path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
yet_another_week/seminar_MCTS.ipynb
###Markdown Seminar: Monte-carlo tree searchIn this seminar, we'll implement a vanilla MCTS planning and use it to solve some Gym envs.But before we do that, we first need to modify gym env to allow saving and loading game states to facilitate backtracking. ###Code from gym.core import Wrapper from pickle import dumps,loads from collections import namedtuple #a container for get_result function below. Works just like tuple, but prettier ActionResult = namedtuple("action_result",("snapshot","observation","reward","is_done","info")) class WithSnapshots(Wrapper): """ Creates a wrapper that supports saving and loading environemnt states. Required for planning algorithms. This class will have access to the core environment as self.env, e.g.: - self.env.reset() #reset original env - self.env.ale.cloneState() #make snapshot for atari. load with .restoreState() - ... You can also use reset, step and render directly for convenience. - s, r, done, _ = self.step(action) #step, same as self.env.step(action) - self.render(close=True) #close window, same as self.env.render(close=True) """ def get_snapshot(self): """ :returns: environment state that can be loaded with load_snapshot Snapshots guarantee same env behaviour each time they are loaded. Warning! Snapshots can be arbitrary things (strings, integers, json, tuples) Don't count on them being pickle strings when implementing MCTS. Developer Note: Make sure the object you return will not be affected by anything that happens to the environment after it's saved. You shouldn't, for example, return self.env. In case of doubt, use pickle.dumps or deepcopy. """ self.render(close=True) #close popup windows since we can't pickle them return dumps(self.env) def load_snapshot(self,snapshot): """ Loads snapshot as current env state. Should not change snapshot inplace (in case of doubt, deepcopy). """ assert not hasattr(self,"_monitor") or hasattr(self.env,"_monitor"), "can't backtrack while recording" self.render(close=True) #close popup windows since we can't load into them self.env = loads(snapshot) def get_result(self,snapshot,action): """ A convenience function that - loads snapshot, - commits action via self.step, - and takes snapshot again :) :returns: next snapshot, next_observation, reward, is_done, info Basically it returns next snapshot and everything that env.step would have returned. """ <your code here load,commit,take snapshot> return ActionResult(<next_snapshot>, #fill in the variables <next_observation>, <reward>, <is_done>, <info>) ###Output _____no_output_____ ###Markdown try out snapshots: ###Code #make env env = WithSnapshots(gym.make("CartPole-v0")) env.reset() n_actions = env.action_space.n print("initial_state:") plt.imshow(env.render('rgb_array')) #create first snapshot snap0 = env.get_snapshot() #play without making snapshots (faster) while True: is_done = env.step(env.action_space.sample())[2] if is_done: print("Whoops! We died!") break print("final state:") plt.imshow(env.render('rgb_array')) plt.show() #reload initial state env.load_snapshot(snap0) print("\n\nAfter loading snapshot") plt.imshow(env.render('rgb_array')) plt.show() #get outcome (snapshot, observation, reward, is_done, info) res = env.get_result(snap0,env.action_space.sample()) snap1, observation, reward = res[:3] #second step res2 = env.get_result(snap1,env.action_space.sample()) ###Output _____no_output_____ ###Markdown MCTS: Monte-Carlo tree searchIn this section, we'll implement the vanilla MCTS algorithm with UCB1-based node selection.We will start by implementing the `Node` class - a simple class that acts like MCTS node and supports some of the MCTS algorithm steps.This MCTS implementation makes some assumptions about the environment, you can find those _in the notes section at the end of the notebook_. ###Code assert isinstance(env,WithSnapshots) class Node: """ a tree node for MCTS """ #metadata: parent = None #parent Node value_sum = 0. #sum of state values from all visits (numerator) times_visited = 0 #counter of visits (denominator) def __init__(self,parent,action,): """ Creates and empty node with no children. Does so by commiting an action and recording outcome. :param parent: parent Node :param action: action to commit from parent Node """ self.parent = parent self.action = action self.children = set() #set of child nodes #get action outcome and save it res = env.get_result(parent.snapshot,action) self.snapshot,self.observation,self.immediate_reward,self.is_done,_ = res def is_leaf(self): return len(self.children)==0 def is_root(self): return self.parent is None def get_mean_value(self): return self.value_sum / self.times_visited if self.times_visited !=0 else 0 def ucb_score(self,scale=10,max_value=1e100): """ Computes ucb1 upper bound using current value and visit counts for node and it's parent. :param scale: Multiplies upper bound by that. From hoeffding inequality, assumes reward range to be [0,scale]. :param max_value: a value that represents infinity (for unvisited nodes) """ if self.times_visited == 0: return max_value #compute ucb-1 additive component (to be added to mean value) #hint: you can use self.parent.times_visited for N times node was considered, # and self.times_visited for n times it was visited U = <your code here> return self.get_mean_value() + scale*U #MCTS steps def select_best_leaf(self): """ Picks the leaf with highest priority to expand Does so by recursively picking nodes with best UCB-1 score until it reaches the leaf. """ if self.is_leaf(): return self children = self.children best_child = <select best child node in terms of node.ucb_score()> return best_child.select_best_leaf() def expand(self): """ Expands the current node by creating all possible child nodes. Then returns one of those children. """ assert not self.is_done, "can't expand from terminal state" for action in range(n_actions): self.children.add(Node(self,action)) return self.select_best_leaf() def rollout(self,t_max=10**4): """ Play the game from this state to the end (done) or for t_max steps. On each step, pick action at random (hint: env.action_space.sample()). Compute sum of rewards from current state till Note 1: use env.action_space.sample() for random action Note 2: if node is terminal (self.is_done is True), just return 0 """ #set env into the appropriate state env.load_snapshot(self.snapshot) obs = self.observation is_done = self.is_done <your code here - rollout and compute reward> return rollout_reward def propagate(self,child_value): """ Uses child value (sum of rewards) to update parents recursively. """ #compute node value my_value = self.immediate_reward + child_value #update value_sum and times_visited self.value_sum+=my_value self.times_visited+=1 #propagate upwards if not self.is_root(): self.parent.propagate(my_value) def safe_delete(self): """safe delete to prevent memory leak in some python versions""" del self.parent for child in self.children: child.safe_delete() del child class Root(Node): def __init__(self,snapshot,observation): """ creates special node that acts like tree root :snapshot: snapshot (from env.get_snapshot) to start planning from :observation: last environment observation """ self.parent = self.action = None self.children = set() #set of child nodes #root: load snapshot and observation self.snapshot = snapshot self.observation = observation self.immediate_reward = 0 self.is_done=False @staticmethod def from_node(node): """initializes node as root""" root = Root(node.snapshot,node.observation) #copy data copied_fields = ["value_sum","times_visited","children","is_done"] for field in copied_fields: setattr(root,field,getattr(node,field)) return root ###Output _____no_output_____ ###Markdown Main MCTS loopWith all we implemented, MCTS boils down to a trivial piece of code. ###Code def plan_mcts(root,n_iters=10): """ builds tree with monte-carlo tree search for n_iters iterations :param root: tree node to plan from :param n_iters: how many select-expand-simulate-propagete loops to make """ for _ in range(n_iters): node = <select best leaf> if node.is_done: node.propagate(0) else: #node is not terminal <expand-simulate-propagate loop> env.reset() ###Output _____no_output_____ ###Markdown Plan and executeIn this section, we use the MCTS implementation to find optimal policy. ###Code root_observation = env.reset() root_snapshot = env.get_snapshot() root = Root(root_snapshot,root_observation) #plan from root: plan_mcts(root,n_iters=1000) from IPython.display import clear_output from itertools import count from gym.wrappers import Monitor total_reward = 0 #sum of rewards test_env = loads(root_snapshot) #env used to show progress for i in count(): #get best child best_child = <select child with highest mean reward> #take action s,r,done,_ = test_env.step(best_child.action) #show image clear_output(True) plt.title("step %i"%i) plt.imshow(test_env.render('rgb_array')) plt.show() total_reward += r if done: print("Finished with reward = ",total_reward) break #discard unrealized part of the tree [because not every child matters :(] for child in root.children: if child != best_child: child.safe_delete() #declare best child a new root root = Root.from_node(best_child) assert not root.is_leaf(), "We ran out of tree! Need more planning! Try growing tree right inside the loop." #you may want to expand tree here #<your code here> ###Output _____no_output_____
homework/homework_4/Homework #4-v3.ipynb
###Markdown Homework 4: Let's simulate a microscopeDue Date: Friday, April 5th at midnightThe goal of this homework assignment is to create a physically accurate simulation of an optical microscope. This should give you an idea of how to treat an imaging system as a black box linear system, by performing filtering in the Fourier domain. This type of model is also applicable to imaging with other EM radiation, ultrasound, MRI, CT etc. Before I forget, I'd like to thank Eric Thompson for helping me translate a simple model that I originally wrote in Matlab into Python.This simulation will: 1. Illuminate a thin sample (with finite thickness variations) with light from a particular angle2. The emerging light will then propagate from the sample to the microscope lens,3. The light will be filtered by the microscope lens, 4. And then will continue to the image sensor and will be detected by the image sensor.Because things are small within a microscope, you have to treat light as a wave. So, we'll be defining the sample, illumination and lens effects as complex-valued vectors.As a first step, you should define all of the variables of interest and an (x,y) coordinate system for the sample. The variables will include the size of the sample, which we can make 0.25 mm (this is a normal size for a microscope sample), the number of discrete elements we'll split the sample up into (1000), the wavelength of light ($\lambda$=0.5 $\mu$m) and the size of the smallest feature that we'll be able to see within the simulated sample, $\Delta x$, which we'll set at half the wavelength of light. You can use the np.linspace function to create x and y axes, and the np.meshgrid function to generate a 2D array of x and y values that will be useful later. ###Code # define the characteristics of light wavelength = .5e-3 # units are mm delta_x = 0.5*wavelength num_samples = 1000 # Define the spatial coordinates of the sample starting_coordinate = (-num_samples/2) * delta_x ending_coordinate = (num_samples/2 - 1) * delta_x #make linspace, meshgrid coordinates as needed x = np.linspace(starting_coordinate,ending_coordinate,num=num_samples) y = np.linspace(starting_coordinate,ending_coordinate,num=num_samples) [xx, yy] = np.meshgrid(x,y) ###Output _____no_output_____ ###Markdown Next, read in an image to use as the test sample. I have included a test target image that is useful to check the resolution of the microscope with. In addition to simulating a sample with this image, please feel free to also use another image of your choice to create a simulated sample. For the assignment, please use the test target image to simulate two different types of sample: one that has both absorption and phase delay (as in the code below), and then later for question (c), one that is only absorptive. ###Code #Define sample absorption sample = plt.imread('resolution_target.png') sample = sample/sample.max() #Add in sample phase delay sample_phase = sample optical_thickness = 20 * wavelength sample = sample * np.exp(1j * sample_phase*optical_thickness/wavelength) #complex exponential represents phase delay #show absolute value of sample = its absorption plt.figure() plt.imshow(np.abs(sample), extent=(x[0], x[-1], y[0], y[-1])) plt.title('The perfect sample') plt.xlabel('mm'); plt.ylabel('mm'); plt.gray() ###Output _____no_output_____ ###Markdown Next, let's model a plane wave hitting this thin sample. I've written down the general form of a plane wave for you guys below. Note that you can simulate the plane wave such that it hits the sample at any desired angle ($\theta_x$,$\theta_y$). ###Code from scipy.signal import convolve2d as conv #Define plane wave plane_wave_angle_x = 0 * np.pi/180 plane_wave_angle_y = 0 * np.pi/180 illumination_plane_wave = np.exp(1j*2*np.pi/wavelength * (np.sin(plane_wave_angle_x) * xx + np.sin(plane_wave_angle_y) * yy)) #Define field emerging from sample emerging_field = conv(illumination_plane_wave, sample, mode='same') ###Output _____no_output_____ ###Markdown Now, let's propagate this field to the lens aperture plane via a Fourier transform, to create the sample spectrum. It is also helpful to define a set of coordinates $(f_x,f_y)$ at this Fourier transform plane. You can use the $(x,y)$ coordinates that you formed above, as well as the relationship $2f_x^{max}=1/\Delta x$, to define the $(f_x,f_y)$ coordinates. That is, the full range of the spatial frequency axis is inversely proportional to the smallest step size in the spatial axis. Please go ahead and plot the magnitude of the sample spectrum with a set of marked and labeled axes (like for the sample in space). It is helpful to plot it on a log scale for visualization. ###Code #define total range of spatial frequency axis, 1/mm fmax = 1/delta_x starting = -fmax ending = fmax #make linspace, meshgrid as needed fx = np.linspace(starting, ending, num=num_samples) fy = np.linspace(starting, ending, num=num_samples) [fxx, fyy] = np.meshgrid(fx,fy) # Take 2D fourier transform of sample FT_sample = np.fft.fft2(sample) # plot the Fourier transform of the sample in inverse mm coordinates plt.figure() plt.imshow( np.log(np.abs(FT_sample)), extent= (fx[0], fx[-1], fy[0], fy[-1]) ) plt.title('Fourier transform of the sample') plt.xlabel('1/mm'); plt.ylabel('1/mm'); plt.gray() np.shape(FT_sample) ###Output _____no_output_____ ###Markdown Next, define the lens transfer function as a circle with a finite radius in the spatial frequency domain. Inside the circle the value of the transfer function is 1, and outside it is 0. Let's make the lens transfer function diameter 1/4th the total spatial frequency axis coordinates. The diameter is set by a parameter called the lens numerical aperture. ###Code #Define lens numerical aperture as percentage of total width of spatial freqeuncy domain L = ending-starting d = 1/4*L #Define lens transfer function as matrix with 1's within desired radius, 0's outside lens = np.zeros(np.shape(FT_sample)) for i in range(0,1000): for j in range(0,1000): if (i-500)**2+(j-500)**2<=np.pi*(d/2)**2: lens[i,j] = 1 # Plot what the transfer function looks like plt.imshow(lens, extent = (-250,250,-250,250)) plt.title('lens transfer function') plt.xlabel('1/mm'); plt.ylabel('1/mm'); plt.gray() np.shape(lens) ###Output _____no_output_____ ###Markdown You can now filter the sample spectrum with the lens transfer function, propagate this filtered spectrum to the image plane, and sample it on a detector that only detects the intensity of light, as we've shown in class. Let's assume the magnification of the lens is 5X (meaning the image of the sample at the detector plane is 5X larger than it is at the lens plane). Please display the resulting image on a new coordinate system, $(x',y')$ which represent the coordinates at the detector plane. ###Code #Create filtered sample spectrum len_filter = np.fft.fft2(lens) filtered = FT_sample*len_filter #Define spatial coordinates at image plane, using magnification ix = np.linspace(starting/5, ending/5, num=num_samples) iy = np.linspace(starting/5, ending/5, num=num_samples) [ixx, iyy] = np.meshgrid(ix,iy) #Propagate filtered sample spectrum to image plane image = np.fft.ifft2(filtered) #Detect intensity (squared magnitude) of resulting field on sensor mag_image = np.abs(image)**2 #Plot resulting image plt.imshow(mag_image, extent=(-50,50,-50,50)) ###Output _____no_output_____ ###Markdown Ok, you've simulated a microscope image! Great! Now let's try to change a few parameters to see what happens. Please try out the following tests and briefly answer the following questions:(a) Let's try changing the illumination angle by 5 degrees. What happens to sample spectrum at the aperture plane? Why does that change the appearance of the image? Try again with a larger angle of illumination that changes the appearance of the image dramatically, such that the background of the image becomes black. This is called a dark field image. Why is there a transition from an image with a bright background to a dark background, and under what illumination angle conditions does this occur?(b) Let's also change the lens numerical aperture. Instead of a circle having a diameter that is 25% the width of the frequency domain, let's try a smaller lens with 10%. How does the appearance of the image change? And why? Next, let's try a wider lens with 50%. Describe how the appearance of the image changes and why. (c) In the code that we provided, the sample both absorbed light and phase-delayed it at different locations across its surface. Now try to repeat the above exercise with a perfectly flat sample, that only absorbs light, and provides a constant phase delay across its surface. How does the sample spectrum change when you remove the phase delay term? How does this alter the appearence of the image, if at all, at different illumination angles?(d) (bonus problem for extra credit) The lens aperture does not have to be a circle - it can be whatever shape you want. Go ahead and add an "apodizer" into the lens, which is (literally) a black circle marked onto the center of the lens. You can model this dark circle by making the center of the lens aperture circle zero, up to some first radius, then the lens aperture is 1 up to some second radius, and then the lens aperture ends and everything is zero again (this will form a ring). How does the appearance of the resulting image change, and why? (a) (b) (c) (d) ###Code d1 = 1/8*L d2 = 1/6*L len2 = np.zeros(np.shape(FT_sample)) for i in range(0,1000): for j in range(0,1000): if (i-500)**2+(j-500)**2>=np.pi*(d1/2)**2 and (i-500)**2+(j-500)**2<=np.pi*(d2/2)**2: len2[i,j] = 1 plt.imshow(len2,extent=(-250,250,-250,250)) ###Output _____no_output_____ ###Markdown Homework 4: Let's simulate a microscopeDue Date: Friday, April 5th at midnightThe goal of this homework assignment is to create a physically accurate simulation of an optical microscope. This should give you an idea of how to treat an imaging system as a black box linear system, by performing filtering in the Fourier domain. This type of model is also applicable to imaging with other EM radiation, ultrasound, MRI, CT etc. Before I forget, I'd like to thank Eric Thompson for helping me translate a simple model that I originally wrote in Matlab into Python.This simulation will: 1. Illuminate a thin sample (with finite thickness variations) with light from a particular angle2. The emerging light will then propagate from the sample to the microscope lens,3. The light will be filtered by the microscope lens, 4. And then will continue to the image sensor and will be detected by the image sensor.Because things are small within a microscope, you have to treat light as a wave. So, we'll be defining the sample, illumination and lens effects as complex-valued vectors.As a first step, you should define all of the variables of interest and an (x,y) coordinate system for the sample. The variables will include the size of the sample, which we can make 0.25 mm (this is a normal size for a microscope sample), the number of discrete elements we'll split the sample up into (1000), the wavelength of light ($\lambda$=0.5 $\mu$m) and the size of the smallest feature that we'll be able to see within the simulated sample, $\Delta x$, which we'll set at half the wavelength of light. You can use the np.linspace function to create x and y axes, and the np.meshgrid function to generate a 2D array of x and y values that will be useful later. ###Code wavelength = .5e-3 # units are mm delta_x = num_samples = # Define the spatial coordinates of the sample starting_coordinate = (-num_samples/2) * delta_x ending_coordinate = (num_samples/2 - 1) * delta_x #make linspace, meshgrid coordinates as needed x = np.linspace... [xx, yy] = meshgrid... ###Output _____no_output_____ ###Markdown Next, read in an image to use as the test sample. I have included a test target image that is useful to check the resolution of the microscope with. In addition to simulating a sample with this image, please feel free to also use another image of your choice to create a simulated sample. For the assignment, please use the test target image to simulate two different types of sample: one that has both absorption and phase delay (as in the code below), and then later for question (c), one that is only absorptive. ###Code #Define sample absorption sample = plt.imread('resolution_target.png') sample = sample/sample.max() #Add in sample phase delay sample_phase = sample optical_thickness = 20 * wavelength sample = sample * np.exp(1j * sample_phase*optical_thickness/wavelength) #complex exponential represents phase delay #show absolute value of sample = its absorption plt.figure() plt.imshow(np.abs(sample), extent=(x[0], x[-1], y[0], y[-1])) plt.title('The perfect sample') plt.xlabel('mm'); plt.ylabel('mm'); plt.gray() ###Output _____no_output_____ ###Markdown Next, let's model a plane wave hitting this thin sample. I've written down the general form of a plane wave for you guys below. Note that you can simulate the plane wave such that it hits the sample at any desired angle ($\theta_x$,$\theta_y$). ###Code #Define plane wave plane_wave_angle_x = 0 * np.pi/180 plane_wave_angle_y = 0 * np.pi/180 illumination_plane_wave = np.exp(1j*2*np.pi/wavelength * (np.sin(plane_wave_angle_x) * xx + np.sin(plane_wave_angle_y) * yy)) #Define field emerging from sample emerging_field = ###Output _____no_output_____ ###Markdown Now, let's propagate this field to the lens aperture plane via a Fourier transform, to create the sample spectrum. It is also helpful to define a set of coordinates $(f_x,f_y)$ at this Fourier transform plane. You can use the $(x,y)$ coordinates that you formed above, as well as the relationship $2f_x^{max}=1/\Delta x$, to define the $(f_x,f_y)$ coordinates. That is, the full range of the spatial frequency axis is inversely proportional to the smallest step size in the spatial axis. Please go ahead and plot the magnitude of the sample spectrum with a set of marked and labeled axes (like for the sample in space). It is helpful to plot it on a log scale for visualization. ###Code #define total range of spatial frequency axis, 1/mm #make linspace, meshgrid as needed # Take 2D fourier transform of sample # plot the Fourier transform of the sample in inverse mm coordinates ###Output _____no_output_____ ###Markdown Next, define the lens transfer function as a circle with a finite radius in the spatial frequency domain. Inside the circle the value of the transfer function is 1, and outside it is 0. Let's make the lens transfer function diameter 1/4th the total spatial frequency axis coordinates. The diameter is set by a parameter called the lens numerical aperture. ###Code #Define lens numerical aperture as percentage of total width of spatial freqeuncy domain #Define lens transfer function as matrix with 1's within desired radius, 0's outside # Plot what the transfer function looks like ###Output _____no_output_____ ###Markdown You can now filter