` object after fitting and can be recovered. Hyperparameter Optimization Any model fitting should include a hyperparameter optimization step. The `correct_optimizer` is essentially a 1-dimensional optimizer and is very fast. More advanced hypterparameter optimization can be performed by tuning the `alpha` and `l1_ratio` parameters in `correct_elasticnet` plus the number and type of CBVs, along with an external design matrix. The optimization Loss Function can use a combination of the `under_fitting_metric`, `over_fitting_metric` and `lc.estimate_cdpp` methods. Writing such an optimzer is left as an exercise to the reader and to be tuned to the reader's particular application. More Generalized Design Matrix Priors The main [CBVCorrector.correct*](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector%20correclightkurve.correctors.CBVCorrector) methods utilize a similar prior for all design matrix vectors as is typically used in L1-Norm and L2-Norm regularization. However you can perform fine tuning to the correction using more sophisticated priors. After performing a fit with one of the `CBVCorrector.correct*` methods, `CBVCorrector.design_matrix_collection` will have the priors set. One can then manually adjust the priors and use `CBVCorrector.correct_regressioncorrector` to perform the standard [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) correction. An illustration is below: ###Code # 1) Perform an initial optimization with a L2-Norm regularization # cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); # 2) Examine the quality of the resultant lightcurve in cbvcorrector.corrected_lc # Determine how to adjust the priors and make changes to the design matrix # cbvCorrector.design_matrix_collection[i].prior_sigma[j] = # ... adjust the priors # 3) Call the superclass correct method with the adjusted design_matrix_collection # cbvCorrector.correct_regressioncorrector(cbvCorrector.design_matrix_collection, **kwargs) ###Output _____no_output_____ ###Markdown The `cbvCorrector.corrected_lc` will now be the result of the fit using whatever `cbvCorrector.design_matrix_collection` you had just provided. NaNs, Units and Normalization NaNs are removed from the light curve when used to generate the `CBVCorrector` object and is stored in `CBVCorrector.lc`. The CBVCorrector performs its corrections in absolute flux units (typically electrons per second). The returned corrected light curve `corrected_lc` is also in absolute units and the median flux of the light curve is preserved. ###Code print('LC unit: {}'.format(cbvCorrector.lc.flux.unit)) print('Corrected LC unit: {}'.format(cbvCorrector.corrected_lc.flux.unit)) ###Output _____no_output_____ ###Markdown The goodness metrics are computed using median normalized units in order to properly calibrate the metric to be between 0.0 and 1.0 for all light curves. The normalization is as follows: ###Code normalized_lc = cbvCorrector.lc.normalize() normalized_lc -= 1.0 print('Normalized Light curve units: {} (i.e astropy.units.dimensionless_unscaled)'.format(normalized_lc.flux.unit)) ###Output _____no_output_____ ###Markdown Removing noise from Kepler, K2, and TESS light curves using Cotrending Basis Vectors (`CBVCorrector`) Cotrending Basis Vectors (CBVs) are generated in the PDC component of the Kepler/K2/TESS pipeline and are used to remove systematic trends in light curves. They are built from the most common systematic trends observed in each PDC Unit of Work (Quarter for Kepler, Campaign for K2 and Sector for TESS). Each Kepler and K2 module output and each TESS CCD has its own set of CBVs. You can read an introduction to the CBVs in [Demystifying Kepler Data](https://arxiv.org/pdf/1207.3093.pdf) or to greater detail in the [Kepler Data Processing Handbook](https://archive.stsci.edu/kepler/manuals/KSCI-19081-003-KDPH.pdf). The same basic method to generate CBVs is used for all three missions.This tutorial provides examples of how to utilize the various CBVs to clean lightcurves of common trends experienced by all targets. The technique exploits two goodness metrics that characterize the performance of the fit. [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector) inherits the [RegressionCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.html?highlight=regressioncorrector) class in LightKurve. It is recommend to first read the tutorial on [obtaining the CBVs](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html) before reading this tutorial. Cotrending Basis Vector Types There are three basic types of CBVs: - **Single-Scale** contains all systematic trends combined in a single set of basis vectors. - **Multi-Scale** contains systematic trends in specific wavelet-based band passes. There are usually three sets of multi-scale basis vectors in three bands.- **Spike** contains only short impulsive spike systematics.There are two different correction methods in PDC: Single-Scale and Multi-Scale. Single-Scale performs the correction in a single bandpass. Multi-Scale performs the correction in three separate wavelet-based bandpasses. Both corrections are performed in PDC but we can only export a single PDC light curve for each target. So, PDC must choose which of the two to export on a per-target basis. Generally speaking, single-scale performs better at preserving longer period signals. But at periods close to transiting planet durations multi-scale performs better at preserving signals. PDC therefore mostly chooses multi-scale for use within the planet finding pipeline and for the archive. You can find in the light curve FITS header which PDC method was chosen (keyword “PDCMETHD”). Additionally, a seperate correction is alway performed to remove short impulsive systematic spikes.For an individual's research needs, the mission supplied PDC lightcurves might not be ideal and so the CBVs are provided to the user to perform their own correction. All three CBV types are provided at MAST for TESS, however only Single-Scale is provided at MAST for Kepler and K2. Also for Kepler and K2, Cotrending Basis Vectors are supplied for only the 30-minute target cadence. Obtaining the CBVs One can directly obtain the CBVs with `download_tess_cbvs` and `downlaod_kepler_cbvs`. However when generating a [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector) object the appropriate CBVs are automatically downloaded from MAST and aligned to the lightcurve. Let's generate this object for a particularily interesting TESS variable target. We first download the SAP lightcurve. ###Code from lightkurve import search_lightcurve import numpy as np import matplotlib.pyplot as plt lc = search_lightcurve('TIC 99180739', author='SPOC', sector=10).download(flux_column='sap_flux') ###Output _____no_output_____ ###Markdown Next, we create a `CBVCorrector` object. This will download the CBVs appropriate for this target and store them in the `CBVCorrector` object. In the case of TESS, this means the CBVs associated with the CCD this target is on and for Sector 10. ###Code from lightkurve.correctors import CBVCorrector cbvCorrector = CBVCorrector(lc) ###Output _____no_output_____ ###Markdown Let's look at the CBVs downloaded. ###Code cbvCorrector.cbvs ###Output _____no_output_____ ###Markdown We see that there are a total of 5 sets of CBVs, all associated with TESS Sector 10, Camera 1 and CCD 1. The number of CBVs per type is also given. Let's plot the Single-Scale CBVs, which contain all systematics combined. ###Code cbvCorrector.cbvs[0].plot(); ###Output _____no_output_____ ###Markdown The first several CBVs contain most of the systematics. The latter CBVs pose a greater risk of injecting more noise than helping. The default behavior in CBVCorrector is to use the first 8 CBVs. Assessing Over- and Under-Fitting with the Goodness Metrics Two very common issues when fitting a model to a data set it over-fitting and under-fitting. Over-fitting occurs when the model has too many degrees of freedom and fits the data _at all costs_, instead of just modelling the physical process it is attempting to model. This can exhibit itself in different ways, depending on the system and application. In the case of fitting systematic trend basis vectors to a time series, over-fitting can result in the basis vectors removing intrinsic signals in the times series instead of just the systematics. It can also result in introduced broad-band noise. This can be particularily prominant in an unconstrained least-squares fit. A least-squares fit only cares about minimizing it's loss function, which is the Root Mean Square error. In the course of minimizing the RMS, narrow-band power representing the systematic trends are exchanged for broad-band noise intrinsic in the basis vectors. This results in the overall RMS decreasing but the noise in the time series increasing, resulting in the obscuration of the signals under interest. A very common method to inhibit over-fitting is to introduce a regularization term in the loss function. This constrains the fit and effectively reduces the degrees of freedom.Under-fitting occurs when the model has too few degrees of freedom and fails to adequately model the physical process it is attempting to model. In the case of fitting systematic trend basis vectors to a time series, under-fitting can result in residual systematics. Under-fitting can either be the result of the basis vectors not adequately representing the systematics or, placing too great of a restriction on the model during fitting. The regularization technique used to inhibit over-fitting can therefore result in under-fitting. The ideal fit will balance the counter-acting phenomena of over- and under-fitting. To this end, a method can be developed to measure the degree to which these two phenomena occur.PDC has two **Goodness Metrics** to assess over- and under-fitting:- **Over-fitting metric**: Measures the introduced noise in the light curve after the correction. It does so by measuring the broad-band power spectrum via a Lomb-Scargle Periodogram both before and after the correction. If power has increased after the correction then this is an indication the CBV fit has over-fitted and introduced noise. The metric treats all frequencies equally when measuring power increase; from one frequency separation to the Nyquist frequency. This metric is callibrated such that a metric value of 0.5 means the introduced noise due to over-fitting is at the same power level as the uncertainties in the light curve.- **Under-fitting metric**: Measures the mean residual target to target Pearson correlation between the target under study and a selection of neighboring targets. This metric will find and download a selection of neighboring SPOC SAP targets in RA and Decl. until a minimum number is found. The metric is callibrated such that a value of 0.95 means the residual correlations in the target is equivalent to chance correlations of White Gaussian Noise._The Goodness Metrics are not perfect!_ They are an estimate of over- and under-fitting and are to be used as a guideline along other other metrics to assess the quality of your light curve. The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. The 'CBVCorrector' has convenience wrappers for the two metrics and so they do not need to be called directly, as we will show below. Example Correction with CBVCorrector to Inhibit Over-Fitting There are four correction methods within `CBVCorrector`:- **correct**: Performs a numerical correction by optimizing the L2-Norm regularization penalty term using the goodness metrics as the Loss Function.- **correct_gaussian_prior**: Performs an analytical correction using the LightKurve [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) method while setting the L2-Norm (Ridge Regression) regularization penalty term as the Gaussian prior.- **correct_elasticnet**: Performs the correction using Scikit-Learn's [ElasticNet](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html), which combines both an L1- and L2-Norm regularization.- **correct_regressioncorrector**: Performs the standard `RegressionCorrector.correct` correction. RegressionCorrector is the superclass to CBVCorrector.If you are unfamilar with L1-Norm (LASSO) and L2-Norm (Ridge Regression) regularization then there are severel [excellent](https://press.princeton.edu/books/hardcover/9780691198309/statistics-data-mining-and-machine-learning-in-astronomy) [introductions](https://en.wikipedia.org/wiki/Regularization_(mathematics)). You can read how a L2-norm relates to a Gaussian prior in a linear design matrix in [this reference](https://katbailey.github.io/post/from-both-sides-now-the-math-of-linear-regression/).The default method is `correct` and generally speaking, one can use just this method to obtain a good fit. The other methods are for advanced usage.We'll start with `correct_gaussian_prior` in order to introduce the concepts. Doing so will allow us to force a very weak regularization term (alpha=1e-4) as an illustration. ###Code # Select which CBVs to use in the correction cbv_type = ['SingleScale', 'Spike'] # Select which CBV indices to use # Use the first 8 SingleScale and all Spike CBVS cbv_indices = [np.arange(1,9), 'ALL'] # Perform the correction cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown First note that CBVCorrector always fits a constant term in the model, but the constant is never subtracted in the resultant corrected flux. The median flux value of the light curve is always preserved.At first sight, this looks like a good correction. Both the Single-Scale and Spike basis vectors are being utilized to fit out as much of the signal as possible. The corrected light curve is indeed flatter. But this was essentially an unrestricted least-squares correction and we may have _over-fitted_. The very strong lips right at the beginning of each orbit is probably a chance correlation between the star's inherent stellar variability and the thermal settling systematic that is common in Kepler and TESS lightcurves. Let's look at the CBVCorrector goodness metrics to determine if this is the case. ###Code # Note: this cell will be slow to run print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) ###Output _____no_output_____ ###Markdown The first time you run the under-fitting goodness metric it will download the SPOC SAP light curves of targets in the neighborhood around the target under study in order to estimate the residual systematics (they are stored in the CBVCorrector object for subsequent computations). A goodness metric of 0.8 or above is generally considered good. In this case, it looks like we over-fitted (over-fitting metric = 0.71). Even though the corrected light curve looks better, our metric is telling us we probably injected signals into our lightcurve and we should not trust this really nice looking curve. Perhaps we can do better if we _regularize_ the fit. Using the Goodness Metrics to Optimize the Fit We will start by performing a scan of the over- and under-fit goodness metrics as a function of the L2-Norm regularization term, alpha. ###Code cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown This scan also plots the last used alpha parameter as a vertical black line (alpha=1e-4 in our case). We are clearly not optimizing this fit for both over- and under-fitting. Let's use the `correct` numerical optimizer to try to optimize the fit. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Much better! We see the thermal settling systematic is still being removed, but the stellar variabity is better preserved. Note that the optimizer did not set the alpha parameter at exactly the red and blue curve intersection point. The default target goodness scores is 0.8 or above, which is fulfilled at alpha=1.45e-1. If we want to optimize the fit even more, by perhaps ensuring we are not over-fitting at all, then we can adjust the target over and under scores to emphasize which metric we are more interested in. Below we more greatly emphasize improving the over-fitting metric by setting the target to 0.9. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.9, target_under_score=0.5) cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown We are now perhaps biasing too far towards under-fitting, but depending on your research interests, this might be best. No Single Best Answer Example Let's now look at another example, this time where there is no clear single best answer. Again, we will use the Single-Scale and Spike basis vectors for the correction and begin with low regularization. ###Code lc = search_lightcurve('TIC 38574307', author='SPOC', sector=2).download(flux_column='sap_flux') cbvCorrector = CBVCorrector(lc) cbv_type = ['SingleScale', 'Spike'] cbv_indices = [np.arange(1,9), 'ALL'] cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown At first sight, this looks good. The long term trends have been removed and the periodic noisy bits have been removed with the spike basis vectors. But did we really do a good job? ###Code print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Hmm... The over-fitting goodness metric says we are severely over-fitting. Not only that, there appears to not be an Alpha parameter that brings both goodness metrics above 0.8. And yet, the fit looks really good. What's going on here? Let's zoom in on the correction. ###Code pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see in the top plot that the _SingleScale_ correction has comperable noise to the _original_ light curve. This means the correction is injecting high frequency noise at comperable amplitude to the original signal. We have indeed over-fitted! The goodness metrics perform a _broad-band_ analysis of over- and under-fitting. Even though our eyes did not see the high frequency noise injection, the goodness metrics did. So, what should be done? It depends on what you are trying to investigate. If you are only looking at the low frequency signals in the data then perhaps you don't care about the high frequency noise injection. If you really do care about the high frequency signals then you should increase the Alpha parameter, or set the target goodness scores as we do below (target_over_score=0.8, target_under_score=0.5). ###Code # Optimize the fit but overemphasize the importance of not over-fitting. cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.8, target_under_score=0.5) cbvCorrector.diagnose() cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); # Again, zoom in to see the detail pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see now that the high frequency noise injection is small compared to the original amplitudes in the lightkurve. We barely removed any of the systematics and are now under-fitting, but that might be the best we can do if we want to ensure low noise injection. ...Or Can We Still Do Better? Perhaps we are using the incorrect CBVs for this target. Below is a tuned multi-step fit where we first fit the multi-scale Band 2 CBVs then the Spike CBVs. The multi-scale band 2 CBVs contain intermediate frequency systematic signals. They should not inject high frequency noise. We also utilize the `correct_elasticnet` corrector, which allows us to add in a L1-Norm term (Lasso Regularization). L1-Norm helps snap some basis vector fit coefficients to zero and can result in a more stable, less noisy fit. The result is a much better compromise between over- and under-fitting. The spikes are not well removed but increasing the weight on the Spike CBV removal results in over-fitting. We can also try the multi-scale band 3 CBVs, which contain high frequency systematics, but the over-fitting metric indicates using them results in even greater over-fitting. The resultant is now much better than what we achieved above but more tuning and optimization could possibly get us even closer to an ideal fit. ###Code # Fit to the Multi-Scale Band 2 CBVs with ElasticNet to add in a L1-Norm (Lasso) term cbvCorrector.correct_elasticnet(cbv_type=['MultiScale.2'], cbv_indices=[np.arange(1,9)], alpha=1.0e-7, l1_ratio=0.5) ax = cbvCorrector.diagnose() ax[0].set_title('Result of First Correction to MultiScale.2 CBVs'); # Set the corrected LC as the initial LC in a new CBVCorrector object before moving to the next correction. # You could instead just reassign to the first cbvCorrector object, if you do not wish to save the original. cbvCorrectorIter2 = cbvCorrector.copy() cbvCorrectorIter2.lc = cbvCorrectorIter2.corrected_lc.copy() # Fit to the Spike Basis Vectors, using an L1-Norm term. cbvCorrectorIter2.correct_elasticnet(cbv_type=['Spike'], cbv_indices=['ALL'], alpha=2.0e-5, l1_ratio=0.7) ax = cbvCorrectorIter2.diagnose() ax[0].set_title('Result of Second Correction to Spike CBVs'); # Compute the final goodness metrics compared to the original lightcurve. # This requires us to copy the original light curve into cbvCorrectorIter2.lc so that the goodness metrics compares the corrected_lc to the proper initial light curve. cbvCorrectorIter2.lc = cbvCorrector.lc.copy() print('Over-fitting Metric: {}'.format(cbvCorrectorIter2.over_fitting_metric())) print('Under-fitting Metric: {}'.format(cbvCorrectorIter2.under_fitting_metric())) # Plot the final correction _, ax = plt.subplots(1, figsize=(10, 6)) cbvCorrectorIter2.lc.plot(ax=ax, normalize=False, alpha=0.2, label='Original') cbvCorrectorIter2.corrected_lc[~cbvCorrectorIter2.cadence_mask].scatter( normalize=False, c='r', marker='x', s=10, label='Outliers', ax=ax) cbvCorrectorIter2.corrected_lc.plot(normalize=False, label='Corrected', ax=ax, c='k') ax.set_title('Comparison between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown So, which CBVs are best to use? There is no one single answer, but generally speaking, the Multi-Scale Basis vectors are more versatile. The trade-off is there are also more of them, which means more degrees of freedom in your fit. More degrees of freedom can result in more over-fitting without proper regularization. It is recommened the user tries different combinations of CBVs and use objective metrics to decide which fit is the best for their particular needs. Using the Goodness Metrics and CBVCorrector with other Design Matrices The Goodness Metrics and CBVCorrector can also be used in conjunction with other external design matrices. Let's work on a famous planet example to show how the CBVCorrector can be utilized to imporove the generated light curve. We will begin by using [search_tesscut](https://docs.lightkurve.org/reference/api/lightkurve.search_tesscut.html?highlight=search_tesscut) to extract an FFI light curve for HAT-P 11 and then create a DesignMatrix using the background pixels. ###Code # HAT-P 11b from lightkurve import search_tesscut from lightkurve.correctors import DesignMatrix search_result = search_tesscut('HAT-P-11', sector=14) tpf = search_result.download(cutout_size=20) # Create a simple thresholded aperture mask aper = tpf.create_threshold_mask(threshold=15, reference_pixel='center') # Generate a simple aperture photometry light curve raw_lc = tpf.to_lightcurve(aperture_mask=aper) # Create a design matrix using PCA components from the cutout background dm = DesignMatrix(tpf.flux[:, ~aper], name='pixel regressors').pca(5).append_constant() ###Output _____no_output_____ ###Markdown The [DesignMatrix](https://docs.lightkurve.org/reference/api/lightkurve.correctors.DesignMatrix.html?highlight=designmatrixlightkurve.correctors.DesignMatrix) `dm` now contains the common trends in the background pixels in the data. We will first try to fit the pixel-based design matrix using an unrestricted least-squares fit (I.e. a very weak regularization by setting alpha to a small number). We tell CBVCorrector to only use the external design matrix with `ext_dm=`. When we generate the CBVCorrector object the CBVs will be downloaded, but the CBVs are for 2-minute cadence and not the 30-minute FFIs. We therefore use the `interpolate_cbvs=True` option to tell the CBVCorrector to interpolate the CBVs to the light curve cadence. ###Code # Generate the CBVCorrector object and interpolate the downloaded CBVs to the light curve cadence cbvcorrector = CBVCorrector(raw_lc, interpolate_cbvs=True) # Perform an unrestricted least-squares fit using only the pixel-derived design matrix. cbvcorrector.correct_gaussian_prior(cbv_type=None, cbv_indices=None, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_just_pixel_dm = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown The least-squares fit did remove the background flux trend and at first sight the resultant might look good, but the over-fitting goodness metric is `0.08`. That's not very good! It looks like we are dramatically over-fitting. We can see this in the bottom plot where the corrected curve has more high-frequency noise than the original. Let's now add in the multi-scale basis vectors and see if we can do better. Note that we are joint fitting the CBVs and the external pixel-derived design matrix. ###Code cbv_type = ['MultiScale.1', 'MultiScale.2', 'MultiScale.3','Spike'] cbv_indices = [np.arange(1,9), np.arange(1,9), np.arange(1,9), 'ALL'] cbvcorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_joint_fit = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown That looks a lot better! Could we do a bit better by adding in a regualrization term? Let's do a goodness metric scan. ###Code cbvcorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm); ###Output _____no_output_____ ###Markdown There are a couple observations to make here. First, the under-fitting metric has a very good score throughout the regularization scan. This is because the under-fitting metric compares the corrected light curve to neighboring targets in RA and Decl. that are archived as 2-minute SAP-flux targets. _The SAP flux already has the background removed_ so the neighoring targets do not contain the very large background trends. The under-fitting metric is therefore not very helpful. In the next run we will disable the under-fitting metric in the optimization (by setting target_under_score=-1).We see the over-fitting metric is not a simple function of the regularization factor _alpha_. This can happen due to the interaction of the various basis vectors during fitting when regularization is applied. We see a minima (most over-fitting) at about alpha=1e-1. Once alpha moves above this value we begin to over-constrain the fit which results in gradually less removal of systematics. The under-fitting metric should be an indicator that we are going too far constraining the fit, and indeed, we do see the under-fitting metric degrades slightly beginning at alpha=1e-1.We will now try to optimize the fit and account for these two issues by 1) setting the bounds on the alpha parameter (`alpha_bounds=[1e-6, 1e-2]`) and 2) disregarding the under-fitting metric (`target_under_score=-1`). ###Code # Optimize the fit but ignore the under-fitting metric and set bounds on the alpha parameter. cbvcorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha_bounds=[1e-6, 1e-2], target_over_score=0.8, target_under_score=-1) cbvcorrector.diagnose(); print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) ###Output _____no_output_____ ###Markdown This is looking like a pretty good light curve. However, the CDPP increased a little as we optimized the over-fitting metric. Which correction to use may depend on your application. Since we are interested in the transiting planet, we will choose the corrected light curve with the lowest CDPP. Below we compare the light curve between just using the pixel-derived design matrix to also adding in the CBVs as a joint, regularized fit. ###Code _, ax = plt.subplots(3, figsize=(10, 6)) cbvcorrector.lc.plot(ax=ax[0], normalize=False, label='Uncorrected LC', c='k') corrected_lc_just_pixel_dm.plot(normalize=False, label='Pixel-Level Corrected; CDPP={0:.1f}'.format(corrected_lc_just_pixel_dm.estimate_cdpp()), ax=ax[1], c='m') corrected_lc_joint_fit.plot(normalize=False, label='Joint Fit Corrected; CDPP={0:.1f}'.format(corrected_lc_joint_fit.estimate_cdpp()), ax=ax[2], c='b') ax[0].set_title('Comparison Between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown The superiority of the bottom curve is blatantly obvious. We can clearly see HAT-P 11b on it's 4.9 day period orbit. Our over-fitting metric settled at about 0.35 indicating we might still be over-fitting and should keep that in mind. However the low CDPP indicates the over-fitting is probably not over transit time-scales. Some final comments on CBVCorrector Application to Kepler vs K2 vs TESS CBVCorrector works equally across Kepler, K2 and TESS. However the Multi-Scale and Spike basis vectors are only available for TESS[1](fn1). If you want to just get the CBVs but not generate a CBVCorrector object then use the functions _download_kepler_cbvs_ and _download_tess_cbvs_ within the cbvcorrector module as explained [here](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html). 1 Unfortunately, the Multi-Scale and Spike CBVs are not archived at MAST for Kepler/K2. Applicability of the Over- and Under-fitting Goodness Metrics The under-fitting metric computes the correlation between the corrected light curve and a selection of neighboring SPOC SAP light curves. If the light curve you are trying to correct was not generated by the SPOC pipeline (I.e. not a SAP light curve), then the neighboring SAP light curves might not contain the same instrumental systematics and the under-fitting metric might not properly measure when under-fitting is occuring. The over-fitting metric examines the periodogram of the light curve before and after the correction and is therefore indifferent to how the light curve was generated. It simply looks to see if noise was injected into the light curve. The over-fitting metric is therefore much more generally applicable.The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. A savvy expert user can use these and other quality metrics to generate their own Loss Function for optimizing a fit. Aligning versus Interpolating CBVs By default, all loaded CBVS in `CBVCorrector` are "aligned" to the light curve cadence numbers (`CBVCorrector.lc.cadenceno`). This means only cadence numbers that exist in both the CBVs and the light curve will have values in the returned CBVs. All cadence numbers that exist in the light curve but not in the CBVs will have NaNs returned for the CBVs on those cadences and the Gap Indicator set to True. Any cadences in the CBVs not in the light curve will be removed from the CBVs.If the light curve cadences do not overlap well with the CBVs then you can set `interpolate_cbvs=True` when generating the `CBVCorrector` object. Doing so will generate interpolated CBV values for all cadences in the light curve. If the light curve has cadences past either end of the cadences in the CBVs then one must extrapolate. A second argument, `extrapolate_cbvs`, can be used to also extrapolate the CBV values to the light curve cadences. If `extrapolate_cbvs=False` then the exterior values are set to NaNs, which will probably result is a very poor fit.**Warning**: *The safest method is to align*. This will not generate any new values for the CBVs. Interpolation can be potentially dangerous. Interpolation uses Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), which can be more stable than a simple spline, but no interpolation method works in all situations. Extrapolation is even more dangerious, which is why an extra parameter must be set if one desires to extrapolate. *Be sure to manually examine the extrapolated CBVs before use!* Joint Fitting By including the `ext_dm=` parameter in the `correct_*` methods we allow for joint fitting between the CBVs and other design matrices. Generally speaking, if fitting a collection of different models to a system, joint fitting is ideal. For example, if performing transit analysis one could add in a transit model to the joint fit to get the best transit recovery. The fit coefficient to the transit model is stored in the `CBVCorrector` object after fitting and can be recovered. Hyperparameter Optimization Any model fitting should include a hyperparameter optimization step. The `correct_optimizer` is essentially a 1-dimensional optimizer and is very fast. More advanced hypterparameter optimization can be performed by tuning the `alpha` and `l1_ratio` parameters in `correct_elasticnet` plus the number and type of CBVs, along with an external design matrix. The optimization Loss Function can use a combination of the `under_fitting_metric`, `over_fitting_metric` and `lc.estimate_cdpp` methods. Writing such an optimzer is left as an exercise to the reader and to be tuned to the reader's particular application. More Generalized Design Matrix Priors The main [CBVCorrector.correct*](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector%20correclightkurve.correctors.CBVCorrector) methods utilize a similar prior for all design matrix vectors as is typically used in L1-Norm and L2-Norm regularization. However you can perform fine tuning to the correction using more sophisticated priors. After performing a fit with one of the `CBVCorrector.correct*` methods, `CBVCorrector.design_matrix_collection` will have the priors set. One can then manually adjust the priors and use `CBVCorrector.correct_regressioncorrector` to perform the standard [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) correction. An illustration is below: ###Code # Perform an initial optimization with a L2-Norm regularization cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); # Examine the quality of the resultant lightcurve in cbvcorrector.corrected_lc # Determine how to adjust the priors and make changes to the design matrix cbvCorrector.design_matrix_collection[i].prior_sigma[j] = # ... adjust the priors # Call the superclass correct method with the adjusted design_matrix_collection cbvCorrector.correct_regressioncorrector(cbvCorrector.design_matrix_collection, **kwargs) ###Output _____no_output_____ ###Markdown The `cbvCorrector.corrected_lc` will now be the result of the fit using whatever `cbvCorrector.design_matrix_collection` you had just provided. NaNs, Units and Normalization NaNs are removed from the light curve when used to generate the `CBVCorrector` object and is stored in `CBVCorrector.lc`. The CBVCorrector performs its corrections in absolute flux units (typically electrons per second). The returned corrected light curve `corrected_lc` is also in absolute units and the median flux of the light curve is preserved. ###Code print('LC unit: {}'.format(cbvCorrector.lc.flux.unit)) print('Corrected LC unit: {}'.format(cbvCorrector.corrected_lc.flux.unit)) ###Output _____no_output_____ ###Markdown The goodness metrics are computed using median normalized units in order to properly calibrate the metric to be between 0.0 and 1.0 for all light curves. The normalization is as follows: ###Code normalized_lc = cbvCorrector.lc.normalize() normalized_lc -= 1.0 print('Normalized Light curve units: {} (i.e astropy.units.dimensionless_unscaled)'.format(normalized_lc.flux.unit)) ###Output _____no_output_____ ###Markdown Removing noise from Kepler, K2, and TESS light curves using Cotrending Basis Vectors (`CBVCorrector`) Cotrending Basis Vectors (CBVs) are generated in the PDC component of the Kepler/K2/TESS pipeline and are used to remove systematic trends in light curves. They are built from the most common systematic trends observed in each PDC Unit of Work (Quarter for Kepler, Campaign for K2 and Sector for TESS). Each Kepler and K2 module output and each TESS CCD has its own set of CBVs. You can read an introduction to the CBVs in [Demystifying Kepler Data](https://arxiv.org/pdf/1207.3093.pdf) or to greater detail in the [Kepler Data Processing Handbook](https://archive.stsci.edu/kepler/manuals/KSCI-19081-003-KDPH.pdf). The same basic method to generate CBVs is used for all three missions.This tutorial provides examples of how to utilize the various CBVs to clean lightcurves of common trends experienced by all targets. The technique exploits two goodness metrics that characterize the performance of the fit. `CBVCorrector` inherits the `RegressionCorrector` class in LightKurve, you can find details of that class [here](../api/lightkurve.correctors.RegressionCorrector.html). It is recommend to first read the tutorial on [obtaining the CBVs](https://docs.lightkurve.org/tutorials/04-how-to-use-cbvs.html) before reading this tutorial. Cotrending Basis Vector Types There are three basic types of CBVs: - **Single-Scale** contains all systematic trends combined in a single set of basis vectors. - **Multi-Scale** contains systematic trends in specific wavelet-based band passes. There are usually three sets of multi-scale basis vectors in three bands.- **Spike** contains only short impulsive spike systematics.There are two different correction methods in PDC: Single-Scale and Multi-Scale. Single-Scale performs the correction in a single bandpass. Multi-Scale performs the correction in three separate wavelet-based bandpasses. Both corrections are performed in PDC but we can only export a single PDC light curve for each target. So, PDC must choose which of the two to export on a per-target basis. Generally speaking, single-scale performs better at preserving longer period signals. But at periods close to transiting planet durations multi-scale performs better at preserving signals. PDC therefore mostly chooses multi-scale for use within the planet finding pipeline and for the archive. You can find in the light curve FITS header which PDC method was chosen (keyword “PDCMETHD”). Additionally, a seperate correction is alway performed to remove short impulsive systematic spikes.For an individual's research needs, the mission supplied PDC lightcurves might not be ideal and so the CBVs are provided to the user to perform their own correction. All three CBV types are provided at MAST for TESS, however only Single-Scale is provided at MAST for Kepler and K2. Also for Kepler and K2, Cotrending Basis Vectors are supplied for only the 30-minute target cadence. Obtaining the CBVs One can directly obtain the CBVs with `download_tess_cbvs` and `downlaod_kepler_cbvs`. However when generating a `CBVCorrector` object the appropriate CBVs are automatically downloaded from MAST and aligned to the lightcurve. Let's generate this object for a particularily interesting TESS variable target. We first download the SAP lightcurve. ###Code from lightkurve import search_lightcurve import numpy as np import matplotlib.pyplot as plt lc = search_lightcurve('TIC 99180739', author='SPOC', sector=10).download(flux_column='sap_flux') ###Output _____no_output_____ ###Markdown Next, we create a `CBVCorrector` object. This will download the CBVs appropriate for this target and store them in the `CBVCorrector` object. In the case of TESS, this means the CBVs associated with the CCD this target is on and for Sector 10. ###Code from lightkurve.correctors import CBVCorrector cbvCorrector = CBVCorrector(lc) ###Output _____no_output_____ ###Markdown Let's look at the CBVs downloaded. ###Code cbvCorrector.cbvs ###Output _____no_output_____ ###Markdown We see that there are a total of 5 sets of CBVs, all associated with TESS Sector 10, Camera 1 and CCD 1. The number of CBVs per type is also given. Let's plot the Single-Scale CBVs, which contain all systematics combined. ###Code cbvCorrector.cbvs[0].plot(); ###Output _____no_output_____ ###Markdown The first several CBVs contain most of the systematics. The latter CBVs pose a greater risk of injecting more noise than helping. The default behavior in CBVCorrector is to use the first 8 CBVs. Assessing Over- and Under-Fitting with the Goodness Metrics Two very common issues when fitting a model to a data set it over-fitting and under-fitting. Over-fitting occurs when the model has too many degrees of freedom and fits the data _at all costs_, instead of just modelling the physical process it is attempting to model. This can exhibit itself in different ways, depending on the system and application. In the case of fitting systematic trend basis vectors to a time series, over-fitting can result in the basis vectors removing intrinsic signals in the times series instead of just the systematics. It can also result in introduced broad-band noise. This can be particularily prominant in an unconstrained least-squares fit. A least-squares fit only cares about minimizing it's loss function, which is the Root Mean Square error. In the course of minimizing the RMS, narrow-band power representing the systematic trends are exchanged for broad-band noise intrinsic in the basis vectors. This results in the overall RMS decreasing but the noise in the time series increasing, resulting in the obscuration of the signals under interest. A very common method to inhibit over-fitting is to introduce a regularization term in the loss function. This constrains the fit and effectively reduces the degrees of freedom.Under-fitting occurs when the model has too few degrees of freedom and fails to adequately model the physical process it is attempting to model. In the case of fitting systematic trend basis vectors to a time series, under-fitting can result in residual systematics. Under-fitting can either be the result of the basis vectors not adequately representing the systematics or, placing too great of a restriction on the model during fitting. The regularization technique used to inhibit over-fitting can therefore result in under-fitting. The ideal fit will balance the counter-acting phenomena of over- and under-fitting. To this end, a method can be developed to measure the degree to which these two phenomena occur.PDC has two **Goodness Metrics** to assess over- and under-fitting:- **Over-fitting metric**: Measures the introduced noise in the light curve after the correction. It does so by measuring the broad-band power spectrum via a Lomb-Scargle Periodogram both before and after the correction. If power has increased after the correction then this is an indication the CBV fit has over-fitted and introduced noise. The metric treats all frequencies equally when measuring power increase; from one frequency separation to the Nyquist frequency. This metric is callibrated such that a metric value of 0.5 means the introduced noise due to over-fitting is at the same power level as the uncertainties in the light curve.- **Under-fitting metric**: Measures the mean residual target to target Pearson correlation between the target under study and a selection of neighboring targets. This metric will find and download a selection of neighboring SPOC SAP targets in RA and Decl. until a minimum number is found. The metric is callibrated such that a value of 0.95 means the residual correlations in the target is equivalent to chance correlations of White Gaussian Noise._The Goodness Metrics are not perfect!_ They are an estimate of over- and under-fitting and are to be used as a guideline along other other metrics to assess the quality of your light curve. The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. The 'CBVCorrector' has convenience wrappers for the two metrics and so they do not need to be called directly, as we will show below. Example Correction with CBVCorrector to Inhibit Over-Fitting There are four correction methods within `CBVCorrector`:- **correct**: Performs a numerical correction by optimizing the L2-Norm regularization penalty term using the goodness metrics as the Loss Function.- **correct_gaussian_prior**: Performs an analytical correction using the LightKurve `RegressionCorrector.correct` method while setting the L2-Norm (Ridge Regression) regularization penalty term as the Gaussian prior.- **correct_elasticnet**: Performs the correction using Scikit-Learn's [ElasticNet](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html), which combines both an L1- and L2-Norm regularization.- **correct_regressioncorrector**: Performs the standard `RegressionCorrector.correct` correction. RegressionCorrector is the superclass to CBVCorrector.If you are unfamilar with L1-Norm (LASSO) and L2-Norm (Ridge Regression) regularization then there are [severel](https://statlearning.com/ISLR%20Seventh%20Printing.pdf), [excellent](https://press.princeton.edu/books/hardcover/9780691198309/statistics-data-mining-and-machine-learning-in-astronomy), [introductions](https://en.wikipedia.org/wiki/Regularization_(mathematics)). You can read how a L2-norm relates to a Gaussian prior in a linear design matrix in [this reference](https://katbailey.github.io/post/from-both-sides-now-the-math-of-linear-regression/).The default method is `correct` and generally speaking, one can use just this method to obtain a good fit. The other methods are for advanced usage.We'll start with `correct_gaussian_prior` in order to introduce the concepts. Doing so will allow us to force a very weak regularization term (alpha=1e-4) as an illustration. ###Code # Select which CBVs to use in the correction cbv_type = ['SingleScale', 'Spike'] # Select which CBV indices to use # Use the first 8 SingleScale and all Spike CBVS cbv_indices = [np.arange(1,9), 'ALL'] # Perform the correction cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown First note that CBVCorrector always fits a constant term in the model, but the constant is never subtracted in the resultant corrected flux. The median flux value of the light curve is always preserved.At first sight, this looks like a good correction. Both the Single-Scale and Spike basis vectors are being utilized to fit out as much of the signal as possible. The corrected light curve is indeed flatter. But this was essentially an unrestricted least-squares correction and we may have _over-fitted_. The very strong lips right at the beginning of each orbit is probably a chance correlation between the star's inherent stellar variability and the thermal settling systematic that is common in Kepler and TESS lightcurves. Let's look at the CBVCorrector goodness metrics to determine if this is the case. ###Code # Note: this cell will be slow to run print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) ###Output _____no_output_____ ###Markdown The first time you run the under-fitting goodness metric it will download the SPOC SAP light curves of targets in the neighborhood around the target under study in order to estimate the residual systematics (they are stored in the CBVCorrector object for subsequent computations). A goodness metric of 0.8 or above is generally considered good. In this case, it looks like we over-fitted (over-fitting metric = 0.71). Even though the corrected light curve looks better, our metric is telling us we probably injected signals into our lightcurve and we should not trust this really nice looking curve. Perhaps we can do better if we _regularize_ the fit. Using the Goodness Metrics to Optimize the Fit We will start by performing a scan of the over- and under-fit goodness metrics as a function of the L2-Norm regularization term, alpha. ###Code cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown This scan also plots the last used alpha parameter as a vertical black line (alpha=1e-4 in our case). We are clearly not optimizing this fit for both over- and under-fitting. Let's use the `correct` numerical optimizer to try to optimize the fit. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Much better! We see the thermal settling systematic is still being removed, but the stellar variabity is better preserved. Note that the optimizer did not set the alpha parameter at exactly the red and blue curve intersection point. The default target goodness scores is 0.8 or above, which is fulfilled at alpha=1.45e-1. If we want to optimize the fit even more, by perhaps ensuring we are not over-fitting at all, then we can adjust the target over and under scores to emphasize which metric we are more interested in. Below we more greatly emphasize improving the over-fitting metric by setting the target to 0.9. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.9, target_under_score=0.5) cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown We are now perhaps biasing too far towards under-fitting, but depending on your research interests, this might be best. No Single Best Answer Example Let's now look at another example, this time where there is no clear single best answer. Again, we will use the Single-Scale and Spike basis vectors for the correction and begin with low regularization. ###Code lc = search_lightcurve('TIC 38574307', author='SPOC', sector=2).download(flux_column='sap_flux') cbvCorrector = CBVCorrector(lc) cbv_type = ['SingleScale', 'Spike'] cbv_indices = [np.arange(1,9), 'ALL'] cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown At first sight, this looks good. The long term trends have been removed and the periodic noisy bits have been removed with the spike basis vectors. But did we really do a good job? ###Code print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Hmm... The over-fitting goodness metric says we are severely over-fitting. Not only that, there appears to not be an Alpha parameter that brings both goodness metrics above 0.8. And yet, the fit looks really good. What's going on here? Let's zoom in on the correction. ###Code pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see in the top plot that the _SingleScale_ correction has comperable noise to the _original_ light curve. This means the correction is injecting high frequency noise at comperable amplitude to the original signal. We have indeed over-fitted! The goodness metrics perform a _broad-band_ analysis of over- and under-fitting. Even though our eyes did not see the high frequency noise injection, the goodness metrics did. So, what should be done? It depends on what you are trying to investigate. If you are only looking at the low frequency signals in the data then perhaps you don't care about the high frequency noise injection. If you really do care about the high frequency signals then you should increase the Alpha parameter, or set the target goodness scores as we do below (target_over_score=0.8, target_under_score=0.5). ###Code # Optimize the fit but overemphasize the importance of not over-fitting. cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.8, target_under_score=0.5) cbvCorrector.diagnose() cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); # Again, zoom in to see the detail pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4314e7, 1.4326e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.431e7, 1.4326e7); ###Output _____no_output_____ ###Markdown We see now that the high frequency noise injection is small compared to the original amplitudes in the lightkurve. We barely removed any of the systematics and are now under-fitting, but that might be the best we can do if we want to ensure low noise injection. ...Or Can We Still Do Better? Perhaps we are using the incorrect CBVs for this target. Below is a tuned multi-step fit where we first fit the multi-scale Band 2 CBVs then the Spike CBVs. The multi-scale band 2 CBVs contain intermediate frequency systematic signals. They should not inject high frequency noise. We also utilize the `correct_elasticnet` corrector, which allows us to add in a L1-Norm term (Lasso Regularization). L1-Norm helps snap some basis vector fit coefficients to zero and can result in a more stable, less noisy fit. The result is a much better compromise between over- and under-fitting. The spikes are not well removed but increasing the weight on the Spike CBV removal results in over-fitting. We can also try the multi-scale band 3 CBVs, which contain high frequency systematics, but the over-fitting metric indicates using them results in even greater over-fitting. The resultant is now much better than what we achieved above but more tuning and optimization could possibly get us even closer to an ideal fit. ###Code # Fit to the Multi-Scale Band 2 CBVs with ElasticNet to add in a L1-Norm (Lasso) term cbvCorrector.correct_elasticnet(cbv_type=['MultiScale.2'], cbv_indices=[np.arange(1,9)], alpha=1.0e-7, l1_ratio=0.5) ax = cbvCorrector.diagnose() ax[0].set_title('Result of First Correction to MultiScale.2 CBVs'); # Set the corrected LC as the initial LC in a new CBVCorrector object before moving to the next correction. # You could instead just reassign to the first cbvCorrector object, if you do not wish to save the original. cbvCorrectorIter2 = cbvCorrector.copy() cbvCorrectorIter2.lc = cbvCorrectorIter2.corrected_lc.copy() # Fit to the Spike Basis Vectors, using an L1-Norm term. cbvCorrectorIter2.correct_elasticnet(cbv_type=['Spike'], cbv_indices=['ALL'], alpha=2.0e-5, l1_ratio=0.7) ax = cbvCorrectorIter2.diagnose() ax[0].set_title('Result of Second Correction to Spike CBVs'); # Compute the final goodness metrics compared to the original lightcurve. # This requires us to copy the original light curve into cbvCorrectorIter2.lc so that the goodness metrics compares the corrected_lc to the proper initial light curve. cbvCorrectorIter2.lc = cbvCorrector.lc.copy() print('Over-fitting Metric: {}'.format(cbvCorrectorIter2.over_fitting_metric())) print('Under-fitting Metric: {}'.format(cbvCorrectorIter2.under_fitting_metric())) # Plot the final correction _, ax = plt.subplots(1, figsize=(10, 6)) cbvCorrectorIter2.lc.plot(ax=ax, normalize=False, alpha=0.2, label='Original') cbvCorrectorIter2.corrected_lc[~cbvCorrectorIter2.cadence_mask].scatter( normalize=False, c='r', marker='x', s=10, label='Outliers', ax=ax) cbvCorrectorIter2.corrected_lc.plot(normalize=False, label='Corrected', ax=ax, c='k') ax.set_title('Comparison between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown So, which CBVs are best to use? There is no one single answer, but generally speaking, the Multi-Scale Basis vectors are more versatile. The trade-off is there are also more of them, which means more degrees of freedom in your fit. More degrees of freedom can result in more over-fitting without proper regularization. It is recommened the user tries different combinations of CBVs and use objective metrics to decide which fit is the best for their particular needs. Using the Goodness Metrics and CBVCorrector with other Design Matrices The Goodness Metrics and CBVCorrector can also be used in conjunction with other external design matrices. Let's work on a famous planet example to show how the CBVCorrector can be utilized to imporove the generated light curve. We will begin by using `search_tesscut` to extract an FFI light curve for HAT-P 11 and then create a DesignMatrix using the background pixels. ###Code # HAT-P 11b from lightkurve import search_tesscut from lightkurve.correctors import DesignMatrix search_result = search_tesscut('HAT-P-11', sector=14) tpf = search_result.download(cutout_size=20) # Create a simple thresholded aperture mask aper = tpf.create_threshold_mask(threshold=15, reference_pixel='center') # Generate a simple aperture photometry light curve raw_lc = tpf.to_lightcurve(aperture_mask=aper) # Create a design matrix using PCA components from the cutout background dm = DesignMatrix(tpf.flux[:, ~aper], name='pixel regressors').pca(5).append_constant() ###Output _____no_output_____ ###Markdown The DesignMatrix `dm` now contains the common trends in the background pixels in the data. We will first try to fit the pixel-based design matrix using an unrestricted least-squares fit (I.e. a very weak regularization by setting alpha to a small number). We tell CBVCorrector to only use the external design matrix with `ext_dm=`. When we generate the CBVCorrector object the CBVs will be downloaded, but the CBVs are for 2-minute cadence and not the 30-minute FFIs. We therefore use the `interpolate_cbvs=True` option to tell the CBVCorrector to interpolate the CBVs to the light curve cadence. ###Code # Generate the CBVCorrector object and interpolate the downloaded CBVs to the light curve cadence cbvcorrector = CBVCorrector(raw_lc, interpolate_cbvs=True) # Perform an unrestricted least-squares fit using only the pixel-derived design matrix. cbvcorrector.correct_gaussian_prior(cbv_type=None, cbv_indices=None, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_just_pixel_dm = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown The least-squares fit did remove the background flux trend and at first sight the resultant might look good, but the over-fitting goodness metric is `0.08`. That's not very good! It looks like we are dramatically over-fitting. We can see this in the bottom plot where the corrected curve has more high-frequency noise than the original. Let's now add in the multi-scale basis vectors and see if we can do better. Note that we are joint fitting the CBVs and the external pixel-derived design matrix. ###Code cbv_type = ['MultiScale.1', 'MultiScale.2', 'MultiScale.3','Spike'] cbv_indices = [np.arange(1,9), np.arange(1,9), np.arange(1,9), 'ALL'] cbvcorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_joint_fit = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown That looks a lot better! Could we do a bit better by adding in a regualrization term? Let's do a goodness metric scan. ###Code cbvcorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm); ###Output _____no_output_____ ###Markdown There are a couple observations to make here. First, the under-fitting metric has a very good score throughout the regularization scan. This is because the under-fitting metric compares the corrected light curve to neighboring targets in RA and Decl. that are archived as 2-minute SAP-flux targets. _The SAP flux already has the background removed_ so the neighoring targets do not contain the very large background trends. The under-fitting metric is therefore not very helpful. In the next run we will disable the under-fitting metric in the optimization (by setting target_under_score=-1).We see the over-fitting metric is not a simple function of the regularization factor _alpha_. This can happen due to the interaction of the various basis vectors during fitting when regularization is applied. We see a minima (most over-fitting) at about alpha=1e-1. Once alpha moves above this value we begin to over-constrain the fit which results in gradually less removal of systematics. The under-fitting metric should be an indicator that we are going too far constraining the fit, and indeed, we do see the under-fitting metric degrades slightly beginning at alpha=1e-1.We will now try to optimize the fit and account for these two issues by 1) setting the bounds on the alpha parameter (`alpha_bounds=[1e-6, 1e-2]`) and 2) disregarding the under-fitting metric (`target_under_score=-1`). ###Code # Optimize the fit but ignore the under-fitting metric and set bounds on the alpha parameter. cbvcorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha_bounds=[1e-6, 1e-2], target_over_score=0.8, target_under_score=-1) cbvcorrector.diagnose(); print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) ###Output _____no_output_____ ###Markdown This is looking like a pretty good light curve. However, the CDPP increased a little as we optimized the over-fitting metric. Which correction to use may depend on your application. Since we are interested in the transiting planet, we will choose the corrected light curve with the lowest CDPP. Below we compare the light curve between just using the pixel-derived design matrix to also adding in the CBVs as a joint, regularized fit. ###Code _, ax = plt.subplots(3, figsize=(10, 6)) cbvcorrector.lc.plot(ax=ax[0], normalize=False, label='Uncorrected LC', c='k') corrected_lc_just_pixel_dm.plot(normalize=False, label='Pixel-Level Corrected; CDPP={0:.1f}'.format(corrected_lc_just_pixel_dm.estimate_cdpp()), ax=ax[1], c='m') corrected_lc_joint_fit.plot(normalize=False, label='Joint Fit Corrected; CDPP={0:.1f}'.format(corrected_lc_joint_fit.estimate_cdpp()), ax=ax[2], c='b') ax[0].set_title('Comparison Between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown The superiority of the bottom curve is blatantly obvious. We can clearly see HAT-P 11b on it's 4.9 day period orbit. Our over-fitting metric settled at about 0.35 indicating we might still be over-fitting and should keep that in mind. However the low CDPP indicates the over-fitting is probably not over transit time-scales. Some final comments on CBVCorrector Application to Kepler vs K2 vs TESS CBVCorrector works equally across Kepler, K2 and TESS. However the Multi-Scale and Spike basis vectors are only available for TESS[1](fn1). If you want to just get the CBVs but not generate a CBVCorrector object then use the functions _download_kepler_cbvs_ and _download_tess_cbvs_ within the cbvcorrector module as explained [here](https://docs.lightkurve.org/tutorials/04-how-to-use-cbvs.html). 1 Unfortunately, the Multi-Scale and Spike CBVs are not archived at MAST for Kepler/K2. Applicability of the Over- and Under-fitting Goodness Metrics The under-fitting metric computes the correlation between the corrected light curve and a selection of neighboring SPOC SAP light curves. If the light curve you are trying to correct was not generated by the SPOC pipeline (I.e. not a SAP light curve), then the neighboring SAP light curves might not contain the same instrumental systematics and the under-fitting metric might not properly measure when under-fitting is occuring. The over-fitting metric examines the periodogram of the light curve before and after the correction and is therefore indifferent to how the light curve was generated. It simply looks to see if noise was injected into the light curve. The over-fitting metric is therefore much more generally applicable.The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. A savvy expert user can use these and other quality metrics to generate their own Loss Function for optimizing a fit. Joint Fitting By including the `ext_dm=` parameter in the `correct_*` methods we allow for joint fitting between the CBVs and other design matrices. Generally speaking, if fitting a collection of different models to a system, joint fitting is ideal. For example, if performing transit analysis one could add in a transit model to the joint fit to get the best transit recovery. The fit coefficient to the transit model is stored in the `CBVCorrector` object after fitting and can be recovered. Hyperparameter Optimization Any model fitting should include a hyperparameter optimization step. The `correct_optimizer` is essentially a 1-dimensional optimizer and is very fast. More advanced hypterparameter optimization can be performed by tuning the `alpha` and `l1_ratio` parameters in `correct_elasticnet` plus the number and type of CBVs, along with an external design matrix. The optimization Loss Function can use a combination of the `under_fitting_metric`, `over_fitting_metric` and `lc.estimate_cdpp` methods. Writing such an optimzer is left as an exercise to the reader and to be tuned to the reader's particular application. More Generalized Design Matrix Priors The main `CBVCorrector.correct*` methods utilize a similar prior for all design matrix vectors as is typically used in L1-Norm and L2-Norm regularization. However you can perform fine tuning to the correction using more sophisticated priors. After performing a fit with one of the `CBVCorrector.correct*` methods, `CBVCorrector.design_matrix_collection` will have the priors set. One can then manually adjust the priors and use `CBVCorrector.correct_regressioncorrector` to perform the standard `RegressionCorrector.correct` correction. An illustration is below: ###Code # Perform an initial optimization with a L2-Norm regularization cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); # Examine the quality of the resultant lightcurve in cbvcorrector.corrected_lc # Determine how to adjust the priors and make changes to the design matrix cbvCorrector.design_matrix_collection[i].prior_sigma[j] = # ... adjust the priors # Call the superclass correct method with the adjusted design_matrix_collection cbvCorrector.correct_regressioncorrector(cbvCorrector.design_matrix_collection, **kwargs) ###Output _____no_output_____ ###Markdown The `cbvCorrector.corrected_lc` will now be the result of the fit using whatever `cbvCorrector.design_matrix_collection` you had just provided. Units, NaN and Normalization NaNs are removed from the light curve when used to generate the `CBVCorrector` object and is stored in `CBVCorrector.lc`. All loaded CBVS are also aligned to the light curve cadence numbers (`CBVCorrector.lc.cadenceno`). If the light curve cadences do not well overlap with the CBVs then you can set `interpolate_cbvs=True` when generating the `CBVCorrector` object. Doing so will generate interpolated CBV values for all cadences in the light curve. The CBVCorrector performs its corrections in absolute flux units (typically electrons per second). The returned corrected light curve `corrected_lc` is also in absolute units and the median flux of the light curve is preserved. ###Code print('LC unit: {}'.format(cbvCorrector.lc.flux.unit)) print('Corrected LC unit: {}'.format(cbvCorrector.corrected_lc.flux.unit)) ###Output _____no_output_____ ###Markdown The goodness metrics are computed using median normalized units in order to properly calibrate the metric to be between 0.0 and 1.0 for all light curves. The normalization is as follows: ###Code normalized_lc = cbvCorrector.lc.normalize() normalized_lc -= 1.0 print('Normalized Light curve units: {} (i.e astropy.units.dimensionless_unscaled)'.format(normalized_lc.flux.unit)) ###Output _____no_output_____ ###Markdown Removing noise from Kepler, K2, and TESS light curves using Cotrending Basis Vectors (`CBVCorrector`) Cotrending Basis Vectors (CBVs) are generated in the PDC component of the Kepler/K2/TESS pipeline and are used to remove systematic trends in light curves. They are built from the most common systematic trends observed in each PDC Unit of Work (Quarter for Kepler, Campaign for K2 and Sector for TESS). Each Kepler and K2 module output and each TESS CCD has its own set of CBVs. You can read an introduction to the CBVs in [Demystifying Kepler Data](https://arxiv.org/pdf/1207.3093.pdf) or to greater detail in the [Kepler Data Processing Handbook](https://archive.stsci.edu/kepler/manuals/KSCI-19081-003-KDPH.pdf). The same basic method to generate CBVs is used for all three missions.This tutorial provides examples of how to utilize the various CBVs to clean lightcurves of common trends experienced by all targets. The technique exploits two goodness metrics that characterize the performance of the fit. [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html) inherits the [RegressionCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.html?highlight=regressioncorrector) class in LightKurve. It is recommend to first read the tutorial on [obtaining the CBVs](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html) before reading this tutorial. Cotrending Basis Vector Types There are three basic types of CBVs: - **Single-Scale** contains all systematic trends combined in a single set of basis vectors. - **Multi-Scale** contains systematic trends in specific wavelet-based band passes. There are usually three sets of multi-scale basis vectors in three bands.- **Spike** contains only short impulsive spike systematics.There are two different correction methods in PDC: Single-Scale and Multi-Scale. Single-Scale performs the correction in a single bandpass. Multi-Scale performs the correction in three separate wavelet-based bandpasses. Both corrections are performed in PDC but we can only export a single PDC light curve for each target. So, PDC must choose which of the two to export on a per-target basis. Generally speaking, single-scale performs better at preserving longer period signals. But at periods close to transiting planet durations multi-scale performs better at preserving signals. PDC therefore mostly chooses multi-scale for use within the planet finding pipeline and for the archive. You can find in the light curve FITS header which PDC method was chosen (keyword “PDCMETHD”). Additionally, a seperate correction is alway performed to remove short impulsive systematic spikes.For an individual's research needs, the mission supplied PDC lightcurves might not be ideal and so the CBVs are provided to the user to perform their own correction. All three CBV types are provided at MAST for TESS, however only Single-Scale is provided at MAST for Kepler and K2. Also for Kepler and K2, Cotrending Basis Vectors are supplied for only the 30-minute target cadence. Obtaining the CBVs One can directly obtain the CBVs with `load_tess_cbvs` and `load_kepler_cbvs`, either from MAST by default or from a local directory `cbv_dir`. However when generating a [CBVCorrector](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector) object the appropriate CBVs are automatically downloaded from MAST and aligned to the lightcurve. Let's generate this object for a particularily interesting TESS variable target. We first download the SAP lightcurve. ###Code from lightkurve import search_lightcurve import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') lc = search_lightcurve('TIC 99180739', author='SPOC', sector=10).download(flux_column='sap_flux') ###Output _____no_output_____ ###Markdown Next, we create a `CBVCorrector` object. This will download the CBVs appropriate for this target and store them in the `CBVCorrector` object. In the case of TESS, this means the CBVs associated with the CCD this target is on and for Sector 10. ###Code from lightkurve.correctors import CBVCorrector cbvCorrector = CBVCorrector(lc) ###Output _____no_output_____ ###Markdown Let's look at the CBVs downloaded. ###Code cbvCorrector.cbvs ###Output _____no_output_____ ###Markdown We see that there are a total of 5 sets of CBVs, all associated with TESS Sector 10, Camera 1 and CCD 1. The number of CBVs per type is also given. Let's plot the Single-Scale CBVs, which contain all systematics combined. ###Code cbvCorrector.cbvs[0].plot(); ###Output _____no_output_____ ###Markdown The first several CBVs contain most of the systematics. The latter CBVs pose a greater risk of injecting more noise than helping. The default behavior in CBVCorrector is to use the first 8 CBVs. Assessing Over- and Under-Fitting with the Goodness Metrics Two very common issues when fitting a model to a data set it over-fitting and under-fitting. Over-fitting occurs when the model has too many degrees of freedom and fits the data _at all costs_, instead of just modelling the physical process it is attempting to model. This can exhibit itself in different ways, depending on the system and application. In the case of fitting systematic trend basis vectors to a time series, over-fitting can result in the basis vectors removing intrinsic signals in the times series instead of just the systematics. It can also result in introduced broad-band noise. This can be particularily prominant in an unconstrained least-squares fit. A least-squares fit only cares about minimizing it's loss function, which is the Root Mean Square error. In the course of minimizing the RMS, narrow-band power representing the systematic trends are exchanged for broad-band noise intrinsic in the basis vectors. This results in the overall RMS decreasing but the noise in the time series increasing, resulting in the obscuration of the signals under interest. A very common method to inhibit over-fitting is to introduce a regularization term in the loss function. This constrains the fit and effectively reduces the degrees of freedom.Under-fitting occurs when the model has too few degrees of freedom and fails to adequately model the physical process it is attempting to model. In the case of fitting systematic trend basis vectors to a time series, under-fitting can result in residual systematics. Under-fitting can either be the result of the basis vectors not adequately representing the systematics or, placing too great of a restriction on the model during fitting. The regularization technique used to inhibit over-fitting can therefore result in under-fitting. The ideal fit will balance the counter-acting phenomena of over- and under-fitting. To this end, a method can be developed to measure the degree to which these two phenomena occur.PDC has two **Goodness Metrics** to assess over- and under-fitting:- **Over-fitting metric**: Measures the introduced noise in the light curve after the correction. It does so by measuring the broad-band power spectrum via a Lomb-Scargle Periodogram both before and after the correction. If power has increased after the correction then this is an indication the CBV fit has over-fitted and introduced noise. The metric treats all frequencies equally when measuring power increase; from one frequency separation to the Nyquist frequency. This metric is callibrated such that a metric value of 0.5 means the introduced noise due to over-fitting is at the same power level as the uncertainties in the light curve.- **Under-fitting metric**: Measures the mean residual target to target Pearson correlation between the target under study and a selection of neighboring targets. This metric will find and download a selection of neighboring SPOC SAP targets in RA and Decl. until a minimum number is found. The metric is callibrated such that a value of 0.95 means the residual correlations in the target is equivalent to chance correlations of White Gaussian Noise._The Goodness Metrics are not perfect!_ They are an estimate of over- and under-fitting and are to be used as a guideline along other other metrics to assess the quality of your light curve. The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. The 'CBVCorrector' has convenience wrappers for the two metrics and so they do not need to be called directly, as we will show below. Example Correction with CBVCorrector to Inhibit Over-Fitting There are four correction methods within `CBVCorrector`:- **correct**: Performs a numerical correction using the LightKurve [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) method while optimizing the L2-Norm regularization penalty term using the goodness metrics as the Loss Function.- **correct_gaussian_prior**: Performs an analytical correction using the LightKurve [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) method while setting the L2-Norm (Ridge Regression) regularization penalty term as the Gaussian prior.- **correct_elasticnet**: Performs the correction using Scikit-Learn's [ElasticNet](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html), which combines both an L1- and L2-Norm regularization.- **correct_regressioncorrector**: Performs the standard [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) correction. RegressionCorrector is the superclass to CBVCorrector and this is a "passthrough" method to access the superclass `correct` method.If you are unfamilar with L1-Norm (LASSO) and L2-Norm (Ridge Regression) regularization then there are [severel](https://www.statlearning.com/), [excellent](https://press.princeton.edu/books/hardcover/9780691198309/statistics-data-mining-and-machine-learning-in-astronomy), [introductions](https://en.wikipedia.org/wiki/Regularization_(mathematics)). You can read how a L2-norm relates to a Gaussian prior in a linear design matrix in [this reference](https://katbailey.github.io/post/from-both-sides-now-the-math-of-linear-regression/).The default method is `correct` and generally speaking, one can use just this method to obtain a good fit. The other methods are for advanced usage.We'll start with `correct_gaussian_prior` in order to introduce the concepts. Doing so will allow us to force a very weak regularization term (alpha=1e-4) as an illustration. ###Code # Select which CBVs to use in the correction cbv_type = ['SingleScale', 'Spike'] # Select which CBV indices to use # Use the first 8 SingleScale and all Spike CBVS cbv_indices = [np.arange(1,9), 'ALL'] # Perform the correction cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown First note that CBVCorrector always fits a constant term in the model, but the constant is never subtracted in the resultant corrected flux. The median flux value of the light curve is always preserved.At first sight, this looks like a good correction. Both the Single-Scale and Spike basis vectors are being utilized to fit out as much of the signal as possible. The corrected light curve is indeed flatter. But this was essentially an unrestricted least-squares correction and we may have _over-fitted_. The very strong lips right at the beginning of each orbit is probably a chance correlation between the star's inherent stellar variability and the thermal settling systematic that is common in Kepler and TESS lightcurves. Let's look at the CBVCorrector goodness metrics to determine if this is the case. ###Code # Note: this cell will be slow to run print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) ###Output _____no_output_____ ###Markdown The first time you run the under-fitting goodness metric it will download the SPOC SAP light curves of targets in the neighborhood around the target under study in order to estimate the residual systematics (they are stored in the CBVCorrector object for subsequent computations). A goodness metric of 0.8 or above is generally considered good. In this case, it looks like we over-fitted (over-fitting metric = 0.71). Even though the corrected light curve looks better, our metric is telling us we probably injected signals into our lightcurve and we should not trust this really nice looking curve. Perhaps we can do better if we _regularize_ the fit. Using the Goodness Metrics to Optimize the Fit We will start by performing a scan of the over- and under-fit goodness metrics as a function of the L2-Norm regularization term, alpha. ###Code cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown This scan also plots the last used alpha parameter as a vertical black line (alpha=1e-4 in our case). We are clearly not optimizing this fit for both over- and under-fitting. Let's use the `correct` numerical optimizer to try to optimize the fit. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Much better! We see the thermal settling systematic is still being removed, but the stellar variabity is better preserved. Note that the optimizer did not set the alpha parameter at exactly the red and blue curve intersection point. The default target goodness scores is 0.8 or above, which is fulfilled at alpha=1.45e-1. If we want to optimize the fit even more, by perhaps ensuring we are not over-fitting at all, then we can adjust the target over and under scores to emphasize which metric we are more interested in. Below we more greatly emphasize improving the over-fitting metric by setting the target to 0.9. ###Code cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.9, target_under_score=0.5) cbvCorrector.diagnose(); cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown We are now perhaps biasing too far towards under-fitting, but depending on your research interests, this might be best. No Single Best Answer Example Let's now look at another example, this time where there is no clear single best answer. Again, we will use the Single-Scale and Spike basis vectors for the correction and begin with low regularization. ###Code lc = search_lightcurve('TIC 38574307', author='SPOC', sector=2).download(flux_column='sap_flux') cbvCorrector = CBVCorrector(lc) cbv_type = ['SingleScale', 'Spike'] cbv_indices = [np.arange(1,9), 'ALL'] cbvCorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, alpha=1e-4) cbvCorrector.diagnose(); ###Output _____no_output_____ ###Markdown At first sight, this looks good. The long term trends have been removed and the periodic noisy bits have been removed with the spike basis vectors. But did we really do a good job? ###Code print('Over fitting Metric: {}'.format(cbvCorrector.over_fitting_metric())) print('Under fitting Metric: {}'.format(cbvCorrector.under_fitting_metric())) cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); ###Output _____no_output_____ ###Markdown Hmm... The over-fitting goodness metric says we are severely over-fitting. Not only that, there appears to not be an Alpha parameter that brings both goodness metrics above 0.8. And yet, the fit looks really good. What's going on here? Let's zoom in on the correction. ###Code pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4755e7, 1.477e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.475e7, 1.477e7); ###Output _____no_output_____ ###Markdown We see in the top plot that the _SingleScale_ correction has comperable noise to the _original_ light curve. This means the correction is injecting high frequency noise at comperable amplitude to the original signal. We have indeed over-fitted! The goodness metrics perform a _broad-band_ analysis of over- and under-fitting. Even though our eyes did not see the high frequency noise injection, the goodness metrics did. So, what should be done? It depends on what you are trying to investigate. If you are only looking at the low frequency signals in the data then perhaps you don't care about the high frequency noise injection. If you really do care about the high frequency signals then you should increase the Alpha parameter, or set the target goodness scores as we do below (target_over_score=0.8, target_under_score=0.5). ###Code # Optimize the fit but overemphasize the importance of not over-fitting. cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, target_over_score=0.8, target_under_score=0.5) cbvCorrector.diagnose() cbvCorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices); # Again, zoom in to see the detail pltAxis = cbvCorrector.diagnose() pltAxis[0].set_xlim(1360.5, 1361.1) pltAxis[0].set_ylim(1.4755e7, 1.477e7); pltAxis[1].set_xlim(1360.5, 1361.1) pltAxis[1].set_ylim(1.475e7, 1.477e7); ###Output _____no_output_____ ###Markdown We see now that the high frequency noise injection is small compared to the original amplitudes in the lightkurve. We barely removed any of the systematics and are now under-fitting, but that might be the best we can do if we want to ensure low noise injection. ...Or Can We Still Do Better? Perhaps we are using the incorrect CBVs for this target. Below is a tuned multi-step fit where we first fit the multi-scale Band 2 CBVs then the Spike CBVs. The multi-scale band 2 CBVs contain intermediate frequency systematic signals. They should not inject high frequency noise. We also utilize the `correct_elasticnet` corrector, which allows us to add in a L1-Norm term (Lasso Regularization). L1-Norm helps snap some basis vector fit coefficients to zero and can result in a more stable, less noisy fit. The result is a much better compromise between over- and under-fitting. The spikes are not well removed but increasing the weight on the Spike CBV removal results in over-fitting. We can also try the multi-scale band 3 CBVs, which contain high frequency systematics, but the over-fitting metric indicates using them results in even greater over-fitting. The resultant is now much better than what we achieved above but more tuning and optimization could possibly get us even closer to an ideal fit. ###Code # Fit to the Multi-Scale Band 2 CBVs with ElasticNet to add in a L1-Norm (Lasso) term cbvCorrector.correct_elasticnet(cbv_type=['MultiScale.2'], cbv_indices=[np.arange(1,9)], alpha=1.0e-7, l1_ratio=0.5) ax = cbvCorrector.diagnose() ax[0].set_title('Result of First Correction to MultiScale.2 CBVs'); # Set the corrected LC as the initial LC in a new CBVCorrector object before moving to the next correction. # You could instead just reassign to the first cbvCorrector object, if you do not wish to save the original. cbvCorrectorIter2 = cbvCorrector.copy() cbvCorrectorIter2.lc = cbvCorrectorIter2.corrected_lc.copy() # Fit to the Spike Basis Vectors, using an L1-Norm term. cbvCorrectorIter2.correct_elasticnet(cbv_type=['Spike'], cbv_indices=['ALL'], alpha=2.0e-5, l1_ratio=0.7) ax = cbvCorrectorIter2.diagnose() ax[0].set_title('Result of Second Correction to Spike CBVs'); # Compute the final goodness metrics compared to the original lightcurve. # This requires us to copy the original light curve into cbvCorrectorIter2.lc so that the goodness metrics compares the corrected_lc to the proper initial light curve. cbvCorrectorIter2.lc = cbvCorrector.lc.copy() print('Over-fitting Metric: {}'.format(cbvCorrectorIter2.over_fitting_metric())) print('Under-fitting Metric: {}'.format(cbvCorrectorIter2.under_fitting_metric())) # Plot the final correction _, ax = plt.subplots(1, figsize=(10, 6)) cbvCorrectorIter2.lc.plot(ax=ax, normalize=False, alpha=0.2, label='Original') cbvCorrectorIter2.corrected_lc[~cbvCorrectorIter2.cadence_mask].scatter( normalize=False, c='r', marker='x', s=10, label='Outliers', ax=ax) cbvCorrectorIter2.corrected_lc.plot(normalize=False, label='Corrected', ax=ax, c='k') ax.set_title('Comparison between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown So, which CBVs are best to use? There is no one single answer, but generally speaking, the Multi-Scale Basis vectors are more versatile. The trade-off is there are also more of them, which means more degrees of freedom in your fit. More degrees of freedom can result in more over-fitting without proper regularization. It is recommened the user tries different combinations of CBVs and use objective metrics to decide which fit is the best for their particular needs. Using the Goodness Metrics and CBVCorrector with other Design Matrices The Goodness Metrics and CBVCorrector can also be used in conjunction with other external design matrices. Let's work on a famous planet example to show how the CBVCorrector can be utilized to imporove the generated light curve. We will begin by using [search_tesscut](https://docs.lightkurve.org/reference/api/lightkurve.search_tesscut.html?highlight=search_tesscut) to extract an FFI light curve for HAT-P 11 and then create a DesignMatrix using the background pixels. ###Code # HAT-P 11b from lightkurve import search_tesscut from lightkurve.correctors import DesignMatrix search_result = search_tesscut('HAT-P-11', sector=14) tpf = search_result.download(cutout_size=20) # Create a simple thresholded aperture mask aper = tpf.create_threshold_mask(threshold=15, reference_pixel='center') # Generate a simple aperture photometry light curve raw_lc = tpf.to_lightcurve(aperture_mask=aper) # Create a design matrix using PCA components from the cutout background dm = DesignMatrix(tpf.flux[:, ~aper], name='pixel regressors').pca(5).append_constant() ###Output _____no_output_____ ###Markdown The [DesignMatrix](https://docs.lightkurve.org/reference/api/lightkurve.correctors.DesignMatrix.html?highlight=designmatrixlightkurve.correctors.DesignMatrix) `dm` now contains the common trends in the background pixels in the data. We will first try to fit the pixel-based design matrix using an unrestricted least-squares fit (I.e. a very weak regularization by setting alpha to a small number). We tell CBVCorrector to only use the external design matrix with `ext_dm=`. When we generate the CBVCorrector object the CBVs will be downloaded, but the CBVs are for 2-minute cadence and not the 30-minute FFIs. We therefore use the `interpolate_cbvs=True` option to tell the CBVCorrector to interpolate the CBVs to the light curve cadence. ###Code # Generate the CBVCorrector object and interpolate the downloaded CBVs to the light curve cadence cbvcorrector = CBVCorrector(raw_lc, interpolate_cbvs=True) # Perform an unrestricted least-squares fit using only the pixel-derived design matrix. cbvcorrector.correct_gaussian_prior(cbv_type=None, cbv_indices=None, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_just_pixel_dm = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown The least-squares fit did remove the background flux trend and at first sight the resultant might look good, but the over-fitting goodness metric is `0.08`. That's not very good! It looks like we are dramatically over-fitting. We can see this in the bottom plot where the corrected curve has more high-frequency noise than the original. Let's now add in the multi-scale basis vectors and see if we can do better. Note that we are joint fitting the CBVs and the external pixel-derived design matrix. ###Code cbv_type = ['MultiScale.1', 'MultiScale.2', 'MultiScale.3','Spike'] cbv_indices = [np.arange(1,9), np.arange(1,9), np.arange(1,9), 'ALL'] cbvcorrector.correct_gaussian_prior(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha=1e-4) cbvcorrector.diagnose() print('Over-fitting metric: {}'.format(cbvcorrector.over_fitting_metric())) print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) corrected_lc_joint_fit = cbvcorrector.corrected_lc ###Output _____no_output_____ ###Markdown That looks a lot better! Could we do a bit better by adding in a regularization term? Let's do a goodness metric scan. ###Code cbvcorrector.goodness_metric_scan_plot(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm); ###Output _____no_output_____ ###Markdown There are a couple observations to make here. First, the under-fitting metric has a very good score throughout the regularization scan. This is because the under-fitting metric compares the corrected light curve to neighboring targets in RA and Decl. that are archived as 2-minute SAP-flux targets. _The SAP flux already has the background removed_ so the neighoring targets do not contain the very large background trends. The under-fitting metric is therefore not very helpful. In the next run we will disable the under-fitting metric in the optimization (by setting target_under_score=-1).We see the over-fitting metric is not a simple function of the regularization factor _alpha_. This can happen due to the interaction of the various basis vectors during fitting when regularization is applied. We see a minima (most over-fitting) at about alpha=1e-1. Once alpha moves above this value we begin to over-constrain the fit which results in gradually less removal of systematics. The under-fitting metric should be an indicator that we are going too far constraining the fit, and indeed, we do see the under-fitting metric degrades slightly beginning at alpha=1e-1.We will now try to optimize the fit and account for these two issues by 1) setting the bounds on the alpha parameter (`alpha_bounds=[1e-6, 1e-2]`) and 2) disregarding the under-fitting metric (`target_under_score=-1`). ###Code # Optimize the fit but ignore the under-fitting metric and set bounds on the alpha parameter. cbvcorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices, ext_dm=dm, alpha_bounds=[1e-6, 1e-2], target_over_score=0.8, target_under_score=-1) cbvcorrector.diagnose(); print('CDPP: {}'.format(cbvcorrector.corrected_lc.estimate_cdpp())) ###Output _____no_output_____ ###Markdown This is looking like a pretty good light curve. However, the CDPP increased a little as we optimized the over-fitting metric. Which correction to use may depend on your application. Since we are interested in the transiting planet, we will choose the corrected light curve with the lowest CDPP. Below we compare the light curve between just using the pixel-derived design matrix to also adding in the CBVs as a joint, regularized fit. ###Code _, ax = plt.subplots(3, figsize=(10, 6)) cbvcorrector.lc.plot(ax=ax[0], normalize=False, label='Uncorrected LC', c='k') corrected_lc_just_pixel_dm.plot(normalize=False, label='Pixel-Level Corrected; CDPP={0:.1f}'.format(corrected_lc_just_pixel_dm.estimate_cdpp()), ax=ax[1], c='m') corrected_lc_joint_fit.plot(normalize=False, label='Joint Fit Corrected; CDPP={0:.1f}'.format(corrected_lc_joint_fit.estimate_cdpp()), ax=ax[2], c='b') ax[0].set_title('Comparison Between original and final corrected lightcurve'); ###Output _____no_output_____ ###Markdown The superiority of the bottom curve is blatantly obvious. We can clearly see HAT-P 11b on it's 4.9 day period orbit. Our over-fitting metric settled at about 0.35 indicating we might still be over-fitting and should keep that in mind. However the low CDPP indicates the over-fitting is probably not over transit time-scales. Some final comments on CBVCorrector Application to Kepler vs K2 vs TESS CBVCorrector works equally across Kepler, K2 and TESS. However the Multi-Scale and Spike basis vectors are only available for TESS[1](fn1). For K2, the [PLDCorrector](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-3-k2-pldcorrector.html) and [SFFCorrector](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-3-k2-sffcorrector.html) classes might work better than `CBVCorrector`.If you want to just get the CBVs but not generate a CBVCorrector object then use the functions _load_kepler_cbvs_ and _load_tess_cbvs_ within the cbvcorrector module as explained [here](https://docs.lightkurve.org/tutorials/2-creating-light-curves/2-2-how-to-use-cbvs.html). 1 Unfortunately, the Multi-Scale and Spike CBVs are not archived at MAST for Kepler/K2. Applicability of the Over- and Under-fitting Goodness Metrics The under-fitting metric computes the correlation between the corrected light curve and a selection of neighboring SPOC SAP light curves. If the light curve you are trying to correct was not generated by the SPOC pipeline (I.e. not a SAP light curve), then the neighboring SAP light curves might not contain the same instrumental systematics and the under-fitting metric might not properly measure when under-fitting is occuring. The over-fitting metric examines the periodogram of the light curve before and after the correction and is therefore indifferent to how the light curve was generated. It simply looks to see if noise was injected into the light curve. The over-fitting metric is therefore much more generally applicable.The Goodness Metrics are part of the `lightkurve.correctors.metrics` module and can be computed directly with calls to `overfit_metric_lombscargle` and `underfit_metric_neighbors`. A savvy expert user can use these and other quality metrics to generate their own Loss Function for optimizing a fit. Aligning versus Interpolating CBVs By default, all loaded CBVS in `CBVCorrector` are "aligned" to the light curve cadence numbers (`CBVCorrector.lc.cadenceno`). This means only cadence numbers that exist in both the CBVs and the light curve will have values in the returned CBVs. All cadence numbers that exist in the light curve but not in the CBVs will have NaNs returned for the CBVs on those cadences and the Gap Indicator set to True. Any cadences in the CBVs not in the light curve will be removed from the CBVs.If the light curve cadences do not overlap well with the CBVs then you can set `interpolate_cbvs=True` when generating the `CBVCorrector` object. Doing so will generate interpolated CBV values for all cadences in the light curve. If the light curve has cadences past either end of the cadences in the CBVs then one must extrapolate. A second argument, `extrapolate_cbvs`, can be used to also extrapolate the CBV values to the light curve cadences. If `extrapolate_cbvs=False` then the exterior values are set to NaNs, which will probably result is a very poor fit.**Warning**: *The safest method is to align*. This will not generate any new values for the CBVs. Interpolation can be potentially dangerous. Interpolation uses Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), which can be more stable than a simple spline, but no interpolation method works in all situations. Extrapolation is even more dangerious, which is why an extra parameter must be set if one desires to extrapolate. *Be sure to manually examine the extrapolated CBVs before use!* Joint Fitting By including the `ext_dm=` parameter in the `correct_*` methods we allow for joint fitting between the CBVs and other design matrices. Generally speaking, if fitting a collection of different models to a system, joint fitting is ideal. For example, if performing transit analysis one could add in a transit model to the joint fit to get the best transit recovery. The fit coefficient to the transit model is stored in the `CBVCorrector` object after fitting and can be recovered. Hyperparameter Optimization Any model fitting should include a hyperparameter optimization step. The `correct_optimizer` is essentially a 1-dimensional optimizer and is very fast. More advanced hypterparameter optimization can be performed by tuning the `alpha` and `l1_ratio` parameters in `correct_elasticnet` plus the number and type of CBVs, along with an external design matrix. The optimization Loss Function can use a combination of the `under_fitting_metric`, `over_fitting_metric` and `lc.estimate_cdpp` methods. Writing such an optimzer is left as an exercise to the reader and to be tuned to the reader's particular application. More Generalized Design Matrix Priors The main [CBVCorrector.correct*](https://docs.lightkurve.org/reference/api/lightkurve.correctors.CBVCorrector.html?highlight=cbvcorrector%20correclightkurve.correctors.CBVCorrector) methods utilize a similar prior for all design matrix vectors as is typically used in L1-Norm and L2-Norm regularization. However you can perform fine tuning to the correction using more sophisticated priors. After performing a fit with one of the `CBVCorrector.correct*` methods, `CBVCorrector.design_matrix_collection` will have the priors set. One can then manually adjust the priors and use `CBVCorrector.correct_regressioncorrector` to perform the standard [RegressionCorrector.correct](https://docs.lightkurve.org/reference/api/lightkurve.correctors.RegressionCorrector.correct.html?highlight=regressioncorrector%20correctlightkurve.correctors.RegressionCorrector.correct) correction. An illustration is below: ###Code # 1) Perform an initial optimization with a L2-Norm regularization # cbvCorrector.correct(cbv_type=cbv_type, cbv_indices=cbv_indices); # 2) Examine the quality of the resultant lightcurve in cbvcorrector.corrected_lc # Determine how to adjust the priors and make changes to the design matrix # cbvCorrector.design_matrix_collection[i].prior_sigma[j] = # ... adjust the priors # 3) Call the superclass correct method with the adjusted design_matrix_collection # cbvCorrector.correct_regressioncorrector(cbvCorrector.design_matrix_collection, **kwargs) ###Output _____no_output_____ ###Markdown The `cbvCorrector.corrected_lc` will now be the result of the fit using whatever `cbvCorrector.design_matrix_collection` you had just provided. NaNs, Units and Normalization NaNs are removed from the light curve when used to generate the `CBVCorrector` object and is stored in `CBVCorrector.lc`. The CBVCorrector performs its corrections in absolute flux units (typically electrons per second). The returned corrected light curve `corrected_lc` is also in absolute units and the median flux of the light curve is preserved. ###Code print('LC unit: {}'.format(cbvCorrector.lc.flux.unit)) print('Corrected LC unit: {}'.format(cbvCorrector.corrected_lc.flux.unit)) ###Output _____no_output_____ ###Markdown The goodness metrics are computed using median normalized units in order to properly calibrate the metric to be between 0.0 and 1.0 for all light curves. The normalization is as follows: ###Code normalized_lc = cbvCorrector.lc.normalize() normalized_lc -= 1.0 print('Normalized Light curve units: {} (i.e astropy.units.dimensionless_unscaled)'.format(normalized_lc.flux.unit)) ###Output _____no_output_____
The_Battle_of_Neighborhoods.ipynb
###Markdown ###Code import pandas as pd !pip install beautifulsoup4 !pip install lxml !pip install html5lib !pip install requests !pip install geocoder !pip install geopy !pip install Nominatim !pip install folium !pip install requests !pip install sklearn ###Output Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.6/dist-packages (4.6.3) Requirement already satisfied: lxml in /usr/local/lib/python3.6/dist-packages (4.2.6) Requirement already satisfied: html5lib in /usr/local/lib/python3.6/dist-packages (1.0.1) Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from html5lib) (0.5.1) Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.6/dist-packages (from html5lib) (1.12.0) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (2.21.0) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests) (2019.9.11) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests) (2.8) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests) (3.0.4) Requirement already satisfied: geocoder in /usr/local/lib/python3.6/dist-packages (1.38.1) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from geocoder) (0.16.0) Requirement already satisfied: ratelim in /usr/local/lib/python3.6/dist-packages (from geocoder) (0.1.6) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from geocoder) (1.12.0) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from geocoder) (2.21.0) Requirement already satisfied: click in /usr/local/lib/python3.6/dist-packages (from geocoder) (7.0) Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from ratelim->geocoder) (4.4.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->geocoder) (2019.9.11) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->geocoder) (1.24.3) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->geocoder) (2.8) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->geocoder) (3.0.4) Requirement already satisfied: geopy in /usr/local/lib/python3.6/dist-packages (1.17.0) Requirement already satisfied: geographiclib<2,>=1.49 in /usr/local/lib/python3.6/dist-packages (from geopy) (1.50) Requirement already satisfied: Nominatim in /usr/local/lib/python3.6/dist-packages (0.1) Requirement already satisfied: folium in /usr/local/lib/python3.6/dist-packages (0.8.3) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from folium) (2.21.0) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from folium) (1.12.0) Requirement already satisfied: jinja2 in /usr/local/lib/python3.6/dist-packages (from folium) (2.10.3) Requirement already satisfied: branca>=0.3.0 in /usr/local/lib/python3.6/dist-packages (from folium) (0.3.1) Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from folium) (1.16.5) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->folium) (3.0.4) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->folium) (2.8) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->folium) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->folium) (2019.9.11) Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2->folium) (1.1.1) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (2.21.0) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests) (1.24.3) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests) (2019.9.11) Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests) (2.8) Requirement already satisfied: sklearn in /usr/local/lib/python3.6/dist-packages (0.0) Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from sklearn) (0.21.3) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->sklearn) (0.14.0) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->sklearn) (1.3.1) Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->sklearn) (1.16.5) ###Markdown **Introduction/Business Problem**A constractor want to start a new business in fast food in london . Unfortunately he has no idea about the right area for this project.So he decided to rely on the science of data analysis in order to find the appropriate area for this new project, especially the population density in various neighborhoods of London, as well as the distribution of different venues and facilities in the city of london . **1. Data acquisition : Data about London Boroughs and populations in london**In this project we will use data from "https://en.wikipedia.org/wiki/List_of_London_boroughs" , but we need first to get data by scraping and clean it . ###Code #importing libraries from bs4 import BeautifulSoup import requests import pandas as pd import numpy as np #Source of Data source = requests.get("https://en.wikipedia.org/wiki/List_of_London_boroughs").text soup=BeautifulSoup(source,'lxml') #add an empty dataframe df_london = pd.DataFrame(columns=['Borough','Population','Coord']) #finding our data and scraping it using beautifulSoup library table=soup.find('table') body=table.find('tbody') for row in body.find_all('tr'): List=[] for x in row.find_all('td'): List.append(x.text) list_df = pd.DataFrame(List) #for each row we check if the row has values and borough different to not assigned then we add row to dataframe if len(List)>0 : df2 = pd.DataFrame({'Borough':[List[0]], 'Population':[List[7]],'Coord':[List[8]]}) if List[1] != "Not assigned" : df_london = df_london.append(df2,ignore_index=True) #Data wrangling and data cleaning : df_london['Borough']=df_london['Borough'].astype(str).str.replace('\n','') df_london['Population']=df_london['Population'].astype(str).str.replace('\n','') df_london[['Latitude','Longitude']] = df_london.Coord.str.split("″N ",expand=True) df_london['Longitude'] = df_london.Longitude.str.split("/" ,expand=True) df_london['Borough'] = df_london.Borough.str.split("[" ,expand=True) df_london['Latitude']=df_london['Latitude'].astype(str).str.replace('°',',') df_london['Latitude']=df_london['Latitude'].astype(str).str.replace('′','') df_london['Longitude']=df_london['Longitude'].astype(str).str.replace('°',',') df_london['Longitude']=df_london['Longitude'].astype(str).str.replace('′','') df_london['Longitude']=df_london['Longitude'].astype(str).str.replace('″E','') df_london.loc[df_london.Longitude.astype(str).str.contains('″W'), 'Longitude']='-'+df_london['Longitude'].astype(str) df_london['Longitude']=df_london['Longitude'].astype(str).str.replace('″W','') df_london['Longitude']=df_london['Longitude'].astype(str).str.replace('\ufeff','') df_london['Latitude']=df_london['Latitude'].astype(str).str.replace('\ufeff','') df_london['Population']=df_london['Population'].astype(str).str.replace(',','') #replace , by . in order to make transformation object -> String : possible df_london['Latitude']=df_london['Latitude'].astype(str).str.replace(',','.') df_london['Longitude']=df_london['Longitude'].astype(str).str.replace(',','.') #we don't need this column anymore del df_london['Coord'] #Transformation to numeric forme df_london['Latitude'] = pd.to_numeric(df_london['Latitude']) df_london['Longitude'] = pd.to_numeric(df_london['Longitude']) df_london['Population'] = pd.to_numeric(df_london['Population']) #some changes in coordinate due to tranformation of Geographic Coordinates to Decimal my_list1=[] my_list2=[] for i, row in df_london.iterrows(): x=row['Latitude'] x2=row['Longitude'] y=100*(x-int(x)) z=100*(y-int(y)) y2=100*(x2-int(x2)) z2=100*(y2-int(y2)) my_list1.append(int(x) + y/60 + z/3600) my_list2.append(int(x2) + y2/60 + z2/3600) df_london['Latitude'] = my_list1 df_london['Longitude'] = my_list2 #Finally our DATA df_london.head() ###Output _____no_output_____ ###Markdown **2. Data analysis : population and clusturing**In this section we will use our data and forsquare api in order to get all informations about london boroughs that can help us to find a solution to the business problem ###Code df_sorted=df_london[['Borough','Population']].sort_values(by='Population',ascending=True) df_sorted.set_index('Borough', inplace=True) df_sorted.tail(5).plot(kind='barh',stacked=True ,figsize=(10, 6)) plt.title('Top 5 Boroughs by Population on 2013') import folium # map rendering library import matplotlib.cm as cm import matplotlib.colors as colors from geopy.geocoders import Nominatim # convert an address into latitude and longitude values import matplotlib.pyplot as plt address = 'London' geolocator = Nominatim(user_agent="tr_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of London City are {}, {}.'.format(latitude, longitude)) # create map of London using latitude and longitude values map_London = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map'' for lat, lng, borough in zip(df_london['Latitude'], df_london['Longitude'], df_london['Borough']): label = '{},{}'.format(borough,borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_London) map_London def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] CLIENT_ID='G5TUS4T0FKE1X5DVH22U4I1SUFQD5FPUYVQVFBS5JVEBTGGU' CLIENT_SECRET='UZYX5HLCR3G3ZFBIANE5WLF4EY3FSRV5YOYWOMDK2NEPZXYF' VERSION = '20180604' LIMIT = 30 for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) London_venues = getNearbyVenues(names=df_london['Borough'], latitudes=df_london['Latitude'], longitudes=df_london['Longitude'] ) # one hot encoding London_onehot = pd.get_dummies(London_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe London_onehot['Neighborhood'] = London_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [London_onehot.columns[-1]] + list(London_onehot.columns[:-1]) London_onehot = London_onehot[fixed_columns] London_onehot.head(20) London_grouped = London_onehot.groupby('Neighborhood').mean().reset_index() London_grouped num_top_venues = 5 for hood in London_grouped['Neighborhood']: print("----"+hood+"----") temp = London_grouped[London_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] import numpy as np num_top_venues = 5 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = London_grouped['Neighborhood'] for ind in np.arange(London_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(London_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() # import k-means from clustering stage from sklearn.cluster import KMeans # set number of clusters kclusters = 5 London_grouped_clustering = London_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(London_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] # add clustering labels #neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) London_merged = df_london # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood London_merged = London_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Borough') London_merged.head(20) # check the last columns! import folium # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) #removing nan values London_merged.dropna(inplace=True) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(London_merged['Latitude'], London_merged['Longitude'], London_merged['Borough'], London_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[int(cluster-1)], fill=True, fill_color=rainbow[int(cluster-1)], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____
Statistical Mechanics 6 MSD to Diffusion Coefficient.ipynb
###Markdown Brownian LimitIn the Brownian limit, the ratio of the mass $m$ of the background particles to that of the selected heavy B particle $M_B$, $\lambda = \frac{m}{M_B}$, becomes small, it is then convenient to divide the particles up into two subgroups because of hte enormous difference in time scales of motion of the B and bath particles.In the Brownian limit $\lambda = \sqrt{\frac{m}{M_B}} \rightarrow 0$, memory function for heavy particles given by delta function in time,$$K_v(t) = \lambda_1 \delta(t)$$or$$\tilde{K_v}(s) = \lambda_1 = \dfrac{\zeta}{M_B} = \gamma$$where $\gamma$ is friction coeff and $\zeta$ the friction factor $\zeta = M_B \gamma$. Stokes EinsteinIf Stokes-Einstein holds, then friction factor $\gamma$ is$$\gamma = 6 \pi m_i \eta a_i$$$$\gamma = \dfrac{k_B T}{m_i D_s}$$Now writing chosen particle's velocity $v_i$ as $V_B$ and mass as $M_B$ gives$$M_B \dfrac{d}{dt} V_B(t) = - \zeta V_B(t) + F_{B}^{R}(t)$$and$$\langle F_B^R(0) \rangle = 0 \\\langle F_B^R(0) \cdot F_B^R(t) \rangle = 3 \gamma M_B k_B T \delta(t)$$or$$\langle v_i \cdot v_i \rangle = \dfrac{3k_B T}{m_i}$$ ###Code Ndim = 2 N = 10000 dp = 1e-6 nu = 8.9e-4 T = 293 kB = 1.38e-23 pi = np.pi T = 10000.0 dt = T/N def get_Dtheor(T, Ndim, dp, nu): Dtheor = (kB*T)/(3*Ndim*pi*dp*nu) return Dtheor Dtheor = get_Dtheor(T,Ndim,dp,nu) print(Dtheor) # Variance of step size distribution # (units of m) var = 2*Dtheor*dt stdev = np.sqrt(var) print(stdev) ###Output 4.05610301218e-06 ###Markdown Verification of the Diffusion CoefficientWe are simulating random walks (integrating a single random realization of a random diffusion walk) using some parameter to control the distribution of step size. This distribution results in a diffusion coefficient.We can verify that the diffusion coefficient we back out from the realizations of random walks matches the theoretical diffusion coefficient.To back out the diffusion coefficient from MSD:* Compute MSD versus lag time* Plot MSD versus lag time* Fit data to line - displacement vs. time* This velocity is proportional to $v \sim \dfrac{2D}{\delta t}$[This page](https://tinevez.github.io/msdanalyzer/tutorial/MSDTuto_brownian.html) mentions a reference for the 2D/t relation, which is also derived in the stat mech textbook mentioned in notebook 4, and is also derived (third method) in the brownian motion notes Z sent me. ###Code # Single random diffusion walk # mean 0, std dev computed above dx = stdev*np.random.randn(N,) dy = stdev*np.random.randn(N,) x = np.cumsum(dx) y = np.cumsum(dy) plt.plot(x, y, '-') plt.xlabel('x'); plt.ylabel('y'); plt.title("Brownian Motion 2D Walk") plt.show() # Compute MSD versus lag time # 0 to sqrt(N) avoids bias of longer lag times upper = int(round(np.sqrt(N))) msd = np.zeros(upper,) lag = np.zeros(upper,) for i, p in enumerate(range(1,upper+1)): lagtime = dt*p delx = ( x[p:] - x[:-p] ) dely = ( y[p:] - y[:-p] ) msd[i] = np.mean(delx*delx + dely*dely) lag[i] = lagtime m, b = np.polyfit(lag, msd, 1) plt.loglog(lag, msd, 'o') plt.loglog(lag, m*lag+b, '--k') plt.xlabel('Lag time (s)') plt.ylabel('MSD (m)') plt.title('Linear Fit: MSD vs. Lag Time') plt.show() print("linear fit:") print("Slope = %0.2g"%(m)) print("Intercept = %0.2g"%(b)) ###Output _____no_output_____ ###Markdown **NOTE:** If the total time being simulated *decreases* such that timesteps are on the order of $10^{-1}$ or $10^{-2}$, the scale of the MSD becomes $10^{-14}$ and numerical error becomes significant. ###Code # Slope is: # v = dx / dt # v = 2 D / dt # Rearrange: # D = v * dt / 2 v = m Dempir = (v*dt)/2 err = (np.abs(Dtheor-Dempir)/Dtheor)*100 print("Theoretical D:\t%0.4g"%(Dtheor)) print("Empirical D:\t%0.4g"%(Dempir)) print("Percent Error:\t%0.4g"%(err)) print("\nNote: this result is from a single realization. Taking an ensemble yields a more accurate predicted D.") def msd_ensemble(T, Ndim, dp, nu, N, Nwalks): Dtheor = get_Dtheor(T, Ndim, dp, nu) ms = [] msds = [] msdxs = [] msdys = [] lags = [] for w in range(Nwalks): # Single random diffusion walk # mean 0, std dev computed above dx = stdev*np.random.randn(N,) dy = stdev*np.random.randn(N,) # accumulate x = np.cumsum(dx) y = np.cumsum(dy) # Compute MSD versus lag time # 0 to sqrt(N) avoids bias of longer lag times upper = int(round(np.sqrt(N))) msd = np.zeros(upper,) msdx = np.zeros(upper,) msdy = np.zeros(upper,) lag = np.zeros(upper,) for i, p in enumerate(range(1,upper+1)): lagtime = dt*p delx = ( x[p:] - x[:-p] ) dely = ( y[p:] - y[:-p] ) msd[i] = np.mean((delx*delx + dely*dely)/2) msdx[i] = np.mean(delx*delx) msdy[i] = np.mean(dely*dely) lag[i] = lagtime slope, _ = np.polyfit(lag, msd, 1) ms.append( slope ) msds.append( msd ) msdxs.append(msdx) msdys.append(msdy) lags.append( lag ) return (ms, msds, msdxs, msdys, lags) Ndim = 2 N = 10000 dp = 1e-6 nu = 8.9e-4 T = 293 kB = 1.38e-23 pi = np.pi T = 10000.0 dt = T/N Nwalks = 1000 slopes, msds, msdxs, msdys, lags = msd_ensemble(T, Ndim, dp, nu, N, Nwalks) Dempir = np.mean((np.array(slopes)*dt)/2) err = (np.abs(Dtheor-Dempir)/Dtheor)*100 print("Theoretical D:\t%0.4g"%(Dtheor)) print("Empirical D:\t%0.4g"%(Dempir)) print("Percent Error:\t%0.4g%%"%(err)) print("\nUsing an ensemble of %d particles greatly improves accuracy of predicted D."%(N)) for i, (msd, lag) in enumerate(zip(msdxs,lags)): if(i>200): break plt.loglog(lag,msd,'b',alpha=0.1) for i, (msd, lag) in enumerate(zip(msdys,lags)): if(i>200): break plt.loglog(lag,msd,'r',alpha=0.1) for i, (msd, lag) in enumerate(zip(msds,lags)): if(i>200): break plt.loglog(lag,msd,'k',alpha=0.1) plt.xlabel('Lag Time (m)') plt.ylabel('MSD (s)') plt.title('MSD vs Lag Time: \nMSD X (blue), MSD Y (red), MSD MAG (black)') plt.show() ###Output _____no_output_____
bronze/.ipynb_checkpoints/B30_Visulization_of_a_Qubit-checkpoint.ipynb
###Markdown Abuzer Yakaryilmaz | June 16, 2019 (updated) This cell contains some macros. If there is a problem with displaying mathematical formulas, please run this cell to load these macros. $ \newcommand{\bra}[1]{\langle 1|} $$ \newcommand{\ket}[1]{|1\rangle} $$ \newcommand{\braket}[2]{\langle 1|2\rangle} $$ \newcommand{\dot}[2]{ 1 \cdot 2} $$ \newcommand{\biginner}[2]{\left\langle 1,2\right\rangle} $$ \newcommand{\mymatrix}[2]{\left( \begin{array}{1} 2\end{array} \right)} $$ \newcommand{\myvector}[1]{\mymatrix{c}{1}} $$ \newcommand{\myrvector}[1]{\mymatrix{r}{1}} $$ \newcommand{\mypar}[1]{\left( 1 \right)} $$ \newcommand{\mybigpar}[1]{ \Big( 1 \Big)} $$ \newcommand{\sqrttwo}{\frac{1}{\sqrt{2}}} $$ \newcommand{\dsqrttwo}{\dfrac{1}{\sqrt{2}}} $$ \newcommand{\onehalf}{\frac{1}{2}} $$ \newcommand{\donehalf}{\dfrac{1}{2}} $$ \newcommand{\hadamard}{ \mymatrix{rr}{ \sqrttwo & \sqrttwo \\ \sqrttwo & -\sqrttwo }} $$ \newcommand{\vzero}{\myvector{1\\0}} $$ \newcommand{\vone}{\myvector{0\\1}} $$ \newcommand{\vhadamardzero}{\myvector{ \sqrttwo \\ \sqrttwo } } $$ \newcommand{\vhadamardone}{ \myrvector{ \sqrttwo \\ -\sqrttwo } } $$ \newcommand{\myarray}[2]{ \begin{array}{1}2\end{array}} $$ \newcommand{\X}{ \mymatrix{cc}{0 & 1 \\ 1 & 0} } $$ \newcommand{\Z}{ \mymatrix{rr}{1 & 0 \\ 0 & -1} } $$ \newcommand{\Htwo}{ \mymatrix{rrrr}{ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} } } $$ \newcommand{\CNOT}{ \mymatrix{cccc}{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0} } $$ \newcommand{\norm}[1]{ \left\lVert 1 \right\rVert } $ Visulization of a (Real-Valued) Qubit We use certain tools from python library "matplotlib.pyplot" for drawing. Check the notebook "Python: Drawing" for the list of these tools. Suppose that we have a single qubit. Each possible (real-valued) quantum state of this qubit is a point on 2-dimensional space.It can also be represented as a vector from origin to that point.We start with the visual representation of the following quantum states: $$ \ket{0} = \myvector{1\\0}, ~~ \ket{1} = \myvector{0\\1} , ~~ -\ket{0} = \myrvector{-1\\0}, ~~\mbox{and}~~ -\ket{1} = \myrvector{0\\-1}. $$ We first draw these quantum states as points. ###Code # import the drawing methods from matplotlib.pyplot import plot, figure # draw a figure figure(figsize=(6,6), dpi=60) # draw the origin plot(0,0,'ro') # a point in red color # draw the quantum states as points (in blue color) plot(1,0,'bo') plot(0,1,'bo') plot(-1,0,'bo') plot(0,-1,'bo') ###Output _____no_output_____ ###Markdown Then, we draw the points and the axes together. We have a predefined function for drawing axes: "draw_axes()".We include our predefined functions with the following line of code: %run qlatvia.py ###Code # import the drawing methods from matplotlib.pyplot import plot, figure # draw a figure figure(figsize=(6,6), dpi=80) # include our predefined functions %run qlatvia.py # draw the axes draw_axes() # draw the origin plot(0,0,'ro') # a point in red color # draw these quantum states as points (in blue color) plot(1,0,'bo') plot(0,1,'bo') plot(-1,0,'bo') plot(0,-1,'bo') ###Output _____no_output_____ ###Markdown Now, we draw the quantum states as vectors by also showing axes: ###Code # import the drawing methods from matplotlib.pyplot import figure, arrow # draw a figure figure(figsize=(6,6), dpi=80) # include our predefined functions %run qlatvia.py # draw the axes draw_axes() # draw the quantum states as vectors (in blue color) arrow(0,0,0.92,0,head_width=0.04, head_length=0.08, color="blue") arrow(0,0,0,0.92,head_width=0.04, head_length=0.08, color="blue") arrow(0,0,-0.92,0,head_width=0.04, head_length=0.08, color="blue") arrow(0,0,0,-0.92,head_width=0.04, head_length=0.08, color="blue") ###Output _____no_output_____ ###Markdown Task 1 Write a function that returns a randomly created 2-dimensional (real-valued) quantum state.You may use your code written for a task given in notebook "Quantum States".Create 100 random quantum states by using your function, and then draw all of them as points. ###Code # import the drawing methods from matplotlib.pyplot import plot, figure # draw a figure figure(figsize=(6,6), dpi=60) # draw the origin plot(0,0,'ro') # # your solution is here # ###Output _____no_output_____ ###Markdown click for our solution Task 2 Repeat the previous task by drawing the quantum states as vectors (arrows) instead of points.Please keep the codes below for drawing axes for getting a better visual focus. ###Code # import the drawing methods from matplotlib.pyplot import plot, figure, arrow # draw a figure figure(figsize=(6,6), dpi=60) # include our predefined functions %run qlatvia.py # draw the axes draw_axes() # draw the origin plot(0,0,'ro') # # your solution is here # ###Output _____no_output_____ ###Markdown click for our solution Unit circle All quantum states of a qubit form the unit circle.The length of each quantum state is 1.All points that are 1 unit away from the origin form the circle with radius 1 unit.We can draw the unit circle with python.We have a predefined function for drawing the unit circle: "draw_unit_circle()". ###Code # import the drawing methods from matplotlib.pyplot import figure figure(figsize=(6,6), dpi=80) # size of the figure # include our predefined functions %run qlatvia.py # draw axes draw_axes() # draw the unit circle draw_unit_circle() ###Output _____no_output_____ ###Markdown Quantum state of a qubit Suppose that we have a single qubit. Each possible (real-valued) quantum state of this qubit is a point on 2-dimensional space.It can also be represented as a vector from origin to that point.We draw the quantum state $ \myvector{3/5 \\ 4/5} $ and its elements. Our predefined function "draw_qubit()" draws a figure, the origin, the axes, the unit circle, and base quantum states.Our predefined function "draw_quantum_state(x,y,name)" draws an arrow from (0,0) to (x,y) and associates it with name.We include our predefined functions with the following line of code: %run qlatvia.py ###Code %run qlatvia.py draw_qubit() draw_quantum_state(3/5,4/5,"|v>") ###Output _____no_output_____ ###Markdown Now, we draw its angle with $ \ket{0} $-axis and its projections on both axes. For drawing the angle, we use the method "Arc" from library "matplotlib.patches". ###Code %run qlatvia.py draw_qubit() draw_quantum_state(3/5,4/5,"|v>") from matplotlib.pyplot import arrow, text, gca # the projection on |0>-axis arrow(0,0,3/5,0,color="blue",linewidth=1.5) arrow(0,4/5,3/5,0,color="blue",linestyle='dotted') text(0.1,-0.1,"cos(a)=3/5") # the projection on |1>-axis arrow(0,0,0,4/5,color="blue",linewidth=1.5) arrow(3/5,0,0,4/5,color="blue",linestyle='dotted') text(-0.1,0.55,"sin(a)=4/5",rotation="90") # drawing the angle with |0>-axis from matplotlib.patches import Arc gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=53) ) text(0.08,0.05,'.',fontsize=30) text(0.21,0.09,'a') ###Output _____no_output_____ ###Markdown Observations: The angle of quantum state with state $ \ket{0} $ is $a$. The amplitude of state $ \ket{0} $ is $ \cos(a) = \frac{3}{5} $. The probability of observing state $ \ket{0} $ is $ \cos^2(a) = \frac{9}{25} $. The amplitude of state $ \ket{1} $ is $ \sin(a) = \frac{4}{5} $. The probability of observing state $ \ket{1} $ is $ \sin^2(a) = \frac{16}{25} $. Now we consider the following two quantum states: $ \ket{v_1} = \myvector{4/5 \\ 3/5} \mbox{ and } \ket{v_2} = \myrvector{4/5 \\ -3/5}. $We draw them with their elements: ###Code %run qlatvia.py draw_qubit() draw_quantum_state(3/5,4/5,"|v1>") draw_quantum_state(3/5,-4/5,"|v2>") from matplotlib.pyplot import arrow, text, gca # the projection on |0>-axis arrow(0,0,3/5,0,color="blue",linewidth=1.5) arrow(0,0,3/5,0,color="blue",linewidth=1.5) arrow(0,4/5,3/5,0,color="blue",linestyle='dotted') arrow(0,-4/5,3/5,0,color="blue",linestyle='dotted') text(0.36,0.05,"cos(a)=3/5") text(0.36,-0.09,"cos($-$a)=3/5") # the projection on |1>-axis arrow(0,0,0,4/5,color="blue",linewidth=1.5) arrow(0,0,0,-4/5,color="blue",linewidth=1.5) arrow(3/5,0,0,4/5,color="blue",linestyle='dotted') arrow(3/5,0,0,-4/5,color="blue",linestyle='dotted') text(-0.1,0.55,"sin(a)=4/5",rotation="90") text(-0.14,-0.2,"sin($-$a)=$-$4/5",rotation="270") # drawing the angle with |0>-axis from matplotlib.patches import Arc gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=53) ) text(0.08,0.05,'.',fontsize=30) text(0.21,0.09,'a') gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=-53,theta2=0) ) text(0.08,-0.07,'.',fontsize=30) text(0.19,-0.12,'$-$a') ###Output _____no_output_____ ###Markdown Observations: The angle between $ \ket{v_2} $ and $ \ket{0} $ is still $a$, but the angle of $ \ket{v_2} $ is $ -a $. As $ \cos(x) = \cos(-x) $, we have $ \cos(a) = \cos(-a) = \frac{3}{5} $. As $ \sin(x) = -\sin(-x) $, we have $ \sin(a) = \frac{4}{5} $ and $ \sin(-a) = - \frac{4}{5} $. Remark: For any angle $ x $ (in radians), we have$$ \cdots = \sin(x+4\pi) = \sin(x+2\pi) = \sin(x) = \sin(x-2\pi) = \sin(x-4\pi) = \cdots $$$$ \cdots = \cos(x+4\pi) = \cos(x+2\pi) = \cos(x) = \cos(x-2\pi) = \cos(x-4\pi) = \cdots . $$Thus, the angle of $ \ket{v_2} $ can also be referred as $2\pi-a$. The angle of a quantum state The angle of a vector (in radians) on the unit circle is the length of arc in counter-clockwise direction that starts from $ (1,0) $ and with the points representing the vector.We execute the following code a couple of times to see different examples, where the angle is picked randomly in each run.You can also set the value of "myangle" manually for seeing a specific angle. ###Code # set the angle from random import randrange myangle = randrange(361) ################################################ from matplotlib.pyplot import figure,gca from matplotlib.patches import Arc from math import sin,cos,pi # draw a figure figure(figsize=(6,6), dpi=60) %run qlatvia.py draw_axes() print("the selected angle is",myangle,"degrees") ratio_of_arc = ((1000*myangle/360)//1)/1000 print("it is",ratio_of_arc,"of a full circle") print("its length is",ratio_of_arc,"x 2\u03C0","=",ratio_of_arc*2*pi) myangle_in_radian = 2*pi*(myangle/360) print("its radian value is",myangle_in_radian) gca().add_patch( Arc((0,0),0.2,0.2,angle=0,theta1=0,theta2=myangle,color="red") ) gca().add_patch( Arc((0,0),2,2,angle=0,theta1=0,theta2=myangle,color="blue") ) x = cos(myangle_in_radian) y = sin(myangle_in_radian) draw_quantum_state(x,y,"|v>") ###Output the selected angle is 302 degrees it is 0.838 of a full circle its length is 0.838 x 2π = 5.265309287416493 its radian value is 5.270894341022875 ###Markdown Random quantum states Any quantum state of a (real-valued) qubit is a point on the unit circle.We use this fact to create random quantum states by picking a random point on the unit circle. For this purpose, we randomly pick an angle between zero and 360 degrees and then find the amplitudes of the quantum state by using the basic trigonometric functions. Task 3 Define a function randomly creating a quantum state based on the this idea.Randomly create a quantum state by using this function.Draw the quantum state on the unit circle.Repeat the task for a few times.Randomly create 100 quantum states and draw all of them without labeling. You can save your function for using later: comment out the first command, give an appropriate file name, and then run the cell. ###Code # %%writefile FILENAME.py # your function is here from math import cos, sin, pi from random import randrange def random_quantum_state2(): # # your codes are here # ###Output _____no_output_____ ###Markdown Our predefined function "draw_qubit()" draws a figure, the origin, the axes, the unit circle, and base quantum states.Our predefined function "draw_quantum_state(x,y,name)" draws an arrow from (0,0) to (x,y) and associates it with name.We include our predefined functions with the following line of code: %run qlatvia.py ###Code # visually test your function %run qlatvia.py draw_qubit() # # your solution is here # # draw_quantum_state(x,y,"") ###Output _____no_output_____
Session_3/4_fsm_generator.ipynb
###Markdown Finite State Machine GeneratorThis notebook will show how to use the Finite State Machine (FSM) Generator to generate a state machine. The FSM we will build is a Gray code counter. The counter has three state bits and can count up or down through eight states. The counter outputs are Gray coded, meaning that there is only a single-bit transition between the output vector of any state and its next states. Step 1: Download the `logictools` overlay ###Code from pynq.overlays.logictools import LogicToolsOverlay from pynq.lib.logictools import FSMGenerator logictools_olay = LogicToolsOverlay('logictools.bit') ###Output _____no_output_____ ###Markdown Step 2: Specify the FSM ###Code fsm_spec = {'inputs': [('reset','D0'), ('direction','D1')], 'outputs': [('bit2','D3'), ('bit1','D4'), ('bit0','D5')], 'states': ['S0', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'S7'], 'transitions': [['01', 'S0', 'S1', '000'], ['00', 'S0', 'S7', '000'], ['01', 'S1', 'S2', '001'], ['00', 'S1', 'S0', '001'], ['01', 'S2', 'S3', '011'], ['00', 'S2', 'S1', '011'], ['01', 'S3', 'S4', '010'], ['00', 'S3', 'S2', '010'], ['01', 'S4', 'S5', '110'], ['00', 'S4', 'S3', '110'], ['01', 'S5', 'S6', '111'], ['00', 'S5', 'S4', '111'], ['01', 'S6', 'S7', '101'], ['00', 'S6', 'S5', '101'], ['01', 'S7', 'S0', '100'], ['00', 'S7', 'S6', '100'], ['1-', '*', 'S0', '']]} ###Output _____no_output_____ ###Markdown __Notes on the FSM specification format__![](./images/fsm_spec_format.png) Step 3: Instantiate the FSM generator object ###Code fsm_generator = logictools_olay.fsm_generator ###Output _____no_output_____ ###Markdown __Setup to use trace analyzer__ In this notebook, the trace analyzer is used to check if the inputs and outputs of the FSM.Users can choose whether to use the trace analyzer by calling the `trace()` method. ###Code fsm_generator.trace() ###Output _____no_output_____ ###Markdown Step 5: Setup the FSM generatorThe FSM generator will work at the default frequency of 10MHz. This can be modified using a `frequency` argument in the `setup()` method. ###Code fsm_generator.setup(fsm_spec) ###Output _____no_output_____ ###Markdown __Display the FSM state diagram__ This method should only be called after the generator has been properly set up. ###Code fsm_generator.show_state_diagram() ###Output _____no_output_____ ###Markdown __Set up the FSM inputs on the PYNQ board__* Check that the reset and direction inputs are correctly wired on the PYNQ board, as shown below: * Connect D0 to GND * Connect D1 to 3.3V![](./images/fsm_wiring.png) __Notes:__ * The 3-bit Gray code counter is an up-down, wrap-around counter that will count from states 000 to 100 in either ascending or descending order * The reset input is connected to pin D0 of the Arduino connector * Connect the reset input to GND for normal operation * When the reset input is set to logic 1 (3.3V), the counter resets to state 000 * The direction input is connected to pin D1 of the Arduino connector * When the direction is set to logic 0, the counter counts down * Conversely, when the direction input is set to logic 1, the counter counts up Step 6: Run and display waveformThe ` run()` method will execute all the samples, `show_waveform()` method is used to display the waveforms ###Code fsm_generator.run() fsm_generator.show_waveform() ###Output _____no_output_____ ###Markdown Verify the trace output against the expected Gray code count sequence| State | FSM output bits: bit2, bit1, bit0 ||:-----:|:----------------------------------------:|| s0 | 000 || s1 | 001 || s2 | 011 || s3 | 010 || s4 | 110 || s5 | 111 || s6 | 101 || s7 | 100 | Step 7: Stop the FSM generatorCalling `stop()` will clear the logic values on output pins; however, the waveform will be recorded locally in the FSM instance. ###Code fsm_generator.stop() ###Output _____no_output_____ ###Markdown Finite State Machine GeneratorThis notebook will show how to use the Finite State Machine (FSM) Generator to generate a state machine. The FSM we will build is a Gray code counter. The counter has three state bits and can count up or down through eight states. The counter outputs are Gray coded, meaning that there is only a single-bit transition between the output vector of any state and its next states. Step 1: Download the `logictools` overlay ###Code from pynq.overlays.logictools import LogicToolsOverlay from pynq.lib.logictools import FSMGenerator logictools_olay = LogicToolsOverlay('logictools.bit') ###Output _____no_output_____ ###Markdown Step 2: Specify the FSM ###Code fsm_spec = {'inputs': [('reset','D0'), ('direction','D1')], 'outputs': [('bit2','D3'), ('bit1','D4'), ('bit0','D5')], 'states': ['S0', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'S7'], 'transitions': [['01', 'S0', 'S1', '000'], ['00', 'S0', 'S7', '000'], ['01', 'S1', 'S2', '001'], ['00', 'S1', 'S0', '001'], ['01', 'S2', 'S3', '011'], ['00', 'S2', 'S1', '011'], ['01', 'S3', 'S4', '010'], ['00', 'S3', 'S2', '010'], ['01', 'S4', 'S5', '110'], ['00', 'S4', 'S3', '110'], ['01', 'S5', 'S6', '111'], ['00', 'S5', 'S4', '111'], ['01', 'S6', 'S7', '101'], ['00', 'S6', 'S5', '101'], ['01', 'S7', 'S0', '100'], ['00', 'S7', 'S6', '100'], ['1-', '*', 'S0', '']]} ###Output _____no_output_____ ###Markdown __Notes on the FSM specification format__![](./images/fsm_spec_format.png) Step 3: Instantiate the FSM generator object ###Code fsm_generator = logictools_olay.fsm_generator ###Output _____no_output_____ ###Markdown __Setup to use trace analyzer__ In this notebook trace analyzer is used to check if the inputs and outputs of the FSM.Users can choose whether to use the trace analyzer by calling the `trace()` method. ###Code fsm_generator.trace() ###Output _____no_output_____ ###Markdown Step 5: Setup the FSM generatorThe FSM generator will work at the default frequency of 10MHz. This can be modified using a `frequency` argument in the `setup()` method. ###Code fsm_generator.setup(fsm_spec) ###Output _____no_output_____ ###Markdown __Display the FSM state diagram__ This method should only be called after the generator has been properly set up. ###Code fsm_generator.show_state_diagram() ###Output _____no_output_____ ###Markdown __Set up the FSM inputs on the PYNQ board__* Check that the reset and direction inputs are correctly wired on the PYNQ board, as shown below: * Connect D0 to GND * Connect D1 to 3.3V![](./images/fsm_wiring.png) __Notes:__ * The 3-bit Gray code counter is an up-down, wrap-around counter that will count from states 000 to 100 in either ascending or descending order * The reset input is connected to pin D0 of the Arduino connector * Connect the reset input to GND for normal operation * When the reset input is set to logic 1 (3.3V), the counter resets to state 000 * The direction input is connected to pin D1 of the Arduino connector * When the direction is set to logic 0, the counter counts down * Conversely, when the direction input is set to logic 1, the counter counts up Step 6: Run and display waveformThe ` run()` method will execute all the samples, `show_waveform()` method is used to display the waveforms ###Code fsm_generator.run() fsm_generator.show_waveform() ###Output _____no_output_____ ###Markdown Verify the trace output against the expected Gray code count sequence| State | FSM output bits: bit2, bit1, bit0 ||:-----:|:----------------------------------------:|| s0 | 000 || s1 | 001 || s2 | 011 || s3 | 010 || s4 | 110 || s5 | 111 || s6 | 101 || s7 | 100 | Step 7: Stop the FSM generatorCalling `stop()` will clear the logic values on output pins; however, the waveform will be recorded locally in the FSM instance. ###Code fsm_generator.stop() ###Output _____no_output_____ ###Markdown Finite State Machine GeneratorThis notebook will show how to use the Finite State Machine (FSM) Generator to generate a state machine. The FSM we will build is a Gray code counter. The counter has three state bits and can count up or down through eight states. The counter outputs are Gray coded, meaning that there is only a single-bit transition between the output vector of any state and its next states. Step 1: Download the `logictools` overlay ###Code from pynq.overlays.logictools import LogicToolsOverlay from pynq.lib.logictools import FSMGenerator logictools_olay = LogicToolsOverlay('logictools.bit') ###Output _____no_output_____ ###Markdown Step 2: Specify the FSM ###Code fsm_spec = {'inputs': [('reset','D0'), ('direction','D1')], 'outputs': [('bit2','D3'), ('bit1','D4'), ('bit0','D5')], 'states': ['S0', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'S7'], 'transitions': [['01', 'S0', 'S1', '000'], ['00', 'S0', 'S7', '000'], ['01', 'S1', 'S2', '001'], ['00', 'S1', 'S0', '001'], ['01', 'S2', 'S3', '011'], ['00', 'S2', 'S1', '011'], ['01', 'S3', 'S4', '010'], ['00', 'S3', 'S2', '010'], ['01', 'S4', 'S5', '110'], ['00', 'S4', 'S3', '110'], ['01', 'S5', 'S6', '111'], ['00', 'S5', 'S4', '111'], ['01', 'S6', 'S7', '101'], ['00', 'S6', 'S5', '101'], ['01', 'S7', 'S0', '100'], ['00', 'S7', 'S6', '100'], ['1-', '*', 'S0', '']]} ###Output _____no_output_____ ###Markdown __Notes on the FSM specification format__![](./images/fsm_spec_format.png) Step 3: Instantiate the FSM generator object ###Code fsm_generator = logictools_olay.fsm_generator ###Output _____no_output_____ ###Markdown __Setup to use trace analyzer__ In this notebook, the trace analyzer is used to check if the inputs and outputs of the FSM.Users can choose whether to use the trace analyzer by calling the `trace()` method. ###Code fsm_generator.trace() ###Output _____no_output_____ ###Markdown Step 5: Setup the FSM generatorThe FSM generator will work at the default frequency of 10MHz. This can be modified using a `frequency` argument in the `setup()` method. ###Code fsm_generator.setup(fsm_spec) ###Output _____no_output_____ ###Markdown __Display the FSM state diagram__ This method should only be called after the generator has been properly set up. ###Code fsm_generator.show_state_diagram() ###Output _____no_output_____ ###Markdown __Set up the FSM inputs on the PYNQ board__* Check that the reset and direction inputs are correctly wired on the PYNQ board, as shown below:| | PYNQ-Z1 | PYNQ-Z2 ||--|---------|---------|| GND | D0 | AR0 || 3.3V | D1 | AR1 |![](./images/fsm_wiring.png) __Notes:__ * The 3-bit Gray code counter is an up-down, wrap-around counter that will count from states 000 to 100 in either ascending or descending order * The reset input is connected to pin D0/AR0 of the Arduino connector * Connect the reset input to GND for normal operation * When the reset input is set to logic 1 (3.3V), the counter resets to state 000 * The direction input is connected to pin D1/AR1 of the Arduino connector * When the direction is set to logic 0, the counter counts down * Conversely, when the direction input is set to logic 1, the counter counts up Step 6: Run and display waveformThe ` run()` method will execute all the samples, `show_waveform()` method is used to display the waveforms ###Code fsm_generator.run() fsm_generator.show_waveform() ###Output _____no_output_____ ###Markdown Verify the trace output against the expected Gray code count sequence| State | FSM output bits: bit2, bit1, bit0 ||:-----:|:----------------------------------------:|| s0 | 000 || s1 | 001 || s2 | 011 || s3 | 010 || s4 | 110 || s5 | 111 || s6 | 101 || s7 | 100 | Step 7: Stop the FSM generatorCalling `stop()` will clear the logic values on output pins; however, the waveform will be recorded locally in the FSM instance. ###Code fsm_generator.stop() ###Output _____no_output_____
notebooks/dev/old_notebooks/test_preprocessing.ipynb
###Markdown Check! Computed BPs correctly ###Code unnorm_features[0, 0, 0, -1] # SOLIN aqua['SOLIN'][1, 0, 0] unnorm_features[0, 0, 0, -2] # PS aqua['PS'][0, 0, 0] ###Output _____no_output_____ ###Markdown Check! Took the correct time steps for PS ###Code norm['target_names'][:] ###Output _____no_output_____ ###Markdown Now check the targets. ###Code targets = nc.Dataset(target_fn); targets targets['target_names'][:] plt.plot(np.mean(targets['targets'][:], axis=0)) ###Output _____no_output_____ ###Markdown Now check the pure crm inputs file ###Code feature_fn2 = '/beegfs/DATA/pritchard/srasp/preprcessed_data/full_physics_essentials_train_test2_features.nc' target_fn2 = '/beegfs/DATA/pritchard/srasp/preprcessed_data/full_physics_essentials_train_test2_targets.nc' norm_fn2 = '/beegfs/DATA/pritchard/srasp/preprcessed_data/full_physics_essentials_train_test2_norm.nc' features2 = nc.Dataset(feature_fn2) norm2 = nc.Dataset(norm_fn2) features2['feature_names'][:] unnorm_features2 = features2['features'][:] * norm2['feature_stds'][:] + norm2['feature_means'][:] unnorm_features2.shape # sample, lev --> [time, lat, lon] unnorm_features2 = unnorm_features2.reshape(-1, 64, 128, 152) # T_C = TAP[t-1] - DTV[t-1] * dt ctrl_T_C = aqua['TAP'][:-1] - aqua['DTV'][:-1] * 1800. unnorm_features2[0, 0, 0, :5] ctrl_T_C[0, :5, 0, 0] # adiab = (TBP - TC)/dt ctrl_T_C.shape, ctrl_TBP.shape ctrl_adiab = (ctrl_TBP - ctrl_T_C) / 1800. features2['feature_names'][90] unnorm_features2[0, 0, 0, 90:95] ctrl_adiab[0, :4, 0, 0] ###Output _____no_output_____
mercari/mercari-interactive-eda-topic-modelling.ipynb