the sample spectrum with the lens transfer function, propagate this filtered spectrum to the image plane, and sample it on a detector that only detects the intensity of light, as we've shown in class. Let's assume the magnification of the lens is 5X (meaning the image of the sample at the detector plane is 5X larger than it is at the lens plane). Please display the resulting image on a new coordinate system, $(x',y')$ which represent the coordinates at the detector plane. ###Code #Create filtered sample spectrum #Define spatial coordinates at image plane, using magnification #Propagate filtered sample spectrum to image plane #Detect intensity (squared magnitude) of resulting field on sensor #Plot resulting image ###Output _____no_output_____ ###Markdown Homework 4: Let's simulate a microscopeDue Date: Friday, April 5th at midnightThe goal of this homework assignment is to create a physically accurate simulation of an optical microscope. This should give you an idea of how to treat an imaging system as a black box linear system, by performing filtering in the Fourier domain. This type of model is also applicable to imaging with other EM radiation, ultrasound, MRI, CT etc. Before I forget, I'd like to thank Eric Thompson for helping me translate a simple model that I originally wrote in Matlab into Python.This simulation will: 1. Illuminate a thin sample (with finite thickness variations) with light from a particular angle2. The emerging light will then propagate from the sample to the microscope lens,3. The light will be filtered by the microscope lens, 4. And then will continue to the image sensor and will be detected by the image sensor.Because things are small within a microscope, you have to treat light as a wave. So, we'll be defining the sample, illumination and lens effects as complex-valued vectors.As a first step, you should define all of the variables of interest and an (x,y) coordinate system for the sample. The variables will include the size of the sample, which we can make 0.25 mm (this is a normal size for a microscope sample), the number of discrete elements we'll split the sample up into (1000), the wavelength of light ($\lambda$=0.5 $\mu$m) and the size of the smallest feature that we'll be able to see within the simulated sample, $\Delta x$, which we'll set at half the wavelength of light. You can use the np.linspace function to create x and y axes, and the np.meshgrid function to generate a 2D array of x and y values that will be useful later. ###Code wavelength = .5e-3 # units are mm delta_x = num_samples = # Define the spatial coordinates of the sample starting_coordinate = (-num_samples/2) * delta_x ending_coordinate = (num_samples/2 - 1) * delta_x #make linspace, meshgrid coordinates as needed x = np.linspace... [xx, yy] = meshgrid... ###Output _____no_output_____ ###Markdown Next, read in an image to use as the test sample. I have included a test target image that is useful to check the resolution of the microscope with. In addition to simulating a sample with this image, please feel free to also use another image of your choice to create a simulated sample. For the assignment, please use the test target image to simulate two different types of sample: one that has both absorption and phase delay (as in the code below), and then later for question (c), one that is only absorptive. ###Code #Define sample absorption sample = plt.imread('resolution_target.png') sample = sample/sample.max() #Add in sample phase delay sample_phase = sample optical_thickness = 20 * wavelength sample = sample * np.exp(1j * sample_phase*optical_thickness/wavelength) #complex exponential represents phase delay #show absolute value of sample = its absorption plt.figure() plt.imshow(np.abs(sample), extent=(x[0], x[-1], y[0], y[-1])) plt.title('The perfect sample') plt.xlabel('mm'); plt.ylabel('mm'); plt.gray() ###Output _____no_output_____ ###Markdown Next, let's model a plane wave hitting this thin sample. I've written down the general form of a plane wave for you guys below. Note that you can simulate the plane wave such that it hits the sample at any desired angle ($\theta_x$,$\theta_y$). ###Code #Define plane wave plane_wave_angle_x = 0 * np.pi/180 plane_wave_angle_y = 0 * np.pi/180 illumination_plane_wave = np.exp(1j*2*np.pi/wavelength * (np.sin(plane_wave_angle_x) * xx + np.sin(plane_wave_angle_y) * yy)) #Define field emerging from sample emerging_field = ###Output _____no_output_____ ###Markdown Now, let's propagate this field to the lens aperture plane via a Fourier transform, to create the sample spectrum. It is also helpful to define a set of coordinates $(f_x,f_y)$ at this Fourier transform plane. You can use the $(x,y)$ coordinates that you formed above, as well as the relationship $2f_x^{max}=1/\Delta x$, to define the $(f_x,f_y)$ coordinates. That is, the full range of the spatial frequency axis is inversely proportional to the smallest step size in the spatial axis. Please go ahead and plot the magnitude of the sample spectrum with a set of marked and labeled axes (like for the sample in space). It is helpful to plot it on a log scale for visualization. ###Code #define total range of spatial frequency axis, 1/mm #make linspace, meshgrid as needed # Take 2D fourier transform of sample # plot the Fourier transform of the sample in inverse mm coordinates ###Output _____no_output_____ ###Markdown Next, define the lens transfer function as a circle with a finite radius in the spatial frequency domain. Inside the circle the value of the transfer function is 1, and outside it is 0. Let's make the lens transfer function diameter 1/4th the total spatial frequency axis coordinates. The diameter is set by a parameter called the lens numerical aperture. ###Code #Define lens numerical aperture as percentage of total width of spatial freqeuncy domain #Define lens transfer function as matrix with 1's within desired radius, 0's outside # Plot what the transfer function looks like ###Output _____no_output_____ ###Markdown You can now filter the sample spectrum with the lens transfer function, propagate this filtered spectrum to the image plane, and sample it on a detector that only detects the intensity of light, as we've shown in class. Let's assume the magnification of the lens is 5X (meaning the image of the sample at the detector plane is 5X larger than it is at the lens plane). Please display the resulting image on a new coordinate system, $(x',y')$ which represent the coordinates at the detector plane. ###Code #Create filtered sample spectrum #Define spatial coordinates at image plane, using magnification #Propagate filtered sample spectrum to image plane #Detect intensity (squared magnitude) of resulting field on sensor #Plot resulting image ###Output _____no_output_____
notebook/mha.ipynb
###Markdown Colab View Source Multi-Headed Attention ###Code import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F %matplotlib inline %config InlineBackend.figure_format='retina' print ("PyTorch version:[%s]."%(torch.__version__)) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print ("device:[%s]."%(device)) ###Output _____no_output_____ ###Markdown Scaled Dot-Product Attention (SDPA)- Data $X \in \mathbb{R}^{n \times d}$ where $n$ is the number data and $d$ is the data dimension- Query and Key $Q, K \in \mathbb{R}^{n \times d_K}$ - Value $V \in \mathbb{R}^{n \times d_V} $$\text{Attention}(Q,K,V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_K}} \right)V \in \mathbb{R}^{n \times d_V} $ ###Code class ScaledDotProductAttention(nn.Module): def forward(self,Q,K,V,mask=None): d_K = K.size()[-1] # key dimension scores = # FILL IN HERE if mask is not None: scores = scores.masked_fill(mask==0, -1e9) attention = F.softmax(scores,dim=-1) out = attention.matmul(V) return out,attention # Demo run of scaled dot product attention SPDA = ScaledDotProductAttention() n_batch,d_K,d_V = 3,128,256 # d_K(=d_Q) does not necessarily be equal to d_V n_Q,n_K,n_V = 30,50,50 Q = torch.rand(n_batch,n_Q,d_K) K = torch.rand(n_batch,n_K,d_K) V = torch.rand(n_batch,n_V,d_V) out,attention = SPDA.forward(Q,K,V,mask=None) def sh(x): return str(x.shape)[11:-1] print ("SDPA: Q%s K%s V%s => out%s attention%s"% (sh(Q),sh(K),sh(V),sh(out),sh(attention))) # It supports 'multi-headed' attention n_batch,n_head,d_K,d_V = 3,5,128,256 n_Q,n_K,n_V = 30,50,50 # n_K and n_V should be the same Q = torch.rand(n_batch,n_head,n_Q,d_K) K = torch.rand(n_batch,n_head,n_K,d_K) V = torch.rand(n_batch,n_head,n_V,d_V) out,attention = SPDA.forward(Q,K,V,mask=None) # out: [n_batch x n_head x n_Q x d_V] # attention: [n_batch x n_head x n_Q x n_K] def sh(x): return str(x.shape)[11:-1] print ("(Multi-Headed) SDPA: Q%s K%s V%s => out%s attention%s"% (sh(Q),sh(K),sh(V),sh(out),sh(attention))) ###Output _____no_output_____ ###Markdown Multi-Headed Attention (MHA)$\text{head}_{\color{red}i} = \text{Attention}(Q {\color{green}W}^Q_{\color{red}i},K {\color{green}W}^K_{\color{red}i}, V {\color{green}W}^V_{\color{red}i}) $ ###Code class MultiHeadedAttention(nn.Module): def __init__(self,d_feat=128,n_head=5,actv=F.relu,USE_BIAS=True,dropout_p=0.1,device=None): """ :param d_feat: feature dimension :param n_head: number of heads :param actv: activation after each linear layer :param USE_BIAS: whether to use bias :param dropout_p: dropout rate :device: which device to use (e.g., cuda:0) """ super(MultiHeadedAttention,self).__init__() if (d_feat%n_head) != 0: raise ValueError("d_feat(%d) should be divisible by b_head(%d)"%(d_feat,n_head)) self.d_feat = d_feat self.n_head = n_head self.d_head = self.d_feat // self.n_head self.actv = actv self.USE_BIAS = USE_BIAS self.dropout_p = dropout_p # prob. of zeroed self.lin_Q = nn.Linear(self.d_feat,self.d_feat,self.USE_BIAS) self.lin_K = nn.Linear(self.d_feat,self.d_feat,self.USE_BIAS) self.lin_V = nn.Linear(self.d_feat,self.d_feat,self.USE_BIAS) self.lin_O = nn.Linear(self.d_feat,self.d_feat,self.USE_BIAS) self.dropout = nn.Dropout(p=self.dropout_p) def forward(self,Q,K,V,mask=None): """ :param Q: [n_batch, n_Q, d_feat] :param K: [n_batch, n_K, d_feat] :param V: [n_batch, n_V, d_feat] <= n_K and n_V must be the same :param mask: """ n_batch = Q.shape[0] Q_feat = self.lin_Q(Q) K_feat = self.lin_K(K) V_feat = self.lin_V(V) # Q_feat: [n_batch, n_Q, d_feat] # K_feat: [n_batch, n_K, d_feat] # V_feat: [n_batch, n_V, d_feat] # Multi-head split of Q, K, and V (d_feat = n_head*d_head) Q_split = Q_feat.view(n_batch, -1, self.n_head, self.d_head).permute(0, 2, 1, 3) K_split = K_feat.view(n_batch, -1, self.n_head, self.d_head).permute(0, 2, 1, 3) V_split = V_feat.view(n_batch, -1, self.n_head, self.d_head).permute(0, 2, 1, 3) # Q_split: [n_batch, n_head, n_Q, d_head] # K_split: [n_batch, n_head, n_K, d_head] # V_split: [n_batch, n_head, n_V, d_head] # Multi-Headed Attention d_K = K.size()[-1] # key dimension scores = # FILL IN HERE if mask is not None: scores = scores.masked_fill(mask==0,-1e9) attention = torch.softmax(scores,dim=-1) x_raw = torch.matmul(self.dropout(attention),V_split) # dropout is NOT mentioned in the paper # attention: [n_batch, n_head, n_Q, n_K] # x_raw: [n_batch, n_head, n_Q, d_head] # Reshape x x_rsh1 = x_raw.permute(0,2,1,3).contiguous() # x_rsh1: [n_batch, n_Q, n_head, d_head] x_rsh2 = x_rsh1.view(n_batch,-1,self.d_feat) # x_rsh2: [n_batch, n_Q, d_feat] # Linear x = self.lin_O(x_rsh2) # x: [n_batch, n_Q, d_feat] out = {'Q_feat':Q_feat,'K_feat':K_feat,'V_feat':V_feat, 'Q_split':Q_split,'K_split':K_split,'V_split':V_split, 'scores':scores,'attention':attention, 'x_raw':x_raw,'x_rsh1':x_rsh1,'x_rsh2':x_rsh2,'x':x} return out # Self-Attention Layer n_batch = 128 n_src = 32 d_feat = 200 n_head = 5 src = torch.rand(n_batch,n_src,d_feat) self_attention = MultiHeadedAttention( d_feat=d_feat,n_head=n_head,actv=F.relu,USE_BIAS=True,dropout_p=0.1,device=device) out = self_attention.forward(src,src,src,mask=None) Q_feat,K_feat,V_feat = out['Q_feat'],out['K_feat'],out['V_feat'] Q_split,K_split,V_split = out['Q_split'],out['K_split'],out['V_split'] scores,attention = out['scores'],out['attention'] x_raw,x_rsh1,x_rsh2,x = out['x_raw'],out['x_rsh1'],out['x_rsh2'],out['x'] # Print out shapes def sh(_x): return str(_x.shape)[11:-1] print ("Input src:\t%s \t= [n_batch, n_src, d_feat]"%(sh(src))) print () print ("Q_feat: \t%s \t= [n_batch, n_src, d_feat]"%(sh(Q_feat))) print ("K_feat: \t%s \t= [n_batch, n_src, d_feat]"%(sh(K_feat))) print ("V_feat: \t%s \t= [n_batch, n_src, d_feat]"%(sh(V_feat))) print () print ("Q_split: \t%s \t= [n_batch, n_head, n_src, d_head]"%(sh(Q_split))) print ("K_split: \t%s \t= [n_batch, n_head, n_src, d_head]"%(sh(K_split))) print ("V_split: \t%s \t= [n_batch, n_head, n_src, d_head]"%(sh(V_split))) print () print ("scores: \t%s \t= [n_batch, n_head, n_src, n_src]"%(sh(scores))) print ("attention:\t%s \t= [n_batch, n_head, n_src, n_src]"%(sh(attention))) print () print ("x_raw: \t%s \t= [n_batch, n_head, n_src, d_head]"%(sh(x_raw))) print ("x_rsh1: \t%s \t= [n_batch, n_src, n_head, d_head]"%(sh(x_rsh1))) print ("x_rsh2: \t%s \t= [n_batch, n_src, d_feat]"%(sh(x_rsh2))) print () print ("Output x: \t%s \t= [n_batch, n_src, d_feat]"%(sh(x))) ###Output _____no_output_____
Papermill Runner.ipynb
###Markdown ManualThis notebook takes a input notebook and a list of parameters and then saves them as separate notebooks in the given output directory* input_notebook path to the input ipython notebook* output directory output directory where the notebooks would be stored. This defaults to the home directory* params parameters to the notebook, should be a tuple of dictionaries. Each of the parameters are run as a separate notebook. The number of parameters can be different for each notebook.* names Tuple with the list of names for output notebook. This is to easily identify the output notebooks. In case no names are given, then names are generated automatically in the format name0, name1 etc., Note-----1. Notebooks are run sequentially2. If full list of names are not provided, names are generated for the remaining notebooks3. Notebooks are always saved with ipynb extension4. If your notebook write files such as csv, then include this logic in your notebook to save each output as a separate file. You include include a name parameter in your notebook to solve this problem ###Code ## parameters input_notebook:str = "Example.ipynb" output_directory:str = os.environ['HOME'] params:Tuple[Dict] = ( {'x': 10, 'y': 20}, {'x': 30, 'y': 50} ) names:Tuple[str] = () # Add dummy names for output notebook if len(names) < len(params): missing_names = len(params) - len(names) names = names + tuple([f"name{i}" for i in range(missing_names)]) print(names) for param, name in zip(params, names): if not(name.endswith('ipynb')): name = f"{name}.ipynb" pm.execute_notebook( input_notebook, output_path=os.path.join(output_directory, name), parameters=param, ) ###Output _____no_output_____
quests/tpu/flowers_resnet.ipynb
###Markdown Image Classification from scratch with TPUs on Cloud ML Engine using ResNetThis notebook demonstrates how to do image classification from scratch on a flowers dataset using TPUs and the resnet trainer. ###Code import os PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.9' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ###Output _____no_output_____ ###Markdown Convert JPEG images to TensorFlow RecordsMy dataset consists of JPEG images in Google Cloud Storage. I have two CSV files that are formatted as follows: image-name, categoryInstead of reading the images from JPEG each time, we'll convert the JPEG data and store it as TF Records. ###Code %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | head -5 > /tmp/input.csv cat /tmp/input.csv %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | sed 's/,/ /g' | awk '{print $2}' | sort | uniq > /tmp/labels.txt cat /tmp/labels.txt ###Output _____no_output_____ ###Markdown Clone the TPU repoLet's git clone the repo and get the preprocessing and model files. The model code has imports of the form:import resnet_model as model_libWe will need to change this to:from . import resnet_model as model_lib ###Code %%writefile copy_resnet_files.sh #!/bin/bash rm -rf tpu git clone https://github.com/tensorflow/tpu cd tpu TFVERSION=$1 echo "Switching to version r$TFVERSION" git checkout r$TFVERSION cd .. MODELCODE=tpu/models/official/resnet OUTDIR=mymodel rm -rf $OUTDIR # preprocessing cp -r imgclass $OUTDIR # brings in setup.py and __init__.py cp tpu/tools/datasets/jpeg_to_tf_record.py $OUTDIR/trainer/preprocess.py # model: fix imports for FILE in $(ls -p $MODELCODE | grep -v /); do CMD="cat $MODELCODE/$FILE " for f2 in $(ls -p $MODELCODE | grep -v /); do MODULE=`echo $f2 | sed 's/.py//g'` CMD="$CMD | sed 's/^import ${MODULE}/from . import ${MODULE}/g' " done CMD="$CMD > $OUTDIR/trainer/$FILE" eval $CMD done find $OUTDIR echo "Finished copying files into $OUTDIR" !bash ./copy_resnet_files.sh $TFVERSION ###Output _____no_output_____ ###Markdown Enable TPU service accountAllow Cloud ML Engine to access the TPU and bill to your project ###Code %%writefile enable_tpu_mlengine.sh SVC_ACCOUNT=$(curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ https://ml.googleapis.com/v1/projects/${PROJECT}:getConfig \ | grep tpuServiceAccount | tr '"' ' ' | awk '{print $3}' ) echo "Enabling TPU service account $SVC_ACCOUNT to act as Cloud ML Service Agent" gcloud projects add-iam-policy-binding $PROJECT \ --member serviceAccount:$SVC_ACCOUNT --role roles/ml.serviceAgent echo "Done" !bash ./enable_tpu_mlengine.sh ###Output _____no_output_____ ###Markdown Try preprocessing locally ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel rm -rf /tmp/out python -m trainer.preprocess \ --train_csv /tmp/input.csv \ --validation_csv /tmp/input.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir /tmp/out --runner=DirectRunner !ls -l /tmp/out ###Output _____no_output_____ ###Markdown Now run it over full training and evaluation datasets. This will happen in Cloud Dataflow. ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel gsutil -m rm -rf gs://${BUCKET}/tpu/resnet/data python -m trainer.preprocess \ --train_csv gs://cloud-ml-data/img/flower_photos/train_set.csv \ --validation_csv gs://cloud-ml-data/img/flower_photos/eval_set.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown The above preprocessing step will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud Dataflow section of GCP web console](https://console.cloud.google.com/dataflow) to monitor job progress. You will see something like this Alternately, you can simply copy my already preprocessed files and proceed to the next step:gsutil -m cp gs://cloud-training-demos/tpu/resnet/data/* gs://${BUCKET}/tpu/resnet/copied_data ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown Train on the Cloud ###Code %%bash echo -n "--num_train_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | wc -l) " echo -n "--num_eval_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/eval_set.csv | wc -l) " echo "--num_label_classes=$(cat /tmp/labels.txt | wc -l)" %%bash TOPDIR=gs://${BUCKET}/tpu/resnet OUTDIR=${TOPDIR}/trained JOBNAME=imgclass_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR # Comment out this line to continue training from the last time gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.resnet_main \ --package-path=$(pwd)/mymodel/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_TPU \ --runtime-version=$TFVERSION --python-version=3.5 \ -- \ --data_dir=${TOPDIR}/data \ --model_dir=${OUTDIR} \ --resnet_depth=18 \ --train_batch_size=128 --eval_batch_size=32 --skip_host_call=True \ --steps_per_eval=250 --train_steps=1000 \ --num_train_images=3300 --num_eval_images=370 --num_label_classes=5 \ --export_dir=${OUTDIR}/export ###Output _____no_output_____ ###Markdown The above training job will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud ML Engine section of GCP web console](https://console.cloud.google.com/mlengine) to monitor job progress.The model should finish with a 80-83% accuracy (results will vary):```Eval results: {'global_step': 1000, 'loss': 0.7359053, 'top_1_accuracy': 0.82954544, 'top_5_accuracy': 1.0}``` ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ ###Output _____no_output_____ ###Markdown You can look at the training charts with TensorBoard: ###Code OUTDIR = 'gs://{}/tpu/resnet/trained/'.format(BUCKET) from google.datalab.ml import TensorBoard TensorBoard().start(OUTDIR) TensorBoard().stop(11531) print("Stopped Tensorboard") ###Output _____no_output_____ ###Markdown These were the charts I got (I set smoothing to be zero):As you can see, the final blue dot (eval) is quite close to the lowest training loss, indicating that the model hasn't overfit. The top_1 accuracy on the evaluation dataset, however, is 80% which isn't that great. More data would help. Deploying and predicting with modelDeploy the model: ###Code %%bash MODEL_NAME="flowers" MODEL_VERSION=resnet MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) echo "Deleting/deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" # comment/uncomment the appropriate line to run. The first time around, you will need only the two create calls # But during development, you might need to replace a version by deleting the version and creating it again #gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION ###Output _____no_output_____ ###Markdown We can use saved_model_cli to find out what inputs the model expects: ###Code %%bash saved_model_cli show --dir $(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) --tag_set serve --signature_def serving_default ###Output _____no_output_____ ###Markdown As you can see, the model expects image_bytes. This is typically base64 encoded To predict with the model, let's take one of the example images that is available on Google Cloud Storage and convert it to a base64-encoded array ###Code import base64, sys, json import tensorflow as tf import io with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: with io.open('test.json', 'w') as ofp: image_data = ifp.read() img = base64.b64encode(image_data).decode('utf-8') json.dump({"image_bytes": {"b64": img}}, ofp) !ls -l test.json ###Output _____no_output_____ ###Markdown Send it to the prediction service ###Code %%bash gcloud ml-engine predict --model=flowers --version=resnet --json-instances=./test.json ###Output _____no_output_____ ###Markdown What does CLASS no. 3 correspond to? (remember that classes is 0-based) ###Code %%bash head -4 /tmp/labels.txt | tail -1 ###Output _____no_output_____ ###Markdown Here's how you would invoke those predictions without using gcloud ###Code from googleapiclient import discovery from oauth2client.client import GoogleCredentials import base64, sys, json import tensorflow as tf with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: credentials = GoogleCredentials.get_application_default() api = discovery.build('ml', 'v1', credentials=credentials, discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json') request_data = {'instances': [ {"image_bytes": {"b64": base64.b64encode(ifp.read()).decode('utf-8')}} ]} parent = 'projects/%s/models/%s/versions/%s' % (PROJECT, 'flowers', 'resnet') response = api.projects().predict(body=request_data, name=parent).execute() print("response={0}".format(response)) ###Output _____no_output_____ ###Markdown Image Classification from scratch with TPUs on Cloud ML Engine using ResNetThis notebook demonstrates how to do image classification from scratch on a flowers dataset using TPUs and the resnet trainer. ###Code import os PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.8' %bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ###Output Updated property [core/project]. Updated property [compute/region]. ###Markdown Convert JPEG images to TensorFlow RecordsMy dataset consists of JPEG images in Google Cloud Storage. I have two CSV files that are formatted as follows: image-name, categoryInstead of reading the images from JPEG each time, we'll convert the JPEG data and store it as TF Records. ###Code %bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | head -5 > /tmp/input.csv cat /tmp/input.csv %bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | sed 's/,/ /g' | awk '{print $2}' | sort | uniq > /tmp/labels.txt cat /tmp/labels.txt ###Output daisy dandelion roses sunflowers tulips ###Markdown Clone the TPU repoLet's git clone the repo and get the preprocessing and model files. The model code has imports of the form:import resnet_model as model_libWe will need to change this to:from . import resnet_model as model_lib ###Code %writefile copy_resnet_files.sh #!/bin/bash rm -rf tpu git clone https://github.com/tensorflow/tpu cd tpu TFVERSION=$1 echo "Switching to version r$TFVERSION" git checkout r$TFVERSION cd .. MODELCODE=tpu/models/official/resnet OUTDIR=mymodel rm -rf $OUTDIR # preprocessing cp -r imgclass $OUTDIR # brings in setup.py and __init__.py cp tpu/tools/datasets/jpeg_to_tf_record.py $OUTDIR/trainer/preprocess.py # model: fix imports for FILE in $(ls -p $MODELCODE | grep -v /); do CMD="cat $MODELCODE/$FILE " for f2 in $(ls -p $MODELCODE | grep -v /); do MODULE=`echo $f2 | sed 's/.py//g'` CMD="$CMD | sed 's/^import ${MODULE}/from . import ${MODULE}/g' " done CMD="$CMD > $OUTDIR/trainer/$FILE" eval $CMD done find $OUTDIR echo "Finished copying files into $OUTDIR" !bash ./copy_resnet_files.sh $TFVERSION ###Output _____no_output_____ ###Markdown Enable TPU service accountAllow Cloud ML Engine to access the TPU and bill to your project ###Code %writefile enable_tpu_mlengine.sh SVC_ACCOUNT=$(curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ https://ml.googleapis.com/v1/projects/${PROJECT}:getConfig \ | grep tpuServiceAccount | tr '"' ' ' | awk '{print $3}' ) echo "Enabling TPU service account $SVC_ACCOUNT to act as Cloud ML Service Agent" gcloud projects add-iam-policy-binding $PROJECT \ --member serviceAccount:$SVC_ACCOUNT --role roles/ml.serviceAgent echo "Done" !bash ./enable_tpu_mlengine.sh ###Output _____no_output_____ ###Markdown Try preprocessing locally ###Code %bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel rm -rf /tmp/out python -m trainer.preprocess \ --train_csv /tmp/input.csv \ --validation_csv /tmp/input.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir /tmp/out --runner=DirectRunner !ls -l /tmp/out ###Output total 384 -rw-r--r-- 1 root root 195698 Jun 26 00:20 train-00000-of-00001 -rw-r--r-- 1 root root 195698 Jun 26 00:20 validation-00000-of-00001 ###Markdown Now run it over full training and evaluation datasets. This will happen in Cloud Dataflow. ###Code %bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel gsutil -m rm -rf gs://${BUCKET}/tpu/resnet/data python -m trainer.preprocess \ --train_csv gs://cloud-ml-data/img/flower_photos/train_set.csv \ --validation_csv gs://cloud-ml-data/img/flower_photos/eval_set.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown The above preprocessing step will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud Dataflow section of GCP web console](https://console.cloud.google.com/dataflow) to monitor job progress. You will see something like this Alternately, you can simply copy my already preprocessed files and proceed to the next step:gsutil -m cp gs://cloud-training-demos/tpu/resnet/data/* gs://${BUCKET}/tpu/resnet/copied_data ###Code %bash gsutil ls gs://${BUCKET}/tpu/resnet/data ###Output gs://cloud-training-demos-ml/tpu/resnet/data/train-00000-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00001-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00002-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00003-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00004-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00005-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00006-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00007-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00008-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00009-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00010-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00011-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/train-00012-of-00013 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00000-of-00003 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00001-of-00003 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00002-of-00003 gs://cloud-training-demos-ml/tpu/resnet/data/tmp/ ###Markdown Train on the Cloud ###Code %bash echo -n "--num_train_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | wc -l) " echo -n "--num_eval_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/eval_set.csv | wc -l) " echo "--num_label_classes=$(cat /tmp/labels.txt | wc -l)" %bash TOPDIR=gs://${BUCKET}/tpu/resnet OUTDIR=${TOPDIR}/trained JOBNAME=imgclass_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR # Comment out this line to continue training from the last time gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.resnet_main \ --package-path=$(pwd)/mymodel/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_TPU \ --runtime-version=$TFVERSION \ -- \ --data_dir=${TOPDIR}/data \ --model_dir=${OUTDIR} \ --resnet_depth=18 \ --train_batch_size=128 --eval_batch_size=32 --skip_host_call=True \ --steps_per_eval=250 --train_steps=1000 \ --num_train_images=3300 --num_eval_images=370 --num_label_classes=5 \ --export_dir=${OUTDIR}/export ###Output _____no_output_____ ###Markdown The above training job will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud ML Engine section of GCP web console](https://console.cloud.google.com/mlengine) to monitor job progress. ###Code %bash gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ ###Output gs://cloud-training-demos-ml/tpu/resnet/trained/export/ gs://cloud-training-demos-ml/tpu/resnet/trained/export/1529987998/ ###Markdown You can look at the training charts with TensorBoard: ###Code OUTDIR = 'gs://{}/tpu/resnet/trained/'.format(BUCKET) from google.datalab.ml import TensorBoard TensorBoard().start(OUTDIR) TensorBoard().stop(11531) print("Stopped Tensorboard") ###Output Stopped Tensorboard ###Markdown These were the charts I got (I set smoothing to be zero):As you can see, the final blue dot (eval) is quite close to the lowest training loss, indicating that the model hasn't overfit. The top_1 accuracy on the evaluation dataset, however, is 80% which isn't that great. More data would help. Deploying and predicting with modelDeploy the model: ###Code %bash MODEL_NAME="flowers" MODEL_VERSION=resnet MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) echo "Deleting/deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" # comment/uncomment the appropriate line to run. The first time around, you will need only the two create calls # But during development, you might need to replace a version by deleting the version and creating it again #gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION ###Output _____no_output_____ ###Markdown We can use saved_model_cli to find out what inputs the model expects: ###Code %bash saved_model_cli show --dir $(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) --tag_set serve --signature_def serving_default ###Output The given SavedModel SignatureDef contains the following input(s): inputs['image_bytes'] tensor_info: dtype: DT_STRING shape: (-1) name: Placeholder:0 The given SavedModel SignatureDef contains the following output(s): outputs['classes'] tensor_info: dtype: DT_INT64 shape: (-1) name: ArgMax:0 outputs['probabilities'] tensor_info: dtype: DT_FLOAT shape: (-1, 5) name: softmax_tensor:0 Method name is: tensorflow/serving/predict ###Markdown As you can see, the model expects image_bytes. This is typically base64 encoded To predict with the model, let's take one of the example images that is available on Google Cloud Storage and convert it to a base64-encoded array ###Code import base64, sys, json import tensorflow as tf with tf.gfile.FastGFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'r') as ifp: with open('test.json', 'w') as ofp: image_data = ifp.read() img = base64.b64encode(image_data) json.dump({"image_bytes": {"b64": img}}, ofp) !ls -l test.json ###Output -rw-r--r-- 1 root root 56992 Jun 26 05:33 test.json ###Markdown Send it to the prediction service ###Code %bash gcloud ml-engine predict --model=flowers --version=resnet --json-instances=./test.json ###Output CLASSES PROBABILITIES 3 [0.0012481402372941375, 0.0010495249880477786, 7.82029837864684e-06, 0.9976732134819031, 2.1333773474907503e-05] ###Markdown What does CLASS no. 3 correspond to? (remember that classes is 0-based) ###Code %bash head -4 /tmp/labels.txt | tail -1 ###Output sunflowers ###Markdown Here's how you would invoke those predictions without using gcloud ###Code from googleapiclient import discovery from oauth2client.client import GoogleCredentials import base64, sys, json import tensorflow as tf with tf.gfile.FastGFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'r') as ifp: credentials = GoogleCredentials.get_application_default() api = discovery.build('ml', 'v1', credentials=credentials, discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json') request_data = {'instances': [ {"image_bytes": {"b64": base64.b64encode(ifp.read())}} ]} parent = 'projects/%s/models/%s/versions/%s' % (PROJECT, 'flowers', 'resnet') response = api.projects().predict(body=request_data, name=parent).execute() print "response={0}".format(response) ###Output response={u'predictions': [{u'probabilities': [0.0012481402372941375, 0.0010495249880477786, 7.82029837864684e-06, 0.9976732134819031, 2.1333773474907503e-05], u'classes': 3}]} ###Markdown Flowers Image Classification with TPUs on Cloud ML Engine (ResNet)This notebook demonstrates how to do image classification from scratch on a flowers dataset using TPUs and the resnet trainer. ###Code import os PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.8' %bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ###Output Updated property [core/project]. Updated property [compute/region]. ###Markdown Convert JPEG images to TensorFlow RecordsMy dataset consists of JPEG images in Google Cloud Storage. I have two CSV files that are formatted as follows: image-name, categoryInstead of reading the images from JPEG each time, we'll convert the JPEG data and store it as TF Records. ###Code %bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | head -5 > /tmp/input.csv cat /tmp/input.csv %bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | sed 's/,/ /g' | awk '{print $2}' | sort | uniq > /tmp/labels.txt cat /tmp/labels.txt ###Output daisy dandelion roses sunflowers tulips ###Markdown Enable TPU service accountAllow Cloud ML Engine to access the TPU and bill to your project ###Code %bash SVC_ACCOUNT=$(curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ https://ml.googleapis.com/v1/projects/${PROJECT}:getConfig \ | grep tpuServiceAccount | tr '"' ' ' | awk '{print $3}' ) echo "Enabling TPU service account $SVC_ACCOUNT to act as Cloud ML Service Agent" gcloud projects add-iam-policy-binding $PROJECT \ --member serviceAccount:$SVC_ACCOUNT --role roles/ml.serviceAgent echo "Done" ###Output _____no_output_____ ###Markdown Run preprocessingFirst try it out locally -- note that the inputs are all local paths ###Code %bash export PYTHONPATH=${PYTHONPATH}:${PWD}/imgclass rm -rf /tmp/out python -m trainer.preprocess \ --trainCsv /tmp/input.csv \ --validationCsv /tmp/input.csv \ --labelsFile /tmp/labels.txt \ --projectId $PROJECT \ --outputDir /tmp/out !ls -l /tmp/out !zcat /tmp/out/train-00000* | head ###Output �l�+�� �� 0 image/filename  754296579_30a9ae018c_n.jpg  image/format  JPEG gzip: stdout: Broken pipe ###Markdown Now run it over full training and evaluation datasets. This will happen in Cloud Dataflow. ###Code %bash export PYTHONPATH=${PYTHONPATH}:${PWD}/imgclass gsutil -m rm -rf gs://${BUCKET}/tpu/resnet/data python -m trainer.preprocess \ --trainCsv gs://cloud-ml-data/img/flower_photos/train_set.csv \ --validationCsv gs://cloud-ml-data/img/flower_photos/eval_set.csv \ --labelsFile /tmp/labels.txt \ --projectId $PROJECT \ --outputDir gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown The above preprocessing step will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud Dataflow section of GCP web console](https://console.cloud.google.com/dataflow) to monitor job progress. You will see something like this Alternately, you can simply copy my already preprocessed files and proceed to the next step:gsutil -m cp gs://cloud-training-demos/tpu/resnet/data/* gs://${BUCKET}/tpu/resnet/copied_data ###Code %bash gsutil ls gs://${BUCKET}/tpu/resnet/data ###Output gs://cloud-training-demos-ml/tpu/resnet/data/train-00000-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00001-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00002-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00003-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00004-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00005-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00006-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00007-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00008-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/train-00009-of-00010 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00000-of-00004 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00001-of-00004 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00002-of-00004 gs://cloud-training-demos-ml/tpu/resnet/data/validation-00003-of-00004 gs://cloud-training-demos-ml/tpu/resnet/data/tmp/ ###Markdown Train on the Cloud Get the amoebanet code and package it up. This involves changing imports of the form:import resnet_model as model_libtofrom . import resnet_model as model_libAlso, there are three hardcoded constants in the code for the model:NUM_TRAIN_IMAGES = 1281167NUM_EVAL_IMAGES = 50000LABEL_CLASSES = 1000We'll change them to match our dataset.Then, submit to Cloud ML Engine ###Code %bash echo "NUM_TRAIN_IMAGES = $(gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | wc -l)" echo "NUM_EVAL_IMAGES = $(gsutil cat gs://cloud-ml-data/img/flower_photos/eval_set.csv | wc -l)" echo "LABEL_CLASSES = $(cat /tmp/labels.txt | wc -l)" %bash rm -rf tpu git clone https://github.com/tensorflow/tpu #cd tpu #git checkout r${TFVERSION} # correct version #cd .. # copy over MODELCODE=tpu/models/official/resnet rm -rf tmp mkdir -p tmp/trainer touch tmp/trainer/__init__.py for FILE in $(ls $MODELCODE); do CMD="cat $MODELCODE/$FILE " for f2 in $(ls $MODELCODE); do MODULE=`echo $f2 | sed 's/.py//g'` CMD="$CMD | sed 's/^import ${MODULE}/from . import ${MODULE}/g' " done echo "WARNING! Harcoding #train=3300 #eval=370 #labels=5 -- Change as needed" CMD="$CMD | sed 's/^NUM_TRAIN_IMAGES = 1281167/NUM_TRAIN_IMAGES = 3300/g' " CMD="$CMD | sed 's/^NUM_EVAL_IMAGES = 50000/NUM_EVAL_IMAGES = 370/g' " CMD="$CMD | sed 's/^LABEL_CLASSES = 1000/LABEL_CLASSES = 5/g' " CMD="$CMD > tmp/trainer/$FILE" eval $CMD done cp imgclass/setup.py tmp find tmp %bash TOPDIR=gs://${BUCKET}/tpu/resnet OUTDIR=${TOPDIR}/trained JOBNAME=imgclass_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR # Comment out this line to continue training from the last time gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.resnet_main \ --package-path=$(pwd)/tmp/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_TPU \ --runtime-version=$TFVERSION \ -- \ --data_dir=${TOPDIR}/data \ --model_dir=${OUTDIR} \ --resnet_depth=18 \ --train_batch_size=128 --eval_batch_size=32 --skip_host_call=True \ --train_steps=1000 \ --export_dir=${OUTDIR}/export ###Output _____no_output_____ ###Markdown The above training job will take 12 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud ML Engine section of GCP web console](https://console.cloud.google.com/mlengine) to monitor job progress. FAILS when exporting ###Code %bash gsutil ls -l gs://${BUCKET}/tpu/resnet/trained/ ###Output _____no_output_____ ###Markdown Deploying and predicting with model [doesn't work yet]Deploy the model: ###Code %bash MODEL_NAME="flowers" MODEL_VERSION=amoeba MODEL_LOCATION=gs://${BUCKET}/tpu/amoeba/trained/ echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} #gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} ###Output Deleting and deploying flowers amoeba from gs://cloud-training-demos-ml/tpu/amoeba/trained/ ... this will take a few minutes ###Markdown To predict with the model, let's take one of the example images that is available on Google Cloud Storage ###Code %writefile test.json {"imageurl": "gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg"} ###Output _____no_output_____ ###Markdown Send it to the prediction service ###Code %bash gcloud ml-engine predict --model=flowers --version=${MODEL_TYPE} --json-instances=./test.json ###Output _____no_output_____ ###Markdown Image Classification from scratch with TPUs on Cloud ML Engine using ResNetThis notebook demonstrates how to do image classification from scratch on a flowers dataset using TPUs and the resnet trainer. ###Code import os PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.9' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ###Output _____no_output_____ ###Markdown Convert JPEG images to TensorFlow RecordsMy dataset consists of JPEG images in Google Cloud Storage. I have two CSV files that are formatted as follows: image-name, categoryInstead of reading the images from JPEG each time, we'll convert the JPEG data and store it as TF Records. ###Code %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | head -5 > /tmp/input.csv cat /tmp/input.csv %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | sed 's/,/ /g' | awk '{print $2}' | sort | uniq > /tmp/labels.txt cat /tmp/labels.txt ###Output _____no_output_____ ###Markdown Clone the TPU repoLet's git clone the repo and get the preprocessing and model files. The model code has imports of the form:import resnet_model as model_libWe will need to change this to:from . import resnet_model as model_lib ###Code %%writefile copy_resnet_files.sh #!/bin/bash rm -rf tpu git clone https://github.com/tensorflow/tpu cd tpu TFVERSION=$1 echo "Switching to version r$TFVERSION" git checkout r$TFVERSION cd .. MODELCODE=tpu/models/official/resnet OUTDIR=mymodel rm -rf $OUTDIR # preprocessing cp -r imgclass $OUTDIR # brings in setup.py and __init__.py cp tpu/tools/datasets/jpeg_to_tf_record.py $OUTDIR/trainer/preprocess.py # model: fix imports for FILE in $(ls -p $MODELCODE | grep -v /); do CMD="cat $MODELCODE/$FILE " for f2 in $(ls -p $MODELCODE | grep -v /); do MODULE=`echo $f2 | sed 's/.py//g'` CMD="$CMD | sed 's/^import ${MODULE}/from . import ${MODULE}/g' " done CMD="$CMD > $OUTDIR/trainer/$FILE" eval $CMD done find $OUTDIR echo "Finished copying files into $OUTDIR" !bash ./copy_resnet_files.sh $TFVERSION ###Output _____no_output_____ ###Markdown Enable TPU service accountAllow Cloud ML Engine to access the TPU and bill to your project ###Code %%writefile enable_tpu_mlengine.sh SVC_ACCOUNT=$(curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ https://ml.googleapis.com/v1/projects/${PROJECT}:getConfig \ | grep tpuServiceAccount | tr '"' ' ' | awk '{print $3}' ) echo "Enabling TPU service account $SVC_ACCOUNT to act as Cloud ML Service Agent" gcloud projects add-iam-policy-binding $PROJECT \ --member serviceAccount:$SVC_ACCOUNT --role roles/ml.serviceAgent echo "Done" !bash ./enable_tpu_mlengine.sh ###Output _____no_output_____ ###Markdown Try preprocessing locally ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel rm -rf /tmp/out python -m trainer.preprocess \ --train_csv /tmp/input.csv \ --validation_csv /tmp/input.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir /tmp/out --runner=DirectRunner !ls -l /tmp/out ###Output _____no_output_____ ###Markdown Now run it over full training and evaluation datasets. This will happen in Cloud Dataflow. ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel gsutil -m rm -rf gs://${BUCKET}/tpu/resnet/data python -m trainer.preprocess \ --train_csv gs://cloud-ml-data/img/flower_photos/train_set.csv \ --validation_csv gs://cloud-ml-data/img/flower_photos/eval_set.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown The above preprocessing step will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud Dataflow section of GCP web console](https://console.cloud.google.com/dataflow) to monitor job progress. You will see something like this Alternately, you can simply copy my already preprocessed files and proceed to the next step:gsutil -m cp gs://cloud-training-demos/tpu/resnet/data/* gs://${BUCKET}/tpu/resnet/copied_data ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown Train on the Cloud ###Code %%bash echo -n "--num_train_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | wc -l) " echo -n "--num_eval_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/eval_set.csv | wc -l) " echo "--num_label_classes=$(cat /tmp/labels.txt | wc -l)" %%bash TOPDIR=gs://${BUCKET}/tpu/resnet OUTDIR=${TOPDIR}/trained JOBNAME=imgclass_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR # Comment out this line to continue training from the last time gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.resnet_main \ --package-path=$(pwd)/mymodel/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_TPU \ --runtime-version=$TFVERSION --python-version=3.5 \ -- \ --data_dir=${TOPDIR}/data \ --model_dir=${OUTDIR} \ --resnet_depth=18 \ --train_batch_size=128 --eval_batch_size=32 --skip_host_call=True \ --steps_per_eval=250 --train_steps=1000 \ --num_train_images=3300 --num_eval_images=370 --num_label_classes=5 \ --export_dir=${OUTDIR}/export ###Output _____no_output_____ ###Markdown The above training job will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud ML Engine section of GCP web console](https://console.cloud.google.com/mlengine) to monitor job progress.The model should finish with a 80-83% accuracy (results will vary):```Eval results: {'global_step': 1000, 'loss': 0.7359053, 'top_1_accuracy': 0.82954544, 'top_5_accuracy': 1.0}``` ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ ###Output _____no_output_____ ###Markdown You can look at the training charts with TensorBoard: ###Code OUTDIR = 'gs://{}/tpu/resnet/trained/'.format(BUCKET) from google.datalab.ml import TensorBoard TensorBoard().start(OUTDIR) TensorBoard().stop(11531) print("Stopped Tensorboard") ###Output _____no_output_____ ###Markdown These were the charts I got (I set smoothing to be zero):As you can see, the final blue dot (eval) is quite close to the lowest training loss, indicating that the model hasn't overfit. The top_1 accuracy on the evaluation dataset, however, is 80% which isn't that great. More data would help. Deploying and predicting with modelDeploy the model: ###Code %%bash MODEL_NAME="flowers" MODEL_VERSION=resnet MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) echo "Deleting/deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" # comment/uncomment the appropriate line to run. The first time around, you will need only the two create calls # But during development, you might need to replace a version by deleting the version and creating it again #gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION ###Output _____no_output_____ ###Markdown We can use saved_model_cli to find out what inputs the model expects: ###Code %%bash saved_model_cli show --dir $(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) --tag_set serve --signature_def serving_default ###Output _____no_output_____ ###Markdown As you can see, the model expects image_bytes. This is typically base64 encoded To predict with the model, let's take one of the example images that is available on Google Cloud Storage and convert it to a base64-encoded array ###Code import base64, sys, json import tensorflow as tf import io with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: with io.open('test.json', 'w') as ofp: image_data = ifp.read() img = base64.b64encode(image_data).decode('utf-8') json.dump({"image_bytes": {"b64": img}}, ofp) !ls -l test.json ###Output _____no_output_____ ###Markdown Send it to the prediction service ###Code %%bash gcloud ml-engine predict --model=flowers --version=resnet --json-instances=./test.json ###Output _____no_output_____ ###Markdown What does CLASS no. 3 correspond to? (remember that classes is 0-based) ###Code %%bash head -4 /tmp/labels.txt | tail -1 ###Output _____no_output_____ ###Markdown Here's how you would invoke those predictions without using gcloud ###Code from googleapiclient import discovery from oauth2client.client import GoogleCredentials import base64, sys, json import tensorflow as tf with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: credentials = GoogleCredentials.get_application_default() api = discovery.build('ml', 'v1', credentials=credentials, discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json') request_data = {'instances': [ {"image_bytes": {"b64": base64.b64encode(ifp.read()).decode('utf-8')}} ]} parent = 'projects/%s/models/%s/versions/%s' % (PROJECT, 'flowers', 'resnet') response = api.projects().predict(body=request_data, name=parent).execute() print("response={0}".format(response)) ###Output _____no_output_____ ###Markdown Image Classification from scratch with TPUs on Cloud ML Engine using ResNetThis notebook demonstrates how to do image classification from scratch on a flowers dataset using TPUs and the resnet trainer. ###Code import os PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.9' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ###Output _____no_output_____ ###Markdown Convert JPEG images to TensorFlow RecordsMy dataset consists of JPEG images in Google Cloud Storage. I have two CSV files that are formatted as follows: image-name, categoryInstead of reading the images from JPEG each time, we'll convert the JPEG data and store it as TF Records. ###Code %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | head -5 > /tmp/input.csv cat /tmp/input.csv %%bash gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | sed 's/,/ /g' | awk '{print $2}' | sort | uniq > /tmp/labels.txt cat /tmp/labels.txt ###Output _____no_output_____ ###Markdown Clone the TPU repoLet's git clone the repo and get the preprocessing and model files. The model code has imports of the form:import resnet_model as model_libWe will need to change this to:from . import resnet_model as model_lib ###Code %%writefile copy_resnet_files.sh #!