###Markdown **Introduction**This is an initial Explanatory Data Analysis for the [Mercari Price Suggestion Challenge](https://www.kaggle.com/c/mercari-price-suggestion-challengedescription) with matplotlib. [bokeh](https://bokeh.pydata.org/en/latest/) and [Plot.ly](https://plot.ly/feed/) - a visualization tool that creates beautiful interactive plots and dashboards. The competition is hosted by Mercari, the biggest Japanese community-powered shopping app with the main objective to predict an accurate price that Mercari should suggest to its sellers, given the item's information. ***Update***: The abundant amount of food from my family's Thanksgiving dinner has really energized me to continue working on this model. I decided to dive deeper into the NLP analysis and found an amazing tutorial by Ahmed BESBES. The framework below is based on his [source code](https://ahmedbesbes.com/how-to-mine-newsfeed-data-and-extract-interactive-insights-in-python.html). It provides guidance on pre-processing documents and machine learning techniques (K-means and LDA) to clustering topics. So that this kernel will be divided into 2 parts: 1. Explanatory Data Analysis 2. Text Processing 2.1. Tokenizing and tf-idf algorithm 2.2. K-means Clustering 2.3. Latent Dirichlet Allocation (LDA) / Topic Modelling ###Code import nltk import string import re import numpy as np import pandas as pd import pickle #import lda import matplotlib.pyplot as plt import seaborn as sns sns.set(style="white") from nltk.stem.porter import * from nltk.tokenize import word_tokenize, sent_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction import stop_words from collections import Counter from wordcloud import WordCloud from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls %matplotlib inline import bokeh.plotting as bp from bokeh.models import HoverTool, BoxSelectTool from bokeh.models import ColumnDataSource from bokeh.plotting import figure, show, output_notebook #from bokeh.transform import factor_cmap import warnings warnings.filterwarnings('ignore') import logging logging.getLogger("lda").setLevel(logging.WARNING) ###Output _____no_output_____ ###Markdown **Exploratory Data Analysis**On the first look at the data, besides the unique identifier (item_id), there are 7 variables in this model. This notebook will sequentially go through each of them with a brief statistical summary. 1. **Numerical/Continuous Features** 1. price: the item's final bidding price. This will be our reponse / independent variable that we need to predict in the test set 2. shipping cost 1. **Categorical Features**: 1. shipping cost: A binary indicator, 1 if shipping fee is paid by seller and 0 if it's paid by buyer 2. item_condition_id: The condition of the items provided by the seller 1. name: The item's name 2. brand_name: The item's producer brand name 2. category_name: The item's single or multiple categories that are separated by "\" 3. item_description: A short description on the item that may include removed words, flagged by [rm] ###Code PATH = "../input/" train = pd.read_csv(f'{PATH}train.tsv', sep='\t') test = pd.read_csv(f'{PATH}test.tsv', sep='\t') # size of training and dataset print(train.shape) print(test.shape) # different data types in the dataset: categorical (strings) and numeric train.dtypes train.head() ###Output _____no_output_____ ###Markdown Target Variable: **Price** The next standard check is with our response or target variables, which in this case is the `price` we are suggesting to the Mercari's marketplace sellers. The median price of all the items in the training is about \$267 but given the existence of some extreme values of over \$100 and the maximum at \$2,009, the distribution of the variables is heavily skewed to the left. So let's make log-transformation on the price (we added +1 to the value before the transformation to avoid zero and negative values). ###Code train.price.describe() plt.subplot(1, 2, 1) (train['price']).plot.hist(bins=50, figsize=(20,10), edgecolor='white',range=[0,250]) plt.xlabel('price+', fontsize=17) plt.ylabel('frequency', fontsize=17) plt.tick_params(labelsize=15) plt.title('Price Distribution - Training Set', fontsize=17) plt.subplot(1, 2, 2) np.log(train['price']+1).plot.hist(bins=50, figsize=(20,10), edgecolor='white') plt.xlabel('log(price+1)', fontsize=17) plt.ylabel('frequency', fontsize=17) plt.tick_params(labelsize=15) plt.title('Log(Price) Distribution - Training Set', fontsize=17) plt.show() ###Output _____no_output_____ ###Markdown **Shipping**The shipping cost burden is decently splitted between sellers and buyers with more than half of the items' shipping fees are paid by the sellers (55%). In addition, the average price paid by users who have to pay for shipping fees is lower than those that don't require additional shipping cost. This matches with our perception that the sellers need a lower price to compensate for the additional shipping. ###Code train.shipping.value_counts()/len(train) prc_shipBySeller = train.loc[train.shipping==1, 'price'] prc_shipByBuyer = train.loc[train.shipping==0, 'price'] fig, ax = plt.subplots(figsize=(20,10)) ax.hist(np.log(prc_shipBySeller+1), color='#8CB4E1', alpha=1.0, bins=50, label='Price when Seller pays Shipping') ax.hist(np.log(prc_shipByBuyer+1), color='#007D00', alpha=0.7, bins=50, label='Price when Buyer pays Shipping') ax.set(title='Histogram Comparison', ylabel='% of Dataset in Bin') plt.xlabel('log(price+1)', fontsize=17) plt.ylabel('frequency', fontsize=17) plt.title('Price Distribution by Shipping Type', fontsize=17) plt.tick_params(labelsize=15) plt.show() ###Output _____no_output_____ ###Markdown **Item Category**There are about **1,287** unique categories but among each of them, we will always see a main/general category firstly, followed by two more particular subcategories (e.g. Beauty/Makeup/Face or Lips). In adidition, there are about 6,327 items that do not have a category labels. Let's split the categories into three different columns. We will see later that this information is actually quite important from the seller's point of view and how we handle the missing information in the `brand_name` column will impact the model's prediction. ###Code print("There are %d unique values in the category column." % train['category_name'].nunique()) # TOP 5 RAW CATEGORIES train['category_name'].value_counts()[:5] # missing categories print("There are %d items that do not have a label." % train['category_name'].isnull().sum()) # reference: BuryBuryZymon at https://www.kaggle.com/maheshdadhich/i-will-sell-everything-for-free-0-55 def split_cat(text): try: return text.split("/") except: return ("No Label", "No Label", "No Label") train['general_cat'], train['subcat_1'], train['subcat_2'] = \ zip(*train['category_name'].apply(lambda x: split_cat(x))) train.head() # repeat the same step for the test set test['general_cat'], test['subcat_1'], test['subcat_2'] = \ zip(*test['category_name'].apply(lambda x: split_cat(x))) print("There are %d unique first sub-categories." % train['subcat_1'].nunique()) print("There are %d unique second sub-categories." % train['subcat_2'].nunique()) ###Output _____no_output_____ ###Markdown Overall, we have **7 main categories** (114 in the first sub-categories and 871 second sub-categories): women's and beauty items as the two most popular categories (more than 50% of the observations), followed by kids and electronics. ###Code x = train['general_cat'].value_counts().index.values.astype('str') y = train['general_cat'].value_counts().values pct = [("%.2f"%(v*100))+"%"for v in (y/len(train))] trace1 = go.Bar(x=x, y=y, text=pct) layout = dict(title= 'Number of Items by Main Category', yaxis = dict(title='Count'), xaxis = dict(title='Category')) fig=dict(data=[trace1], layout=layout) py.iplot(fig) x = train['subcat_1'].value_counts().index.values.astype('str')[:15] y = train['subcat_1'].value_counts().values[:15] pct = [("%.2f"%(v*100))+"%"for v in (y/len(train))][:15] trace1 = go.Bar(x=x, y=y, text=pct, marker=dict( color = y,colorscale='Portland',showscale=True, reversescale = False )) layout = dict(title= 'Number of Items by Sub Category (Top 15)', yaxis = dict(title='Count'), xaxis = dict(title='SubCategory')) fig=dict(data=[trace1], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown From the pricing (log of price) point of view, all the categories are pretty well distributed, with no category with an extraordinary pricing point ###Code general_cats = train['general_cat'].unique() x = [train.loc[train['general_cat']==cat, 'price'] for cat in general_cats] data = [go.Box(x=np.log(x[i]+1), name=general_cats[i]) for i in range(len(general_cats))] layout = dict(title="Price Distribution by General Category", yaxis = dict(title='Frequency'), xaxis = dict(title='Category')) fig = dict(data=data, layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown **Brand Name** ###Code print("There are %d unique brand names in the training dataset." % train['brand_name'].nunique()) x = train['brand_name'].value_counts().index.values.astype('str')[:10] y = train['brand_name'].value_counts().values[:10] # trace1 = go.Bar(x=x, y=y, # marker=dict( # color = y,colorscale='Portland',showscale=True, # reversescale = False # )) # layout = dict(title= 'Top 10 Brand by Number of Items', # yaxis = dict(title='Brand Name'), # xaxis = dict(title='Count')) # fig=dict(data=[trace1], layout=layout) # py.iplot(fig) ###Output _____no_output_____ ###Markdown **Item Description** It will be more challenging to parse through this particular item since it's unstructured data. Does it mean a more detailed and lengthy description will result in a higher bidding price? We will strip out all punctuations, remove some english stop words (i.e. redundant words such as "a", "the", etc.) and any other words with a length less than 3: ###Code def wordCount(text): # convert to lower case and strip regex try: # convert to lower case and strip regex text = text.lower() regex = re.compile('[' +re.escape(string.punctuation) + '0-9\\r\\t\\n]') txt = regex.sub(" ", text) # tokenize # words = nltk.word_tokenize(clean_txt) # remove words in stop words words = [w for w in txt.split(" ") \ if not w in stop_words.ENGLISH_STOP_WORDS and len(w)>3] return len(words) except: return 0 # add a column of word counts to both the training and test set train['desc_len'] = train['item_description'].apply(lambda x: wordCount(x)) test['desc_len'] = test['item_description'].apply(lambda x: wordCount(x)) train.head() df = train.groupby('desc_len')['price'].mean().reset_index() trace1 = go.Scatter( x = df['desc_len'], y = np.log(df['price']+1), mode = 'lines+markers', name = 'lines+markers' ) layout = dict(title= 'Average Log(Price) by Description Length', yaxis = dict(title='Average Log(Price)'), xaxis = dict(title='Description Length')) fig=dict(data=[trace1], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown We also need to check if there are any missing values in the item description (4 observations don't have a description) andl remove those observations from our training set. ###Code train.item_description.isnull().sum() # remove missing values in item description train = train[pd.notnull(train['item_description'])] # create a dictionary of words for each category cat_desc = dict() for cat in general_cats: text = " ".join(train.loc[train['general_cat']==cat, 'item_description'].values) cat_desc[cat] = tokenize(text) # flat list of all words combined flat_lst = [item for sublist in list(cat_desc.values()) for item in sublist] allWordsCount = Counter(flat_lst) all_top10 = allWordsCount.most_common(20) x = [w[0] for w in all_top10] y = [w[1] for w in all_top10] trace1 = go.Bar(x=x, y=y, text=pct) layout = dict(title= 'Word Frequency', yaxis = dict(title='Count'), xaxis = dict(title='Word')) fig=dict(data=[trace1], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown If we look at the most common words by category, we could also see that, ***size***, ***free*** and ***shipping*** is very commonly used by the sellers, probably with the intention to attract customers, which is contradictory to what we have shown previously that there is little correlation between the two variables `price` and `shipping` (or shipping fees do not account for a differentiation in prices). ***Brand names*** also played quite an important role - it's one of the most popular in all four categories. **Text Processing - Item Description***The following section is based on the tutorial at https://ahmedbesbes.com/how-to-mine-newsfeed-data-and-extract-interactive-insights-in-python.html* **Pre-processing: tokenization**Most of the time, the first steps of an NLP project is to **"tokenize"** your documents, which main purpose is to normalize our texts. The three fundamental stages will usually include: * break the descriptions into sentences and then break the sentences into tokens* remove punctuation and stop words* lowercase the tokens* herein, I will also only consider words that have length equal to or greater than 3 characters ###Code stop = set(stopwords.words('english')) def tokenize(text): """ sent_tokenize(): segment text into sentences word_tokenize(): break sentences into words """ try: regex = re.compile('[' +re.escape(string.punctuation) + '0-9\\r\\t\\n]') text = regex.sub(" ", text) # remove punctuation tokens_ = [word_tokenize(s) for s in sent_tokenize(text)] tokens = [] for token_by_sent in tokens_: tokens += token_by_sent tokens = list(filter(lambda t: t.lower() not in stop, tokens)) filtered_tokens = [w for w in tokens if re.search('[a-zA-Z]', w)] filtered_tokens = [w.lower() for w in filtered_tokens if len(w)>=3] return filtered_tokens except TypeError as e: print(text,e) # apply the tokenizer into the item descriptipn column train['tokens'] = train['item_description'].map(tokenize) test['tokens'] = test['item_description'].map(tokenize) train.reset_index(drop=True, inplace=True) test.reset_index(drop=True, inplace=True) ###Output _____no_output_____ ###Markdown Let's look at the examples of if the tokenizer did a good job in cleaning up our descriptions ###Code for description, tokens in zip(train['item_description'].head(), train['tokens'].head()): print('description:', description) print('tokens:', tokens) print() ###Output _____no_output_____ ###Markdown We could aso use the package `WordCloud` to easily visualize which words has the highest frequencies within each category: ###Code # build dictionary with key=category and values as all the descriptions related. cat_desc = dict() for cat in general_cats: text = " ".join(train.loc[train['general_cat']==cat, 'item_description'].values) cat_desc[cat] = tokenize(text) # find the most common words for the top 4 categories women100 = Counter(cat_desc['Women']).most_common(100) beauty100 = Counter(cat_desc['Beauty']).most_common(100) kids100 = Counter(cat_desc['Kids']).most_common(100) electronics100 = Counter(cat_desc['Electronics']).most_common(100) def generate_wordcloud(tup): wordcloud = WordCloud(background_color='white', max_words=50, max_font_size=40, random_state=42 ).generate(str(tup)) return wordcloud fig,axes = plt.subplots(2, 2, figsize=(30, 15)) ax = axes[0, 0] ax.imshow(generate_wordcloud(women100), interpolation="bilinear") ax.axis('off') ax.set_title("Women Top 100", fontsize=30) ax = axes[0, 1] ax.imshow(generate_wordcloud(beauty100)) ax.axis('off') ax.set_title("Beauty Top 100", fontsize=30) ax = axes[1, 0] ax.imshow(generate_wordcloud(kids100)) ax.axis('off') ax.set_title("Kids Top 100", fontsize=30) ax = axes[1, 1] ax.imshow(generate_wordcloud(electronics100)) ax.axis('off') ax.set_title("Electronic Top 100", fontsize=30) ###Output _____no_output_____ ###Markdown **Pre-processing: tf-idf** tf-idf is the acronym for **Term Frequency–inverse Document Frequency**. It quantifies the importance of a particular word in relative to the vocabulary of a collection of documents or corpus. The metric depends on two factors: - **Term Frequency**: the occurences of a word in a given document (i.e. bag of words)- **Inverse Document Frequency**: the reciprocal number of times a word occurs in a corpus of documentsThink about of it this way: If the word is used extensively in all documents, its existence within a specific document will not be able to provide us much specific information about the document itself. So the second term could be seen as a penalty term that penalizes common words such as "a", "the", "and", etc. tf-idf can therefore, be seen as a weighting scheme for words relevancy in a specific document. ###Code from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=10, max_features=180000, tokenizer=tokenize, ngram_range=(1, 2)) all_desc = np.append(train['item_description'].values, test['item_description'].values) vz = vectorizer.fit_transform(list(all_desc)) ###Output _____no_output_____ ###Markdown vz is a tfidf matrix where:* the number of rows is the total number of descriptions* the number of columns is the total number of unique tokens across the descriptions ###Code # create a dictionary mapping the tokens to their tfidf values tfidf = dict(zip(vectorizer.get_feature_names(), vectorizer.idf_)) tfidf = pd.DataFrame(columns=['tfidf']).from_dict( dict(tfidf), orient='index') tfidf.columns = ['tfidf'] ###Output _____no_output_____ ###Markdown Below is the 10 tokens with the lowest tfidf score, which is unsurprisingly, very generic words that we could not use to distinguish one description from another. ###Code tfidf.sort_values(by=['tfidf'], ascending=True).head(10) ###Output _____no_output_____ ###Markdown Below is the 10 tokens with the highest tfidf score, which includes words that are a lot specific that by looking at them, we could guess the categories that they belong to: ###Code tfidf.sort_values(by=['tfidf'], ascending=False).head(10) ###Output _____no_output_____ ###Markdown Given the high dimension of our tfidf matrix, we need to reduce their dimension using the Singular Value Decomposition (SVD) technique. And to visualize our vocabulary, we could next use t-SNE to reduce the dimension from 50 to 2. t-SNE is more suitable for dimensionality reduction to 2 or 3. **t-Distributed Stochastic Neighbor Embedding (t-SNE)**t-SNE is a technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets. The goal is to take a set of points in a high-dimensional space and find a representation of those points in a lower-dimensional space, typically the 2D plane. It is based on probability distributions with random walk on neighborhood graphs to find the structure within the data. But since t-SNE complexity is significantly high, usually we'd use other high-dimension reduction techniques before applying t-SNE.First, let's take a sample from the both training and testing item's description since t-SNE can take a very long time to execute. We can then reduce the dimension of each vector from to n_components (50) using SVD. ###Code trn = train.copy() tst = test.copy() trn['is_train'] = 1 tst['is_train'] = 0 sample_sz = 15000 combined_df = pd.concat([trn, tst]) combined_sample = combined_df.sample(n=sample_sz) vz_sample = vectorizer.fit_transform(list(combined_sample['item_description'])) from sklearn.decomposition import TruncatedSVD n_comp=30 svd = TruncatedSVD(n_components=n_comp, random_state=42) svd_tfidf = svd.fit_transform(vz_sample) ###Output _____no_output_____ ###Markdown Now we can reduce the dimension from 50 to 2 using t-SNE! ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, verbose=1, random_state=42, n_iter=500) tsne_tfidf = tsne_model.fit_transform(svd_tfidf) ###Output _____no_output_____ ###Markdown It's now possible to visualize our data points. Note that the deviation as well as the size of the clusters imply little information in t-SNE. ###Code output_notebook() plot_tfidf = bp.figure(plot_width=700, plot_height=600, title="tf-idf clustering of the item description", tools="pan,wheel_zoom,box_zoom,reset,hover,previewsave", x_axis_type=None, y_axis_type=None, min_border=1) combined_sample.reset_index(inplace=True, drop=True) tfidf_df = pd.DataFrame(tsne_tfidf, columns=['x', 'y']) tfidf_df['description'] = combined_sample['item_description'] tfidf_df['tokens'] = combined_sample['tokens'] tfidf_df['category'] = combined_sample['general_cat'] plot_tfidf.scatter(x='x', y='y', source=tfidf_df, alpha=0.7) hover = plot_tfidf.select(dict(type=HoverTool)) hover.tooltips={"description": "@description", "tokens": "@tokens", "category":"@category"} show(plot_tfidf) ###Output _____no_output_____ ###Markdown **K-Means Clustering**K-means clustering obejctive is to minimize the average squared Euclidean distance of the document / description from their cluster centroids. ###Code from sklearn.cluster import MiniBatchKMeans num_clusters = 30 # need to be selected wisely kmeans_model = MiniBatchKMeans(n_clusters=num_clusters, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=0, max_iter=1000) kmeans = kmeans_model.fit(vz) kmeans_clusters = kmeans.predict(vz) kmeans_distances = kmeans.transform(vz) sorted_centroids = kmeans.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(num_clusters): print("Cluster %d:" % i) aux = '' for j in sorted_centroids[i, :10]: aux += terms[j] + ' | ' print(aux) print() ###Output _____no_output_____ ###Markdown In order to plot these clusters, first we will need to reduce the dimension of the distances to 2 using tsne: ###Code # repeat the same steps for the sample kmeans = kmeans_model.fit(vz_sample) kmeans_clusters = kmeans.predict(vz_sample) kmeans_distances = kmeans.transform(vz_sample) # reduce dimension to 2 using tsne tsne_kmeans = tsne_model.fit_transform(kmeans_distances) colormap = np.array(["#6d8dca", "#69de53", "#723bca", "#c3e14c", "#c84dc9", "#68af4e", "#6e6cd5", "#e3be38", "#4e2d7c", "#5fdfa8", "#d34690", "#3f6d31", "#d44427", "#7fcdd8", "#cb4053", "#5e9981", "#803a62", "#9b9e39", "#c88cca", "#e1c37b", "#34223b", "#bdd8a3", "#6e3326", "#cfbdce", "#d07d3c", "#52697d", "#194196", "#d27c88", "#36422b", "#b68f79"]) #combined_sample.reset_index(drop=True, inplace=True) kmeans_df = pd.DataFrame(tsne_kmeans, columns=['x', 'y']) kmeans_df['cluster'] = kmeans_clusters kmeans_df['description'] = combined_sample['item_description'] kmeans_df['category'] = combined_sample['general_cat'] #kmeans_df['cluster']=kmeans_df.cluster.astype(str).astype('category') plot_kmeans = bp.figure(plot_width=700, plot_height=600, title="KMeans clustering of the description", tools="pan,wheel_zoom,box_zoom,reset,hover,previewsave", x_axis_type=None, y_axis_type=None, min_border=1) source = ColumnDataSource(data=dict(x=kmeans_df['x'], y=kmeans_df['y'], color=colormap[kmeans_clusters], description=kmeans_df['description'], category=kmeans_df['category'], cluster=kmeans_df['cluster'])) plot_kmeans.scatter(x='x', y='y', color='color', source=source) hover = plot_kmeans.select(dict(type=HoverTool)) hover.tooltips={"description": "@description", "category": "@category", "cluster":"@cluster" } show(plot_kmeans) ###Output _____no_output_____ ###Markdown **Latent Dirichlet Allocation**Latent Dirichlet Allocation (LDA) is an algorithms used to discover the topics that are present in a corpus.> LDA starts from a fixed number of topics. Each topic is represented as a distribution over words, and each document is then represented as a distribution over topics. Although the tokens themselves are meaningless, the probability distributions over words provided by the topics provide a sense of the different ideas contained in the documents.> > Reference: https://medium.com/intuitionmachine/the-two-paths-from-natural-language-processing-to-artificial-intelligence-d5384ddbfc18Its input is a **bag of words**, i.e. each document represented as a row, with each columns containing the count of words in the corpus. We are going to use a powerful tool called pyLDAvis that gives us an interactive visualization for LDA. ###Code cvectorizer = CountVectorizer(min_df=4, max_features=180000, tokenizer=tokenize, ngram_range=(1,2)) cvz = cvectorizer.fit_transform(combined_sample['item_description']) lda_model = LatentDirichletAllocation(n_components=20, learning_method='online', max_iter=20, random_state=42) X_topics = lda_model.fit_transform(cvz) n_top_words = 10 topic_summaries = [] topic_word = lda_model.components_ # get the topic words vocab = cvectorizer.get_feature_names() for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1] topic_summaries.append(' '.join(topic_words)) print('Topic {}: {}'.format(i, ' | '.join(topic_words))) # reduce dimension to 2 using tsne tsne_lda = tsne_model.fit_transform(X_topics) unnormalized = np.matrix(X_topics) doc_topic = unnormalized/unnormalized.sum(axis=1) lda_keys = [] for i, tweet in enumerate(combined_sample['item_description']): lda_keys += [doc_topic[i].argmax()] lda_df = pd.DataFrame(tsne_lda, columns=['x','y']) lda_df['description'] = combined_sample['item_description'] lda_df['category'] = combined_sample['general_cat'] lda_df['topic'] = lda_keys lda_df['topic'] = lda_df['topic'].map(int) plot_lda = bp.figure(plot_width=700, plot_height=600, title="LDA topic visualization", tools="pan,wheel_zoom,box_zoom,reset,hover,previewsave", x_axis_type=None, y_axis_type=None, min_border=1) source = ColumnDataSource(data=dict(x=lda_df['x'], y=lda_df['y'], color=colormap[lda_keys], description=lda_df['description'], topic=lda_df['topic'], category=lda_df['category'])) plot_lda.scatter(source=source, x='x', y='y', color='color') hover = plot_kmeans.select(dict(type=HoverTool)) hover = plot_lda.select(dict(type=HoverTool)) hover.tooltips={"description":"@description", "topic":"@topic", "category":"@category"} show(plot_lda) def prepareLDAData(): data = { 'vocab': vocab, 'doc_topic_dists': doc_topic, 'doc_lengths': list(lda_df['len_docs']), 'term_frequency':cvectorizer.vocabulary_, 'topic_term_dists': lda_model.components_ } return data ###Output _____no_output_____ ###Markdown *Note: It's a shame that by putting the HTML of the visualization using pyLDAvis, it will distort the layout of the kernel, I won't upload in here. But if you follow the below code, there should be an HTML file generated with very interesting interactive bubble chart that visualizes the space of your topic clusters and the term components within each topic.*![](https://farm5.staticflickr.com/4536/38709272151_7128c577ee_h.jpg) ###Code import pyLDAvis lda_df['len_docs'] = combined_sample['tokens'].map(len) ldadata = prepareLDAData() pyLDAvis.enable_notebook() prepared_data = pyLDAvis.prepare(**ldadata) ###Output _____no_output_____ ###Markdown ###Code import IPython.display from IPython.core.display import display, HTML, Javascript #h = IPython.display.display(HTML(html_string)) #IPython.display.display_HTML(h) ###Output _____no_output_____
HW2/HW2.ipynb
###Markdown HW2: Khám phá dữ liệu, tiền xử lý, phân tích đơn giản**Vì đây là bài tập về Pandas nên yêu cầu là không được dùng vòng lặp**(Cập nhật lần cuối: 25/07/2021)Họ tên: Trần Đại ChíMSSV: 18127070 --- Cách làm bài và nộp bài (bạn cần đọc kỹ) &9889; Bạn lưu ý là mình sẽ dùng chương trình hỗ trợ chấm bài nên bạn cần phải tuân thủ chính xác qui định mà mình đặt ra, nếu không rõ thì hỏi, chứ không nên tự tiện làm theo ý của cá nhân.**Cách làm bài**Bạn sẽ làm trực tiếp trên file notebook này. Đầu tiên, bạn điền họ tên và MSSV vào phần đầu file ở bên trên. Trong file, bạn làm bài ở những chỗ có ghi là:```python YOUR CODE HEREraise NotImplementedError()```hoặc đối với những phần code không bắt buộc thì là:```python YOUR CODE HERE (OPTION)```hoặc đối với markdown cell thì là:```markdownYOUR ANSWER HERE```Tất nhiên, khi làm thì bạn xóa dòng `raise NotImplementedError()` đi.Đối những phần yêu cầu code thì thường ở ngay phía dưới sẽ có một (hoặc một số) cell chứa các bộ test để giúp bạn biết đã code đúng hay chưa; nếu chạy cell này không có lỗi gì thì có nghĩa là qua được các bộ test. Trong một số trường hợp, các bộ test có thể sẽ không đầy đủ; nghĩa là, nếu không qua được test thì là code sai, nhưng nếu qua được test thì chưa chắc đã đúng.Trong khi làm bài, bạn có thể cho in ra màn hình, tạo thêm các cell để test. Nhưng khi nộp bài thì bạn xóa các cell mà bạn tự tạo, xóa hoặc comment các câu lệnh in ra màn hình. Bạn lưu ý không được tự tiện xóa các cell hay sửa code của Thầy (trừ những chỗ được phép sửa như đã nói ở trên).Trong khi làm bài, thường xuyên `Ctrl + S` để lưu lại bài làm của bạn, tránh mất mát thông tin.*Nên nhớ mục tiêu chính ở đây là học, học một cách chân thật. Bạn có thể thảo luận ý tưởng với bạn khác cũng như tham khảo các nguồn trên mạng, nhưng sau cùng code và bài làm phải là của bạn, dựa trên sự hiểu thật sự của bạn. Khi tham khảo các nguồn trên mạng thì bạn cần ghi rõ nguồn trong bài làm. Bạn không được tham khảo bài làm của các bạn năm trước (vì nếu làm vậy thì bao giờ bạn mới có thể tự mình suy nghĩ để giải quyết vấn đề); sau khi kết thúc môn học, bạn cũng không được đưa bài làm cho các bạn khóa sau hoặc public bài làm trên Github (vì nếu làm vậy thì sẽ ảnh hưởng tới việc học của các bạn khóa sau). Nếu bạn có thể làm theo những gì mình nói thì điểm của bạn có thể sẽ không cao nhưng bạn sẽ có được những bước tiến thật sự. Trong trường hợp bạn vi phạm những điều mình nói ở trên thì sẽ bị 0 điểm cho toàn bộ môn học.***Cách nộp bài**Khi chấm bài, đầu tiên mình sẽ chọn `Kernel` - `Restart & Run All`, để restart và chạy tất cả các cell trong notebook của bạn; do đó, trước khi nộp bài, bạn nên chạy thử `Kernel` - `Restart & Run All` để đảm bảo mọi chuyện diễn ra đúng như mong đợi.Sau đó, bạn tạo thư mục nộp bài theo cấu trúc sau:- Thư mục `MSSV` (vd, nếu bạn có MSSV là 1234567 thì bạn đặt tên thư mục là `1234567`) - File `HW2.ipynb` (không cần nộp các file khác)Cuối cùng, bạn nén thư mục `MSSV` này lại và nộp ở link trên moodle. Đuôi của file nén phải là .zip (chứ không được .rar hay gì khác).Bạn lưu ý tuân thủ chính xác qui định nộp bài ở trên. --- Môi trường code Ta thống nhất trong môn này: dùng phiên bản các package như trong file "min_ds-env.yml" (file này đã được cập nhật một số lần, file mới nhất ở đầu có dòng: "Last update: 24/06/2021"). Cách tạo ra môi trường code từ file "min_ds-env.yml" đã được nói ở file "02_BeforeClass-Notebook_Python.pdf". Check môi trường code: ###Code import sys sys.executable ###Output _____no_output_____ ###Markdown Nếu không có vấn đề gì thì file chạy python sẽ là file của môi trường code "min_ds-env". --- Import ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd # YOUR CODE HERE (OPTION) # Nếu cần các thư viện khác thì bạn có thể import ở đây ###Output c:\program files\python36\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs: c:\program files\python36\lib\site-packages\numpy\.libs\libopenblas.TXA6YQSD3GCQQC22GEQ54J2UDCXDXHWN.gfortran-win_amd64.dll c:\program files\python36\lib\site-packages\numpy\.libs\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll stacklevel=1) ###Markdown --- Thu thập dữ liệu Dữ liệu được sử dụng trong bài tập này là dữ liệu khảo sát các lập trình viên của trang StackOverflow. Mình download dữ liệu [ở đây](https://drive.google.com/file/d/1dfGerWeWkcyQ9GX9x20rdSGj7WtEpzBB/view) và có bỏ đi một số cột để đơn giản hóa. Theo mô tả trong file "README_2020.txt" của StackOverflow:>The enclosed data set is the full, cleaned results of the 2020 Stack Overflow Developer Survey. Free response submissions and personally identifying information have been removed from the results to protect the privacy of respondents. There are three files besides this README:>>1. survey_results_public.csv - CSV file with main survey results, one respondent per row and one column per answer>2. survey_results_schema.csv - CSV file with survey schema, i.e., the questions that correspond to each column name>3. so_survey_2020.pdf - PDF file of survey instrument>>The survey was fielded from February 5 to February 28, 2020. The median time spent on the survey for qualified responses was 16.6 minutes.>>Respondents were recruited primarily through channels owned by Stack Overflow. The top 5 sources of respondents were onsite messaging, blog posts, email lists, Meta posts, banner ads, and social media posts. Since respondents were recruited in this way, highly engaged users on Stack Overflow were more likely to notice the links for the survey and click to begin it.File "survey_results_public-short.csv" mà mình đính kèm là phiên bản đơn giản hóa của file "survey_results_public.csv" (từ 61 cột, mình bỏ xuống còn 29 cột). Đây là file dữ liệu chính mà bạn sẽ làm trong bài tập này. Ngoài ra, mình còn đính kèm 2 file phụ: (1) file "survey_results_schema-short.csv" là file cho biết ý nghĩa của các cột, và (2) file "so_survey_2020.pdf" là file khảo sát gốc của StackOverflow.Để ý: - Dữ liệu này không đại diện được cho cộng đồng lập trình viên trên toàn thế giới, mà chỉ giới hạn trong tập những lập trình viên thực hiện khảo sát của StackOverflow. Những câu trả lời có được thông qua tập dữ liệu này cũng sẽ bị giới hạn trong phạm vi đó.- Dữ liệu có đúng không? Về cơ bản là ta không biết được. Ở đây, mục đích chính là học qui trình Khoa Học Dữ Liệu và các câu lệnh của Pandas nên ta sẽ **giả định** phần lớn dữ liệu là đúng và tiếp tục làm.Cũng theo file "README_2020.txt", dữ liệu này được StackOverflow public với license như sau:>This database - The Public 2020 Stack Overflow Developer Survey Results - is made available under the Open Database License (ODbL): http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/>>TLDR: You are free to share, adapt, and create derivative works from The Public 2020 Stack Overflow Developer Survey Results as long as you attribute Stack Overflow, keep the database open (if you redistribute it), and continue to share-alike any adapted database under the ODbl. --- Khám phá dữ liệu Đọc dữ liệu từ file (0.25đ) Đầu tiên, bạn viết code để đọc dữ liệu từ file "survey_results_public-short.csv" và lưu kết quả vào DataFrame `survey_df`; ta thống nhất là sẽ để file dữ liệu này cùng cấp với file notebook và khi đọc file thì chỉ truyền vào tên của file. Ngoài ra, bạn cũng cần cho cột `Respondent` (id của người làm khảo sát) làm cột index của `survey_df`. ###Code # YOUR CODE HERE #raise NotImplementedError() survey_df = pd.read_csv('survey_results_public-short.csv', index_col='Respondent') # TEST survey_df.head() ###Output _____no_output_____ ###Markdown Dữ liệu có bao nhiêu dòng và bao nhiêu cột? (0.25đ) Kế đến, bạn tính số dòng và số cột của DataFrame `survey_df` và lần lượt lưu vào biến `num_rows` và `num_cols`. ###Code # YOUR CODE HERE #raise NotImplementedError() num_rows = survey_df.shape[0] num_cols = survey_df.shape[1] print(str(num_rows) + ', ' + str(num_cols)) # TEST assert num_rows == 64461 assert num_cols == 28 ###Output _____no_output_____ ###Markdown Mỗi dòng có ý nghĩa gì? Có vấn đề các dòng có ý nghĩa khác nhau không? Theo file "README_2020.txt" cũng như theo quan sát sơ bộ về dữ liệu, mỗi dòng trong DataFrame `survey_df` cho biết kết quả làm khảo sát của một người. Có vẻ không có vấn đề các dòng có ý nghĩa khác nhau. Dữ liệu có các dòng bị lặp không? (0.25đ) Kế đến, bạn tính số dòng có index (id của người làm khảo sát) bị lặp và lưu vào biến `num_duplicated_rows`. Trong nhóm các dòng có index giống nhau thì dòng đầu tiên không tính là bị lặp. ###Code # YOUR CODE HERE #raise NotImplementedError() num_duplicated_rows = survey_df.index.duplicated().sum() print(num_duplicated_rows) # TEST assert num_duplicated_rows == 0 ###Output _____no_output_____ ###Markdown Mỗi cột có ý nghĩa gì? (0.25đ) Để xem ý nghĩa của mỗi cột thì:- Trước tiên, bạn cần đọc file "survey_results_schema-short.csv" vào DataFrame `col_meaning_df`; bạn cũng cần cho cột "Column" làm cột index. - Sau đó, bạn chỉ cần hiển thị DataFrame `col_meaning_df` ra để xem (vụ này khó nên ở dưới mình đã làm cho bạn ở cell có dòng " TEST" 😉). Tuy nhiên, bạn sẽ thấy ở cột "QuestionText": các chuỗi mô tả bị cắt do quá dài. Do đó, trước khi hiển thị DataFrame `col_meaning_df`, bạn cũng cần chỉnh sao đó để các chuỗi mô tả không bị cắt (vụ này bạn tự search Google, gợi ý: bạn sẽ dùng đến câu lệnh `pd.set_option`). ###Code # YOUR CODE HERE #raise NotImplementedError() pd.set_option('display.max_colwidth', None) #show full text not cut col_meaning_df = pd.read_csv('survey_results_schema-short.csv', index_col='Column') # TEST col_meaning_df ###Output _____no_output_____ ###Markdown Trước khi đi tiếp, bạn nên đọc kết quả hiển thị ở trên và đảm bảo là bạn đã hiểu ý nghĩa của các cột. Để hiểu ý nghĩa của cột, có thể bạn sẽ cần xem thêm các giá trị của cột bên DataFrame `survey_df`. Mỗi cột hiện đang có kiểu dữ liệu gì? Có cột nào có kiểu dữ liệu chưa phù hợp để có thể xử lý tiếp không? (0.25đ) Kế đến, bạn tính kiểu dữ liệu (dtype) của mỗi cột trong DataFrame `survey_df` và lưu kết quả vào Series `dtypes` (Series này có index là tên cột). ###Code # YOUR CODE HERE #raise NotImplementedError() dtypes = survey_df.dtypes dtypes # TEST float_cols = set(dtypes[(dtypes==np.float32) | (dtypes==np.float64)].index) assert float_cols == {'Age', 'ConvertedComp', 'WorkWeekHrs'} object_cols = set(dtypes[dtypes == object].index) assert len(object_cols) == 25 ###Output _____no_output_____ ###Markdown Như bạn có thể thấy, cột "YearsCode" và "YearsCodePro" nên có kiểu dữ liệu số, nhưng hiện giờ đang có kiểu dữ liệu object. Ta hãy thử xem thêm về các giá trị 2 cột này. ###Code survey_df['YearsCode'].unique() survey_df['YearsCodePro'].unique() ###Output _____no_output_____ ###Markdown Ta nên đưa 2 cột này về dạng số để có thể tiếp tục khám phá (tính min, median, max, ...). --- Tiền xử lý (0.5đ) Bạn sẽ thực hiện tiền xử lý để chuyển 2 cột "YearsCode" và "YearsCodePro" về dạng số (float). Trong đó: "Less than 1 year" $\to$ 0, "More than 50 years" $\to$ 51. Sau khi chuyển thì `survey_df.dtypes` sẽ thay đổi. ###Code # YOUR CODE HERE #raise NotImplementedError() list_convert = {"Less than 1 year":"0", "More than 50 years":"51"} #survey_df['YearsCode'] = survey_df['YearsCode'].map(list_convert).astype(float) #survey_df['YearsCodePro'] = survey_df['YearsCodePro'].map(list_convert).astype(float) #use lambda to avoid replacing other value not in list_convert survey_df['YearsCode'] = survey_df['YearsCode'].apply(lambda ele: list_convert[ele] if ele in list_convert else ele).astype(float) survey_df['YearsCodePro'] = survey_df['YearsCodePro'].apply(lambda ele: list_convert[ele] if ele in list_convert else ele).astype(float) survey_df.dtypes # TEST assert survey_df['YearsCode'].dtype in [np.float32, np.float64] assert survey_df['YearsCodePro'].dtype in [np.float32, np.float64] ###Output _____no_output_____ ###Markdown --- Quay lại bước khám phá dữ liệu Với mỗi cột có kiểu dữ liệu dạng số, các giá trị được phân bố như thế nào? (1đ)(Trong đó: phần tính các mô tả của mỗi cột chiếm 0.5đ, phần tính số lượng giá trị không hợp lệ của mỗi cột chiếm 0.5đ) Với các cột có kiểu dữ liệu số, bạn sẽ tính:- Tỉ lệ % (từ 0 đến 100) các giá trị thiếu - Giá trị min- Giá trị lower quartile (phân vị 25)- Giá trị median (phân vị 50)- Giá trị upper quartile (phân vị 75)- Giá trị maxBạn sẽ lưu kết quả vào DataFrame `nume_col_info_df`, trong đó: - Tên của các cột là tên của các cột số trong `survey_df`- Tên của các dòng là: "missing_percentage", "min", "lower_quartile", "median", "upper_quartile", "max" Để dễ nhìn, tất cả các giá trị bạn đều làm tròn với 1 chữ số thập phân bằng phương thức `.round(1)`. ###Code # YOUR CODE HERE #raise NotImplementedError() col_only_numeric = survey_df.select_dtypes(include=['float32', 'float64']) #select just column float nume_col_info_df = col_only_numeric.describe().transpose().drop(columns=['mean', 'std']) #remove 2 rows mean and std nume_col_info_df['count'] = survey_df.isnull().sum() * 100.0 / len(survey_df) #calc % missing my_dict_info = {'count': 'missing_percentage', '25%': 'lower_quartile', '50%': 'median', '75%': 'upper_quartile'} nume_col_info_df = nume_col_info_df.rename(columns=my_dict_info).round(1).transpose() #rename and round nume_col_info_df # TEST assert nume_col_info_df.shape == (6, 5) data = nume_col_info_df.loc[['missing_percentage', 'min', 'lower_quartile', 'median', 'upper_quartile', 'max'], ['Age', 'ConvertedComp', 'WorkWeekHrs', 'YearsCode', 'YearsCodePro']].values correct_data = np.array([[ 29.5, 46.1, 36.2, 10.5, 28.1], [ 1. , 0. , 1. , 0. , 0. ], [ 24. , 24648. , 40. , 6. , 3. ], [ 29. , 54049. , 40. , 10. , 6. ], [ 35. , 95000. , 44. , 17. , 12. ], [ 279. , 2000000. , 475. , 51. , 51. ]]) assert np.array_equal(data, correct_data) ###Output _____no_output_____ ###Markdown **Có giá trị không hợp lệ trong mỗi cột không? (không xét giá trị thiếu)**- Cột "Age": bạn hãy tính số lượng giá trị không hợp lệ của cột "Age" (< giá trị tương ứng trong cột "YearsCode" HOẶC < giá trị tương ứng trong cột "YearsCodePro") và lưu kết quả vào biến `num_invalid_Age_vals`.- Cột "WorkWeekHrs" (số giờ làm việc trung bình một tuần): ta thấy max là 475 giờ! Trong khi đó, 7 ngày * 24 giờ = 168 giờ! Bạn hãy tính số lượng giá trị không hợp lệ của cột "WorkWeekHrs" (> 24 * 7) và lưu kết quả vào biến `num_invalid_WorkWeekHrs`.- Cột "YearsCode": bạn hãy tính số lượng giá trị không hợp lệ của cột "YearsCode" ( giá trị tương ứng trong cột "Age") và lưu kết quả vào biến `num_invalid_YearsCode`.- Cột "YearsCodePro": bạn hãy tính số lượng giá trị không hợp lệ của cột "YearsCodePro" (> giá trị tương ứng trong cột "YearsCode" HOẶC > giá trị tương ứng trong cột "Age") và lưu kết quả vào biến `num_invalid_YearsCodePro`. ###Code # YOUR CODE HERE #raise NotImplementedError() #use logic OR to return all rows where A = ... or B = ... not_valid_age = (survey_df['Age'] < survey_df['YearsCode']) | (survey_df['Age'] < survey_df['YearsCodePro']) num_invalid_Age_vals = len(survey_df[not_valid_age]) not_valid_workweekhrs = survey_df['WorkWeekHrs'] > 24*7 num_invalid_WorkWeekHrs_vals = len(survey_df[not_valid_workweekhrs]) not_valid_yearscode = (survey_df['YearsCode'] < survey_df['YearsCodePro']) | (survey_df['YearsCode'] > survey_df['Age']) num_invalid_YearsCode_vals = len(survey_df[not_valid_yearscode]) not_valid_yearscodepro = (survey_df['YearsCodePro'] > survey_df['YearsCode']) | (survey_df['YearsCodePro'] > survey_df['Age']) num_invalid_YearsCodePro_vals = len(survey_df[not_valid_yearscodepro]) print(num_invalid_WorkWeekHrs_vals) print(num_invalid_Age_vals) print(num_invalid_YearsCode_vals) print(num_invalid_YearsCodePro_vals) # TEST assert num_invalid_WorkWeekHrs_vals == 62 assert num_invalid_Age_vals == 16 assert num_invalid_YearsCode_vals == 499 assert num_invalid_YearsCodePro_vals == 486 ###Output _____no_output_____ ###Markdown Do số lượng các giá trị không hợp lệ cũng khá ít nên ta có thể tiền xử lý bằng cách xóa các dòng chứa các giá trị không hợp lệ. --- Tiền xử lý (0.5đ) Bạn sẽ thực hiện tiền xử lý để xóa đi các dòng của DataFrame `survey_df` mà chứa ít nhất là một giá trị không hợp lệ. Sau khi tiền xử lý thì `survey_df` sẽ thay đổi. ###Code # YOUR CODE HERE #raise NotImplementedError() #use logic not to inverse #survey_df = survey_df[~not_valid_age] #survey_df = survey_df[~not_valid_workweekhrs] #survey_df = survey_df[~not_valid_yearscode] #survey_df = survey_df[~not_valid_yearscodepro] #convert all above to boolean to avoid warning boolean series key will be reindexed to match dataFrame index survey_df = survey_df[~(not_valid_age | not_valid_workweekhrs | not_valid_yearscode | not_valid_yearscodepro)] print(len(survey_df)) # TEST assert len(survey_df) == 63900 ###Output _____no_output_____ ###Markdown --- Quay lại bước khám phá dữ liệu Với mỗi cột có kiểu dữ liệu không phải dạng số, các giá trị được phân bố như thế nào? (1đ) Với các cột có kiểu dữ liệu không phải số, bạn sẽ tính:- Tỉ lệ % (từ 0 đến 100) các giá trị thiếu - Số lượng các giá trị (các giá trị ở đây là các giá trị khác nhau và ta không xét giá trị thiếu): với cột mà ứng với câu hỏi dạng multichoice (ví dụ, cột "DevType"), mỗi giá trị có thể chứa nhiều choice (các choice được phân tách bởi dấu chấm phẩy), và việc đếm trực tiếp các giá trị không có nhiều ý nghĩa lắm vì số lượng tổ hợp các choice là khá nhiều; một cách khác tốt hơn mà bạn sẽ làm là đếm số lượng các choice- Tỉ lệ % (từ 0 đến 100) của mỗi giá trị được sort theo tỉ lệ % giảm dần (ta không xét giá trị thiếu, tỉ lệ là tỉ lệ so với số lượng các giá trị không thiếu): bạn dùng dictionary để lưu, key là giá trị, value là tỉ lệ %; với cột mà ứng với câu hỏi dạng multichoice, cách làm tương tự như ở trênBạn sẽ lưu kết quả vào DataFrame `cate_col_info_df`, trong đó: - Tên của các cột là tên của các cột không phải số trong `survey_df`- Tên của các dòng là: "missing_percentage", "num_values", "value_percentages" Để dễ nhìn, tất cả các giá trị bạn đều làm tròn với 1 chữ số thập phân bằng phương thức `.round(1)`.Gợi ý: có thể bạn sẽ muốn dùng [phương thức `explode`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.explode.html). ###Code # Các cột ứng với câu hỏi khảo sát multichoice multichoice_cols = ['DevType', 'Gender', 'JobFactors', 'LanguageWorkedWith', 'LanguageDesireNextYear', 'MiscTechWorkedWith', 'MiscTechDesireNextYear', 'NEWCollabToolsWorkedWith', 'NEWCollabToolsDesireNextYear', 'PlatformWorkedWith', 'PlatformDesireNextYear', 'NEWStuck'] pd.set_option('display.max_colwidth', 100) # Để dễ nhìn pd.set_option('display.max_columns', None) # Để dễ nhìn # YOUR CODE HERE #raise NotImplementedError() exclude_numeric = survey_df.select_dtypes(exclude=['float32', 'float64']) #exclude numeric first missing_percentage = exclude_numeric.isnull().sum() * 100.0 / len(survey_df) #calc % missing missing_percentage = pd.DataFrame(missing_percentage.round(1)) cate_col_info_df = missing_percentage.rename(columns={0:"missing_percentage"}) #rename column cate_col_info_df get_name_cate_col_info_df = cate_col_info_df.transpose().columns get_name_cate_col_info_df #create 2 dict for num_values and value_percentages num_values = {} value_percentages = {} for elem in get_name_cate_col_info_df: #first process column with multi-choice if elem in multichoice_cols: exclude_numeric[elem] = exclude_numeric[elem].str.split(';') #split by delimeter for columns not numeric col_explode = exclude_numeric[elem].explode() #explode after spliting count_value_after_explode = col_explode.value_counts() #count after exploding num_values[elem] = len(count_value_after_explode.index.values) #calculate num_values #calculate value_percentages value_percentages[elem] = {} #init empty dict for col with multi chocie for i in count_value_after_explode.index.values: #ex: value_percentages[devType][Developer, back-end] = count_value_after_explode[Developer, backend]*100.0/sum col after exploding not null... value_percentages[elem][i] = (count_value_after_explode[i]*100.0/(~col_explode.isnull()).sum()).round(1) #second process column without multi-choice else: # calculate num_values for others count_value_after_explode1 = exclude_numeric[elem].value_counts() #count without explode with no multi chocie num_values[elem] = len(count_value_after_explode1.index.values) # calculate value_ratios for others value_percentages[elem] = {} #init empty dict for col without multi chocie for i in count_value_after_explode1.index.values: #change to sum col without exploding not null value_percentages[elem][i] = (count_value_after_explode1[i]*100.0/(~exclude_numeric[elem].isnull()).sum()).round(1) #num_values #value_percentages #add values of num_values to list l1 l1 = [] for key, value in num_values.items(): l1.append(value) print(l1) #add values of num_values to list l2 l2 = [] for key1, value1 in value_percentages.items(): l2.append(tuple((key1, value1))) l2 #merge missing_percentage with num_values df1 = cate_col_info_df.transpose() df_tmp1 = pd.DataFrame([l1], columns=get_name_cate_col_info_df, index=['num_values']) #add list l1 to dataframe df1 = df1.append(df_tmp1) df1 #add l2 to dataframe and change 0 to value_percentages df_tmp2 = pd.DataFrame(l2, columns=['0', 'value_percentages'], index=value_percentages.keys()) df_tmp2 = df_tmp2.drop(columns=['0']) #drop redundant column 0 df_tmp2 = df_tmp2.transpose() df1 = df1.append(df_tmp2) cate_col_info_df = df1 cate_col_info_df # TEST c = cate_col_info_df['MainBranch'] assert c.loc['missing_percentage'] == 0.5 assert c.loc['num_values'] == 5 assert c.loc['value_percentages']['I am a developer by profession'] == 73.5 c = cate_col_info_df['Hobbyist'] assert c.loc['missing_percentage'] == 0.1 assert c.loc['num_values'] == 2 assert c.loc['value_percentages']['Yes'] == 78.2 c = cate_col_info_df['DevType'] assert c.loc['missing_percentage'] == 23.6 assert c.loc['num_values'] == 23 assert c.loc['value_percentages']['Academic researcher'] == 2.2 c = cate_col_info_df['PlatformWorkedWith'] assert c.loc['missing_percentage'] == 16.5 assert c.loc['num_values'] == 16 assert c.loc['value_percentages']['Docker'] == 10.6 ###Output _____no_output_____ ###Markdown --- Đặt câu hỏi Sau khi khám phá dữ liệu, ta đã hiểu hơn về dữ liệu. Bây giờ, ta hãy xem thử có câu hỏi nào có thể được trả lời bằng dữ liệu này.**Một câu hỏi có thể có là:** Platform nào (Windows, Linux, Docker, AWS, ...) được yêu thích nhất, platform nào được yêu thích nhì, platform nào được yêu thích ba, ...?Một platform được xem là được yêu thích nếu một người đã dùng platform này (cột "PlatformWorkedWith") và muốn tiếp tục dùng platform trong năm kế (cột "PlatformDesireNextYear").**Trả lời được câu hỏi này sẽ** phần nào giúp ta định hướng là nên tập trung học platform nào để có thể chuẩn bị cho tương lai (mình nói "phần nào" vì ở đây dữ liệu chỉ giới hạn trong phạm vi những người làm khảo sát của StackOverflow). --- Tiền xử lý Nếu bạn thấy cần thực hiện thêm thao tác tiền xử lý để chuẩn bị dữ liệu cho bước phân tích thì bạn làm ở đây. Bước này là không bắt buộc. ###Code # YOUR CODE HERE (OPTION) ###Output _____no_output_____ ###Markdown --- Phân tích dữ liệu (2.25đ) Bây giờ, bạn sẽ thực hiện phân tích dữ liệu để trả lời cho câu hỏi ở trên. Cụ thể các bước như sau:- Bước 1: tính Series `most_loved_platforms`, trong đó: - Index là tên flatform (ở bước khám phá dữ liệu, bạn đã thấy có tất cả 16 platform) - Data là tỉ lệ % (từ 0 đến 100, được làm tròn với một chữ số thập phân bằng phương thức `round(1)`) được yêu thích (được sort giảm dần) - Bước 2: từ Series `most_loved_platforms`, bạn vẽ bar chart: - Bạn cho các bar nằm ngang (cho dễ nhìn) - Bạn đặt tên trục hoành là "Tỉ lệ %" Code bước 1. ###Code # YOUR CODE HERE #raise NotImplementedError() is_platform_favourite_df = survey_df[['PlatformWorkedWith', 'PlatformDesireNextYear']] is_platform_favourite_df.loc[:, 'PlatformWorkedWith'] = is_platform_favourite_df['PlatformWorkedWith'].str.split(';') #first split by delimeter is_platform_favourite_df = is_platform_favourite_df.explode('PlatformWorkedWith').dropna() #explode and drop column NaN is_platform_favourite_df.loc[:, 'PlatformDesireNextYear'] = is_platform_favourite_df['PlatformDesireNextYear'].str.split(';') #first split by delimeter is_platform_favourite_df = is_platform_favourite_df.explode('PlatformDesireNextYear').dropna() #explode and drop column NaN #set rows PlatformDesireNextYear equal PlatformDesireNextYear to count duplicate_platform_df = is_platform_favourite_df[is_platform_favourite_df['PlatformDesireNextYear'] == is_platform_favourite_df['PlatformWorkedWith']] most_loved_platforms = duplicate_platform_df.groupby(['PlatformWorkedWith']).count() most_loved_platforms = most_loved_platforms.sort_values(by="PlatformDesireNextYear", ascending=False) most_loved_platforms['PlatformDesireNextYear'] = ((most_loved_platforms['PlatformDesireNextYear']*100.0)/len(duplicate_platform_df)).round(1) #convert to series for running test most_loved_platforms = most_loved_platforms.iloc[:, 0] most_loved_platforms # TEST assert len(most_loved_platforms) == 16 assert most_loved_platforms.loc['Linux'] == 20.2 assert most_loved_platforms.loc['Windows'] == 14.6 assert most_loved_platforms.loc['Docker'] == 12.3 ###Output _____no_output_____ ###Markdown Code bước 2. ###Code # YOUR CODE HERE #raise NotImplementedError() fig = plt.figure(figsize = (10, 7)) plt.tick_params(labelsize=12) plt.xlabel("Tỉ lệ %", fontsize=15) plt.barh(most_loved_platforms.index, most_loved_platforms.values); ###Output _____no_output_____ ###Markdown Bạn đã hiểu tại sao mình khuyên bạn là nên tập làm quen dần với các câu lệnh của Linux chưa 😉 --- Đặt câu hỏi của bạn (1.5đ) Bây giờ, đến lượt bạn phải tự suy nghĩ và đưa ra câu hỏi mà có thể trả lời bằng dữ liệu. Ngoài việc đưa ra câu hỏi, bạn cũng phải giải thích để người đọc thấy nếu trả lời được câu hỏi thì sẽ có lợi ích gì. Bạn nên sáng tạo một xíu, không nên đưa ra câu hỏi cùng dạng với câu hỏi của mình ở trên. Một câu hỏi có thể có là: Tiền lương trung bình ở các ngôn ngữ lập trình khác nhau, đất nước khác nhau, tình trạng học vấn của người đó... sẽ khác nhau như thế nàoTrả lời được câu hỏi này sẽ phần nào giúp ta định hướng là nên tập trung học ngôn ngữ nào, có nên học lên cao hay không hay là đất nước nào ta nên đến đó để làm việc nếu có cơ hội... để có thể có tiền lương tốt hơn trong tương lai --- Tiền xử lý để chuẩn bị dữ liệu cho bước phân tích để trả lời cho câu hỏi của bạn Phần này là không bắt buộc. ###Code # YOUR CODE HERE (OPTION) #take all necessary columns relate to salary all_cols = ['Country', 'DevType', 'EdLevel', 'Employment', 'LanguageWorkedWith', 'MiscTechWorkedWith', 'NEWCollabToolsWorkedWith', 'NEWLearn', 'NEWOvertime', 'OpSys', 'PlatformWorkedWith', 'Age', 'ConvertedComp', 'WorkWeekHrs', 'YearsCode', 'YearsCodePro'] ###Output _____no_output_____ ###Markdown Đầu tiên, ta sẽ bỏ đi các giá trị null của cột lương là ConvertedComp, sau đó với các cột còn lại là numeric ta sẽ fillna(0) vàtương tự fillna('unk') cho các cột không phải numeric ###Code salary_df = survey_df[all_cols] salary_df = salary_df.dropna(subset=['ConvertedComp']) salary_df[['Age', 'WorkWeekHrs', 'YearsCode', 'YearsCodePro']] = salary_df[['Age', 'WorkWeekHrs', 'YearsCode', 'YearsCodePro']].fillna(0) salary_df.fillna('unk') ###Output _____no_output_____ ###Markdown Các quốc gia có lương trung bình cao nhất thì Mỹ vẫn là 1 quốc gia nổi trội nhất trên thế giới ###Code salary_by_country = salary_df.groupby(['Country'], as_index=False).median()[['Country', 'ConvertedComp']] salary_by_country = salary_by_country.sort_values('ConvertedComp', ascending=False) salary_by_country ###Output _____no_output_____ ###Markdown Về trình độ học vấn thì những người có bằng thạc sĩ hoặc tiến sĩ trở lên sẽ có mức lương trung bình nổi trội hơn ###Code salary_by_edlevel = salary_df.groupby(['EdLevel'], as_index=False).median()[['EdLevel', 'ConvertedComp']] salary_by_edlevel = salary_by_edlevel.sort_values('ConvertedComp', ascending=False) salary_by_edlevel ###Output _____no_output_____ ###Markdown Về các ngôn ngữ lập trình có mức lương trung bình cao nhất thì top 5 là Perl, Scala, Go, Rust và Ruby ###Code salary_by_languagework = salary_df[['ConvertedComp', 'LanguageWorkedWith']] salary_by_languagework.iloc[:, 1] = salary_by_languagework['LanguageWorkedWith'].str.split(';') salary_by_languagework = salary_by_languagework.explode('LanguageWorkedWith') salary_by_languagework1 = salary_by_languagework.groupby(['LanguageWorkedWith'], as_index=False).median()[['LanguageWorkedWith', 'ConvertedComp']] salary_by_languagework1 = salary_by_languagework1.sort_values('ConvertedComp', ascending=False) salary_by_languagework1 ###Output c:\program files\python36\lib\site-packages\pandas\core\indexing.py:1743: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy isetter(ilocs[0], value) ###Markdown --- Phân tích dữ liệu để ra câu trả lời cho câu hỏi của bạn (2đ) ###Code # YOUR CODE HERE #raise NotImplementedError() salary_by_country = salary_by_country.set_index('Country') salary_by_country = salary_by_country.iloc[:, 0] plt.figure(figsize = (14, 32)) plt.tick_params(labelsize=14) plt.barh(salary_by_country.index, salary_by_country.values) plt.xlabel('Mức lương trung bình theo đất nước', fontsize=14); salary_by_edlevel = salary_by_edlevel.set_index('EdLevel') salary_by_edlevel = salary_by_edlevel.iloc[:, 0] plt.barh(salary_by_edlevel.index, salary_by_edlevel.values) plt.xlabel('Mức lương trung bình theo trình độ học vấn', fontsize=14); salary_by_languagework1 = salary_by_languagework1.set_index('LanguageWorkedWith') salary_by_languagework1 = salary_by_languagework1.iloc[:, 0] plt.figure(figsize = (12, 8)) plt.barh(salary_by_languagework1.index, salary_by_languagework1.values) plt.xlabel('Mức lương trung bình theo ngôn ngữ lập trình', fontsize=14); ###Output _____no_output_____ ###Markdown Exercise 2: Neural NetworksIn the previous exercise you implemented a binary classifier with one linear layer on a small portion of CIFAR-10. In this exercise, you will first implement a multi-class logistic regression model followed by a three layer neural network. Submission guidelines:**Zip** all the files in the exercise directory excluding the data. Name the file `ex2_ID.zip`. Read the following instructions carefully:1. This jupyter notebook contains all the step by step instructions needed for this exercise.2. Write **efficient vectorized** code whenever possible. 3. You are responsible for the correctness of your code and should add as many tests as you see fit. Tests will not be graded nor checked.4. Do not change the functions we provided you. 4. Write your functions in the instructed python modules only. All the logic you write is imported and used using this jupyter notebook. You are allowed to add functions as long as they are located in the python modules and are imported properly.5. You are allowed to use functions and methods from the [Python Standard Library](https://docs.python.org/3/library/) and [numpy](https://www.numpy.org/devdocs/reference/) only. Any other imports are forbidden.6. Your code must run without errors. Use `python 3` and `numpy 1.15.4`.7. **Before submitting the exercise, restart the kernel and run the notebook from start to finish to make sure everything works. Code that cannot run will not be tested.**8. Write your own code. Cheating will not be tolerated. 9. Answers to qualitative questions should be written in **markdown** cells (with $\LaTeX$ support). ###Code import os import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (12.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 import platform print("Python version: ", platform.python_version()) print("Numpy version: ", np.__version__) ###Output Python version: 3.7.1 Numpy version: 1.15.4 ###Markdown Logistic RegressionDuring this exercise, you are allowed (and encouraged) to use your code from HW1. Load Data - CIFAR-10The next few cells will download and extract CIFAR-10 into `datasets/cifar10/` - notice you can copy and paste this dataset from the previous exercise or just download it again. The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images. The dataset is divided into five training batches and one test batch, each with 10,000 images. The test batch contains exactly 1,000 randomly-selected images from each class. ###Code from datasets import load_cifar10 URL = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" PATH = 'datasets/cifar10/' # the script will create required directories load_cifar10.maybe_download_and_extract(URL, PATH) CIFAR10_PATH = os.path.join(PATH, 'cifar-10-batches-py') X_train, y_train, X_test, y_test = load_cifar10.load(CIFAR10_PATH) # load the entire data # define a splitting for the data num_training = 49000 num_validation = 1000 num_testing = 1000 # add a validation dataset for hyperparameter optimization mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_validation) X_val = X_test[mask] y_val = y_test[mask] mask = range(num_validation, num_validation+num_testing) X_test = X_test[mask] y_test = y_test[mask] # float64 X_train = X_train.astype(np.float64) X_val = X_val.astype(np.float64) X_test = X_test.astype(np.float64) # subtract the mean from all the images in the batch mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # flatten all the images in the batch (make sure you understand why this is needed) X_train = np.reshape(X_train, newshape=(X_train.shape[0], -1)) X_val = np.reshape(X_val, newshape=(X_val.shape[0], -1)) X_test = np.reshape(X_test, newshape=(X_test.shape[0], -1)) # add a bias term to all images in the batch X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) print(X_train.shape) print(X_val.shape) print(X_test.shape) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def get_batch(X, y, n): rand_items = np.random.randint(0, X.shape[0], size=n) images = X[rand_items] labels = y[rand_items] return X, y def make_random_grid(x, y, n=4): rand_items = np.random.randint(0, x.shape[0], size=n) images = x[rand_items] labels = y[rand_items] grid = np.hstack((np.asarray((vec_2_img(i) + mean_image), dtype=np.int) for i in images)) print(' '.join('%13s' % classes[labels[j]] for j in range(4))) return grid def vec_2_img(x): x = np.reshape(x[:-1], (32, 32, 3)) return x X_batch, y_batch = get_batch(X_test, y_test, 4) plt.imshow(make_random_grid(X_batch, y_batch)); ###Output ship plane dog truck ###Markdown Open the file `functions/classifier.py`. The constructor of the `LogisticRegression` class takes as input the dataset and labels in order to create appropriate parameters. Notice we are using the bias trick and only use the matrix `w` for convenience. Since we already have a (random) model, we can start predicting classes on images. Complete the method `predict` in the `LogisticRegression` class. **5 points**You can use your code from HW1. If you used vectorized code well, you should make very little changes. ###Code from functions.classifier import LogisticRegression classifier = LogisticRegression(X_train, y_train) y_pred = classifier.predict(X_test) X_batch, y_batch = get_batch(X_train, y_train, 4) plt.imshow(make_random_grid(X_batch, y_batch)); print(' '.join('%13s' % classes[y_pred[j]] for j in range(4))) print("model accuracy: ", classifier.calc_accuracy(X_train, y_train)) ###Output model accuracy: 10.481632653061226 ###Markdown Cross-entropyOpen the file `functions/losses.py`. Complete the function `softmax_loss_vectorized` using vectorized code. This function takes as input the weights `W`, data `X`, labels `y` and a regularization term `reg` and outputs the calculated loss as a single number and the gradients with respect to W. Don't forget the regularization. **5 points** ###Code from functions.losses import softmax_loss_vectorized W = np.random.randn(3073, 10) * 0.0001 loss_naive, grad_naive = softmax_loss_vectorized(W, X_val, y_val, 0.00000) print ('loss: %f' % (loss_naive, )) print ('sanity check: %f' % (-np.log(0.1))) # should be close but not the same ###Output loss: 2.394880 sanity check: 2.302585 ###Markdown Inline Question 1:Why do we expect our loss to be close to -log(0.1)? **Explain briefly.****Your answer:** As HW1, W is set to random number so the probability is 1 to number of classes (10). Use the following cell to test your implementation of the gradients. ###Code from functions.losses import grad_check loss, grad = softmax_loss_vectorized(W, X_val, y_val, 1) f = lambda w: softmax_loss_vectorized(W, X_val, y_val, 1)[0] grad_numerical = grad_check(f, W, grad, num_checks=10) from functions.classifier import LogisticRegression logistic = LogisticRegression(X_train, y_train) loss_history = logistic.train(X_train, y_train, learning_rate=1e-7, reg=5e4, num_iters=1500, verbose=True) plt.plot(loss_history) plt.xlabel('Iteration number') plt.ylabel('Loss value') plt.show() print("Training accuracy: ", logistic.calc_accuracy(X_train, y_train)) print("Testing accuracy: ", logistic.calc_accuracy(X_test, y_test)) ###Output Training accuracy: 38.16734693877551 Testing accuracy: 39.900000000000006 ###Markdown Use the validation set to tune hyperparameters by training different models (using the training dataset) and evaluating the performance using the validation dataset. Save the results in a dictionary mapping tuples of the form `(learning_rate, batch_size)` to tuples of the form `(training_accuracy, validation_accuracy)`. Finally, you should evaluate the best model on the testing dataset. ###Code # You are encouraged to experiment with additional values learning_rates = [1e-7, 5e-6] regularization_strengths = [5e4, 1e5, 5e3, 1e2] results = {} best_val = -1 # The highest validation accuracy that we have seen so far. best_logistic = None # The LogisticRegression object that achieved the highest validation score. ################################################################################ # START OF YOUR CODE # ################################################################################ iters = 2000 for learning_rate in learning_rates: for reg_strength in regularization_strengths: log_reg = LogisticRegression(X_train, y_train) log_reg.train(X_train, y_train, learning_rate=learning_rate, reg=reg_strength, num_iters=iters) y_train_pred = log_reg.predict(X_train) acc_train = np.mean(y_train == y_train_pred) y_val_pred = log_reg.predict(X_val) acc_val = np.mean(y_val == y_val_pred) results[(learning_rate, reg_strength)] = (acc_train, acc_val) if best_val < acc_val: best_val = acc_val best_logistic = log_reg ################################################################################ # END OF YOUR CODE # ################################################################################ # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print ('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print ('best validation accuracy achieved during cross-validation: %f' % best_val) test_accuracy = logistic.calc_accuracy(X_test, y_test) print ('Binary logistic regression on raw pixels final test set accuracy: %f' % test_accuracy) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] w = best_logistic.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Neural NetworkThe implementation of linear regression was (hopefully) simple yet not very modular since the layer, loss and gradient were calculated as a single monolithic function. This would become impractical as we move towards bigger models. As a warmup towards `PyTorch`, we want to build networks using a more modular design so that we can implement different layer types in isolation and easily integrate them together into models with different architectures.This logic of isolation & integration is at the heart of all popular deep learning frameworks, and is based on two methods each layer holds - a forward and backward pass. The forward function will receive inputs, weights and other parameters and will return both an output and a cache object storing data needed for the backward pass. The backward pass will receive upstream derivatives and the cache, and will return gradients with respect to the inputs and weights. By implementing several types of layers this way, we will be able to easily combine them to build classifiers with different architectures with relative ease.We will implement a neural network to obtain better results on CIFAR-10. If you were careful, you should have got a classification accuracy of over 38% on the test set using a simple single layer network. However, using multiple layers we could reach around 50% accuracy. Our neural network will be implemented in the file `functions/neural_net.py`. We will train this network using softmax loss and L2 regularization and a ReLU non-linearity after the first two fully connected layers. Fully Connected Layer: Forward Pass.Open the file `functions/layers.py` and implement the function `fc_forward` **7.5 points**. ###Code np.random.seed(42) from functions.layers import * num_instances = 5 input_shape = (11, 7, 3) output_shape = 4 X = np.random.randn(num_instances * np.prod(input_shape)).reshape(num_instances, *input_shape) W = np.random.randn(np.prod(input_shape) * output_shape).reshape(np.prod(input_shape), output_shape) b = np.random.randn(output_shape) out, _ = fc_forward(X, W, b) correct_out = np.array([[16.77132953, 1.43667172, -15.60205534, 7.15789287], [ -8.5994206, 7.59104298, 10.92160126, 17.19394331], [ 4.77874003, 2.25606192, -6.10944859, 14.76954561], [21.21222953, 17.82329258, 4.53431782, -9.88327913], [18.83041801, -2.55273817, 14.08484003, -3.99196171]]) print(np.isclose(out, correct_out, rtol=1e-8).all()) # simple test ###Output True ###Markdown Fully Connected Layer: Backward PassOpen the file `functions/layers.py` and implement the function `fc_backward` **7.5 points**. ###Code np.random.seed(42) x = np.random.randn(10, 2, 3) w = np.random.randn(6, 5) b = np.random.randn(5) dout = np.random.randn(10, 5) dx_num = eval_numerical_gradient_array(lambda x: fc_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array(lambda w: fc_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array(lambda b: fc_forward(x, w, b)[0], b, dout) out, cache = fc_forward(x,w,b) dx, dw, db = fc_backward(dout, cache) np.isclose(dw, dw_num, rtol=1e-8).all() # simple test np.isclose(dx, dx_num, rtol=1e-8).all() # simple test np.isclose(db, db_num, rtol=1e-8).all() # simple test ###Output _____no_output_____ ###Markdown ReLU: Forward PassOpen the file `functions/layers.py` and implement the function `relu_forward` **7.5 points**. ###Code x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4) out, _ = relu_forward(x) correct_out = np.array([[ 0., 0., 0., 0., ], [ 0., 0., 0.04545455, 0.13636364,], [ 0.22727273, 0.31818182, 0.40909091, 0.5, ]]) print(np.isclose(out, correct_out, rtol=1e-8).all()) # simple test ###Output True ###Markdown ReLU: Backward PassOpen the file `functions/layers.py` and implement the function `relu_backward` **7.5 points**. ###Code np.random.seed(42) x = np.random.randn(10, 10) dout = np.random.randn(*x.shape) dx_num = eval_numerical_gradient_array(lambda x: relu_forward(x)[0], x, dout) xx, cache = relu_forward(x) dx = relu_backward(dout, cache) np.isclose(dx, dx_num, rtol=1e-8).all() # simple test ###Output _____no_output_____ ###Markdown **Optional**: you are given two helper functions in `functions/layers.py` - `fc_relu_forward` and `fc_relu_backward`. You might find it beneficial to use dedicated functions to calculate the forward and backward outputs of a fully connected layer immediately followed by a ReLU. Building the NetworkFirst, notice that we are leaving behind the bias trick and removing the bias from each image. ###Code X_train = np.array([x[:-1] for x in X_train]) X_val = np.array([x[:-1] for x in X_val]) X_test = np.array([x[:-1] for x in X_test]) print(X_train.shape) print(X_val.shape) print(X_test.shape) ###Output (49000, 3072) (1000, 3072) (1000, 3072) ###Markdown Open the file `functions/neural_net.py` and complete the class `ThreeLayerNet`. All the implementation details are available in the file itself. Read the documentation carefully since the class of this network is slightly different from the network in the previous section of this exercise. **50 points** ###Code from functions.neural_net import ThreeLayerNet input_size = 32 * 32 * 3 hidden_size = 50 num_classes = 10 model = ThreeLayerNet(input_size, hidden_size, num_classes) stats = model.train(X_train, y_train, X_val, y_val, num_iters=1500, batch_size=200, learning_rate=1e-3, reg=0, verbose=True) val_acc = (model.predict(X_val) == y_val).mean() print ('Validation accuracy: ', val_acc) # Plot the loss function and train / validation accuracies plt.subplot(2, 1, 1) plt.plot(stats['loss_history']) plt.title('Loss history') plt.xlabel('Iteration') plt.ylabel('Loss') plt.subplot(2, 1, 2) plt.plot(stats['train_acc_history'], label='train') plt.plot(stats['val_acc_history'], label='val') plt.title('Classification accuracy history') plt.xlabel('Epoch') plt.ylabel('Clasification accuracy') plt.show() ###Output _____no_output_____ ###Markdown Use the validation set to tune hyperparameters by training different models (using the training dataset) and evaluating the performance using the validation dataset. Save the results in a dictionary mapping tuples of the form `(learning_rate, hidden_size, regularization)` to tuples of the form `(training_accuracy, validation_accuracy)`. You should evaluate the best model on the testing dataset and print out the training, validation and testing accuracies for each of the models and provide a clear visualization. Highlight the best model w.r.t the testing accuracy. **10 points** ###Code # You are encouraged to experiment with additional values learning_rates = [ 1e-3, 1e-6, 5e-3, 5e-6] # this time its up to you hidden_sizes = [50, 100, 200, 500, 1000,] # this time its up to you regularizations = [0, 1e-3, 1e-6, 5e-6, 5e-9 , 1,] # this time its up to you results = {} best_val = -1 best_net = None ################################################################################ # START OF YOUR CODE # ################################################################################ best_values = None for hs in hidden_sizes: for lr in learning_rates: for r in regularizations: model = ThreeLayerNet(input_size, hs, num_classes) stats = model.train(X_train, y_train, X_val, y_val, num_iters=1500, batch_size=200, learning_rate=lr, reg=r, verbose=False) val_accuracy = (model.predict(X_val) == y_val).mean() train_accuracy = (model.predict(X_train) == y_train).mean() print('(learning_rate, hidden_size, regularization) = {}'.format((lr, hs, r))) print('(train_accuracy,val_accuracy) = {}'.format((train_accuracy,val_accuracy))) results[(lr, hs, r)] = (train_accuracy,val_accuracy) if val_accuracy > best_val: best_val = val_accuracy best_values = [(lr, hs, r), (train_accuracy, val_accuracy), ] best_net = model print('best training values = {}, got use the best accuracy, val - {} train - {}' .format(best_values[0],best_values[1][0], best_values[1][1])) ################################################################################ # END OF YOUR CODE # ################################################################################ ###Output (learning_rate, hidden_size, regularization) = (0.001, 50, 0) (train_accuracy,val_accuracy) = (0.4101224489795918, 0.398) (learning_rate, hidden_size, regularization) = (0.001, 50, 0.001) (train_accuracy,val_accuracy) = (0.4099795918367347, 0.395) (learning_rate, hidden_size, regularization) = (0.001, 50, 1e-06) (train_accuracy,val_accuracy) = (0.41608163265306125, 0.397) (learning_rate, hidden_size, regularization) = (0.001, 50, 5e-06) (train_accuracy,val_accuracy) = (0.4155714285714286, 0.414) (learning_rate, hidden_size, regularization) = (0.001, 50, 5e-09) (train_accuracy,val_accuracy) = (0.4164081632653061, 0.399) (learning_rate, hidden_size, regularization) = (0.001, 50, 1) (train_accuracy,val_accuracy) = (0.272734693877551, 0.287) (learning_rate, hidden_size, regularization) = (1e-06, 50, 0) (train_accuracy,val_accuracy) = (0.11881632653061225, 0.135) (learning_rate, hidden_size, regularization) = (1e-06, 50, 0.001) (train_accuracy,val_accuracy) = (0.10673469387755102, 0.108) (learning_rate, hidden_size, regularization) = (1e-06, 50, 1e-06) (train_accuracy,val_accuracy) = (0.1103469387755102, 0.113) (learning_rate, hidden_size, regularization) = (1e-06, 50, 5e-06) (train_accuracy,val_accuracy) = (0.09648979591836734, 0.102) (learning_rate, hidden_size, regularization) = (1e-06, 50, 5e-09) (train_accuracy,val_accuracy) = (0.10220408163265306, 0.096) (learning_rate, hidden_size, regularization) = (1e-06, 50, 1) (train_accuracy,val_accuracy) = (0.08842857142857143, 0.104) (learning_rate, hidden_size, regularization) = (0.005, 50, 0) (train_accuracy,val_accuracy) = (0.5171428571428571, 0.506) (learning_rate, hidden_size, regularization) = (0.005, 50, 0.001) (train_accuracy,val_accuracy) = (0.508, 0.496) (learning_rate, hidden_size, regularization) = (0.005, 50, 1e-06) (train_accuracy,val_accuracy) = (0.5159795918367347, 0.475) (learning_rate, hidden_size, regularization) = (0.005, 50, 5e-06) (train_accuracy,val_accuracy) = (0.5118571428571429, 0.479) (learning_rate, hidden_size, regularization) = (0.005, 50, 5e-09) (train_accuracy,val_accuracy) = (0.5148367346938776, 0.489) (learning_rate, hidden_size, regularization) = (0.005, 50, 1) (train_accuracy,val_accuracy) = (0.2983469387755102, 0.322) (learning_rate, hidden_size, regularization) = (5e-06, 50, 0) (train_accuracy,val_accuracy) = (0.08685714285714285, 0.091) (learning_rate, hidden_size, regularization) = (5e-06, 50, 0.001) (train_accuracy,val_accuracy) = (0.11326530612244898, 0.114) (learning_rate, hidden_size, regularization) = (5e-06, 50, 1e-06) (train_accuracy,val_accuracy) = (0.10273469387755102, 0.103) (learning_rate, hidden_size, regularization) = (5e-06, 50, 5e-06) (train_accuracy,val_accuracy) = (0.14134693877551022, 0.146) (learning_rate, hidden_size, regularization) = (5e-06, 50, 5e-09) (train_accuracy,val_accuracy) = (0.1223265306122449, 0.124) (learning_rate, hidden_size, regularization) = (5e-06, 50, 1) (train_accuracy,val_accuracy) = (0.11075510204081633, 0.099) (learning_rate, hidden_size, regularization) = (0.001, 100, 0) (train_accuracy,val_accuracy) = (0.4493265306122449, 0.436) (learning_rate, hidden_size, regularization) = (0.001, 100, 0.001) (train_accuracy,val_accuracy) = (0.44726530612244897, 0.433) (learning_rate, hidden_size, regularization) = (0.001, 100, 1e-06) (train_accuracy,val_accuracy) = (0.447530612244898, 0.435) (learning_rate, hidden_size, regularization) = (0.001, 100, 5e-06) (train_accuracy,val_accuracy) = (0.44877551020408163, 0.446) (learning_rate, hidden_size, regularization) = (0.001, 100, 5e-09) (train_accuracy,val_accuracy) = (0.4440612244897959, 0.438) (learning_rate, hidden_size, regularization) = (0.001, 100, 1) (train_accuracy,val_accuracy) = (0.311530612244898, 0.322) (learning_rate, hidden_size, regularization) = (1e-06, 100, 0) (train_accuracy,val_accuracy) = (0.07185714285714286, 0.059) (learning_rate, hidden_size, regularization) = (1e-06, 100, 0.001) (train_accuracy,val_accuracy) = (0.10687755102040816, 0.116) (learning_rate, hidden_size, regularization) = (1e-06, 100, 1e-06) (train_accuracy,val_accuracy) = (0.10628571428571429, 0.116) (learning_rate, hidden_size, regularization) = (1e-06, 100, 5e-06) (train_accuracy,val_accuracy) = (0.1106734693877551, 0.122) (learning_rate, hidden_size, regularization) = (1e-06, 100, 5e-09) (train_accuracy,val_accuracy) = (0.0906530612244898, 0.092) (learning_rate, hidden_size, regularization) = (1e-06, 100, 1) (train_accuracy,val_accuracy) = (0.10828571428571429, 0.103) (learning_rate, hidden_size, regularization) = (0.005, 100, 0) (train_accuracy,val_accuracy) = (0.5486734693877551, 0.499) (learning_rate, hidden_size, regularization) = (0.005, 100, 0.001) (train_accuracy,val_accuracy) = (0.5506326530612244, 0.5) (learning_rate, hidden_size, regularization) = (0.005, 100, 1e-06) (train_accuracy,val_accuracy) = (0.5470408163265306, 0.488) (learning_rate, hidden_size, regularization) = (0.005, 100, 5e-06) (train_accuracy,val_accuracy) = (0.5500408163265306, 0.508) (learning_rate, hidden_size, regularization) = (0.005, 100, 5e-09) (train_accuracy,val_accuracy) = (0.5296122448979592, 0.496) (learning_rate, hidden_size, regularization) = (0.005, 100, 1) (train_accuracy,val_accuracy) = (0.31981632653061226, 0.333) (learning_rate, hidden_size, regularization) = (5e-06, 100, 0) (train_accuracy,val_accuracy) = (0.13979591836734695, 0.153) (learning_rate, hidden_size, regularization) = (5e-06, 100, 0.001) (train_accuracy,val_accuracy) = (0.13185714285714287, 0.163) (learning_rate, hidden_size, regularization) = (5e-06, 100, 1e-06) (train_accuracy,val_accuracy) = (0.11724489795918368, 0.126) (learning_rate, hidden_size, regularization) = (5e-06, 100, 5e-06) (train_accuracy,val_accuracy) = (0.1260408163265306, 0.12) (learning_rate, hidden_size, regularization) = (5e-06, 100, 5e-09) (train_accuracy,val_accuracy) = (0.12081632653061225, 0.11) (learning_rate, hidden_size, regularization) = (5e-06, 100, 1) (train_accuracy,val_accuracy) = (0.15855102040816327, 0.156) (learning_rate, hidden_size, regularization) = (0.001, 200, 0) (train_accuracy,val_accuracy) = (0.4793877551020408, 0.441) (learning_rate, hidden_size, regularization) = (0.001, 200, 0.001) (train_accuracy,val_accuracy) = (0.4841020408163265, 0.477) (learning_rate, hidden_size, regularization) = (0.001, 200, 1e-06) (train_accuracy,val_accuracy) = (0.48242857142857143, 0.458) (learning_rate, hidden_size, regularization) = (0.001, 200, 5e-06) (train_accuracy,val_accuracy) = (0.4837142857142857, 0.452) (learning_rate, hidden_size, regularization) = (0.001, 200, 5e-09) (train_accuracy,val_accuracy) = (0.4811020408163265, 0.465) (learning_rate, hidden_size, regularization) = (0.001, 200, 1) (train_accuracy,val_accuracy) = (0.33110204081632655, 0.338) (learning_rate, hidden_size, regularization) = (1e-06, 200, 0) (train_accuracy,val_accuracy) = (0.08795918367346939, 0.096) (learning_rate, hidden_size, regularization) = (1e-06, 200, 0.001) (train_accuracy,val_accuracy) = (0.08728571428571429, 0.076) (learning_rate, hidden_size, regularization) = (1e-06, 200, 1e-06) (train_accuracy,val_accuracy) = (0.0893265306122449, 0.09) (learning_rate, hidden_size, regularization) = (1e-06, 200, 5e-06) (train_accuracy,val_accuracy) = (0.10946938775510204, 0.115) (learning_rate, hidden_size, regularization) = (1e-06, 200, 5e-09) (train_accuracy,val_accuracy) = (0.1069795918367347, 0.087) (learning_rate, hidden_size, regularization) = (1e-06, 200, 1) (train_accuracy,val_accuracy) = (0.1273877551020408, 0.126) (learning_rate, hidden_size, regularization) = (0.005, 200, 0) (train_accuracy,val_accuracy) = (0.5937142857142857, 0.5) (learning_rate, hidden_size, regularization) = (0.005, 200, 0.001) (train_accuracy,val_accuracy) = (0.5848163265306122, 0.51) (learning_rate, hidden_size, regularization) = (0.005, 200, 1e-06) (train_accuracy,val_accuracy) = (0.5892244897959183, 0.498) (learning_rate, hidden_size, regularization) = (0.005, 200, 5e-06) (train_accuracy,val_accuracy) = (0.5926734693877551, 0.503) (learning_rate, hidden_size, regularization) = (0.005, 200, 5e-09) (train_accuracy,val_accuracy) = (0.5729387755102041, 0.528) (learning_rate, hidden_size, regularization) = (0.005, 200, 1) (train_accuracy,val_accuracy) = (0.33316326530612245, 0.325) ###Markdown Inline Question 2:What can you say about the training? Why does it take much longer to train? How could you speed up computation? What would happen to the network accuracy and training time when adding additional layer? What about additional hidden neurons?