/bin/bash rm -rf tpu git clone https://github.com/tensorflow/tpu cd tpu TFVERSION=$1 echo "Switching to version r$TFVERSION" git checkout r$TFVERSION cd .. MODELCODE=tpu/models/official/resnet OUTDIR=mymodel rm -rf $OUTDIR # preprocessing cp -r imgclass $OUTDIR # brings in setup.py and __init__.py cp tpu/tools/datasets/jpeg_to_tf_record.py $OUTDIR/trainer/preprocess.py # model: fix imports for FILE in $(ls -p $MODELCODE | grep -v /); do CMD="cat $MODELCODE/$FILE " for f2 in $(ls -p $MODELCODE | grep -v /); do MODULE=`echo $f2 | sed 's/.py//g'` CMD="$CMD | sed 's/^import ${MODULE}/from . import ${MODULE}/g' " done CMD="$CMD > $OUTDIR/trainer/$FILE" eval $CMD done find $OUTDIR echo "Finished copying files into $OUTDIR" !bash ./copy_resnet_files.sh $TFVERSION ###Output _____no_output_____ ###Markdown Enable TPU service accountAllow Cloud ML Engine to access the TPU and bill to your project ###Code %%writefile enable_tpu_mlengine.sh SVC_ACCOUNT=$(curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ https://ml.googleapis.com/v1/projects/${PROJECT}:getConfig \ | grep tpuServiceAccount | tr '"' ' ' | awk '{print $3}' ) echo "Enabling TPU service account $SVC_ACCOUNT to act as Cloud ML Service Agent" gcloud projects add-iam-policy-binding $PROJECT \ --member serviceAccount:$SVC_ACCOUNT --role roles/ml.serviceAgent echo "Done" !bash ./enable_tpu_mlengine.sh ###Output _____no_output_____ ###Markdown Try preprocessing locally ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel rm -rf /tmp/out python -m trainer.preprocess \ --train_csv /tmp/input.csv \ --validation_csv /tmp/input.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir /tmp/out --runner=DirectRunner !ls -l /tmp/out ###Output _____no_output_____ ###Markdown Now run it over full training and evaluation datasets. This will happen in Cloud Dataflow. ###Code %%bash export PYTHONPATH=${PYTHONPATH}:${PWD}/mymodel gsutil -m rm -rf gs://${BUCKET}/tpu/resnet/data python -m trainer.preprocess \ --train_csv gs://cloud-ml-data/img/flower_photos/train_set.csv \ --validation_csv gs://cloud-ml-data/img/flower_photos/eval_set.csv \ --labels_file /tmp/labels.txt \ --project_id $PROJECT \ --output_dir gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown The above preprocessing step will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud Dataflow section of GCP web console](https://console.cloud.google.com/dataflow) to monitor job progress. You will see something like this Alternately, you can simply copy my already preprocessed files and proceed to the next step:gsutil -m cp gs://cloud-training-demos/tpu/resnet/data/* gs://${BUCKET}/tpu/resnet/copied_data ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/data ###Output _____no_output_____ ###Markdown Train on the Cloud ###Code %%bash echo -n "--num_train_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/train_set.csv | wc -l) " echo -n "--num_eval_images=$(gsutil cat gs://cloud-ml-data/img/flower_photos/eval_set.csv | wc -l) " echo "--num_label_classes=$(cat /tmp/labels.txt | wc -l)" %%bash TOPDIR=gs://${BUCKET}/tpu/resnet OUTDIR=${TOPDIR}/trained JOBNAME=imgclass_$(date -u +%y%m%d_%H%M%S) echo $OUTDIR $REGION $JOBNAME gsutil -m rm -rf $OUTDIR # Comment out this line to continue training from the last time gcloud ml-engine jobs submit training $JOBNAME \ --region=$REGION \ --module-name=trainer.resnet_main \ --package-path=$(pwd)/mymodel/trainer \ --job-dir=$OUTDIR \ --staging-bucket=gs://$BUCKET \ --scale-tier=BASIC_TPU \ --runtime-version=$TFVERSION --python-version=3.5 \ -- \ --data_dir=${TOPDIR}/data \ --model_dir=${OUTDIR} \ --resnet_depth=18 \ --train_batch_size=128 --eval_batch_size=32 --skip_host_call=True \ --steps_per_eval=250 --train_steps=1000 \ --num_train_images=3300 --num_eval_images=370 --num_label_classes=5 \ --export_dir=${OUTDIR}/export ###Output _____no_output_____ ###Markdown The above training job will take 15-20 minutes. Wait for the job to finish before you proceed. Navigate to [Cloud ML Engine section of GCP web console](https://console.cloud.google.com/mlengine) to monitor job progress.The model should finish with a 80-83% accuracy (results will vary):```Eval results: {'global_step': 1000, 'loss': 0.7359053, 'top_1_accuracy': 0.82954544, 'top_5_accuracy': 1.0}``` ###Code %%bash gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ ###Output _____no_output_____ ###Markdown You can look at the training charts with TensorBoard: ###Code OUTDIR = 'gs://{}/tpu/resnet/trained/'.format(BUCKET) from google.datalab.ml import TensorBoard TensorBoard().start(OUTDIR) TensorBoard().stop(11531) print("Stopped Tensorboard") ###Output _____no_output_____ ###Markdown These were the charts I got (I set smoothing to be zero):As you can see, the final blue dot (eval) is quite close to the lowest training loss, indicating that the model hasn't overfit. The top_1 accuracy on the evaluation dataset, however, is 80% which isn't that great. More data would help. Deploying and predicting with modelDeploy the model: ###Code %%bash MODEL_NAME="flowers" MODEL_VERSION=resnet MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) echo "Deleting/deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" # comment/uncomment the appropriate line to run. The first time around, you will need only the two create calls # But during development, you might need to replace a version by deleting the version and creating it again #gcloud ml-engine versions delete --quiet ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version=$TFVERSION ###Output _____no_output_____ ###Markdown We can use saved_model_cli to find out what inputs the model expects: ###Code %%bash saved_model_cli show --dir $(gsutil ls gs://${BUCKET}/tpu/resnet/trained/export/ | tail -1) --tag_set serve --signature_def serving_default ###Output _____no_output_____ ###Markdown As you can see, the model expects image_bytes. This is typically base64 encoded To predict with the model, let's take one of the example images that is available on Google Cloud Storage and convert it to a base64-encoded array ###Code import base64, sys, json import tensorflow as tf import io with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: with io.open('test.json', 'w') as ofp: image_data = ifp.read() img = base64.b64encode(image_data).decode('utf-8') json.dump({"image_bytes": {"b64": img}}, ofp) !ls -l test.json ###Output _____no_output_____ ###Markdown Send it to the prediction service ###Code %%bash gcloud ml-engine predict --model=flowers --version=resnet --json-instances=./test.json ###Output _____no_output_____ ###Markdown What does CLASS no. 3 correspond to? (remember that classes is 0-based) ###Code %%bash head -4 /tmp/labels.txt | tail -1 ###Output _____no_output_____ ###Markdown Here's how you would invoke those predictions without using gcloud ###Code from googleapiclient import discovery from oauth2client.client import GoogleCredentials import base64, sys, json import tensorflow as tf with tf.gfile.GFile('gs://cloud-ml-data/img/flower_photos/sunflowers/1022552002_2b93faf9e7_n.jpg', 'rb') as ifp: credentials = GoogleCredentials.get_application_default() api = discovery.build('ml', 'v1', credentials=credentials, discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json') request_data = {'instances': [ {"image_bytes": {"b64": base64.b64encode(ifp.read()).decode('utf-8')}} ]} parent = 'projects/%s/models/%s/versions/%s' % (PROJECT, 'flowers', 'resnet') response = api.projects().predict(body=request_data, name=parent).execute() print("response={0}".format(response)) ###Output _____no_output_____
ml4trading-2ed/18_convolutional_neural_nets/06_cnn_for_trading_features_to_clustered_image_format.ipynb
###Markdown CNN for Trading - Part 2: From Time-Series Features to Clustered Images To exploit the grid-like structure of time-series data, we can use CNN architectures for univariate and multivariate time series. In the latter case, we consider different time series as channels, similar to the different color signals.An alternative approach converts a time series of alpha factors into a two-dimensional format to leverage the ability of CNNs to detect local patterns. [Sezer and Ozbayoglu (2018)](https://www.researchgate.net/publication/324802031_Algorithmic_Financial_Trading_with_Deep_Convolutional_Neural_Networks_Time_Series_to_Image_Conversion_Approach) propose CNN-TA, which computes 15 technical indicators for different intervals and uses hierarchical clustering (see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning) to locate indicators that behave similarly close to each other in a two-dimensional grid.The authors train a CNN similar to the CIFAR-10 example we used earlier to predict whether to buy, hold, or sell an asset on a given day. They compare the CNN performance to "buy-and-hold" and other models and find that it outperforms all alternatives using daily price series for Dow 30 stocks and the nine most-traded ETFs over the 2007-2017 time period.The section on *CNN for Trading* consists of three notebooks that experiment with this approach using daily US equity price data. They demonstrate 1. How to compute relevant financial features2. How to convert a similar set of indicators into image format and cluster them by similarity3. How to train a CNN to predict daily returns and evaluate a simple long-short strategy based on the resulting signals. Selecting and Clustering Features The next steps that we will tackle in this notebook are 1. Select the 15 most relevant features from the 20 candidates to fill the 15×15 input grid.2. Apply hierarchical clustering to identify features that behave similarly and order the columns and the rows of the grid accordingly. Imports & Settings ###Code import warnings warnings.filterwarnings('ignore') %matplotlib inline from pathlib import Path import pandas as pd from tqdm import tqdm from scipy.spatial.distance import pdist from scipy.cluster.hierarchy import dendrogram, linkage, cophenet from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import mutual_info_regression import matplotlib.pyplot as plt import seaborn as sns MONTH = 21 YEAR = 12 * MONTH START = '2001-01-01' END = '2017-12-31' sns.set_style('white') idx = pd.IndexSlice results_path = Path('results', 'cnn_for_trading') if not results_path.exists(): results_path.mkdir(parents=True) ###Output _____no_output_____ ###Markdown Load Model Data ###Code with pd.HDFStore('data.h5') as store: features = store.get('features') targets = store.get('targets') features.info() targets.info() ###Output <class 'pandas.core.frame.DataFrame'> MultiIndex: 2378728 entries, ('A', Timestamp('2001-01-02 00:00:00')) to ('ZTS', Timestamp('2017-12-29 00:00:00')) Data columns (total 4 columns): # Column Dtype --- ------ ----- 0 r01_fwd float64 1 r01dec_fwd float64 2 r05_fwd float64 3 r05dec_fwd float64 dtypes: float64(4) memory usage: 81.8+ MB ###Markdown Select Features using Mutual Information To this end, we estimate the mutual information for each indicator and the 15 intervals with respect to our target, the one-day forward returns. As discussed in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, scikit-learn provides the `mutual_info_regression()` function that makes this straightforward, albeit time-consuming and memory-intensive. To accelerate the process, we randomly sample 100,000 observations: ###Code mi = {} for t in tqdm([1, 5]): target = f'r{t:02}_fwd' # sample a smaller number to speed up the computation df = features.join(targets[target]).dropna().sample(n=100000) X = df.drop(target, axis=1) y = df[target] mi[t] = pd.Series(mutual_info_regression(X=X, y=y), index=X.columns).sort_values(ascending=False) mutual_info = pd.DataFrame(mi) mutual_info.to_hdf('data.h5', 'mutual_info') mutual_info = pd.read_hdf('data.h5', 'mutual_info') mi_by_indicator = (mutual_info.groupby(mutual_info. index.to_series() .str.split('_').str[-1]) .mean() .rank(ascending=False) .sort_values(by=1)) mutual_info.boxplot() sns.despine(); ###Output _____no_output_____ ###Markdown The below figure shows the mutual information, averaged across the 15 intervals for each indicator. NATR, PPO, and Bollinger Bands are most important from this metric's perspective: ###Code (mutual_info.groupby(mutual_info.index.to_series().str.split('_').str[-1])[1] .mean() .sort_values().plot.barh(title='Mutual Information with 1-Day Forward Returns')) sns.despine() plt.tight_layout() plt.savefig(results_path / 'mutual_info_cnn_features', dpi=300) best_features = mi_by_indicator.head(15).index size = len(best_features) ###Output _____no_output_____ ###Markdown Hierarchical Feature Clustering ###Code features = pd.concat([features.filter(like=f'_{f}') for f in best_features], axis=1) new_cols = {} for feature in best_features: fnames = sorted(features.filter(like=f'_{feature}').columns.tolist()) renamed = [f'{i:02}_{feature}' for i in range(1, len(fnames)+ 1)] new_cols.update(dict(zip(fnames, renamed))) features = features.rename(columns=new_cols).sort_index(1) features.info() ###Output <class 'pandas.core.frame.DataFrame'> MultiIndex: 2378728 entries, ('A', Timestamp('2001-01-02 00:00:00')) to ('ZTS', Timestamp('2017-12-29 00:00:00')) Columns: 225 entries, 01_BBH to 15_WMA dtypes: float64(225) memory usage: 4.1+ GB ###Markdown Hierarchical Clustering As discussed in the first section of this chapter, CNNs rely on the locality of relevant patterns that is typically found in images where nearby pixels are closely related and changes from one pixel to the next are often gradual.To organize our indicators in a similar fashion, we will follow Sezer and Ozbayoglu's approach of applying hierarchical clustering. The goal is to identify features that behave similarly and order the columns and the rows of the grid accordingly.We can build on SciPy's `pairwise_distance()`, `linkage()`, and `dendrogram()` functions that we introduced in *Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning* alongside other forms of clustering. We create a helper function that standardizes the input column-wise to avoid distorting distances among features due to differences in scale, and use the Ward criterion that merges clusters to minimize variance. The functionreturns the order of the leaf nodes in the dendrogram that in turn displays the successive formation of larger clusters: ###Code def cluster_features(data, labels, ax, title): data = StandardScaler().fit_transform(data) pairwise_distance = pdist(data) Z = linkage(data, 'ward') c, coph_dists = cophenet(Z, pairwise_distance) dend = dendrogram(Z, labels=labels, orientation='top', leaf_rotation=0., leaf_font_size=8., ax=ax) ax.set_title(title) return dend['ivl'] ###Output _____no_output_____ ###Markdown To obtain the optimized order of technical indicators in the columns and the different intervals in the rows, we use NumPy's `.reshape()` method to ensure that the dimension we would like to cluster appears in the columns of the two-dimensional array we pass to `cluster_features()`. ###Code fig, axes = plt.subplots(figsize=(15, 4), ncols=2) labels = sorted(best_features) title = 'Column Features: Indicators' col_order = cluster_features(features.dropna().values.reshape(-1, 15).T, labels, axes[0], title) labels = list(range(1, 16)) title = 'Row Features: Indicator Parameters' row_order = cluster_features( features.dropna().values.reshape(-1, 15, 15).transpose((0, 2, 1)).reshape(-1, 15).T, labels, axes[1], title) axes[0].set_xlabel('Indicators') axes[1].set_xlabel('Parameters') sns.despine() fig.tight_layout() fig.savefig(results_path / 'cnn_clustering', dpi=300) ###Output _____no_output_____ ###Markdown We reorder the features accordingly and store the result as inputs for the CNN that we will create in the next step. ###Code feature_order = [f'{i:02}_{j}' for i in row_order for j in col_order] features = features.loc[:, feature_order] features = features.apply(pd.to_numeric, downcast='float') features.info() features.to_hdf('data.h5', 'img_data') ###Output _____no_output_____
Machine Learning/Course files/mean_median_mode/MeanMedianMode.ipynb
###Markdown Mean, Median, Mode, and introducing NumPy Mean vs. Median Let's create some fake income data, centered around 27,000 with a normal distribution and standard deviation of 15,000, with 10,000 data points. (We'll discuss those terms more later, if you're not familiar with them.)Then, compute the mean (average) - it should be close to 27,000: ###Code import numpy as np incomes = np.random.normal(27000, 15000, 10000) print(incomes) np.mean(incomes) ###Output [ 8619.81612548 5920.07345543 26983.92373813 ... 8106.56482905 49970.70844095 31989.46931024] ###Markdown We can segment the income data into 50 buckets, and plot it as a histogram: ###Code %matplotlib inline import matplotlib.pyplot as plt plt.hist(incomes, 50) plt.show() ###Output _____no_output_____ ###Markdown Now compute the median - since we have a nice, even distribution it too should be close to 27,000: ###Code print(np.median(incomes)) print(np.mean(incomes)) ###Output 26989.72733416497 26903.231823171747 ###Markdown Now we'll add Donald Trump into the mix. Darn income inequality! ###Code incomes = np.append(incomes, [1000,1000,1000]) len(incomes) ###Output _____no_output_____ ###Markdown The median won't change much, but the mean does: ###Code np.median(incomes) np.mean(incomes) ###Output _____no_output_____ ###Markdown Mode Next, let's generate some fake age data for 500 people: ###Code ages = np.random.randint(18, high=90, size=500) ages from scipy import stats stats.mode(ages) ###Output _____no_output_____
docs/examples/eda_peaks/eda_peaks.ipynb
###Markdown Analyze Electrodermal Activity (EDA) This example can be referenced by [citing the package](https://neuropsychology.github.io/NeuroKit/cite_us.html).This example shows how to use NeuroKit2 to extract the features from **Electrodermal Activity (EDA)**. ###Code # Load the NeuroKit package and other useful packages import neurokit2 as nk import matplotlib.pyplot as plt # This "decorative" cell should be hidden from the docs once this is implemented: # https://github.com/microsoft/vscode-jupyter/issues/1182 plt.rcParams['figure.figsize'] = [15, 5] # Bigger images plt.rcParams['font.size']= 14 ###Output _____no_output_____ ###Markdown Extract the cleaned EDA signal In this example, we will use a simulated EDA signal. However, you can use any signal you have generated (for instance, extracted from the dataframe using [read_acqknowledge()](https://neuropsychology.github.io/NeuroKit/functions/data.htmlread-acqknowledge). ###Code # Simulate 10 seconds of EDA Signal (recorded at 250 samples / second) eda_signal = nk.eda_simulate(duration=10, sampling_rate=250, scr_number=3, drift=0.01) ###Output _____no_output_____ ###Markdown Once you have a raw EDA signal in the shape of a vector (i.e., a one-dimensional array), or a list, you can use [eda_process()](https://neuropsychology.github.io/NeuroKit/functions/eda.htmleda-process) to process it. ###Code # Process the raw EDA signal signals, info = nk.eda_process(eda_signal, sampling_rate=250) ###Output _____no_output_____ ###Markdown *Note: It is critical that you specify the correct sampling rate of your signal throughout many processing functions, as this allows NeuroKit to have a time reference.* This function outputs two elements, a *dataframe* containing the different signals (e.g., the raw signal, clean signal, SCR samples marking the different features etc.), and a *dictionary* containing information about the Skin Conductance Response (SCR) peaks (e.g., onsets, peak amplitude etc.). Locate Skin Conductance Response (SCR) features The processing function does two important things for our purpose: Firstly, it cleans the signal. Secondly, it detects the location of 1) peak onsets, 2) peak amplitude, and 3) half-recovery time. Let's extract these from the output. ###Code # Extract clean EDA and SCR features cleaned = signals["EDA_Clean"] features = [info["SCR_Onsets"], info["SCR_Peaks"], info["SCR_Recovery"]] ###Output _____no_output_____ ###Markdown We can now visualize the location of the peak onsets, the peak amplitude, as well as the half-recovery time points in the cleaned EDA signal, respectively marked by the red dashed line, blue dashed line, and orange dashed line. ###Code # Visualize SCR features in cleaned EDA signal plot = nk.events_plot(features, cleaned, color=['red', 'blue', 'orange']) ###Output _____no_output_____ ###Markdown Decompose EDA into Phasic and Tonic components We can also decompose the EDA signal into its phasic and tonic components, or more specifically, the ***Phasic Skin Conductance Response (SCR)*** and the ***Tonic Skin Conductance Level (SCL)*** respectively.The SCR represents the stimulus-dependent fast changing signal whereas the SCL is slow-changing and continuous. Separating these two signals helps to provide a more accurate estimation of the true SCR amplitude. ###Code # Filter phasic and tonic components data = nk.eda_phasic(nk.standardize(eda_signal), sampling_rate=250) ###Output _____no_output_____ ###Markdown *Note: here we **standardized** the raw EDA signal before the decomposition, which can be useful in the presence of high inter-individual variations.* We can now add the raw signal to the dataframe containing the two signals, and plot them! ###Code data["EDA_Raw"] = eda_signal # Add raw signal data.plot() ###Output _____no_output_____ ###Markdown Quick Plot You can obtain all of these features by using the [eda_plot()](https://neuropsychology.github.io/NeuroKit/functions/eda.htmleda-plot) function on the dataframe of processed EDA. ###Code # Plot EDA signal nk.eda_plot(signals) ###Output _____no_output_____
ConvMixer_public.ipynb
###Markdown Image classification with the latest Conv-Mixer models**Author:** [LUU THIEN XUAN](https://www.linkedin.com/in/thienxuanluu/)**Date created:** 2021/10/13**Last modified:** 2021/10/13**Description:** Implementing the Conv-Mixer models for CIFAR-100 image classification.https://openreview.net/forum?id=TVHS5Y4dNvM IntroductionThis example implements the recent paper **Patches Are All You Need**, demonstrated on the CIFAR-100 dataset:This example requires TensorFlow 2.4 or higher, as well as[TensorFlow Addons](https://www.tensorflow.org/addons/overview),which can be installed using the following command:```shellpip install -U tensorflow-addons``` Setup ###Code import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers !pip install -U tensorflow-addons import tensorflow_addons as tfa print('tf:',tf.__version__) ###Output Requirement already satisfied: tensorflow-addons in /usr/local/lib/python3.7/dist-packages (0.14.0) Requirement already satisfied: typeguard>=2.7 in /usr/local/lib/python3.7/dist-packages (from tensorflow-addons) (2.7.1) tf: 2.6.0 ###Markdown Prepare the data ###Code num_classes = 100 input_shape = (32, 32, 3) (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data() print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}") print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}") ###Output x_train shape: (50000, 32, 32, 3) - y_train shape: (50000, 1) x_test shape: (10000, 32, 32, 3) - y_test shape: (10000, 1) ###Markdown Configure the hyperparameters ###Code weight_decay = 0.0001 batch_size = 64 num_epochs = 150 dropout_rate = 0.2 image_size = 64 # We'll resize input images to this size. cmlp_dim = 1024 cmlp_depth = 20 cmlp_kernel = 9 cmlp_patch = 14 ###Output _____no_output_____ ###Markdown Build a classification modelWe implement a method that builds a classifier given the processing blocks. ###Code def build_classifier(blocks): inputs = layers.Input(shape=input_shape) # Augment data. augmented = data_augmentation(inputs) # Process x using the module blocks. x = blocks(augmented) # Apply global average pooling representation = layers.GlobalAveragePooling2D()(x) # Apply dropout. representation = layers.Dropout(rate=dropout_rate)(representation) # Compute logits outputs. logits = layers.Dense(num_classes)(representation) # Create the Keras model. return keras.Model(inputs=inputs, outputs=logits) ###Output _____no_output_____ ###Markdown Define an experimentWe implement a utility function to compile, train, and evaluate a given model. ###Code def run_experiment(model): # Create Adam optimizer with weight decay. optimizer = tfa.optimizers.AdamW( learning_rate=learning_rate, weight_decay=weight_decay,) # Compile the model. model.compile( optimizer=optimizer, loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="acc"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"), ],) # Create a learning rate scheduler callback. reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor="val_loss",factor=0.5,patience=5) # Create an early stopping callback. early_stopping = tf.keras.callbacks.EarlyStopping(monitor="val_loss",patience=10,restore_best_weights=True) # Fit the model. history = model.fit( x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs, validation_split=0.1, callbacks=[early_stopping, reduce_lr], ) _, accuracy, top_5_accuracy = model.evaluate(x_test, y_test) print(f"Test accuracy: {round(accuracy * 100, 2)}%") print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%") # Return history to plot learning curves. return history ###Output _____no_output_____ ###Markdown Use data augmentation ###Code data_augmentation = keras.Sequential( [ layers.experimental.preprocessing.Normalization(), layers.experimental.preprocessing.Resizing(image_size, image_size), layers.experimental.preprocessing.RandomFlip("horizontal"), layers.experimental.preprocessing.RandomZoom( height_factor=0.2, width_factor=0.2 ), ], name="data_augmentation", ) # Compute the mean and the variance of the training data for normalization. data_augmentation.layers[0].adapt(x_train) ###Output _____no_output_____ ###Markdown ConvMixer model ![image-37.png]() Implement the ConvMixer module ###Code class Residual(layers.Layer): def __init__(self, fn, *args, **kwargs): super(Residual, self).__init__(*args, **kwargs) self.fn = fn @tf.function(jit_compile=True) def call(self, x): return self.fn(x) + x class ConvMixer(layers.Layer): def __init__(self, dim=None, kernel_size=9, *args, **kwargs): super(ConvMixer, self).__init__(*args, **kwargs) self.dim = dim self.kernel_size = kernel_size self.cmixer = keras.Sequential([ layers.Conv2D(self.dim, self.kernel_size, groups=self.dim, padding="same"), tfa.layers.GELU(), layers.BatchNormalization()]) self.Conv2d = layers.Conv2D(dim, kernel_size=1) self.GELU = tfa.layers.GELU() self.BatchNorm2d = layers.BatchNormalization() @tf.function(jit_compile=True) def call(self, inputs): x = Residual(self.cmixer)(inputs) x = self.Conv2d(x) x = self.GELU(x) x = self.BatchNorm2d(x) return x ###Output _____no_output_____ ###Markdown Build, train, and evaluate the ConvMixer model ###Code cmlp_blocks = keras.Sequential( [ layers.Conv2D(cmlp_dim, kernel_size=cmlp_patch, strides=cmlp_patch), tfa.layers.GELU(), layers.BatchNormalization(), keras.Sequential( [ ConvMixer(dim=cmlp_dim, kernel_size=cmlp_kernel) for _ in range(cmlp_depth) ]) ]) learning_rate = 0.003 cmlp_classifier = build_classifier(cmlp_blocks) history = run_experiment(cmlp_classifier) ###Output Epoch 1/150 704/704 [==============================] - 136s 166ms/step - loss: 5.4079 - acc: 0.0225 - top5-acc: 0.1031 - val_loss: 4.3419 - val_acc: 0.0282 - val_top5-acc: 0.1264 Epoch 2/150 704/704 [==============================] - 91s 129ms/step - loss: 4.1739 - acc: 0.0480 - top5-acc: 0.1892 - val_loss: 4.0420 - val_acc: 0.0740 - val_top5-acc: 0.2348 Epoch 3/150 704/704 [==============================] - 91s 129ms/step - loss: 3.9851 - acc: 0.0762 - top5-acc: 0.2573 - val_loss: 3.8839 - val_acc: 0.0872 - val_top5-acc: 0.2904 Epoch 4/150 704/704 [==============================] - 91s 129ms/step - loss: 3.8493 - acc: 0.0977 - top5-acc: 0.3049 - val_loss: 3.8368 - val_acc: 0.1074 - val_top5-acc: 0.3094 Epoch 5/150 704/704 [==============================] - 91s 129ms/step - loss: 3.7250 - acc: 0.1211 - top5-acc: 0.3476 - val_loss: 3.6203 - val_acc: 0.1378 - val_top5-acc: 0.3770 Epoch 6/150 704/704 [==============================] - 91s 130ms/step - loss: 3.6124 - acc: 0.1389 - top5-acc: 0.3847 - val_loss: 3.5359 - val_acc: 0.1544 - val_top5-acc: 0.4082 Epoch 7/150 704/704 [==============================] - 91s 129ms/step - loss: 3.5475 - acc: 0.1530 - top5-acc: 0.4035 - val_loss: 3.4940 - val_acc: 0.1568 - val_top5-acc: 0.4222 Epoch 8/150 704/704 [==============================] - 91s 129ms/step - loss: 3.4727 - acc: 0.1632 - top5-acc: 0.4234 - val_loss: 3.4598 - val_acc: 0.1716 - val_top5-acc: 0.4352 Epoch 9/150 704/704 [==============================] - 91s 129ms/step - loss: 3.4051 - acc: 0.1807 - top5-acc: 0.4448 - val_loss: 3.4256 - val_acc: 0.1768 - val_top5-acc: 0.4402 Epoch 10/150 704/704 [==============================] - 91s 129ms/step - loss: 3.3537 - acc: 0.1892 - top5-acc: 0.4575 - val_loss: 3.3578 - val_acc: 0.1900 - val_top5-acc: 0.4544 Epoch 11/150 704/704 [==============================] - 91s 129ms/step - loss: 3.2990 - acc: 0.1984 - top5-acc: 0.4740 - val_loss: 3.2938 - val_acc: 0.2012 - val_top5-acc: 0.4714 Epoch 12/150 704/704 [==============================] - 91s 129ms/step - loss: 3.2575 - acc: 0.2069 - top5-acc: 0.4855 - val_loss: 3.2897 - val_acc: 0.1980 - val_top5-acc: 0.4812 Epoch 13/150 704/704 [==============================] - 91s 129ms/step - loss: 3.2052 - acc: 0.2186 - top5-acc: 0.4980 - val_loss: 3.2288 - val_acc: 0.2098 - val_top5-acc: 0.4950 Epoch 14/150 704/704 [==============================] - 91s 129ms/step - loss: 3.1628 - acc: 0.2226 - top5-acc: 0.5075 - val_loss: 3.2416 - val_acc: 0.2128 - val_top5-acc: 0.4902 Epoch 15/150 704/704 [==============================] - 91s 129ms/step - loss: 3.1373 - acc: 0.2294 - top5-acc: 0.5151 - val_loss: 3.2586 - val_acc: 0.2136 - val_top5-acc: 0.4948 Epoch 16/150 704/704 [==============================] - 91s 129ms/step - loss: 3.0751 - acc: 0.2433 - top5-acc: 0.5305 - val_loss: 3.1311 - val_acc: 0.2306 - val_top5-acc: 0.5226 Epoch 17/150 704/704 [==============================] - 91s 129ms/step - loss: 3.0474 - acc: 0.2466 - top5-acc: 0.5408 - val_loss: 3.1868 - val_acc: 0.2212 - val_top5-acc: 0.5154 Epoch 18/150 704/704 [==============================] - 91s 129ms/step - loss: 3.0124 - acc: 0.2542 - top5-acc: 0.5466 - val_loss: 3.1315 - val_acc: 0.2352 - val_top5-acc: 0.5256 Epoch 19/150 704/704 [==============================] - 91s 130ms/step - loss: 2.9837 - acc: 0.2581 - top5-acc: 0.5566 - val_loss: 3.2168 - val_acc: 0.2196 - val_top5-acc: 0.5052 Epoch 20/150 704/704 [==============================] - 91s 130ms/step - loss: 2.9608 - acc: 0.2623 - top5-acc: 0.5603 - val_loss: 3.0401 - val_acc: 0.2500 - val_top5-acc: 0.5444 Epoch 21/150 704/704 [==============================] - 91s 130ms/step - loss: 2.9187 - acc: 0.2723 - top5-acc: 0.5680 - val_loss: 3.0767 - val_acc: 0.2498 - val_top5-acc: 0.5384 Epoch 22/150 704/704 [==============================] - 91s 129ms/step - loss: 2.8830 - acc: 0.2756 - top5-acc: 0.5779 - val_loss: 3.0085 - val_acc: 0.2610 - val_top5-acc: 0.5500 Epoch 23/150 704/704 [==============================] - 91s 129ms/step - loss: 2.8586 - acc: 0.2832 - top5-acc: 0.5860 - val_loss: 3.0303 - val_acc: 0.2616 - val_top5-acc: 0.5416 Epoch 24/150 704/704 [==============================] - 91s 130ms/step - loss: 2.8317 - acc: 0.2881 - top5-acc: 0.5908 - val_loss: 3.0468 - val_acc: 0.2506 - val_top5-acc: 0.5464 Epoch 25/150 704/704 [==============================] - 91s 129ms/step - loss: 2.7993 - acc: 0.2943 - top5-acc: 0.5976 - val_loss: 2.9959 - val_acc: 0.2642 - val_top5-acc: 0.5542 Epoch 26/150 704/704 [==============================] - 91s 129ms/step - loss: 2.7791 - acc: 0.2993 - top5-acc: 0.6075 - val_loss: 3.0182 - val_acc: 0.2570 - val_top5-acc: 0.5452 Epoch 27/150 704/704 [==============================] - 91s 130ms/step - loss: 2.7617 - acc: 0.3024 - top5-acc: 0.6072 - val_loss: 2.9638 - val_acc: 0.2778 - val_top5-acc: 0.5562 Epoch 28/150 704/704 [==============================] - 91s 130ms/step - loss: 2.7244 - acc: 0.3068 - top5-acc: 0.6174 - val_loss: 2.9329 - val_acc: 0.2760 - val_top5-acc: 0.5774 Epoch 29/150 704/704 [==============================] - 91s 130ms/step - loss: 2.7006 - acc: 0.3122 - top5-acc: 0.6208 - val_loss: 2.9474 - val_acc: 0.2762 - val_top5-acc: 0.5664 Epoch 30/150 704/704 [==============================] - 91s 130ms/step - loss: 2.6844 - acc: 0.3135 - top5-acc: 0.6260 - val_loss: 3.0214 - val_acc: 0.2680 - val_top5-acc: 0.5512 Epoch 31/150 704/704 [==============================] - 91s 130ms/step - loss: 2.6609 - acc: 0.3192 - top5-acc: 0.6293 - val_loss: 2.9802 - val_acc: 0.2742 - val_top5-acc: 0.5630 Epoch 32/150 704/704 [==============================] - 91s 129ms/step - loss: 2.6595 - acc: 0.3201 - top5-acc: 0.6338 - val_loss: 3.0148 - val_acc: 0.2718 - val_top5-acc: 0.5492 Epoch 33/150 704/704 [==============================] - 91s 129ms/step - loss: 2.6213 - acc: 0.3294 - top5-acc: 0.6376 - val_loss: 2.9578 - val_acc: 0.2642 - val_top5-acc: 0.5752 Epoch 34/150 704/704 [==============================] - 91s 129ms/step - loss: 2.4008 - acc: 0.3746 - top5-acc: 0.6893 - val_loss: 2.7840 - val_acc: 0.3078 - val_top5-acc: 0.6012 Epoch 35/150 704/704 [==============================] - 91s 129ms/step - loss: 2.3501 - acc: 0.3859 - top5-acc: 0.6966 - val_loss: 2.8085 - val_acc: 0.3088 - val_top5-acc: 0.6066 Epoch 36/150 704/704 [==============================] - 91s 129ms/step - loss: 2.3255 - acc: 0.3903 - top5-acc: 0.7030 - val_loss: 2.8034 - val_acc: 0.3062 - val_top5-acc: 0.6088 Epoch 37/150 704/704 [==============================] - 91s 129ms/step - loss: 2.3029 - acc: 0.3972 - top5-acc: 0.7087 - val_loss: 2.8071 - val_acc: 0.3054 - val_top5-acc: 0.6006 Epoch 38/150 704/704 [==============================] - 91s 129ms/step - loss: 2.2895 - acc: 0.3961 - top5-acc: 0.7130 - val_loss: 2.8415 - val_acc: 0.3044 - val_top5-acc: 0.6006 Epoch 39/150 704/704 [==============================] - 91s 129ms/step - loss: 2.2774 - acc: 0.3991 - top5-acc: 0.7157 - val_loss: 2.7933 - val_acc: 0.3102 - val_top5-acc: 0.6062 Epoch 40/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1166 - acc: 0.4405 - top5-acc: 0.7471 - val_loss: 2.7587 - val_acc: 0.3212 - val_top5-acc: 0.6200 Epoch 41/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1013 - acc: 0.4441 - top5-acc: 0.7492 - val_loss: 2.7656 - val_acc: 0.3214 - val_top5-acc: 0.6184 Epoch 42/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1073 - acc: 0.4423 - top5-acc: 0.7488 - val_loss: 2.7465 - val_acc: 0.3202 - val_top5-acc: 0.6200 Epoch 43/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1149 - acc: 0.4409 - top5-acc: 0.7463 - val_loss: 2.7660 - val_acc: 0.3170 - val_top5-acc: 0.6136 Epoch 44/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1216 - acc: 0.4349 - top5-acc: 0.7501 - val_loss: 2.7410 - val_acc: 0.3192 - val_top5-acc: 0.6214 Epoch 45/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1302 - acc: 0.4352 - top5-acc: 0.7472 - val_loss: 2.7357 - val_acc: 0.3244 - val_top5-acc: 0.6212 Epoch 46/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1406 - acc: 0.4339 - top5-acc: 0.7430 - val_loss: 2.7283 - val_acc: 0.3216 - val_top5-acc: 0.6214 Epoch 47/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1443 - acc: 0.4326 - top5-acc: 0.7439 - val_loss: 2.7311 - val_acc: 0.3244 - val_top5-acc: 0.6220 Epoch 48/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1566 - acc: 0.4285 - top5-acc: 0.7416 - val_loss: 2.7659 - val_acc: 0.3204 - val_top5-acc: 0.6190 Epoch 49/150 704/704 [==============================] - 91s 130ms/step - loss: 2.1643 - acc: 0.4299 - top5-acc: 0.7383 - val_loss: 2.7580 - val_acc: 0.3154 - val_top5-acc: 0.6192 Epoch 50/150 704/704 [==============================] - 91s 130ms/step - loss: 2.1765 - acc: 0.4252 - top5-acc: 0.7383 - val_loss: 2.7798 - val_acc: 0.3132 - val_top5-acc: 0.6126 Epoch 51/150 704/704 [==============================] - 91s 129ms/step - loss: 2.1880 - acc: 0.4220 - top5-acc: 0.7368 - val_loss: 2.7309 - val_acc: 0.3226 - val_top5-acc: 0.6168 Epoch 52/150 704/704 [==============================] - 91s 130ms/step - loss: 2.0753 - acc: 0.4498 - top5-acc: 0.7592 - val_loss: 2.7238 - val_acc: 0.3254 - val_top5-acc: 0.6250 Epoch 53/150 704/704 [==============================] - 91s 130ms/step - loss: 2.1114 - acc: 0.4432 - top5-acc: 0.7508 - val_loss: 2.6953 - val_acc: 0.3308 - val_top5-acc: 0.6294 Epoch 54/150 704/704 [==============================] - 91s 130ms/step - loss: 2.1705 - acc: 0.4300 - top5-acc: 0.7404 - val_loss: 2.8034 - val_acc: 0.3082 - val_top5-acc: 0.6034 Epoch 55/150 704/704 [==============================] - 91s 130ms/step - loss: 2.2115 - acc: 0.4185 - top5-acc: 0.7317 - val_loss: 2.7543 - val_acc: 0.3112 - val_top5-acc: 0.6210 Epoch 56/150 704/704 [==============================] - 91s 130ms/step - loss: 2.2556 - acc: 0.4079 - top5-acc: 0.7227 - val_loss: 2.7410 - val_acc: 0.3180 - val_top5-acc: 0.6176 Epoch 57/150 704/704 [==============================] - 91s 130ms/step - loss: 2.2971 - acc: 0.3980 - top5-acc: 0.7128 - val_loss: 2.8079 - val_acc: 0.3084 - val_top5-acc: 0.6072 Epoch 58/150 704/704 [==============================] - 91s 130ms/step - loss: 2.3305 - acc: 0.3919 - top5-acc: 0.7063 - val_loss: 2.7500 - val_acc: 0.3198 - val_top5-acc: 0.6176 Epoch 59/150 704/704 [==============================] - 91s 130ms/step - loss: 2.2869 - acc: 0.4039 - top5-acc: 0.7153 - val_loss: 2.7592 - val_acc: 0.3118 - val_top5-acc: 0.6122 Epoch 60/150 704/704 [==============================] - 91s 129ms/step - loss: 2.3656 - acc: 0.3840 - top5-acc: 0.6996 - val_loss: 2.8113 - val_acc: 0.2960 - val_top5-acc: 0.6040 Epoch 61/150 704/704 [==============================] - 91s 129ms/step - loss: 2.4386 - acc: 0.3705 - top5-acc: 0.6814 - val_loss: 2.7994 - val_acc: 0.3010 - val_top5-acc: 0.6052 Epoch 62/150 704/704 [==============================] - 91s 129ms/step - loss: 2.5062 - acc: 0.3521 - top5-acc: 0.6667 - val_loss: 2.8871 - val_acc: 0.2996 - val_top5-acc: 0.5852 Epoch 63/150 704/704 [==============================] - 91s 129ms/step - loss: 2.5682 - acc: 0.3387 - top5-acc: 0.6513 - val_loss: 2.9012 - val_acc: 0.2876 - val_top5-acc: 0.5860 313/313 [==============================] - 10s 23ms/step - loss: 2.6583 - acc: 0.3348 - top5-acc: 0.6294 Test accuracy: 33.48% Test top 5 accuracy: 62.94%
module3/3.Assignment/3.Assignment_Solution_RegressionClassification_Module3.ipynb
###Markdown Lambda School Data Science, Unit 2: Predictive Modeling Regression & Classification, Module 3 AssignmentWe're going back to our other **New York City** real estate dataset. Instead of predicting apartment rents, you'll predict property sales prices.But not just for condos in Tribeca...Instead, predict property sales prices for **One Family Dwellings** (`BUILDING_CLASS_CATEGORY` == `'01 ONE FAMILY DWELLINGS'`) using a subset of the data where the **sale price was more than \\$100 thousand and less than $2 million.** The [NYC Department of Finance](https://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page) has a glossary of property sales terms and NYC Building Class Code Descriptions. The data comes from the [NYC OpenData](https://data.cityofnewyork.us/browse?q=NYC%20calendar%20sales) portal.- [X] Do train/test split. Use data from January — March 2019 to train. Use data from April 2019 to test.- [X] Do exploratory visualizations with Seaborn.- [X] Do one-hot encoding of categorical features.- [X] Do feature selection with `SelectKBest`.- [X] Fit a linear regression model with multiple features.- [X] Get mean absolute error for the test set.- [ ] As always, commit your notebook to your fork of the GitHub repo. Stretch Goals- [ ] Add your own stretch goal(s) !- [X] Try [`RidgeCV`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html) instead of Linear Regression, especially if your errors blow up! Watch [Aaron Gallant's 9 minute video on Ridge Regression](https://www.youtube.com/watch?v=XK5jkedy17w) to learn more.- [X] Do [feature scaling](https://scikit-learn.org/stable/modules/preprocessing.html).- [ ] Learn more about feature selection: - ["Permutation importance"](https://www.kaggle.com/dansbecker/permutation-importance) - [scikit-learn's User Guide for Feature Selection](https://scikit-learn.org/stable/modules/feature_selection.html) - [mlxtend](http://rasbt.github.io/mlxtend/) library - scikit-learn-contrib libraries: [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) & [stability-selection](https://github.com/scikit-learn-contrib/stability-selection) - [_Feature Engineering and Selection_](http://www.feat.engineering/) by Kuhn & Johnson.- [ ] Try [statsmodels](https://www.statsmodels.org/stable/index.html) if you’re interested in more inferential statistical approach to linear regression and feature selection, looking at p values and 95% confidence intervals for the coefficients.- [ ] Read [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf), Chapters 1-3, for more math & theory, but in an accessible, readable way (without an excessive amount of formulas or academic pre-requisites).(That book is good regardless of whether your cultural worldview is inferential statistics or predictive machine learning)- [ ] Read Leo Breiman's paper, ["Statistical Modeling: The Two Cultures"](https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726)- [ ] Try [scikit-learn pipelines](https://scikit-learn.org/stable/modules/compose.html):> Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of steps in processing the data, for example feature selection, normalization and classification. Pipeline serves multiple purposes here:> - **Convenience and encapsulation.** You only have to call fit and predict once on your data to fit a whole sequence of estimators.> - **Joint parameter selection.** You can grid search over parameters of all estimators in the pipeline at once.> - **Safety.** Pipelines help avoid leaking statistics from your test data into the trained model in cross-validation, by ensuring that the same samples are used to train the transformers and predictors. ###Code import os, sys in_colab = 'google.colab' in sys.modules # If you're in Colab... if in_colab: # Pull files from Github repo os.chdir('/content') !git init . !git remote add origin https://github.com/LambdaSchool/DS-Unit-2-Regression-Classification.git !git pull origin master # Install required python packages !pip install -r requirements.txt # Change into directory for module os.chdir('module3') # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') import pandas as pd import pandas_profiling # Read New York City property sales data df = pd.read_csv('../data/NYC_Citywide_Rolling_Calendar_Sales.csv') # Change column names: replace spaces with underscores df.columns = [col.replace(' ', '_') for col in df] # SALE_PRICE was read as strings. # Remove symbols, convert to integer df['SALE_PRICE'] = ( df['SALE_PRICE'] .str.replace('$','') .str.replace('-','') .str.replace(',','') .astype(int) ) ###Output _____no_output_____ ###Markdown Use a subset of the dataPredict **One Family Dwellings** (`BUILDING_CLASS_CATEGORY` == `'01 ONE FAMILY DWELLINGS'`) using a subset of the data where the **sale price was more than \\$100 thousand and less than $2 million.** ###Code mask = ((df['BUILDING_CLASS_CATEGORY'] == '01 ONE FAMILY DWELLINGS') & (df['SALE_PRICE'] > 100000) & (df['SALE_PRICE'] < 2000000)) df = df[mask] ###Output _____no_output_____ ###Markdown Do train/test splitUse data from January — March 2019 to train. Use data from April 2019 to test. ###Code df['SALE_DATE'] = pd.to_datetime(df['SALE_DATE'], infer_datetime_format=True) df['SALE_DATE'].describe() cutoff = pd.to_datetime('2019-04-01') train = df[df.SALE_DATE < cutoff] test = df[df.SALE_DATE >= cutoff] train.shape, test.shape import pandas_profiling train.profile_report() ###Output _____no_output_____ ###Markdown Do exploratory visualizations with Seaborn ###Code %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns for col in sorted(train.columns): if train[col].nunique() < 10: try: sns.catplot(x=col, y='SALE_PRICE', data=train, kind='bar', color='grey') plt.show() except: pass numeric = train.select_dtypes('number') for col in sorted(numeric.columns): sns.lmplot(x=col, y='SALE_PRICE', data=train, scatter_kws=dict(alpha=0.05)) plt.show() train.BOROUGH.info() ###Output _____no_output_____ ###Markdown Do one-hot encoding of categorical features ###Code # BOROUGH is a numeric column, but arguably should be a categorical feature, # so convert it from a number to a string train['BOROUGH'] = train['BOROUGH'].astype(str) test['BOROUGH'] = test['BOROUGH'].astype(str) # Check cardinality of non-numeric features train.describe(exclude='number').T.sort_values(by='unique') # Reduce cardinality for NEIGHBORHOOD feature # Get a list of the top 10 neighborhoods top10 = train['NEIGHBORHOOD'].value_counts()[:10].index # At locations where the neighborhood is NOT in the top 10, # replace the neighborhood with 'OTHER' train.loc[~train['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER' test.loc[~test['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER' train['NEIGHBORHOOD'].value_counts() target = 'SALE_PRICE' numerics = train.select_dtypes(include='number').columns.drop(target).tolist() categoricals = train.select_dtypes(exclude='number').columns.tolist() low_cardinality_categoricals = [col for col in categoricals if train[col].nunique() <= 50] features = numerics + low_cardinality_categoricals X_train = train[features] y_train = train[target] X_test = test[features] y_test = test[target] import category_encoders as ce encoder = ce.OneHotEncoder(use_cat_names=True) X_train_encoded = encoder.fit_transform(X_train) X_test_encoded = encoder.transform(X_test) X_train_encoded.head() ###Output _____no_output_____ ###Markdown Fit a linear regression model with multiple features. Get mean absolute error for the test set. ###Code # Drop EASE-MENT, it's null 100% of the time X_train_encoded = X_train_encoded.drop(columns='EASE-MENT') X_test_encoded = X_test_encoded.drop(columns='EASE-MENT') from sklearn.feature_selection import f_regression, SelectKBest from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_encoded) X_test_scaled = scaler.transform(X_test_encoded) for k in range(1, len(X_train_encoded.columns)+1): print(f'{k} features') selector = SelectKBest(score_func=f_regression, k=k) X_train_selected = selector.fit_transform(X_train_scaled, y_train) X_test_selected = selector.transform(X_test_scaled) model = LinearRegression() model.fit(X_train_selected, y_train) y_pred = model.predict(X_test_selected) mae = mean_absolute_error(y_test, y_pred) print(f'Test MAE: ${mae:,.0f} \n') ###Output 1 features Test MAE: $183,641 2 features Test MAE: $182,569 3 features Test MAE: $182,569 4 features Test MAE: $183,441 5 features Test MAE: $186,532 6 features Test MAE: $182,366 7 features Test MAE: $194,204 8 features Test MAE: $172,203 9 features Test MAE: $171,721 10 features Test MAE: $162,840 11 features Test MAE: $163,984 12 features Test MAE: $162,140 13 features Test MAE: $161,428 14 features Test MAE: $161,430 15 features Test MAE: $161,301 16 features Test MAE: $163,095 17 features Test MAE: $162,964 18 features Test MAE: $162,964 19 features Test MAE: $162,752 20 features Test MAE: $162,752 21 features Test MAE: $162,560 22 features Test MAE: $163,008 23 features Test MAE: $163,057 