**Your answer:** *THe training process takes much longer, We think that it takes much longer to run because we added more layers which means more neurons and the forward and backwards passes takes high computaional effort (derivetive and loss for each)we could speed up the computation by using GPU, stronger CPU and writing a better efficeint code, maybe using C++ could improve python overhead.If we would add more layer the training time will increase, while the accuuracy might improve and might not.Same goes for hidden neurons * Bonus Train a 5 hidden layer network with varying hidden layer size and plot the loss function and train / validation accuracies. **5 points** ###Code ## Your code here ## ###Output _____no_output_____ ###Markdown Анализ пространственных данных. Домашнее задание №2 Мягкий дедлайн: __4 ноября 2020 г. 23:59__Жесткий дедлайн (со штрафом в _50%_ от количества набранных вами за ДЗ баллов): __5 ноября 2020 г. 08:59__ Визуализация "чего-либо" __без__ выполненного основного задания оценивается в __0 баллов__ ФИО: `Маргасов Арсений Олегович` Группа: `MADE-DS-11` Задание №1. Горячая точка (алгоритм - 10 баллов, визуализация - 10 баллов). Генерируйте рандомные точки на планете Земля до тех пор, пока не попадете на территорию ``Афганистана`` 1. Вы можете использовать функции принадлжености точки полигону и расстояния от точки до полигона (в метрах)2. Предложите не наивный алгоритм поиска (генерировать __напрямую__ точку из полигона границ Афганистана __запрещено__) ###Code import numpy as np import geopandas as gpd import pandas as pd from itertools import count from shapely.geometry import Point, Polygon import random import folium import warnings warnings.filterwarnings('ignore') world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) AfgPolygon = world.loc[world['name'] == 'Afghanistan']['geometry'][103] AfgPolygon = Polygon(list(map(lambda x: (x[1], x[0]), AfgPolygon.exterior.coords[:]))) bbox = AfgPolygon.bounds # afg_centroid = Point((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2) afg_centroid = AfgPolygon.centroid random.seed = 19 def gen_point(prev_point): r = afg_centroid.distance(prev_point) / 4 x0 = 0.25 * prev_point.x + 0.75 * afg_centroid.x y0 = 0.25 * prev_point.y + 0.75 * afg_centroid.y u = random.random() x = u * (prev_point.x + afg_centroid.x) / 2 + (1 - u) * afg_centroid.x y = y0 + np.sqrt(r * r - (x - x0) * (x - x0)) + np.random.normal(0, r) return Point(x, y) points = [] p = Point(random.randint(-90, 90), random.randint(-180, 180)) for i in count(start = 1): print(p) points.append(p) if p.within(AfgPolygon): break p = gen_point(p) m = folium.Map(afg_centroid.coords[:][0], zoom_start=6) folium.GeoJson(world.loc[world['name'] == 'Afghanistan']['geometry'][103]).add_to(m) folium.Marker( location=points[0].coords[:][0], popup= 'Point #1' , icon=folium.Icon(color='green', icon='info-sign')).add_to(m) for i in range(1, len(points)): folium.Marker( location=points[i].coords[:][0], popup= 'Point #' + str(i + 1), icon=folium.Icon(color='green', icon='info-sign')).add_to(m) folium.PolyLine([points[i - 1].coords[:][0], points[i].coords[:][0]], color='purple').add_to(m) folium.LatLngPopup().add_to(m) m ###Output _____no_output_____ ###Markdown Визуализируйте пошагово предложенный алгоритм при помощи ``Folium`` Задание №2. Качество жизни (20 баллов). Для измерения показателя качества жизни в точке, найденной в предыдущем задании, вам необходимо рассчитать следующую сумму расстояний (в метрах): 1. Расстояние от точки до 5 ближайших __*__ банкоматов, находящихся в стране с наибольшим количеством объектов жилой недвижимости2. Расстояние от точки до 5 ближайших школ, находящихся в стране с наибольшим количеством аптек в столице3. Расстояние от точки до 5 ближайших кинотеатров, наодящихся в стране с самым большим отношением числа железнодорожных станций к автобусным остановкам в южной части __**__ __*__ При поиске _N_ ближайших объектов обязательно использовать ``R-tree``__**__ Южной частью страны является территория, находящаяся к югу от множества точек, равноудаленных от самой северной и самой южной точек страны ###Code import requests import json from OSMPythonTools.nominatim import Nominatim nominatim = Nominatim() from OSMPythonTools.overpass import overpassQueryBuilder, Overpass overpass = Overpass() ###Output _____no_output_____ ###Markdown Part 1 ###Code countries = overpass.query('relation["admin_level"="2"][boundary=administrative];out;', timeout=100) countries_id_name = {} for elem in countries.elements(): if str(elem.id())[-1] == '0': countries_id_name[elem.id() + 3600000000] = elem.tag('name:en') countries_id_realty_cnt = {} for country_id in tqdm(countries_id_name.keys()): query = overpassQueryBuilder(area=country_id, elementType=['node'], selector='"building"="yes"', out='count') result = overpass.query(query, timeout=180) countries_id_realty_cnt[country_id] = result.countNodes() import operator max_realty_id = max(countries_id_realty_cnt.items(), key=operator.itemgetter(1))[0] countries_id_name[max_realty_id] query = overpassQueryBuilder(area=max_realty_id, elementType=['node'], selector='"amenity"="atm"') result = overpass.query(query, timeout=180) afg_last = points[-1].coords[:][0] from rtree import index index = index.Index() atm_id_coords = {} for atm in result.elements(): yx = tuple(reversed(atm.geometry()['coordinates'])) atm_id_coords[atm.id()] = yx index.insert(atm.id(), yx + yx) from geographiclib.geodesic import Geodesic distances = [] for idx in index.nearest(afg_last + afg_last, 5): g = Geodesic.WGS84.Inverse(*(afg_last + atm_id_coords[idx])) distances.append(g['s12']) # sum of distances to 5 nearest atms sum(distances) ###Output _____no_output_____ ###Markdown Задание №3. Поездка по Нью-Йорку (маршрут - 20 баллов, визуализация - 10 баллов). Добраться __на автомобиле__ от входа в ``Central Park`` __Нью-Йорка__ (со стороны ``5th Avenue``) до пересечения ``Water Street`` и ``Washington Street`` в Бруклине (откуда получаются лучшие фото Манхэттенского моста) довольно непросто - разумеется, из-за вечных пробок. Однако еще сложнее это сделать, проезжая мимо школ, где дети то и дело переходят дорогу в неположенном месте. Вам необходимо построить описанный выше маршрут, избегая на своем пути школы. Визуализируйте данный маршрут (также добавив школы и недоступные для проезда участки дорог) при помощи ``Folium`` Данные о расположении школ Нью-Йорка можно найти [здесь](https://catalog.data.gov/dataset/2019-2020-school-point-locations) ###Code import pyproj from shapely import geometry from shapely.geometry import LineString, MultiPolygon from openrouteservice import client from OSMPythonTools.api import Api from tqdm import tqdm intersect_WaterWashingtonSt = Point(40.70320,-73.98958) centralpark_avenue5th = Point(40.7649, -73.97256) api_key = '5b3ce3597851110001cf6248f45bca95f4ec48a8839956dda7f75bd1' clnt = client.Client(key=api_key) request_params_1 = {'coordinates': [list(reversed(centralpark_avenue5th.coords[:][0])), list(reversed(intersect_WaterWashingtonSt.coords[:][0]))], 'format_out': 'geojson', 'profile': 'driving-car', 'preference': 'shortest', 'instructions': 'false'} route_normal = clnt.directions(**request_params_1) route_buffer = LineString(route_normal['features'][0]['geometry']['coordinates']).buffer(0.005) loc_point = Point([(intersect_WaterWashingtonSt.coords[:][0][i] + centralpark_avenue5th.coords[:][0][i]) / 2 for i in range(2)]) schools = pd.read_csv('./2019_-_2020_School_Point_Locations.csv') # schools['the_geom'] = schools['the_geom'].apply(lambda x: Point(float(x.split(' ')[2][:-1]), float(x.split(' ')[1][1:]))) schools['the_geom'] = schools['the_geom'].apply(lambda x: Point(float(x.split(' ')[1][1:]), float(x.split(' ')[2][:-1]))) def CreateBufferPolygon(point_in, resolution=2, radius=150): sr_wgs = pyproj.Proj(init='epsg:4326') sr_utm = pyproj.Proj(init='epsg:32632') # WGS84 UTM32N point_in_proj = pyproj.transform(sr_wgs, sr_utm, *point_in) # unpack list to arguments point_buffer_proj = Point(point_in_proj).buffer(radius, resolution=resolution) poly_wgs = [] for point in point_buffer_proj.exterior.coords: poly_wgs.append(pyproj.transform(sr_utm, sr_wgs, *point)) # Transform back to WGS84 return poly_wgs # sites_poly = [] for _, school in tqdm(schools.iterrows()): site_coords = school['the_geom'].coords[:][0] site_poly_coords = CreateBufferPolygon(site_coords, resolution=2, radius=150) # sites_poly.append(site_poly_coords) sites_buffer_poly = [] sites_buffer_poly_idx = [] for idx, site_poly in enumerate(sites_poly): poly = Polygon(site_poly) if route_buffer.intersects(poly): sites_buffer_poly.append(poly) sites_buffer_poly_idx.append(idx) request_params_2 = request_params_1.copy() request_params_2['options'] = {'avoid_polygons': geometry.mapping(MultiPolygon(sites_buffer_poly))} route_detour = clnt.directions(**request_params_2) # GeoJSON style function def style_function(color): return lambda feature: dict(color=color, weight=3, opacity=0.8) map_params = {'tiles':'OpenStreetMap', 'location':loc_point.coords[:][0], 'zoom_start': 13} map2 = folium.Map(**map_params) for idx in sites_buffer_poly_idx: school = schools.iloc[idx, :] folium.features.Marker(list(reversed(school['the_geom'].coords[:][0])), popup=school['Loc_Name'], icon=folium.Icon(color='orange', icon='info-sign')).add_to(map2) site_poly_coords = [(y,x) for x,y in sites_poly[idx]] folium.vector_layers.Polygon(locations=site_poly_coords, color='purple', fill_color='purple', fill_opacity=1, weight=3).add_to(map2) folium.features.GeoJson(data=route_normal, name='Не жалеем школьников', style_function=style_function('blue'), overlay=True).add_to(map2) folium.features.GeoJson(data=route_detour, name='Объезжаем школы', style_function=style_function('#00FF00'), overlay=True).add_to(map2) map2.add_child(folium.map.LayerControl()) map2 ###Output _____no_output_____ ###Markdown PHYS 434 HW 2 Section AC Haowen Guan ###Code %matplotlib inline import numpy as np import matplotlib import matplotlib.pyplot as plt import scipy import random from scipy import stats plt.rcParams["figure.figsize"] = (15,10) ###Output _____no_output_____ ###Markdown **1) A little introductory brain teaser. Which is more probable when rolling 2 six-sided dice: rolling snake eyes (two ones) or rolling sevens (dice sum to seven)? What is the ratio of the probabilities?** Theoratically, there is only _one case_ to get two ones, but for rolling sevens, there are in total _6 cases_. So, appearently, rolling a _seven is more probable_, and the ratio of the probabilities is $1 : 6$. A testing can also confirm this: ###Code countTwo = 0; countSeven = 0; for i in range(100000): a = random.randint(1,6) b = random.randint(1,6) if (a + b == 2): countTwo += 1 if (a + b == 7): countSeven += 1 print("Probability of rolling snake eyes is ", countTwo / 1000, "%") print("Probability of rolling sevens is ", countSeven / 1000, "%") print("The ratio of rolling snake eyes to rolling sevens is 1 : ", countSeven / countTwo) ###Output Probability of rolling snake eyes is 2.77 % Probability of rolling sevens is 16.702 % The ratio of rolling snake eyes to rolling sevens is 1 : 6.029602888086643 ###Markdown 2) **Following what we did in class show how to use the convolution operator to determine the probability of the sum of 2 six sided dice. Do both analytically (math & counting) and numerically (computer program).** Analytically, we know that there is 17 possible outcomes (from 2 to 18), while intotal 36 different combination of two number (6x6). The number of different combination for each possible outcome can be expressed by the math function: $$ y = -|7-x|+6 \quad\textrm{Where}\quad 2<=x<=18 $$ Numerically, we can check the plot generated below: ###Code results = []; for i in range(100000): a = random.randint(1,6) b = random.randint(1,6) results.append(a + b) fig, ax = plt.subplots(1,2) fig.set_size_inches(20,7) ax[0].hist(results, 100) ax[0].tick_params(labelsize = 24) ax[0].set_xlabel("sum of 2 six sided dice", fontsize=24) ax[0].set_ylabel("Count", fontsize=24) ax[1].hist(results, 100) ax[1].tick_params(labelsize = 24) ax[1].set_yscale('log') ax[1].set_xlabel("sum of 2 six sided dice", fontsize=24) ax[1].set_ylabel("Log(Count)", fontsize=24) ###Output _____no_output_____ ###Markdown **3) Calculate the mean and the variance of the distribution in problem 2. Hint: this is surprisingly tricky, make sure your result makes sense.** ###Code print("Mean of distribution is", np.mean(results)) print("Variance of distribution is", np.var(results)) ###Output Mean of distribution is 6.99417 Variance of distribution is 5.8279560110999995 ###Markdown **4) Repeat 2, and graph the average of 10 dice. Is this is a Gaussian distribution? Explain in depth.** ###Code results = []; for i in range(100000): results.append(0) for i in range(10): for i in range(100000): a = random.randint(1,6) results[i] += a; results = np.divide(results, 10) fig, ax = plt.subplots(1,2) fig.set_size_inches(20,7) ax[0].hist(results, 100) ax[0].tick_params(labelsize = 24) ax[0].set_xlabel("avg of 10 dice", fontsize=24) ax[0].set_ylabel("Count", fontsize=24) ax[1].hist(results, 100) ax[1].tick_params(labelsize = 24) ax[1].set_yscale('log') ax[1].set_xlabel("avg of 10 dice", fontsize=24) ax[1].set_ylabel("Log(Count)", fontsize=24) ###Output _____no_output_____ ###Markdown It does look like a Gaussian distribution, in a bell shape. The reason might be, since we took the average of 10 dice for each measurements, then each measurements are tend to be closer to be the mean value, while getting a average value that is far from the mean value becomes rarer. **5) Show that the sum and average of an initially Gaussian distribution is also a Guassian (can be analytic or numerical). How does the standard deviation of the resulting sum or average Guassian change? This is a hugely important result. Explore what this means for integrating a signal over time.** ###Code results = []; for i in range(100000): results.append(0) for i in range(10): d = stats.norm.rvs(loc = 5., scale = 1, size = 100000) results += d; results = np.divide(results, 10) print("Standard diviation of distribution is", np.std(results)) fig, ax = plt.subplots(1,2) fig.set_size_inches(10,3) ax[0].hist(results, 100) ax[0].tick_params(labelsize = 12) ax[0].set_xlabel("x", fontsize=12) ax[0].set_ylabel("Count", fontsize=12) ax[1].hist(results, 100) ax[1].tick_params(labelsize = 12) ax[1].set_yscale('log') ax[1].set_xlabel("x", fontsize=12) ax[1].set_ylabel("Log(Count)", fontsize=12) results = []; for i in range(100000): results.append(0) for i in range(20): d = stats.norm.rvs(loc = 5., scale = 1, size = 100000) results += d; results = np.divide(results, 20) print("Standard diviation of distribution is", np.std(results)) fig, ax = plt.subplots(1,2) fig.set_size_inches(10,3) ax[0].hist(results, 100) ax[0].tick_params(labelsize = 12) ax[0].set_xlabel("x", fontsize=12) ax[0].set_ylabel("Count", fontsize=12) ax[1].hist(results, 100) ax[1].tick_params(labelsize = 12) ax[1].set_yscale('log') ax[1].set_xlabel("x", fontsize=12) ax[1].set_ylabel("Log(Count)", fontsize=12) ###Output Standard diviation of distribution is 0.2234944258926579 ###Markdown Домашнее задание1. Сделать класс нейронки, вписать необходимые операции, архитектура ниже1. Написать обучалку (обобщить то, что было выше)1. Добавить логирование 1. Сохранять лосс на каждой итерции обучения __0.25 балла__ ✓ 1. Каждую эпоху сохранять лосс трейна и тест __0.25 балла__ ✓ 1. Каждую эпоху рассчитывать метрики __0.25 балла__ ✓ 1. Добавить прогресс бар, в котором показывается усредненный лосс последних 500-та итераций __0.25 балла__ ✓1. Добавить early stopping __0.5 балла__1. Нарисовать графики лосса, метрик, конфьюжин матрицу __0.5 балла__ ✓ Архитектура (что можно попробовать)1. Предобученные эмбеддинги. Почитайте [здесь](https://pytorch.org/docs/stable/nn.htmlembedding) (from_pretrained) как вставить свои эмбеддинги, выше мы читали матрицу эмбеддингов. __0 баллов__ ✓1. Дообучить эмбеддинги отдельно от сети. __2 балла__1. Дообучить эмбеддинги вместе с сетью и с другим learning rate (указывается в оптимизаторе). __2 балла__ ✓1. Bidirectional LSTM. __1 балл__ ✓1. Несколько параллельных CNN с разными размерами окна и mean/max over time пулингами к ним и дальнейшей конкатенацией. __2 балла__ ✓1. Несколько последовательных CNN. __1 балла__ ✓1. Разные окна и residual к предыдущему пункту. __2 балла__ ✓1. Предыдущий пункт сделан без ошибок (замаскированы свертки паддингов). __2 балла__1. Написать правильный mean/max пулинг, который не учитывает паддинги, точнее их маскирует. __2 балла__1. Добавить [torch.nn.utils.rnn.pack_padded_sequence()](https://pytorch.org/docs/stable/nn.htmltorch.nn.utils.rnn.pack_padded_sequence) и [torch.nn.utils.rnn.pack_sequence()](https://pytorch.org/docs/stable/nn.htmltorch.nn.utils.rnn.pack_sequence) для LSTM. Инфа [здесь](Еще-важный-момент-про-LSTM) __2 балла__ ✓1. Добавить spatial дропаут для входа LSTM (не просто стандартный пункт при инициализации LSTM) __1 балл__1. Добавить BatchNorm/LayerNorm/Dropout/Residual/etc __1 балл__ ✓1. Добавить шедуллер __1 балл__ ✓1. Обучать на GPU __2 балла__1. Сделать transfer learning с собственно обученной языковой модели, обученной на любых данных, например, unlabeled. __7 баллов__1. your madness 10 баллов максимум ###Code import math import numpy as np import pandas as pd from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from tqdm import tqdm import torch from torch.utils.data import DataLoader from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from torch import nn import torch.nn.functional as F import zipfile import seaborn as sns import matplotlib.pyplot as plt # вынес в отдельные файлы, чтобы не забивать тетрадку from src.data import Parser from src.utils import load_embeddings, TextClassificationDataset from src.train import train_model from typing import Iterable, List, Tuple from nltk.tokenize import wordpunct_tokenize ###Output _____no_output_____ ###Markdown Читаем и обрабатываем данные ###Code data_path = '/mnt/f/data/dl' parser = Parser(data_path=data_path) unlabeled, train, valid = parser.run() unique_categories = set(train.category.unique().tolist() + valid.category.unique().tolist()) category2index = {category: index for index, category in enumerate(unique_categories)} train['target'] = train.category.map(category2index) valid['target'] = valid.category.map(category2index) vocab, embeddings = load_embeddings('/mnt/f/data/models/wiki-news-300d-1M.vec.zip', 'wiki-news-300d-1M.vec', max_words=100_000) train_x, train_y = train.question.tolist(), train.target.tolist() valid_x, valid_y = valid.question.tolist(), valid.target.tolist() train_ds = TextClassificationDataset(texts=train_x, targets=train_y, vocab=vocab) valid_ds = TextClassificationDataset(texts=valid_x, targets=valid_y, vocab=vocab) train_loader = DataLoader(train_ds, batch_size=512) valid_loader = DataLoader(valid_ds, batch_size=512) ###Output _____no_output_____ ###Markdown Архитектура сети ###Code class MyNet(nn.Module): def __init__(self, embeddings: np.ndarray, n_filters: int, kernel_sizes: List[int], n_classes: int, dropout: float, lstm_hidden_size: int): super().__init__() self.lstm_hidden_size = lstm_hidden_size self.embedding_layer = nn.Embedding.from_pretrained(torch.tensor(embeddings).float(), padding_idx=0, freeze=False) self.embedding_dim = embeddings.shape[-1] self.convs = nn.ModuleList([nn.Conv1d(in_channels=self.lstm_hidden_size * 2, out_channels=n_filters, kernel_size=ks) for ks in kernel_sizes]) self.linear_final = nn.Linear(len(kernel_sizes) * n_filters, n_classes) self.dropout = nn.Dropout(dropout) self.batch_norm = nn.BatchNorm1d(num_features=len(kernel_sizes) * n_filters) self.residual_conv = nn.Conv1d(in_channels=self.lstm_hidden_size * 2, out_channels=len(kernel_sizes) * n_filters, kernel_size=1) self.conv_2 = nn.Conv1d(in_channels=len(kernel_sizes) * n_filters, out_channels=len(kernel_sizes) * n_filters, kernel_size=2) self.conv_3 = nn.Conv1d(in_channels=len(kernel_sizes) * n_filters, out_channels=len(kernel_sizes) * n_filters, kernel_size=3) self.avg_pool = nn.AvgPool1d(kernel_size=3, stride=1, padding=1, count_include_pad=False, ceil_mode=False) self.lstm = torch.nn.LSTM(self.embedding_dim, lstm_hidden_size, batch_first=True, bidirectional=True) @staticmethod def pad_convolution(x, kernel_size): x = F.pad(x.transpose(1, 2), (kernel_size - 1, 0)) return x.transpose(1, 2) @staticmethod def count_pads(x, axis=1): return torch.Tensor(np.count_nonzero(x, axis=axis)) # торчовая функция почему-то не находится def forward(self, x): lengths = self.count_pads(x) x = self.embedding_layer(x) x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) x, memory = self.lstm(x) x = pad_packed_sequence(x, batch_first=True)[0] residual = self.residual_conv(x.transpose(1, 2)).transpose(1, 2) convs = [F.relu(conv(self.pad_convolution(x, conv.kernel_size[0]).transpose(1, 2)).transpose(1, 2)) for conv in self.convs] convs = [self.avg_pool(conv.transpose(1, 2)).transpose(1, 2) # FIX for conv in convs] x = torch.cat(convs, 2) x = x + residual x = self.dropout(x) residual = x x = F.relu(self.conv_2(self.pad_convolution(x, self.conv_2.kernel_size[0]).transpose(1, 2)).transpose(1, 2)) x = self.avg_pool(x.transpose(1, 2)).transpose(1, 2) x = x + residual residual = x x = F.relu(self.conv_3(self.pad_convolution(x, self.conv_3.kernel_size[0]).transpose(1, 2)).transpose(1, 2)) x = x + residual x = x.mean(dim=1) # FIX x = self.batch_norm(x) x = self.dropout(x) return self.linear_final(x) model = MyNet(embeddings=embeddings, n_filters=128, kernel_sizes=[2, 3, 4], n_classes=len(category2index), dropout=0.15, lstm_hidden_size=128) layer_list = ['embedding_layer.weight'] params = list(map(lambda x: x[1], list(filter(lambda kv: kv[0] in layer_list, model.named_parameters())))) base_params = list(map(lambda x: x[1], list(filter(lambda kv: kv[0] not in layer_list, model.named_parameters())))) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam([{'params': base_params}, {'params': params, 'lr': 1e-5}], lr=1e-2) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95) ###Output _____no_output_____ ###Markdown Обучение ###Code model, losses, metrics, valid_preds, valid_targets = train_model(model, train_loader, valid_loader, optimizer, criterion, scheduler, epochs=6) ###Output Epoch 1 of 6: 100%|██████████| 250000/250000 [17:02<00:00, 244.50it/s, train_loss=1.02] Epoch 2 of 6: 0%| | 0/250000 [00:00<?, ?it/s] ###Markdown Итоги ###Code print(classification_report(valid_targets, valid_preds)) ###Output precision recall f1-score support 0 0.77 0.66 0.71 2131 1 0.59 0.62 0.61 2978 2 0.84 0.70 0.76 10187 3 0.61 0.82 0.70 12699 4 0.78 0.62 0.69 4998 5 0.84 0.83 0.84 8833 6 0.74 0.65 0.69 4117 7 0.72 0.57 0.64 4057 accuracy 0.72 50000 macro avg 0.74 0.68 0.71 50000 weighted avg 0.74 0.72 0.73 50000 ###Markdown В целом результаты достаточно неплохие. Отедьные категории определяеются лучше других. ###Code (train.target.value_counts() / train.shape[0]).sort_index() category2index plt.figure(figsize=(20, 15)) cf = confusion_matrix(valid_targets, valid_preds, normalize='pred') g = sns.heatmap(cf, annot=True) ###Output _____no_output_____ ###Markdown Можем видеть, что модель сравнительно хорошо предсказывает все категории, за исключением `baby` и `sports and outdoors`, которые составляют 5 и 25 процентов датасета соответственно. Категория `sports and outdoors` чаще всего ошибочно предсказывается как `baby`, `baby` как `sports and outdoors`, т.е. модель путает между собой эти категории. Категория `cell phones and accessories` определяется лучше всех остальных. Предполагаю, что дело в том, что описания из этих категорий меньше всего пересекаются со всеми остальными. ###Code train.loc[train.target == 3].tail(3).values train.loc[train.target == 1].tail(3).values ###Output _____no_output_____ ###Markdown Можно предположить, что это связано с тем, что в обеих категориях есть спецификации одежды и всяких аксессуаров, поэтому модели может быть сложно отличить одно от другого. ###Code metrics_df = pd.DataFrame.from_dict(metrics) g = metrics_df.plot(figsize=(14, 12)) ###Output _____no_output_____ ###Markdown Можно видеть, что модель практически сразу начинает переобучаться. Возможно, дело в том, что для такой сложной архитектуры у нас недостаточно данных. ###Code plt.figure(figsize=(14, 12)) plt.plot(losses) plt.grid() plt.title('Training process') plt.xlabel('Iterations') plt.ylabel('Loss function'); ###Output _____no_output_____ ###Markdown CS559: Homework 2 Due:10/8/2021 Friday 11:59 PM- Change the file name as YourName_F21_CS559_HW2- Submit the assignment in `ipynb` and `html` formats. - You can export the notebook in HTML. - Do not compress your files. Please submit files individually. - All work must be your own and must not be shared with other classmates. - Collaboration with classmates or getting help by any people is not acceptable. - For impletementation problems, do not copy algorithms from internet. Problem 1 - Linear Regression [35 pts]1-a. Consider a data set in which each data point $t_n$ is associated with a weighting factor $r_n>0$, so that the sum of squares error function becomes $${\large E_D(\vec{w})=\frac{1}{2}\sum_{n=1}^Nr_n\big(t_n-\vec{w}^T\vec{x}_n\big)^2}$$Find an expression for the solution $w^*$ that minimizes this error function. [5 pts] Solution:We have:$${E_D(\vec{w})=\frac{1}{2}\sum_{n=1}^Nr_n\big(t_n-\vec{w}^T\vec{x}_n\big)^2\;\;\;\;\;\;\;-\;(i)}$$ Convert the equation in form of matrix products for ease of computation,therefore:$${E_D(W)=\frac{1}{2}r_n\big(XW-t\big)^TR\big(XW-t\big)\;\;\;\;\;\;\;-\;(ii)}$$${where,}$$${X\;is\;a\;Matrix\;of\;size\;X_{m\times(N+1)}\;with\;m\;obsevations\;and\;N\;features\;i.e\;(N+1)\;parameters\\ W\;is\;a\;Matrix\;of\;size\;W_{(N+1)\times1}=[w_0,w_1\;\;...w_N]\\ t\;is\;target\;Matrix\;of\;size\; t_{m\times1}\\ R\;is\;a\;diagonal\;matrix\;of\;size\;R_{m\times m} = diag(r_1,r_2\;\;...r_N)}$$ $${}$$ $${}$$ ${By \;simplifying \;(ii)\; we\; get\;:}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;E_D(W)=\frac{1}{2}\big(W^TX^T-t^T\big)\big(RXW-Rt\big)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[beacause\;(AB)^T=B^TA^T]}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac{1}{2}\big(W^TX^TRXW-W^TX^TRt-t^TRXW+t^TRT\big)}$ $${}$$ ${since\; all\; products\; in\; the \;above\; equation \;give\;a\; scalar_{1\times1},\;and\; S^T = S \;where\; S\; is \;scalar\; or \;diagonal}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(W^TX^TRt)^T=t^TR^TXW}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=t^TRXW\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[because\;R^T=R]}$ $${}$$ ${therefore,}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;E_D(W)=\frac{1}{2}\big(W^TX^TRXW-2W^TX^TRt+t^TRT\big)}$ $${}$$ ${for \;minimising\;E_D(\vec{w}),we \;take\; it's\; gradient\; and \;equate\; it\; to\; 0,\;therefore,}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{\partial{E_D(W)}}{\partial W}=X^TRXW-X^TRt=0}$ $${}$$ ${\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;W = (X^TRX)^{-1}X^TRt}$ $${}$$ ${therefore,\;our \;minimized\;solution\;is}$ $${w^* = (X^TRX)^{-1}X^TRt}$$ $${}$$$${}$$ 1-b. Implement a function called, `my_error(data,r_n)`, that estimates the error using the error function, $E_D(\vec{w})$, from 1-a. The task to implement a function to estimates the optimized $vec{w}$ and demonstrates the behavior of error at different weighting factor, $r_n$, values. The function return a list of $\vec{w}$, $r_n$, and error. Do not use any other modules except `numpy`. [10 pts] ###Code import numpy as np from numpy.random import RandomState import pandas as pd #the below function inv() inverts a square singular matrix, we define this because numpy.inv() throws an error when inverting singular matrices #this function uses least squares to compute the inverse def inv(square_matrix): a = square_matrix.shape[0] diag = np.eye(a, a) return np.linalg.lstsq(square_matrix,diag,rcond=None)[0] ### my_error starts here def my_error(data,r_n): features = data.iloc[:, :(len(data.columns) - 1)].to_numpy() n = len(data) #number of observations t = data.iloc[: , -1].to_numpy() #target variable (nX1) matrix X = np.column_stack((np.ones(n),features)) #explanatory variable matrix (m+1)Xn matrix, where m is number of features,the extra column is for x0 = 1 XT = X.transpose() #transpose of X, nX(m+1) matrix R = np.diag(r_n) #diagonal weighting factor matrix for r_n values, size nXn XT_R = np.dot(XT,R) #product of XT and R, XT.R XT_R_X = np.dot(XT_R,X)#product of XT.R and X, XT.R.X XT_R_X_INV = inv(XT_R_X) #inverse of XT.R.X XT_R_t = np.dot(XT_R,t) #product of XT.R and t, XT.R.t #equating the gradient of sum of error function to '0' in question 1(a), we derived the optimised value for w in matrix form as (XT.R.X)^-1.(XT.R.t) w = np.dot(XT_R_X_INV,XT_R_t) #(XT.R.X)^-1.(XT.R.t) XW = np.dot(X,w) #product of X and w, X.w nres = XW - t #negative residual XW - t nresT = nres.transpose() #transpose of nres nresT_R = np.dot(nresT,R) #product of (XW-t) and R, (XW-t.R) #similarly we also converted the error function in matrix form in 1(a) as: error = 0.5*(np.dot(nresT_R,nres)) return w, error, r_n ####testing funtion my_error() not relevant and can be ignored #let's test this function on a linear model y = w_0 + w_1.x_1 f = lambda x: 1.*x + 1. #generate X positions of data X = np.linspace(0.,20.,21) #generate Y positions of data, follow function f with random error ran = RandomState() Y = f(X) + ran.randn(len(X)) #create dataset with columns X and Y data = pd.DataFrame(np.column_stack((X,Y))) r_n = np.ones(len(data)) #initiaize r_n r_n2 = [2]*len(data) #trying diff r_n r_n3 = [3]*len(data) #trying diff r_n e = my_error(data,r_n) print('optimized W for f(X):',e[0]) print('Error:',e[1]) print('R',e[2]) print('------------------') e2 = my_error(data,r_n2) e3 = my_error(data,r_n3) print('error value for r_n=2',e2[1]) print('error value for r_n=3',e3[1]) print('------------------') #we can see that error is directly proportional to r_n when r_n is same for each point. #we can also try different values of r_n for each point r_n = np.linspace(0.1,2,len(data)) r_n2 = np.linspace(3,5,len(data)) e2 = my_error(data,r_n[::-1]) e3 = my_error(data,r_n2[::-1]) print('error value for r_n series 0.1 to 2',e2[1]) print('error value for r_n series 3 to 5',e3[1]) print('------------------') #we get the same result, if r_n value increases, error value increases ###Output optimized W for f(X): [1.42537942 0.96448621] Error: 8.08156429089746 R [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] ------------------ error value for r_n=2 16.16312858179492 error value for r_n=3 24.24469287269238 ------------------ error value for r_n series 0.1 to 2 10.356931395659151 error value for r_n series 3 to 5 34.39213116096811 ------------------ ###Markdown 1-c. Load the dataset, make a model using Linear Regression from sklearn.linear_model to predict the target `y` from a given dataset `HW2_LR.csv`. Students must do EDA and pre-processing the dataset before training the model. All pre-processing and EDA work must be explained and the weights and mean squared error value must be reported. Treat the whole dataset as a train set. [15 pts] ###Code from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import pandas as pd from pandas.plotting import scatter_matrix data = pd.read_csv('./HW2_LR.csv') ### EDA stars here # data.info() # # no null values data.describe() #ranges differ a lot, need to scale data appropriately from scipy import stats # data.hist(bins=50, figsize=(20,15)) corr = data.corr() corr.style.background_gradient(cmap='coolwarm') #here we can see that the explanatory varibales have a very weak correlation with each other, that is good as this means there is no multicolinearity between features #but we can also see that only 'b' has a strong correlation with tartget 'y', #the rest of the varaibles have a significantly weak correlation,with 'c' being slightly less weak #we can think of dropping a,d and k but we dont know if it would improve the model with certainity, so we keep them, considering we have less feautures anyway. #the most promising feature to predict target is 'b' scatter_matrix(data, figsize=(12,8)) plt.show() #the data is not normally distributed as we can see #we can see above that the data is not scaled properly,let's scale it from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import FeatureUnion scaler = StandardScaler() scaled_data = scaler.fit_transform(data) new_data = pd.DataFrame(scaled_data,columns = ['a','b','c','d','k','y']) new_data.describe() stats.probplot(new_data['y'],plot=plt) plt.show() #above we see from the scatter and probability plots that the target data is slightly negtively skewed #we can fix this by reflecting y to a positive skew and transforming using sqrt as the skewness is moderate max = np.max(new_data['y']) new_data['refy'] = max +1 new_data['refy'] = new_data['refy'] - new_data['y'] new_data['refy'].hist() plt.show() positive_values = [1 if i>=0 else 0 for i in new_data['refy']] negative_values = len(new_data)-np.sum(positive_values) print('negative values=',negative_values) #sqrt transformation on positively skewed data as there are no negative values new_data['refy'] = np.sqrt(new_data['refy']) new_data['refy'].hist() plt.show() stats.probplot(new_data['refy'],plot=plt) plt.show() #now target is roughly normal new_data = new_data.drop(columns = ['y']) new_data ### Linear Regression Modeling starts here # from sklearn.model_selection import train_test_split # train_set, test_set = train_test_split(new_data, test_size=0.1, random_state=42) LR = LinearRegression() features = new_data.drop(columns = ['refy']) target = new_data[['refy']] LR.fit(features,target) #prediction is done by a test set ideally but we used up the entire set in training as asked in the question. #therfore we use the same dataset for prediction as well y_pred = LR.predict(train_set) # y_pred = LR.predict(test_set) model_error = LR.score(features,target) mse = mean_squared_error(target,y_pred) print('MSE :',mse) print('Regression Coefficients :',LR.coef_) #note: we get a very small value for MSE as we have not split the data, so the model is overfitted towards the train set ###Output MSE : 0.030931581678760416 Regression Coefficients : [[ 9.12833215e-05 -2.12948421e-01 -5.72370133e-02 3.16450655e-03 6.17847116e-05]] ###Markdown 1-d. Use the function `my_error()` from 1-b to estimate $\vec{w}$ and make a visualization to show the behavior of error in terms of $r_n$. Add a point to indicate the final training model error obtained from 1-c. [5 pts] ###Code ### Visualization starts from here. #for now lets assume that r_n is a constant and has same value for each data point, so that we can track r_n vs error more easily def r_n_vs_error(data): num_of_tests = 20 rn_values = [] errorvalues = [] for i in range(num_of_tests): r_n = [i/10]*len(data) e = my_error(data,r_n) errorvalues.append(e[1]) rn_values.append(r_n[0]) return errorvalues,rn_values er,rn = r_n_vs_error(new_data) #visualization of r_n vs error plt.scatter(rn, er) plt.plot(1,model_error,'ro') plt.show() #we can see that r_n and error have a strong positive linear correlation, i.e as r_n increases error also increases linearrly #this plot verifies the equation E(W) = 1/2*SUM{rn(tn-WT.xn)} #red point is MSE from 1(c) ###Output _____no_output_____ ###Markdown Problem 2 - Linear Classification 1 [65 pts]In this assignment, you are going to implement three classifiers - **LDA, Perceptron, and Logistic Regression** - to predict the risk of heart attack using the provided dataset, `heart.csv`. Here are data attributes:- Age : Age of the patient- Sex : Sex of the patient- exang: exercise induced angina (1 = yes; 0 = no)- ca: number of major vessels (0-3)- cp : Chest Pain type chest pain type - Value 1: typical angina - Value 2: atypical angina - Value 3: non-anginal pain - Value 4: asymptomatic- trtbps : resting blood pressure (in mm Hg)- chol : cholestoral in mg/dl fetched via BMI sensor- fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)- restecg : resting electrocardiographic results - Value 0: normal - Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) - Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria- thalach : maximum heart rate achieved- output : 0= less chance of heart attack 1= more chance of heart attack ###Code from sklearn.metrics import accuracy_score import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown 2-a. Implement `my_LDA` that classifies the target. Use `accuracy_score` from `sklearn.metrics` to calculate the accuracy. [10 pts] ###Code ### my_LDA starts here #the target class is binary, therefore implementing fisher Discriminant algorithm def my_LDA(X_train,X_test): #Fisher Discriminant Algorithm for binary classes #separate the data by class grouped = X_train.groupby(['output']) class1_data = grouped.get_group(0) class2_data = grouped.get_group(1) class1_data=class1_data.drop(['output'],axis=1) class2_data=class2_data.drop(['output'],axis=1) #calculate the means for each class mean1 = class1_data.mean(axis = 0) mean2 = class2_data.mean(axis = 0) #vectorize the means mean1, mean2 = mean1.T, mean2.T #calculate (x - m_1) for scatter calc m,n = class1_data.shape diff1 = class1_data - np.array(list(mean1)*m).reshape(m,n) #calculate (x - m_2) for scatter calc m,n = class2_data.shape diff2 = class2_data - np.array(list(mean2)*m).reshape(m,n) #creating a matrix to diff1 and diff2 diff = np.concatenate([diff1, diff2]) m, n = diff.shape withinClass = np.zeros((n,n)) diff = np.matrix(diff) #S_1 = s1^2 = Summation(x - m_1)(x - m_1)^T #S_2 = s1^2 = Summation(x - m_2)(x - m_2)^T #S_w = S_1 + S_2 = s1^2 + s2^2 for i in range(m): #calculate within class scatter matrix S_W using the above formula for fisher discriminant withinClass += np.dot(diff[i,:].T, diff[i,:]) #find optimum direction vector for separation argmax(W) ~ S_W^(-1).(m_1-m_2) opt_dir_vector = np.dot(inv(withinClass), (mean1 - mean2)) #calculate threshold value for classification C = 1/2(mu1+mu2) mu1=np.dot(opt_dir_vector,class1_data.T).mean(axis = 0) mu2=np.dot(opt_dir_vector,class2_data.T).mean(axis = 0) threshold=(mu1+mu2)/2 #fisher criterion for classification is that if W^T.X > threshold assign to Class1 else Class2 target_pred=np.dot(X_test,np.matrix(opt_dir_vector).T) target_pred = np.where(target_pred > threshold, 0, 1) return target_pred ###Output _____no_output_____ ###Markdown 2-b. Implement `my_Perceptron` that classifies the target. Use `accuracy_score` from `sklearn.metrics` to calculate the accuracy. [10 pts] ###Code import random ### my_Perceptron starts here def my_Perceptron(features_train,target_train,features_test): target = target_train.to_numpy() # vector having observed values of target n_features = np.shape(features_train)[1] # number of features weights = [random.random()*0.1 for _ in range(n_features)] # vector having initial random weights for each feature theta = 0 # threshold of output function alpha = 0.01 # rate at which model learns, a small value is preferable total_iterations = 1000 # perceptron algorithm for itr in range(total_iterations): for feature_index in range(n_features): f = np.dot(features_train[feature_index], weights) - theta # transfer function f(X): WT.X - threshold target_pred = np.where(f >= 0, 1, 0) # predict class 1 if transfer function >=0,else predict class 0 # update rule of perceptron, update_weights = 0,if correct value is predicted, else update_weights by 0.01 i.e learning rate update_weights = alpha * (target[feature_index] - target_pred) # update weights of perceptron and threshold value, goal is to run all iterations and fix final weights and threshold weights += update_weights * features_train[feature_index] theta -= update_weights #model training finished #prediction f = np.dot(features_test, weights) - theta target_pred = np.where(f >= 0, 1, 0) return target_pred ###Output _____no_output_____ ###Markdown 2-c. Implement `my_LogisticRegression` that classifies the target. Use `accuracy_score` from `sklearn.metrics` to calculate the accuracy. [10 pts] ###Code ### my_LogisticRegression starts here #the target class is binary, therefore implementing as such def my_LogisticRegression(features_train,target_train,features_test): n_samples,n_features = features_train.shape # number of observations,features weights = np.zeros(n_features) # vector having weights for each feature beta = 0 # zero^th parameter/intercept alpha = 0.01 # rate at which model learns, a small value is preferable total_iterations = 1000 # gradient descent algorithm for itr in range(total_iterations): # approximate target with linear combination of weights and feature set, add a bias b. f(X)=X.W + b f = np.dot(features_train, weights) + beta # predict target values by using logistic sigmoid function f(a)=1/(1+e^-a) where a = X.W + b target_pred = 1 / (1 + np.exp(-f)) # formulate gradients for weights 1/n*summation[XT(y-t)] and b 1/n*summation[(y-t)] dw = (1 / n_samples) * np.dot(np.transpose(features_train), (target_pred - target_train)) db = (1 / n_samples) * np.sum(target_pred - target_train) # update weights and b weights -= alpha * dw beta -= alpha * db #model training finished #prediction f = np.dot(features_test, weights) + beta target_pred = 1 / (1 + np.exp(-f)) target_pred_binary = [1 if i > 0.5 else 0 for i in target_pred] return np.array(target_pred_binary) ###Output _____no_output_____ ###Markdown 2-d. The EDA and pre-processing are not limitted however, you must1. check if the data is **balanced** or not. 2. check if features are **skewed** or not.3. check outliers. For any finds from 1 to 3, please handle the data carefully. Exaplin your workflow and perform accordingly. If any interesting facts are learned, please state them. [15 pts] ###Code ### EDA stars here from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import seaborn as sns dataset = pd.read_csv('heart.csv') print(dataset.duplicated().sum()) #one duplicate row, need to drop it print(dataset.isnull().sum()) #no null/missing values dataset.drop_duplicates(inplace=True) # dataset.info() dataset.describe() #we can see that the ranges are diverse we can scale them after encoding categorical columns #The average blood pressure of an individual is 131.6 whereas the maximun value caps at 200. #The average heart rate of the group is 149.5, whereas overall it ranges between 133 to 202 #Age of the group varies from 29 to 77 and the mean age is 54.4 plt.figure(figsize=(12,6)) ax=plt.axes() ax.set_facecolor("green") p = sns.countplot(data=dataset, x="sex", palette='pastel') plt.show() #the data set has a lot of bias towards one class of sex as there are more than double observations for class 1 corr = dataset.corr() corr.style.background_gradient(cmap='coolwarm') #we can see that there is low multi colinearity between most of the variables except slope and thalachh #thalach and cp would be the most important factors for classification as they have high corr with target plt.figure(figsize = (10,10)) sns.violinplot(x='caa',y='age',data=dataset) sns.swarmplot(x=dataset['caa'],y=dataset['age'],hue=dataset['output'], palette='pastel') plt.show() # This swarmplot gives us a lot of information. # Accoring to the figure, people belonging to caa category '0' , irrespective of their age are highly prone to getting a heart attack. # While there are very few people belonging to caa category '4' , but it seems that around 75% of those get heart attacks. # People belonging to category '1' , '2' and '3' are more or less at similar risk. category_columns = ['sex', 'cp', 'fbs', 'restecg', 'exng', 'slp', 'caa', 'thall'] numerical_columns = ['age','trtbps','chol','thalachh','oldpeak'] ### Pre-processing starts here #get encoded valuse for all categorical columns cp = pd.get_dummies(dataset['cp'],prefix='cp') thal = pd.get_dummies(dataset['thall'],prefix='thall') slope = pd.get_dummies(dataset['slp'],prefix='slp') sex = pd.get_dummies(dataset['sex'],prefix='sex') fbs = pd.get_dummies(dataset['fbs'],prefix='fbs') restecg = pd.get_dummies(dataset['restecg'],prefix='restecg') exng = pd.get_dummies(dataset['exng'],prefix='exng') caa = pd.get_dummies(dataset['caa'],prefix='caa') #add the encoded columns to the dataset lst = [dataset,cp,thal,slope,sex,fbs,restecg,exng,caa] dataset = pd.concat(lst,axis=1) dataset.head() dataset.drop(columns=['cp','thall','slp','sex','fbs','restecg','exng','caa'],axis=1,inplace=True) ###################### X_features = dataset.drop(['output'],axis=1) y_target = dataset['output'] #scale columns using standard scaler scalerX = StandardScaler() X_features = scalerX.fit_transform(X_features) #split dataset into test and train with a 20:80 ratio X_train , X_test , y_train , y_test = train_test_split(X_features,y_target,test_size=0.2,random_state=42) ###Output _____no_output_____ ###Markdown 2-e. Use ML LDA, Perceptron, and LogisticRegression from sklearn to classify the trained data and report the accuracy. [10 pts] ###Code from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import Perceptron ### LDA starts here clf1= LinearDiscriminantAnalysis() clf1.fit(X_train,y_train) y_pred = clf1.predict(X_test) clf1_accuracy = accuracy_score(y_test,y_pred) ### Perceptron starts here clf2 = Perceptron() clf2.fit(X_train,y_train) y_pred = clf2.predict(X_test) clf2_accuracy = accuracy_score(y_test,y_pred) ### Logistic Regression starts here clf3 = LogisticRegression() clf3.fit(X_train,y_train) y_pred = clf3.predict(X_test) clf3_accuracy = accuracy_score(y_test,y_pred) ###Output _____no_output_____ ###Markdown 2-f. Use the implemented classifiers from 2-a to 2-c and classify the output. [10 pts] ###Code clf4= my_LDA(dataset,X_test) clf4_accuracy = accuracy_score(y_test,clf4) clf5= my_Perceptron(X_train,y_train,X_test) clf5_accuracy = accuracy_score(y_test,clf5) clf6= my_LogisticRegression(X_train,y_train,X_test) clf6_accuracy = accuracy_score(y_test,clf6) # result_table = pd.DataFrame({'Model',['clf1','clf2','clf3','clf4','clf5','clf6'], # 'Accuracy':[clf1_accuracy,clf2_accuracy,clf3_accuracy, # clf4_accuracy,clf5_accuracy,clf6_accuracy]}) # result_table result_table = pd.DataFrame([['clf1',clf1_accuracy],['clf2',clf2_accuracy],['clf3',clf3_accuracy],['clf4',clf4_accuracy] ,['clf5',clf5_accuracy],['clf6',clf6_accuracy]] ,columns = ['Model','Accuracy']) result_table ###Output _____no_output_____ ###Markdown Question 4 ###Code df = pd.read_csv('data-hw2.csv') df plt.figure(figsize=(8,8)) plt.scatter(df['LUNG'], df['CIG']) plt.xlabel("LUNG DEATHS") plt.ylabel("CIG SALES") plt.title("Scatter plot of Lung Cancer Deaths vs. Cigarette Sales") for i in range(len(df)): plt.annotate(df.iloc[i]['STATE'], xy=(df.iloc[i]['LUNG'], df.iloc[i]['CIG'])) df.corr() df_clean = df df_clean = df_clean.drop([6, 24], axis=0) df_clean plt.figure(figsize=(8,8)) plt.scatter(df_clean['LUNG'], df_clean['CIG']) plt.xlabel("LUNG DEATHS") plt.ylabel("CIG SALES") plt.title("Scatter plot of Lung Cancer Deaths vs. Cigarette Sales") for i in range(len(df_clean)): plt.annotate(df_clean.iloc[i]['STATE'], xy=(df_clean.iloc[i]['LUNG'], df_clean.iloc[i]['CIG'])) df_clean.corr() ###Output _____no_output_____ ###Markdown Question 5 ###Code df_ko = pd.read_csv('KO.csv') df_pep = pd.read_csv('PEP.csv') del df_ko['Open'], df_ko['High'], df_ko['Low'], df_ko['Close'], df_ko['Volume'] del df_pep['Open'], df_pep['High'], df_pep['Low'], df_pep['Close'], df_pep['Volume'] df_comb = pd.DataFrame(columns=["Date", "KO Adj Close", "PEP Adj Close"]) df_comb["Date"] = df_ko["Date"] df_comb["KO Adj Close"] = df_ko["Adj Close"] df_comb["PEP Adj Close"] = df_pep["Adj Close"] df_comb.corr() x_vals = np.array([np.min(df_comb["KO Adj Close"]), np.max(df_comb["PEP Adj Close"])]) x_vals_standardized = (x_vals-df_comb["KO Adj Close"].mean())/df_comb["KO Adj Close"].std(ddof=0) y_predictions_standardized = df_comb.corr()["KO Adj Close"]["PEP Adj Close"]*x_vals_standardized y_predictions = y_predictions_standardized*df_comb["PEP Adj Close"].std(ddof=0)+df_comb["PEP Adj Close"].mean() plt.figure(figsize=(8,8)) plt.scatter(df_comb['KO Adj Close'], df_comb['PEP Adj Close']) plt.xlabel("KO Daily Adj Close Price") plt.ylabel("PEP Daily Adj Close Price") plt.title("Scatter plot of KO Daily Adj Close Price vs. PEP Daily Adj Close Price with prediction line") plt.plot(x_vals, y_predictions, 'r', linewidth=2) plt.xlim(35, 60) plt.ylim(100, 145) ###Output _____no_output_____ ###Markdown Object recognition and computer vision 2019/2020Jean Ponce, Ivan Laptev, Cordelia Schmid and Josef Sivic Assignment 2: Neural networksAdapted from practicals from Nicolas le Roux, Andrea Vedaldi and Andrew Zisserman and Rob Fergus by Gul Varol and Ignacio RoccoFigure 1 ```` This is formatted as code````**STUDENT**: DHAOU Amin**EMAIL**: [email protected] GuidelinesThe purpose of this assignment is that you get hands-on experience with the topics covered in class, which will help you understand these topics better. Therefore, ** it is imperative that you do this assignment yourself. No code sharing will be tolerated. **Once you have completed the assignment, you will submit the `ipynb` file containing **both** code and results. For this, make sure to **run your notebook completely before submitting**.The `ipynb` must be named using the following format: **A2_LASTNAME_Firstname.ipynb**, and submitted in the **class Moodle page**. Goal The goal of this assignment is to get basic knowledge and hands-on experience with training and using neural networks. In Part 1 of the assignment you will implement and experiment with the training and testing of a simple two layer fully-connected neural network, similar to the one depicted in Figure 1 above. In Part 2 you will learn about convolutional neural networks, their motivation, building blocks, and how they are trained. Finally, in part 3 you will train a CNN for classification using the CIFAR-10 dataset. Part 1 - Training a fully connected neural network Getting started You will be working with a two layer neural network of the following form \begin{equation}H=\text{ReLU}(W_i X+B_i)\\\bar{Y}=W_oH+B_o\tag{1}\end{equation}where $X$ is the input, $\bar{Y}$ is the output, $H$ is the hidden layer, and $W_i$, $W_o$, $B_i$ and $B_o$ are the network parameters that need to be trained. Here the subscripts $i$ and $o$ stand for the *input* and *output* layer, respectively. This network was also discussed in the class and is illustrated in the above figure where the input units are shown in green, the hidden units in blue and the output in yellow. This network is implemented in the function `nnet_forward_logloss`.You will train the parameters of the network from labelled training data $\{X^n,Y^n\}$ where $X^n$ are points in $\mathbb{R}^2$ and $Y^n\in\{-1,1\}$ are labels for each point. You will use the stochastic gradient descent algorithm discussed in the class to minimize the loss of the network on the training data given by \begin{equation}L=\sum_n s(Y^n,\bar{Y}(X^n))\tag{2}\end{equation}where $Y^n$ is the target label for the n-th example and $\bar{Y}(X^n)$ is the network’s output for the n-th example $X^n$. The skeleton of the training procedure is provided in the `train_loop` function. We will use the logistic loss, which has the following form:\begin{equation}s(Y, \bar{Y}(X))=\log(1+\exp(-Y. \bar{Y}(X))\tag{3}\end{equation}where $Y$ is the target label and $\bar{Y}(X)$ is the output of the network for input example $X$. With the logistic loss, the output of the network can be interpreted as a probability $P(\text{class}=1|X) =\sigma(X)$ , where $\sigma(X) =1/(1+\exp(-X))$ is the sigmoid function. Note also that $P(\text{class}=-1|X)=1-P(\text{class}=1|X)$. ###Code from IPython import display import matplotlib.pyplot as plt import numpy as np import scipy.io as sio def decision_boundary_nnet(X, Y, Wi, bi, Wo, bo): x_min, x_max = -2, 4 y_min, y_max = -5, 3 xx, yy = np.meshgrid(np.arange(x_min, x_max, .05), np.arange(y_min, y_max, .05)) XX = np.vstack((xx.ravel(), yy.ravel())).T input_hidden = np.dot(XX, Wi) + bi hidden = np.maximum(input_hidden, 0) Z = np.dot(hidden, Wo) + bo # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z > 0, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap='winter') plt.axis([-2, 4, -5, 3]) plt.draw() def sigm(x): # Returns the sigmoid of x. small_x = np.where(x < -20) # Avoid overflows. sigm_x = 1/(1 + np.exp(-x)) if type(sigm_x) is np.ndarray: sigm_x[small_x] = 0.0 return sigm_x def nnet_forward_logloss(X, Y, Wi, bi, Wo, bo): ''' Compute the output Po, Yo and the loss of the network for the input X This is a 2 layer (1 hidden layer network) Input: X ... (in R^2) set of input points, one per column Y ... {-1,1} the target values for the set of points X Wi, bi, Wo, bo ... parameters of the network Output: Po ... probabilisitc output of the network P(class=1 | x) Po is in <0 1>. Note: P(class=-1 | x ) = 1 - Po Yo ... output of the network Yo is in <-inf +inf> loss ... logistic loss of the network on examples X with ground target values Y in {-1,1} ''' # Hidden layer hidden = np.maximum(np.dot(X, Wi) + bi, 0) # Output of the network Yo = np.dot(hidden, Wo) + bo # Probabilistic output Po = sigm(Yo) # Logistic loss loss = np.log(1 + np.exp( -Y * Yo)) return Po, Yo, loss # Load the training data !wget -q http://www.di.ens.fr/willow/teaching/recvis18/assignment2/double_moon_train1000.mat train_data = sio.loadmat('./double_moon_train1000.mat', squeeze_me=True) Xtr = train_data['X'] Ytr = train_data['Y'] # Load the validation data !wget -q http://www.di.ens.fr/willow/teaching/recvis18/assignment2/double_moon_val1000.mat val_data = sio.loadmat('./double_moon_val1000.mat', squeeze_me=True) Xval = val_data['X'] Yval = val_data['Y'] ###Output _____no_output_____ ###Markdown Computing gradients of the loss with respect to network parameters :: TASK 1.1 ::Derive the form of the gradient of the logistic loss (3) with respect to the parameters of the network $W_i$, $W_o$, $B_i$ and $B_o$. *Hint:* Use the chain rule as discussed in the class. Let $X\in\mathbb{R}^d$, $Y\in\{-1,1\}$, $W_i\in\mathbb{R}^{d\times h}$, $B_i\in\mathbb{R}^h$, $W_o\in\mathbb{R}^h$ and $B_o\in\mathbb{R}$Let :\begin{equation}Z=W_iX+B_i\in\mathbb{R}^h\end{equation}\begin{equation}H=\text{ReLU}(W_i X+B_i)=\text{ReLU}(Z)\in\mathbb{R}^h\end{equation}\begin{equation}\overline{Y}=W_o^TH+B_o=W_o^T\text{ReLU}(Z)+B_o\in\mathbb{R}\end{equation}First, let's do the computations of $\frac{\partial s}{\partial\overline{Y}}$: \begin{equation}\frac{\partial s}{\partial\overline{Y}}=\frac{-Y\exp(-Y.\overline{Y}(X))}{1+\exp(-Y.\overline{Y}(X))}=-Y\sigma(-Y.\overline{Y})\in\mathbb{R}\end{equation}Then, using the chain rule :\begin{equation}\frac{\partial s}{\partial W_o}=\frac{\partial s}{\partial\overline{Y}}\frac{\partial\overline{Y}}{\partial W_o}=-Y\sigma(-Y.\overline{Y})H\in\mathbb{R^h}\end{equation}\begin{equation}\frac{\partial s}{\partial B_o}=\frac{\partial s}{\partial\overline{Y}}\frac{\partial\overline{Y}}{\partial B_o}=-Y\sigma(-Y.\overline{Y})\in\mathbb{R}\end{equation}\begin{equation}\frac{\partial s}{\partial W_i}=\frac{\partial s}{\partial\overline{Y}}\frac{\partial\overline{Y}}{\partial W_i}=-Y\sigma(-Y.\overline{Y})\frac{\partial\overline{Y}}{\partial Z}X^T\end{equation}But : $\overline{Y}=W_o^T\text{ReLU}(Z)+B_o$, then :\begin{equation}\frac{\partial\overline{Y}}{\partial Z}=diag(\mathbb{1}_{Z\succ0})W_o\in\mathbb{R}^h\end{equation}With $diag(\mathbb{1}_{Z\succ0})\in\mathbb{R}^{h\times h}$ the matrix with $\mathbb{1}_{Z\succ0}\in\mathbb{R}^h$ in the diagonal.Thus :\begin{equation}\frac{\partial s}{\partial W_i}=-Y\sigma(-Y.\overline{Y})diag(\mathbb{1}_{Z\succ0})W_oX^T\in\mathbb{R}^{h\times d}\end{equation}Similarly :\begin{equation}\frac{\partial s}{\partial B_i}=-Y\sigma(-Y.\overline{Y})diag(\mathbb{1}_{Z\succ0})W_o\in\mathbb{R}^{h}\end{equation}Other ressources:http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds02.pdf :: TASK 1.2 ::Following your derivation, implement the gradient computation in the function `gradient_nn`. See the code for the description of the required inputs / outputs of this function. ###Code def gradient_nn(X, Y, Wi, bi, Wo, bo): ''' Compute gradient of the logistic loss of the neural network on example X with target label Y, with respect to the parameters Wi,bi,Wo,bo. Input: X ... 2d vector of the input example Y ... the target label in {-1,1} Wi,bi,Wo,bo ... parameters of the network Wi ... [dxh] bi ... [h] Wo ... [h] bo ... 1 where h... is the number of hidden units d... is the number of input dimensions (d=2) Output: grad_s_Wi [dxh] ... gradient of loss s(Y,Y(X)) w.r.t Wi grad_s_bi [h] ... gradient of loss s(Y,Y(X)) w.r.t. bi grad_s_Wo [h] ... gradient of loss s(Y,Y(X)) w.r.t. Wo grad_s_bo 1 ... gradient of loss s(Y,Y(X)) w.r.t. bo ''' Z = np.dot(X,Wi) + bi H = np.maximum(Z, 0) Yo = np.dot(H,Wo) + bo Xt = np.reshape(X,(len(X),1)) Wo2 = np.reshape(Wo,(1,len(Wo))) ind_Z = np.maximum(np.sign(Z),0) grad_s_Wi = -Y*sigm(-Y*Yo)*Xt@[email protected](ind_Z) grad_s_bi = -Y*sigm(-Y*Yo)*np.diag(ind_Z)@Wo grad_s_Wo = -Y*sigm(-Y*Yo)*H grad_s_bo = -Y*sigm(-Y*Yo) return grad_s_Wi, grad_s_bi, grad_s_Wo, grad_s_bo ###Output _____no_output_____ ###Markdown Numerically verify the gradientsHere you will numerically verify that your analytically computed gradients in function `gradient_nn` are correct. :: TASK 1.3 ::Write down the general formula for numerically computing the approximate derivative of the loss $s(\theta)$, with respect to the parameter $\theta_i$ using finite differencing. *Hint: use the first order Taylor expansion of loss $s(\theta+\Delta \theta)$ around point $\theta$. * Computing the first order Taylor expansion for $s(\theta+\Delta \theta)$ and $s(\theta - \Delta \theta)$ gives: $$\frac{\partial s}{\partial \theta} =\frac{ s(\theta+\Delta \theta) - s(\theta - \Delta \theta)}{ \Delta \theta}$$The gradient_nn_numerical algorithm uses this to calculate the gradient Following the general formula, `gradient_nn_numerical` function numerically computes the derivatives of the loss function with respect to all the parameters of the network $W_i$, $W_o$, $B_i$ and $B_o$: ###Code def gradient_nn_numerical(X, Y, Wi, bi, Wo, bo): ''' Compute numerical gradient of the logistic loss of the neural network on example X with target label Y, with respect to the parameters Wi,bi,Wo,bo. Input: X ... 2d vector of the input example Y ... the target label in {-1,1} Wi, bi, Wo, bo ... parameters of the network Wi ... [dxh] bi ... [h] Wo ... [h] bo ... 1 where h... is the number of hidden units d... is the number of input dimensions (d=2) Output: grad_s_Wi_numerical [dxh] ... gradient of loss s(Y,Y(X)) w.r.t Wi grad_s_bi_numerical [h] ... gradient of loss s(Y,Y(X)) w.r.t. bi grad_s_Wo_numerical [h] ... gradient of loss s(Y,Y(X)) w.r.t. Wo grad_s_bo_numerical 1 ... gradient of loss s(Y,Y(X)) w.r.t. bo ''' eps = 1e-8 grad_s_Wi_numerical = np.zeros(Wi.shape) grad_s_bi_numerical = np.zeros(bi.shape) grad_s_Wo_numerical = np.zeros(Wo.shape) for i in range(Wi.shape[0]): for j in range(Wi.shape[1]): dummy, dummy, pos_loss = nnet_forward_logloss(X, Y, sumelement_matrix(Wi, i, j, +eps), bi, Wo, bo) dummy, dummy, neg_loss = nnet_forward_logloss(X, Y, sumelement_matrix(Wi, i, j, -eps), bi, Wo, bo) grad_s_Wi_numerical[i, j] = (pos_loss - neg_loss)/(2*eps) for i in range(bi.shape[0]): dummy, dummy, pos_loss = nnet_forward_logloss(X, Y, Wi, sumelement_vector(bi, i, +eps), Wo, bo) dummy, dummy, neg_loss = nnet_forward_logloss(X, Y, Wi, sumelement_vector(bi, i, -eps), Wo, bo) grad_s_bi_numerical[i] = (pos_loss - neg_loss)/(2*eps) for i in range(Wo.shape[0]): dummy, dummy, pos_loss = nnet_forward_logloss(X, Y, Wi, bi, sumelement_vector(Wo, i, +eps), bo) dummy, dummy, neg_loss = nnet_forward_logloss(X, Y, Wi, bi, sumelement_vector(Wo, i, -eps), bo) grad_s_Wo_numerical[i] = (pos_loss - neg_loss)/(2*eps) dummy, dummy, pos_loss = nnet_forward_logloss(X, Y, Wi, bi, Wo, bo+eps) dummy, dummy, neg_loss = nnet_forward_logloss(X, Y, Wi, bi, Wo, bo-eps) grad_s_bo_numerical = (pos_loss - neg_loss)/(2*eps) return grad_s_Wi_numerical, grad_s_bi_numerical, grad_s_Wo_numerical, grad_s_bo_numerical def sumelement_matrix(X, i, j, element): Y = np.copy(X) Y[i, j] = X[i, j] + element return Y def sumelement_vector(X, i, element): Y = np.copy(X) Y[i] = X[i] + element return Y ###Output _____no_output_____ ###Markdown :: TASK 1.4 ::Run the following code snippet and understand what it is doing. `gradcheck` function checks that the analytically computed derivative using function `gradient_nn` (e.g. `grad_s_bo`) at the same training example $\{X,Y\}$ is the same (up to small errors) as your numerically computed value of the derivative using function `gradient_nn_numerical` (e.g. `grad_s_bo_numerical`). Make sure the output is `SUCCESS` to move on to the next task. ###Code def gradcheck(): ''' Check that the numerical and analytical gradients are the same up to eps ''' h = 3 # number of hidden units eps = 1e-6 for i in range(1000): # Generate random input/output/weight/bias X = np.random.randn(2) Y = 2* np.random.randint(2) - 1 # {-1, 1} Wi = np.random.randn(X.shape[0], h) bi = np.random.randn(h) Wo = np.random.randn(h) bo = np.random.randn(1) # Compute analytical gradients grad_s_Wi, grad_s_bi, grad_s_Wo, grad_s_bo = gradient_nn(X, Y, Wi, bi, Wo, bo) # Compute numerical gradients grad_s_Wi_numerical, grad_s_bi_numerical, grad_s_Wo_numerical, grad_s_bo_numerical = gradient_nn_numerical(X, Y, Wi, bi, Wo, bo) # Compute the difference between analytical and numerical gradients delta_Wi = np.mean(np.abs(grad_s_Wi - grad_s_Wi_numerical)) delta_bi = np.mean(np.abs(grad_s_bi - grad_s_bi_numerical)) delta_Wo = np.mean(np.abs(grad_s_Wo - grad_s_Wo_numerical)) delta_bo = np.abs(grad_s_bo - grad_s_bo_numerical) # Difference larger than a threshold if ( delta_Wi > eps or delta_bi > eps or delta_Wo > eps or delta_bo > eps): return False return True # Check gradients if gradcheck(): print('SUCCESS: Passed gradcheck.') else: print('FAILURE: Fix gradient_nn and/or gradient_nn_aprox implementation.') ###Output SUCCESS: Passed gradcheck. ###Markdown Training the network using backpropagation and experimenting with different parameters Use the provided code below that calls the `train_loop` function. Set the number of hidden units to 7 by setting $h=7$ in the code and set the learning rate to 0.02 by setting `lrate = 0.02`. Run the training code. Visualize the trained hyperplane using the provided function `plot_decision_boundary(Xtr,Ytr,Wi,bi,Wo,bo)`. Show also the evolution of the training and validation errors. Include the decision hyper-plane visualization and the training and validation error plots. ###Code def train_loop(Xtr, Ytr, Xval, Yval, h = 7, lrate = 0.02, vis='all', nEpochs=100): ''' Check that the numerical and analytical gradients are the same up to eps Input: Xtr ... Nx2 matrix of training samples Ytr ... N dimensional vector of training labels Xval ... Nx2 matrix of validation samples Yval ... N dimensional vector validation labels h ... number of hidden units lrate ... learning rate vis ... visulaization option ('all' | 'last' | 'never') nEpochs ... number of training epochs Output: tr_error ... nEpochs*nSamples dimensional vector of training error val_error ... nEpochs*nSamples dimensional vector of validation error ''' nSamples = Xtr.shape[0] tr_error = np.zeros(nEpochs*nSamples) val_error = np.zeros(nEpochs*nSamples) # Randomly initialize parameters of the model Wi = np.random.randn(Xtr.shape[1], h) Wo = np.zeros(h) bi = np.zeros(h) bo = 0. if(vis == 'all' or vis == 'last'): plt.figure() for i in range(nEpochs*nSamples): # Draw an example at random n = np.random.randint(nSamples) X = Xtr[n] Y = Ytr[n] # Compute gradient grad_s_Wi, grad_s_bi, grad_s_Wo, grad_s_bo = gradient_nn(X, Y, Wi, bi, Wo, bo) # Gradient update Wi -= lrate*grad_s_Wi Wo -= lrate*grad_s_Wo bi -= lrate*grad_s_bi bo -= lrate*grad_s_bo # Compute training error Po, Yo, loss = nnet_forward_logloss(Xtr, Ytr, Wi, bi, Wo, bo) Yo_class = np.sign(Yo) tr_error[i] = 100*np.mean(Yo_class != Ytr) # Compute validation error Pov, Yov, lossv = nnet_forward_logloss(Xval, Yval, Wi, bi, Wo, bo) Yov_class = np.sign(Yov) val_error[i] = 100*np.mean(Yov_class != Yval) # Plot (at every epoch if visualization is 'all', only at the end if 'last') if(vis == 'all' and i%nSamples == 0) or (vis == 'last' and i == nEpochs*nSamples - 1): # Draw the decision boundary. plt.clf() plt.title('p = %d, Iteration = %.d, Error = %.3f' % (h, i/nSamples, tr_error[i])) decision_boundary_nnet(Xtr, Ytr, Wi, bi, Wo, bo) display.display(plt.gcf(), display_id=True) display.clear_output(wait=True) if(vis == 'all'): # Plot the evolution of the training and test errors plt.figure() plt.plot(tr_error, label='training') plt.plot(val_error, label='validation') plt.legend() plt.title('Training/validation errors: %.2f%% / %.2f%%' % (tr_error[-1], val_error[-1])) return tr_error, val_error # Run training h = 7 lrate = .02 tr_error, val_error = train_loop(Xtr, Ytr, Xval, Yval, h, lrate) ###Output _____no_output_____ ###Markdown :: TASK 1.6 ::**Random initializations.** Repeat this procedure 5 times from 5 different random initializations. Record for each run the final training and validation errors. Did the network always converge to zero training error? Summarize your final training and validation errors into a table for the 5 runs. You do not need to include the decision hyper-plane visualizations. Note: to speed-up the training you can plot the visualization figures less often (or never) and hence speed-up the training. ###Code list_h = [10, 15, 20, 30, 50] ltr_error, lval_error = [] , [] for k in range(5): tr_error, val_error = train_loop(Xtr, Ytr, Xval, Yval, list_h[k], vis = 'never') ltr_error.append(tr_error[-1]) lval_error.append(val_error[-1]) import pandas pandas.DataFrame(data = {'Training Error': ltr_error, 'Validation Error': lval_error}, index = np.arange(1, 6)) ###Output _____no_output_____ ###Markdown In these cases, the network always converge to zero training errorshere is the table: [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] :: SAMPLE TASK ::For this task, the answer is given. Run the given code and answer Task 1.8 similarly.**Learning rate:**Keep $h=7$ and change the learning rate to values $\text{lrate} = \{2, 0.2, 0.02, 0.002\}$. For each of these values run the training procedure 5 times and observe the training behaviour. You do not need to include the decision hyper-plane visualizations in your answer.**- Make one figure** where *final* error for (i) training and (ii) validation sets are superimposed. $x$-axis should be the different values of the learning rate, $y$-axis the error *mean* across 5 runs. Show the standard deviation with error bars and make sure to label each plot with a legend.