24 features Test MAE: $163,057 25 features Test MAE: $163,057 26 features Test MAE: $162,779 27 features Test MAE: $20,955,941,571,174,472 28 features Test MAE: $162,722 29 features Test MAE: $27,788,224,381,348 30 features Test MAE: $6,730,344,069,832,371 31 features Test MAE: $9,791,729,318,812,754 32 features Test MAE: $17,988,915,186,908,660 33 features Test MAE: $23,777,119,250,355,996 34 features Test MAE: $383,411,860,984,814 35 features Test MAE: $162,480 36 features Test MAE: $162,288 37 features Test MAE: $67,860,659,198,659,568 38 features Test MAE: $10,800,362,380,187,296 39 features Test MAE: $355,375,768,552,818 40 features Test MAE: $102,137,346,124,192 41 features Test MAE: $8,715,239,514,480,743 42 features Test MAE: $12,459,933,556,297,932 43 features Test MAE: $806,930,518,644,283 44 features Test MAE: $1,921,978,148,133,319 45 features Test MAE: $712,528,228,621,818 46 features Test MAE: $161,167 47 features Test MAE: $22,116,745,373,162 48 features Test MAE: $1,130,206,224,564,043 49 features Test MAE: $6,857,552,206,587,154 50 features Test MAE: $161,358 51 features Test MAE: $109,580,766,038,480 52 features Test MAE: $313,103,093,058,772 53 features Test MAE: $5,089,114,232,864,148 54 features Test MAE: $636,750,177,700,398 ###Markdown Try [`RidgeCV`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html) instead of Linear Regression, especially if your errors blow up ###Code from sklearn.linear_model import RidgeCV for k in range(1, len(X_train_encoded.columns)+1): print(f'{k} features') selector = SelectKBest(score_func=f_regression, k=k) X_train_selected = selector.fit_transform(X_train_scaled, y_train) X_test_selected = selector.transform(X_test_scaled) model = RidgeCV() model.fit(X_train_selected, y_train) y_pred = model.predict(X_test_selected) mae = mean_absolute_error(y_test, y_pred) print(f'Test MAE: ${mae:,.0f} \n') # Which features were used? k = 15 selector = SelectKBest(score_func=f_regression, k=k) X_train_selected = selector.fit_transform(X_train_scaled, y_train) all_names = X_train_encoded.columns selected_mask = selector.get_support() selected_names = all_names[selected_mask] unselected_names = all_names[~selected_mask] print('Features selected:') for name in selected_names: print(name) print('\nFeatures not selected:') for name in unselected_names: print(name) ###Output Features selected: BLOCK ZIP_CODE COMMERCIAL_UNITS TOTAL_UNITS GROSS_SQUARE_FEET BOROUGH_3 BOROUGH_2 BOROUGH_5 NEIGHBORHOOD_OTHER NEIGHBORHOOD_BAYSIDE NEIGHBORHOOD_FLUSHING-NORTH BUILDING_CLASS_AT_PRESENT_A5 BUILDING_CLASS_AT_PRESENT_A3 BUILDING_CLASS_AT_TIME_OF_SALE_A5 BUILDING_CLASS_AT_TIME_OF_SALE_A3 Features not selected: LOT RESIDENTIAL_UNITS YEAR_BUILT TAX_CLASS_AT_TIME_OF_SALE BOROUGH_4 BOROUGH_1 NEIGHBORHOOD_QUEENS VILLAGE NEIGHBORHOOD_LAURELTON NEIGHBORHOOD_SO. JAMAICA-BAISLEY PARK NEIGHBORHOOD_SPRINGFIELD GARDENS NEIGHBORHOOD_GREAT KILLS NEIGHBORHOOD_SOUTH OZONE PARK NEIGHBORHOOD_MIDLAND BEACH NEIGHBORHOOD_ST. ALBANS BUILDING_CLASS_CATEGORY_01 ONE FAMILY DWELLINGS TAX_CLASS_AT_PRESENT_1 TAX_CLASS_AT_PRESENT_1D BUILDING_CLASS_AT_PRESENT_A9 BUILDING_CLASS_AT_PRESENT_A1 BUILDING_CLASS_AT_PRESENT_A0 BUILDING_CLASS_AT_PRESENT_A2 BUILDING_CLASS_AT_PRESENT_S1 BUILDING_CLASS_AT_PRESENT_A4 BUILDING_CLASS_AT_PRESENT_A6 BUILDING_CLASS_AT_PRESENT_A8 BUILDING_CLASS_AT_PRESENT_B2 BUILDING_CLASS_AT_PRESENT_S0 BUILDING_CLASS_AT_PRESENT_B3 APARTMENT_NUMBER_nan APARTMENT_NUMBER_RP. BUILDING_CLASS_AT_TIME_OF_SALE_A9 BUILDING_CLASS_AT_TIME_OF_SALE_A1 BUILDING_CLASS_AT_TIME_OF_SALE_A0 BUILDING_CLASS_AT_TIME_OF_SALE_A2 BUILDING_CLASS_AT_TIME_OF_SALE_S1 BUILDING_CLASS_AT_TIME_OF_SALE_A4 BUILDING_CLASS_AT_TIME_OF_SALE_A6 BUILDING_CLASS_AT_TIME_OF_SALE_A8 BUILDING_CLASS_AT_TIME_OF_SALE_S0
week 8/Week 8 - Numerical Python (NumPy) Practice.ipynb
###Markdown What is NumPy?NumPy is a Python library used for working with arrays.It has functions for working in domain of linear algebra, fourier transform, and matrices.NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely. Why Use NumPy?In Python we have lists that serve the purpose of arrays, but they are slow to process.NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working with ndarray very easy. Import NumPyOnce NumPy is installed, import it in your applications by adding the import keyword: ###Code import numpy ###Output _____no_output_____ ###Markdown NumPy as npNumPy is usually imported under the np alias.Create an alias with the as keyword while importing: ###Code import numpy as np ###Output _____no_output_____ ###Markdown Checking NumPy VersionThe version string is stored under __ __version__ __ attribute. ###Code import numpy as nk print(nk.__version__) ###Output 1.18.5 ###Markdown Create a NumPy ndarray ObjectNumPy is used to work with arrays. The array object in NumPy is called ndarray. We can create a NumPy ndarray object by using the array() function. ###Code import numpy as np arr = np.array([101, 201, 301, 401, 501]) print(arr) print(type(arr)) ###Output [101 201 301 401 501] <class 'numpy.ndarray'> ###Markdown To create an ndarray, we can pass a list, tuple or any array-like object into the array() method, and it will be converted into an ndarray: ###Code import numpy as np nameList = ['Angel', "Shemi", "Marvel", "Linda"] ageTuple = (41, 32, 21, 19) gradeDict = {"CSC102": 89, "MTH 102": 77, "CHM 102": 69, "GST 102": 99} arr_nameList = np.array(nameList) arr_ageTuple = np.array(ageTuple) arr_gradeDict = np.array(gradeDict) print(arr_nameList) print(arr_ageTuple) print(arr_gradeDict) ###Output ['Angel' 'Shemi' 'Marvel' 'Linda'] [41 32 21 19] {'CSC102': 89, 'MTH 102': 77, 'CHM 102': 69, 'GST 102': 99} ###Markdown Dimensions in ArrayA dimension in arrays is one level of array depth (nested arrays). 0-Dimension0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array. ###Code import numpy as np classNum = int(input("How many students are in the CSC 102 class?")) class_arr = np.array(classNum) if (class_arr == 1): print("There is only ", class_arr, "student in CSC 102 class" ) else: print("There are", class_arr, "students in CSC 102 class" ) ###Output How many students are in the CSC 102 class?123 There are 123 students in CSC 102 class ###Markdown 1-D ArraysAn array that has 0-D arrays as its elements is called uni-dimensional or 1-D array. These are the most common and basic arrays. ###Code import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr) ###Output [1 2 3 4 5] ###Markdown 2-D ArraysAn array that has 1-D arrays as its elements is called a 2-D array. These are often used to represent matrix or 2nd order tensors. ###Code import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr) ###Output [[1 2 3] [4 5 6]] ###Markdown 3-D arraysAn array that has 2-D arrays (matrices) as its elements is called 3-D array. These are often used to represent a 3rd order tensor. ###Code import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) print(arr) ###Output [[[1 2 3] [4 5 6]] [[1 2 3] [4 5 6]] [[1 2 3] [4 5 6]]] ###Markdown Check Number of Dimensions?NumPy Arrays provides the ndim attribute that returns an integer that tells us how many dimensions the array have ###Code import numpy as np a = np.array(42) b = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) c = np.array([[1, 2, 3], [4, 5, 6]]) d = np.array([1, 2, 3, 4, 5]) print(a.ndim) print(b.ndim) print(c.ndim) print(d.ndim) ###Output 0 3 2 1 ###Markdown Higher Dimensional ArraysAn array can have any number of dimensions. When the array is created, you can define the number of dimensions by using the ndmin argument.In this array the innermost dimension (5th dim) has 4 elements, the 4th dim has 1 element that is the vector, the 3rd dim has 1 element that is the matrix with the vector, the 2nd dim has 1 element that is 3D array and 1st dim has 1 element that is a 4D array. ###Code import numpy as np arr = np.array([1, 2, 3, 4], ndmin=6) print(arr) print('number of dimensions :', arr.ndim) ###Output [[[[[[1 2 3 4]]]]]] number of dimensions : 6 ###Markdown Access Array Elements ###Code import numpy as np arr = np.array([1, 2, 3, 4]) print(arr[1]) ###Output 2 ###Markdown Access 2-D Arrays ###Code import numpy as np arr = np.array([[1,2,3,4,5], [6,7,8,9,10]]) print('5th element on 2nd row: ', arr[1, 4]) ###Output 5th element on 2nd row: 10 ###Markdown Access 3-D Arrays ###Code import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(arr[0, 1, 2]) ###Output 6 ###Markdown Negative IndexingUse negative indexing to access an array from the end. ###Code import numpy as np arr = np.array([[1,2,3,4,5], [6,7,8,9,10]]) print('Last element from 2nd dim: ', arr[1, -1]) ###Output Last element from 2nd dim: 10 ###Markdown Slicing arraysSlicing in python means taking elements from one given index to another given index. We pass slice instead of index like this: [start:end]. We can also define the step, like this: [start:end:step]. If we don't pass start its considered 0 If we don't pass end its considered length of array in that dimension If we don't pass step its considered 1 ###Code # Slice elements from index 1 to index 5 from the following array: import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) print(arr[1:5]) # Slice elements from index 4 to the end of the array: import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) print(arr[4:]) # Slice elements from the beginning to index 4 (not included): import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) print(arr[:4]) ###Output [1 2 3 4] ###Markdown Checking the Data Type of an Array ###Code import numpy as np int_arr = np.array([1, 2, 3, 4]) str_arr = np.array(['apple', 'banana', 'cherry']) print(int_arr.dtype) print(str_arr.dtype) ###Output int32 <U6 ###Markdown NumPy Array Copy vs View The Difference Between Copy and ViewThe main difference between a copy and a view of an array is that the copy is a new array, and the view is just a view of the original array. The copy owns the data and any changes made to the copy will not affect original array, and any changes made to the original array will not affect the copy. The view does not own the data and any changes made to the view will affect the original array, and any changes made to the original array will affect the view. Copy ###Code import numpy as np arr = np.array([1, 2, 3, 4, 5]) x = arr.copy() arr[0] = 42 print(arr) print(x) ###Output [42 2 3 4 5] [1 2 3 4 5] ###Markdown View ###Code import numpy as np arr = np.array([1, 2, 3, 4, 5]) x = arr.view() arr[0] = 42 print(arr) print(x) ###Output [42 2 3 4 5] [42 2 3 4 5] ###Markdown Check if Array Owns its Data ###Code import numpy as np arr = np.array([1, 2, 3, 4, 5]) x = arr.copy() y = arr.view() print(x.base) print(y.base) ###Output None [1 2 3 4 5] ###Markdown Get the Shape of an Array ###Code # Print the shape of a 2-D array: import numpy as np arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) print(arr.shape) import numpy as np arr = np.array([1, 2, 3, 4], ndmin=5) print(arr) print('shape of array :', arr.shape) ###Output [[[[[1 2 3 4]]]]] shape of array : (1, 1, 1, 1, 4) ###Markdown Iterating Arrays ###Code #Iterate on each scalar element of the 2-D array: import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) for x in arr: for y in x: print(y,x) # Iterate on the elements of the following 3-D array: import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) for x in arr: print(x[0][1]) print(x[1][0]) import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) for x in arr: for y in x: for z in y: print(z,y,x) ###Output 1 [1 2 3] [[1 2 3] [4 5 6]] 2 [1 2 3] [[1 2 3] [4 5 6]] 3 [1 2 3] [[1 2 3] [4 5 6]] 4 [4 5 6] [[1 2 3] [4 5 6]] 5 [4 5 6] [[1 2 3] [4 5 6]] 6 [4 5 6] [[1 2 3] [4 5 6]] 7 [7 8 9] [[ 7 8 9] [10 11 12]] 8 [7 8 9] [[ 7 8 9] [10 11 12]] 9 [7 8 9] [[ 7 8 9] [10 11 12]] 10 [10 11 12] [[ 7 8 9] [10 11 12]] 11 [10 11 12] [[ 7 8 9] [10 11 12]] 12 [10 11 12] [[ 7 8 9] [10 11 12]] ###Markdown Joining NumPy ArraysWe pass a sequence of arrays that we want to join to the concatenate() function, along with the axis. If axis is not explicitly passed, it is taken as 0. ###Code # Join two arrays import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr = np.concatenate((arr1, arr2)) print(arr) ###Output [1 2 3 4 5 6] ###Markdown Splitting NumPy ArraysSplitting is reverse operation of Joining. Joining merges multiple arrays into one and Splitting breaks one array into multiple. We use array_split() for splitting arrays, we pass it the array we want to split and the number of splits. ###Code import numpy as np arr = np.array([1, 2, 3, 4, 5, 6]) newarr = np.array_split(arr, 3) print(newarr) # Access splitted arrays import numpy as np arr = np.array([1, 2, 3, 4, 5, 6]) newarr = np.array_split(arr, 3) print(newarr[0]) print(newarr[1]) print(newarr[2]) ###Output [1 2] [3 4] [5 6] ###Markdown Splitting 2-D Arrays ###Code import numpy as np arr = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]) newarr = np.array_split(arr, 3) print(newarr) ###Output [array([[1, 2], [3, 4]]), array([[5, 6], [7, 8]]), array([[ 9, 10], [11, 12]])]
MaterialCursoPython/Fase 2 - Manejo de datos y optimizacion/Tema 07 - Gestion de errores/Apuntes/Leccion 3 (Apuntes) - Excepciones multiples.ipynb
###Markdown Capturando múltiples excepciones Guardando la excepciónPodemos asignar una excepción a una variable (por ejemplo e). De esta forma haciendo un pequeño truco podemos analizar el tipo de error que sucede gracias a su identificador: ###Code try: n = input("Introduce un número: ") 5/n except Exception as e: print( type(e).__name__ ) ###Output Introduce un número: 10 TypeError ###Markdown Encadenando excepcionesGracias a los identificadores de errores podemos crear múltiples comprobaciones, siempre que dejemos en último lugar la excepción por defecto *Excepcion* que engloba cualquier tipo de error (si la pusiéramos al principio, las demas excepciones nunca se ejecutarían): ###Code try: n = float(input("Introduce un número: ")) 5/n except TypeError: print("No se puede dividir el número por una cadena") except ValueError: print("Debes introducir una cadena que sea un número") except ZeroDivisionError: print("No se puede dividir por cero, prueba otro número") except Exception as e: print( type(e).__name__ ) ###Output Introduce un número: aaaa ValueError
_notebooks/2020-06-21-02-Basics-of-randomness-and-simulation.ipynb
###Markdown Basics of randomness and simulation> This chapter gives you the tools required to run a simulation. We'll start with a review of random variables and probability distributions. We will then learn how to run a simulation by first looking at a simulation workflow and then recreating it in the context of a game of dice. Finally, we will learn how to use simulations for making decisions. This is the Summary of lecture "Statistical Simulation in Python", via datacamp.- toc: true - badges: true- comments: true- author: Chanseok Kang- categories: [Python, Datacamp, Statistics, Modeling]- image: ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['figure.figsize'] = (10, 5) ###Output _____no_output_____ ###Markdown Introduction to random variables- Continous Random Variables - Infinitely many possible values (e.g., Height, Weights)- Discrete Random Variables - Finite set of possible values (e.g., Outcomes of a six-sided die) Poisson random variableThe `numpy.random` module also has a number of useful probability distributions for both discrete and continuous random variables. In this exercise, you will learn how to draw samples from a probability distribution.In particular, you will draw samples from a very important discrete probability distribution, the Poisson distribution, which is typically used for modeling the average rate at which events occur.Following the exercise, you should be able to apply these steps to any of the probability distributions found in `numpy.random`. In addition, you will also see how the sample mean changes as we draw more samples from a distribution. ###Code # Initialize seed and parameters np.random.seed(123) lam, size_1, size_2 = 5, 3, 100 # Draw samples & calculate absolute difference between lambda and sample mean samples_1 = np.random.poisson(lam, size_1) samples_2 = np.random.poisson(lam, size_2) answer_1 = abs(lam - np.mean(samples_1)) answer_2 = abs(lam - np.mean(samples_2)) print("|Lambda - sample mean| with {} samples is {} and with {} samples is {}. ".format(size_1, answer_1, size_2, answer_2)) ###Output |Lambda - sample mean| with 3 samples is 0.33333333333333304 and with 100 samples is 0.11000000000000032. ###Markdown Shuffling a deck of cardsOften times we are interested in randomizing the order of a set of items. Consider a game of cards where you first shuffle the deck of cards or a game of scrabble where the letters are first mixed in a bag. As the final exercise of this section, you will learn another useful function - `np.random.shuffle()`. This function allows you to randomly shuffle a sequence in place. At the end of this exercise, you will know how to shuffle a deck of cards or any sequence of items. ###Code #hide deck_of_cards = [('Heart', 0), ('Heart', 1), ('Heart', 2), ('Heart', 3), ('Heart', 4), ('Heart', 5), ('Heart', 6), ('Heart', 7), ('Heart', 8), ('Heart', 9), ('Heart', 10), ('Heart', 11), ('Heart', 12), ('Club', 0), ('Club', 1), ('Club', 2), ('Club', 3), ('Club', 4), ('Club', 5), ('Club', 6), ('Club', 7), ('Club', 8), ('Club', 9), ('Club', 10), ('Club', 11), ('Club', 12), ('Spade', 0), ('Spade', 1), ('Spade', 2), ('Spade', 3), ('Spade', 4), ('Spade', 5), ('Spade', 6), ('Spade', 7), ('Spade', 8), ('Spade', 9), ('Spade', 10), ('Spade', 11), ('Spade', 12), ('Diamond', 0), ('Diamond', 1), ('Diamond', 2), ('Diamond', 3), ('Diamond', 4), ('Diamond', 5), ('Diamond', 6), ('Diamond', 7), ('Diamond', 8), ('Diamond', 9), ('Diamond', 10), ('Diamond', 11), ('Diamond', 12)] # Shuffle the deck np.random.shuffle(deck_of_cards) # Print out the top three cars card_choices_after_shuffle = deck_of_cards[:3] print(card_choices_after_shuffle) ###Output [('Spade', 2), ('Heart', 9), ('Diamond', 3)] ###Markdown Simulation basics- Simulations - Framework for modeling real-world events - Characterized by repeated random sampling - Gives us an approximate solution - Can help solve complex problems- Simulation steps 1. Define possible outcomes for random variables 2. Assign probabilities 3. Define relationships between random variables 4. Get multiple outcomes by repeated random sampling 5. Analyze sample outcomes Throwing a fair dieOnce you grasp the basics of designing a simulation, you can apply it to any system or process. Next, we will learn how each step is implemented using some basic examples.As we have learned, simulation involves repeated random sampling. The first step then is to get one random sample. Once we have that, all we do is repeat the process multiple times. This exercise will focus on understanding how we get one random sample. We will study this in the context of throwing a fair six-sided die.By the end of this exercise, you will be familiar with how to implement the first two steps of running a simulation - defining a random variable and assigning probabilities. ###Code np.random.seed(123) die, probabilities, throws = [1, 2, 3, 4, 5, 6], [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], 1 # Use np.random.choice to throw the die once and record the outcome outcome = np.random.choice(die, size=throws, p=probabilities) print("Outcome of the throw: {}".format(outcome[0])) ###Output Outcome of the throw: 5 ###Markdown Throwing two fair diceWe now know how to implement the first two steps of a simulation. Now let's implement the next step - defining the relationship between random variables.Often times, our simulation will involve not just one, but multiple random variables. Consider a game where throw you two dice and win if each die shows the same number. Here we have two random variables - the two dice - and a relationship between each of them - we win if they show the same number, lose if they don't. In reality, the relationship between random variables can be much more complex, especially when simulating things like weather patterns.By the end of this exercise, you will be familiar with how to implement the third step of running a simulation - defining relationships between random variables. ###Code np.random.seed(223) # Initialize number of dice, simulate & record outcome die, probabilities, num_dice = [1,2,3,4,5,6], [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], 2 outcomes = np.random.choice(die, size=num_dice, p=probabilities) # Win if the two dice show the same number if outcomes[0] == outcomes[1]: answer = 'win' else: answer = 'lose' print("The dice show {} and {}. You {}!".format(outcomes[0], outcomes[1], answer)) ###Output The dice show 5 and 5. You win! ###Markdown Simulating the dice gameWe now know how to implement the first three steps of a simulation. Now let's consider the next step - repeated random sampling.Simulating an outcome once doesn't tell us much about how often we can expect to see that outcome. In the case of the dice game from the previous exercise, it's great that we won once. But suppose we want to see how many times we can expect to win if we played this game multiple times, we need to repeat the random sampling process many times. Repeating the process of random sampling is helpful to understand and visualize inherent uncertainty and deciding next steps.Following this exercise, you will be familiar with implementing the fourth step of running a simulation - sampling repeatedly and generating outcomes. ###Code np.random.seed(223) # Initialize model parameters & simulate dice throw die, probabilities, num_dice = [1,2,3,4,5,6], [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], 2 sims, wins = 100, 0 for i in range(sims): outcomes = np.random.choice(die, num_dice, p=probabilities) # Increment `wins` by 1 if the dice show same number if outcomes[0] == outcomes[1]: wins = wins + 1 print("In {} games, you win {} times".format(sims, wins)) ###Output In 100 games, you win 25 times ###Markdown Using simulation for decision-making Simulating one lottery drawingIn the last three exercises of this chapter, we will be bringing together everything you've learned so far. We will run a complete simulation, take a decision based on our observed outcomes, and learn to modify inputs to the simulation model.We will use simulations to figure out whether or not we want to buy a lottery ticket. Suppose you have the opportunity to buy a lottery ticket which gives you a shot at a grand prize of \\$ 1 Million. Since there are 1000 tickets in total, your probability of winning is 1 in 1000. Each ticket costs \\$ 10. Let's use our understanding of basic simulations to first simulate one drawing of the lottery. ###Code np.random.seed(123) # Pre-defined constant variables lottery_ticket_cost, num_tickets, grand_prize = 10, 1000, 1000000 # Probability of winning chance_of_winning = 1 / num_tickets # Simulate a single drawing of the lottery gains = [-lottery_ticket_cost, grand_prize-lottery_ticket_cost] probability = [1 - chance_of_winning, chance_of_winning] outcome = np.random.choice(a=gains, size=1, p=probability, replace=True) print("Outcome of one drawing of the lottery is {}".format(outcome)) ###Output Outcome of one drawing of the lottery is [-10] ###Markdown Should we buy?In the last exercise, we simulated the random drawing of the lottery ticket once. In this exercise, we complete the simulation process by repeating the process multiple times.Repeating the process gives us multiple outcomes. We can think of this as multiple universes where the same lottery drawing occurred. We can then determine the average winnings across all these universes. If the average winnings are greater than what we pay for the ticket then it makes sense to buy it, otherwise, we might not want to buy the ticket.This is typically how simulations are used for evaluating business investments. After completing this exercise, you will have the basic tools required to use simulations for decision-making. ###Code np.random.seed(123) # Initialize size and simulate outcome lottery_ticket_cost, num_tickets, grand_prize = 10, 1000, 1000000 chance_of_winning = 1/num_tickets size = 2000 payoffs = [-lottery_ticket_cost, grand_prize - lottery_ticket_cost] probs = [1 - chance_of_winning, chance_of_winning] outcomes = np.random.choice(a=payoffs, size=size, p=probs, replace=True) # Mean of outcomes. answer = np.mean(outcomes) print("Average payoff from {} simulations = {}".format(size, answer)) ###Output Average payoff from 2000 simulations = 1990.0 ###Markdown Calculating a break-even lottery priceSimulations allow us to ask more nuanced questions that might not necessarily have an easy analytical solution. Rather than solving a complex mathematical formula, we directly get multiple sample outcomes. We can run experiments by modifying inputs and studying how those changes impact the system. For example, once we have a moderately reasonable model of global weather patterns, we could evaluate the impact of increased greenhouse gas emissions.In the lottery example, we might want to know how expensive the ticket needs to be for it to not make sense to buy it. To understand this, we need to modify the ticket cost to see when the expected payoff is negative. ###Code np.random.seed(333) # Initialize simulations and cost of ticket sims, lottery_ticket_cost = 3000, 0 # Use a while loop to increment `lottery_ticket_cost` till average value of outcomes falls below zero while 1: outcomes = np.random.choice([-lottery_ticket_cost, grand_prize-lottery_ticket_cost], size=sims, p=[1-chance_of_winning, chance_of_winning], replace=True) if outcomes.mean() < 0: break else: lottery_ticket_cost += 1 answer = lottery_ticket_cost - 1 print("The highest price at which it makes sense to buy the ticket is {}".format(answer)) ###Output The highest price at which it makes sense to buy the ticket is 9
ATMS-597-SP-2020-Project-2/ATMS_597_Project_2_Rylan.ipynb
###Markdown ###Code import numpy as np import pandas as pd import requests def make_request(endpoint, payload=None): """ Make a request to a specific endpoint on the weather API passing headers and optional payload. Parameters: - endpoint: The endpoint of the API you want to make a GET request to. - payload: A dictionary of data to pass along with the request. Returns: Response object. """ return requests.get( f'https://www.ncdc.noaa.gov/cdo-web/api/v2/'+endpoint, headers={ 'token': 'yicVcIaiwUAgtBveaBtWSaioiQvqRJRh' }, params=payload ) # This cell will request locations. We used this to find the locationid for Champaign, IL area. # !!!No need to run this cell again unless we want to look up a new locationid!!! response = make_request( 'locations', { 'datasetid' : 'GHCND', 'locationcategoryid' : 'CITY', 'datacategoryid' : 'TEMP', 'sortorder' : 'desc', 'limit' : 1000 # max allowed } ) response.json() # This cell will request stations. We used this to find the stationid for Rantoul, IL station. # !!!No need to run this cell again unless we want to look up a new stationid!!! response = make_request( 'stations', { 'datasetid' : 'GHCND', 'locationid' : 'CITY:US170004', 'datacategoryid' : 'TEMP', 'limit' : 1000 # max allowed } ) response.json() # Create lists containing the beginning and end of years we want to loop over. # Clunky for now, can probably make this smoother using some kind of loop to add one to the year each time currentlist = [datetime.date(2015, 1, 1), datetime.date(2016, 1, 1), datetime.date(2017, 1, 1), datetime.date(2018, 1, 1), datetime.date(2019, 1, 1)] endlist = [datetime.date(2015, 12, 31), datetime.date(2016, 12, 31), datetime.date(2017, 12, 31), datetime.date(2018, 12, 31),datetime.date(2019, 12, 31)] # This cell will request the data results = [] # get an empty list to fill with data numloops = np.arange(len(currentlist)) # fill a numper array with the length of the list of years we want #Start the loop over the years we want for i in numloops: current = currentlist[i] # set current to the beginning of the year in our loop end = endlist[i] # set end to the end of the year in our loop # update the cell with status information display.clear_output(wait=True) display.display(f'Gathering data for {str(current)}') response = make_request( 'data', { 'datasetid' : 'GHCND', # Global Historical Climatology Network - Daily (GHCND) dataset 'datatypeid' : 'TMAX', 'stationid' : 'GHCND:USW00014806', 'startdate' : current, 'enddate' : end, 'units' : 'metric', 'limit' : 1000 # max allowed } ) response.json() results.extend(response.json()['results']) # put the data in the results list len(results) # check the length of the results list to make sure we have the correct number of days # Put the results in a pandas dataframe df = pd.DataFrame(results) df.head() ###Rylan's code for getting Yearly Average Temperature goes here. ### ###Output _____no_output_____
PlantVillage/PlantVillageDataset.ipynb
###Markdown Installing Hub ###Code !pip3 install hub --quiet # Run below cells and restart the runtime # if you are running it in colab # import os # os.kill(os.getpid(), 9) ###Output _____no_output_____ ###Markdown Download raw dataset ###Code from IPython.display import clear_output # Download dataset here !wget https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/tywbtsjrjv-1.zip !unzip tywbtsjrjv-1.zip !unzip Plant_leaf_diseases_dataset_with_augmentation.zip !unzip Plant_leaf_diseases_dataset_without_augmentation.zip !rm -rf *.zip clear_output() import os from glob import glob ###Output _____no_output_____ ###Markdown Creating dataset on hub **Activeloop API** : https://docs.activeloop.ai/api-basics ###Code import hub # Login to ActiveLoop %env BUGGER_OFF=True !activeloop login -u username -p password !activeloop reporting --off change_classes = { 'Peach___healthy' : 'Peach_healthy', 'Strawberry___Leaf_scorch' : 'Strawberry_leaf_scorch', 'Grape___Esca_(Black_Measles)' : 'Grape_black_measles', 'Tomato___Septoria_leaf_spot' : 'Tomato_septoria_leaf_spot', 'Grape___healthy' : 'Grape_healthy', 'Tomato___healthy' : 'Tomato_healthy', 'Peach___Bacterial_spot' : 'Peach_bacterial_spot', 'Corn___Cercospora_leaf_spot Gray_leaf_spot' : 'Corn_gray_leaf_spot', 'Soybean___healthy' : 'Soybean_healthy', 'Corn___Common_rust' : 'Corn_common_rust', 'Blueberry___healthy' : 'Blueberry_healthy', 'Corn___healthy' : 'Corn_healthy', 'Apple___healthy' : 'Apple_healthy', 'Apple___Cedar_apple_rust' : 'Apple_cedar_apple_rust', 'Background_without_leaves' : 'Background_without_leaves', 'Tomato___Target_Spot' : 'Tomato_target_spot', 'Pepper,_bell___healthy' : 'Pepper_healthy', 'Grape___Black_rot' : 'Grape_black_rot', 'Apple___Apple_scab' : 'Apple_scab', 'Raspberry___healthy' : 'Raspberry_healthy', 'Tomato___Early_blight' : 'Tomato_early_blight', 'Tomato___Tomato_Yellow_Leaf_Curl_Virus' : 'Tomato_yellow_leaf_curl_virus', 'Corn___Northern_Leaf_Blight' : 'Corn_northern_leaf_blight', 'Potato___healthy' : 'Potato_healthy', 'Tomato___Late_blight' : 'Tomato_late_blight', 'Cherry___Powdery_mildew' : 'Cherry_powdery_mildew', 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)' : 'Grape_leaf_blight', 'Tomato___Leaf_Mold' : 'Tomato_leaf_mold', 'Pepper,_bell___Bacterial_spot' : 'Pepper_bacterial_spot', 'Potato___Late_blight' : 'Potato_late_blight', 'Tomato___Tomato_mosaic_virus' : 'Tomato_mosaic_virus', 'Potato___Early_blight' : 'Potato_early_blight', 'Tomato___Bacterial_spot' : 'Tomato_bacterial_spot', 'Strawberry___healthy' : 'Strawberry_healthy', 'Cherry___healthy' : 'Cherry_healthy', 'Squash___Powdery_mildew' : 'Squash_powdery_mildew', 'Tomato___Spider_mites Two-spotted_spider_mite' : 'Tomato_spider_mites_two-spotted_spider_mite', 'Orange___Haunglongbing_(Citrus_greening)' : 'Orange_haunglongbing', 'Apple___Black_rot' : 'Apple_black_rot' } class_names = list(change_classes.values()) folders = list(change_classes.keys()) print(f'folders -> {folders}') print(f'classes -> {class_names}') without_augmentation = '/content/Plant_leave_diseases_dataset_without_augmentation' with_augmentation = '/content/Plant_leave_diseases_dataset_with_augmentation' class_names.index('Tomato_healthy') filename_path = 'hub://<username>/plantvillage-without-augmentation' ds = hub.dataset(filename_path) with ds: ds.create_tensor('images', htype='image', sample_compression='jpg') ds.create_tensor('labels', htype='class_label', class_names = class_names) for folder in folders: path = os.path.join(without_augmentation, folder) label = change_classes[folder] label_index = class_names.index(label) images = glob(os.path.join(path, '*.JPG')) print(f'{folder} -> {label} -> {label_index}') for image in images: ds.images.append(hub.read(image)) ds.labels.append(label_index) filename_path = 'hub://<username>/plantvillage-with-augmentation' ds = hub.dataset(filename_path) with ds: ds.create_tensor('images', htype='image', sample_compression='jpg') ds.create_tensor('labels', htype='class_label', class_names = class_names) for folder in folders: path = os.path.join(with_augmentation, folder) label = change_classes[folder] label_index = class_names.index(label) images = glob(os.path.join(path, '*.JPG')) print(f'{folder} -> {label} -> {label_index}') for image in images: ds.images.append(hub.read(image)) ds.labels.append(label_index) ###Output Your Hub dataset has been successfully created! The dataset is private so make sure you are logged in! This dataset can be visualized at https://app.activeloop.ai/activeloop/plantvillage-with-augmentation. Peach___healthy -> Peach_healthy -> 0 Strawberry___Leaf_scorch -> Strawberry_leaf_scorch -> 1 Grape___Esca_(Black_Measles) -> Grape_black_measles -> 2 Tomato___Septoria_leaf_spot -> Tomato_septoria_leaf_spot -> 3 Grape___healthy -> Grape_healthy -> 4 Tomato___healthy -> Tomato_healthy -> 5 Peach___Bacterial_spot -> Peach_bacterial_spot -> 6 Corn___Cercospora_leaf_spot Gray_leaf_spot -> Corn_gray_leaf_spot -> 7 Soybean___healthy -> Soybean_healthy -> 8 Corn___Common_rust -> Corn_common_rust -> 9 Blueberry___healthy -> Blueberry_healthy -> 10 Corn___healthy -> Corn_healthy -> 11 Apple___healthy -> Apple_healthy -> 12 Apple___Cedar_apple_rust -> Apple_cedar_apple_rust -> 13 Background_without_leaves -> Background_without_leaves -> 14 Tomato___Target_Spot -> Tomato_target_spot -> 15 Pepper,_bell___healthy -> Pepper_healthy -> 16 Grape___Black_rot -> Grape_black_rot -> 17 Apple___Apple_scab -> Apple_scab -> 18 Raspberry___healthy -> Raspberry_healthy -> 19 Tomato___Early_blight -> Tomato_early_blight -> 20 Tomato___Tomato_Yellow_Leaf_Curl_Virus -> Tomato_yellow_leaf_curl_virus -> 21 Corn___Northern_Leaf_Blight -> Corn_northern_leaf_blight -> 22 Potato___healthy -> Potato_healthy -> 23 Tomato___Late_blight -> Tomato_late_blight -> 24 Cherry___Powdery_mildew -> Cherry_powdery_mildew -> 25 Grape___Leaf_blight_(Isariopsis_Leaf_Spot) -> Grape_leaf_blight -> 26 Tomato___Leaf_Mold -> Tomato_leaf_mold -> 27 Pepper,_bell___Bacterial_spot -> Pepper_bacterial_spot -> 28 Potato___Late_blight -> Potato_late_blight -> 29 Tomato___Tomato_mosaic_virus -> Tomato_mosaic_virus -> 30 Potato___Early_blight -> Potato_early_blight -> 31 Tomato___Bacterial_spot -> Tomato_bacterial_spot -> 32 Strawberry___healthy -> Strawberry_healthy -> 33 Cherry___healthy -> Cherry_healthy -> 34 Squash___Powdery_mildew -> Squash_powdery_mildew -> 35 Tomato___Spider_mites Two-spotted_spider_mite -> Tomato_spider_mites_two-spotted_spider_mite -> 36 Orange___Haunglongbing_(Citrus_greening) -> Orange_haunglongbing -> 37 Apple___Black_rot -> Apple_black_rot -> 38 ###Markdown Testing dataset from Hub ###Code filename_path = 'hub://<username>/plantvillage-with-augmentation' ds = hub.dataset(filename_path) image = ds.images[0].numpy() label = ds.labels[0].data() ###Output _____no_output_____
nbfiles/21_invader.ipynb
###Markdown 继续挑战--- 第21题为第20题对[unreal.jpg](http://www.pythonchallenge.com/pc/hex/unreal.jpg)用特定的`Range`请求得到的压缩包内容* 压缩包里面有一个`package.pack`文件,题目`readme.txt`内容为:> * We used to play this game when we were kids> * When I had no idea what to do, I looked backwards. 先重复上一题的步骤把`package.pack`解压出来看看: ###Code from io import BytesIO from zipfile import ZipFile import requests with requests.Session() as sess: sess.auth = ('butter', 'fly') header = {'Range': 'bytes=1152983631-'} response = sess.get('http://www.pythonchallenge.com/pc/hex/unreal.jpg', headers=header) with ZipFile(BytesIO(response.content), 'r') as f: with f.open('package.pack', 'r', pwd=b'invader'[::-1]) as f_pack: package = f_pack.read() print(package[:20]) ###Output b'x\x9c\x00\n@\xf5\xbfx\x9c\x00\x07@\xf8\xbfx\x9c\x00\x06@\xf9' ###Markdown 查了下`b'x\x9c\x00`开头的是`zlib`压缩格式,我们来解包看看: ###Code import zlib temp = zlib.decompress(package) print(temp[:20]) ###Output b'x\x9c\x00\x07@\xf8\xbfx\x9c\x00\x06@\xf9\xbfx\x9c\x00\xff?\x00' ###Markdown 又玩这种循环迭代的游戏了!那我们继续: ###Code import zlib data = package while True: try: data = zlib.decompress(data) except Exception as e: print(data[:20]) print(f'{e!r}') break ###Output b'BZh91AY&SY\x91\xe8/+\x00v\xa9\x7f\xff\xff' error('Error -3 while decompressing data: incorrect header check') ###Markdown 咦?切换到了`BZh`开头的`bzip2`压缩格式了,我们改一下继续: ###Code import bz2 import zlib data = package while True: try: data = zlib.decompress(data) except: try: data = bz2.decompress(data) except Exception as e: print(data[:20]) print(f'{e!r}') break ###Output b'\x80\x8d\x96\xcb\xb5r\xa7\x00\x06Xz\xdafO\x19\xee\x84k\xa4d' OSError('Invalid data stream') ###Markdown 这回不知道是什么东西了。。。来,我们开始读题。说这是我们小时候会玩的游戏,我们刚才是在反复解压同一个东西,估计这个游戏就像是一个**东西**在小伙伴里面不断地传递,每个人会给它用某种方式(*压缩*)**包装**一层再继续。我们在做的事情就是解压拿到最原始的内容。没毛病,但是现在我们卡壳了。再看看第二句话,当我们卡壳的时候,会试着**倒过来看**: ###Code print(data[::-1][:20]) ###Output b'x\x9c\x00\x0c@\xf3\xbfx\x9c\x00\x05@\xfa\xbfx\x9c\x00\x05@\xfa' ###Markdown 果然有用!!我们改一下继续: ###Code import bz2 import zlib data = package try_count = 0 while True: try: data = zlib.decompress(data) except: try: data = bz2.decompress(data) except: data = data[::-1] try_count += 1 if try_count == 3: print(data[:20]) break continue try_count = 0 print(data.decode()) ###Output b'look at your logs' look at your logs ###Markdown 解压出来最原好的内容了!但是叫我们看日志,看来要加上一些打印来记录我们的解压操作了。---在我们继续之前,首先是我发现了一个叫`python-magic`的库,可以知道文件内容的具体格式,不用我们总是去查找。至少可以优化一下上面那段那么丑的代码吧。 ###Code from magic import Magic magic_t = Magic(mime=True) print(magic_t.from_buffer(package)) ###Output application/zlib ###Markdown 其次是我们有三种不同的操作,需要定义其打印的字符:| 操作 | 打印字符 || :---: | :---: || zlib | '.' || bz2 | '0' || 倒序 | '\n' | ###Code import bz2 import zlib from magic import Magic magic_t = Magic(mime=True) data = package while True: mime = magic_t.from_buffer(data) if mime in ('application/zlib', 'application/x-tex-tfm'): data = zlib.decompress(data) print('.', end='') elif mime == 'application/x-bzip2': data = bz2.decompress(data) print('0', end='') else: data = data[::-1] print() if mime == 'text/plain': break print(data.decode()) ###Output ......000..........000......00000000....00000000....0000000000..00000000 ....0000000......0000000....000000000...000000000...000000000...000000000 ...00.....00....00.....00...00......00..00......00..00..........00......00 ..00...........00.......00..00......00..00......00..00..........00......00 ..00...........00.......00..000000000...000000000...00000000....000000000 ..00...........00.......00..00000000....00000000....00000000....00000000. ..00...........00.......00..00..........00..........00..........00...00. ...00.....00....00.....00...00..........00..........00..........00....00. ....0000000......0000000....00..........00..........000000000...00.....00. ......000..........000......00..........00..........0000000000..00......00 look at your logs
unit-1-build/notebooks/clean_dataset_calz.ipynb
###Markdown **EDA** ###Code # inspect head @TODO DROP NAME COL print(df.shape) df.head() print(df_labels.shape) df_labels.head(20) # define a function that will take the cell contents of num_to_rate and remove the # paretheses def strip_n2r(x): return (-1)*x test=df_labels['num_to_rate'].apply(strip_n2r) test.head() # make changes to df df_labels['num_to_rate']=df_labels['num_to_rate'].apply(strip_n2r) ###Output _____no_output_____ ###Markdown Data Cleaning/feature engineering **geo-codes engineering** ###Code # im going to have to extract the geo code from the following links and compare them to my geo codes from # my labels df to map the reviews to a particular store print("labels df:") print(df_labels['web-scraper-start-url'].iloc[0]) print("\nreviews df:") df['web-scraper-start-url'].iloc[0] # define a function to strip the url strings to reveal geo tags def parse_geo(x): return x.split('@')[1].split(',')[:-1] # test it out before i make any changes # note i probably need to only test on one of the df's because the # start url is in the same format in both df's test=df['web-scraper-start-url'].apply(parse_geo) test.head() # make changes df['geo']=df['web-scraper-start-url'].apply(parse_geo) df_labels['geo']=df_labels['web-scraper-start-url'].apply(parse_geo) ###Output _____no_output_____ ###Markdown **rating valuation engineering** ###Code # on the reviews it had images of lit stars triggered by js # to work around this i took the html source because i knew it would # show which stars are supossed to be triggered, but as a drawback # no i have to clean HTML instead of pretty output df['review'].head() # make a funtion to apply to col def clean_rating(x): # make a list of strings to work with out=x.split() # sort list so that duplicates group togeather out.sort() # the first element is just '<span>' and the following 20 elements are redundant, # the last 5 elements are placment flags # remove all of them and leave me with just the number of active stars # then get a count so i can have a pretty int return len(out[21:len(out)-5]) # test to make sure that it works test=df['review'].apply(clean_rating) test.head() # make changes to df df['review']=df['review'].apply(clean_rating) ###Output _____no_output_____ ###Markdown **datetime engeenering for graphing** ###Code # humanfied dates are great to read, not so great to graph, i need to make theese # back into dt format,(why i have a glob at the top with the date of scrape) df['time_published'].value_counts() # create a map for all units to hours time_map={'second':0.000278,'minute':0.0167,'hour':1,'day':24,'week':168,'month':530.5,'year':8766} # make a function that takes a relitive time 'a day ago' and transfers that to a datetime def human_to_dt(x): # the number that i will end up subtracting from scrape date diff=0 # make a datetime object to hold the date that the dataset was scrapped dt=datetime.datetime.strptime(DATE_SCRAPED, '%m-%d-%Y') # strip the string down to two values a quantifier and a unit q,u=x[:-3].strip().split(' ') # remove trailing s on unit it is not needed if u[len(u)-1]=="s": u=u[:len(u)-1] # check if there is just one unit if so then set diff=1 if q == "a": diff=time_map[u] # if the number is not one then multiply the q by the map_key entry for u else: #safe cast try: diff=time_map[u]*int(q) except: print("ERROR") return 0 # convert dt to utc timestamp dt=dt-datetime.timedelta(hours=diff) timestamp = dt.replace(tzinfo=datetime.timezone.utc).timestamp() return timestamp # making sure that it works how i want it to testvalue=df['time_published'].iloc[0] print(human_to_dt(testvalue)) del testvalue # apply changes to df df['time_published']=df['time_published'].apply(human_to_dt) ###Output _____no_output_____ ###Markdown more data cleaning to drop columns that i dont need anymore ###Code df.head() df_labels.head() # going to drop internal scraper columns that dont add context for the information # that is provided by them df=df.drop(['web-scraper-order','web-scraper-start-url'],axis=1) df_labels=df_labels.drop(['web-scraper-order','web-scraper-start-url'],axis=1) ###Output _____no_output_____ ###Markdown merging df's based on geo codes ###Code # but first i have to cast and round existing geo codes in both df's because # google does such a great job at consitency # define a function that reurns a tuple of rounded floates from the geo tags # going with 3 signifigant figures since that equates to 110m and none of the # stores are that close def clean_geos(x): out=[round(float(x[0]),3),round(float(x[1]),3)] return out # self explainitory def sep_lat(x): return x[0] def sep_long(x): return x[1] test=df['geo'].iloc[0] test_labels=df_labels['geo'].iloc[0] print(clean_geos(test)) print(clean_geos(test_labels)) # make changes to df's df['geo']=df['geo'].apply(clean_geos) df_labels['geo']=df_labels['geo'].apply(clean_geos) # add latitude and longitude columns df['latitude']=df['geo'].apply(sep_lat) df_labels['latitude']=df_labels['geo'].apply(sep_lat) df['longitude']=df['geo'].apply(sep_long) df_labels['longitude']=df_labels['geo'].apply(sep_long) df_labels.head() df.head() # drop some more columns that are a pain in my ass df=df.drop('geo',axis=1) df_labels=df_labels.drop('geo',axis=1) # merge data frames which will map the store the customer test=df.merge(df_labels,on=['latitude','longitude']) # grab a random sample to see what the dataframe looks like test.sample(40) ###Output _____no_output_____ ###Markdown **I think thats gonna be good for this dataset, lets do some house keeping and export it to a file to use** ###Code print(test.columns.to_list()) # rename my columns to something easier then x_name y_name ect df=test perfered_names=['customer_name', 'review_rating', 'review_content','time', 'owner_response','owner_response_time','latitude', 'longitude', 'store_name', 'store_address','store_rating','num_to_rate'] df.columns=perfered_names df.columns.to_list() perf_order=['time', 'customer_name', 'review_content', 'review_rating', 'store_name', 'store_rating', 'store_address', 'num_to_rate', 'owner_response', 'owner_response_time', 'latitude', 'longitude'] df=df[perf_order] df.head() df.to_csv('calz_processed.csv') ###Output _____no_output_____
courses/12. List comprehension in Python.ipynb