**- Make another figure** where *training error evolution* for each learning rate is superimposed. $x$-axis should be the iteration number, $y$-axis the training error *mean* across 5 runs for a given learning rate. Show the standard deviation with error bars and make sure to label each curve with a legend. ###Code nEpochs = 40 trials = 5 lrates = [2, 0.2, 0.02, 0.002] plot_data_lr = np.zeros((2, trials, len(lrates), nEpochs*1000)) h = 7 for j, lrate in enumerate(lrates): print('LR = %f' % lrate) for i in range(trials): tr_error, val_error = train_loop(Xtr, Ytr, Xval, Yval, h, lrate, vis='never', nEpochs=nEpochs) plot_data_lr[0, i, j, :] = tr_error plot_data_lr[1, i, j, :] = val_error plt.errorbar(np.arange(len(lrates)), plot_data_lr[0, :, :, -1].mean(axis=0), yerr=plot_data_lr[0, :, :, -1].std(axis=0), label='Training') plt.errorbar(np.arange(len(lrates)), plot_data_lr[1, :, :, -1].mean(axis=0), yerr=plot_data_lr[0, :, :, -1].std(axis=0), label='Validation') plt.xticks(np.arange(len(lrates)), lrates) plt.xlabel('learning rate') plt.ylabel('error') plt.legend() # Plot the evolution of the training loss for each learning rate plt.figure() for j, lrate in enumerate(lrates): x = np.arange(plot_data_lr.shape[3]) # Mean training loss over trials y = plot_data_lr[0, :, j, :].mean(axis=0) # Standard deviation over trials ebar = plot_data_lr[0, :, j, :].std(axis=0) # Plot markers, caps, bars = plt.errorbar(x, y, yerr=ebar, label='LR = ' + str(lrate)) # Make the error bars transparent [bar.set_alpha(0.01) for bar in bars] plt.legend() plt.xlabel('iterations') plt.ylabel('training error') ###Output _____no_output_____ ###Markdown :: TASK 1.7 ::**- Briefly discuss** the different behaviour of the training for different learning rates. How many iterations does it take to converge or does it converge at all? Which learning rate is better and why? We see from the plot that depending on the learning rate the model will not always converge. The model converge with the three other learning rates. It take approximately 2000 iterations to converge for the model with LR = 0.2 , 10 000 for LR = 0.02 and 30 000 for LR = 0.002.When learning rate is too high ( it's the case for LR = 2), the weights are update too much and then the loss will divergeWhen the learning rate is too low, the weights are updated little by little and it'll take a lot of time to have the convergence.The optimal learning is the one of the green curve because although the yellow converge faster the variance is more important in this last plot.Indeed, the model with LR = 0.02 keeps a good balance between the speed and the accuracy. :: TASK 1.8 ::**The number of hidden units:**Set the learning rate to 0.02 and change the number of hidden units $h = \{1, 2, 5, 7, 10, 100\}$. For each of these values run the training procedure 5 times and observe the training behaviour**-Visualize** one decision hyper-plane per number of hidden units.**-Make one figure** where *final* error for (i) training and (ii) validation sets are superimposed. $x$-axis should be the different values of the number of hidden units, $y$-axis the error *mean* across 5 runs. Show the standard deviation with error bars and make sure to label each plot with a legend.**-Make another figure** where *training error evolution* for each number of hidden units is superimposed. $x$-axis should be the iteration number, $y$-axis the training error *mean* across 5 runs for a given learning rate. Show the standard deviation with error bars and make sure to label each curve with a legend.**-Briefly discuss** the different behaviours for the different numbers of hidden units. ###Code nEpochs = 40 trials = 5 rate = 0.2 hid = [1, 2, 5, 7, 10, 100] plot_data_h = np.zeros((2, trials, len(hid), nEpochs*1000)) h = 7 for j, h in enumerate(hid): print('h = %d' % h) for i in range(trials): tr_error, val_error = train_loop(Xtr, Ytr, Xval, Yval, h, rate, vis='never', nEpochs=nEpochs) plot_data_h[0, i, j, :] = tr_error plot_data_h[1, i, j, :] = val_error plt.errorbar(np.arange(len(hid)), plot_data_h[0, :, :, -1].mean(axis=0), yerr=plot_data_h[0, :, :, -1].std(axis=0), label='Training') plt.errorbar(np.arange(len(hid)), plot_data_h[1, :, :, -1].mean(axis=0), yerr=plot_data_h[0, :, :, -1].std(axis=0), label='Validation') plt.xticks(np.arange(len(hid)), hid) plt.xlabel('Number of hidden units') plt.ylabel('error') plt.legend() # Plot the evolution of the training loss for each h plt.figure() for j, hid in enumerate(hid): x = np.arange(plot_data_h.shape[3]) # Mean training loss over trials y = plot_data_h[0, :, j, :].mean(axis=0) # Standard deviation over trials ebar = plot_data_h[0, :, j, :].std(axis=0) # Plot markers, caps, bars = plt.errorbar(x, y, yerr=ebar, label='H = ' + str(hid)) # Make the error bars transparent [bar.set_alpha(0.01) for bar in bars] plt.legend() plt.xlabel('iterations') plt.ylabel('training error') ###Output _____no_output_____ ###Markdown We observe that we can't fit the data when the model is too simple. It's the case for h=1 and h=2 layers. Indeed, the model can't achieve zero training error.Increasing the number of hidden layers and thus the numbers of parameters will allow the model to fit complex data and then converge. But increasing the number of hidden layer will increase the time to train the model. So a good tradeoff here is to choose h = 10. Part 2 - Building blocks of a CNNThis part introduces typical CNN building blocks, such as ReLU units and linear filters. For a motivation for using CNNs over fully-connected neural networks, see [[Le Cun, et al, 1998]](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf). Install PyTorch ###Code !pip install torch torchvision import torch print(torch.__version__) print(torch.cuda.is_available()) ###Output Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (1.3.1+cu100) Requirement already satisfied: torchvision in /usr/local/lib/python3.6/dist-packages (0.4.2+cu100) Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch) (1.17.3) Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.6/dist-packages (from torchvision) (4.3.0) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from torchvision) (1.12.0) Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow>=4.1.1->torchvision) (0.46) 1.3.1+cu100 True ###Markdown ConvolutionA feed-forward neural network can be thought of as the composition of number of functions $$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x};\mathbf{w}_1);\mathbf{w}_2)\dots),\mathbf{w}_{L}).$$Each function $f_l$ takes as input a datum $\mathbf{x}_l$ and a parameter vector $\mathbf{w}_l$ and produces as output a datum $\mathbf{x}_{l+1}$. While the type and sequence of functions is usually handcrafted, the parameters $\mathbf{w}=(\mathbf{w}_1,\dots,\mathbf{w}_L)$ are *learned from data* in order to solve a target problem, for example classifying images or sounds.In a *convolutional neural network* data and functions have additional structure. The data $\mathbf{x}_1,\dots,\mathbf{x}_n$ are images, sounds, or more in general maps from a lattice$^1$ to one or more real numbers. In particular, since the rest of the practical will focus on computer vision applications, data will be 2D arrays of pixels. Formally, each $\mathbf{x}_i$ will be a $M \times N \times K$ real array of $M \times N$ pixels and $K$ channels per pixel. Hence the first two dimensions of the array span space, while the last one spans channels. Note that only the input $\mathbf{x}=\mathbf{x}_1$ of the network is an actual image, while the remaining data are intermediate *feature maps*.The second property of a CNN is that the functions $f_l$ have a *convolutional structure*. This means that $f_l$ applies to the input map $\mathbf{x}_l$ an operator that is *local and translation invariant*. Examples of convolutional operators are applying a bank of linear filters to $\mathbf{x}_l$. In this part we will familiarise ourselves with a number of such convolutional and non-linear operators. The first one is the regular *linear convolution* by a filter bank. We will start by focusing our attention on a single function relation as follows:$$ f: \mathbb{R}^{M\times N\times K} \rightarrow \mathbb{R}^{M' \times N' \times K'}, \qquad \mathbf{x} \mapsto \mathbf{y}.$$$^1$A two-dimensional *lattice* is a discrete grid embedded in $R^2$, similar for example to a checkerboard. ###Code import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch import torchvision # Download an example image !wget -q http://www.di.ens.fr/willow/teaching/recvis/assignment3/images/peppers.png # Read the image x = np.asarray(Image.open('peppers.png'))/255.0 # Print the size of x. Third dimension (=3) corresponds to the R, G, B channels print(x.shape) # Visualize the input x plt.imshow(x) # Convert to torch tensor x = torch.from_numpy(x).permute(2, 0, 1).float() # Prepare it as a batch x = x.unsqueeze(0) ###Output (384, 512, 3) ###Markdown This should display an image of bell peppers.Next, we create a convolutional layer with a bank of 10 filters of dimension $5 \times 5 \times 3$ whose coefficients are initialized randomly. This uses the [`torch.nn.Conv2d`](https://pytorch.org/docs/stable/nn.htmltorch.nn.Conv2d) module from PyTorch: ###Code # Create a convolutional layer and a random bank of linear filters conv = torch.nn.Conv2d(3, 10, kernel_size=5, stride=1, padding=0, bias=False) print(conv.weight.size()) ###Output torch.Size([10, 3, 5, 5]) ###Markdown **Remark:** You might have noticed that the `bias` argument to the `torch.nn.Conv2d` function is the empty matrix `false`. It can be otherwise used to pass a vector of bias terms to add to the output of each filter.Note that `conv.weight` has four dimensions, packing 10 filters. Note also that each filter is not flat, but rather a volume containing three slices. The next step is applying the filter to the image. ###Code # Apply the convolution operator y = conv(x) # Observe the input/output sizes print(x.size()) print(y.size()) ###Output torch.Size([1, 3, 384, 512]) torch.Size([1, 10, 380, 508]) ###Markdown The variable `y` contains the output of the convolution. Note that the filters are three-dimensional. This is because they operate on a tensor $\mathbf{x}$ with $K$ channels. Furthermore, there are $K'$ such filters, generating a $K'$ dimensional map $\mathbf{y}$.We can now visualise the output `y` of the convolution. In order to do this, use the `torchvision.utils.make_grid` function to display an image for each feature channel in `y`: ###Code # Visualize the output y def vis_features(y): # Organize it into 10 grayscale images out = y.permute(1, 0, 2, 3) # Scale between [0, 1] out = (out - out.min().expand(out.size())) / (out.max() - out.min()).expand(out.size()) # Create a grid of images out = torchvision.utils.make_grid(out, nrow=5) # Convert to numpy image out = np.transpose(out.detach().numpy(), (1, 2, 0)) # Show plt.imshow(out) # Remove grid plt.gca().grid(False) vis_features(y) ###Output _____no_output_____ ###Markdown So far filters preserve the resolution of the input feature map. However, it is often useful to *downsample the output*. This can be obtained by using the `stride` option in `torch.nn.Conv2d`: ###Code # Try again, downsampling the output conv_ds = torch.nn.Conv2d(3, 10, kernel_size=5, stride=16, padding=0, bias=False) y_ds = conv_ds(x) print(x.size()) print(y_ds.size()) vis_features(y_ds) ###Output torch.Size([1, 3, 384, 512]) torch.Size([1, 10, 24, 32]) ###Markdown Applying a filter to an image or feature map interacts with the boundaries, making the output map smaller by an amount proportional to the size of the filters. If this is undesirable, then the input array can be padded with zeros by using the `pad` option: ###Code # Try padding conv_pad = torch.nn.Conv2d(3, 10, kernel_size=5, stride=1, padding=2, bias=False) y_pad = conv_pad(x) print(x.size()) print(y_pad.size()) vis_features(y_pad) ###Output torch.Size([1, 3, 384, 512]) torch.Size([1, 10, 384, 512]) ###Markdown In order to consolidate what has been learned so far, we will now design a filter by hand: ###Code w = torch.FloatTensor([[0, 1, 0 ], [1, -4, 1 ], [0, 1, 0 ]]) w = w.repeat(3, 1).reshape(1, 3, 3, 3) conv_lap = torch.nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False) conv_lap.weight = torch.nn.Parameter(w) y_lap = conv_lap(x) print(x.size()) print(y_lap.size()) plt.figure() vis_features(y_lap) plt.title('filter output') plt.figure() vis_features(-torch.abs(y_lap)) plt.title('- abs(filter output)') ; print(w) ###Output tensor([[[[ 0., 1., 0.], [ 1., -4., 1.], [ 0., 1., 0.]], [[ 0., 1., 0.], [ 1., -4., 1.], [ 0., 1., 0.]], [[ 0., 1., 0.], [ 1., -4., 1.], [ 0., 1., 0.]]]]) ###Markdown :: TASK 2.1 ::* i. What filter have we implemented?* ii. How are the RGB colour channels processed by this filter?* iii. What image structure are detected? i. A Laplacian Filter is implemented hereii. This filter is applied to each of the RGB channel and then we sum the three values on the corresponding pixel and get the final feature map.iii. It detected quick changes of intensity in the image. Then, the edges in the image are detected. Non-linear activation functionsThe simplest non-linearity is obtained by following a linear filter by a *non-linear activation function*, applied identically to each component (i.e. point-wise) of a feature map. The simplest such function is the *Rectified Linear Unit (ReLU)*$$ y_{ijk} = \max\{0, x_{ijk}\}.$$This function is implemented by [`torch.nn.ReLU()`](https://pytorch.org/docs/stable/nn.htmltorch.nn.ReLU). Run the code below and understand what the filter $\mathbf{w}$ is doing. ###Code w = torch.FloatTensor([[1], [0], [-1]]).repeat(1, 3, 1, 1) w = torch.cat((w, -w), 0) conv = torch.nn.Conv2d(3, 2, kernel_size=(3, 1), stride=1, padding=0, bias=False) conv.weight = torch.nn.Parameter(w) relu = torch.nn.ReLU() y = conv(x) z = relu(y) plt.figure() vis_features(y) plt.figure() vis_features(z) ###Output _____no_output_____ ###Markdown PoolingThere are several other important operators in a CNN. One of them is *pooling*. A pooling operator operates on individual feature channels, coalescing nearby feature values into one by the application of a suitable operator. Common choices include max-pooling (using the max operator) or sum-pooling (using summation). For example, *max-pooling* is defined as:$$ y_{ijk} = \max \{ y_{i'j'k} : i \leq i' < i+p, j \leq j' < j + p \}$$Max-pooling is implemented by [`torch.nn.MaxPool2d()`](https://pytorch.org/docs/stable/nn.htmltorch.nn.MaxPool2d). :: TASK 2.2 ::Run the code below to try max-pooling. Look at the resulting image. Can you interpret the result? ###Code mp = torch.nn.MaxPool2d(15, stride=1) y = mp(x) plt.imshow(y.squeeze().permute(1, 2, 0).numpy()) plt.gca().grid(False) ###Output _____no_output_____ ###Markdown Maxpooling will downsample the image. In fact, it will take the maximum of the kernel applied in the image. Then the output image will be smoothed but the whole image will keep its caracteristics. Part 3 - Training a CNNThis part is an introduction to using PyTorch for training simple neural net models. CIFAR-10 dataset will be used. Imports ###Code from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable USE_GPU = True # To train on gpu (no that important small network and data) if USE_GPU and torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print("Using : %s" %str(device)) ###Output Using : cuda ###Markdown Parameters The default values for the learning rate, batch size and number of epochs are given in the "options" cell of this notebook. Unless otherwise specified, use the default values throughout this assignment. ###Code batch_size = 64 # input batch size for training epochs = 10 # number of epochs to train lr = 0.01 # learning rate ###Output _____no_output_____ ###Markdown Warmup It is always good practice to visually inspect your data before trying to train a model, since it lets you check for problems and get a feel for the task at hand.CIFAR-10 is a dataset of 60,000 color images (32 by 32 resolution) across 10 classes(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck). The train/test split is 50k/10k. ###Code # Data Loading # Warning: this cell might take some time when you run it for the first time, # because it will download the dataset from the internet dataset = 'cifar10' data_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) trainset = datasets.CIFAR10(root='.', train=True, download=True, transform=data_transform) testset = datasets.CIFAR10(root='.', train=False, download=True, transform=data_transform) train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0) test_loader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=0) ###Output 0it [00:00, ?it/s] ###Markdown :: TASK 3.1 ::Use `matplotlib` and ipython notebook's visualization capabilities to display some of these images. Display 5 images from the dataset together with their category label. [See this PyTorch tutorial page](http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.htmlsphx-glr-beginner-blitz-cifar10-tutorial-py) for hints on how to achieve this. ###Code import matplotlib.pyplot as plt classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() trainloader = torch.utils.data.DataLoader(trainset, batch_size=5, shuffle=True, num_workers=0) # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(5))) ###Output _____no_output_____ ###Markdown Training a Convolutional Network on CIFAR-10 Start by running the provided training code below. By default it will train on CIFAR-10 for 10 epochs (passes through the training data) with a single layer network. The loss function [cross_entropy](http://pytorch.org/docs/master/nn.html?highlight=cross_entropytorch.nn.functional.cross_entropy) computes a Logarithm of the Softmax on the output of the neural network, and then computes the negative log-likelihood w.r.t. the given `target`. Note the decrease in training loss and corresponding decrease in validation errors. ###Code def train(epoch, network): network.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() data = data.to(device) target = target.to(device) output = network(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(network): network.eval() test_loss = 0 correct = 0 for data, target in test_loader: data = data.to(device) target = target.to(device) output = network(data) test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # Single layer network architecture class Net(nn.Module): def __init__(self, num_inputs, num_outputs): super(Net, self).__init__() self.linear = nn.Linear(num_inputs, num_outputs) self.num_inputs = num_inputs def forward(self, input): input = input.view(-1, self.num_inputs) # reshape input to batch x num_inputs output = self.linear(input) return output # Train network = Net(3072, 10).to(device) optimizer = optim.SGD(network.parameters(), lr=lr) for epoch in range(1, 11): train(epoch, network) test(network) ###Output Train Epoch: 1 [0/50000 (0%)] Loss: 2.251657 Train Epoch: 1 [6400/50000 (13%)] Loss: 2.000074 Train Epoch: 1 [12800/50000 (26%)] Loss: 1.983296 Train Epoch: 1 [19200/50000 (38%)] Loss: 1.921615 Train Epoch: 1 [25600/50000 (51%)] Loss: 1.727296 Train Epoch: 1 [32000/50000 (64%)] Loss: 1.843463 Train Epoch: 1 [38400/50000 (77%)] Loss: 1.662544 Train Epoch: 1 [44800/50000 (90%)] Loss: 1.798393 ###Markdown :: TASK 3.2 ::Add code to create a convolutional network architecture as below. - Convolution with 5 by 5 filters, 16 feature maps + Tanh nonlinearity. - 2 by 2 max pooling. - Convolution with 5 by 5 filters, 128 feature maps + Tanh nonlinearity. - 2 by 2 max pooling. - Flatten to vector. - Linear layer with 64 hidden units + Tanh nonlinearity. - Linear layer to 10 output units. ###Code class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size = 5, bias=False) self.t1 = nn.Tanh() self.pool1 = nn.MaxPool2d(kernel_size = 2) self.conv2 = nn.Conv2d(16, 128, kernel_size = 5, bias=False) self.t2 = nn.Tanh() self.pool2 = nn.MaxPool2d(kernel_size = 2) self.flat = nn.Flatten() self.linear1 = nn.Linear(128 * 5 * 5, 64, bias=False) self.t3 = nn.Tanh() self.linear2 = nn.Linear(64, 10, bias=False) def forward(self, input): x = self.conv1(input) x = self.t1(x) x = self.pool1(x) x = self.conv2(x) x = self.t2(x) x = self.pool2(x) x = self.flat(x) x = self.linear1(x) x = self.t3(x) output = self.linear2(x) return output ###Output _____no_output_____ ###Markdown :: TASK 3.3 ::Some of the functions in a CNN must be non-linear. Why? If we use linear functions in a CNN, the whole network will be linear and then will be equivalent to a single layer network. Most of the real world problems are non linear and have to be approximated by non linear function. Introducing non linear activations will increase the order of the network which will be able to approximate more complicated functions. :: TASK 3.4 ::Train the CNN for 20 epochs on the CIFAR-10 training set. ###Code # Train network = ConvNet().to(device) optimizer = optim.SGD(network.parameters(), lr = lr) for epoch in range(1, 21): train(epoch, network) test(network) ###Output Train Epoch: 1 [0/50000 (0%)] Loss: 2.298941 Train Epoch: 1 [6400/50000 (13%)] Loss: 2.202316 Train Epoch: 1 [12800/50000 (26%)] Loss: 2.010598 Train Epoch: 1 [19200/50000 (38%)] Loss: 2.035936 Train Epoch: 1 [25600/50000 (51%)] Loss: 1.921243 Train Epoch: 1 [32000/50000 (64%)] Loss: 1.888596 Train Epoch: 1 [38400/50000 (77%)] Loss: 1.891539 Train Epoch: 1 [44800/50000 (90%)] Loss: 1.800411 ###Markdown :: TASK 3.5 ::Plot the first convolutional layer weights as images after the last epoch. (Hint threads: [1](https://discuss.pytorch.org/t/understanding-deep-network-visualize-weights/2060/2?u=smth) [2](https://github.com/pytorch/visionutils) ) ###Code def vis_filter(y): # Scale between [0, 1] out = (y - y.min().expand(y.size())) / (y.max() - y.min()).expand(y.size()) # Create a grid of images out = torchvision.utils.make_grid(out, nrow=8, padding=1) # Convert to numpy image out = np.transpose(out.detach().numpy(), (1, 2, 0)) # Show plt.figure(figsize= (20, 2)) plt.imshow(out) # Remove grid plt.gca().grid(False) network = network.to("cpu") print(network.conv1.weight.size()) vis_filter(network.conv1.weight) ###Output torch.Size([16, 3, 5, 5]) ###Markdown Задание 1. (5 баллов) В тетрадке реализована биграмная языковая модель (при генерации учитывается информация только о 1 предыдущем слове). Реализуйте триграмную модель и сгенерируйте несколько текстов. Сравните их с текстами, сгенерированными биграмной моделью. Можно использовать те же тексты, что в семинаре, или взять какой-то другой (на английском или русском языке). Делать это задание будет легче после прочтения первых 7 страниц вот этой главы из Журафского - https://web.stanford.edu/~jurafsky/slp3/3.pdf ###Code import nltk import re from collections import defaultdict import numpy as np import copy from gensim.models.phrases import Phrases with open('stranger.txt', encoding='utf-8') as file: #Robert Heinlein's Stranger in a Strange Land with preface removed stranger = file.read() stranger = stranger.replace('“Stranger In A Strange Land” by Robert Heinlein', '') sents = nltk.tokenize.sent_tokenize(stranger) ###Output _____no_output_____ ###Markdown *Не включаю слова, написанные через дефис, т.к. 1) в данном тексте не используются тире 2) между дефисами нет пробелов.* ###Code pattern = re.compile(r'([A-Za-z]+[\']?[A-Za-z]*)') sents = [re.findall(pattern, sent) for sent in sents] tri_model = defaultdict(lambda: defaultdict(lambda: 0)) for sentence in sents: for w1, w2, w3 in nltk.trigrams(sentence, pad_right=True, pad_left=True, left_pad_symbol='<s>', right_pad_symbol='</s>'): tri_model[(w1, w2)][w3] += 1 ###Output _____no_output_____ ###Markdown Логарифм не использую, потому что верятности нужны только, чтобы сделать взвешенную выборку. ###Code for bigram in tri_model: total_count = sum(tri_model[bigram].values()) for target in tri_model[bigram]: tri_model[bigram][target] /= total_count def tri_generate(model, start=('<s>', '<s>')): text = list(start) while text[-1] != '</s>': index = tuple(text[-2:]) keys = list(model[index].keys()) values = list(model[index].values()) key = np.random.choice(keys, 1, values)[0] text.append(key) return ' '.join(text[2:]).strip(' </s>') def text_generator(sent_generator, model, number_of_sents=1, count_words=False): result = [] for _ in range(number_of_sents): result.append(sent_generator(model)) if count_words == True: count = count_words_avg(result) return count else: result = '. '.join(result) + '.' return result def count_words_avg(sents): total = 0 for sent in sents: total += len(sent.split(' ')) return total/len(sents) ###Output _____no_output_____ ###Markdown *Тут надо отметить, что данный текст – результат работы программы автоматического распознавания печатной книги, поэтому здесь нередко встречаются ошибки. Их можно было бы поправить, но это в масштаб данного задания всё же не входит.* ###Code tri_example = text_generator(tri_generate, tri_model, 6) print(tri_example) bi_model = defaultdict(lambda: defaultdict(lambda: 0)) for sentence in sents: for w1, w2 in nltk.bigrams(sentence, pad_right=True, pad_left=True, left_pad_symbol='<s>', right_pad_symbol='</s>'): bi_model[w1][w2] += 1 for unigram in bi_model: total_count = sum(bi_model[unigram].values()) for target in bi_model[unigram]: bi_model[unigram][target] /= total_count def bi_generate(model, start=['<s>']): text = copy.copy(start) while text[-1] != '</s>': index = text[-1] keys = list(model[index].keys()) values = list(model[index].values()) key = np.random.choice(keys, 1, values)[0] text.append(key) return ' '.join(text[1:]).strip(' </s>') bi_example = text_generator(bi_generate, bi_model, 6) bi_example ###Output _____no_output_____ ###Markdown Результат триграммной модели для сравнения: ###Code tri_example ###Output _____no_output_____ ###Markdown Можно отметить две вещи: 1) Предложения, созданные триграммной модели определённо больше похожи на текст, написанный человеком. Они более связные (только грамматически, естественно). 2) Биграммные предложения длиннее, чем триграммные, при условии, что мы останавливаемся только на символе окончания предложения. Это подтверждается экспериментом ниже. ###Code n = 100 m = 10 bi_test = 0 tri_test = 0 for _ in range(n): bi_test += text_generator(bi_generate, bi_model, m, count_words=True) tri_test += text_generator(tri_generate, tri_model, m, count_words=True) print(f'Average bigram model sentence length: {bi_test/n:.2f} words\n' + f'Average trigram model sentence length: {tri_test/n:.2f} words\n') ###Output Average bigram model sentence length: 19.90 words Average trigram model sentence length: 12.46 words ###Markdown Задание 2. (5 баллов) При помощи gensim.models.Phrases реализуйте byte-pair-encoding, про который говорилось на первом семинаре (https://github.com/mannefedov/compling_nlp_hse_course/blob/master/notebooks/Preprocessing.ipynb) А именно 1) возьмите любой текст; разбейте его на предложения, а каждое предложение разбейте на отдельные символы (не потеряйте пробелы) 2) обучите gensim.models.Phrases на полученных символьных предложениях 3) примените полученный нграммер к этим символьным предложениям 4) повторите 2 и 3 N количество раз, чтобы начали получаться целые словаПараметры в gensim.models.Phrases влияют на количество получаемых нграммов после каждого прохода, поэтому не забудьте их настроить ###Code symbol_sents = [' '.join(sent) for sent in sents] symbol_sents = [[ch for ch in sent if ch not in ',.;!?\n'] for sent in symbol_sents] def symbol_grams(sents, iterations): transformed = [] for _ in range(iterations): if not transformed: transformed = sents phrases = Phrases(transformed, scoring='npmi', threshold=0, min_count=2) transformed = phrases[transformed] return transformed result = symbol_grams(symbol_sents, 3) ###Output _____no_output_____ ###Markdown Как видим, действительно, используя такой метод, не получается получить нграммы соответствующие именно отдельным словам, не перепрыгивая через пробелы. ###Code list(result)[1] def split_spaces(sents): res = [] for sent in sents: sub = [] for word in sent: sub.extend(word.split(' ')) sub = [word.strip('_') if word else ' ' for word in sub] res.append(sub) return res def symbol_grams_spaces(sents, iterations): transformed = [] for _ in range(iterations): if not transformed: transformed = sents phrases = Phrases(transformed, scoring='npmi', threshold=0, min_count=3) transformed = phrases[transformed] transformed = split_spaces(transformed) return transformed result_spaces = symbol_grams_spaces(symbol_sents, 3) ###Output _____no_output_____ ###Markdown С учётом пробелов получается результат, более близкий к желаемому, но появляются дополнительные пробелы. Предположительно, это связано с тем, что артикль склеивается с пробелом при каждой итерации, что вполне объяснимо тем, что для артикля это самая частотная пара. ###Code '|'.join(list(result_spaces)[1]) ###Output _____no_output_____ ###Markdown С помощью разнообразных описательных статистик (которые были изложены в лекциях) сравните товары и рестораны. ###Code import os os.chdir("/Users/egorgusev/Анализ данных/Задание 2") import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt ProductList = pd.read_csv('PRODUCT_LIST.CSV', sep=';', encoding='Windows-1251') ProductList.head() ProductList.dtypes ProductList.describe(include = 'all') SaleList = pd.read_csv('SALE_LIST.csv', sep=';', encoding='Windows-1251') SaleList SaleList.info() SaleList.describe(include = 'all') len(ProductList['Product_name'].unique()) ProductList['Product_name'].unique() ProductList['Unnamed: 3'].unique() mergeList[mergeList['Product_name'] == 'Чай красный фрукт 270мл'] top5 = list(mergeList.groupby('Product_name')['product_count'].sum().sort_values(ascending = False).head(5).index.values) mergeList[mergeList['Product_name'].isin(top5)].groupby(['rest_code', 'Product_name'])['product_count'].hist(bins=50) ax1 = mergeList[mergeList['Product_name'].isin(top5)].boxplot(figsize=(30,10), column='product_count', by = ['rest_code', 'Product_name']) ax1.get_figure().suptitle('') plt.figure() top200M = mergeList[mergeList['rest_code'] == 'Мечта'].sort_values('product_count', ascending = False).head(200) top400O = mergeList[mergeList['rest_code'] == 'Озерный'].sort_values('product_count', ascending = False).head(400) top400O top400O.hist('product_count') top200M top200M.hist('product_count') top200M.boxplot(column='product_count') top400O.boxplot(column='product_count') np.log(top200['product_count']).hist() mergeList.groupby('Product_name')['product_count'].sum().sort_values(ascending = False) #top200.groupby('date').hist(column='product_count') df = pd.DataFrame(mergeList.groupby(['Product_name', 'rest_code'])['product_count'].sum()) df.boxplot(column='product_count', by='rest_code') top200.boxplot(column='product_count', by='rest_code') df.hist(column='product_count', by='rest_code') mergeList.groupby(['Product_name', 'rest_code'])['product_count'].sum().sort_values(ascending = False) mergeList = pd.merge(left=SaleList, right=ProductList, left_on='product_code', right_on='Product_code') mergeList mergeList.groupby('rest_code')['product_count'].plot.hist(bins=40, alpha=0.4) plt.legend(loc='upper right') mergeList['product_count'].hist(bins=40, alpha=0.4) mergeList.boxplot(column='product_count') #mergeList.groupby('rest_code')["Product_code"].plot.hist(alpha=0.2) mergeList.boxplot(column='product_count', by='rest_code') ax = top200.boxplot(column='product_count', by='Product_name') ax.get_figure().suptitle('') ax = top400O.boxplot(column='product_count', by='Product_name') ax.get_figure().suptitle('') plt.title(u' Топ продажи в кафе Озерный') mergeList[mergeList['Product_name'] == 'Кофе КАПУЧИНО 150мл'].groupby('rest_code')['product_count'].hist(bins = 30) mergeList[mergeList['Product_name'] == 'Кофе КАПУЧИНО 150мл'].boxplot(by = 'rest_code', column = 'product_count') plt.title(u'Продажи Кофе КАПУЧИНО 150мл') ###Output _____no_output_____ ###Markdown ASTR531 HW2 Contents* [9.1](9.1)* [11.2](11.2)* [12.2](12.2)* [13.2](13.2) ###Code %matplotlib inline %config InlineBackend.figure_format='retina' from astropy.coordinates import Distance from scipy.optimize import leastsq import astropy.units as u import astropy.constants as const import numpy as np import pandas as pd import seaborn as sns sns.set(font_scale=1.2) ###Output _____no_output_____ ###Markdown 9.1 ###Code def tdyn(M, R): rho = 3*M/(4*np.pi*R**3) return ((const.G*rho)**-0.5).to(u.hour) def tkh(M, R, L): return (const.G*M**2/(R*L)).to(u.year) def tnuc(M, L): return ((M/u.solMass)/(L/u.solLum)).decompose() * 1e10 * u.yr def calc_timescales(M, R, L): print('For a star with mass {:.1f}, radius {:.2f}, and luminosity {:.3e}:'.format(M,R,L)) print( 'Dynamical timescale : {:.3f}'.format(tdyn(M,R)) ) print( 'Thermal timescale : {:.3e}'.format(tkh(M,R,L)) ) print( 'Nuclear timescale : {:.3e}'.format(tnuc(M,L)) ) print( 'Dynamical : KH : {:.3e}'.format( (tdyn(M,R)/tkh(M,R,L)).decompose() ) ) print( 'Dynamical : nuclear : {:.3e}'.format( (tkh(M,R,L)/tnuc(M,L)).decompose() ) ) print('-----') R_wd = 0.012 * 0.6**(-1/3) params = [(1*u.solMass, 1*u.solRad, 1*u.solLum), (60*u.solMass, 15*u.solRad, 10**5.9*u.solLum), (15*u.solMass, 3300*u.solRad, 10**5.65*u.solLum), (0.6*u.solMass, R_wd*u.solRad, 1e-2*u.solLum)] for (M, R, L) in params: calc_timescales(M,R,L) ###Output For a star with mass 1.0 solMass, radius 1.00 solRad, and luminosity 1.000e+00 solLum: Dynamical timescale : 0.906 h Thermal timescale : 3.140e+07 yr Nuclear timescale : 1.000e+10 yr Dynamical : KH : 3.290e-12 Dynamical : nuclear : 3.140e-03 ----- For a star with mass 60.0 solMass, radius 15.00 solRad, and luminosity 7.943e+05 solLum: Dynamical timescale : 6.792 h Thermal timescale : 9.487e+03 yr Nuclear timescale : 7.554e+05 yr Dynamical : KH : 8.166e-08 Dynamical : nuclear : 1.256e-02 ----- For a star with mass 15.0 solMass, radius 3300.00 solRad, and luminosity 4.467e+05 solLum: Dynamical timescale : 44324.544 h Thermal timescale : 4.793e+00 yr Nuclear timescale : 3.358e+05 yr Dynamical : KH : 1.055e+00 Dynamical : nuclear : 1.427e-05 ----- For a star with mass 0.6 solMass, radius 0.01 solRad, and luminosity 1.000e-02 solLum: Dynamical timescale : 0.002 h Thermal timescale : 7.945e+10 yr Nuclear timescale : 6.000e+11 yr Dynamical : KH : 2.849e-18 Dynamical : nuclear : 1.324e-01 ----- ###Markdown 11.2 ###Code def find_beta(B, M0=1): M = 18.2 * (1-B)**0.5 / (B*0.6)**2 return M0 - M B_m1 = leastsq(find_beta, 0.9, args=1)[0][0] B_m60 = leastsq(find_beta, 0.9, args=60)[0][0] B_m1, B_m60 Prad_Pgas_m1 = (1-B_m1)/B_m1 Prad_Pgas_m60 = (1-B_m60)/B_m60 Prad_Pgas_m1, Prad_Pgas_m60 def find_lum(M, B): Ledd = 3.8e4 * M * u.solLum return (1-B)*Ledd L_m1 = find_lum(1, B_m1) L_m1, np.log10(L_m1.value) L_m60 = find_lum(60, B_m60) L_m60, np.log10(L_m60.value) ###Output _____no_output_____ ###Markdown 12.2 ###Code def R_start(M): return 100.*M * u.solRad def R_end(M): return R_start(M) / 50. def R_ms(M): return M**0.7 * u.solRad def calc_radii(M): print('For a star with mass {:.1f} solMass:'.format(M)) print( 'R at start of Hayashi track : {:.1f}'.format(R_start(M)) ) print( 'R at end of Hayashi track : {:.1f}'.format(R_end(M)) ) print( 'R at end of PMS contraction : {:.1f}'.format(R_ms(M)) ) print('-----') for m in [0.1, 1, 10, 100]: calc_radii(m) def t_hayashi(M): return M**-1 * 1e6 * u.yr def t_pms(M): return 6e7 * M**-2.5 * u.yr def calc_pms_timescales(M): print('For a star with mass {:.1f} solMass:'.format(M)) print( 'Hayashi timescale : {:.3e}'.format(t_hayashi(M)) ) print( 'PMS timescale : {:.3e}'.format(t_pms(M)) ) print('-----') for m in [0.1, 1, 10, 100]: calc_pms_timescales(m) ###Output For a star with mass 0.1 solMass: Hayashi timescale : 1.000e+07 yr PMS timescale : 1.897e+10 yr ----- For a star with mass 1.0 solMass: Hayashi timescale : 1.000e+06 yr PMS timescale : 6.000e+07 yr ----- For a star with mass 10.0 solMass: Hayashi timescale : 1.000e+05 yr PMS timescale : 1.897e+05 yr ----- For a star with mass 100.0 solMass: Hayashi timescale : 1.000e+04 yr PMS timescale : 6.000e+02 yr ----- ###Markdown 13.2 ###Code X0, Y0 = 0.70, 0.28 X1, Y1 = 0.49, 0.49 mu0 = (2-1.25*Y0)**-1 mu1 = (2-1.25*Y1)**-1 dL = ( ((2-Y1)**-1) * mu1**4 ) / ( ((2-Y0)**-1) * mu0**4 ) dR = ( mu1**(2/3) * (1+X1)**0.05 ) / ( mu0**(2/3) * (1+X0)**0.05 ) dT = ( mu1**0.83 * (1+X1)**-0.5 ) / ( mu0**0.83 * (1+X0)**-0.5 ) dL, dR, dT ###Output _____no_output_____ ###Markdown 1.Snake eyes: $$\frac{1}{6} \frac{1}{6} = \frac{1}{36}$$Sevens: $$\sum_{z} P_A(z)P_B(x-z)=\sum^{7}\frac{1}{6} \frac{1}{6} =\frac{6}{36} = \frac{1}{6}$$Ratio of snake eyes to sevens: $$\frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$$ 2.| | 1 | 2 | 3 | 4 | 5 | 6 ||---|---|---|---|----|----|----|| 1 | 2 | 3 | 4 | 5 | 6 | 7 || 2 | 3 | 4 | 5 | 6 | 7 | 8 || 3 | 4 | 5 | 6 | 7 | 8 | 9 || 4 | 5 | 6 | 7 | 8 | 9 | 10 || 5 | 6 | 7 | 8 | 9 | 10 | 11 || 6 | 7 | 8 | 9 | 10 | 11 | 12 |The left column contains the number rolled by one die, and the top row contains the number rolled by the other die. The middle of the table has the sum of the two dice. $$P_{A+B}(z) = \sum_{z}P_A(z)P_B(x-z)\text{ for } z>x\\P_{4} = P_1 P_3 + P_2 P_2 + P_3 P_1= \frac{1}{36} + \frac{1}{36}+ \frac{1}{36}= \frac{1}{12}$$ ###Code n = 2 die_pdf = np.ones(6) * 1/6 sum_prob = np.convolve(die_pdf, die_pdf) sum_val = np.arange(n,6*n+1) plt.bar(sum_val, sum_prob) plt.xlabel('Sum of Dice Roll') plt.ylabel('Probability') plt.show() ###Output _____no_output_____ ###Markdown 3. ###Code mean = sum(sum_val*sum_prob) variance = sum((sum_val-mean)**2 * sum_prob) print(mean, variance) ###Output 7.0 5.833333333333334 ###Markdown 4. ###Code n = 10 sum_prob = die_pdf for i in range(n-1): sum_prob = np.convolve(die_pdf, sum_prob) sum_prob sum_val = np.arange(n,6*n+1) plt.step(sum_val/10, sum_prob) plt.xlabel('Sum of Dice Roll') plt.ylabel('Probability') plt.show() sum_val = np.arange(n,6*n+1)/10 plt.step(sum_val, sum_prob) plt.semilogy() plt.xlabel('Sum of Dice Roll') plt.ylabel('Probability') plt.show() sum_val = np.arange(n,6*n+1)/10 plt.bar(sum_val, sum_prob) plt.semilogy() plt.xlabel('Sum of Dice Roll') plt.ylabel('Probability') plt.show() ###Output _____no_output_____ ###Markdown Yes it is Gaussian because when it is plotted with a log y-axis it is in the shape of an upside down parabola. On the step plot it looks like it is not symmetric, however when plotted with a bar plot, it can be seen that the ends are actually symmetric. 5. ###Code gaussian_pdf = [] x = np.linspace(-4, 4, num=50) for i in range(50): gaussian_pdf.append(stats.norm.pdf(x[i])) gaus_conv = np.convolve(gaussian_pdf, gaussian_pdf) x_1 = np.linspace(-8, 8, num=len(gaus_conv)) plt.step(x_1, gaus_conv) plt.semilogy() plt.show() x_2 = x_1/2 plt.step(x_2, gaus_conv) plt.semilogy() plt.show() mean = sum(x*gaussian_pdf) variance = sum((x-mean)**2 * gaussian_pdf) mean_1 = sum(x_1*gaus_conv) variance_1 = sum((x_1-mean_1)**2 * gaus_conv) mean_2 = sum(x_2*gaus_conv) variance_2 = sum((x_2-mean_2)**2 * gaus_conv) print(mean, mean_1, mean_2) print(variance, variance_1, variance_2) ###Output 8.012254054667878e-17 -4.443528779716531e-15 -2.2217643898582654e-15 6.119992498830809 74.96662014018258 18.741655035045646 ###Markdown В качестве домашнего задания мы предлагаем вам решить задачу бинарной классификации на большом корпусе imdb рецензий на фильмы. Корпус можно скачать по ссылке http://ai.stanford.edu/~amaas/data/sentiment/Ваша задача в sklearn, используя три разных алгоритма, построить и обучить классификаторы, для каждого из них посчитать метрики качества. Постройте ROC кривую и посчитайте величину ROC AUC. Выберите лучший классификатор.Используя предсказания вероятностей класса, найдите 15 самых негативных и самых позитивных рецензий по мнению модели. - 7 балловНаписать свои функции, которые бы считали tp, fp, tn, fn, и возвращали точность, полноту и ф-меру и применить их к результатам, полученным вашими классификаторами (если все сделано правильно, то результаты должны совпадать с полученными sklearn метриками). - 3 балла ###Code import os import sys import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import roc_auc_score, roc_curve, f1_score, precision_score, recall_score from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier import warnings warnings.filterwarnings('ignore') def load_files(directory): sentences = [] for file in os.listdir(directory): path = directory + '\\' + file with open(path, 'r', encoding='utf-8') as file: sentences.append(file.readlines()[0]) return sentences def read_texts(directory): directory = os.getcwd() + directory neg_directory = directory + '\\neg' pos_directory = directory + '\\pos' neg_sentences = load_files(neg_directory) pos_sentences = load_files(pos_directory) neg_index = np.arange(len(neg_sentences)) pos_index = np.arange(len(neg_sentences), len(neg_sentences) + len(pos_sentences)) neg_sentences = pd.Series(neg_sentences, index=neg_index) pos_sentences = pd.Series(pos_sentences, index=pos_index) sentences = pd.concat([neg_sentences, pos_sentences]) sentiment_values = pd.concat([pd.Series(0, index=neg_index), pd.Series(1, index=pos_index)]) df = pd.concat([sentences, sentiment_values], axis=1) df.columns = ['text', 'sentiment'] return df train_data = read_texts('\\aclImdb\\train') #test_data = read_texts('\\aclImdb\\test') train, test = train_test_split(train_data, test_size=0.2, random_state=0) train.reset_index(inplace=True) test.reset_index(inplace=True) vec = TfidfVectorizer() vec.fit(train.text.values) X_train = vec.transform(train.text) X_test = vec.transform(test.text) y_train = train.sentiment y_test = test.sentiment log_reg = LogisticRegression(solver='liblinear') knn = KNeighborsClassifier() dt = DecisionTreeClassifier() def eval_model(X_train, X_test, y_train, y_test, model): model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred_proba = model.predict_proba(X_test) f1 = f1_score(y_test, y_pred) roc = roc_auc_score(y_test, y_pred) pr = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) fpr, tpr, _ = roc_curve(y_test, y_pred) plt.plot(fpr, tpr, marker='.', label='Test') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend() print('\n') print(f'f-score of the model is {f1}') print(f'ROC AUC score of the model is {roc}') print(f'Precision is {pr}') print(f'Recall is {rec}') print('\n\n\n') plt.show() return y_pred, y_pred_proba, f1, pr, rec log_pred, log_pred_proba, log_f1, log_pr, log_rec = eval_model(X_train, X_test, y_train, y_test, log_reg) knn_pred, knn_pred_proba, knn_f1, knn_pr, knn_rec = eval_model(X_train, X_test, y_train, y_test, knn) dt_pred, dt_pred_proba, dt_f1, dt_pr, dt_rec = eval_model(X_train, X_test, y_train, y_test, dt) ###Output f-score of the model is 0.7147644391878573 ROC AUC score of the model is 0.7105784590808553 Precision is 0.7057220708446866 Recall is 0.7240415335463258 ###Markdown Оценка моделей Лучшим классификатором оказалась *логистическая регрессия*. ###Code test['proba_0'] = log_pred_proba[:, 0] test['proba_1'] = log_pred_proba[:, 1] ###Output _____no_output_____ ###Markdown Самые негативные отзывы по мнению модели. ###Code most_negative = test.sort_values(by='proba_0', ascending=False).head(15) most_negative ###Output _____no_output_____ ###Markdown Посмотрим на некоторые из них: ###Code most_negative.sample(3).text.values ###Output _____no_output_____ ###Markdown Самые позитивные отзывы. ###Code most_positive = test.sort_values(by='proba_1', ascending=False).head(15) most_positive most_positive.sample(3).text.values ###Output _____no_output_____ ###Markdown Функции оценки качества предсказаний ###Code def tp(true, pred): if true and pred: return True else: return False def fp(true, pred): if not true and pred: return True else: return False def tn(true, pred): if not true and not pred: return True else: return False def fn(true, pred): if true and not pred: return True else: return False def precision(tp, fp): return (tp)/(tp + fp) def recall(tp, fn): return (tp)/(tp + fn) def f1_custom(pr, rec): return (2 * pr * rec)/(pr + rec) def model_metrics(y_test, y_pred): assert len(y_test) == len(y_pred) TP = 0 FP = 0 TN = 0 FN = 0 for i in range(len(y_test)): TP += tp(y_test[i], y_pred[i]) FP += fp(y_test[i], y_pred[i]) TN += tn(y_test[i], y_pred[i]) FN += fn(y_test[i], y_pred[i]) pr = precision(TP, FP) rec = recall(TP, FN) f1 = f1_custom(pr, rec) return pr, rec, f1 def print_metrics(y_test, y_pred, true_pr, true_rec, true_f1): pr, rec, f1 = model_metrics(y_test.tolist(), y_pred) print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++') print(f'Custom function precision is {pr}, sklearn precision is {true_pr}.') print(f'These values are equal: {pr == true_pr}') print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++') print(f'Custom function recall is {rec}, sklearn recall is {true_rec}.') print(f'These values are equal: {rec == true_rec}') print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++') print(f'Custom function f-score is {f1}, sklearn f-score is {true_f1}.') print(f'These values are equal: {f1 == true_f1}') print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++') ###Output _____no_output_____ ###Markdown Сравнение с библиотекой sklearn *Logistic Regression* ###Code print_metrics(y_test, log_pred, log_pr, log_rec, log_f1) ###Output ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function precision is 0.876905041031653, sklearn precision is 0.876905041031653. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function recall is 0.8961661341853036, sklearn recall is 0.8961661341853036. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function f-score is 0.8864309697807624, sklearn f-score is 0.8864309697807624. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ###Markdown *K-Nearest Neighbors* ###Code print_metrics(y_test, knn_pred, knn_pr, knn_rec, knn_f1) ###Output ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function precision is 0.7728520988622989, sklearn precision is 0.7728520988622989. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function recall is 0.786741214057508, sklearn recall is 0.786741214057508. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function f-score is 0.7797348110033643, sklearn f-score is 0.7797348110033643. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ###Markdown *Decision Tree* ###Code print_metrics(y_test, dt_pred, dt_pr, dt_rec, dt_f1) ###Output ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function precision is 0.7057220708446866, sklearn precision is 0.7057220708446866. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function recall is 0.7240415335463258, sklearn recall is 0.7240415335463258. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Custom function f-score is 0.7147644391878573, sklearn f-score is 0.7147644391878573. These values are equal: True ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ###Markdown ###Code from collections import OrderedDict import numpy as np import pandas as pd import re ###Output _____no_output_____ ###Markdown This assignment deals with loading a simple text file into a Python structure, lists, arrays, and dataframes.a. Locate a movie script, play script, poem, or book of your choice in .txt format*. Project Gutenburg is a great resource for this if you're not sure where to start.b. Load the words of this structure, one-by-one, into a one-dimensional, sequential Python list (i.e. the first word should be the first element in the list, while the last word should be the last element). It's up to you how to deal with special chacters -- you can remove them manually, ignore them during the loading process, or even count them as words, for example. ###Code def load_data(data_file): """ Reads txt file and returns a list of words """ # Compile regex pattern regex_pattern = re.compile('[^A-Za-z0-9.:/-]+') # Read txt file with open(data_file) as f: # Find all special characters in the word and replace it with empty string # Remove leading and trailing special characters return [re.sub(regex_pattern, '', word).lower().strip('.:/') for line in f for word in line.split()] words_list = load_data('the_martian_circe.txt') print(words_list[:100]) ###Output ['the', 'project', 'gutenberg', 'ebook', 'of', 'the', 'martian', 'circe', 'by', 'raymond', 'f', 'jones', 'this', 'ebook', 'is', 'for', 'the', 'use', 'of', 'anyone', 'anywhere', 'in', 'the', 'united', 'states', 'and', 'most', 'other', 'parts', 'of', 'the', 'world', 'at', 'no', 'cost', 'and', 'with', 'almost', 'no', 'restrictions', 'whatsoever', 'you', 'may', 'copy', 'it', 'give', 'it', 'away', 'or', 're-use', 'it', 'under', 'the', 'terms', 'of', 'the', 'project', 'gutenberg', 'license', 'included', 'with', 'this', 'ebook', 'or', 'online', 'at', 'www.gutenberg.org', 'if', 'you', 'are', 'not', 'located', 'in', 'the', 'united', 'states', 'you', 'will', 'have', 'to', 'check', 'the', 'laws', 'of', 'the', 'country', 'where', 'you', 'are', 'located', 'before', 'using', 'this', 'ebook', 'title', 'the', 'martian', 'circe', 'author', 'raymond'] ###Markdown c. Use your list to create and print a two-column pandas data-frame with the following properties: i. Each index should mark the first occurrence of a unique word (independent of case) in the text. ii. The first column for each index should represent the word in question at that index iii. The second column should represent the number of times that particular word appears in the text. ###Code def count_elements(list_of_elements): """ Count words occurance with preserved possition """ data = OrderedDict() for element in list_of_elements: if element not in data: data[element] = 1 else: data[element] += 1 return data counted_occurence = count_elements(words_list) df = pd.DataFrame(counted_occurence.items(), columns=['Word', 'Count']) df ###Output _____no_output_____ ###Markdown d. The co-occurrence of two events represents the likelihood of the two occurring together. A simple example of co-occurrence in texts is a predecessor-successor relationship -- that is, the frequency with which one word immediately follows another. The word "cellar," for example, is commonly followed by "door." For this task, you are to construct a 2-dimensional predecessor-successor co-occurrence array as follows**: i. The row index corresponds to the word from the same index in part c.'s data-frame. ii. The column index likewise corresponds to the word in the same index in the data-frame. iii. The value in each array location represents the count of the number of times the word corresponding to the row index immediately precedes the word correponding to the column index in the text. ###Code def generate_co_occurance_matrix(words_list, columns): """ Generates co-occurance matrix: word_list: a list of words in the text columns: unique list of words """ # Convert words list to numpy array words_array = np.array(words_list) # Convert columns list to numpy array columns_array = np.array(columns) # Generate zero value matrix with integer value matrix = np.zeros((len(columns), len(columns)), dtype=np.int) count = 0 # Iterate over unique words for word in columns_array: # find row position in matrix for the word row_position = np.where(columns_array == word)[0][0] # Find all occurances of this word in the list and iterate over it for word_position in np.where(words_array == word)[0]: if word_position < len(words_array) - 1: # Find position of the successor word col_position = np.where(columns_array == str(words_array[word_position + 1]))[0][0] # Incremenet predecessor-successor co-occurrence by one matrix[row_position, col_position] += 1 return matrix matrix = generate_co_occurance_matrix(words_list, list(counted_occurence.keys())) matrix ###Output _____no_output_____ ###Markdown e. Based on the data-frame derived in part c. and array derived in part d., determine and print the following information:i. The first occurring word in the text. ###Code df['Word'].iloc[0] ###Output _____no_output_____ ###Markdown ii. The unique word that first occurs last within the text. ###Code df['Word'].iloc[-1] ###Output _____no_output_____ ###Markdown iii. The most common word ###Code df[df['Count'] == df['Count'].max()]['Word'].iloc[0] ###Output _____no_output_____ ###Markdown v. Words A and B such that B follows A more than any other combination of words. ###Code # Find max value in matrix max_occurence = np.amax(matrix) # Find positions of max value position = np.where(matrix == max_occurence) print(df['Word'].iloc[position[0][0]], df['Word'].iloc[position[1][0]]) ###Output of the ###Markdown vi. The word that most commonly follows the least common word ###Code def find_most_common_word_follows_least(df, matrix): # Find least common words least_common_words_index = df.index[df['Count'] == df['Count'].min()].tolist() # Create empty PandaFrame result = pd.DataFrame(data = [], columns=['Predecessor', 'Successor', 'Occurence_predecessor','Occurence_successor' ]) # Iterate over least common words for column_pos in least_common_words_index: # Get one dimension matrix for that word tmp_array = matrix[:,column_pos] # Find all occurence with greater than 0 positive_occurence_list = tmp_array[tmp_array>0] # Iterate over all occurence for occurence in positive_occurence_list: # Find index of the element row_pos = np.where(tmp_array == occurence)[0][0] # Generate new row new_row = [df.iloc[row_pos]['Word'], df.iloc[column_pos]['Word'], df.iloc[row_pos]['Count'], df.iloc[column_pos]['Count']] # Append it to result result.loc[len(result)] = new_row return result df_task4 = find_most_common_word_follows_least(df, matrix) df_task4 df_task4[df_task4['Occurence_predecessor'] == df_task4['Occurence_predecessor'].max()] ###Output _____no_output_____ ###Markdown ###Code import seaborn as sns import pandas as pd import matplotlib.pyplot as plt from pandas.plotting import parallel_coordinates data = sns.load_dataset("iris") ###Output _____no_output_____ ###Markdown **Task 1. Brief description on its value and possible applications.**The IRIS dataset has the following characteristics:* 150 examples of Iris flowers * The first four fields are features that are the characteristics of flower examples. All these fields hold float numbers representing flower measurements. * The last column is the label which represents the Iris species. * Balance class distribution meaning that each category has even amount of instances * Has no missing values One example of possible application is for botanists to find an automated way to categorize each Iris flower they find. For instance, to classify based on photographs, or in our case based on the length and width measurements of their sepals and petals. ###Code data print(f'CLASS DISTRIBUTION:\n{data.groupby("species").size()}') print(f'\nSHAPE: {data.shape}') print(f'\nTOTAL MISSING VALUES:\n{data.isnull().sum()}\n') ###Output CLASS DISTRIBUTION: species setosa 50 versicolor 50 virginica 50 dtype: int64 SHAPE: (150, 5) TOTAL MISSING VALUES: sepal_length 0 sepal_width 0 petal_length 0 petal_width 0 species 0 dtype: int64 ###Markdown _________ **Task 2. Summarize and visually report on the Size of this data set including labeling or non-labeled status** For all three species, the respective values of the mean and median of its features are found to be pretty close. This indicates that data is nearly symmetrically distributed with very less presence of outliers. ###Code data.groupby('species').agg(['mean', 'median']) ###Output _____no_output_____ ###Markdown Standard deviation (or variance) is an indication of how widely the data is spread about the mean. ###Code data.groupby('species').std() ###Output _____no_output_____ ###Markdown The isolated points for each feature that can be seen in the box-plots below are the outliers in the data. Since these are very few in number, it wouldn't have any significant impact on our analysis. ###Code sns.set(style="ticks") plt.figure(figsize=(12,10)) plt.subplot(2,2,1) sns.boxplot(x='species',y='sepal_length',data=data) plt.subplot(2,2,2) sns.boxplot(x='species',y='sepal_width',data=data) plt.subplot(2,2,3) sns.boxplot(x='species',y='petal_length',data=data) plt.subplot(2,2,4) sns.boxplot(x='species',y='petal_width',data=data) plt.show() ###Output _____no_output_____ ###Markdown Scatter plot helps to analyze the relationship between 2 features on the x and y ###Code sns.pairplot(data) ###Output _____no_output_____ ###Markdown Next, we can make a correlation matrix to see how these features are correlated to each other using a heatmap in the seaborn library. It can be observed that petal measurements are highly correlated, while the sepal one are uncorrelated. Also we can see that petal length is highly correlated with speal length, but not with sepal width. ###Code plt.figure(figsize=(10,11)) sns.heatmap(data.corr(),annot=True, square = True) plt.plot() ###Output _____no_output_____ ###Markdown Another way to visualize the data is by parallel coordinate plot, which represents each row as a line. As we have seen below, petal measurements can separate species better than the sepal ones. ###Code parallel_coordinates(data, "species", color = ['blue', 'red', 'green']); ###Output _____no_output_____ ###Markdown Now, we can plot a scatter plot between the sepal length and the sepal width to visualise the iris dataset. We can observe that the blue dots(setosa) are quite clear separated from red(versicolor) and green dots(virginica), while separation between red dots and green dots might be a very difficult task given the two features available. ###Code labels_names = { 'setosa': 'blue', 'versicolor': 'red', 'virginica': 'green'} for species, color in labels_names.items(): x = data.loc[data['species'] == species]['sepal_length'] y = data.loc[data['species'] == species]['sepal_width'] plt.scatter(x, y, c=color) plt.legend(labels_names.keys()) plt.xlabel('sepal_length') plt.ylabel('sepal_width') plt.show() ###Output _____no_output_____ ###Markdown We can also visualise the data on different features such as petal width and petal length. In this case, the decision boundary between blue, green and red dots can be easily determined, which indicates that using all features for training is a good choice. ###Code labels_names = { 'setosa': 'blue', 'versicolor': 'red', 'virginica': 'green'} for species, color in labels_names.items(): x = data.loc[data['species'] == species]['petal_length'] y = data.loc[data['species'] == species]['petal_width'] plt.scatter(x, y, c=color) plt.legend(labels_names.keys()) plt.xlabel('petal_length') plt.ylabel('petal_width') plt.show() ###Output _____no_output_____ ###Markdown ___________ **3. Propose and perform Deep Learning using this data set.**Report on your implementation as follows:* Justify your selection of techniques and platform* Explain your results and their applicability &nbsp;&nbsp;&nbsp;&nbsp;In our project we are using python language. There are two well-known libraries for deep learning such as PyTorch and Tensorflow. Each library has its own API implementation for example, Keras is high level API for Tensorflow, while fastai is an API for PyTorch.&nbsp;&nbsp;&nbsp;&nbsp;The Iris classification problem is an example of supervised machine learning: the model is trained from examples that contain labels and for our model we are planning to use Keras wrapper for Tensor flow.&nbsp;&nbsp;&nbsp;&nbsp;The Deep Learning would be performed in the following steps: * Data preprocessing * Model Building * Model Selection &nbsp;&nbsp;&nbsp;&nbsp;In the **Data preprocessing**, we need to create data frames for features and labels, normalize the feature data by converting all values in a range between 0 and 1, convert species labels to numerical representation and then to binary string. Then, the data needs to be split into train and test data sets. **Phase 1: Data Preprocessing** Step 1: Create Dataframes for features and lables ###Code import pandas as pd from sklearn.preprocessing import LabelBinarizer, LabelEncoder encoder = LabelBinarizer() le=LabelEncoder() seed = 42 data = sns.load_dataset("iris") # Create X variable with four features X = data.drop(['species'],axis=1) # Convert species to int Y_int = le.fit_transform(data['species']) # Convert species int to binary representation Y_binary = encoder.fit_transform(Y_int) target_names = data['species'].unique() Y = pd.DataFrame(data=Y_binary, columns=target_names) print(f'\nNormalized X_test values:\n{X[:5]}') print(f'\nEncoded Y_test:\n{Y[:5]}') ###Output Normalized X_test values: sepal_length sepal_width petal_length petal_width 0 5.1 3.5 1.4 0.2 1 4.9 3.0 1.4 0.2 2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0 3.6 1.4 0.2 Encoded Y_test: setosa versicolor virginica 0 1 0 0 1 1 0 0 2 1 0 0 3 1 0 0 4 1 0 0 ###Markdown Step 2: Create training and testing datasets ###Code from sklearn.model_selection import train_test_split # Split data in train and test with percentage proportion 70%/30% X_train,X_test,y_train,y_test = train_test_split(X, Y, test_size=0.30,random_state=seed) print(f'X_train: {X_train.shape}, y_train: {y_train.shape}') print(f'X_test : {X_test.shape}, y_test : {y_test.shape}') ###Output X_train: (105, 4), y_train: (105, 3) X_test : (45, 4), y_test : (45, 3) ###Markdown Step 3: Normalize the feature data, all values should be in a range from 0 to 1 ###Code import pandas as pd from sklearn import preprocessing # Normalize X features, make all values between 0 and 1 X_train = pd.DataFrame(preprocessing.normalize(X_train), columns=X_train.columns, index=X_train.index) X_test = pd.DataFrame(preprocessing.normalize(X_test), columns=X_test.columns, index=X_test.index) print(f'Train sample:\n{X_train.head(4)},\nShape: {X_train.shape}') print(f'\nTest sample:\n{X_test.head(4)},\nShape: {X_test.shape}') ###Output Train sample: sepal_length sepal_width petal_length petal_width 81 0.772429 0.337060 0.519634 0.140442 133 0.723660 0.321627 0.585820 0.172300 137 0.698048 0.338117 0.599885 0.196326 75 0.767857 0.349026 0.511905 0.162879, Shape: (105, 4) Test sample: sepal_length sepal_width petal_length petal_width 73 0.736599 0.338111 0.567543 0.144905 18 0.806828 0.537885 0.240633 0.042465 118 0.706006 0.238392 0.632655 0.210885 78 0.733509 0.354530 0.550132 0.183377, Shape: (45, 4) ###Markdown **Phase 2: Model Building** Step 1: Build model&nbsp;&nbsp;&nbsp;&nbsp;The IRIS is a classification problem, we need to classify if an Iris flower is setosa, versicolor or virginia. Softmax activation function is commonly used in multi classification problems in the output layer, that would return the label with the highest probability. &nbsp;&nbsp;&nbsp;&nbsp;The **tf.keras.Sequential** model is a linear stack of layers. Its constructor takes a list of layer instances, in this case, one tf.keras.layers.Dense layer with 8 nodes, two layers with 10 nodes, and an output layer with 3 nodes representing our label predictions. The first layer’s input_shape parameter corresponds to the number of features from the dataset which is equal 4. &nbsp;&nbsp;&nbsp;&nbsp;The **activation** function determines the output shape of each node in the layer. These non linearities are important, without them the model would be equivalent to a single layer. There are many tf.keras.activations such as tanh, like sigmoid or relu. In our two models we have decided to use "tahn" and "relu" and compare the performance.&nbsp;&nbsp;&nbsp;&nbsp;The ideal number of hidden layers and neurons depends on the problem and the dataset. Like many aspects of machine learning, picking the best shape of the neural network requires a mixture of knowledge and experimentation. As a rule of thumb, increasing the number of hidden layers and neurons typically creates a more powerful model, which requires more data to train effectively. For our illustration we have used two models with 3 and 4 layers. Our expectation that the model with many layers should give a better result. ###Code from keras.models import Sequential from keras.layers import Dense def model_with_3_layers(): model = Sequential() model.add(Dense(27, input_dim=4, activation='relu', name='input_layer')) model.add(Dense(9, activation='relu', name='layer_1')) model.add(Dense(3, activation='softmax', name='output_layer')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model def model_with_4_layers(): """build the Keras model callback""" model = Sequential() model.add(Dense(8, input_dim=4, activation='tanh', name='layer_1')) model.add(Dense(10, activation='tanh', name='layer_2')) model.add(Dense(10, activation='tanh', name='layer_3')) model.add(Dense(3, activation='softmax', name='output_layer')) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=['accuracy']) return model ###Output _____no_output_____ ###Markdown Step 2: Create estimator&nbsp;&nbsp;&nbsp;&nbsp;We can also pass arguments in the construction of the KerasClassifier class that will be passed on to the fit() function internally used to train the neural network. Here, we pass the number of epochs as 200 and batch size as 20 to use when training the model. ###Code from keras.wrappers.scikit_learn import KerasClassifier estimator = KerasClassifier( build_fn=model_with_4_layers, epochs=200, batch_size=20, verbose=0) ###Output _____no_output_____ ###Markdown Step 3: Evaluate The Model with k-Fold Cross Validation&nbsp;&nbsp;&nbsp;&nbsp;Now, the neural network model can be evaluated on a training dataset. The scikit-learn has excellent capability to evaluate models using a suite of techniques. The gold standard for evaluating machine learning models is k-fold cross validation.Since the dataset is quite small, we can pass 5 fold for cross validation. ###Code from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import tensorflow as tf # Suppress Tensorflow warning tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) estimator = KerasClassifier( build_fn=model_with_3_layers, epochs=200, batch_size=20, verbose=0) kfold = KFold(n_splits=5, shuffle=True, random_state=seed) results = cross_val_score(estimator, X_train, y_train, cv=kfold) print(f'Model Performance:\nmean: {results.mean()*100:.2f}\ \nstd: {results.std()*100:.2f}') from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score estimator = KerasClassifier( build_fn=model_with_4_layers, epochs=200, batch_size=20, verbose=0) kfold = KFold(n_splits=5, shuffle=True, random_state=seed) results = cross_val_score(estimator, X_train, y_train, cv=kfold) print(f'Model Performance:\nmean: {results.mean()*100:.2f}\ \nstd: {results.std()*100:.2f}') ###Output Model Performance: mean: 98.10 std: 2.33 ###Markdown Phase 3 : Model Selection&nbsp;&nbsp;&nbsp;&nbsp; For our illustration, two models have been used. One with 3 layers and another with 4 layers. We can observe that the accuracy are almost the same, but the loss value is much lower in the model with 4 layers. It can be concluded that by adding more layers, it improves the accuracy and lost and at the same time requires more computational power. ###Code md1 = model_with_3_layers() md1.fit(X_train, y_train, epochs=200, shuffle=True, # shuffle data randomly. verbose=0 # this will tell keras to print more detailed info ) # Validate the model with test dateset test_error_rate = md1.evaluate(X_test, y_test, verbose=0) print(f'{md1.metrics_names[1]}: {test_error_rate[1]*100:.2f}') print(f'{md1.metrics_names[0]}: {test_error_rate[0]*100:.2f}') md2 = model_with_4_layers() md2.fit(X_train, y_train, epochs=200, shuffle=True, # shuffle data randomly. verbose=0 # this will tell keras to print more detailed info ) # Validate the model with test dateset test_error_rate = md2.evaluate(X_test, y_test, verbose=0) print(f'{md2.metrics_names[1]}: {test_error_rate[1]*100:.2f}') print(f'{md2.metrics_names[0]}: {test_error_rate[0]*100:.2f}') ###Output accuracy: 95.56 loss: 11.00 ###Markdown STEP 4: Evaluate model performs on the test data ###Code from sklearn.metrics import confusion_matrix def evaluate_performace(actual, expected): """ Function accepts two lists with actual and expected lables """ flowers = {0:'setosa', 1:'versicolor', 2:'virginica'} print(f'Flowers in test set: \nSetosa={y_test["setosa"].sum()}\ \nVersicolor={y_test["versicolor"].sum()}\ \nVirginica={y_test["virginica"].sum()}') for act,exp in zip(actual, expected): if act != exp: print(f'ERROR: {flowers[exp]} predicted as {flowers[act]}') for i,model in enumerate((md1, md2), 1): print(f'\nEVALUATION OF MODEL {i}') predicted_targets = model.predict_classes(X_test) true_targets = encoder.inverse_transform(y_test.values) evaluate_performace(predicted_targets, true_targets) # Calculate the confusion matrix using sklearn.metrics fig, ax =plt.subplots(1,1) conf_matrix = confusion_matrix(true_targets, predicted_targets) sns.heatmap(conf_matrix, annot=True, cmap='Blues', xticklabels=target_names,yticklabels=target_names) print('\n') ###Output EVALUATION OF MODEL 1 Flowers in test set: Setosa=19 Versicolor=13 Virginica=13 ERROR: versicolor predicted as virginica ERROR: virginica predicted as versicolor EVALUATION OF MODEL 2 Flowers in test set: Setosa=19 Versicolor=13 Virginica=13 ERROR: versicolor predicted as virginica ERROR: virginica predicted as versicolor ###Markdown &nbsp;&nbsp;&nbsp;&nbsp;From the confusion matrix above we can see that the second model with 4 layers outperformed the model with 3 layers and the prediction was wrong only once for versicolor species. ___ **4. Find a publication or report that uses this same data set and compare it’s methodology and results to what you did**&nbsp;&nbsp;&nbsp;&nbsp;In the last assignment, we would like to analyze the approach that has been suggested by TensorFlow in "Custom Training: walkthrough" report [1]. The same deep learning framework has been used. Feature and labels are stored in tf.Tensor structure, where in my model all data was stored in pandas.DataFrame. Label data is converted to numerical representation, where in our side we have decided to use binary string representation. The Author decided to not normalize the feature data, to be more specific to represent in the range from 0 to 1. It is a preferable approach, because it allows the model to learn faster.&nbsp;&nbsp;&nbsp;&nbsp;Suggested model is using a Sequential model which is a linear stack of layers. The stack is built with 4 layers, input and output layers and two Dense layers with 10 nodes each can be simply represented as 4/10/10/3. One of our models that showed better accuracy and loss contains 5 layers which can be represented as follows: 4/8/10/10/3. The relu activation function has been chosen for inner layers, that outputs 0 if input is negative or 0, and returns the value when it is positive. Both models are using **SparseCategoricalCrossentropy** function which calculates the loss value by taking the model's class probability predictions and the desired labels, and returns the average loss across all examples. To minimize the loss the Stochastic gradient algorithm has been chosen with learning rate 0.01, in contrast our model is built with Adam which is an extension to stochastic gradient descent algorithm.&nbsp;&nbsp;&nbsp;&nbsp;Both models are run with almost the same number of epochs. It can be observed that both models return almost the same accuracy and loss.&nbsp;&nbsp;&nbsp;&nbsp;To summarize, we can see that both models performed similarly, but in our approach to the same result can be achieved by adding the new inner layer that does help to improve the model but it might be very resource-intensive.**References:**[1] - "Custom training: walkthrough", https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/customization/custom_training_walkthrough.ipynbscrollTo=rwxGnsA92emp, Accessed 2018, The TensorFlow Authors ###Code # To convert colab notebook to pdf !apt-get install texlive texlive-xetex texlive-latex-extra pandoc >/dev/null !pip install pypandoc >/dev/null from google.colab import drive drive.mount('/content/drive') !cp drive/My\ Drive/Colab\ Notebooks/HW2.ipynb ./ !jupyter nbconvert --to PDF "HW2.ipynb" 2>/dev/null !cp ./HW2.pdf drive/My\ Drive/Colab\ Notebooks/ ###Output _____no_output_____ ###Markdown Homework 2: Multiwavelength Galactic Structure Part I Q1 and Q3:These are found in calculus.py, matrix.py. In addition, you will find units tests for both in the tests/ directory. ###Code %matplotlib inline import numpy as np from matplotlib.pyplot import * from matplotlib import rc import astropy.units as un from astropy import constants as const import sys sys.path.append("../HW1/") from interpolation import linear_interpolator from calculus import derivative, integrate from matrix import Matrix, make_matrix # Make more readable plots rc('text',usetex=True) rc('font',**{'size':18}) rc('xtick',**{'labelsize':18}) rc('ytick',**{'labelsize':18}) rc('axes',**{'labelsize':24,'titlesize':24}) ###Output _____no_output_____ ###Markdown Q2: Using your chosen parameters of $c$, $v_{200}$, and $r_{200}$, numerically determine the mass enclosed $M_{\rm enc}(r)$ (and plot), the total mass of the dark matter halo $M$, and then also $M(r)$, the amount of mass ina little shell around $r \pm \Delta r$ (i.e., what does the mass profile look like?), and $dM(r)/dr$. Compare this by repeating, holding $c$ fixed and changing $v_{200}$. Again compare the first by repeating, holding $v_{200}$ fixed and changing $c$. Feel free to use your previous tools from last time if you find that you need to (though I don't think you should); in the future you’ll be able to use built-in functions for those. For simplicity, I will only solve for the form given in the problem, with $c$ = 15, $v_{200}$ = 160 km/s, and $r_{200}$ = 230 kpc. These were originally calculated the other way around from $M_{200}$ and 200 times the critical density of the Universe, $\rho_{\rm crit}$. ###Code H0 = 70.0*un.km/un.s/un.Mpc rho_crit = (3*H0**2/(8*np.pi*const.G)).to(un.g/un.cm**3) #matches above rho_0 = 200*rho_crit M_200 = 1.4e12*un.Msun #https://arxiv.org/pdf/1501.01788.pdf r_200 = (M_200/((4*np.pi/3) * 200*rho_crit.to(un.Msun/un.kpc**3)))**(1.0/3) v_200 = np.sqrt(const.G*M_200/r_200).to(un.km/un.s) print(M_200, r_200, v_200) c = 15.0 ###Output 1400000000000.0 solMass 230.76202860993436 kpc 161.53342002695413 km / s ###Markdown Define $v_c$ function from$$\left[\frac{v_c(r)}{v_{200}}\right]^2 = \frac{1}{x} \frac{\ln(1+cx) - \frac{cx}{1+cx}}{\ln(1+c)-\frac{c}{1+c}}$$where $c$ is a dimensionless "concentration" factor, $v_{200}$ is the velocity at a radius of $r_{200}$, where the density reaches 200 times the critical density of the Universe, and $x \equiv r/r_{200}$. ###Code def v_c(r, c, r_200, v_200): """ Returns the circular velocity given the concentration factor c and the velocity v_200 at a radius r_200 Parameters ========== r : float radius c : float concentration factor r_200 : float "Virial radius" where \rho = 200\rho_crit v_200 : float Velocity at r_200 Returns ======= v_c : float The circular velocity """ x = r/r_200 cx = c*x numer = np.log(1+cx) - cx/(1+cx) denom = x*(np.log(1+c) - c/(1+c)) return v_200* np.sqrt(numer/denom) ###Output _____no_output_____ ###Markdown Make plot to show $v_c$ vs $r$ (in the assignment, `rs` only goes to 300) ###Code rs = np.arange(0.1, 500, 0.1) vs = np.vectorize(v_c)(rs, c, r_200.value, v_200.value) plot(rs, vs) ylim(0, 250) xlabel(r'$r~\mathrm{(kpc)}$') ylabel(r'$v_c~(\mathrm{km/s})$') show() ###Output _____no_output_____ ###Markdown Determine mass enclosed and total mass of the halo ###Code def M_enc(r, c, r_200, v_200): """ Mass enclosed given the same parameters as v_c() """ return ((r*un.kpc)*(v_c(r, c, r_200, v_200)*un.km/un.s)**2 / const.G).to(un.solMass).value M_encs = np.vectorize(M_enc)(rs, c, r_200.value, v_200.value) print("M_total = %0.2f x 10^12 Solar Masses"%(M_encs[-1]/1e12)) plot(rs, M_encs/1e12) xlabel(r'$r~\mathrm{(kpc)}$') ylabel(r'$M_{\rm enc}~(10^{12}~M_\odot)$') show() ###Output M_total = 1.94 x 10^12 Solar Masses ###Markdown Plot $M(r)$ in little shells (but change the shell size to 0.5 kpc) ###Code rs = np.arange(0.5, 500, 0.5) M_encs = np.vectorize(M_enc)(rs, c, r_200.value, v_200.value) dM_encs = np.diff(M_encs) # One could also use the full integrator here # Below is essentially just the midpoint rule plot((rs[1:]+rs[:-1])/2, dM_encs/1e9) xlabel(r'$r~\mathrm{(kpc)}$') ylabel(r'$M~(10^{9}~M_\odot)$') show() ###Output _____no_output_____ ###Markdown Plot $dM(r)/dr$. I am using the `linear_interpolator()` function from HW1. ###Code x = (rs[1:]+rs[:-1])/2 y = dM_encs/1e9 func = linear_interpolator(x, y) N = len(x) deriv = [0 for i in range(N)] for i in range(1, N-1): deriv[i] = derivative(func, x[i], 0.00001) newx = x[1:-1] deriv = deriv[1:-1] plot(newx, deriv) xlabel(r'$r~\mathrm{(kpc)}$') ylabel(r'$dM/dr~(10^{9}~M_\odot / {\rm kpc})$') show() ###Output _____no_output_____
MachineLearning/07.IntroductionToNeuralNetworks/Intro to Neural Networks Demos.ipynb
###Markdown Introduction to Neural Networks Live Demos ###Code digits_data, digits_labels = load_digits().data, load_digits().target digits_data.shape digits_labels.shape pd.Series(digits_labels).groupby(digits_labels).size() for i in range(10): plt.imshow(digits_data[i].reshape(8, 8), cmap = "gray") plt.title("Label: {}".format(digits_labels[i])) plt.show() digits_data = MinMaxScaler().fit_transform(digits_data) digits_data_train, digits_data_test, digits_labels_train, digits_labels_test = train_test_split( digits_data, digits_labels, train_size = 0.8, stratify = digits_labels) nn = MLPClassifier(hidden_layer_sizes = (10,)) nn.fit(digits_data_train, digits_labels_train) def get_scores(estimator): print("Train: ", estimator.score(digits_data_train, digits_labels_train)) print("Test: ", estimator.score(digits_data_test, digits_labels_test)) get_scores(nn) nn.coefs_[0].shape, nn.coefs_[1].shape, len(nn.intercepts_) deep_nn = MLPClassifier(hidden_layer_sizes = (3, 5, 3)) deep_nn.fit(digits_data_train, digits_labels_train) get_scores(deep_nn) ###Output Train: 0.6325678496868476 Test: 0.5972222222222222
Phone Contacts Analysis.ipynb
###Markdown IntroductionI was curious which Network provider numbers exist the most in my phone conatcts log So, i ran this analysis to find out and decide which phone call bundle should i pick! ###Code # import pandas for dataframe operations import pandas as pd #import matplotlib for visualizing results import matplotlib.pyplot as plt # reading phone contacts as csv file contacts = pd.read_csv('Phone Contacts.csv') # displaying the dataframe contacts.head() # dividing the contacts numbers to the known providers in my country # recognize each provider by the third digit in the phone number voda = [] eti = [] mob = [] other = [] for i in range(len(contacts)-1): if contacts['Phone Number'][i][3] == '0': voda.append(contacts['Phone Number'][i]) elif contacts['Phone Number'][i][3] == '1': eti.append(contacts['Phone Number'][i]) elif contacts['Phone Number'][i][3] == '2': mob.append(contacts['Phone Number'][i]) else: other.append(contacts['Phone Number'][i]) # Plotting the results to see which service provider exists the most! %matplotlib inline labels = 'Vodafone', 'Etisalat', 'Mobinil', 'Other' sizes = [len(voda), len(eti), len(mob), len(other)] colors = ['red', 'yellowgreen', 'orange', 'purple'] plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140) plt.title("Phone Contact Numbers Analysis") plt.show() ###Output _____no_output_____
notebooks/opencv-basics.ipynb
###Markdown Data prep for image recognitionThe purpose of this short notebook is to introduce the most basic features of the OpenCV library, focusing on features that will make it possible to use intelligent APIs on image data. We'll then see how to use a pretrained object detection model to find real-world objects in images. ###Code import cv2 import numpy as np ###Output _____no_output_____ ###Markdown The first thing we'll try is reading an image from a file. OpenCV makes it easy to decode popular image formats, and this notebook has access to an image file we can read. ###Code def loadImage(f): """ Load an image and convert it from BGR color space (which OpenCV uses) to RGB color space (which pyplot expects) """ return cv2.cvtColor(cv2.imread(f, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) img = loadImage("otto.jpg") ###Output _____no_output_____ ###Markdown Working with images as arraysThis will get us a `numpy` array containing the pixels from a picture of a confused schnauzer who did not expect to wind up unable to get out of the clothes basket. We can look at the size of the array: ###Code img.shape ###Output _____no_output_____ ###Markdown We can examine the image itself by plotting it. ###Code %matplotlib inline import matplotlib.pyplot as plt plt.imshow(img) ###Output _____no_output_____ ###Markdown While our focus is on using pretrained models, if we were training a model, it may be useful to transform, blur, or resize images in order to generate more training data from a few images. Since our images are `numpy` arrays, this is relatively straightforward in general, but OpenCV provides functions to make these tasks even easier. We'll see how to- blur an input image with a 15x15 box blur,- resize an image and interpolate between pixels in the source data, and- rotate an image without calculating a transformation matrixFirst, let's look at box blur: ###Code plt.imshow(cv2.blur(img, (15,15))) ###Output _____no_output_____ ###Markdown We can also scale the image by a factor of 3 on both axes (notice the difference in the axes on the plotted image, even though the size doesn't change). ###Code plt.imshow(cv2.resize(img, None, fx=3, fy=3, interpolation=cv2.INTER_CUBIC)) ###Output _____no_output_____ ###Markdown It's also possible to stretch the image by scaling along axes differently: ###Code plt.imshow(cv2.resize(img, None, fx=2.5, fy=3, interpolation=cv2.INTER_CUBIC)) ###Output _____no_output_____ ###Markdown We can also rotate the image. Recall that rotation is an affine tranformation on image matrices. OpenCV provides a function to calculate the transformation matrix, given a point to rotate around, an angle of rotation, and a scaling factor. Here we'll rotate the image around its center by 15 degrees while scaling by 1.3x. ###Code rows, cols, _ = img.shape center = (cols / 2, rows / 2) angle = 15 # degrees scale = 1.3 rotationMatrix = cv2.getRotationMatrix2D(center, angle, scale) plt.imshow(cv2.warpAffine(img, rotationMatrix, (cols, rows))) ###Output _____no_output_____ ###Markdown Working with image data in byte arraysIn many non-batch applications, we won't be actually processing _files_; instead, we'll be dealing with binary data, whether passed as a base64-encoded string to a HTTP request or stored in a blob as part of structured data on a stream. OpenCV is able to decode this raw binary data just as it is able to decode files; this last part of the notebook will show you how to do it.We'll start by getting a Python `bytearray` with the contents of a file. Notice that, while we have a JPEG file, we aren't storing the file type anywhere. ###Code with open("otto.jpg", "rb") as f: img_bytes = bytearray(f.read()) ###Output _____no_output_____ ###Markdown Now that we have a `bytearray` of the file's contents, we'll convert that into a flat NumPy array: ###Code imgarr = np.asarray(img_bytes, dtype=np.uint8) imgarr ###Output _____no_output_____ ###Markdown The OpenCV `imdecode` function will inspect this flat array and parse it as an image, inferring the right type and dimensions and returning a multidimensional array with an appropriate shape. ###Code # decode byte array as image img2 = cv2.imdecode(imgarr, cv2.IMREAD_COLOR) # convert BGR to RGB img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) ###Output _____no_output_____ ###Markdown We then have a multidimensional array that we can use just as we did the image we read from a file. ###Code plt.imshow(img2) ###Output _____no_output_____ ###Markdown Image intensitiesWe can also plot histograms for each channel of the image. (This example code is taken from the [OpenCV documentation](https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.html).) You can see that the image of the dog is underexposed. ###Code for i, color in enumerate(["r", "g", "b"]): histogram = cv2.calcHist([img], [i], None, [256], [0, 256]) plt.plot(histogram, color=color) plt.xlim([0, 256]) plt.show() ###Output _____no_output_____ ###Markdown Object detection with pretrained modelsNow that we've seen how to use some of the basic capabilities of OpenCV to parse image data into a matrix of pixels -- and then to perform useful image transformations and analyses on this matrix -- we're ready to see how to use a pretrained model to identify objects in real images.We'll use a pretrained [YOLO](https://pjreddie.com/darknet/yolo/) ("you only look once") model and we'll load and score that model with the [darkflow](https://github.com/thtrieu/darkflow/) library, which is built on TensorFlow.One of the key themes of this workshop is that you don't need a deep understanding of the techniques behind off-the-shelf models for language processing or image recognition in order to make use of them in your applications, but YOLO is a cool technique, so if you want to learn more about it, here's where to get started:- [this paper](https://pjreddie.com/media/files/papers/yolo_1.pdf) explains the first version of YOLO and the basic technique,- [this presentation](https://www.youtube.com/watch?v=NM6lrxy0bxs) presents the basics of the paper in a thirteen-minute video, and- [this paper](http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf) provides a deeper dive into object detection (including some details on the mAP metric for evaluating classifier quality)YOLO is so-called because previous object-detection techniques repeatedly ran image classifiers on multiple overlapping windows of an image; by contrast, YOLO "only looks once," identifying image regions that might contain an interesting object and then identifying which objects those regions might contain in a single pass. It can be much faster than classic approaches; indeed, it can run in real time or faster with GPU acceleration. Loading our modelWe'll start by loading a pretrained model architecture and model weights from files: ###Code from darkflow.net.build import TFNet options = {"model": "cfg/yolo.cfg", "load": "/data/yolo.weights", "threshold" : 0.1} yolo = TFNet(options) ###Output _____no_output_____ ###Markdown Our next step is to use the model to identify some objects in an image. We'll start with the dog image. The `return_predict` method will return a list of predictions, each with a visual object class, a confidence score, and a bounding box. ###Code predictions = yolo.return_predict(img) predictions ###Output _____no_output_____ ###Markdown To be fair, most dogs spend a lot of time on sofas.It is often useful to visualize what parts of the image were identified as objects. We can use OpenCV to annotate the bounding boxes of each identified object in the image with the `cv2.rectangle` function. Since this is destructive, we'll work on a copy of the image. ###Code def annotate(img, predictions, thickness=None): """ Copies the supplied image and annotates it with the bounding boxes of each identified object """ annotated_img = np.copy(img) if thickness is None: thickness = int(max(img.shape[0], img.shape[1]) / 100) for prediction in predictions: tl = prediction["topleft"] topleft = (tl["x"], tl["y"]) br = prediction["bottomright"] bottomright = (br["x"], br["y"]) # draw a white rectangle around the identified object white = (255,255,255) cv2.rectangle(annotated_img, topleft, bottomright, color=white, thickness=thickness) return annotated_img plt.imshow(annotate(img, predictions)) ###Output _____no_output_____ ###Markdown Trying it out with other imagesWe can try this technique out with other images as well. The test images we have are from the [Open Images Dataset](https://storage.googleapis.com/openimages/web/index.html) and are licensed under CC-BY-SA. Some of these results are impressive and some are unintentionally hilarious! Try it out and see if you can figure out why certain false positives show up. ###Code from ipywidgets import interact from os import listdir def predict(imageFile): image = loadImage("/data/images/" + imageFile) predictions = yolo.return_predict(image) plt.imshow(annotate(image, predictions, thickness=5)) return predictions interact(predict, imageFile = listdir("/data/images/")) ###Output _____no_output_____
docs/examples/2_Constraints.ipynb
###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constarint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, transformed_text, current_text): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return False. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the transformations tutorial, so let's gloss over this part for now. ###Code # Import the model import transformers from textattack.models.tokenizers import AutoTokenizer model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/albert-base-v2-yelp-polarity") model.tokenizer = AutoTokenizer("textattack/albert-base-v2-yelp-polarity") # Create the goal function using the model from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model) # Import the dataset from textattack.datasets import HuggingFaceNlpDataset dataset = HuggingFaceNlpDataset("yelp_polarity", None, "test") from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint(False)] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) ###Output Attack( (search_method): GreedySearch (goal_function): UntargetedClassification (transformation): WordSwapEmbedding( (max_candidates): 15 (embedding_type): paragramcf ) (constraints): (0): NamedEntityConstraint( (compare_against_original): False ) (1): RepeatModification (2): StopwordModification (is_black_box): True ) ###Markdown Now, let's use our attack. We're going to attack samples until we achieve 5 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(dataset) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 5: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 print(f'{num_successes} of 5 successes complete.') ###Output 1 of 5 successes complete. 2 of 5 successes complete. 3 of 5 successes complete. 4 of 5 successes complete. 5 of 5 successes complete. ###Markdown Now let's visualize our 5 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['original_text', 'perturbed_text']].to_html(escape=False))) ###Output _____no_output_____ ###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constraint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, transformed_text, current_text): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return False. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the transformations tutorial, so let's gloss over this part for now. ###Code # Import the model import transformers from textattack.models.tokenizers import AutoTokenizer from textattack.models.wrappers import HuggingFaceModelWrapper model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/albert-base-v2-yelp-polarity") tokenizer = AutoTokenizer("textattack/albert-base-v2-yelp-polarity") model_wrapper = HuggingFaceModelWrapper(model, tokenizer) # Create the goal function using the model from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model_wrapper) # Import the dataset from textattack.datasets import HuggingFaceNlpDataset dataset = HuggingFaceNlpDataset("yelp_polarity", None, "test") from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint(False)] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) ###Output Attack( (search_method): GreedySearch (goal_function): UntargetedClassification (transformation): WordSwapEmbedding( (max_candidates): 15 (embedding_type): paragramcf ) (constraints): (0): NamedEntityConstraint( (compare_against_original): False ) (1): RepeatModification (2): StopwordModification (is_black_box): True ) ###Markdown Now, let's use our attack. We're going to attack samples until we achieve 5 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(dataset) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 5: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 print(f'{num_successes} of 5 successes complete.') ###Output 1 of 5 successes complete. 2 of 5 successes complete. 3 of 5 successes complete. 4 of 5 successes complete. 5 of 5 successes complete. ###Markdown Now let's visualize our 5 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['original_text', 'perturbed_text']].to_html(escape=False))) ###Output _____no_output_____ ###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1cBRUj2l0m8o81vJGGFgO-o_zDLj24M5Y?usp=sharing)[![View Source on GitHub](https://img.shields.io/badge/github-view%20source-black.svg)](https://github.com/QData/TextAttack/blob/master/docs/examples/1_Introduction_and_Transformations.ipynb) Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constraint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, transformed_text, current_text): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return False. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the transformations tutorial, so let's gloss over this part for now. ###Code # Import the model import transformers from textattack.models.tokenizers import AutoTokenizer from textattack.models.wrappers import HuggingFaceModelWrapper model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/albert-base-v2-yelp-polarity") tokenizer = AutoTokenizer("textattack/albert-base-v2-yelp-polarity") model_wrapper = HuggingFaceModelWrapper(model, tokenizer) # Create the goal function using the model from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model_wrapper) # Import the dataset from textattack.datasets import HuggingFaceNlpDataset dataset = HuggingFaceNlpDataset("yelp_polarity", None, "test") from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint(False)] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) ###Output Attack( (search_method): GreedySearch (goal_function): UntargetedClassification (transformation): WordSwapEmbedding( (max_candidates): 15 (embedding_type): paragramcf ) (constraints): (0): NamedEntityConstraint( (compare_against_original): False ) (1): RepeatModification (2): StopwordModification (is_black_box): True ) ###Markdown Now, let's use our attack. We're going to attack samples until we achieve 5 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(dataset) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 5: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 print(f'{num_successes} of 5 successes complete.') ###Output 1 of 5 successes complete. 2 of 5 successes complete. 3 of 5 successes complete. 4 of 5 successes complete. 5 of 5 successes complete. ###Markdown Now let's visualize our 5 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['original_text', 'perturbed_text']].to_html(escape=False))) ###Output _____no_output_____ ###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constarint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, tranformed_text, current_text, original_text=None): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return True. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the first tutorial, so let's gloss over this part for now. ###Code # Import the dataset. from textattack.datasets.classification import YelpSentiment # Create the model. from textattack.models.classification.lstm import LSTMForYelpSentimentClassification model = LSTMForYelpSentimentClassification() # Create the goal function using the model. from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model) from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint()] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) import torch torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Now, let's use our attack. We're going to iterate through the `YelpSentiment` dataset and attack samples until we achieve 10 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(YelpSentiment(), attack_n=True) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 10: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 ###Output _____no_output_____ ###Markdown Now let's visualize our 10 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['passage_1', 'passage_2']].to_html(escape=False))) ###Output _____no_output_____ ###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1cBRUj2l0m8o81vJGGFgO-o_zDLj24M5Y?usp=sharing)[![View Source on GitHub](https://img.shields.io/badge/github-view%20source-black.svg)](https://github.com/QData/TextAttack/blob/master/docs/examples/1_Introduction_and_Transformations.ipynb) Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constraint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, transformed_text, current_text): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return False. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the transformations tutorial, so let's gloss over this part for now. ###Code # Import the model import transformers from textattack.models.tokenizers import AutoTokenizer from textattack.models.wrappers import HuggingFaceModelWrapper model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/albert-base-v2-yelp-polarity") tokenizer = AutoTokenizer("textattack/albert-base-v2-yelp-polarity") model_wrapper = HuggingFaceModelWrapper(model, tokenizer) # Create the goal function using the model from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model_wrapper) # Import the dataset from textattack.datasets import HuggingFaceDataset dataset = HuggingFaceDataset("yelp_polarity", None, "test") from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint(False)] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) ###Output Attack( (search_method): GreedySearch (goal_function): UntargetedClassification (transformation): WordSwapEmbedding( (max_candidates): 15 (embedding_type): paragramcf ) (constraints): (0): NamedEntityConstraint( (compare_against_original): False ) (1): RepeatModification (2): StopwordModification (is_black_box): True ) ###Markdown Now, let's use our attack. We're going to attack samples until we achieve 5 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(dataset) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 5: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 print(f'{num_successes} of 5 successes complete.') ###Output 1 of 5 successes complete. 2 of 5 successes complete. 3 of 5 successes complete. 4 of 5 successes complete. 5 of 5 successes complete. ###Markdown Now let's visualize our 5 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['original_text', 'perturbed_text']].to_html(escape=False))) ###Output _____no_output_____ ###Markdown The importance of constraintsConstraints determine which potential adversarial examples are valid inputs to the model. When determining the efficacy of an attack, constraints are everything. After all, an attack that looks very powerful may just be generating nonsense. Or, perhaps more nefariously, an attack may generate a real-looking example that changes the original label of the input. That's why you should always clearly define the *constraints* your adversarial examples must meet. Classes of constraintsTextAttack evaluates constraints using methods from three groups:- **Overlap constraints** determine if a perturbation is valid based on character-level analysis. For example, some attacks are constrained by edit distance: a perturbation is only valid if it perturbs some small number of characters (or fewer).- **Grammaticality constraints** filter inputs based on syntactical information. For example, an attack may require that adversarial perturbations do not introduce grammatical errors.- **Semantic constraints** try to ensure that the perturbation is semantically similar to the original input. For example, we may design a constraint that uses a sentence encoder to encode the original and perturbed inputs, and enforce that the sentence encodings be within some fixed distance of one another. (This is what happens in subclasses of `textattack.constraints.semantics.sentence_encoders`.) A new constraintTo add our own constraint, we need to create a subclass of `textattack.constraints.Constraint`. We can implement one of two functions, either `_check_constarint` or `_check_constraint_many`:- `_check_constraint` determines whether candidate `TokenizedText` `transformed_text`, transformed from `current_text`, fulfills a desired constraint. It returns either `True` or `False`.- `_check_constraint_many` determines whether each of a list of candidates `transformed_texts` fulfill the constraint relative to `current_text`. This is here in case your constraint can be vectorized. If not, just implement `_check_constraint`, and `_check_constraint` will be executed for each `(transformed_text, current_text)` pair. A custom constraintFor fun, we're going to see what happens when we constrain an attack to only allow perturbations that substitute out a named entity for another. In linguistics, a **named entity** is a proper noun, the name of a person, organization, location, product, etc. Named Entity Recognition is a popular NLP task (and one that state-of-the-art models can perform quite well). NLTK and Named Entity Recognition**NLTK**, the Natural Language Toolkit, is a Python package that helps developers write programs that process natural language. NLTK comes with predefined algorithms for lots of linguistic tasks– including Named Entity Recognition.First, we're going to write a constraint class. In the `_check_constraints` method, we're going to use NLTK to find the named entities in both `current_text` and `transformed_text`. We will only return `True` (that is, our constraint is met) if `transformed_text` has substituted one named entity in `current_text` for another.Let's import NLTK and download the required modules: ###Code import nltk nltk.download('punkt') # The NLTK tokenizer nltk.download('maxent_ne_chunker') # NLTK named-entity chunker nltk.download('words') # NLTK list of words ###Output [nltk_data] Downloading package punkt to /u/edl9cy/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package maxent_ne_chunker to [nltk_data] /u/edl9cy/nltk_data... [nltk_data] Package maxent_ne_chunker is already up-to-date! [nltk_data] Downloading package words to /u/edl9cy/nltk_data... [nltk_data] Package words is already up-to-date! ###Markdown NLTK NER ExampleHere's an example of using NLTK to find the named entities in a sentence: ###Code sentence = ('In 2017, star quarterback Tom Brady led the Patriots to the Super Bowl, ' 'but lost to the Philadelphia Eagles.') # 1. Tokenize using the NLTK tokenizer. tokens = nltk.word_tokenize(sentence) # 2. Tag parts of speech using the NLTK part-of-speech tagger. tagged = nltk.pos_tag(tokens) # 3. Extract entities from tagged sentence. entities = nltk.chunk.ne_chunk(tagged) print(entities) ###Output (S In/IN 2017/CD ,/, star/NN quarterback/NN (PERSON Tom/NNP Brady/NNP) led/VBD the/DT (ORGANIZATION Patriots/NNP) to/TO the/DT (ORGANIZATION Super/NNP Bowl/NNP) ,/, but/CC lost/VBD to/TO the/DT (ORGANIZATION Philadelphia/NNP Eagles/NNP) ./.) ###Markdown It looks like `nltk.chunk.ne_chunk` gives us an `nltk.tree.Tree` object where named entities are also `nltk.tree.Tree` objects within that tree. We can take this a step further and grab the named entities from the tree of entities: ###Code # 4. Filter entities to just named entities. named_entities = [entity for entity in entities if isinstance(entity, nltk.tree.Tree)] print(named_entities) ###Output [Tree('PERSON', [('Tom', 'NNP'), ('Brady', 'NNP')]), Tree('ORGANIZATION', [('Patriots', 'NNP')]), Tree('ORGANIZATION', [('Super', 'NNP'), ('Bowl', 'NNP')]), Tree('ORGANIZATION', [('Philadelphia', 'NNP'), ('Eagles', 'NNP')])] ###Markdown Caching with `@functools.lru_cache`A little-known feature of Python 3 is `functools.lru_cache`, a decorator that allows users to easily cache the results of a function in an LRU cache. We're going to be using the NLTK library quite a bit to tokenize, parse, and detect named entities in sentences. These sentences might repeat themselves. As such, we'll use this decorator to cache named entities so that we don't have to perform this expensive computation multiple times. Putting it all together: getting a list of Named Entity Labels from a sentenceNow that we know how to tokenize, parse, and detect named entities using NLTK, let's put it all together into a single helper function. Later, when we implement our constraint, we can query this function to easily get the entity labels from a sentence. We can even use `@functools.lru_cache` to try and speed this process up. ###Code import functools @functools.lru_cache(maxsize=2**14) def get_entities(sentence): tokens = nltk.word_tokenize(sentence) tagged = nltk.pos_tag(tokens) # Setting `binary=True` makes NLTK return all of the named # entities tagged as NNP instead of detailed tags like #'Organization', 'Geo-Political Entity', etc. entities = nltk.chunk.ne_chunk(tagged, binary=True) return entities.leaves() ###Output _____no_output_____ ###Markdown And let's test our function to make sure it works: ###Code sentence = 'Jack Black starred in the 2003 film classic "School of Rock".' get_entities(sentence) ###Output _____no_output_____ ###Markdown We flattened the tree of entities, so the return format is a list of `(word, entity type)` tuples. For non-entities, the `entity_type` is just the part of speech of the word. `'NNP'` is the indicator of a named entity (a proper noun, according to NLTK). Looks like we identified three named entities here: 'Jack' and 'Black', 'School', and 'Rock'. as a 'GPE'. (Seems that the labeler thinks Rock is the name of a place, a city or something.) Whatever technique NLTK uses for named entity recognition may be a bit rough, but it did a pretty decent job here! Creating our NamedEntityConstraintNow that we know how to detect named entities using NLTK, let's create our custom constraint. ###Code from textattack.constraints import Constraint class NamedEntityConstraint(Constraint): """ A constraint that ensures `transformed_text` only substitutes named entities from `current_text` with other named entities. """ def _check_constraint(self, tranformed_text, current_text, original_text=None): transformed_entities = get_entities(transformed_text.text) current_entities = get_entities(current_text.text) # If there aren't named entities, let's return False (the attack # will eventually fail). if len(current_entities) == 0: return False if len(current_entities) != len(transformed_entities): # If the two sentences have a different number of entities, then # they definitely don't have the same labels. In this case, the # constraint is violated, and we return False. return False else: # Here we compare all of the words, in order, to make sure that they match. # If we find two words that don't match, this means a word was swapped # between `current_text` and `transformed_text`. That word must be a named entity to fulfill our # constraint. current_word_label = None transformed_word_label = None for (word_1, label_1), (word_2, label_2) in zip(current_entities, transformed_entities): if word_1 != word_2: # Finally, make sure that words swapped between `x` and `x_adv` are named entities. If # they're not, then we also return False. if (label_1 not in ['NNP', 'NE']) or (label_2 not in ['NNP', 'NE']): return False # If we get here, all of the labels match up. Return True! return True ###Output _____no_output_____ ###Markdown Testing our constraintWe need to create an attack and a dataset to test our constraint on. We went over all of this in the first tutorial, so let's gloss over this part for now. ###Code # Import the dataset. from textattack.datasets.classification import YelpSentiment # Create the model. from textattack.models.classification.lstm import LSTMForYelpSentimentClassification model = LSTMForYelpSentimentClassification() # Create the goal function using the model. from textattack.goal_functions import UntargetedClassification goal_function = UntargetedClassification(model) from textattack.transformations import WordSwapEmbedding from textattack.search_methods import GreedySearch from textattack.shared import Attack from textattack.constraints.pre_transformation import RepeatModification, StopwordModification # We're going to the `WordSwapEmbedding` transformation. Using the default settings, this # will try substituting words with their neighbors in the counter-fitted embedding space. transformation = WordSwapEmbedding(max_candidates=15) # We'll use the greedy search method again search_method = GreedySearch() # Our constraints will be the same as Tutorial 1, plus the named entity constraint constraints = [RepeatModification(), StopwordModification(), NamedEntityConstraint()] # Now, let's make the attack using these parameters. attack = Attack(goal_function, constraints, transformation, search_method) print(attack) import torch torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Now, let's use our attack. We're going to iterate through the `YelpSentiment` dataset and attack samples until we achieve 10 successes. (There's a lot to check here, and since we're using a greedy search over all potential word swap positions, each sample will take a few minutes. This will take a few hours to run on a single core.) ###Code from textattack.loggers import CSVLogger # tracks a dataframe for us. from textattack.attack_results import SuccessfulAttackResult results_iterable = attack.attack_dataset(YelpSentiment(), attack_n=True) logger = CSVLogger(color_method='html') num_successes = 0 while num_successes < 10: result = next(results_iterable) if isinstance(result, SuccessfulAttackResult): logger.log_attack_result(result) num_successes += 1 ###Output _____no_output_____ ###Markdown Now let's visualize our 10 successes in color: ###Code import pandas as pd pd.options.display.max_colwidth = 480 # increase column width so we can actually read the examples from IPython.core.display import display, HTML display(HTML(logger.df[['passage_1', 'passage_2']].to_html(escape=False))) ###Output _____no_output_____
robert_haase/cupy_cucim/cupy_cucim.ipynb
###Markdown GPU-accelerated image processing using CUPY and CUCIMProcessing large images with python can take time. In order to accelerate processing, graphics processing units (GPUs) can be exploited, for example using [NVidia CUDA](https://en.wikipedia.org/wiki/CUDA). For processing images with CUDA, there are a couple of libraries available. We will take a closer look at [cupy](https://cupy.dev/), which brings more general computing capabilities for CUDA compatible GPUs, and [cucim](https://github.com/rapidsai/cucim), a library of image processing specific operations using CUDA. Both together can serve as GPU-surrogate for [scikit-image](https://scikit-image.org/).See also* [StackOverflow: Is it possible to install cupy on google colab?](https://stackoverflow.com/questions/49135065/is-it-possible-to-install-cupy-on-google-colab)* [Cucim example notebooks](https://github.com/rapidsai/cucim/blob/branch-0.20/notebooks/Welcome.ipynb)Before we start, we need to install CUDA and CUCIM it properly. The following commands make this notebook run in Google Colab. ###Code !curl https://colab.chainer.org/install | sh - !pip install cucim !pip install scipy scikit-image cupy-cuda100 import numpy as np import cupy as cp import cucim from skimage.io import imread, imshow import pandas as pd ###Output _____no_output_____ ###Markdown In the following, we are using image data from Paci et al shared under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. See also: https://doi.org/10.17867/10000140 ###Code image = imread('https://idr.openmicroscopy.org/webclient/render_image_download/9844418/?format=tif') imshow(image) ###Output _____no_output_____ ###Markdown In order to process an image using CUDA on the GPU, we need to convert it. Under the hood of this conversion, the image data is sent from computer random access memory (RAM) to the GPUs memory. ###Code image_gpu = cp.asarray(image) image_gpu.shape ###Output _____no_output_____ ###Markdown Extracting a single channel out of the three-channel image works like if we were working with numpy. Showing the image does not work, because the CUDA image is not available in memory. In order to get it back from GPU memory, we need to convert it to a numpy array. ###Code single_channel_gpu = image_gpu[:,:,1] # the following line would fail # imshow(single_channel_gpu) # get single channel image back from GPU memory and show it single_channel = cp.asnumpy(single_channel_gpu) imshow(single_channel) # we can also do this with a convenience function def gpu_imshow(image_gpu): image = np.asarray(image_gpu) imshow(image) ###Output _____no_output_____ ###Markdown Image filtering and segmentationThe cucim developers have re-implemented many functions from sckit image, e.g. the [Gaussian blur filter](https://docs.rapids.ai/api/cucim/stable/api.htmlcucim.skimage.filters.gaussian), [Otsu Thresholding](https://docs.rapids.ai/api/cucim/stable/api.htmlcucim.skimage.filters.threshold_otsu) after [Otsu et al. 1979](https://ieeexplore.ieee.org/document/4310076), [binary erosion](https://docs.rapids.ai/api/cucim/stable/api.htmlcucim.skimage.morphology.binary_erosion) and [connected component labeling](https://docs.rapids.ai/api/cucim/stable/api.htmlcucim.skimage.measure.label). ###Code from cucim.skimage.filters import gaussian blurred_gpu = gaussian(single_channel_gpu, sigma=5) gpu_imshow(blurred_gpu) from cucim.skimage.filters import threshold_otsu # determine threshold threshold = threshold_otsu(blurred_gpu) # binarize image by apply the threshold binary_gpu = blurred_gpu > threshold gpu_imshow(binary_gpu) from cucim.skimage.morphology import binary_erosion, disk eroded_gpu = binary_erosion(binary_gpu, selem=disk(2)) gpu_imshow(eroded_gpu) from cucim.skimage.measure import label labels_gpu = label(eroded_gpu) gpu_imshow(labels_gpu) ###Output /usr/local/lib/python3.7/dist-packages/skimage/io/_plugins/matplotlib_plugin.py:150: UserWarning: Low image data range; displaying image with stretched contrast. lo, hi, cmap = _get_display_range(image) ###Markdown For visualization purposes, it is recommended to turn the label image into an RGB image, especially if you want to save it to disk. ###Code from cucim.skimage.color import label2rgb labels_rgb_gpu = label2rgb(labels_gpu) gpu_imshow(labels_rgb_gpu) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: The new recommended value for bg_label is 0. Until version 0.19, the default bg_label value is -1. From version 0.19, the bg_label default value will be 0. To avoid this warning, please explicitly set bg_label value. This is separate from the ipykernel package so we can avoid doing imports until ###Markdown Quantitative measurementsAlso quantitative measurments using [regionprops_table](https://docs.rapids.ai/api/cucim/stable/api.htmlcucim.skimage.measure.regionprops_table) have been implemented in cucim. A major difference is that you need to convert its result back to numpy if you want to continue processing on the CPU, e.g. using [pandas](https://pandas.pydata.org/). ###Code from cucim.skimage.measure import regionprops_table table_gpu = regionprops_table(labels_gpu, intensity_image=single_channel_gpu, properties=('mean_intensity', 'area', 'solidity')) table_gpu # The following line would fail. # pd.DataFrame(table_gpu) # We need to convert that table to numpy before we can pass it to pandas. table = {item[0] : cp.asnumpy(item[1]) for item in table_gpu.items()} pd.DataFrame(table) ###Output _____no_output_____
02 Algorithms/Day 1.ipynb
###Markdown Ассимптотика алгоритмов и зачем она нужнаНужно как-то уметь сравнивать алгоритмы между собой, особенно хочется понимать какой из алгоритмов работает быстрее (вне зависимости от железа) И какой из них потребляет больеше памяти.Для этого придумали О-нотацию.Есть математическое определение: для двух функций f(x) и g(x) можно сказать что f является O(g) если существует такая константа C > 0, что при устремлении x к бесконечности (или какой-то точке $x_0$) выполняется неравенство $|f(x)| < C * |g(x)|$Если говорить человеческим языком, то если мы говорим что алгоритм работает за O(f(n)), где n - размер входных параметров алгоритмаэто значит что скорость работы алгоритма с увеличением n будет расти не быстрее чем f(n) на какую-то константуВычислять ассимптотику можно просто отбрасывая все константы при вычислении количества операций, которое делате алгоритм, но некоторые случаи сложнее чем другиеВот тут можно почитать еще https://bit.ly/3khIrsy Пример алгоритма с ассимптотикой (по времени) O($n^2$) ###Code def n_square_algo(array): # Здесь n это len(array) # Этот цикл работает за O(n^2) операций for elem in array: for elem2 in array: print(elem * elem2) # Не влияет на ассимптотику т.к. отбрасываем все константы (не зависящие от n штуки) for i in range(100000000000000000): print(i) # Можно поверить что сортировка списка работает за O(n log n), что меньше чем O(n^2) array.sort() ###Output _____no_output_____ ###Markdown Задача 1 (В которой мы узнаем про трюк с префиксными суммами и что можно обменивать время на память)Вам дан список чисел (как отрицательных так и положительных), задача найти в нем помассив с максимальной суммой элементов и при том из всех таких - с наибольшей длинойПример:array = [1, 2, -4, 5, 2, -1, 3, -10, 7, 1, -1, 2]ОТВЕТ: [1, 2, -4, 5, 2, -1, 3, -10, 7, 1, -1, 1] Наивное решение с ассимптотикой O($n^3$) по времени и O($1$) по памяти: ###Code def max_sum_subarray(array): n = len(array) ans = -1 max_sum = float("-inf") for start in range(n): for finish in range(start + 1, n): current_sum = 0 for elem in array[start:finish + 1]: current_sum += elem if current_sum > max_sum: max_sum, ans = current_sum, finish - start + 1 return ans, max_sum import numpy as np %%timeit max_sum_subarray(np.random.rand(100)-0.5) ###Output 55.9 ms ± 2.41 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) ###Markdown Чуть более близкое к оптимальному решение с ассимптотикой O($n^2$) по времени и O($n$) по памяти: ###Code def max_sum_subarray(array): # Трюк заключается в том чтобы сначала посчитать суммы всех префиксов массива и потом вычислять сумму любого подмассива за О(1) n = len(array) prefix_sum = [0] for i in range(n): prefix_sum.append(prefix_sum[-1] + array[i]) ans = -1 max_sum = -float("inf") for start in range(n): for finish in range(start + 1, n): # Вот как мы вычисляем сумму на подмассиве используя префиксные суммы current_sum = prefix_sum[finish + 1] - prefix_sum[start] if current_sum > max_sum: max_sum, ans = current_sum, finish - start + 1 return ans, max_sum %%timeit max_sum_subarray(np.random.rand(1000)-0.5) 49.6/1.32 ###Output _____no_output_____ ###Markdown в 38 раз быстрее Задача 2 (Где мы узнаем про трюк с двумя указателями и что ассимптотику по времени можно сократить если итерироваться в каком-то специальном порядке):Вам дано 2 массива с числами, отсортированные по возрастанию, задача найти по элементу в каждом изз массивов ($x_1$ и $x_2$ соответственно) таких что $|x_1 - x_2|$ минимальноПример:array1 = [-10, -3, 0, 5, 13, 58, 91, 200, 356, 1000, 25000]array2 = [-9034, -574, -300, -29, 27, 100, 250, 340, 900, 60000]ОТВЕТ: 91 и 100 Наивное решение с ассимптотикой O($n * m$) по времени и O(1) по памятигде n и m это размеры массивов ###Code def min_difference_pair(arr1, arr2): n, m = len(arr1) - 1, len(arr2) - 1 min_diff, ans = abs(arr1[0] - arr2[0]), (0, 0) for i in range(n): for j in range(m): diff = abs(arr1[i] - arr2[j]) if diff < min_diff: min_diff, ans = diff, (i, j) return min_diff, ans ###Output _____no_output_____ ###Markdown Оптимальное решение с ассимптотикой O($n + m$) по времени и O(1) по памяти ###Code def min_difference_pair(arr1, arr2): n, m = len(arr1) - 1, len(arr2) - 1 pointer1, pointer2 = 0, 0 min_diff, ans = abs(arr1[0] - arr2[0]), (0, 0) while pointer1 + pointer2 != n + m: if pointer2 == m or (pointer1 < n and arr1[pointer1] <= arr2[pointer2]): pointer1 += 1 elif pointer1 == n or (pointer2 < m and arr1[pointer1] >= arr2[pointer2]): pointer2 += 1 current_diff = abs(arr1[pointer1] - arr2[pointer2]) if current_diff < min_diff: min_diff, ans = current_diff, (pointer1, pointer2) return min_diff, ans ###Output _____no_output_____ ###Markdown Домашнее Задание1) Потренироваться в рекурсии, например, здесь: https://informatics.mccme.ru/mod/statements/view.php?id=25431 (задачи в менюшке справа, нужно зарегаться чтобы решать)2) Задачи на метод двух указателей: Простые:https://leetcode.com/problems/longest-substring-without-repeating-characters/https://leetcode.com/problems/remove-duplicates-from-sorted-array/https://leetcode.com/problems/merge-sorted-array/ Посложнее: https://leetcode.com/problems/long-pressed-name/https://leetcode.com/problems/trapping-rain-water/3) Придумать решение первой задачи с ассимптотикой по времени O(n) (например используя метод двух указателей) ###Code def max_sum_subarray(array): """выдает длину и сумму подстроки, которая дает максимальную сумму на массиве np.random.rand(1000)-0.5) работает в 37 раз быстрее, чем алогиртм с лекции """ n = len(array) # all prefix sum compute prefix_sum = [0] for i in range(n): prefix_sum.append(prefix_sum[-1] + array[i]) start, finish, start_last, finish_last = 0, 0, -1, -1 start_old = -1 finish_old = -1 ans = -1 max_sum = -float("inf") while start != n - 1: # критерий остановки - дошли до предпоследнего места указателем начала if finish == n or ((finish == finish_old) and (start == start_old)): # если дошли указателем конца или два раза смотрим то же место - двигать начало start += 1 current_sum = prefix_sum[finish + 1] - prefix_sum[start] if current_sum > max_sum: max_sum, ans = current_sum, finish - start + 1 try: # если доходим до конца, следующего движения уже нет, поэтому, следующая сумма даст IndexError, # переставляю индикатор движения вперед по более большой сумме на False sum_check = (prefix_sum[finish] - prefix_sum[start + 1]) < (prefix_sum[finish + 2] - prefix_sum[start]) except IndexError: sum_check = False if ((finish - start) < 1 or sum_check) and (finish + 2 < len(prefix_sum)): finish += 1 current_sum = prefix_sum[finish + 1] - prefix_sum[start] if current_sum > max_sum: max_sum, ans = current_sum, finish - start + 1 start_old = start_last start_last = start finish_old = finish_last finish_last = finish return ans, max_sum not(True) %%timeit X = [1, 2, -4, 5, 2, -1, 3, -10, 7, 1, -1, 2] max_sum_subarray(X) %%timeit max_sum_subarray(np.random.rand(1000)-0.5) ###Output 3.64 ms ± 653 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ###Markdown хотим быстрее 1 мс ###Code X = np.random.rand(1000)-0.5 133/3.54 max_sum_subarray(X) max_sum_subarray(X) ###Output _____no_output_____
0.14/_downloads/plot_evoked_topomap.ipynb
###Markdown Plotting topographic maps of evoked dataLoad evoked data and plot topomaps for selected time points. ###Code # Authors: Christian Brodbeck <[email protected]> # Tal Linzen <[email protected]> # Denis A. Engeman <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne.datasets import sample from mne import read_evokeds print(__doc__) path = sample.data_path() fname = path + '/MEG/sample/sample_audvis-ave.fif' # load evoked and subtract baseline condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) # set time instants in seconds (from 50 to 150ms in a step of 10ms) times = np.arange(0.05, 0.15, 0.01) # If times is set to None only 10 regularly spaced topographies will be shown # plot magnetometer data as topomaps evoked.plot_topomap(times, ch_type='mag') # compute a 50 ms bin to stabilize topographies evoked.plot_topomap(times, ch_type='mag', average=0.05) # plot gradiometer data (plots the RMS for each pair of gradiometers) evoked.plot_topomap(times, ch_type='grad') # plot magnetometer data as an animation evoked.animate_topomap(ch_type='mag', times=times, frame_rate=10) # plot magnetometer data as topomap at 1 time point : 100 ms # and add channel labels and title evoked.plot_topomap(0.1, ch_type='mag', show_names=True, colorbar=False, size=6, res=128, title='Auditory response') plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.88) ###Output _____no_output_____
codes/DEMO3_Inverse_problem/step1_a_FormatGraphs.ipynb
###Markdown DEMO3 Inverse problem solving Most of the codes are the same as DEMO2, but slightly different.- This script will format graph databases ###Code import sys sys.path.append("../MIGraph/GraphConv/") from ValueTransformer import ValueTransformer from ConvGraphScript import drawGraph,checkGraphList from AutoParameterScaling import AutoParameterScaling from ConvGraphmlToGraph import loadGraphCSV from PrepGraphScript import PrepGraphScript import glob import os import joblib from tqdm import tqdm import numpy as np import random os.chdir("praparingGraphs") #load PEDOT-PSS files folderList=glob.glob("input/PEDOTPSS/*") CSVPathList=[] graphPathList=[] for folder in folderList: CSVPath=folder+"/"+os.path.basename(folder)+".csv" graphPath=folder+"/graph/" CSVPathList.append(CSVPath) graphPathList.append(graphPath) ###Output _____no_output_____ ###Markdown convert graph-type PEDOT-PSS file ###Code VT=ValueTransformer() for CSVPath,graphPath in zip(CSVPathList,graphPathList): print(CSVPath) gList=loadGraphCSV(CSVPath,graphPath) #convert unit etc gList=VT.convertGraphList(gList) checkGraphList(gList) filename=os.path.basename(CSVPath) outname="temporary/"+filename+".graphbin" print("saving...", outname) joblib.dump(gList,outname,compress=3) #convert wikipedia file #you can add other compound csv files in additional_simple_comps csvList=glob.glob("input/additional_simple_comps/*.csv") print(len(csvList)) sorted(csvList) def conv(filename): pgs=PrepGraphScript(filename) pgs.doFragment=False pgs.prapareGraphList(numOfMaxFragments=2000) for num,filename in tqdm(enumerate(csvList)): print(num, "file: ",filename) conv(filename) ###Output 0it [00:00, ?it/s] 0%| | 0/1370 [00:00<?, ?it/s] 1%| | 10/1370 [00:00<00:14, 95.00it/s] ###Markdown combine compound databases ###Code import pandas as pd #in the case of this PEDOT-PSS_txt project, only one compound file is available, but normally many) allCompundsPath="output/allcompounds.csv.gz" csvList=glob.glob("../convCSVtoGraph/temp/output/*.csv") csvList2=glob.glob("input/*.csv") csvgzList=glob.glob("input/*.csv.gz") compPathList=sorted(list(set(csvList)|set(csvgzList)|set(csvList2))) print(compPathList) CompColumns=["ID","SMILES"] for num,filePath in enumerate(compPathList): print(filePath) if num==0: df=pd.read_csv(filePath)[CompColumns] else: df2=pd.read_csv(filePath)[CompColumns] df=pd.concat([df,df2],axis=0) df=df.drop_duplicates("ID") df=df[CompColumns].reset_index() df.to_csv(allCompundsPath,index=False) df ###Output input/20190520wikipedia.csv.gz input/20190521wikidata.csv.gz input/20200220PEDOTProcess_comp.csv ###Markdown delete broken compounds and their graphs ###Code from rdkit import Chem from rdkit.Chem import AllChem compIDtoSMILES=dict(zip(df["ID"],df["SMILES"])) graphbinList1=glob.glob("temporary/*.graphbin") graphbinList2=glob.glob("../convCSVtoGraph/temp/output/*.graphbin") graphbinList=sorted(list(set(graphbinList1)|set(graphbinList2))) for graphbin in tqdm(graphbinList): gList=joblib.load(graphbin) ngList=[] for g in (gList): #extract comps compIDList=[g.nodes[node]["label"] for node in g.nodes if str(g.nodes[node]["label"])[:2]=="C_"] if np.nan in compIDList: compIDList=["none"] print("nan") if "C_nan" in compIDList: compIDList=["none"] #check if mol objects can be made from smiles try: SMILESList = [compIDtoSMILES[i[2:]] for i in compIDList] molList =[Chem.MolFromSmiles(smiles) for smiles in SMILESList] for mol in molList: morgan_fps =AllChem.GetMorganFingerprintAsBitVect(mol, 2, 20) bit=morgan_fps.ToBitString() ngList.append(g) except: print("error",SMILESList) joblib.dump(ngList,graphbin) #standardizing values (this is not necessary for PEDOT-PSS project) and finalize graphs #** standardizing was done at step 1, because graphs made from automatic text parsing have slightly different forms #, and standardizing cannot be done by this code. (i.e., developed for "normal graphs" ) graphbinList1=glob.glob("temporary/*.graphbin") graphbinList2=glob.glob("../convCSVtoGraph/temp/output/*.graphbin") graphbinList=sorted(list(set(graphbinList1)|set(graphbinList2))) print(graphbinList) AutoSC=AutoParameterScaling() AutoSC.initialize(graphbinList) joblib.dump(AutoSC,"output/AutoSC.scaler",compress=3) AutoSC.autoTransform(graphbinList) ###Output 0%| | 0/2 [00:00<?, ?it/s] ###Markdown check graphs ###Code graphbinList=glob.glob("output/*.graphbin") gList=[] for file in tqdm(graphbinList): print(file) temp=joblib.load(file) gList.extend(temp) print(len(gList), " plots") number=0 #draw drawGraph(gList[number]) g=gList[number] nodeVals=[g.nodes[node]["label"] for node in g.nodes] nodeVals ###Output _____no_output_____
docs/source/notebooks/Recipe_Get_Schedule_Year.ipynb
###Markdown Recipe: Get schedules for a whole year ProblemGet schedules for a whole year. Solution ###Code import datetime as dt import pandas as pd from cro.schedule.sdk import Client, Schedule YEAR = 2022 month_dates = [dt.date(YEAR, month, 1) for month in range(1, 3)] data: dict[Schedule, pd.DataFrame] = {} client = Client() # Set the station id (sid) later within the for loop. ###Output _____no_output_____ ###Markdown Fetch the sechedules for station Plus and Radiožurnál from the beginning of the year. ###Code from tqdm import tqdm for sid in ("plus", "radiozurnal"): client.station = sid for date in tqdm(month_dates): schedules = client.get_month_schedule(date) for schedule in schedules: data[schedule] = schedule.to_table() ###Output 100%|██████████| 2/2 [00:06<00:00, 3.23s/it] 100%|██████████| 2/2 [00:06<00:00, 3.24s/it] ###Markdown Write single dataset to Excel ###Code for schedule, table in tqdm(data.items()): week_number = f"{schedule.date.isocalendar()[1]:02d}" week_start = schedule.date - dt.timedelta(days=schedule.date.weekday()) # Monday week_end = week_start + dt.timedelta(days=6) # Sunday with pd.ExcelWriter( f"../../../data/sheet/{YEAR}/Schedule_{schedule.station.name}_{YEAR}W{week_number}_{week_start}_{week_end}.xlsx" ) as writer: table.to_excel(writer, index=False) ###Output 100%|██████████| 118/118 [00:14<00:00, 7.89it/s] ###Markdown Write concatenated datasets to Excel ###Code with pd.ExcelWriter(f"../../../data/sheet/Schedule_Y{YEAR}.xlsx") as writer: pd.concat(data.values()).to_excel(writer) ###Output _____no_output_____
extractive_summarization/english.ipynb
###Markdown *Extractive summarization* en inglésEl objetivo del presente proyecto es crear un modelo capaz de producir resúmenes del conjunto de noticias en **lengua inglesa** de CNN y Daily Mail. Los resúmenes serán obtenidos utilizando la metodología de extracción (*extraction summarization*), es decir, el resumen generado será a partir de las frases del texto original que sean más relevantes. El proyecto constará de distintas secciones:- Preparación del entorno- Análisis de los datos- Preprocesamiento de los datos - Análisis de la extensión de los datos- Construcción del modelo- Generar nuevos resúmenes Preparación del entorno ###Code # Librerías necesarias import tensorflow as tf import tensorflow_datasets as tfds import pandas as pd import math as m import re from itertools import chain, groupby from bs4 import BeautifulSoup from collections import Counter import nltk nltk.download('stopwords') from nltk.corpus import stopwords nltk.download('punkt') import heapq from google.colab import drive drive.mount('/content/drive') ###Output Mounted at /content/drive ###Markdown Análisis de los datos ###Code data = pd.read_csv('/content/drive/MyDrive/TFM/data/en_train.csv') def dataframe_ok(df): df.drop(['Unnamed: 0'], axis = 1, inplace = True) #Eliminar la columna del índice df.columns = ['Text', 'Summary'] #Asignar el nombre a cada columna dataframe_ok(data) data.shape # Dimensiones de los datos: 1000 filas (noticias) con dos columnas: texto y resumen data.head() # Observar las cinco primeras líneas de los datos # Inspeccionar el texto completo de las tres primeras filas for i in range(3): print("Noticia #",i+1) print(data.Summary[i]) print(data.Text[i]) print() # Comprobar el número de datos nulos data.isnull().sum() ###Output _____no_output_____ ###Markdown Preprocesamiento de los datosLa tarea de preprocesamiento de los datos es una de las partes más importantes en un proyecto de procesamiento de lenguaje natural. Para realizar resúmenes de texto por extracción se parte de la hipótesis de que el tema principal del texto viene dado por las palabras que aparezcan con mayor frecuencia. En consecuencia, el resumen se generará a partir de las frases que contengan mayor cantidad de dichas palabras. Es por esta razón que para este tipo de resumen automático de textos no es necesario modificar de forma excesiva los textos originales para que estos sean más naturales. Según la lengua con la que se desee entrenar el modelo, las tareas de limpieza de los datos pueden tener variaciones. Se recuerda que en el presente *notebook* se pretende utilizar textos en lengua inglesa. **Preprocesamiento de los datos:**- **Eliminar letras mayúsculas**: Python diferencia entre carácteres en mayúsuclas y en minúsculas, por lo tanto, las palabras *News* y *news* serían interpretadas como diferentes. Sin embargo, para comprender el texto correctamente, esto no debe ser así. Es por ello que se convierte todo el texto a letras minúsculas. - **Eliminar los restos de la importación de los datos**: El conjunto de datos ha sido descargado de la librería TensorFlow. Estos datos se encuentran en el interior de `tf.tensor\(b" [...] ", shape=\(\), dtype=string\)`, carácteres que deben eliminarse porque no forman parte del texto original que se desea analizar. Además, también quedan conjuntos de carácteres como `xe2`, `xc2`... que carecen de significado y están presentes con mucha frecuencia en los textos. - **Eliminar los cambios de línea ./n**- **Eliminar el texto entre paréntesis**: generalmente, entre paréntesis no se pone información relevante. Por ello, se puede prescindir de esta para reducir la información que debe ser analizada por el modelo.- **Eliminar caracteres especiales**- **Eliminar 's**- **Sustituir las contracciones por su forma original**: [diccionario para expandir las contracciones](https://www.analyticsvidhya.com/blog/2019/06comprehensive-guide-text-summarization-using-deep-learning-python/) ###Code # Diccionario para expandir las contracciones contraction_mapping_upper = {"ain't": "is not","can't": "cannot", "'cause": "because", "could've": "could have", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't've": "might not have", "must've": "must have", "mustn't've": "must not have", "needn't've": "need not have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "shouldn't've": "should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't've": "will not have", "would've": "would have", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have", "you'd've": "you would have", "you'll've": "you will have"} contraction_mapping = dict((k.lower(), v) for k, v in contraction_mapping_upper .items()) # Convertir todas las clave-valor del diccionario a minúsculas # Stop words: palabras que no tienen un significado por sí solas (artículos, pronombres, preposiciones) stop_words = set(stopwords.words('english')) def clean_text(text): clean = text.lower() #Convierte todo a minúsculas """ Limpiar los datos """ #Eliminar los restos de tensorflow para los casos en los que están entre comillas simples y entre comillas dobles clean = re.sub('tf.tensor\(b"', "", clean) clean = re.sub('", shape=\(\), dtype=string\)',"",clean) clean = re.sub("tf.tensor\(b'", "", clean) clean = re.sub("', shape=\(\), dtype=string\)","",clean) #Eliminar los cambios de línea clean = clean.replace('.\\n','') #Eliminar el texto que se encuentra entre paréntesis clean = re.sub(r'\([^)]*\)', '', clean) #Eliminar las 's clean = re.sub(r"'s", "", clean) #Eliminar las contracciones clean = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in clean.split(" ")]) #Quitar las contracciones #Eliminar los carácteres especiales clean = re.sub("[^a-zA-Z, ., ,, ?, %, 0-9]", " ", clean) #Añadir un espacio antes de los signos de puntuación y los símbolos clean = clean.replace(".", " . ") clean = clean.replace(",", " , ") clean = clean.replace("?", " ? ") #Eliminar carácteres extraños clean = re.sub(r'xe2', " ", clean) clean = re.sub(r'xc2', " ", clean) clean = re.sub(r'x99s', " ", clean) clean = re.sub(r'x99t', " ", clean) clean = re.sub(r'x99ve', " ", clean) clean = re.sub(r'x99', " ", clean) clean = re.sub(r'x98i', " ", clean) clean = re.sub(r'x93', " ", clean) clean = re.sub(r'xa0', " ", clean) clean = re.sub(r'x80', " ", clean) clean = re.sub(r'x94', " ", clean) clean = re.sub(r'x98', " ", clean) clean = re.sub(r'x0', " ", clean) clean = re.sub(r'x81', " ", clean) clean = re.sub(r'x82', " ", clean) clean = re.sub(r'x83', " ", clean) clean = re.sub(r'x84', " ", clean) clean = re.sub(r'x89', " ", clean) clean = re.sub(r'x9', " ", clean) clean = re.sub(r'x8', " ", clean) clean = re.sub(r'x97', " ", clean) clean = re.sub(r'x9c', " ", clean) tokens = [w for w in clean.split()] #Juntar palabras return (" ".join(tokens).strip()) # Limpiar los resúmenes y los textos clean_summaries = [] for summary in data.Summary: clean_summaries.append(clean_text(summary)) #Remove_stopwords = False: hacer resúmenes más naturales print("Sumarios completados.") clean_texts = [] for text in data.Text: clean_texts.append(clean_text(text)) #Remove_stopwords = True: stop words no aportan información por lo que son irrelevantes para entrenar al modelo print("Textos completados.") # Inspeccionar los resúmentes y textos limpios para observar que se ha efectuado la limpieza correctamente for i in range(3): print("Noticia #",i+1) print('Sumario: ', clean_summaries[i]) print('Texto: ',clean_texts[i]) print() ###Output Noticia # 1 Sumario: chilton is hopeful of racing at marussia for a third straight season briton form has dipped in recent races after finishing 13th in bahrain but he is confident of staying at marussia beyond this season . Texto: by . ian parkes , press association . max chilton has every confidence he will be retained by marussia for a third consecutive season . chilton started the campaign relatively strongly , claiming the best results of his formula one career by finishing 13th in the season opening race in australia and again in bahrain . in monaco , however , team mate jules bianchi stole chilton thunder as the frenchman scored marussia first points from their four and a half years in f1 with ninth place in monaco . centre of attention max chilton remains hopeful of being retained by marussia for the 2015 season . since then chilton has struggled for form and results , but the 23 year old from reigate in surrey sees no reason why marussia would not retain him for 2015 . i naturally want to stay with the team , said chilton . like a lot of these things they filter down from the top , and there are a lot of rumours with regard to the top of the grid , with people moving around and you don t really know where you stand until then . i won t focus on that until later on in the year , but i am confident i will be here next year . i have had good races this year . i started off fairly strong , and okay the last few have not been particularly great , but i feel we have got to the bottom of that . overall i have been consistent and had good results . chilton may yet be thanking bianchi for that result in monaco as the young briton would like to believe it could play a key role in his own future . on track the british driver joined the team in 2013 and finished every race of his debut season . those two points mean marussia lie ninth in the constructors title race ahead of both sauber and caterham . if marussia can hold on to that position the financial rewards would be considerable , which in turn may mean chilton not having to find the cash to fund his seat . marussia have a good future , especially if we hold off sauber for ninth . that would really build up momentum , added chilton . that would be a big help to the team financially if we could do that as it would help us develop the car for next year . if the team gets this ninth then we might not need to worry about that . that just me really thinking of the bigger picture . i ve not properly looked into it , but i would like to think i could continue to help the team develop over the next couple of years . Noticia # 2 Sumario: president obama will head back to the white house on sunday night as tensions rise in missouri and iraq the decision appears aimed at countering criticism that the president was spending two weeks on a resort island in the midst of so many crises . Texto: president barack obama is getting off the island . in a rare move for him , the president planned a break in the middle of his martha vineyard vacation to return to washington on sunday night for meetings with vice president joe biden and other advisers on the u . s . military campaign in iraq and tensions between police and protesters in ferguson , missouri . the white house has been cagey about why the president needs to be back in washington for those discussions . he received multiple briefings on both issues while on vacation . the white house had also already announced obama plans to return to washington before the u . s . airstrikes in iraq began and before the shooting of a teen in ferguson that sparked protests . protective gesture obama walks with daughter malia obama to board air force one at cape cod coast guard air station in massachusetts on sunday . back home obama and malia are seen at joint base andrews in washington early monday . mysterious the white house has been cagey about why the president needs to be back in washington . he is seen here on the south lawn of the white house with daughter malia . in good spirits despite the early return , the president and first daughter seemed to be enjoying a joke . part of the decision to head back to washington appears aimed at countering criticism that obama is spending two weeks on a resort island in the midst of so many foreign and domestic crises . yet those crises turned the first week of obama vacation into a working holiday . he made on camera statements iraq and the clashes in ferguson , a st . louis suburb . he also called foreign leaders to discuss the tensions between ukraine and russia , as well as between israel and hamas . i think it fair to say there are , of course , ongoing complicated situations in the world , and that why you ve seen the president stay engaged , white house spokesman eric schultz said . obama returned from his break along with his 16 year old daughter mailia , but is scheduled to return to martha vineyard on tuesday and stay through next weekend . in a first for obama family summer vacations , neither teenager is spending the entire holiday with her father . obama left washington aug . 9 with his wife , michelle , daughter malia , and the family two portuguese water dogs . the white house said 13 year old sasha would join her parents at a later date for part of their stay on this quaint island of shingled homes . but malia will not be around when her younger sister arrives . the daughters essentially are trading places , and the vacation is boiling down to obama getting about a week with each one . malia returned to washington with her father and is not expected to go back to martha vineyard . the white house said sasha will join her parents this week , without saying when she will arrive or what kept her away last week , or why malia left the island . president barack obama bike rides with daughter malia obama while on vacation with his family on the island of martha vineyard . obama often draws chuckles from sympathetic parents who understand his complaints about his girls lack of interest in spending time with him . what i m discovering is that each year , i get more excited about spending time with them . they get a little less excited , obama told cnn last year . even though work has occupied much of obama first week on vacation , he still found plenty of time to golf , go to the beach with his family and go out to dinner on the island . he hit the golf course one more time sunday ahead of his departure , joining two aides and former nba player alonzo mourning for an afternoon round . he then joined wife michelle for an evening jazz performance featuring singer rachelle ferrell . obama vacation has also been infused with a dose of politics . he headlined a fundraiser on the island for democratic senate candidates and attended a birthday party for democratic adviser vernon jordan wife , where he spent time with former president bill clinton and hillary rodham clinton . that get together between the former rivals turned partners added another complicated dynamic to obama vacation . just as obama was arriving on martha vineyard , an interview with the former secretary of state was published in which she levied some of her sharpest criticism of obama foreign policy . clinton later promised she and obama would hug it out when they saw each other at jordan party . no reporters were allowed in , so it not clear whether there was any hugging , but the white house said the president danced to nearly every song . Noticia # 3 Sumario: texas governor rick perry announced this afternoon that he will dispatch up to 1 , 000 texas national guard troops to the border the deployment will cost texas taxpayers 12 million a month , according to a leaked memo perry has asked obama multiple times to send the national guard to the border but obama keeps refusing a texas lawmaker said the republican governor is not sincerely concerned about the border , he just wants to play politics . Texto: texas governor rick perry announced today his intentions to deploy up to 1 , 000 texas national guard troops to his state southern border , which is also the u . s . border with mexico . there . can be no national security without border security , and texans have paid too . high a price for the federal government failure to secure our border , the republican governor said at a news conference this afternoon . the action i am ordering today will tackle this crisis head on by . multiplying our efforts to combat the cartel activity , human traffickers and . individual criminals who threaten the safety of people across texas and . america . according to a memo leaked late last night to the monitor , the executive action will cost texas taxpayers 12 million a month . scroll down for video . done waiting around texas governor rick perry said this afternoon that he is deploying up to 1 , 000 texas national guard troops to the state southern border , which is also the u . s . border with mexico . already , perry has instructed the texas department of public safety to increase personnel in the rio grande river valley area at a weekly cost of 1 . 3 million . added together , the two measures will cost 5 million a week , the memo reportedly states , and it is not clear where the money will come . from in the budget other than non critical areas like health care or transportation . the rise in border protection measures follows a surge of central american children streaming into the u . s . from mexico . more than 57 , 000 immigrant children , many of whom are unaccompanied , have illegally entered the country since last year , and the government estimates that approximately 90 , 000 will arrive by the close of this year . u . s . border patrol has been overloaded by the deluge , and the federal government is quickly running out of money to care for the children . congress is in the process of reviewing a 3 . 7 billion emergency funding request from president barack obama that would appropriate additional money to the agencies involved , but house republicans remain skeptical of the president plan . roughly half of the money obama asking for would go toward providing humanitarian aid to the children while relatively little would go toward returning the them to their home countries . furthermore , republicans would like to see changes to a 2008 trafficking law that requires the government to give children from non contiguous countries who show up at the border health screenings and due process before they can be sent home . the judicial process often takes months , and even years , clogging up courts and slowing down the repatriation process . the president had initially planned to include a revised version of the 2008 legislation in his request to congress that would have allowed the department of homeland security to exercise the discretion to bypass the current process by giving children the option to voluntarily return home . obama backed down at the last minute after receiving negative feedback from democratic lawmakers . perry held a news conference with attorney general greg abbott , right , this afternoon in austin , texas , to formally announce the deployment . perry said the national guard troops were needed to combat criminals that are exploiting a surge of children and families entering the u . s . illegally . also not included in obama request to congress was funding for a national guard deployment to the border something house speaker john boehner and the texas governor had both called on the president to do . republicans say a national guard presence is needed at areas of high crime to help border patrol agents crack down on smugglers and drug cartels . in a face to face meeting with obama when the president came to texas two weeks ago perry again asked the president to deploy the national guard through a federally funded statue but obama resisted . perry is now taking matters into his own hands , sending his own set of troops down to the rio grande valley to aid law enforcement officials . state senator juan chuy hinojosa , a democrat who represents border town mcallen , criticized the republican governor deployment as unnecessary . the cartels are taking advantage of the situation , he told the monitor . but our local law enforcement from the sheriff offices of the different counties to the different police departments are taking care of the situation . this is a civil matter , not a military matter . what we need is more resources to hire more deputies , hire more border patrol , hinojosa said . these are young people , just families coming across . they are not armed . they are not carrying weapons . the leaked memo on the national guard deployment specifically denies that it is a militarization of the border , however . and perry office reiterated today that troops would work seamlessly and side by side with law enforcement officials . hinojosa also accused perry , who recently toured the border with sean hannity as part of a special for fox news , of being insincere in his concern about the situation at the border . all . these politicians coming down to border , they don t care about solving . the problem , they just want to make a political point , he said . ###Markdown Análisis de la extensión de los textos ###Code text_lengths =[] for i in (range(0,len(clean_texts))): text_lengths.append(len(clean_texts[i].split())) import matplotlib.pyplot as plt plt.title('Número de palabras de los textos') plt.hist(text_lengths, bins = 30) text_sentences =[] for i in (range(0,len(clean_texts))): text_sentences.append(len(clean_texts[i].split("."))) import matplotlib.pyplot as plt plt.title('Número de frases de los textos') plt.hist(text_sentences, bins = 30) summaries_lengths =[] for i in (range(0,len(clean_summaries))): summaries_lengths.append(len(clean_summaries[i].split())) import matplotlib.pyplot as plt plt.title('Número de palabras de los sumarios') plt.hist(summaries_lengths, bins = 30) summaries_sentences =[] for i in (range(0,len(clean_summaries))): summaries_sentences.append(len(clean_summaries[i].split("."))) import matplotlib.pyplot as plt plt.title('Número de frases de los sumarios') plt.hist(summaries_sentences, bins = 30) #Devuelve la frecuencia con la que aparece cada palabra en el texto def count_words(count_dict, text): for sentence in text: #Separa los textos del conjunto text introducido. Cada sentence es uno de estos textos. for word in sentence.split(): #Separa los textos en palabras if word not in count_dict: count_dict[word] = 1 else: count_dict[word] += 1 word_frequency = {} count_words(word_frequency, clean_summaries) count_words(word_frequency, clean_texts) print("Vocabulario total:", len(word_frequency)) #Buscar restos de la conversión del texto ('x99', 'x99s', 'x98', etc.) para incluirlos en la función clean_text import operator sorted(word_frequency.items(), key=operator.itemgetter(1), reverse=True ) ###Output _____no_output_____ ###Markdown Construcción del modeloPara generar resúmenes de texto por extracción, es necesario conocer qué frases del texto original son las que mayor información relevante contienen. Para ello, se seguirán los siguientes pasos para cada una de las noticias del conjunto de datos:- Calcular la frecuencia de aparición de las palabras.- Calcular la frecuencia ponderada de cada una de las palabras, siendo la frecuencia ponderada la división entre la frecuencia de aparición de la palabra en cuestión y la frecuencia de la palabra que aparece más veces en el texto. - Calcular la puntuación de cada una de las frases del texto, siendo la puntuación la suma ponderada de cada palabra que conforma dicha frase.- Seleccionar las N frases con mayor puntuación para generar el resumen a partir de estas. ###Code def word_frequency (word_frequencies, text): """ Calcula la frecuencia de las palabras en cada uno de los textos y añadirlo como pares clave-valor a un diccionario Las palabras añadidas no deben ser ni stop words ni signos de puntuación""" punctuations = {".",":",",","[","]", "“", "|", "”", "?"} for word in nltk.word_tokenize(text): if word not in stop_words: if word not in punctuations: if word not in word_frequencies.keys(): word_frequencies[word] = 1 else: word_frequencies[word] += 1 word_freq_per_text = [] # Lista recogiendo los diccionarios de las frecuencias de aparición de las palabras de cada texto for text in clean_texts: word_frequencies = {} word_frequency(word_frequencies, text) # Devuelve el diccionario de frecuencias de las palabras word_freq_per_text.append(word_frequencies) def word_score(index): """ Calcula la puntuación ponderada de cada una de las palabras del texto mediante la fórmula: frecuencia_palabra / frecuencia_máxima siendo la frecuencia_palabra el número de veces que aparece en el texto la palabra en cuestión y la frecuencia_máxima el número de veces que aparece en el texto la palabra más repetida""" sentence_list = nltk.sent_tokenize(clean_texts[index]) word_frequency = word_freq_per_text[index] maximum_frequency = max(word_freq_per_text[index].values()) #Frecuencia de la palabra que más veces aparece for word in word_freq_per_text[index].keys(): word_freq_per_text[index][word] = (word_freq_per_text[index][word]/maximum_frequency) # Cálculo de la puntuación de cada una de las palabras del texto: word_freq/max_freq for i in range(0, len(clean_texts)): word_score(i) def sentence_score(sentence_scores, index): """ Calcula la puntuación de cada una de las frases del texto siendo esta la suma de las frecuencias ponderadas de todas las palabras que conforman el texto""" sentence_list = nltk.sent_tokenize(clean_texts[index]) # Tokenización de las frases del texto for sent in sentence_list: for word in nltk.word_tokenize(sent.lower()): if word in word_freq_per_text[index].keys(): if len(sent.split(' ')) < 20: if sent not in sentence_scores.keys(): sentence_scores[sent] = word_freq_per_text[index][word] else: sentence_scores[sent] += word_freq_per_text[index][word] sent_sc_per_text = [] # Lista recogiendo los diccionarios de las frases y sus puntuaciones for i in range(0, len(clean_texts)): sentence_scores = {} sentence_score(sentence_scores, i) # Devuelve el diccionario de la puntuación de la frase sent_sc_per_text.append(sentence_scores) ###Output _____no_output_____ ###Markdown Generar nuevos resúmenesEn el apartado anterior *Análisis de la extensión de los datos* se ha examinado el número de palabras y frases de las noticias y sus respectivos resúmenes que forman el conjunto de datos. En los gráficos presentados se ha podido observar que la extensión de los textos es muy variable, variando entre 5 y 134 frases. En cuanto a los sumarios, estos tienen entre 1 y 19 frases. El número de frases con las que se desea generar el resumen por extracción debe ser indicado de forma avanzada. No se ha creído oportuno especificar un número concreto de frases para producir el resumen de todos los textos del conjunto debido a que las extensiones de estos son muy variables. Por ello, se ha establecido que el número de frases a escoger debe ser de un 25% del total de frases del texto original. ###Code def generate_summary(index): """ Genera el resumen del texto en función de las n_sentences con mayor puntuación""" n_sentences = m.ceil(len(nltk.sent_tokenize(clean_texts[index]))*25/100) summary_sentences = heapq.nlargest(n_sentences, sent_sc_per_text[index], key=sent_sc_per_text[index].get) summary = ' '.join(summary_sentences) #Eliminar un espacio antes de los signos de puntuación y los símbolos summary = summary.replace(" .", ".") summary = summary.replace(" ,", ",") summary = summary.replace(" ?", "?") return summary generated_summaries = [] for i in range(0, len(clean_texts)): new_summary = generate_summary(i) # Devuelve el resumen generado generated_summaries.append(new_summary) # Inspeccionar el texto completo de las tres primeras filas y los resúmenes que se han generado for i in range(3): print("\nNoticia #",i+1) print('\nTexto original: ', clean_texts[i]) print('\nResumen original: ', clean_summaries[i]) print('\nResumen generado: ', generated_summaries[i]) print() ###Output _____no_output_____
Exercises-with-open-data/Advanced/Normfit-transversemomentum+pseudorapidity.ipynb
###Markdown Creating a normfit and transverse momentum+pseudorapidity The point of this exercise is to learn to create a normal distribution fit for the data, and to learn what are transverse momentum and pseudorapidity (and how are they linked together). The data used is open data released by the [CMS](https://home.cern/about/experiments/cms) experiment. First the fit Let's begin by loading the needed modules, data and creating a histogram of the data to see the more interesting points (the area for which we want to create the fit). ###Code # This is needed to create the fit from scipy.stats import norm import pandas as pd import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt # Let's choose Dimuon_DoubleMu.csv data = pd.read_csv('http://opendata.cern.ch/record/545/files/Dimuon_DoubleMu.csv') # And save the invariant masses to iMass iMass = data['M'] # Plus draw the histogram n, bins, patches = plt.hist(iMass, 300, facecolor='g') plt.xlabel('Invariant Mass (GeV)') plt.ylabel('Amount') plt.title('Histogram of the invariant masses') plt.show() ###Output _____no_output_____ ###Markdown Let's take a closer look of the bump around 90GeVs. ###Code min = 85 max = 97 # Let's crop the area. croMass now includes all the masses between the values of min and max croMass = iMass[(min < iMass) & (iMass < max)] # Calculate the mean (µ) and standard deviation (sigma) of normal distribution using norm.fit-function from scipy (mu, sigma) = norm.fit(croMass) # Histogram of the cropped data. Note that the data is normalized (density = 1) n, bins, patches = plt.hist(croMass, 300, density = 1, facecolor='g') #mlab.normpdf calculates the normal distribution's y-value with given µ and sigma # let's also draw the distribution to the same image with histogram y = norm.pdf(bins, mu, sigma) l = plt.plot(bins, y, 'r-.', linewidth=3) plt.xlabel('Invarian Mass(GeV)') plt.ylabel('Probability') plt.title(r'$\mathrm{Histogram \ and\ fit,\ where:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu, sigma)) plt.show() ###Output _____no_output_____ ###Markdown Does the invariant mass distribution follow normal distribution?How does cropping the data affect the distribution? (Try to crop the data with different values of min and max)Why do we need to normalize the data? (Check out of the image changes if you remove the normalisation [density]) And then about transeverse momenta and pseudorapidity Transeverse momentum $p_t$ means the momentum, which is perpendicular to the beam. It can be calculated from the momenta to the x and y directions using vector analysis, but (in most datasets from CMS at least) can be found directly from the loaded data.Pseudorapidity tells the angle between the particle and the beam, although not using any 'classical' angle values. You can see the connection between degree (°) and pseudorapidity from an image a bit later. Pseudorapidity is the column Eta $(\eta)$ in the loaded data. Let's check out what does the distribution of transverse momenta looks like ###Code # allPt now includes all the transverse momenta allPt = pd.concat([data.pt1, data.pt2]) # concat-command from the pandas module combines (concatenates) the information to a single column # (it returns here a DataFrame -type variable, but it only has a singe unnamed column, so later # we don't have to choose the wanted column from the allPt variable) # And the histogram plt.hist(allPt, bins=400, range = (0,50)) plt.xlabel('$p_t$ (GeV)', fontsize = 12) plt.ylabel('Amount', fontsize = 12) plt.title('Histogram of transverse momenta', fontsize = 15) plt.show() ###Output _____no_output_____ ###Markdown Looks like most of the momenta are between 0 and 10. Let's use this to limit the data we're about to draw ###Code # using the below cond, we only choose the events below that amount (pt < cond) cond = 10 smallPt = data[(data.pt1 < cond) & (data.pt2 < cond)] # Let's save all the etas and pts to variables allpPt = pd.concat([smallPt.pt1, smallPt.pt2]) allEta = pd.concat([smallPt.eta1, smallPt.eta2]) # and draw a scatterplot plt.scatter(allEta, allpPt, s=1) plt.ylabel('$p_t$ (GeV)', fontsize=13) plt.xlabel('Pseudorapidity ($\eta$)', fontsize=13) plt.title('Tranverse momenta vs. pseudorapidity', fontsize=15) plt.show() ###Output _____no_output_____
reinforcement learning/03-TD_0.ipynb
###Markdown TD(0) learningThe TD(0) is an alternative algorithm that can estimate an environment'svalue function. The main difference is that TD(0) doesn't need to waituntil the agent has reached the goal to update a state's estimatedvalue.Here is the example pseudo-code we will be implementing:![img](./imgs/td-0.png)From: Sutton and Barto, 2018. Ch. 6. ###Code # first, import necessary modules import sys import gym import random import numpy as np import seaborn as sns import matplotlib.pyplot as plt # add your own path to the RL repo here sys.path.append('/Users/wingillis/dev/reinforcement-learning') from collections import defaultdict from lib.envs.gridworld import GridworldEnv from lib.plotting import plot_gridworld_value_function, plot_value_updates sns.set_style('white') # define some hyperparameters gamma = 0.75 # discounting factor alpha = 0.1 # learning rate - a low value is more stable n_episodes = 5000 # initialize the environment shape = (5, 5) # size of the gridworld env = GridworldEnv(shape, n_goals=2) env.seed(23) random.seed(23) # define a policy function def policy_fun(): return random.randint(0, 3) deltas = defaultdict(list) # initialize the value function for i in range(n_episodes): # reset the env and get current state while True: # select the next action # conduct the selected action, store the results # update the value function # store the change from the old value function to the new one # stop iterating if you've reached the end # update the current state for the next loop ###Output _____no_output_____ ###Markdown Reference learning and value functionFor:- gamma: 0.75- alpha: 0.1- n_episodes: 5000- shape: (5, 5) ###Code V.reshape(shape) fig = plot_value_updates(deltas[12][:100]) plt.imshow(V.reshape(shape), cmap='mako') plt.colorbar() fig = plot_gridworld_value_function(V.reshape(shape)) fig.tight_layout() ###Output _____no_output_____
examples/howto/Linked panning.ipynb
###Markdown Linked Panning"Linked Panning" is the capability of updating multiple plot ranges simultaneously as a result of panning one plot. In Bokeh, linked panning is acheived by shared `x_range` and/or `y_range` values between plots. Exeute the cells below and pan the resulting plots. ###Code from bokeh.io import output_notebook, show from bokeh.layouts import gridplot from bokeh.plotting import figure output_notebook() x = list(range(11)) y0 = x y1 = [10-xx for xx in x] y2 = [abs(xx-5) for xx in x] # create a new plot s1 = figure(width=250, plot_height=250, title=None) s1.circle(x, y0, size=10, color="navy", alpha=0.5) # create a new plot and share both ranges s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None) s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5) # create a new plot and share only one range s3 = figure(width=250, height=250, x_range=s1.x_range, title=None) s3.square(x, y2, size=10, color="olive", alpha=0.5) p = gridplot([[s1, s2, s3]], toolbar_location=None) show(p) ###Output _____no_output_____ ###Markdown Linked Panning"Linked Panning" is the capability of updating multiple plot ranges simultaneously as a result of panning one plot. In Bokeh, linked panning is achieved by shared `x_range` and/or `y_range` values between plots. Execute the cells below and pan the resulting plots. ###Code from bokeh.io import output_notebook, show from bokeh.layouts import gridplot from bokeh.plotting import figure output_notebook() x = list(range(11)) y0 = x y1 = [10-xx for xx in x] y2 = [abs(xx-5) for xx in x] # create a new plot s1 = figure(width=250, height=250, title=None) s1.circle(x, y0, size=10, color="navy", alpha=0.5) # create a new plot and share both ranges s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None) s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5) # create a new plot and share only one range s3 = figure(width=250, height=250, x_range=s1.x_range, title=None) s3.square(x, y2, size=10, color="olive", alpha=0.5) p = gridplot([[s1, s2, s3]], toolbar_location=None) show(p) ###Output _____no_output_____ ###Markdown Linked Panning"Linked Panning" is the capability of updating multiple plot ranges simultaneously as a result of panning one plot. In Bokeh, linked panning is acheived by shared `x_range` and/or `y_range` values between plots. Exeute the cells below and pan the resulting plots. ###Code from bokeh.io import output_notebook, show from bokeh.layouts import gridplot from bokeh.plotting import figure output_notebook() x = list(range(11)) y0 = x y1 = [10-xx for xx in x] y2 = [abs(xx-5) for xx in x] # create a new plot s1 = figure(width=250, plot_height=250, title=None) s1.circle(x, y0, size=10, color="navy", alpha=0.5) # create a new plot and share both ranges s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None) s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5) # create a new plot and share only one range s3 = figure(width=250, height=250, x_range=s1.x_range, title=None) s3.square(x, y2, size=10, color="olive", alpha=0.5) p = gridplot([[s1, s2, s3]], toolbar_location=None) show(p) ###Output _____no_output_____ ###Markdown Linked Panning"Linked Panning" is the capability of updating multiple plot ranges simultaneously as a result of panning one plot. In Bokeh, linked panning is acheived by shared `x_range` and/or `y_range` values between plots. Exeute the cells below and pan the resulting plots. ###Code from bokeh.io import output_notebook, show from bokeh.layouts import gridplot from bokeh.plotting import figure output_notebook() x = list(range(11)) y0 = x y1 = [10-xx for xx in x] y2 = [abs(xx-5) for xx in x] # create a new plot s1 = figure(width=250, height=250, title=None) s1.circle(x, y0, size=10, color="navy", alpha=0.5) # create a new plot and share both ranges s2 = figure(width=250, height=250, x_range=s1.x_range, y_range=s1.y_range, title=None) s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5) # create a new plot and share only one range s3 = figure(width=250, height=250, x_range=s1.x_range, title=None) s3.square(x, y2, size=10, color="olive", alpha=0.5) p = gridplot([[s1, s2, s3]], toolbar_location=None) show(p) ###Output _____no_output_____
src/attempts/regularization_attempt.ipynb
###Markdown ATTEMPTING TO USE REGULARIZATION ###Code import os os.chdir(os.path.pardir) print(os.getcwd()) from utilities import plot_fd_and_original, plot_fd_and_speeds, get_all_result_data, plot_results import matplotlib.pyplot as plt ### CORRIDOR_85 # corridor scenario corridor_85_results = {'(1,)--1': {'tr': (0.045912862271070484, 0.0031267345031365146), 'val': (0.04742169372737408, 0.0031119121269140935), 'test': (0.0476672403847664, 0.0039469590234120335)}, '(2,)--1': {'tr': (0.03664128817617894, 0.003182476102173639), 'val': (0.03853945817798376, 0.0033564231210634296), 'test': (0.04050630591336996, 0.002731126083062373)}, '(3,)--1': {'tr': (0.033373928852379324, 0.0018829191626169833), 'val': (0.035154239647090434, 0.0018664107327763268), 'test': (0.03871563824589665, 0.0016801948788747623)}, '(4, 2)-0.4': {'tr': (0.030664595104753972, 0.001851953384442897), 'val': (0.03249462600797414, 0.0019940795626529786), 'test': (0.03825132212658357, 0.0019405094251864585)}, '(5, 2)-0.4': {'tr': (0.029973307326436043, 0.0019320427350314425), 'val': (0.03196305438876153, 0.002029259209802658), 'test': (0.03746844874792181, 0.0010017009011062954)}, '(5, 3)-0.4': {'tr': (0.03051294256001711, 0.002172826645295372), 'val': (0.03253234028816223, 0.0023648521244316076), 'test': (0.03710711689572175, 0.0018621574798779472)}, '(6, 3)-0.4': {'tr': (0.03004354938864708, 0.0021208966134423995), 'val': (0.03249930314719677, 0.0027163875850789647), 'test': (0.03759107491804222, 0.0019266819358078092)}, '(10, 4)-0.4': {'tr': (0.02741089586168528, 0.001986981721097928), 'val': (0.02964006066322326, 0.0021461797559127775), 'test': (0.03635013228379024, 0.0010135238565525883)}} tr_mean, tr_std, val_mean, val_std, test_mean, test_std = get_all_result_data(corridor_85_results) plot_results(corridor_85_results, tr_mean, tr_std, val_mean, val_std, test_mean, test_std, title="corridor_85_dropout") corridor_85_results = {'(1,)': {'tr': (0.045258586704730985, 0.004853406766732973), 'val': (0.04714435026049614, 0.004653697406037759), 'test': (0.04686351530840396, 0.0012961715061691429)}, '(2,)': {'tr': (0.03719027779996395, 0.0020733957764011005), 'val': (0.041013209708034994, 0.0023950303734451657), 'test': (0.041472892633610745, 0.0024322010449302914)}, '(3,)': {'tr': (0.034038560874760156, 0.0013176987634252566), 'val': (0.03938843499869109, 0.0014865264094550156), 'test': (0.03914595563880523, 0.0010876265935449074)}, '(4, 2)': {'tr': (0.03526925183832645, 0.0029871246019426367), 'val': (0.04105438970029355, 0.0023958553187249138), 'test': (0.04126933727288883, 0.002845698267115585)}, '(5, 2)': {'tr': (0.035543992817401886, 0.0037010336212553643), 'val': (0.04197082627564668, 0.0025311766537130707), 'test': (0.04235170498124496, 0.00310823593982254)}, '(5, 3)': {'tr': (0.0334813929721713, 0.0037666412204319824), 'val': (0.041099048890173434, 0.003189935635059386), 'test': (0.04175731243589502, 0.003266454835106925)}, '(6, 3)': {'tr': (0.03116175480186939, 0.0022358561594462813), 'val': (0.03927014149725437, 0.002838615402109067), 'test': (0.039632171653358556, 0.001673111008447824)}, '(10, 4)': {'tr': (0.03036436103284359, 0.0047435348802268695), 'val': (0.0395459621399641, 0.003676904672583768), 'test': (0.03933931185179666, 0.002598055735067817)}} tr_mean, tr_std, val_mean, val_std, test_mean, test_std = get_all_result_data(corridor_85_results) plot_results(corridor_85_results, tr_mean, tr_std, val_mean, val_std, test_mean, test_std, title="corridor_85") ###Output _____no_output_____ ###Markdown BOTTLENECK_070 ###Code # bottleneck scenario bottleneck_070_results = {'(1,)--1': {'tr': (0.04420872837305069, 0.0031599580431971148), 'val': (0.04631242074072361, 0.00335683444621767), 'test': (0.04404655892877306, 0.0006008492096808868)}, '(2,)--1': {'tr': (0.04261961035430431, 0.002050199416835133), 'val': (0.045190324261784556, 0.002178216300224125), 'test': (0.04425408023114118, 0.0008173671821354187)}, '(3,)-0.2': {'tr': (0.04100157126784325, 0.0010626492394933162), 'val': (0.04339961282908916, 0.001260815392322356), 'test': (0.04458922187974386, 0.0010175661421570764)}, '(4, 2)-0.2': {'tr': (0.03906548090279102, 0.004921965053963709), 'val': (0.04078196577727795, 0.0036245149614968913), 'test': (0.046912882178146036, 0.0033055514368516012)}, '(5, 2)-0.2': {'tr': (0.03745610669255257, 0.0019795109400485966), 'val': (0.04004896491765976, 0.0020840289722979183), 'test': (0.04501635135997649, 0.002588274218708516)}, '(5, 3)-0.2': {'tr': (0.03834013599902392, 0.006017051040785215), 'val': (0.040765413381159306, 0.005984761763053988), 'test': (0.045824969932470705, 0.003220847503347146)}, '(6, 3)-0.2': {'tr': (0.0381568444147706, 0.004517518886731544), 'val': (0.040278446376323704, 0.004180930432849594), 'test': (0.04526766299581149, 0.0028434087673124566)}, '(10, 4)-0.2': {'tr': (0.0350448851287365, 0.004679395392748039), 'val': (0.03768944654613733, 0.004560997047374159), 'test': (0.04326768843836832, 0.003076716056470942)}} tr_mean, tr_std, val_mean, val_std, test_mean, test_std = get_all_result_data(bottleneck_070_results) plot_results(bottleneck_070_results, tr_mean, tr_std, val_mean, val_std, test_mean, test_std, title="bottleneck_070_dropout") bottleneck_070_results = {'(1,)': {'tr': (0.04955769553780556, 0.0057570421608399685), 'val': (0.05123388793319463, 0.005096320416198529), 'test': (0.051791704269027836, 0.005582774144924822)}, '(2,)': {'tr': (0.04184448003768921, 0.004760314561714955), 'val': (0.045550852119922644, 0.0046212267515334735), 'test': (0.04491133585904681, 0.0022928527407057274)}, '(3,)': {'tr': (0.04102290675044059, 0.003348045017959455), 'val': (0.04824198216199875, 0.004444882233662878), 'test': (0.04584651970424176, 0.002920595092481756)}, '(4, 2)': {'tr': (0.04031206876039505, 0.0051648797471331685), 'val': (0.048427933976054195, 0.0037716492903911523), 'test': (0.04719023609986878, 0.004526066784584657)}, '(5, 2)': {'tr': (0.03668047532439232, 0.003667154431939146), 'val': (0.04531076699495316, 0.0025808096847436896), 'test': (0.0461659374304043, 0.0027352878110425798)}, '(5, 3)': {'tr': (0.04162880904972553, 0.007151998469464794), 'val': (0.049127314463257785, 0.005513828520265613), 'test': (0.049083456967275084, 0.005650612198688121)}, '(6, 3)': {'tr': (0.037646884098649025, 0.005999453764399783), 'val': (0.04634510710835457, 0.004201980591786483), 'test': (0.04620908804838612, 0.0035137353907239953)}, '(10, 4)': {'tr': (0.036670266091823576, 0.00472639424911708), 'val': (0.04604802552610636, 0.003957607023497358), 'test': (0.045713807815980285, 0.003483159691551754)}} tr_mean, tr_std, val_mean, val_std, test_mean, test_std = get_all_result_data(bottleneck_070_results) plot_results(bottleneck_070_results, tr_mean, tr_std, val_mean, val_std, test_mean, test_std, title="bottleneck_070") ###Output _____no_output_____
graph/python_src/3d.ipynb
###Markdown 3次元グラフ ###Code import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown まずはデータ用意 ###Code z = np.arange(-2*np.pi, 2*np.pi, 0.01) x = np.cos(z) y = np.sin(z) ###Output _____no_output_____ ###Markdown 3次元のグラフにするにはadd_ubplotの引数projectionを3dに設定する```fig.add_subplot(projection='3d')``` ###Code fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.plot(x, y, z, label="hoge") plt.show() ###Output _____no_output_____ ###Markdown それ以外は平面のときと同じ ###Code x2 = np.cos(z+np.pi); y2 = np.sin(z+np.pi) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.plot(x, y, z, label="1", linestyle='solid', color="blue") ax.plot(x2, y2, z, label="2", linestyle='dashed', color="green") ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.legend() ax.grid() plt.show() ###Output _____no_output_____
Lecture8 Tensor Manipulation.ipynb
###Markdown Lecture 8 Tensor Manipulation ###Code import tensorflow as tf t = tf.constant([1,2,3,4]) s = tf.Session() tf.shape(t).eval(session = s) matrix1 = tf.constant([[1,2],[3,4]]) matrix2 = tf.constant([[1],[2]]) print(matrix1.shape) print(matrix2.shape) print('\n',tf.matmul(matrix1, matrix2).eval(session=s),'\n') print((matrix1 * matrix2).eval(session=s)) ###Output (2, 2) (2, 1) [[ 5] [11]] [[1 2] [6 8]]
CMR/python/demos/tokens.ipynb
###Markdown Python Wrapper for CMR`A python library to interface with CMR - Token Demo`This demo will show how to request an EDL token from CMR while inside a notebook. Demo SafeJust for this demo, I'm going to create a function that hids some of an EDL token, I don't want anyone to actually see my tokens ###Code def safe_token_print(actual_token): if actual_token is None: print ("no token") return scrub = 5 strike = "*" * scrub safe = actual_token[scrub:(len(actual_token)-scrub)] print (strike + safe + strike) print ("example:") safe_token_print("012345678909876543210") ###Output _____no_output_____ ###Markdown Loading the libraryThis will not be needed once we have the library working through PIP, but today I'm going to use my local checkout. ###Code import sys sys.path.append('/Users/tacherr1/src/project/eo-metadata-tools/CMR/python/') ###Output _____no_output_____ ###Markdown Import the libraryThis should be all you need after we get PIP support ###Code import cmr.auth.token as t ###Output _____no_output_____ ###Markdown Using a token fileIn this example we are going to store our password in a file, listed below is how you can specify the file, however the setting is actually the assumed file if no setting is given. ###Code options = {"cmr.token.file": "~/.cmr_token"} #this is the default actually safe_token_print(t.token(t.token_file, options)) options = {"cmr.token.file": "~/.cmr_token_fake_file"} #this is the default actually safe_token_print(t.token(t.token_file, options)) ###Output _____no_output_____ ###Markdown Using Keychain on Mac OS Xin this example I am using an already existing password saved securly in keychain. Keychain may require a human to type in the password, I have clicked "Allways allow" so we may not see it. ###Code options = {'token.manager.service': 'cmr lib token'} #this is not the default safe_token_print(t.token(t.token_manager, options)) ###Output _____no_output_____ ###Markdown Search both at once ###Code options = {"cmr.token.file": "~/.cmr_token_fake_file", 'token.manager.service': 'cmr lib token'} safe_token_print(t.token([t.token_manager, t.token_file], options)) ###Output _____no_output_____ ###Markdown Bulit in helpI can't remember anything, so here is some built in help which pulls from the python docstring for each function of interest ###Code print(t.print_help('token_')) ###Output _____no_output_____
modulo - 1 Fundamentos/trabalho_pratico1.ipynb
###Markdown Trabalho Prático 1Bootcamp Analista de Machine Learning @ IGTI Attribute Information:Both hour.csv and day.csv have the following fields, except hr which is not available in day.csv- instant: record index- dteday : date- season : season (1:winter, 2:spring, 3:summer, 4:fall)- yr : year (0: 2011, 1:2012)- mnth : month ( 1 to 12)- hr : hour (0 to 23)- holiday : weather day is holiday or not (extracted from [Web Link])- weekday : day of the week- workingday : if day is neither weekend nor holiday is 1, otherwise is 0.+ weathersit :- 1: Clear, Few clouds, Partly cloudy, Partly cloudy- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog- temp : Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-8, t_max=+39 (only in hourly scale)- atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-16, t_max=+50 (only in hourly scale)- hum: Normalized humidity. The values are divided to 100 (max)- windspeed: Normalized wind speed. The values are divided to 67 (max)- casual: count of casual users- registered: count of registered users- cnt: count of total rental bikes including both casual and registered ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import numpy as np bikes = pd.read_csv('/content/drive/MyDrive/Data Science/Bootcamp Analista de ML/Módulo 1 - Introdução ao Aprendizado de Maquina/Desafio/comp_bikes_mod.csv') bikes.head() bikes.describe() #No dataset utilizado para o desafio, quantas instâncias e atributos existem, respectivamente? bikes.info() 15641 + 1738 #Contando valores nulos bikes['temp'].isnull().sum() #Fazendo % de valores nulos percentual = bikes['temp'].isnull().sum()/len(bikes) percentual bikes['dteday'].dropna(inplace=True) bikes.info() bikes['temp'].describe() bikes['season'].unique() pd.to_datetime(bikes['dteday']) bikes['dteday'].head(-1) import seaborn as sns #sns.boxplot(bikes['windspeed'], bikes['dteday']) windspeed = sns.boxplot(x=bikes['windspeed']) #df_compart_bikes.boxplot(['windspeed']) #boxplot para a velocidade do vento (['windspeed']) bikescorr = bikes[['season', 'temp', 'atemp', 'hum', 'windspeed', 'cnt']] bikescorr sns.heatmap(bikescorr.corr()) #Preencha os valores nulos das colunas "hum","cnt" e "casual" com os valores médios. #Utilize as variáveis "hum" e "casual" como independentes e a "cnt" como dependente. #Aplique uma regressão linear. Qual o valor de R2? Utilize as entradas como teste. bikes.fillna(bikes.mean(), inplace=True) #utiliza as funções do sklearn para construir a regressão linear from sklearn.linear_model import LinearRegression bikes[["hum","cnt", "casual"]].isnull().sum() xbikes = np.array(bikes[['hum', 'casual']]) ybikes = np.array(bikes[['cnt']]) from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score regressao = LinearRegression() regressao.fit(xbikes, ybikes) from sklearn.model_selection import train_test_split x_treinamento, x_teste, y_treinamento, y_teste = train_test_split(xbikes, ybikes, test_size = 0.3, random_state = 0) ln = LinearRegression() ln.fit(x_treinamento, y_treinamento) predict1 = ln.predict(x_teste) plt.scatter(y_teste, predict1) sns.distplot(y_teste-predict1) teste1score = ln.score(x_teste, y_teste) teste1score #adotando decision tree regressor from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import cross_val_score dtr = DecisionTreeRegressor(random_state=0) cross_val_score(dtr, xbikes, ybikes, cv=10) dtr.fit(xbikes, ybikes, sample_weight=50) x_treinamento, x_teste, y_treinamento, y_teste = train_test_split(xbikes, ybikes, test_size = 0.3, random_state = 0) predict2 = dtr.predict(x_teste) plt.scatter(y_teste, predict2) teste2score = dtr.score(x_teste, y_teste) teste2score ###Output _____no_output_____
cinematica-directa-2D/robot_2dof_sm.ipynb
###Markdown Forward kinematics of 2dof planar robots Case 1) Two revolute joints Case 2) Revolute joint followed by prismatic joint ###Code import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import doctest import spatialmath as sm import sympy as sy import sys def fwd_kinematics_2rev(th1, th2, l1=2, l2=1): ''' Implements the forward kinematics of a robot with two revolute joints. Arguments --------- th1, th2 : float Angle in radians of the two degree of freedoms, respectively. l1, l2 : float Length of the two links, respectively. Returns ------- x : float The position in the global x-direction of the end-effector (tool point) y : float The position in the global y-direction of the end-effector (tool point) theta : float The orientation of the end-effector with respect to the positive global x-axis. The angle returned is in the range [-np.pi, np.pi] j : tuple with 2 elements The position of the joint between the two links Tests ------ 1) End-effector pose at default position >>> x, y, th, j = fwd_kinematics_2rev(0, 0) >>> "(%0.2f, %0.2f, %0.2f)" %(x, y, th) '(3.00, 0.00, 0.00)' 2) End-effector pose at 90 degrees in both joints >>> x, y, th, j = fwd_kinematics_2rev(np.pi/2, np.pi/2) >>> "(%0.2f, %0.2f, %0.2f)" %(x, y, th) '(-1.00, 2.00, 3.14)' 3) End-effector pose at 0 degress in first joint and 90 degress in second >>> x, y, th, j = fwd_kinematics_2rev(0, np.pi/2) >>> "(%0.2f, %0.2f, %0.2f)" %(x, y, th) '(2.00, 1.00, 1.57)' 4) End-effector position is always inside a circle of a certain radius >>> poses = [fwd_kinematics_2rev(th1_, th2_, 3, 2) ... for th1_ in np.arange(0, 2*np.pi, 0.2) ... for th2_ in np.arange(0, 2*np.pi, 0.2)] >>> distances = np.array([np.sqrt(x_**2 + y_**2) for x_, y_, th_, j_ in poses]) >>> max_radius = 5 + 1e-12 # Add a small tolerance >>> np.any(distances > max_radius) False 5) Joint is always at constant distance from the origin >>> poses = [fwd_kinematics_2rev(th1_, 0, 3, 2) ... for th1_ in np.arange(0, 2*np.pi, 0.2) ] >>> distances = np.array([np.sqrt(j_[0]**2 + j_[1]**2) for x_, y_, th_, j_ in poses]) >>> np.any(np.abs(distances - 3) > 1e-12) False ''' # Static transformation between frame 2 and frame E g_2e = sm.SE3() g_2e.A[0,3] = l1+l2 # Transformation betwen frame 1 and frame 2 g_I = sm.SE3() # Identity transformation g_12 = sm.SE3.Rz(th2) # Rotation about z-axis q = [l1,0,0] d_12 = g_I*q - g_12*q g_12.A[:3, 3] = d_12.ravel() # Transformation between frame S and frame 1 g_s1 = sm.SE3.Rz(th1) # Chain of transformations g_se = g_s1 * g_12 * g_2e x = g_se.A[0,3] y = g_se.A[1, 3] theta = th1+th2 #print(np.arccos(g_se[0,0]), theta) #assert(np.abs(theta-np.arccos(g_se[0,0])) < 1e-8) j_s = g_s1 * [l1,0,0] j = tuple(j_s[:2]) return (x, y, theta, j) # Case 1) doctest.run_docstring_examples(fwd_kinematics_2rev, globals(), verbose=True) def fwd_kinematics_2rev_symbolic(th1, th2, l1=sy.symbols('l1'), l2=sy.symbols('l2')): ''' Implements the forward kinematics of a robot with two revolute joints. Arguments --------- th1, th2 : sympy symbols Symbol representing the angle in radians of the two degree of freedoms, respectively. l1, l2 : sympy symbols Symbol representing the length of the two links, respectively. Returns ------- x : sympy expression The position in the global x-direction of the end-effector (tool point) y : sympy expression The position in the global y-direction of the end-effector (tool point) theta : sympy expression The orientation of the end-effector with respect to the positive global x-axis. j : tuple with 2 elements, each is a sympy expression The position of the joint between link1 and link2 Tests ------ 1) End-effector pose at default position >>> th1, th2, l1, l2 = sy.symbols('th1, th2, l1, l2') >>> x, y, th, j = fwd_kinematics_2rev_symbolic(th1, th2, l1, l2) >>> subsdict = {th1: 0, th2: 0, l1: 2, l2: 1} >>> xn = x.evalf(subs=subsdict) >>> yn = y.evalf(subs=subsdict) >>> thn = th.evalf(subs=subsdict) >>> "(%0.2f, %0.2f, %0.2f)" %(xn, yn, thn) '(3.00, 0.00, 0.00)' 2) End-effector pose at 90 degrees in both joints >>> th1, th2, l1, l2 = sy.symbols('th1, th2, l1, l2') >>> x, y, th, j = fwd_kinematics_2rev_symbolic(th1, th2, l1, l2) >>> subsdict = {th1: np.pi/2, th2: np.pi/2, l1: 2, l2: 1} >>> xn = x.evalf(subs=subsdict) >>> yn = y.evalf(subs=subsdict) >>> thn = th.evalf(subs=subsdict) >>> "(%0.2f, %0.2f, %0.2f)" %(xn, yn, thn) '(-1.00, 2.00, 3.14)' ''' # Static transformation between frame 2 and frame E g = sy.eye(4) g[0, 3] = l1+l2 g_2e = sm.SE3(np.array(g), check=False) # Transformation betwen frame 1 and frame 2 g_I = sm.SE3(np.array(sy.eye(4)), check=False) # Identity transformation g_12 = sm.SE3.Rz(th2) # Rotation about z-axis q = [l1,0,0] d_12 = g_I*q - g_12*q g_12.A[:3, 3] = d_12.ravel() # Transformation between frame S and frame 1 g_s1 = sm.SE3.Rz(th1) # Chain of transformations g_se = g_s1 * g_12 * g_2e x = g_se.A[0,3] y = g_se.A[1, 3] theta = th1+th2 #print(np.arccos(g_se[0,0]), theta) #assert(np.abs(theta-np.arccos(g_se[0,0])) < 1e-8) j_s = g_s1 * [l1,0,0] j = tuple(j_s[:2]) return (x, y, theta, j) doctest.run_docstring_examples(fwd_kinematics_2rev_symbolic, globals()) def fwd_kinematics_rev_prism(th1, th2, l1=2): ''' Implements the forward kinematics of a robot with one revolute joint and one prismatic. Arguments --------- th1 : float Angle in radians of the first degree of freedom. th2 : float Displacement in meter of the second degree of freedom. l1 : float Length of the first link. Returns ------- x : float The position in the global x-direction of the end-effector (tool point) y : float The position in the global y-direction of the end-effector (tool point) theta : float The orientation of the end-effector with respect to the positive global x-axis Tests ------ 1) End-effector pose at default position >>> "(%0.2f, %0.2f, %0.2f)" %fwd_kinematics_rev_prism(0, 0) '(2.00, 0.00, 0.00)' 2) End-effector pose at 90 degrees in first joint and 0.6m in second >>> "(%0.2f, %0.2f, %0.2f)" %fwd_kinematics_rev_prism(np.pi/2, 0.6) '(0.00, 2.60, 1.57)' 4) End-effector orientation is always the same as the angle of the first dof >>> angles = np.array( [th1_ for th1_ in np.arange(0, 2*np.pi, 0.2) ... for th2_ in np.arange(-1, 1, 0.2)]) >>> poses = [fwd_kinematics_rev_prism(th1_, th2_) ... for th1_ in np.arange(0, 2*np.pi, 0.2) ... for th2_ in np.arange(-1, 1, 0.2)] >>> orientations = np.array([th_ for x_, y_, th_ in poses]) >>> np.any(np.abs(angles-orientations) > 1e-12) False ''' x = 0 y = 0 theta = 0 return (x, y, theta) ###Output _____no_output_____ ###Markdown Run doctestsIf tests pass, no output is generated. ###Code # Case 2) doctest.run_docstring_examples(fwd_kinematics_rev_prism, globals()) ###Output _____no_output_____ ###Markdown Visualize the work space of the robot ###Code th1 = np.arange(0, 2*np.pi, 0.1) th2 = np.arange(-np.pi, np.pi, 0.1) xythetaj =[ fwd_kinematics_2rev(th1_, th2_) for th1_ in th1 for th2_ in th2] xytheta = np.array([ (x_, y_, th_) for x_, y_, th_, j_ in xythetaj]) df = pd.DataFrame(data=np.reshape(xytheta, (-1,3)), columns=['x', 'y', 'theta']) fig = px.scatter_3d(df, x='x', y='y', z='theta') camera = dict( up=dict(x=0, y=1, z=0), center=dict(x=0, y=0, z=0), eye=dict(x=0, y=0, z=4) ) fig.update_scenes(camera_projection_type="orthographic") fig.update_layout(scene_camera=camera) fig.show() ###Output _____no_output_____ ###Markdown Visualize movement of the manipulator ###Code poses = [ fwd_kinematics_2rev(th1_, th2_) for th1_, th2_ in zip(th1, th2)] endeff_trajectory = np.array([ [x_, y_] for x_, y_, th_, j_ in poses]) joint_trajectory = np.array([ j_ for x_, y_, th_, j_ in poses]) fig = go.Figure( data=[go.Scatter(x=[0, joint_trajectory[0,0]], y=[0, joint_trajectory[0,1]], name="First link", mode="lines", line=dict(width=6, color="blue")), go.Scatter(x=[joint_trajectory[0,0], endeff_trajectory[0,0]], y=[joint_trajectory[0,1], endeff_trajectory[0,1]], name="Second link", mode="lines", line=dict(width=5, color="red")), go.Scatter(x=joint_trajectory[:,0], y=joint_trajectory[:,1], name="Joint trajectory", mode="lines", line=dict(width=1, color="lightblue")), go.Scatter(x=endeff_trajectory[:,0], y=endeff_trajectory[:,1], name="End-point trajectory", mode="lines", line=dict(width=1, color="red"))], layout=go.Layout( width=700, height=600, xaxis=dict(range=[-4, 4], autorange=False), yaxis=dict(range=[-4, 4], autorange=False), title="End-effector trajectory", updatemenus=[dict( type="buttons", buttons=[dict(label="Play", method="animate", args=[None])])] ), frames=[go.Frame(data=[go.Scatter(x=[0, xj_], y=[0, yj_]), go.Scatter(x=[xj_, xe_], y=[yj_, ye_])]) for xj_, yj_, xe_, ye_ in np.hstack((joint_trajectory, endeff_trajectory))] ) fig.show() ?px.scatter_3d ###Output _____no_output_____
desafio.ipynb
###Markdown Desafio Python e E-mail DescriçãoDigamos que você trabalha em uma indústria e está responsável pela área de inteligência de negócio.Todo dia, você, a equipe ou até mesmo um programa, gera um report diferente para cada área da empresa:- Financeiro- Logística- Manutenção- Marketing- Operações- Produção- VendasCada um desses reports deve ser enviado por e-mail para o Gerente de cada Área.Crie um programa que faça isso automaticamente. A relação de Gerentes (com seus respectivos e-mails) e áreas está no arquivo 'Enviar E-mails.xlsx'.Dica: Use o pandas read_excel para ler o arquivo dos e-mails que isso vai facilitar. ###Code import pandas as pd import win32com.client as win32 outlook = win32.Dispatch('outlook.application') gerentes_df = pd.read_excel('Enviar E-mails.xlsx') #gerentes_df.info() for i, email in enumerate(gerentes_df['E-mail']): gerente = gerentes_df.loc[i, 'Gerente'] area = gerentes_df.loc[i, 'Relatório'] mail = outlook.CreateItem(0) mail.To = '[email protected]' mail.Subject = 'Relatório de {}'.format(area) mail.Body = ''' Prezado {}, Segue em anexo o Relatório de {}, conforme solicitado. Qualquer dúvida estou à disposição. Att., '''.format(gerente, area) attachment = r'C:\Users\Maki\Downloads\e-mail\{}.xlsx'.format(area) mail.Attachments.Add(attachment) mail.Send() ###Output _____no_output_____ ###Markdown Descrição do banco de dadosO banco de dados [bank.zip](https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank.zip) possui as seguintes caracterísicas:* Área: Negócios;* Número de atributos: 17;* Número de amostras: 45211;* Tipos de variáveis: categórica, binária e inteiro;O banco de dados está relacionado a uma capanha de marketing, baseada em ligações, de um banco português. Os atributos do banco de dados incluem dados pessoais dos clientes do banco como:* Idade - *inteiro*;* Trabalho - *categórica*;* Estado civil - *categórica*;* Escolaridade - *categórica*;* Dívidas - *categórica*;* Empréstimo imobiliário - *categórica*;* Empréstimo - *categórica*.Além desses dados, tem-se também os dados e resultados da campanha de marketing atual como:* Forma de contato - *categórica*;* Mês do último contato - *categórica*;* Dia da semana do contato - *categórica*;* Duração da ligação - *inteiro*;* Número de contatos - *inteiro*;* Intervalo do contato entre campanhas - *inteiro*;* Resultado da capanha - *binária*.Por fim, tem-se duas informações da camapanha anterior como:* Resultado da capanha - *categórica*;* Número de contatos - *inteiro*. QuestõesO desafio proposto é composto por 6 questões. Os códigos utilizados para o obter o resultados de cada questão são apresentados juntamente com as questões. Obtendo e organizando o banco de dadosAntes do desenvolvimento das questões é necessário importar as bibliotecas relevantes, baixar, organizar e preprocessar os dados para fazer as análises, estes procedimentos são executados abaixo. ###Code import os import numpy as np import pandas as pd import scipy.stats as st import urllib.request as ur import matplotlib.pyplot as plt import sklearn.feature_selection as fs from zipfile import ZipFile # Especificações do banco de dados. url = \ 'https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank.zip' dataset = 'bank-full.csv' # Armazenamento do banco de dados path_ext = 'data' file = 'data.zip' path_data = os.path.relpath(os.getcwd()) path_data = os.path.join(path_data, path_ext) path_file = os.path.join(path_data, file) if not os.path.exists(path_data): os.mkdir(path_data) ur.urlretrieve(url, path_file) with ZipFile(path_file) as zfile: zfile.extractall(path_data) # Importar o banco de dados como um Dataframe Pandas df = pd.read_csv(os.path.join(path_data, dataset), ';') if df.isnull().values.any(): print('Removendo linhas com NaN.') df = df.dropna() # Converte as colunas do tipo 'object' para 'categorical' df_obj = df.select_dtypes(include=['object']) for col in df_obj.columns: df[col] = df[col].astype('category') ###Output _____no_output_____ ###Markdown Questão 1Questão: *Qual profissão tem mais tendência a fazer um empréstimo? De qual tipo?*Nesta questão foi considerado como empréstimo tanto o empréstimo imobiliário quanto o empréstimo. Primeiramente, obteve-se o percentual de pessoas que têm qualquer tipo de empréstimo por profissão. Este resultado é apresentdo no gráfico abaixo. ###Code # Colunas para análise cols = ['housing', 'loan'] # Obtêm-se a ocorrências de empréstimo por profissão msk = (df[cols] == 'yes').sum(axis=1) > 0 loan_y = df['job'][msk] loan_n = df['job'][~msk] jobs = df['job'].value_counts() loan_y = loan_y.value_counts() loan_n = loan_n.value_counts() # Normaliza-se os dados idx = jobs.index loan_yn = loan_y[idx] / jobs loan_nn = loan_n[idx] / jobs # Organiza-se os dados loan_yn = loan_yn.sort_values(ascending=False)*100 idx = loan_yn.index loan_nn = loan_nn[idx]*100 loan_y = loan_y[idx] loan_n = loan_n[idx] # Gera-se o gráfico plt.bar(loan_yn.index, loan_yn) plt.bar(loan_nn.index, loan_nn, bottom=loan_yn) plt.grid(True, alpha=0.5) plt.legend(['Possui', 'Não possui']) plt.xticks(rotation=45, ha='right') plt.xlabel('Profissão') plt.ylabel('Percentual (%)') plt.title('Empréstimos por profissão') plt.show() ###Output _____no_output_____ ###Markdown Como pode-se observar a profissão que tem a maior tendência em fazer empréstimo são profissionais colarinho azul (blue-collar). Destes profissionais cerca de 78% possui algum tipo de empréstimo. Por fim, obtêm-se o número de empréstimos de cada tipo dessa profissão. ###Code # Obtêm-se o número de cada tipo de empréstimo por profissão loan_h = df['job'][df['housing'] == 'yes'].value_counts() loan_l = df['job'][df['loan'] == 'yes'].value_counts() print('Número de empréstimos:') print( 'Imobiliário: {}'.format(loan_h[idx[0]])) print( 'Empréstimo: {}'.format(loan_l[idx[0]])) ###Output Número de empréstimos: Imobiliário: 7048 Empréstimo: 1684 ###Markdown Dessa forma, temos que essa profissão tem tendência a fazer empréstimos imobiliários. Questão 2Questão: *Fazendo uma relação entre número de contatos e sucesso da campanha quais são os pontos relevantes a serem observados?*Nesta questão foi considerado o número de contatos e o sucesso da campanha atual. O sucesso neste caso foi considerado quando o cliente assina o termo de adesão. Assim, para verificar se há uma relação entre o número de contato e o sucesso na campanha, foi gerado um gráfico de barras onde mostra o percentual do sucesso e insucesso para cada número de ligações. O gráfico é mostrado abaixo. ###Code # Obtêm-se o sucesso e o insucesso da campanha por número # de ligações success = df[df['y'] == 'yes']['campaign'] fail = df[df['y'] == 'no']['campaign'] n = df['campaign'].value_counts() success = success.value_counts() fail = fail.value_counts() # Normaliza-se os dados idx = n.index.sort_values() n = n[idx] success_n = success.reindex(idx, fill_value=0) / n fail_n = fail.reindex(idx, fill_value=0) / n success_n *= 100 fail_n *= 100 # Gera-se o gráfico plt.bar(success_n.index, success_n) plt.bar(fail_n.index, fail_n, bottom=success_n) plt.grid(True, alpha=0.5) plt.legend(['Sucesso', 'Insucesso']) plt.xlabel('Número de ligações (-)') plt.ylabel('Percentual (%)') plt.title('Sucesso na campanha por número de ligações') plt.show() ###Output _____no_output_____ ###Markdown Como pode-se observar, de forma geral o percentual reduz a medida que o número de ligações aumenta. Além disso, observa-se também um aumento do sucesso a medida que o número de contato aumenta acima de 20 ligações. Contudo, nestes casos há apenas uma amostra que resultou em sucesso para cada caso. Portanto, devido ao número de amostragem, para esses casos não é possível afirmar com certeza se essa tendência se repetiriria caso houvesse um maior número de amostras.Além disso, observa-se pelo percentual de insucesso que de forma geral não houve sucesso nos casos em que o número de contato superou 18 ligações. Portanto, não justificaria continuar entrando em contato acima desse número de ligações. Questão 3Questão: *Baseando-se nos resultados de adesão desta campanha qual o número médio e o máximo de ligações que você indica para otimizar a adesão?*Como análise incial foi feita o histograma cumulativo, apresentado abaixo, entre o número de contatos e o sucesso da campanha. Além disso, também é mostrado o número médio de ligações. ###Code # Obtêm-se o sucesso campanha por número de ligações contact = df[df['y'] == 'yes']['campaign'] contact_counts = contact.value_counts() print('Número médio de ligações: {:.2f}'.format(contact.mean())) # Gera-se o gráfico plt.hist(contact, bins=contact_counts.shape[0], cumulative=True, density=1) plt.grid(True, alpha=0.5) plt.xlabel('Número de contatos (-)') plt.ylabel('Probabilidade de ocorrência (-)') plt.title('Histograma cumulativo') plt.show() ###Output Número médio de ligações: 2.14 ###Markdown Pode-se observar no histograma cumulativo que a maior parte dos casos que obtiveram sucesso tiveram um número de ligações inferior a 11 ligações, que corresponde a 99.11% dos casos. Portanto, indicaria o número máximo de 10 ligações. Já o número médio de ligações que recomendaria seria de 5 ligações, que corresponde a 95.21% dos casos de sucesso.Contudo, para se obter um número de ligações ótimo, o ideal é que se tivesse ao menos o custo referente a cada ligação e se há uma duração da campanha. Assim, seria possível estimar mais precisamente qual seria o número de ligações ótimo. Uma vez que seria considerado o gasto e o retorno do possível cliente. Também, caso a campanha tenha uma duração limitada, o tempo gasto fazer múltiplas ligações para um mesmo cliente pode limitar o alcance da campanha, já que poderia-se estar ligando para outros clientes diferentes e obtendo a adesão destes. Questão 4Questão: *O resultado da campanha anterior tem relevância na campanha atual?*Para analisar se o resultado da campanha anterior tem alguma relevância na campanha atual, obteve-se os casos em que houve sucesso na campanha anterior e cotrastou-se com os casos que obteve-se sucesso na campanha atual. O resultado é mostrado no gráfico abaixo. ###Code # Obtêm-se os casos que obtiveram sucesso na campanha anterior success_y = df[df['poutcome'] == 'success']['y'] success_y = success_y.value_counts() # Normaliza-se os dados success_yn = success_y / success_y.sum() success_yn *= 100 # Gera-se o gráfico bar = plt.bar(success_yn.index, success_yn) bar[1].set_color('orange') plt.grid(True, alpha=0.5) plt.xlabel('Percentual (%)') plt.ylabel('Sucesso na campanha atual (-)') plt.title('Relação entre a campanha atual e anteior') plt.show() ###Output _____no_output_____ ###Markdown Pode-se observar no gráfico acima que aproximadamente 65% dos casos em que obteve-se sucesso na campanha anterior também se obteve sucesso na campanha atual. Este resultado indica que há uma tendência entre clientes que aceitaram uma proposta no passado em aceitar uma nova no futuro. Este resultado portanto pode ser utilizado para otimizar as ligações em futuras campanhas, priorizando clientes que já aceitaram o serviço anteiormente. Questão 5Questão: *Qual o fator determinante para que o banco exija um seguro de crédito?*Para obter o fator que está mais relacionado a dívida do cliente e portanto exigir um seguro de crédito, foi selecionado apenas os dados pessoais do cliente. Assim, será possível obter uma característica mesmo se não houver dados do cliente referente a campanhas atuais ou anteriores.Ao todo tem-se 7 dados pessoais dos clientes, portanto, para não ter que analisar cada dado separadamente, foi utilizado um *wrapper* que seleciona as características que apresenta os maiores valores *k*, com as funções de avaliação *ANOVA F-value* e *Mutual information*. Nesse caso foi escolhido apenas o maior valor. ###Code # Seleciona-se os dados dos clientes client_data = [ 'age', 'job', 'marital', 'education', 'balance', 'housing', 'loan', ] # Seleciona-se o dado desejado target_col = ['default'] # Transforma as variáveis do tipo 'string' para 'inteiro' X = df[client_data].apply(lambda x: (x.cat.codes if x.dtype.name is 'category' else x)) Y = df[target_col].apply(lambda x: (x.cat.codes if x.dtype.name is 'category' else x)) # Obtêm-se as duas melhores características de cada função de avaliação X_f_class = fs.SelectKBest(fs.f_classif, k=1).fit(X, Y[target_col[0]]) X_mutual = fs.SelectKBest(fs.mutual_info_classif, k=1).fit(X, Y[target_col[0]]) f_class = X.columns.values[X_f_class.get_support()][0] mutual = X.columns.values[X_mutual.get_support()][0] print('ANOVA F-value: {}'.format(f_class)) print('Mutual information: {}'.format(mutual)) ###Output ANOVA F-value: loan Mutual information: balance ###Markdown Apesar das funções de avaliações resultarem e características distintas, a segunda melhor caracterítica para a função *ANOVA F-value* foi também o saldo do cliente. Dessa forma, será analisado os dois casos separadamente.Primeiramente para analisar se existe de fato uma relação, foi feito o teste de chi-quadrado para avaliar a indepêndencia dos casos em que o cliente tem dívida e também tem empréstimo. ###Code # Seleciona-se dados referente ao empréstimo col = 'loan' x = df[col].value_counts() y = df[col][df['default'] == 'yes'].value_counts() z = df[col][df['default'] == 'no'].value_counts() # Calcula-se o chi-quadrado chi, p, = st.chisquare(y, y.sum() * x[y.index] / x.sum()) print('Chi-quadrado: {:.2f}'.format(chi)) print('P-valor: {:.4f}'.format(p)) ###Output Chi-quadrado: 264.83 P-valor: 0.0000 ###Markdown Como o P-valor obtido foi aproximadamente 0, temos que os casos são independente. Pode-se então avaliar a relação entre os clientes que possuem dívida e também empréstimo. ###Code percent = (y / y.sum())*100 print('Possui empréstimo: {:.2f}%'.format(percent['yes'])) print('Não possui empréstimo: {:.2f}%'.format(percent['no'])) z = df['default'][df[col] == 'yes'].value_counts() percent_d = (z / z.sum())*100 print('Possui empréstimo e tem dívida: {:.2f}%'.format(percent_d['yes'])) ###Output Possui empréstimo: 36.93% Não possui empréstimo: 63.07% Possui empréstimo e tem dívida: 4.16% ###Markdown Observa-se que cerca de 37% dos clientes que possuem dívida também possuem empréstimo. Contudo, apenas aproximadamente 4% dos clientes que possuem empréstimo tem dívida. Portanto, a dívida não é um fator determinante. Para analisar o saldo do cliente foi feito um histograma do saldo dos clientes que possuem dívida e um outro para os que não possuem dívidas. Os histogramas são apresentados abaixo. ###Code # Seleciona-se dados referente a profissão col = 'balance' yes = df[col][df['default'] == 'yes'] no = df[col][df['default'] == 'no'] # Gera-se o gráfico plt.hist(yes, bins=100, density=True) plt.hist(no, bins=100, density=True, alpha=0.5) plt.ylim([0, 6e-4]) plt.xlim([-4057, 20000]) plt.grid(True, alpha=0.5) plt.legend(['Possui', 'Não possui']) plt.xlabel('Saldo (€)') plt.ylabel('Probabilidade de ocorrência (-)') plt.title('Histogramas dos saldos') plt.show() ###Output _____no_output_____ ###Markdown Pode-se observar nos histogramas acima, as distribuições dos saldos para os casos que possuem e não possuem dívida são diferentes. Onde no caso dos que possuem dívida a distribuição está mais deslocada para e esquerda, saldo negativo, do que os que não possuem, mais deslocada a direita, saldo positivo. Dessa forma tem-se que a mediana das distibuições são perceptivelmente diferentes. Além disso, de forma geral o saldo dos clientes que não possuem dívidas são maiores dos que possuem.Como a mediana dos dois casos são sensivelmente diferentes, este pode ser um critério para se avaliar para exigir ou não um seguro de crédito. Abaixo, avalia-se caso este critério fosse usado. ###Code print('Mediana do saldo dos que possuem dívida: €{}'.format(yes.median())) print('Mediana do saldo dos que não possuem dívida: €{}'.format(no.median())) lim = no.median() percent_y = (np.sum(yes > lim) / yes.shape[0]) * 100 percent_n = (np.sum(no < lim) / no.shape[0]) * 100 text_y = 'Percentual dos que possuem dívida e saldo maior que' text_n = 'Percentual dos que não possuem dívida e saldo menor que' print(text_y + ' €{}: {:.2f}%'.format(lim, percent_y)) print(text_n + ' €{}: {:.2f}%'.format(lim, percent_n)) ###Output Mediana do saldo dos que possuem dívida: €-7.0 Mediana do saldo dos que não possuem dívida: €468.0 Percentual dos que possuem dívida e saldo maior que €468.0: 5.52% Percentual dos que não possuem dívida e saldo menor que €468.0: 49.98% ###Markdown Assim, tem-se que o saldo do cliente é um fator determinante para exigir o seguro de crédito. Questão 6Questão: *Quais são as características mais proeminentes de um cliente que possuaempréstimo imobiliário?*O metodologia para obter essas características é semelhante a descrita e utilizada na Questão 5. Ou seja, para não ter que analisar cada dado separadamente, foi utilizado o mesmo *wrapper* da Questão 5, com as mesmas funções de avaliação. Além disso, também foi usado teste de chi-quadrado para avaliar para avaliar a indepêndencia dos casos estudados.De forma semelhante a Questão 5 foi selecionado apenas os dados pessoais do cliente para se obter uma característica que independe da campanha atual ou anteior. Assim, obtêm-se duas características utilizando o *wrapper* que serão avaliadas inicialmente. ###Code # Seleciona-se os dados dos clientes client_data = [ 'age', 'job', 'marital', 'education', 'default', 'balance', 'loan', ] # Seleciona-se o dado desejado target_col = ['housing'] # Transforma as variáveis do tipo 'string' para 'inteiro' X = df[client_data].apply(lambda x: (x.cat.codes if x.dtype.name is 'category' else x)) Y = df[target_col].apply(lambda x: (x.cat.codes if x.dtype.name is 'category' else x)) # Obtêm-se as duas melhores características de cada função de avaliação X_f_class = fs.SelectKBest(fs.f_classif, k=1).fit(X, Y[target_col[0]]) X_mutual = fs.SelectKBest(fs.mutual_info_classif, k=1).fit(X, Y[target_col[0]]) f_class = X.columns.values[X_f_class.get_support()] mutual = X.columns.values[X_mutual.get_support()] print('ANOVA F-value: {}'.format(f_class[0])) print('Mutual information: {}'.format(mutual[0])) ###Output ANOVA F-value: age Mutual information: job ###Markdown Cada função de avaliação resultou em uma característica distinta que serão analisadas. Fez-se então o teste de independência chi-quadrado para profissão. Em seguida é mostrado em um gráfico de barras o percentual de cada profissão que possui e não possui um empréstimo imobiliário. ###Code # Seleciona-se dados referente a profissão col = 'job' x = df[col].value_counts() y = df[col][df['housing'] == 'yes'].value_counts() z = df[col][df['housing'] == 'no'].value_counts() # Calcula-se o chi-quadrado chi, p, = st.chisquare(y, y.sum() * x[y.index] / x.sum()) print('Chi-quadrado: {:.2f}'.format(chi)) print('P-valor: {:.4f}'.format(p)) # Normaliza-se os dados y_norm = (y / x[y.index]).sort_values(ascending=False) z_norm = (z / x[z.index])[y_norm.index] y_norm *= 100 z_norm *= 100 # Gera-se o gráfico plt.bar(y_norm.index, y_norm) plt.bar(z_norm.index, z_norm, bottom=y_norm) plt.grid(True, alpha=0.5) plt.legend(['Possui', 'Não possui']) plt.xticks(rotation=45, ha='right') plt.xlabel('Profissão') plt.ylabel('Percentual (%)') plt.title('Empréstimos por profissão') plt.show() ###Output Chi-quadrado: 1593.98 P-valor: 0.0000 ###Markdown Tem-se que o P-valor é próximo de 0, portanto tem-se que os casos são independentes. Como pode-se observar, a profissão que mais faz empréstimos imobiliários é de colarinho azul, seguida de serviços e administração. Tem-se também que aposentados estudantes e empregadas domésticas são os que possuem menor percentual de empréstimo imobiliário.Já para o caso da idade das pessoas foi feito um histograma cumulativo para avaliar quais idades fazem mais empréstimo imobiliário. Em seguida é calculado a média de idade que possui e não possui empréstimo imobiliário. ###Code # Seleciona-se dados referente a idade col = 'age' x = df[col] yes = df[col][df['housing'] == 'yes'] no = df[col][df['housing'] == 'no'] # Gera-se o gráfico plt.hist(yes, bins=20, density=True, cumulative=True) plt.hist(no, bins=20, density=True, cumulative=True) plt.grid(True, alpha=0.5) plt.legend(['Possui', 'Não possui']) plt.xlabel('Idade (anos)') plt.ylabel('Probabilidade de ocorrência (-)') plt.title('Histograma cumulativo') plt.show() # Obtêm-se a idade média print('Idade média:') print('* Possui empréstimo: {:.2f} anos'.format(yes.mean())) print('* Não possui empréstimo: {:.2f} anos'.format(no.mean())) ###Output _____no_output_____ ###Markdown Observa-se no histograma cumulativo acima que pessoas mais jovens tendem a fazer mais empréstimo do que pessoas mais velhas, como evidenciado pelo cálculo da média dos dois casos. Além disso, observa-se no histograma cerca de 80% das pessoas que fazem empréstimo imobiliário têm idade inferior a 45 anos e cerca de 50% das pessoas têm idade inferior 34 anos.Por fim, foi avaliado também uma tercerira característica, escolaridade, que apresentou uma ligeira diferença entre os casos que possui ou não um empréstimo imobiliário. Foi feito o mesmo procedimento utilizado no caso da profissão. Os resultados são apresentados abaixo. ###Code # Seleciona-se dados referente a escolaridade col = 'education' x = df[col].value_counts() y = df[col][df['housing'] == 'yes'].value_counts() z = df[col][df['housing'] == 'no'].value_counts() # Calcula-se o chi-quadrado chi, p, = st.chisquare(y, y.sum() * x[y.index] / x.sum()) print('Chi-quadrado: {:.2f}'.format(chi)) print('P-valor: {:.4f}'.format(p)) # Normaliza-se os dados y_norm = (y / x[y.index]).sort_values(ascending=False) z_norm = (z / x[z.index])[y_norm.index] # Gera-se o gráfico plt.bar(y_norm.index, y_norm) plt.bar(z_norm.index, z_norm, bottom=y_norm) plt.grid(True, alpha=0.5) plt.legend(['Possui', 'Não possui']) plt.xticks(rotation=45, ha='right') plt.xlabel('Nível de escolaridade') plt.ylabel('Percentual (%)') plt.title('Empréstimos por nível de escolaridade') plt.show() ###Output Chi-quadrado: 285.99 P-valor: 0.0000 ###Markdown ENEM 2016 - predição da nota da prova de matemáticaO desafio abaixo visa prever as notas da prova de matemática de determinados alunos participantes do ENEM 2016 a partir da seleção livre de atributos de dois datasets pré-existentes.As informações fornecidas para o desafio foram divididas em dois grupos:* **Treino** - 13.730 instâncias e 167 atributos* **Teste** - 4.576 instâncias e 47 atributosObservações com fins didáticos:* **As bibliotecas serão importadas na medida em que forem sendo necessárias*** **Não foi levado em conta o tuning do modelo de Machine Learning** Importando a biblioteca Pandas para transformar os datasets em dataframes e manipulá-los ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Lendo os dados de treino e teste e instanciando um dataframe vazio para a resposta do desafio ###Code df_train = pd.read_csv('/home/igorvroberto/GitHub/Data-Science-Projects/Data-Science-Projects/ENEM-2016/data/train.csv') df_test = pd.read_csv('/home/igorvroberto/GitHub/Data-Science-Projects/Data-Science-Projects/ENEM-2016/data/test.csv') df_answer = pd.DataFrame() ###Output _____no_output_____ ###Markdown Verificando a forma dos datasets de treino e teste ###Code df_train.shape, df_test.shape ###Output _____no_output_____ ###Markdown Inserindo no dataset de resposta a coluna com o número de inscrição provinda do dataset de teste ###Code df_answer['NU_INSCRICAO'] = df_test['NU_INSCRICAO'] ###Output _____no_output_____ ###Markdown Verificando se o dataset de teste advém do dataset de treino ###Code print(set(df_test.columns).issubset(set(df_train.columns))) ###Output True ###Markdown Feature EngineeringComo a intenção do desafio é prever uma variável contínua, deve ser adotado um modelo de regressão.Com base nessa premissa e após analisar a biblioteca (documento que explica o que significa cada coluna), busca-se selecionar os atributos (features) mais adequados para uma melhor predição do modelo. Selecionando apenas os atributos numéricos do dataset de teste ###Code df_test = df_test.select_dtypes(include=['int64','float64']) df_test.columns.unique() ###Output _____no_output_____ ###Markdown Analisando a correlação entre as colunas que PROVAVELMENTE fazem mais sentido (questão subjetiva) ###Code escolha_features = ['NU_IDADE', 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'NU_NOTA_REDACAO' ] df_test[escolha_features].corr() ###Output _____no_output_____ ###Markdown Como a coluna "NU_IDADE" possui uma baixa correlação negativa com os demais atributos, será desconsiderada ###Code features = [ 'NU_NOTA_CN', 'NU_NOTA_CH', 'NU_NOTA_LC', 'NU_NOTA_REDACAO' ] ###Output _____no_output_____ ###Markdown Verificando valores nulos dos dados de treino e teste ###Code df_train[features].isnull().sum(), df_test[features].isnull().sum() ###Output _____no_output_____ ###Markdown ObservaçãoCom os valores nulos, é necessário tomar alguns cuidados que serão explicados conforme abaixo:1) A ordem dos datasets é treino > teste > resposta, portanto não se deve utilizar a função **dropna** para a remoção das linhas com valores nulos de forma a evitar posterior erro no preenchimento do dataset de resposta (haverá divergência no número de linhas entre os datasets de teste e de resposta).2) Existem duas possibilidades: substituir os valores nulos pela média das notas de cada prova ou alterá-los para 0 (valores nulos incluem **NaN**). Entre as duas opções, o modelo desempenhou melhor performance com a segunda. ###Code for c in features: df_train[c].fillna(0, inplace=True) df_test[c].fillna(0, inplace=True) df_train['NU_NOTA_MT'].fillna(0, inplace=True) ###Output _____no_output_____ ###Markdown Instanciando os dados de treino e teste ###Code X_train = df_train[features] y_train = df_train['NU_NOTA_MT'] X_test = df_test[features] ###Output _____no_output_____ ###Markdown Importando o modelo de regressão e treinando-o ###Code from sklearn.ensemble import RandomForestRegressor mdl=RandomForestRegressor() mdl.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predizendo os valores das notas de matemática ###Code y_pred = mdl.predict(X_test) y_pred ###Output _____no_output_____ ###Markdown Verificando as métricas R2, MAE, MSE e RMSE ###Code from sklearn import metrics import numpy as np pred_train = mdl.predict(X_train) print('R2:', np.around((metrics.r2_score(y_train, pred_train)),3)) print('MAE:', np.around((metrics.mean_absolute_error(y_train, pred_train)),3)) print('MSE:', np.around((metrics.mean_squared_error(y_train, pred_train)),3)) print('RMSE:', np.around(np.sqrt(metrics.mean_squared_error(y_train, pred_train)),3)) ###Output R2: 0.988 MAE: 16.708 MSE: 618.729 RMSE: 24.874 ###Markdown Inserindo a coluna com as notas de matemática preditas no dataset de resposta ###Code df_answer['NU_NOTA_MT'] = np.around(y_pred,2) df_answer.head() ###Output _____no_output_____ ###Markdown Salvando o arquivo .csv ###Code df_resposta.to_csv('answer.csv', index=False, header=True) ###Output _____no_output_____
data structures/enum.ipynb
###Markdown enum enum is used to create symbols for values instead of using strings and interger. ###Code # Creating enum class import enum class PlaneStatus(enum.Enum): standing = 0 enroute_runway = 1 takeoff = 2 in_air = 3 landing = 4 print('\nMember name: {}'.format(PlaneStatus.enroute_runway.name)) print('Member value: {}'.format(PlaneStatus.enroute_runway.value)) #Iterating over enums for member in PlaneStatus: print('{} = {}'.format(member.name, member.value)) #Comparing enums - compare using identity and equality actual_state = PlaneStatus.enroute_runway desired_state = PlaneStatus.in_air #comparison through equality print('Equality: ', actual_state == desired_state, actual_state == PlaneStatus.enroute_runway) #comparison through identity print('Identity: ', actual_state is desired_state, actual_state is PlaneStatus.enroute_runway) '''NO SUPPORT FOR ORDERED SORTING AND COMPARISON''' print('Ordered by value:') try: print('\n'.join('' + s.name for s in sorted(PlaneStatus))) except TypeError as err: print('Cannot sort:{}'.format(err)) ###Output Ordered by value: Cannot sort:'<' not supported between instances of 'PlaneStatus' and 'PlaneStatus' ###Markdown Use IntEnum for order support ###Code # Ordered by value class NewPlaneStatus(enum.IntEnum): standing = 0 enroute_runway = 1 takeoff = 2 in_air = 3 landing = 4 print('\n'.join(' ' + s.name for s in sorted(NewPlaneStatus))) ###Output standing enroute_runway takeoff in_air landing ###Markdown Unique Ebumeration values ###Code #Aliases for other members, do not appear separately in the output when iterating over the Enum. #The canonical name for a member is the first name attached to the value. class SamePlaneStatus(enum.Enum): standing = 0 enroute_runway = 1 takeoff = 2 in_air = 3 landing = 4 maintainance = 0 fueling = 3 for status in SamePlaneStatus: print('{} = {}'.format(status.name, status.value)) print('\nSame: standing is maintainance: ', SamePlaneStatus.standing is SamePlaneStatus.maintainance) print('Same: in_air is fueling: ', SamePlaneStatus.in_air is SamePlaneStatus.fueling) # Add @unique decorator to the Enum @enum.unique class UniPlaneStatus(enum.Enum): standing = 0 enroute_runway = 1 takeoff = 2 in_air = 3 landing = 4 #error triggered here maintainance = 0 fueling = 3 for status in SamePlaneStatus: print('{} = {}'.format(status.name, status.value)) ###Output _____no_output_____ ###Markdown Creating Enums programmatically ###Code PlaneStatus = enum.Enum( value = 'PlaneStatus', names = ('standing', 'enroute_runway', 'takeoff', 'in_air', 'landing') ) print('Member:{}'.format(PlaneStatus.in_air)) print('\nAll Members:') for status in PlaneStatus: print('{} = {}'.format(status.name, status.value)) PlaneStatus = enum.Enum( value = 'PlaneStatus', names = [ ('standing', 1), ('enroute_runway', 2), ('takeoff', 3), ('in_air', 4), ('landing', 5) ] ) print('\nAll Members:') for status in PlaneStatus: print('{} = {}'.format(status.name, status.value)) ###Output All Members: standing = 1 enroute_runway = 2 takeoff = 3 in_air = 4 landing = 5
Regression/Support Vector Machine/NuSVR_StandardScaler_PowerTransformer.ipynb
###Markdown Nu-Support Vector Regression with StandardScaler & Power Transformer This Code template is for regression analysis using a Nu-Support Vector Regressor(NuSVR) based on the Support Vector Machine algorithm with PowerTransformer as Feature Transformation Technique and StandardScaler for Feature Scaling in a pipeline. Required Packages ###Code import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler, PowerTransformer from sklearn.model_selection import train_test_split from sklearn.svm import NuSVR from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code features =[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X=df[features] Y=df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) Y=NullClearner(Y) X=EncodeX(X) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown ModelSupport vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.A Support Vector Machine is a discriminative classifier formally defined by a separating hyperplane. In other terms, for a given known/labelled data points, the SVM outputs an appropriate hyperplane that classifies the inputted new cases based on the hyperplane. In 2-Dimensional space, this hyperplane is a line separating a plane into two segments where each class or group occupied on either side.Here we will use NuSVR, the NuSVR implementation is based on libsvm. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. Model Tuning Parameters 1. nu : float, default=0.5> An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. 2. C : float, default=1.0> Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. 3. kernel : {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’> Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples). 4. gamma : {‘scale’, ‘auto’} or float, default=’scale’> Gamma is a hyperparameter that we have to set before the training model. Gamma decides how much curvature we want in a decision boundary. 5. degree : int, default=3> Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.Using degree 1 is similar to using a linear kernel. Also, increasing degree parameter leads to higher training times. Rescaling techniqueStandardize features by removing the mean and scaling to unit varianceThe standard score of a sample x is calculated as: z = (x - u) / swhere u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False. Feature TransformationPower transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired. ###Code model=make_pipeline(StandardScaler(),PowerTransformer(),NuSVR()) model.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Model AccuracyWe will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model.> **score**: The **score** function returns the coefficient of determination R2 of the prediction. ###Code print("Accuracy score {:.2f} %\n".format(model.score(X_test,y_test)*100)) ###Output Accuracy score 93.60 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code y_pred=model.predict(X_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ###Output R2 Score: 93.60 % Mean Absolute Error 3.29 Mean Squared Error 18.53 ###Markdown Prediction PlotFirst, we make use of a scatter plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),model.predict(X_test[0:20]), color = "red") plt.legend(["Actual", "prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ###Output _____no_output_____ ###Markdown Nu-Support Vector Regression with StandardScaler & Power Transformer This Code template is for regression analysis using a Nu-Support Vector Regressor(NuSVR) based on the Support Vector Machine algorithm with PowerTransformer as Feature Transformation Technique and StandardScaler for Feature Scaling in a pipeline. Required Packages ###Code import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler, PowerTransformer from sklearn.model_selection import train_test_split from sklearn.svm import NuSVR from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code features =[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X=df[features] Y=df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) Y=NullClearner(Y) X=EncodeX(X) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown Model Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. A Support Vector Machine is a discriminative classifier formally defined by a separating hyperplane. In other terms, for a given known/labelled data points, the SVM outputs an appropriate hyperplane that classifies the inputted new cases based on the hyperplane. In 2-Dimensional space, this hyperplane is a line separating a plane into two segments where each class or group occupied on either side. Here we will use NuSVR, the NuSVR implementation is based on libsvm. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. Model Tuning Parameters 1. nu : float, default=0.5 > An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. 2. C : float, default=1.0 > Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. 3. kernel : {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’ > Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples). 4. gamma : {‘scale’, ‘auto’} or float, default=’scale’ > Gamma is a hyperparameter that we have to set before the training model. Gamma decides how much curvature we want in a decision boundary. 5. degree : int, default=3 > Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.Using degree 1 is similar to using a linear kernel. Also, increasing degree parameter leads to higher training times. Rescaling technique Standardize features by removing the mean and scaling to unit variance The standard score of a sample x is calculated as: z = (x - u) / s where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False. Feature Transformation Power transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired. ###Code model=make_pipeline(StandardScaler(),PowerTransformer(),NuSVR()) model.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Model AccuracyWe will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model.> **score**: The **score** function returns the coefficient of determination R2 of the prediction. ###Code print("Accuracy score {:.2f} %\n".format(model.score(X_test,y_test)*100)) ###Output Accuracy score 93.60 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code y_pred=model.predict(X_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ###Output R2 Score: 93.60 % Mean Absolute Error 3.29 Mean Squared Error 18.53 ###Markdown Prediction PlotFirst, we make use of a scatter plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),model.predict(X_test[0:20]), color = "red") plt.legend(["Actual", "prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ###Output _____no_output_____ ###Markdown Nu-Support Vector Regression with StandardScaler & Power Transformer This Code template is for regression analysis using a Nu-Support Vector Regressor(NuSVR) based on the Support Vector Machine algorithm with PowerTransformer as Feature Transformation Technique and StandardScaler for Feature Scaling in a pipeline. Required Packages ###Code import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler, PowerTransformer from sklearn.model_selection import train_test_split from sklearn.svm import NuSVR from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code features =[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X=df[features] Y=df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) Y=NullClearner(Y) X=EncodeX(X) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown ModelSupport vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.A Support Vector Machine is a discriminative classifier formally defined by a separating hyperplane. In other terms, for a given known/labelled data points, the SVM outputs an appropriate hyperplane that classifies the inputted new cases based on the hyperplane. In 2-Dimensional space, this hyperplane is a line separating a plane into two segments where each class or group occupied on either side.Here we will use NuSVR, the NuSVR implementation is based on libsvm. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. Model Tuning Parameters 1. nu : float, default=0.5> An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. 2. C : float, default=1.0> Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. 3. kernel : {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’> Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples). 4. gamma : {‘scale’, ‘auto’} or float, default=’scale’> Gamma is a hyperparameter that we have to set before the training model. Gamma decides how much curvature we want in a decision boundary. 5. degree : int, default=3> Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.Using degree 1 is similar to using a linear kernel. Also, increasing degree parameter leads to higher training times. Rescaling techniqueStandardize features by removing the mean and scaling to unit varianceThe standard score of a sample x is calculated as: z = (x - u) / swhere u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False. Feature TransformationPower transforms are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired. ###Code model=make_pipeline(StandardScaler(),PowerTransformer(),NuSVR()) model.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Model AccuracyWe will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model.> **score**: The **score** function returns the coefficient of determination R2 of the prediction. ###Code print("Accuracy score {:.2f} %\n".format(model.score(X_test,y_test)*100)) ###Output Accuracy score 93.60 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code y_pred=model.predict(X_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ###Output R2 Score: 93.60 % Mean Absolute Error 3.29 Mean Squared Error 18.53 ###Markdown Prediction PlotFirst, we make use of a scatter plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),model.predict(X_test[0:20]), color = "red") plt.legend(["Actual", "prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ###Output _____no_output_____
storytelling.ipynb
###Markdown Average price per neighbourhood ###Code helpers.PDF('price_per_neighbourhood.pdf',size=(900,450)) ###Output _____no_output_____ ###Markdown Listings price per neighbourhood ###Code helpers.PDF('listings_per_neighbourhood.pdf',size=(900,450)) ###Output _____no_output_____ ###Markdown Price mean compared against number of listings per neighbourhood ###Code helpers.PDF('listings_against_price.pdf',size=(1200,650)) ###Output _____no_output_____
0311_CUDA_in-class-assignment.ipynb
###Markdown In order to successfully complete this assignment you need to participate both individually and in groups during class on **Monday March 11th**. In-Class Assignment: CUDA Memory and TilingImage from: https://www.appianimosaic.com/ Agenda for today's class (70 minutes)1. (20 minutes) HW4 Review2. (10 minutes) Pre-class Review 1. (10 minutes) Jupyterhub test3. (30 minutes) Tile Example4. (0 minutes) 2D wave Cuda Code Optimization ---- 1. HW4 Review[0301-HW4-Image_processing](0301-HW4-Image_processing.ipynb) --- 2. Pre-class Review [0310--CUDA_Memory-pre-class-assignment](0310--CUDA_Memory-pre-class-assignment.ipynb) --- 3. Jupyterhub TestAs a class lets try to access the GPU jupyterhub server:https://jupyterhub-gpu.egr.msu.eduUpload this file to your server account and lets run class from there. Note any odd behaviors to the instructor. ---- 3. Tile example ###Code %%writefile tiled_transpose.cu #include <iostream> #include <cuda.h> #include <chrono> #define CUDA_CALL(x) {cudaError_t cuda_error__ = (x); if (cuda_error__) { fprintf(stderr, "CUDA error: " #x " returned \"%s\"\n", cudaGetErrorString(cuda_error__)); fflush(stderr); exit(cuda_error__); } } using namespace std; const int BLOCKDIM = 32; __global__ void transpose(const double *in_d, double * out_d, int row, int col) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < col && y < row) out_d[y+col*x] = in_d[x+row*y]; } __global__ void tiled_transpose(const double *in_d, double * out_d, int row, int col) { int x = blockIdx.x * BLOCKDIM + threadIdx.x; int y = blockIdx.y * BLOCKDIM + threadIdx.y; int x2 = blockIdx.y * BLOCKDIM + threadIdx.x; int y2 = blockIdx.x * BLOCKDIM + threadIdx.y; __shared__ double in_local[BLOCKDIM][BLOCKDIM]; __shared__ double out_local[BLOCKDIM][BLOCKDIM]; if (x < col && y < row) { in_local[threadIdx.x][threadIdx.y] = in_d[x+row*y]; __syncthreads(); out_local[threadIdx.y][threadIdx.x] = in_local[threadIdx.x][threadIdx.y]; __syncthreads(); out_d[x2+col*y2] = out_local[threadIdx.x][threadIdx.y]; } } __global__ void transpose_symmetric(double *in_d, double * out_d, int row, int col) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < col && y < row) { if (x < y) { double temp = in_d[y+col*x]; in_d[y+col*x] = in_d[x+row*y]; in_d[x+row*y] = temp; } } } int main(int argc,char **argv) { std::cout << "Begin\n"; int sz_x=BLOCKDIM*300; int sz_y=BLOCKDIM*300; int nBytes = sz_x*sz_y*sizeof(double); int block_size = BLOCKDIM; double *m_h = (double *)malloc(nBytes); double * in_d; double * out_d; int count = 0; for (int i=0; i < sz_x*sz_y; i++){ m_h[i] = count; count++; } std::cout << "Allocating device memory on host..\n"; CUDA_CALL(cudaMalloc((void **)&in_d,nBytes)); CUDA_CALL(cudaMalloc((void **)&out_d,nBytes)); //Set up blocks dim3 dimBlock(block_size,block_size,1); dim3 dimGrid(sz_x/block_size,sz_y/block_size,1); std::cout << "Doing GPU Transpose\n"; CUDA_CALL(cudaMemcpy(in_d,m_h,nBytes,cudaMemcpyHostToDevice)); auto start_d = std::chrono::high_resolution_clock::now(); /**********************/ transpose<<<dimGrid,dimBlock>>>(in_d,out_d,sz_y,sz_x); //tiled_transpose<<<dimGrid,dimBlock>>>(in_d,out_d,sz_y,sz_x); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "\n\nError: %s\n\n", cudaGetErrorString(err)); fflush(stderr); exit(err); } CUDA_CALL(cudaMemcpy(m_h,out_d,nBytes,cudaMemcpyDeviceToHost)); /************************/ /********************** transpose_symmetric<<<dimGrid,dimBlock>>>(in_d,out_d,sz_y,sz_x); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "\n\nError: %s\n\n", cudaGetErrorString(err)); fflush(stderr); exit(err); } CUDA_CALL(cudaMemcpy(m_h,in_d,nBytes,cudaMemcpyDeviceToHost)); ************************/ auto end_d = std::chrono::high_resolution_clock::now(); std::cout << "Doing CPU Transpose\n"; auto start_h = std::chrono::high_resolution_clock::now(); for (int y=0; y < sz_y; y++){ for (int x=y; x < sz_x; x++){ double temp = m_h[x+sz_x*y]; //std::cout << temp << " "; m_h[x+sz_x*y] = m_h[y+sz_y*x]; m_h[y+sz_y*x] = temp; } //std::cout << "\n"; } auto end_h = std::chrono::high_resolution_clock::now(); //Checking errors (should be same values as start) count = 0; int errors = 0; for (int i=0; i < sz_x*sz_y; i++){ if (m_h[i] != count) errors++; count++; } std::cout << errors << " Errors found in transpose\n"; //Print Timing std::chrono::duration<double> time_d = end_d - start_d; std::cout << "Device time: " << time_d.count() << " s\n"; std::chrono::duration<double> time_h = end_h - start_h; std::cout << "Host time: " << time_h.count() << " s\n"; cudaFree(in_d); cudaFree(out_d); return 0; } #Compile Cuda !nvcc -std=c++11 -o tiled_transpose tiled_transpose.cu #Run Example !./tiled_transpose ###Output _____no_output_____ ###Markdown ---- 4. 1D wave Cuda Code OptimizationAs a group, lets see if we can optimize the code code from lasttime. ###Code %%writefile wave_cuda.cu #include <stdio.h> #include <stdlib.h> #include <math.h> #include <cuda.h> #define CUDA_CALL(x) {cudaError_t cuda_error__ = (x); if (cuda_error__) printf("CUDA error: " #x " returned \"%s\"\n", cudaGetErrorString(cuda_error__));} __global__ void accel_update(double* d_dvdt, double* d_y, int nx, double dx2inv) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i > 0 && i < nx-1) d_dvdt[i]=(d_y[i+1]+d_y[i-1]-2.0*d_y[i])*(dx2inv); else d_dvdt[i] = 0; } __global__ void pos_update(double * d_dvdt, double * d_y, double * d_v, double dt) { int i = blockDim.x * blockIdx.x + threadIdx.x; d_v[i] = d_v[i] + dt*d_dvdt[i]; d_y[i] = d_y[i] + dt*d_v[i]; } int main(int argc, char ** argv) { int nx = 5000; int nt = 1000000; int i,it; double x[nx]; double y[nx]; double v[nx]; double dvdt[nx]; double dt; double dx; double max,min; double dx2inv; double tmax; double *d_x, *d_y, *d_v, *d_dvdt; CUDA_CALL(cudaMalloc((void **)&d_x,nx*sizeof(double))); CUDA_CALL(cudaMalloc((void **)&d_y,nx*sizeof(double))); CUDA_CALL(cudaMalloc((void **)&d_v,nx*sizeof(double))); CUDA_CALL(cudaMalloc((void **)&d_dvdt,nx*sizeof(double))); max=10.0; min=0.0; dx = (max-min)/(double)(nx-1); x[0] = min; for(i=1;i<nx-1;i++) { x[i] = min+(double)i*dx; } x[nx-1] = max; tmax=10.0; dt= (tmax-0.0)/(double)(nt-1); for (i=0;i<nx;i++) { y[i] = exp(-(x[i]-5.0)*(x[i]-5.0)); v[i] = 0.0; dvdt[i] = 0.0; } CUDA_CALL(cudaMemcpy(d_x,x,nx*sizeof(double),cudaMemcpyHostToDevice)); CUDA_CALL(cudaMemcpy(d_y,y,nx*sizeof(double),cudaMemcpyHostToDevice)); CUDA_CALL(cudaMemcpy(d_v,v,nx*sizeof(double),cudaMemcpyHostToDevice)); CUDA_CALL(cudaMemcpy(d_dvdt,dvdt,nx*sizeof(double),cudaMemcpyHostToDevice)); dx2inv=1.0/(dx*dx); int block_size=1024; int block_no = nx/block_size; dim3 dimBlock(block_size,1,1); dim3 dimGrid(block_no,1,1); for(it=0;it<nt-1;it++) { accel_update<<<dimGrid, dimBlock>>>(d_dvdt, d_y, nx, dx2inv); pos_update<<<dimGrid, dimBlock>>>(d_dvdt, d_y, d_v, dt); } CUDA_CALL(cudaMemcpy(x,d_x,nx*sizeof(double),cudaMemcpyDeviceToHost)); CUDA_CALL(cudaMemcpy(y,d_y,nx*sizeof(double),cudaMemcpyDeviceToHost)); for(i=nx/2-10; i<nx/2+10; i++) { printf("%g %g\n",x[i],y[i]); } return 0; } !nvcc -std=c++11 -o wave_cuda wave_cuda.cu %%time !./wave_cuda ###Output _____no_output_____
BlogPosts/CORD19_topics/cord19-2020-04-10-v7/notebooks/2020-04-10-covid19-topics-gensim-mallet-scispacy.ipynb
###Markdown Topics Modeling using Mallet (through gensim wrapper) Initialization Preliminaries & Configurations ###Code import os import sys import string import numpy as np import datetime import pandas as pd import json import re import nltk import gensim import seaborn as sns import matplotlib.pyplot as plt #!pip install pyLDAvis #!pip install panel #!pip install pycld2 import pyLDAvis import pyLDAvis.gensim import panel as pn import pycld2 as cld2 # !pip install openpyxl pn.extension() # This can cause Save to error "Requested Entity to large"; Clear this cell's output after running None MALLET_ROOT = '/home/jovyan' mallet_home = os.path.join(MALLET_ROOT, 'mark/Systems/mallet-2.0.8') mallet_path = os.path.join(mallet_home, 'bin', 'mallet') mallet_stoplist_path = os.path.join(mallet_home, 'stoplists', 'en.txt') ROOT = '..' # Configurations datafile_date = '2020-04-10-v7' basedir = ROOT + f'/data/interim/{datafile_date}/' # parser = 'moana' parser = 'scispacy' parser_model = 'spacy-en_core_sci_lg' # Inputs datafile = f'{basedir}{datafile_date}-covid19-combined-abstracts-tokens-{parser_model}.jsonl' text_column_name = 'abstract_clean' tokens_column_name = f'abstract_tokens_{parser}' ent_column_name = f'abstract_ent_{parser}' json_args = {'orient': 'records', 'lines': True} # Other configurations MODIFIED_LDAVIS_URL = 'https://cdn.jsdelivr.net/gh/roamanalytics/roamresearch@master/BlogPosts/CORD19_topics/ldavis.v1.0.0-roam.js' random_seed = 42 model_build_workers = 4 # Outputs outdir = ROOT + f'/results/{datafile_date}/' model_out_dir = ROOT + f'/models/topics-abstracts-{datafile_date}-{parser}/' model_path = model_out_dir + 'mallet_models/' gs_model_path = model_path + 'gs_models/' gs_model_path_prefix = gs_model_path + f'{datafile_date}-covid19-combined-abstracts-' out_json_args = {'date_format': 'iso', **json_args} web_out_dir = outdir + f'topics-abstracts-{datafile_date}-{parser}-html/' if not os.path.exists(datafile): print(datafile + ' does not exist') sys.exit() out_path_mode = 0o777 os.makedirs(model_out_dir, mode = out_path_mode, exist_ok = True) os.makedirs(model_path, mode = out_path_mode, exist_ok = True) os.makedirs(gs_model_path, mode = out_path_mode, exist_ok = True) os.makedirs(outdir, mode = out_path_mode, exist_ok = True) os.makedirs(web_out_dir, mode = out_path_mode, exist_ok = True) import logging # logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.WARNING) logging.getLogger("gensim").setLevel(logging.WARNING) with open(mallet_stoplist_path, 'r') as fp: stopwords = set(fp.read().split()) len(stopwords) stopwords.update([ 'doi', 'preprint', 'copyright', 'peer', 'reviewed', 'org', 'https', 'et', 'al', 'author', 'figure', 'rights', 'reserved', 'permission', 'used', 'using', 'biorxiv', 'fig', 'fig.', 'al.', 'di', 'la', 'il', 'del', 'le', 'della', 'dei', 'delle', 'una', 'da', 'dell', 'non', 'si' ]) # from https://www.kaggle.com/danielwolffram/topic-modeling-finding-related-articles len(stopwords) ###Output _____no_output_____ ###Markdown Read in text and create corpus ###Code original_df = pd.read_json(datafile, **json_args) documents = original_df[text_column_name] orig_tokens = original_df[tokens_column_name] if 'keyterms' in original_df.columns: # keyterms = original_df['keyterms'].apply(lambda x: [k.lower() for k in x]) keyterms = original_df['keyterms'].apply(lambda lst: ['_'.join(k.lower().split()) for k in lst]) else: keyterms = None if ent_column_name in original_df.columns: ents = original_df['abstract_ent_scispacy'].apply(lambda lst: ['_'.join(k.lower().split()) for k in lst if len(k.split()) > 1]) else: ents = None len(documents) punctuation = string.punctuation + "”“–" # remove both slanted double-quotes # leave '#$%*+-/<=>' nonnumeric_punctuation = r'!"&()\,.:;?@[]^_`{|}~' + "'" + "'""”“–’" + ' ' def normalize_token(token): if token in nonnumeric_punctuation: return None if token in stopwords: return None if token == token.upper(): return token return token.lower() def normalize_token_list(tokens): result = [] for tok in tokens: ntok = normalize_token(tok) if ntok: result.append(ntok) return result nonnumeric_punctuation texts = orig_tokens.apply(normalize_token_list) dictionary = gensim.corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] sorted(dictionary.values())[:5] ###Output _____no_output_____ ###Markdown Topic model collections -- vary corpus and n Prepare corpus collections (various options) ###Code corpora = {} # corpora['text'] = corpus ###Output _____no_output_____ ###Markdown Filter by language ###Code def predict_language(text): try: isReliable, _, details = cld2.detect(text, isPlainText=True) except cld2.error: return ('ERROR', 0, '') if isReliable: lang_prob = details[0][2] if lang_prob > 70: return (details[0][1], lang_prob, text) elif lang_prob == 0: return ('', 0, '') # abstract likely in two languages _, _, details, vectors = cld2.detect(text, isPlainText=True, returnVectors=True, hintLanguage='en') en_text = '' for vec in vectors: if vec[3] == 'en': en_text += text[vec[0] : vec[0]+vec[1]] return ('en-extract', lang_prob, en_text) else: return ('', 0, '') predicted_lang = pd.DataFrame.from_records(documents.apply(predict_language), columns=('lang', 'lang_prob', 'text'), index=documents.index) predicted_lang_en_mask = predicted_lang['lang'].isin(['en', 'en-extract']) (~ predicted_lang_en_mask).sum() texts_en = texts.where(predicted_lang_en_mask, None) texts_en = texts.apply(lambda x: x if x is not None else []) ###Output _____no_output_____ ###Markdown Filter scispacy ents ###Code from collections import Counter if ents is not None: ents_counter = Counter() for x in ents.iteritems(): for w in x[1]: ents_counter[w] += 1 ents_common = [k for k, c in ents_counter.items() if c >= 5] len(ents_common) ###Output _____no_output_____ ###Markdown Extended token sets ###Code dictionary = gensim.corpora.Dictionary(texts) if ents is not None: dictionary.add_documents([ents_common]) # Several combinations attempted, but 'text-ents' was most useful if ents is not None: # corpora['text-ents'] = (texts + ents).apply(dictionary.doc2bow) corpora['text-ents-en'] = (texts_en + ents).apply(dictionary.doc2bow) corpora.keys() ###Output _____no_output_____ ###Markdown HTML Templates ###Code html_template = ''' <!DOCTYPE html> <html> <meta charset="UTF-8"> <head> <title>{0}</title> {1} </head> <body> <h2>{0}</h2> {2} </body> </html> ''' html_style = ''' <style> table { font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; border-collapse: collapse; width: 100%; } td, th { border: 1px solid #ddd; padding: 8px; } tr:nth-child(even){background-color: #f2f2f2;} tr:hover {background-color: #ddd;} th { padding-top: 12px; padding-bottom: 12px; text-align: left; background-color: #0099FF; color: white; } </style> ''' html_style_cols = ''' <style> table { font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; border-collapse: collapse; width: 100%; } td, th { border: 1px solid #ddd; padding: 8px; } td:nth-child(even){background-color: #f2f2f2;} td:hover {background-color: #ddd;} th { padding-top: 12px; padding-bottom: 12px; text-align: left; background-color: #0099FF; color: white; } </style> ''' ###Output _____no_output_____ ###Markdown Build models ###Code num_topics = [80] # number of topics cmallet = {} for c in corpora.keys(): cmallet[c] = {} for i in num_topics: print('Building model for %s (%s topic)' % (c,i)) prefix = os.path.join(model_path, c, str(i), '') os.makedirs(prefix, mode = out_path_mode, exist_ok = True) cmallet[c][i] = gensim.models.wrappers.ldamallet.LdaMallet(mallet_path, corpora[c], id2word=dictionary, optimize_interval=10, prefix=prefix, workers=model_build_workers, num_topics=i, iterations=2500, random_seed=random_seed) ###Output Building model for text-ents-en (80 topic) ###Markdown Save cmallet ###Code for c in cmallet.keys(): for i in cmallet[c].keys(): cmallet[c][i].save(f'{gs_model_path_prefix}gensim-mallet-model_{c}_{i}.pkl4', separately=[], sep_limit=134217728, pickle_protocol=4) print(f'{gs_model_path_prefix}gensim-mallet-model_{c}_{i}.pkl4') ###Output ../models/topics-abstracts-2020-04-10-v7-scispacy/mallet_models/gs_models/2020-04-10-v7-covid19-combined-abstracts-gensim-mallet-model_text-ents-en_80.pkl4 ###Markdown Plot ###Code vis_data = {} gensim_lda_model = {} for c in cmallet.keys(): vis_data[c] = {} gensim_lda_model[c] = {} for i in cmallet[c].keys(): gensim_lda_model[c][i] = gensim.models.wrappers.ldamallet.malletmodel2ldamodel(cmallet[c][i]) vis_data[c][i] = pyLDAvis.gensim.prepare(gensim_lda_model[c][i], corpora[c], dictionary=cmallet[c][i].id2word, mds='tsne') pyLDAvis.save_json(vis_data[c][i], outdir + f'pyldavis_{c}_{i}.json') print(outdir + f'pyldavis_{c}_{i}.json') ofdir = web_out_dir + f'{c}-{i}/' os.makedirs(ofdir, mode = out_path_mode, exist_ok = True) pyLDAvis.save_html(vis_data[c][i], ofdir + f'pyldavis_{c}_{i}.html', ldavis_url=MODIFIED_LDAVIS_URL) print(web_out_dir + f'{c}-{i}/pyldavis_{c}_{i}.html') ###Output /opt/conda/lib/python3.6/site-packages/pyLDAvis/_prepare.py:223: RuntimeWarning: divide by zero encountered in log kernel = (topic_given_term * np.log((topic_given_term.T / topic_proportion).T)) /opt/conda/lib/python3.6/site-packages/pyLDAvis/_prepare.py:240: RuntimeWarning: divide by zero encountered in log log_lift = np.log(topic_term_dists / term_proportion) /opt/conda/lib/python3.6/site-packages/pyLDAvis/_prepare.py:241: RuntimeWarning: divide by zero encountered in log log_ttd = np.log(topic_term_dists) ###Markdown Save Gensim Mallet Models ###Code for c in gensim_lda_model.keys(): for i in gensim_lda_model[c].keys(): gensim_lda_model[c][i].save(f'{gs_model_path_prefix}gensim-lda-model_{c}_{i}.pkl4', separately=[], sep_limit=134217728, pickle_protocol=4) print(f'{gs_model_path_prefix}gensim-lda-model_{c}_{i}.pkl4') ###Output ../models/topics-abstracts-2020-04-10-v7-scispacy/mallet_models/gs_models/2020-04-10-v7-covid19-combined-abstracts-gensim-lda-model_text-ents-en_80.pkl4 ###Markdown Save _Relevant_ terms for topics (from pyLDAviz) ###Code num_terms = 50 def sorted_terms(data, topic=1, rlambda=1, num_terms=30): """Returns a dataframe using lambda to calculate term relevance of a given topic.""" tdf = pd.DataFrame(data.topic_info[data.topic_info.Category == 'Topic' + str(topic)]) if rlambda < 0 or rlambda > 1: rlambda = 1 stdf = tdf.assign(relevance=rlambda * tdf['logprob'] + (1 - rlambda) * tdf['loglift']) rdf = stdf[['Term', 'relevance']] if num_terms: return rdf.sort_values('relevance', ascending=False).head(num_terms).set_index(['Term']) else: return rdf.sort_values('relevance', ascending=False).set_index(['Term']) topic_lists = {} for corp, cdict in vis_data.items(): for numtops in cdict.keys(): model_topic_lists_dict = {} for topnum in range(numtops): s = sorted_terms(vis_data[corp][numtops], topnum + 1, rlambda=.5, num_terms=num_terms) terms = s.index model_topic_lists_dict['Topic ' + str(topnum + 1)] = np.pad(terms, (0, num_terms - len(terms)), 'constant', constant_values='') topic_lists[corp + '-' + str(numtops)] = pd.DataFrame(model_topic_lists_dict) topic_lists.keys() # !pip install openpyxl # Save relevant topics - write to xlsx (one corp-numtopics per sheet) with pd.ExcelWriter(outdir + f'topics-relevant-words-abstracts-{datafile_date}-{num_terms}terms.xlsx') as writer: for sheetname, dataframe in topic_lists.items(): dataframe.to_excel(writer, sheet_name=sheetname) print(outdir + f'topics-relevant-words-abstracts-{datafile_date}-{num_terms}terms.xlsx') ###Output ../results/2020-04-10-v7/topics-relevant-words-abstracts-2020-04-10-v7-50terms.xlsx ###Markdown Save Relevant Topics as html ###Code # Save relevant topics - write to html out_topics_html_dir = web_out_dir for corp_numtopics, dataframe in topic_lists.items(): os.makedirs(out_topics_html_dir + corp_numtopics, mode = out_path_mode, exist_ok = True) ofname = out_topics_html_dir + corp_numtopics + '/' + 'relevant_terms.html' with open(ofname, 'w') as ofp: column_tags = [f'<a href="Topic_{i+1:02d}.html" target="_blank">{name}</a>' for i, name in enumerate(dataframe.columns)] temp_df = dataframe.copy() temp_df.columns = column_tags temp_df = temp_df.applymap(lambda x: ' '.join(x.split('_'))) temp_df = temp_df.set_index(np.arange(1, len(temp_df) + 1)) html_table = temp_df.to_html(escape=False) html_str = html_template.format('Most Relevant Terms per Topic', html_style_cols, html_table) ofp.write(html_str) print(ofname) # topic_lists['text-ents-80'] ###Output _____no_output_____ ###Markdown Create dataframes of topic model collections ###Code ctopicwords_df = {} for c in cmallet.keys(): ctopicwords_df[c] = {} for i in cmallet[c].keys(): ctopicwords_df[c][i] = pd.read_table(cmallet[c][i].ftopickeys(), header=None, names=['id', 'weight', 'wordlist']) REMOVED = [] def normalize_topic_words(words): results = [] for w in words: if w in nonnumeric_punctuation: pass elif w[-1] == 's' and w[:-1] in words: # remove plural REMOVED.append(w) elif w != w.lower() and w.lower() in words: # remove capitalized REMOVED.append(w) else: results.append(w) return results # Clean words for c in ctopicwords_df.keys(): for i in ctopicwords_df[c].keys(): ctopicwords_df[c][i]['wordlist'] = ctopicwords_df[c][i]['wordlist'].apply(lambda x: ' '.join(normalize_topic_words(x.split()))) # set(REMOVED) for c in ctopicwords_df.keys(): for i in ctopicwords_df[c].keys(): ctopicwords_df[c][i].drop(['id'], axis=1, inplace=True) ctopicwords_df[c][i]['topwords'] = ctopicwords_df[c][i].wordlist.apply(lambda x: ' '.join(x.split()[:3])) ctopicwords_df[c][i]['topten'] = ctopicwords_df[c][i].wordlist.apply(lambda x: ' '.join(x.split()[:10])) if True: # use pyLDAvis order rank_order_new_old = vis_data[c][i].to_dict()['topic.order'] rank_order_old_new = [None] * len(rank_order_new_old) for new, old in enumerate(rank_order_new_old): rank_order_old_new[old - 1] = new ctopicwords_df[c][i]['rank'] = np.array(rank_order_old_new) + 1 else: ctopicwords_df[c][i]['rank'] = ctopicwords_df[c][i].weight.rank(ascending=False) ctopicwords_df[c][i]['topicnum'] = ctopicwords_df[c][i].apply(lambda row: ('t%02d' % row['rank']), axis=1) ctopicwords_df[c][i]['label'] = ctopicwords_df[c][i].apply(lambda row: row['topicnum'] + ' ' + row['topwords'], axis=1) # doctopics cdoctopics_df = {} for c in cmallet.keys(): cdoctopics_df[c] = {} for n in cmallet[c].keys(): cdoctopics_df[c][n] = pd.read_table(cmallet[c][n].fdoctopics(), header=None, names=['id']+[i for i in range(n)]) cdoctopics_df[c][n].drop(['id'], axis=1, inplace=True) cdoctopics_df[c][n].head() # Reorder topics for c in cdoctopics_df.keys(): for n in cdoctopics_df[c].keys(): # (include top 3 topics in name) cdoctopics_df[c][n] = cdoctopics_df[c][n].T.join(ctopicwords_df[c][n][['rank', 'label']]).set_index('label').sort_values('rank').drop(['rank'], axis=1).T cdoctopics_df[c][n] = cdoctopics_df[c][n].T.join(ctopicwords_df[c][n][['rank', 'topicnum']]).set_index('topicnum').sort_values('rank').drop(['rank'], axis=1).T cdoctopics_df[c][n].T.index.rename('topic', inplace=True) # cdoctopics_df[c][n].head() ###Output _____no_output_____ ###Markdown Save documents ###Code # Save topicwords for c in ctopicwords_df.keys(): for i in ctopicwords_df[c].keys(): ctopicwords_df[c][i].sort_values('rank').to_csv(outdir + 'topickeys_sorted_%s_%d.txt' % (c, i), index_label='original_order') print(outdir + 'topickeys_sorted_%s_%d.txt' % (c, i)) # ctopicwords_df[c][i].sort_values('rank').to_excel('out/topickeys_sorted_%s_%d.xlsx' % (c, i), index_label='original_order') # Save doctopics for c in cdoctopics_df.keys(): for n in cdoctopics_df[c].keys(): cdoctopics_df[c][n].to_csv(outdir + 'doctopic_%s_%d.csv' % (c, n), index_label='original_order') print(outdir + 'doctopic_%s_%d.csv' % (c, n)) sims_names = ['scispacy', 'specter'] sims_columns = [f'sims_{x}_cord_uid' for x in sims_names] assert all(x in original_df.columns for x in sims_columns) assert 'cord_uid' in original_df.columns def helper_get_sims_html_ids(sim_uids, cord_uid_topic_num, cord_uid_cite_ad): result = [] for uid in sim_uids: topic_num = cord_uid_topic_num.get(uid) cite_ad = cord_uid_cite_ad.get(uid) if cite_ad and topic_num: result.append(f'<a href="Topic_{topic_num}.html#{uid}">{cite_ad}</a>') return ', '.join(result) original_df['abstract_mentions_covid'].sum() # Prepare to save docs by topics predominant_doc_dfd = {} predominant_doc_df = original_df[['cite_ad', 'title', 'authors', 'publish_year', 'publish_time', 'dataset', 'abstract_mentions_covid', 'pmcid', 'pubmed_id', 'doi', 'cord_uid', 'sha', 'abstract_clean'] + sims_columns ].copy() sims_mapping_cord_uid_sd = {} predominant_doc_df['publish_time'] = predominant_doc_df['publish_time'].dt.strftime('%Y-%m-%d') for c in cdoctopics_df.keys(): predominant_doc_dfd[c] = {} sims_mapping_cord_uid_sd[c] = {} for n in cdoctopics_df[c].keys(): predominant_doc_dfd[c][n] = {} sims_mapping_cord_uid_sd[c][n] = {} predominant_doc_df['predominant_topic'] = cdoctopics_df[c][n].idxmax(axis=1) predominant_doc_df['predominant_topic_num'] = predominant_doc_df['predominant_topic'].str.split().apply(lambda x: x[0][1:]) predominant_doc_df['major_topics'] = cdoctopics_df[c][n].apply(lambda r: {f't{i + 1:02d}': val for i, val in enumerate(r) if val >= 0.3}, axis=1) for sim_col in sims_columns: sims_mapping_cord_uid_sd[c][n][sim_col] = {} sims_mapping_cord_uid_sd[c][n][sim_col]['topic_num'] = predominant_doc_df[['cord_uid', 'predominant_topic_num']].set_index('cord_uid')['predominant_topic_num'] sims_mapping_cord_uid_sd[c][n][sim_col]['cite_ad'] = predominant_doc_df[['cord_uid', 'cite_ad']].set_index('cord_uid')['cite_ad'] for i, topic_name in enumerate(cdoctopics_df[c][n].columns): temp_df = predominant_doc_df[(predominant_doc_df['major_topics'].apply(lambda x: topic_name in x))].copy() temp_df['topic_weight'] = temp_df.major_topics.apply(lambda x: x.get(topic_name)) temp_df = temp_df.sort_values(['topic_weight'], axis=0, ascending=False) predominant_doc_dfd[c][n][i] = temp_df # Save docs by topics - write to json and tsv for c in predominant_doc_dfd.keys(): for n in predominant_doc_dfd[c].keys(): outfile_central_docs_base = outdir + f'topics-central-docs-abstracts-{datafile_date}-{c}-{n}' temp_dfs = [] for i, dataframe in predominant_doc_dfd[c][n].items(): temp_df = dataframe[['title', 'authors', 'publish_year', 'publish_time', 'cord_uid', 'dataset', 'sha', 'abstract_clean']].reset_index() temp_df['Topic'] = i + 1 temp_dfs.append(temp_df) result_df = pd.concat(temp_dfs) print(outfile_central_docs_base + '.{jsonl, txt}') result_df.to_json(outfile_central_docs_base + '.jsonl', **out_json_args) result_df.to_csv(outfile_central_docs_base + '.txt', sep='\t') # Save docs by topics - write to excel for c in predominant_doc_dfd.keys(): for n in predominant_doc_dfd[c].keys(): print(outdir + f'topics-central-docs-abstracts-{datafile_date}-{c}-{n}.xlsx') with pd.ExcelWriter(outdir + f'topics-central-docs-abstracts-{datafile_date}-{c}-{n}.xlsx') as writer: for i in predominant_doc_dfd[c][n].keys(): sheetname = f'Topic {i+1}' predominant_doc_dfd[c][n][i].drop(columns=['abstract_clean', 'cite_ad', 'major_topics', 'predominant_topic', 'predominant_topic_num'] ).to_excel(writer, sheet_name=sheetname) # prep similarity columns for html for c in predominant_doc_dfd.keys(): for n in predominant_doc_dfd[c].keys(): for sim_name, sims_col in zip(sims_names, sims_columns): cord_uid_topic_num = sims_mapping_cord_uid_sd[c][n][sim_col]['topic_num'].to_dict() cord_uid_cite_ad = sims_mapping_cord_uid_sd[c][n][sim_col]['cite_ad'].to_dict() for i in predominant_doc_dfd[c][n].keys(): predominant_doc_dfd[c][n][i][f'Similarity {sim_name}'] = (predominant_doc_dfd[c][n][i][sims_col] .apply(lambda x: helper_get_sims_html_ids(x, cord_uid_topic_num, cord_uid_cite_ad))) # Modify dataframe for html for c in predominant_doc_dfd.keys(): for n in predominant_doc_dfd[c].keys(): for i in predominant_doc_dfd[c][n].keys(): predominant_doc_dfd[c][n][i]['pmcid'] = predominant_doc_dfd[c][n][i]['pmcid'].apply(lambda xid: f'<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/{xid}" target="_blank">{xid}</a>' if not pd.isnull(xid) else '') predominant_doc_dfd[c][n][i]['pubmed_id'] = predominant_doc_dfd[c][n][i]['pubmed_id'].apply(lambda xid: f'<a href="https://www.ncbi.nlm.nih.gov/pubmed/{xid}" target="_blank">{xid}</a>' if not pd.isnull(xid) else '') predominant_doc_dfd[c][n][i]['doi'] = predominant_doc_dfd[c][n][i]['doi'].apply(lambda xid: f'<a href="https://doi.org/{xid}" target="_blank">{xid}</a>' if not pd.isnull(xid) else '') predominant_doc_dfd[c][n][i]['abstract_mentions_covid'] = predominant_doc_dfd[c][n][i]['abstract_mentions_covid'].apply(lambda x: 'Y' if x else 'N') predominant_doc_dfd[c][n][i].columns = [' '.join(c.split('_')) for c in predominant_doc_dfd[c][n][i].columns] from pandas.io.formats import format as fmt from pandas.io.formats.html import HTMLFormatter from typing import Any, Optional class MyHTMLFormatter(HTMLFormatter): "Add html id to th for rows" def __init__(self, html_id_col_name, *args, **kwargs): super(MyHTMLFormatter, self).__init__(*args, **kwargs) self.html_id_col_name = html_id_col_name def write_th( self, s: Any, header: bool = False, indent: int = 0, tags: Optional[str] = None ) -> None: if not header and self.html_id_col_name and self.html_id_col_name in self.frame.columns: try: key = int(s.strip()) except ValueError: key = None if key and key in self.frame.index: html_id = self.frame.loc[key, self.html_id_col_name] if html_id: if tags: tags += f'id="{html_id}";' else: tags = f'id="{html_id}";' super(MyHTMLFormatter, self).write_th(s, header, indent, tags) # Save doc by topics - write to html # out_topics_html_dir = outdir + f'topics-central-docs-abstracts-{datafile_date}-html/' out_topics_html_dir = web_out_dir os.makedirs(out_topics_html_dir, mode = out_path_mode, exist_ok = True) for c in predominant_doc_dfd.keys(): for n in predominant_doc_dfd[c].keys(): ofdir = out_topics_html_dir + f'{c}-{n}/' os.makedirs(ofdir, mode = out_path_mode, exist_ok = True) print(ofdir) for i in predominant_doc_dfd[c][n].keys(): ofname = ofdir + f'Topic_{i+1:02d}.html' with open(ofname, 'w') as ofp: html_df = (predominant_doc_dfd[c][n][i] .drop(columns=['sha', 'major topics', 'abstract clean', 'predominant topic', 'predominant topic num'] + [' '.join(c.split('_')) for c in sims_columns]) .copy() .set_index(np.arange(1, len(predominant_doc_dfd[c][n][i])+1))) # html_table = html_df.to_html(escape=False) df_formatter = fmt.DataFrameFormatter(escape=False, frame=html_df, index=True, bold_rows=True) html_formatter = MyHTMLFormatter('cord uid', formatter=df_formatter) # html_formatter = HTMLFormatter(formatter=df_formatter) html_table = html_formatter.get_result() html_str = html_template.format(f'Topic {i+1:02d}', html_style, html_table) ofp.write(html_str) ###Output ../results/2020-04-10-v7/topics-abstracts-2020-04-10-v7-scispacy-html/text-ents-en-80/
Examples/DNC_Simple_Siraj.ipynb
###Markdown The Differentiable Neural Computer The Problem - how do we create more general purpose learning machines?Neural networks excel at pattern recognition and quick, reactive decision-making, but we are only just beginning to build neural networks that can think slowly. that is, deliberate or reason using knowledge.For example, how could a neural network store memories for facts like the connections in a transport network and then logically reason about its pieces of knowledge to answer questions?![alt text](https://storage.googleapis.com/deepmind-live-cms/images/dnc_figure1.width-1500_Zfxk87k.png "Logo Title Text 1")this consists of a neural network that can read from and write to an external memory matrix,analogous to the random-access memory in a conventional computer.Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data.DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read–write memory.![alt text](https://storage.googleapis.com/deepmind-live-cms/images/dnc_figure2.width-1500_be2TeKT.png "Logo Title Text 1")[![IMAGE ALT TEXT HERE](http://img.youtube.com/vi/B9U8sI7TcMY/0.jpg)](http://www.youtube.com/watch?v=B9U8sI7TcMYE)Modern computers separate computation and memory. Computation is performed by a processor, which can use an addressable memory to bring operands in and out of play. In contrast to computers, the computational and memory resources of artificial neural networks are mixed together in the network weights and neuron activity. This is a major liability: as the memory demands of a task increase, these networks cannot allocate new storage dynam-ically, nor easily learn algorithms that act independently of the values realized by the task variables. The whole system is differentiable, and can therefore be trained end-to-end with gradient descent, allowing the network to learn how to operate and organize the memory in a goal-directed manner.If the memory can be thought of as the DNC’s RAM, then the network, referred to as the ‘controller’, is a differentiable CPU whose operations are learned with gradient descent.How is it different from its predecessor, the Neural Turing Machine?basically, more memory access methods than NTM DNC extends the NTM addressing the following limitations:(1) Ensuring that blocks of allocated memory do not overlap and interfere.(2) Freeing memory that have already been written to.(3) Handling of non-contiguous memory through temporal links.the system required hand-crafted input to accomplish its learning and inference. This is not an NLP system where unstructured text is applied at input. 3 forms of attention for heads- content lookup- records transitions between consecutively written locations in an N × N temporal link matrix L.This gives a DNC the native ability to recover sequences in the order in which it wrote them, evenwhen consecutive writes did not occur in adjacent time-step- The third form of attention allocates memory for writing. Content lookup enables the formation of associative data structures;temporal links enable sequential retrieval of input sequences;and allocation provides the write head with unused locations. DNC memory modification is fast and can be one-shot, resembling the associative long-term potentiation of hippocampal CA3 and CA1 synapses Human ‘free recall’ experiments demonstrate the increased probability of item recall in the same order as first pre-sented (temporal links) DeepMind hopes that DNCs provide both a new tool for computer science and a new metaphor for cognitive scienceand neuroscience: here is a learning machine that, without prior programming, can organise informationinto connected facts and use those facts to solve problems. ###Code import numpy as np import tensorflow as tf import os class DNC: def __init__(self, input_size, output_size, seq_len, num_words = 256, word_size = 64, num_heads = 4): ''' Initialize the DNC: In this tutorial we are basically using the DNC to understand the mapping between the input and output data. input data: [[0,0], [0,1], [1,0], [1,1]] output data: [[1,0], [0,0], [0,0], [0,1]] ''' # define input and output sizes self.input_size = input_size self.output_size = output_size # define read and write vectors self.num_words = num_words # N self.word_size = word_size # W # define number of read and write heads self.num_heads = num_heads # R # size of output vector from controller # the magic numbers are just a type of hyper-parameters # set them according to your own use-case, they come from the way we divide our # interface vector into read, write, gate and read mode variables self.interface_size = num_heads*word_size + 3*word_size + 5*num_heads + 3 # define input size # this comes after the flatten the input and concatenate it with the # previously read vectors from the memory self.nn_input_size = num_heads*word_size + input_size # define output size self.nn_output_size = output_size + self.interface_size # gaussian normal distribution for both outputs # ??? self.nn_out = tf.truncated_normal([1, self.output_size], stddev = 0.1) self.interface_vec = tf.truncated_normal([1, self.interface_size], stddev = 0.1) # define memory matrix self.mem_mat = tf.zeros([num_words, word_size]) # N*W # define usage vector # it tells which part of the memory have been used so far self.usage_vec = tf.fill([num_words, 1], 1e-6) # W*1 # define temporal link matrix # it tells in which order the locations were written self.link_mat = tf.zeros([num_words, num_words]) # N*N # define precedence weight # it tell to the degree which the last weight was written to self.precedence_weight = tf.zeros([num_words, 1]) # N*1 # define read and write weight variables self.read_weights = tf.fill([num_words, num_heads], 1e-6) # N*R self.write_weights = tf.fill([num_words, 1], 1e-6) # N*1 self.read_vec = tf.fill([num_heads, word_size], 1e-6) # N*W ####################### ## Network Variables ## ####################### # parameters hidden_layer_size = 32 # define placeholders self.i_data = tf.placeholder(tf.float32, [seq_len*2, self.input_size], name = 'input_placeholder') self.o_data = tf.placeholder(tf.float32, [seq_len*2, self.output_size], name = 'output_placeholder') # define feedforward network weights self.W1 = tf.Variable(tf.truncated_normal([self.nn_input_size, hidden_layer_size], stddev = 0.1), name = 'layer1_weights', dtype = tf.float32) self.b1 = tf.Variable(tf.truncated_normal([hidden_layer_size], stddev = 0.1), name = 'layer1_bias', dtype = tf.float32) self.W2 = tf.Variable(tf.truncated_normal([hidden_layer_size, self.nn_output_size], stddev = 0.1), name = 'layer2_weights', dtype = tf.float32) self.b2 = tf.Variable(tf.truncated_normal([self.nn_output_size], stddev = 0.1), name = 'layer2_bias', dtype = tf.float32) # define DNC output weights # self.nn_out_weights to convert the output of neural network into proper output self.nn_out_weights = tf.Variable( tf.truncated_normal([self.nn_output_size, self.output_size], stddev = 0.1), name = 'nn_output_weights', dtype = tf.float32) # self.interface_weights to convert the output of neural network to proper interface vector self.interface_weights = tf.Variable( tf.truncated_normal([self.nn_output_size, self.interface_size], stddev = 0.1), name = 'interface_weights', dtype = tf.float32) # self.read_vec_out_weights = tf.Variable( tf.truncated_normal([self.num_heads*self.word_size, self.output_size], stddev = 0.1), name = 'read_vector_output_weights', dtype = tf.float32) ########################## ## Attention Mechanisms ## ########################## ''' In DNC we have three different attention mechanisms: 1. Content Lookup (Content-Addressing in paper): {From NTM paper} For content-addressing, each head (whether employed for reading or writing) first produces a key-vector k, that is then compared to each vector in memory by a similarity measure. The content-based system produces a normalized weighting based on similarity [and a positive key-strength (beta), which can amplify or attenuate the precision of the focus.] 2. Allocation weighting: {From DNC paper} To allow controller to free and allocate memory as needed, we developed a differentiable analogue to 'free-list' memory scheme, whereby a a list of available memory location is maintained by adding to and removig from a linked list. {From tutorial} The ‘usage’ of each location is represented as a number between 0 and 1, and a weighting that picks out unused locations is delivered to the write head. This is independent of the size and contents of the memory, meaning that DNCs can be trained to solve a task using one size of memory and later upgraded to a larger memory without retraining 3. Temporal Linking: {From DNC paper} The memory location defined [till now] stores no information about the order in which memory locations are written to. However, there are many situation where retaining this information is useful: for example, when a sequence inrtuctions must be recorded and retrieved in order. We therefore use a temporal link matrix to keep track of consecutively modified memory locations. ''' # define content lookup def content_lookup(self, key, str): # str is 1*1 or 1*R # l2 normalization of a vector is the square root of sum of absolute values squared norm_mem = tf.nn.l2_normalize(self.mem_mat, 1) # N*W norm_key = tf.nn.l2_normalize(key, 0) # 1*W for write, R*W for read sim = tf.matmul(norm_mem, norm_key, transpose_b = True) # N*1 for write, N*R for read return tf.nn.softmax(sim*str, 0) # N*1 or N*R # define allocation weighting def allocation_weighting(self): # tf.nn.top_k() returns # 1.The k largest elements along each last dimensional slice and # 2.The indices of values within the last dimension of input sorted_usage_vec, free_list = tf.nn.top_k(-1*self.usage_vec, k = self.num_words) sorted_usage_vec *= -1 # tf.cumprod() calculates cumulative product # tf.cumprod([a, b, c]) --> [a, a*b, a*b*c] # tf.cumprod([a, b, c], exclusive=True) --> [1, a, a * b] cumprod = tf.cumprod(sorted_usage_vec, axis = 0, exclusive = True) unorder = (1-sorted_usage_vec)*cumprod # allocation weight alloc_weights = tf.zeros([self.num_words]) I = tf.constant(np.identity(self.num_words, dtype = np.float32)) # for each usage vector for pos, idx in enumerate(tf.unstack(free_list[0])): m = tf.squeeze(tf.slice(I, [idx, 0], [1, -1])) alloc_weights += m*unorder[0, pos] # allocation weighting for each row in memory return tf.reshape(alloc_weights, [self.num_words, 1]) ################### ## Step Function ## ################### # define the step function ''' This is the function that we call while we are running our session at each iteration the controller recieves two inputs that are concatenated, the input vector and the read vector from previous time step it also gives two outputs, the output vector and the interface vector that defines it's interaction with the memory at the current time step. ''' def step_m(self, input_seq): '''print('input_seq:',input_seq) print('self.read_vec:', self.read_vec) print('reshape',tf.reshape(self.read_vec, [1, self.num_words*self.word_size])) print(tf.concat([input_seq, tf.reshape(self.read_vec, [1, self.num_heads*self.word_size])], 1))''' # reshape the input input_vec_nn = tf.concat([input_seq, tf.reshape(self.read_vec, [1, self.num_heads*self.word_size])], 1) # forward propogation l1_out = tf.matmul(input_vec_nn, self.W1) + self.b1 l1_act = tf.nn.tanh(l1_out) l2_out = tf.matmul(l1_out, self.W2) + self.b2 l2_act = tf.nn.tanh(l2_out) # output vector, the output of the DNC self.nn_out = tf.matmul(l2_act, self.nn_out_weights) # interface vector, how to interact with the memory self.interface_vec = tf.matmul(l2_act, self.interface_weights) # define partition vector ''' We need to get lot of information from the interface vector, which will help us get various vectors such as read vectors, write vectors, degree to which locations will be freed ''' p_array = [0]*(self.num_heads * self.word_size) # read keys p_array += [1]*(self.num_heads) # read string p_array += [2]*(self.word_size) # write key p_array += [3] # write string p_array += [4]*(self.word_size) # erase vector p_array += [5]*(self.word_size) # write vector p_array += [6]*(self.num_heads) # free gates p_array += [7] # allocation gates p_array += [8] # write gates p_array += [9]*(self.num_heads*3) # read mode partition = tf.constant([p_array]) # convert interface vector to set of read write vectors (read_keys, read_str, write_key, write_str, erase_vec, write_vec, free_gates, alloc_gate, write_gate, read_modes) = \ tf.dynamic_partition(self.interface_vec, partition, 10) # read vectors read_keys = tf.reshape(read_keys, [self.num_heads, self.word_size]) # R*W read_str = 1 + tf.nn.softplus(tf.expand_dims(read_str, 0)) # 1*R # write vectors write_key = tf.expand_dims(write_key, 0) # 1*W write_str = 1 + tf.nn.softplus(tf.expand_dims(write_str, 0)) # 1*1 erase_vec = tf.nn.sigmoid(tf.expand_dims(erase_vec, 0)) # 1*W write_vec = tf.expand_dims(write_vec, 0) # 1*w # gates # free gates, the degree to which the locations at read head will be freed free_gates = tf.nn.sigmoid(tf.expand_dims(free_gates, 0)) # 1*R # the fraction of writing that is being allocated in a new location alloc_gate = tf.nn.sigmoid(alloc_gate) # 1 # the amount of information to be written to memory write_gate = tf.nn.sigmoid(write_gate) # 1 # read modes # we do a softmax distribution between 3 read modes (backward, forward, lookup) # The read heads can use gates called read modes to switch between content lookup # using a read key and reading out locations either forwards or backwards # in the order they were written. read_modes = tf.nn.softmax(tf.reshape(read_modes, [3, self.num_heads])) # 3*R ## WRITING # the memory retention vector tells by how much each location will not be freed # by the free gates, helps in determining usage vector retention_vec = tf.reduce_prod(1 - free_gates*self.read_weights, reduction_indices = 1) self.usage_vec = (self.usage_vec + self.write_weights - \ self.usage_vec*self.write_weights) * retention_vec # allocation weighting is used to provide new locations for writing alloc_weights = self.allocation_weighting() write_lookup_weights = self.content_lookup(write_key, write_str) # define write weights self.write_weights = write_gate*(alloc_gate*alloc_weights + \ (1-alloc_gate)*write_lookup_weights) # write -> erase -> write to memory self.mem_mat = self.mem_mat*(1 - tf.matmul(self.write_weights, erase_vec)) + \ tf.matmul(self.write_weights, write_vec) # temporal link matrix nnweight_vec = tf.matmul(self.write_weights, tf.ones([1, self.num_words])) # N*N self.link_mat = self.link_mat*(1 - nnweight_vec - tf.transpose(nnweight_vec)) + \ tf.matmul(self.write_weights, self.precedence_weight, transpose_b = True) self.link_mat *= tf.ones([self.num_words, self.num_words]) - \ tf.constant(np.identity(self.num_words, dtype = np.float32)) # update precedence weight self.precedence_weight = (1 - tf.reduce_sum(self.write_weights, reduction_indices = 0)) * \ self.precedence_weight + self.write_weights # 3 read modes forw_w = read_modes[2] * tf.matmul(self.link_mat, self.read_weights) look_w = read_modes[1] * self.content_lookup(read_keys, read_str) back_w = read_modes[0] * tf.matmul(self.link_mat, self.read_weights, transpose_a = True) # initialize read weights self.read_weights = forw_w + look_w + back_w # read vector self.read_vec = tf.transpose(tf.matmul(self.mem_mat, self.read_weights, transpose_a = True)) # get final read output read_vec_mut = tf.matmul(tf.reshape(self.read_vec, [1, self.num_heads*self.word_size]), self.read_vec_out_weights) # return the final output return self.nn_out + read_vec_mut # output the list of numbers (one hot encoded) by running step function def run(self): big_out = [] for t, seq in enumerate(tf.unstack(self.i_data, axis = 0)): seq = tf.expand_dims(seq, 0) y = self.step_m(seq) big_out.append(y) return tf.stack(big_out, axis = 0) # generate randomly generated input, output sequences num_seq = 10 seq_len = 6 seq_width = 4 num_epochs = 1000 con = np.random.randint(0, seq_width,size=seq_len) seq = np.zeros((seq_len, seq_width)) seq[np.arange(seq_len), con] = 1 end = np.asarray([[-1]*seq_width]) zer = np.zeros((seq_len, seq_width)) # final i/o data final_i_data = np.concatenate((seq, zer), axis = 0) final_o_data = np.concatenate((zer, seq), axis = 0) # define compute graph graph = tf.Graph() # running the graph with graph.as_default(): with tf.Session() as sess: # define the DNC dnc = DNC(input_size = seq_width, output_size = seq_width, seq_len = seq_len, num_words = 10, word_size = 4, num_heads = 1) #calculate the predicted output output = tf.squeeze(dnc.run()) #compare prediction to reality, get loss via sigmoid cross entropy loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=dnc.o_data)) #use regularizers for each layer of the controller regularizers = (tf.nn.l2_loss(dnc.W1) + tf.nn.l2_loss(dnc.W2) + tf.nn.l2_loss(dnc.b1) + tf.nn.l2_loss(dnc.b2)) #to help the loss convergence faster loss += 5e-4 * regularizers #optimize the entire thing (memory + controller) using gradient descent. dope optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) #initialize input output pairs sess.run(tf.global_variables_initializer()) #for each iteration for i in range(0, num_epochs+1): #feed in each input output pair feed_dict = {dnc.i_data: final_i_data, dnc.o_data: final_o_data} #make predictions l, _, predictions = sess.run([loss, optimizer, output], feed_dict=feed_dict) if i%100==0: print(i,l) # print predictions print(np.argmax(final_i_data, 1)) print(np.argmax(final_o_data, 1)) print(np.argmax(predictions, 1)) ###Output 0 0.716662 100 0.291819 200 0.139632 300 0.102837 400 0.0829762 500 0.0597146 600 0.034657 700 0.0176897 800 0.01247 900 0.01024 1000 0.00889811 [3 1 1 3 3 0 0 0 0 0 0 0] [0 0 0 0 0 0 3 1 1 3 3 0] [2 3 3 3 3 3 3 1 1 3 3 0]
voila/callback_text.ipynb
###Markdown Text output from callbacks ###Code import ipywidgets ###Output _____no_output_____ ###Markdown Plain `print`(doesn't work) ###Code def callback1(w): print('callback1') button1 = ipywidgets.Button(description='Run') button1.on_click(callback1) button1 ###Output _____no_output_____ ###Markdown Output widget ###Code def callback2(w): with output2: print('callback2') output2 = ipywidgets.Output() button2 = ipywidgets.Button(description='Run') button2.on_click(callback2) ipywidgets.VBox(children=[button2, output2]) ###Output _____no_output_____ ###Markdown HTML widget ###Code def callback3(w): html3.value = 'callback3' html3 = ipywidgets.HTML() button3 = ipywidgets.Button(description='Run') button3.on_click(callback3) ipywidgets.VBox(children=[button3, html3]) ###Output _____no_output_____
old_files_unsorted_archive/EDA_Springleaf_screencast.ipynb
###Markdown This is a notebook, used in the screencast video. Note, that the data files are not present here in Jupyter hub and you will not be able to run it. But you can always download the notebook to your local machine as well as the competition data and make it interactive. Competition data can be found here: https://www.kaggle.com/c/springleaf-marketing-response/data ###Code import os import numpy as np import pandas as pd from tqdm import tqdm_notebook import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.filterwarnings('ignore') import seaborn def autolabel(arrayA): ''' label each colored square with the corresponding data value. If value > 20, the text is in black, else in white. ''' arrayA = np.array(arrayA) for i in range(arrayA.shape[0]): for j in range(arrayA.shape[1]): plt.text(j,i, "%.2f"%arrayA[i,j], ha='center', va='bottom',color='w') def hist_it(feat): plt.figure(figsize=(16,4)) feat[Y==0].hist(bins=range(int(feat.min()),int(feat.max()+2)),normed=True,alpha=0.8) feat[Y==1].hist(bins=range(int(feat.min()),int(feat.max()+2)),normed=True,alpha=0.5) plt.ylim((0,1)) def gt_matrix(feats,sz=16): a = [] for i,c1 in enumerate(feats): b = [] for j,c2 in enumerate(feats): mask = (~train[c1].isnull()) & (~train[c2].isnull()) if i>=j: b.append((train.loc[mask,c1].values>=train.loc[mask,c2].values).mean()) else: b.append((train.loc[mask,c1].values>train.loc[mask,c2].values).mean()) a.append(b) plt.figure(figsize = (sz,sz)) plt.imshow(a, interpolation = 'None') _ = plt.xticks(range(len(feats)),feats,rotation = 90) _ = plt.yticks(range(len(feats)),feats,rotation = 0) autolabel(a) def hist_it1(feat): plt.figure(figsize=(16,4)) feat[Y==0].hist(bins=100,range=(feat.min(),feat.max()),normed=True,alpha=0.5) feat[Y==1].hist(bins=100,range=(feat.min(),feat.max()),normed=True,alpha=0.5) plt.ylim((0,1)) ###Output _____no_output_____ ###Markdown Read the data ###Code train = pd.read_csv('train.csv.zip') Y = train.target test = pd.read_csv('test.csv.zip') test_ID = test.ID ###Output _____no_output_____ ###Markdown Data overview Probably the first thing you check is the shapes of the train and test matrices and look inside them. ###Code print 'Train shape', train.shape print 'Test shape', test.shape train.head() test.head() ###Output _____no_output_____ ###Markdown There are almost 2000 anonymized variables! It's clear, some of them are categorical, some look like numeric. Some numeric feateures are integer typed, so probably they are event conters or dates. And others are of float type, but from the first few rows they look like integer-typed too, since fractional part is zero, but pandas treats them as `float` since there are NaN values in that features. From the first glance we see train has one more column `target` which we should not forget to drop before fitting a classifier. We also see `ID` column is shared between train and test, which sometimes can be succesfully used to improve the score. It is also useful to know if there are any NaNs in the data. You should pay attention to columns with NaNs and the number of NaNs for each row can serve as a nice feature later. ###Code # Number of NaNs for each object train.isnull().sum(axis=1).head(15) # Number of NaNs for each column train.isnull().sum(axis=0).head(15) ###Output _____no_output_____ ###Markdown Just by reviewing the head of the lists we immediately see the patterns, exactly 56 NaNs for a set of variables, and 24 NaNs for objects. Dataset cleaning Remove constant features All 1932 columns are anonimized which makes us to deduce the meaning of the features ourselves. We will now try to clean the dataset. It is usually convenient to concatenate train and test into one dataframe and do all feature engineering using it. ###Code traintest = pd.concat([train, test], axis = 0) ###Output _____no_output_____ ###Markdown First we schould look for a constant features, such features do not provide any information and only make our dataset larger. ###Code # `dropna = False` makes nunique treat NaNs as a distinct value feats_counts = train.nunique(dropna = False) feats_counts.sort_values()[:10] ###Output _____no_output_____ ###Markdown We found 5 constant features. Let's remove them. ###Code constant_features = feats_counts.loc[feats_counts==1].index.tolist() print (constant_features) traintest.drop(constant_features,axis = 1,inplace=True) ###Output ['VAR_0207', 'VAR_0213', 'VAR_0840', 'VAR_0847', 'VAR_1428'] ###Markdown Remove duplicated features Fill NaNs with something we can find later if needed. ###Code traintest.fillna('NaN', inplace=True) ###Output _____no_output_____ ###Markdown Now let's encode each feature, as we discussed. ###Code train_enc = pd.DataFrame(index = train.index) for col in tqdm_notebook(traintest.columns): train_enc[col] = train[col].factorize()[0] ###Output _____no_output_____ ###Markdown We could also do something like this: ###Code # train_enc[col] = train[col].map(train[col].value_counts()) ###Output _____no_output_____ ###Markdown The resulting data frame is very very large, so we cannot just transpose it and use .duplicated. That is why we will use a simple loop. ###Code dup_cols = {} for i, c1 in enumerate(tqdm_notebook(train_enc.columns)): for c2 in train_enc.columns[i + 1:]: if c2 not in dup_cols and np.all(train_enc[c1] == train_enc[c2]): dup_cols[c2] = c1 dup_cols ###Output _____no_output_____ ###Markdown Don't forget to save them, as it takes long time to find these. ###Code import cPickle as pickle pickle.dump(dup_cols, open('dup_cols.p', 'w'), protocol=pickle.HIGHEST_PROTOCOL) ###Output _____no_output_____ ###Markdown Drop from traintest. ###Code traintest.drop(dup_cols.keys(), axis = 1,inplace=True) ###Output _____no_output_____ ###Markdown Determine types Let's examine the number of unique values. ###Code nunique = train.nunique(dropna=False) nunique ###Output _____no_output_____ ###Markdown and build a histogram of those values ###Code plt.figure(figsize=(14,6)) _ = plt.hist(nunique.astype(float)/train.shape[0], bins=100) ###Output _____no_output_____ ###Markdown Let's take a looks at the features with a huge number of unique values: ###Code mask = (nunique.astype(float)/train.shape[0] > 0.8) train.loc[:, mask] ###Output _____no_output_____ ###Markdown The values are not float, they are integer, so these features are likely to be even counts. Let's look at another pack of features. ###Code mask = (nunique.astype(float)/train.shape[0] < 0.8) & (nunique.astype(float)/train.shape[0] > 0.4) train.loc[:25, mask] ###Output _____no_output_____ ###Markdown These look like counts too. First thing to notice is the 23th line: 99999.., -99999 values look like NaNs so we should probably built a related feature. Second: the columns are sometimes placed next to each other, so the columns are probably grouped together and we can disentangle that. Our conclusion: there are no floating point variables, there are some counts variables, which we will treat as numeric. And finally, let's pick one variable (in this case 'VAR_0015') from the third group of features. ###Code train['VAR_0015'].value_counts() cat_cols = list(train.select_dtypes(include=['object']).columns) num_cols = list(train.select_dtypes(exclude=['object']).columns) ###Output _____no_output_____ ###Markdown Go through Let's replace NaNs with something first. ###Code train.replace('NaN', -999, inplace=True) ###Output _____no_output_____ ###Markdown Let's calculate how many times one feature is greater than the other and create cross tabel out of it. ###Code # select first 42 numeric features feats = num_cols[:42] # build 'mean(feat1 > feat2)' plot gt_matrix(feats,16) ###Output _____no_output_____ ###Markdown Indeed, we see interesting patterns here. There are blocks of geatures where one is strictly greater than the other. So we can hypothesize, that each column correspondes to cumulative counts, e.g. feature number one is counts in first month, second -- total count number in first two month and so on. So we immediately understand what features we should generate to make tree-based models more efficient: the differences between consecutive values. VAR_0002, VAR_0003 ###Code hist_it(train['VAR_0002']) plt.ylim((0,0.05)) plt.xlim((-10,1010)) hist_it(train['VAR_0003']) plt.ylim((0,0.03)) plt.xlim((-10,1010)) train['VAR_0002'].value_counts() train['VAR_0003'].value_counts() ###Output _____no_output_____ ###Markdown We see there is something special about 12, 24 and so on, sowe can create another feature x mod 12. VAR_0004 ###Code train['VAR_0004_mod50'] = train['VAR_0004'] % 50 hist_it(train['VAR_0004_mod50']) plt.ylim((0,0.6)) ###Output _____no_output_____ ###Markdown Categorical features Let's take a look at categorical features we have. ###Code train.loc[:,cat_cols].head().T ###Output _____no_output_____ ###Markdown `VAR_0200`, `VAR_0237`, `VAR_0274` look like some georgraphical data thus one could generate geography related features, we will talk later in the course.There are some features, that are hard to identify, but look, there a date columns `VAR_0073` -- `VAR_0179`, `VAR_0204`, `VAR_0217`. It is useful to plot one date against another to find relationships. ###Code date_cols = [u'VAR_0073','VAR_0075', u'VAR_0156',u'VAR_0157',u'VAR_0158','VAR_0159', u'VAR_0166', u'VAR_0167',u'VAR_0168',u'VAR_0169', u'VAR_0176',u'VAR_0177',u'VAR_0178',u'VAR_0179', u'VAR_0204', u'VAR_0217'] for c in date_cols: train[c] = pd.to_datetime(train[c],format = '%d%b%y:%H:%M:%S') test[c] = pd.to_datetime(test[c], format = '%d%b%y:%H:%M:%S') c1 = 'VAR_0217' c2 = 'VAR_0073' # mask = (~test[c1].isnull()) & (~test[c2].isnull()) # sc2(test.ix[mask,c1].values,test.ix[mask,c2].values,alpha=0.7,c = 'black') mask = (~train[c1].isnull()) & (~train[c2].isnull()) sc2(train.loc[mask,c1].values,train.loc[mask,c2].values,c=train.loc[mask,'target'].values) ###Output _____no_output_____
meteology/ulmo_pyconjp2016.ipynb
###Markdown 事例1: ulmoで気象データと戯れる 1-1 東京の最高気温のプロット - ulmoとプロット系のライブラリを読み込む ###Code import ulmo import pandas import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown - NOAAが提供する気象データで日本の日毎の気象データをさがす- その中の東京のデータをさがす ###Code st = ulmo.ncdc.ghcn_daily.get_stations(country='JA', as_dataframe=True) st[st.name.str.contains('TOKYO')] ###Output _____no_output_____ ###Markdown - 東京の気象データがあったので,pandasのデータフレームに ###Code data = ulmo.ncdc.ghcn_daily.get_data('JA000047662', as_dataframe=True) ###Output _____no_output_____ ###Markdown - 最高気温だけを取り出して,スケーリングをキチンとしてプロット ###Code tm = data['TMAX'].copy() tm.value = tm.value/10.0 tm['value'].plot() ###Output _____no_output_____ ###Markdown 1-2 Daymet気象データ - ORNL Daymet: https://daymet.ornl.gov/- 北米の1kmx1kmのグリッド解像度の日次気象データ - 2012年から2013年にかけて,- 緯度35.9313167, 経度-84.3104124の場所の気象 ###Code from ulmo.nasa import daymet ornl_lat, ornl_long = 35.9313167, -84.3104124 df = daymet.get_daymet_singlepixel(longitude=ornl_long, latitude=ornl_lat, years=[2012,2013]) df.head() ###Output _____no_output_____ ###Markdown - 温度変化をグラフに- 15日の移動平均をとった最高気温,最低気温を同時に ###Code fig, (ax1, ax2) = plt.subplots(2, figsize=(18, 10), sharex=True) rolling15day = df.rolling(center=False,window=15).mean() ax1.fill_between(rolling15day.index, rolling15day.tmin, rolling15day.tmax, alpha=0.5, lw=0) ax1.plot(df.index, df[['tmax', 'tmin']].mean(axis=1), lw=2, alpha=0.5) ax1.set_title('Daymet temp at ORNL', fontsize=20) ax1.set_ylabel(u'Temp. (°C)', fontsize=20) monthlysum = df.resample("M").sum() ax2.bar(monthlysum.index, monthlysum.prcp, width=20,) ax2.set_title('Daymet precip at ORNL', fontsize=20) ax2.set_ylabel(u'Precip. (mm)', fontsize=20) fig.tight_layout() fig ###Output _____no_output_____ ###Markdown - デンバーとマイアミの気温を通年で比較 ###Code denver_loc = (-104.9903, 39.7392) miami_loc = (-80.2089, 25.7753) denver = daymet.get_daymet_singlepixel(longitude=denver_loc[0], latitude=denver_loc[1], years=[2012, 2013, 2014]) miami = daymet.get_daymet_singlepixel(longitude=miami_loc[0], latitude=miami_loc[1], years=[2012, 2013, 2014]) sns.set_context("talk") fig, ax1 = plt.subplots(1, figsize=(18, 10)) den_15day = denver.rolling(center=False,window=15).mean() ax1.fill_between(den_15day.index, den_15day.tmin, den_15day.tmax, alpha=0.4, lw=0, label='Denver', color=sns.xkcd_palette(['faded green'])[0]) ax1.set_title('Denver vs Miami temps (15 day rolling mean)', fontsize=20) miami_15day = miami.rolling(center=False,window=15).mean() ax1.fill_between(miami_15day.index, miami_15day.tmin, miami_15day.tmax, alpha=0.4, lw=0, label='Miami', color=sns.xkcd_palette(['dusty purple'])[0]) ax1.set_ylabel(u'Temp. (°C)', fontsize=20) fig.tight_layout() plt.legend(fontsize=20) ###Output _____no_output_____ ###Markdown - フロリダは常夏,しかし夏はデンバーのほうが最高気温が高くなる- 一日の気温差も年間の気温差もデンバーのほうが幅がある ###Code fig ###Output _____no_output_____