###Markdown Python: List comprehension Goals: * Interesting new functions: enumerate() and item()* Discovering the lists comprehension and its advantages* Real case: dataset on the historical members of the American Congress* Count and determine the most frequent first names The enumerate function ###Code # Motivation students = ["Daouda", "Moha", "Seyni", "Khadir", "Mamadou"] ages = [16, 12, 17, 10, 15] ###Output _____no_output_____ ###Markdown Let's display for each student his age. ###Code for student in students: print(student) for age in ages: print(age) ###Output Daouda Moha Seyni Khadir Mamadou 16 12 17 10 15 ###Markdown We notice that by displaying the elements of the first list, we are not able to display the elements of the second list. To do this, Python's **enumerate()** function can help us do this task more easily. ###Code # Overview for index, student in enumerate(students): print("Index:", index) print("Student:", student) ###Output Index: 0 Student: Daouda Index: 1 Student: Moha Index: 2 Student: Seyni Index: 3 Student: Khadir Index: 4 Student: Mamadou ###Markdown Thus with the index, it is possible to retrieve the age of each student. ###Code # Example 1 for index, student in enumerate(students): print("Student:", student) print("Age:", ages[index]) # Example 2 cars = [["Black", "Tesla", "Model X"], ["Grey", "Tesla", "Model S Plaid"]] prices = [114990, 129990] ###Output _____no_output_____ ###Markdown Let's use the **enumerate()** function to add the price to each car. ###Code for i, car in enumerate(cars): car.append(prices[i]) print(cars) ###Output [['Black', 'Tesla', 'Model X', 114990], ['Grey', 'Tesla', 'Model S Plaid', 129990]] ###Markdown List comprehension ###Code # Motivation animals = ["Dog", "Tiger", "Lion", "Cow", "Snake"] animals_lenght = [] for animal in animals: animals_lenght.append(len(animal)) print(animals_lenght) # Use of list comprehension animals_lenght = [len(animal) for animal in animals] animals_lenght # Example prices = [10, 150, 200, 350] prices_doubled = [price * 2 for price in prices] prices_doubled ###Output _____no_output_____ ###Markdown Counting female names Training ###Code import csv f = open("legislators.csv") legislators = list(csv.reader(f)) for row in legislators: birthday = row[2] birth_year = birthday.split('-')[0] try: birth_year = int(birth_year) except Exception: birth_year = 0 row.append(birth_year) legislators[0][7] = "birth_year" name_counts = {} for row in legislators: gender = row[3] year = row[7] if gender == 'F' and year > 1950: name = row[1] if name in name_counts: name_counts[name] += 1 else: name_counts[name] = 1 print(name_counts) ###Output {'Enid': 1, 'Lynn': 1, 'Karen': 1, 'Denise': 1, 'Katherine': 1, 'Melissa': 2, 'Blanche': 1, 'Cynthia': 1, 'Shelley': 2, 'Nancy': 1, 'Deborah': 2, 'Heather': 1, 'Kathleen': 2, 'Mary': 2, 'Stephanie': 1, 'Betsy': 1, 'Hilda': 1, 'Ellen': 1, 'Gabrielle': 1, 'Sandy': 1, 'Ann Marie': 1, 'Nan': 1, 'Laura': 1, 'Jean': 1, 'Betty': 1} ###Markdown The None object ###Code # Motivation 1 values = [2, 12, 60] max_value = 0 for value in values: if value > max_value: max_value = value print(max_value) # Motivation 2 values = [-2, -12, -60] max_value = 0 for value in values: if value > max_value: max_value = value print(max_value) # With None values = [-2, -12, -60] max_value = None for value in values: if max_value is None or value > max_value: max_value = value print(max_value) ###Output -2 ###Markdown Training ###Code values = [None, 1, 45, None, 75] check_bool = [x is not None and x > 30 for x in values] check_bool ###Output _____no_output_____ ###Markdown Application: most frequent female names Training ###Code max_value = None for key in name_counts: value = name_counts[key] if max_value is None or value > max_value: max_value = value print(name_counts) print(max_value) ###Output 2 ###Markdown The items method ###Code # Example fruits = { "apple" : 12, "banana" : 5, "orange" : 20 } for fruit, number in fruits.items(): print(fruit, ":", number) ###Output apple : 12 banana : 5 orange : 20 ###Markdown Find frequent first names Training 1 ###Code top_female_names = [k for k, v in name_counts.items() if v == 2] top_female_names ###Output _____no_output_____ ###Markdown Training 2 ###Code top_male_names = [] male_name_counts = {} for row in legislators: if row[3] == "M" and row[7] > 1940: name = row[1] if name in male_name_counts: male_name_counts[name] += 1 else: male_name_counts[name] = 1 top_male_count = None for name, count in male_name_counts.items(): if top_male_count is None or count > top_male_count: top_male_count = count for name, count in male_name_counts.items(): if count == top_male_count: top_male_names.append(name) print(top_male_names) ###Output ['John'] ###Markdown Challenge Dataset ###Code import csv f = open("nfl_suspensions_data.csv") nfl_suspensions = list(csv.reader(f)) nfl_suspensions = nfl_suspensions[1:] print(nfl_suspensions[:5]) years = {} for suspension in nfl_suspensions: row_year = suspension[5] if row_year in years: years[row_year] += 1 else: years[row_year] = 1 print(years) ###Output {'2014': 29, '1946': 1, '1947': 1, '2010': 21, '2008': 10, '2007': 17, '1983': 1, '2009': 10, '2005': 8, '2000': 1, '2012': 45, '2001': 3, '2006': 11, '1989': 17, ' ': 1, '1963': 1, '2013': 40, '1990': 3, '2011': 13, '2004': 6, '2002': 7, '2003': 9, '1997': 3, '1999': 5, '1993': 1, '1995': 1, '1998': 2, '1994': 1, '1986': 1} ###Markdown Unique values ###Code teams = [row[1] for row in nfl_suspensions] unique_teams = set(teams) print(unique_teams) games = [row[2] for row in nfl_suspensions] unique_games = set(games) print(unique_games) ###Output {'2', '36', 'Indef.', '10', '4', '14', '3', '16', '1', '20', '6', '8', '32', '5'} ###Markdown Suspension class ###Code class Suspension(): def __init__(self, row): self.name = row[0] self.team = row[1] self.games = row[2] self.year = row[5] third_suspension = Suspension(nfl_suspensions[2]) print(third_suspension.name, "|", third_suspension.team, "|", third_suspension.games, "|", third_suspension.year) ###Output L. Brazill | IND | Indef. | 2014 ###Markdown Improved suspension class ###Code class Suspension(): def __init__(self, row): self.name = row[0] self.team = row[1] self.games = row[2] try: self.year = int(row[5]) except Exception: self.year = 0 def get_year(self): return self.year missing_year = Suspension(nfl_suspensions[22]) get_missing_year = missing_year.get_year() print(get_missing_year) ###Output 0
component-clustering/duplicate_component_exploration.ipynb
###Markdown Examining Volunteer internal consistency ###Code %load_ext autoreload %autoreload 2 import json import os import re import numpy as np import pandas as pd import lib.galaxy_utilities as gu from functools import partial from gzbuilderspirals.oo import Arm import matplotlib.pyplot as plt dr8ids, ss_ids, validation_ids = np.load('lib/duplicate_galaxies.npy').T print('Defining helper functions') def get_annotations(sid): return gu.classifications.query( 'subject_ids == {}'.format(sid) )['annotations'].apply(json.loads) def n_drawn_comps(a, task=0): try: return len(a[task]['value'][0]['value']) except IndexError: return np.nan def get_details(ann0, ann1, task=0): n_drawn0 = ann0.apply(partial(n_drawn_comps, task=task)) n_drawn1 = ann1.apply(partial(n_drawn_comps, task=task)) return sum(((s.mean(), s.std()) for s in (n_drawn0, n_drawn1)), ()) def get_disk_details(ann0, ann1): return get_details(ann0, ann1, task=0) def get_bulge_details(ann0, ann1): return get_details(ann0, ann1, task=1) def get_bar_details(ann0, ann1): return get_details(ann0, ann1, task=2) def get_spiral_arm_details(ann0, ann1): return get_details(ann0, ann1, task=3) print('Constructing classification details Data Frame') out = [] columns = [ '{}-{}-{}'.format(s, k, v) for k in ('disk', 'bulge', 'bar', 'spiral_arms') for s in ('original', 'validation') for v in ('mean', 'std') ] for i in range(len(dr8ids)): id_details = { 'original_id': ss_ids[i], 'validation_id': validation_ids[i], 'dr8id': dr8ids[i], } details = np.array([ get_details( get_annotations(ss_ids[i]), get_annotations(validation_ids[i]), task=j ) for j in range(4) ]) freq_details = {k: v for k, v in zip(columns, details.reshape(-1))} out.append({**id_details, **freq_details}) df = pd.DataFrame(out) ###Output Constructing classification details Data Frame ###Markdown How in-agreement were our volunteers? These plots show the variance in the percentage of volunteers drawing a component for galaxies in our original and validation subsets. The spiral arm plot shows the mean number of spiral arms for each galaxy. ###Code fig, (ax_disk, ax_bulge, ax_bar, ax_spiral) = plt.subplots(ncols=4, figsize=(19, 5)) ax_disk.plot(df['original-disk-mean'], df['validation-disk-mean'], '.', c='C0') ax_bulge.plot(df['original-bulge-mean'], df['validation-bulge-mean'], '.', c='C1') ax_bar.plot(df['original-bar-mean'], df['validation-bar-mean'], '.', c='C2') ax_spiral.plot(df['original-spiral_arms-mean'], df['validation-spiral_arms-mean'], '.', c='C3') ax_disk.set_title('Fraction of classifications with Disk') ax_bulge.set_title('Fraction of classifications with Bulge') ax_bar.set_title('Fraction of classifications with Bar') for ax in (ax_disk, ax_bulge, ax_bar): ax.set_xlabel('Original set') ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax_disk.set_ylabel('Validation set') ax_spiral.set_title('Mean number of spiral arms drawn') ax_spiral.set_xlabel('Original set') plt.savefig('duplicates_plots/component_frequency.pdf', bbox_inches='tight') ###Output _____no_output_____ ###Markdown The aggregate modelHow consistent is our aggregated model? We explore the consistency with which a component appears in our aggregated model, and how frequently we obtain a consistent number of spiral arms. ###Code gzb_models = pd.read_pickle('galaxy-builder-aggregate-models.pickle') original_models = gzb_models.loc[ss_ids] validation_models = gzb_models.loc[validation_ids] disk_agree = ~np.logical_xor( original_models['disk-axRatio'].notna(), validation_models['disk-axRatio'].notna() ) bulge_agree = ~np.logical_xor( original_models['bulge-axRatio'].notna(), validation_models['bulge-axRatio'].notna() ) bar_agree = ~np.logical_xor( original_models['bar-axRatio'].notna(), validation_models['bar-axRatio'].notna() ) print('Disk agrees {:.3%} of the time'.format(disk_agree.sum() / len(disk_agree))) print('Bulge agrees {:.3%} of the time'.format(bulge_agree.sum() / len(disk_agree))) print('Bar agrees {:.3%} of the time'.format(bar_agree.sum() / len(disk_agree))) print('Total model agrees {:.3%} of the time'.format( (disk_agree & bulge_agree & bar_agree).sum() / len(disk_agree) )) def get_n_spirals_in_model(sid): return len([ f for f in os.listdir('lib/spiral_arms') if re.match(r'{}-[0-9]+\.pickle'.format(sid), f) ]) n_spirals_original = np.fromiter(map(get_n_spirals_in_model, ss_ids), dtype=int) n_spirals_validation = np.fromiter(map(get_n_spirals_in_model, validation_ids), dtype=int) print('N_spirals agree {:03.2%} of the time'.format( sum(np.abs(n_spirals_original - n_spirals_validation) < 1) / len(n_spirals_validation) )) print('N_spirals within 1 {:03.2%} of the time'.format( sum(np.abs(n_spirals_original - n_spirals_validation) < 2) / len(n_spirals_validation) )) ###Output N_spirals agree 68.37% of the time N_spirals within 1 90.82% of the time ###Markdown And what of morphology? How consistent are the isophotes for our aggregated shapes? ###Code fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 10)) ax_disk, ax_bulge, ax_bar = np.array(axes).T # Disk ax = ax_disk ax[0].plot( gzb_models.loc[ss_ids]['disk-axRatio'], gzb_models.loc[validation_ids]['disk-axRatio'], '.', c='C0', ) ax[1].plot( gzb_models.loc[ss_ids]['disk-rEff'], gzb_models.loc[validation_ids]['disk-rEff'], '.', c='C0', ) ax[0].set_title('Disk ellipticity') ax[1].set_title('Disk size') for a in ax: a.set_ylabel('Validation subset'); ax[1].set_xlabel('Original subset') # Bulge ax = ax_bulge ax[0].plot( gzb_models.loc[ss_ids]['bulge-axRatio'], gzb_models.loc[validation_ids]['bulge-axRatio'], '.', c='C1', ) ax[1].plot( gzb_models.loc[ss_ids]['bulge-rEff'], gzb_models.loc[validation_ids]['bulge-rEff'], '.', c='C1', ) ax[0].set_title('Bulge ellipticity') ax[1].set_title('Bulge size') ax[1].set_xlabel('Original subset') # Bar ax = ax_bar ax[0].plot( gzb_models.loc[ss_ids]['bar-axRatio'], gzb_models.loc[validation_ids]['bar-axRatio'], '.', c='C2', ) ax[1].plot( gzb_models.loc[ss_ids]['bar-rEff'], gzb_models.loc[validation_ids]['bar-rEff'], '.', c='C2', ) ax[0].set_title('Bar ellipticity') ax[1].set_title('Bar size') ax[1].set_xlabel('Original subset') for ax in (ax_disk, ax_bulge, ax_bar): for a in ax: l = a.get_xlim() + a.get_ylim() lims = min(l), max(l) a.plot((-1e3, 1e3), (-1e3, 1e3), 'k', alpha=0.2, linewidth=1) a.set_xlim(lims); a.set_ylim(lims) plt.savefig('duplicates_plots/component_sizing.pdf', bbox_inches='tight') ###Output _____no_output_____ ###Markdown And spiral arm pitch angles? ###Code def get_pa(sid): arms = [ Arm.load(os.path.join('lib/spiral_arms', f)) for f in os.listdir('lib/spiral_arms') if re.match(r'{}-[0-9]+\.pickle'.format(sid), f) ] if not len(arms) > 0: return np.nan, np.nan p = arms[0].get_parent() return p.get_pitch_angle(arms) + (len(arms),) pa_original = pd.DataFrame( list(map(get_pa, ss_ids)), columns=('pa', 'sigma_pa', 'n_arms'), index=dr8ids, ) pa_validation = pd.DataFrame( list(map(get_pa, validation_ids)), columns=('pa', 'sigma_pa', 'n_arms'), index=dr8ids, ) mask = pa_original['n_arms'] == pa_validation['n_arms'] plt.figure(figsize=(5, 5)) mask = pa_original['n_arms'] == pa_validation['n_arms'] plt.errorbar( pa_original[mask].iloc[:, 0], pa_validation[mask].iloc[:, 0], xerr=pa_original[mask].iloc[:, 1], yerr=pa_validation[mask].iloc[:, 1], fmt='g.' ) plt.errorbar( pa_original[~mask].iloc[:, 0], pa_validation[~mask].iloc[:, 0], xerr=pa_original[~mask].iloc[:, 1], yerr=pa_validation[~mask].iloc[:, 1], fmt='r.' ) l = plt.xlim() + plt.ylim() lims = min(l), max(l) plt.plot((-90, 90), (-90, 90), 'k', alpha=0.2, linewidth=1) plt.xlim(lims); plt.ylim(lims) plt.xlabel('Pitch angle, original subset [degrees]') plt.ylabel('Pitch angle, validation subset [degrees]') plt.savefig('duplicates_plots/pa_comparison.pdf', bbox_inches='tight') foo = pa_original.query('pa < 5').index pa_original.loc[foo], pa_validation.loc[foo] ss_ids[dr8ids == 587741600952615088], validation_ids[dr8ids == 587741600952615088] ###Output _____no_output_____
notebooks/NumPy/Intermediate NumPy.ipynb
###Markdown Intermediate NumPyUnidata Python Workshop Overview:* **Teaching:** 15 minutes* **Exercises:** 20 minutes Questions1. How do we work with the multiple dimensions in a NumPy Array?1. How can we extract irregular subsets of data?1. How can we sort an array? Objectives1. Using axes to slice arrays1. Index arrays using true and false1. Index arrays using arrays of indices 1. Using axes to slice arraysThe solution to the last exercise in the Numpy Basics notebook introduces an important concept when working with NumPy: the axis. This indicates the particular dimension along which a function should operate (provided the function does something taking multiple values and converts to a single value). Let's look at a concrete example with `sum`: ###Code # Convention for import to get shortened namespace import numpy as np # Create an array for testing a = np.arange(12).reshape(3, 4) a # This calculates the total of all values in the array np.sum(a) # Keep this in mind: a.shape # Instead, take the sum across the rows: np.sum(a, axis=0) # Or do the same and take the some across columns: np.sum(a, axis=1) ###Output _____no_output_____ ###Markdown EXERCISE: Finish the code below to calculate advection. The trick is to figure out how to do the summation. ###Code # Synthetic data temp = np.random.randn(100, 50) u = np.random.randn(100, 50) v = np.random.randn(100, 50) # Calculate the gradient components gradx, grady = np.gradient(temp) # Turn into an array of vectors: # axis 0 is x position # axis 1 is y position # axis 2 is the vector components grad_vec = np.dstack([gradx, grady]) print(grad_vec.shape) # Turn wind components into vector wind_vec = np.dstack([u, v]) # Calculate advection, the dot product of wind and the negative of gradient # DON'T USE NUMPY.DOT (doesn't work). Multiply and add. # %load solutions/advection.py ###Output _____no_output_____ ###Markdown Top 2. Indexing Arrays with Boolean ValuesNumpy can easily create arrays of boolean values and use those to select certain values to extract from an array ###Code # Create some synthetic data representing temperature and wind speed data np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 50 + 2 * np.random.randn(100)) spd = (np.abs(10 * np.sin(np.linspace(0, 2 * np.pi, 100)) + 10 + 5 * np.random.randn(100))) %matplotlib inline import matplotlib.pyplot as plt plt.plot(temp, 'tab:red') plt.plot(spd, 'tab:blue'); ###Output _____no_output_____ ###Markdown By doing a comparision between a NumPy array and a value, we get anarray of values representing the results of the comparison betweeneach element and the value ###Code temp > 45 ###Output _____no_output_____ ###Markdown We can take the resulting array and use this to index into theNumPy array and retrieve the values where the result was true ###Code print(temp[temp > 45]) ###Output _____no_output_____ ###Markdown So long as the size of the boolean array matches the data, the boolean array can come from anywhere ###Code print(temp[spd > 10]) # Make a copy so we don't modify the original data temp2 = temp.copy() # Replace all places where spd is <10 with NaN (not a number) so matplotlib skips it temp2[spd < 10] = np.nan plt.plot(temp2, 'tab:red') ###Output _____no_output_____ ###Markdown Can also combine multiple boolean arrays using the syntax for bitwise operations. **MUST HAVE PARENTHESES** due to operator precedence. ###Code print(temp[(temp < 45) & (spd > 10)]) ###Output _____no_output_____ ###Markdown EXERCISE: Heat index is only defined for temperatures >= 80F and relative humidity values >= 40%. Using the data generated below, use boolean indexing to extract the data where heat index has a valid value. ###Code # Here's the "data" np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100)) rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) # Create a mask for the two conditions described above # good_heat_index = # Use this mask to grab the temperature and relative humidity values that together # will give good heat index values # temp[] ? # BONUS POINTS: Plot only the data where heat index is defined by # inverting the mask (using `~mask`) and setting invalid values to np.nan # %load solutions/heat_index.py ###Output _____no_output_____ ###Markdown Top 3. Indexing using arrays of indicesYou can also use a list or array of indices to extract particular values--this is a natural extension of the regular indexing. For instance, just as we can select the first element: ###Code print(temp[0]) ###Output _____no_output_____ ###Markdown We can also extract the first, fifth, and tenth elements: ###Code print(temp[[0, 4, 9]]) ###Output _____no_output_____ ###Markdown One of the ways this comes into play is trying to sort numpy arrays using `argsort`. This function returns the indices of the array that give the items in sorted order. So for our temp "data": ###Code inds = np.argsort(temp) print(inds) ###Output _____no_output_____ ###Markdown We can use this array of indices to pass into temp to get it in sorted order: ###Code print(temp[inds]) ###Output _____no_output_____ ###Markdown Or we can slice `inds` to only give the 10 highest temperatures: ###Code ten_highest = inds[-10:] print(temp[ten_highest]) ###Output _____no_output_____ ###Markdown There are other numpy arg functions that return indices for operating: ###Code np.*arg*? ###Output _____no_output_____ ###Markdown Intermediate NumPyUnidata Python Workshop Overview:* **Teaching:** 15 minutes* **Exercises:** 20 minutes Questions1. How do we work with the multiple dimensions in a NumPy Array?1. How can we extract irregular subsets of data?1. How can we sort an array? Objectives1. Using axes to slice arrays1. Index arrays using true and false1. Index arrays using arrays of indices 1. Using axes to slice arraysThe solution to the last exercise in the Numpy Basics notebook introduces an important concept when working with NumPy: the axis. This indicates the particular dimension along which a function should operate (provided the function does something taking multiple values and converts to a single value). Let's look at a concrete example with `sum`: ###Code # Convention for import to get shortened namespace import numpy as np # Create an array for testing a = np.arange(12).reshape(3, 4) a # This calculates the total of all values in the array np.sum(a) # Keep this in mind: a.shape # Instead, take the sum across the rows: np.sum(a, axis=0) # Or do the same and take the some across columns: np.sum(a, axis=1) ###Output _____no_output_____ ###Markdown EXERCISE: Finish the code below to calculate advection. The trick is to figure out how to do the summation. ###Code # Synthetic data temp = np.random.randn(100, 50) u = np.random.randn(100, 50) v = np.random.randn(100, 50) # Calculate the gradient components gradx, grady = np.gradient(temp) # Turn into an array of vectors: # axis 0 is x position # axis 1 is y position # axis 2 is the vector components grad_vec = np.dstack([gradx, grady]) print(grad_vec.shape) # Turn wind components into vector wind_vec = np.dstack([u, v]) # Calculate advection, the dot product of wind and the negative of gradient # DON'T USE NUMPY.DOT (doesn't work). Multiply and add. # %load solutions/advection.py ###Output _____no_output_____ ###Markdown Top 2. Indexing Arrays with Boolean ValuesNumpy can easily create arrays of boolean values and use those to select certain values to extract from an array ###Code # Create some synthetic data representing temperature and wind speed data np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 50 + 2 * np.random.randn(100)) spd = (np.abs(10 * np.sin(np.linspace(0, 2 * np.pi, 100)) + 10 + 5 * np.random.randn(100))) %matplotlib inline import matplotlib.pyplot as plt plt.plot(temp, 'tab:red') plt.plot(spd, 'tab:blue'); ###Output _____no_output_____ ###Markdown By doing a comparision between a NumPy array and a value, we get anarray of values representing the results of the comparison betweeneach element and the value ###Code temp > 45 ###Output _____no_output_____ ###Markdown We can take the resulting array and use this to index into theNumPy array and retrieve the values where the result was true ###Code print(temp[temp > 45]) ###Output _____no_output_____ ###Markdown So long as the size of the boolean array matches the data, the boolean array can come from anywhere ###Code print(temp[spd > 10]) # Make a copy so we don't modify the original data temp2 = temp.copy() # Replace all places where spd is <10 with NaN (not a number) so matplotlib skips it temp2[spd < 10] = np.nan plt.plot(temp2, 'tab:red') ###Output _____no_output_____ ###Markdown Can also combine multiple boolean arrays using the syntax for bitwise operations. **MUST HAVE PARENTHESES** due to operator precedence. ###Code print(temp[(temp < 45) & (spd > 10)]) ###Output _____no_output_____ ###Markdown EXERCISE: Heat index is only defined for temperatures >= 80F and relative humidity values >= 40%. Using the data generated below, use boolean indexing to extract the data where heat index has a valid value. ###Code # Here's the "data" np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100)) rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) # Create a mask for the two conditions described above # good_heat_index = # Use this mask to grab the temperature and relative humidity values that together # will give good heat index values # temp[] ? # BONUS POINTS: Plot only the data where heat index is defined by # inverting the mask (using `~mask`) and setting invalid values to np.nan # %load solutions/heat_index.py ###Output _____no_output_____ ###Markdown Top 3. Indexing using arrays of indicesYou can also use a list or array of indices to extract particular values--this is a natural extension of the regular indexing. For instance, just as we can select the first element: ###Code print(temp[0]) ###Output _____no_output_____ ###Markdown We can also extract the first, fifth, and tenth elements: ###Code print(temp[[0, 4, 9]]) ###Output _____no_output_____ ###Markdown One of the ways this comes into play is trying to sort numpy arrays using `argsort`. This function returns the indices of the array that give the items in sorted order. So for our temp "data": ###Code inds = np.argsort(temp) print(inds) ###Output _____no_output_____ ###Markdown We can use this array of indices to pass into temp to get it in sorted order: ###Code print(temp[inds]) ###Output _____no_output_____ ###Markdown Or we can slice `inds` to only give the 10 highest temperatures: ###Code ten_highest = inds[-10:] print(temp[ten_highest]) ###Output _____no_output_____ ###Markdown There are other numpy arg functions that return indices for operating: ###Code np.*arg*? ###Output _____no_output_____ ###Markdown Intermediate NumPyUnidata Python Workshop Overview:* **Teaching:** 20 minutes* **Exercises:** 25 minutes Questions1. How do we work with the multiple dimensions in a NumPy Array?1. How can we extract irregular subsets of data?1. How can we sort an array? Objectives1. Index and slice arrays1. Index arrays using true and false1. Index arrays using arrays of indices 1. Index and slice arraysIndexing is how we pull individual data items out of an array. Slicing extends this process to pulling out a regular set of the items. ###Code # Convention for import to get shortened namespace import numpy as np # Create an array for testing a = np.arange(12).reshape(3, 4) a ###Output _____no_output_____ ###Markdown Indexing in Python is 0-based, so the command below looks for the 2nd item along the first dimension (row) and the 3rd along the second dimension (column). ###Code a[1, 2] ###Output _____no_output_____ ###Markdown Can also just index on one dimension ###Code a[2] ###Output _____no_output_____ ###Markdown Negative indices are also allowed, which permit indexing relative to the end of the array. ###Code a[0, -1] ###Output _____no_output_____ ###Markdown Slicing syntax is written as `start:stop[:step]`, where all numbers are optional.- defaults: - start = 0 - end = len(dim) - step = 1- The second colon is also optional if no step is used.It should be noted that end represents one past the last item; one can also think of it as a half open interval: `[start, end)` ###Code # Get the 2nd and 3rd rows a[1:3] # All rows and 3rd column a[:, 2] # ... can be used to replace one or more full slices a[..., 2] # Slice every other row a[::2] # You can also slice using negative indices a[:, :-1] ###Output _____no_output_____ ###Markdown EXERCISE: The code below calculates a two point average using a Python list and loop. Convert it do obtain the same results using NumPy slicing Bonus points: Can you extend the NumPy version to do a 3 point (running) average? ###Code data = [1, 3, 5, 7, 9, 11] out = [] # Look carefully at the loop. Think carefully about the sequence of values # that data[i] takes--is there some way to get those values as a numpy slice? # What about for data[i + 1]? for i in range(len(data) - 1): out.append((data[i] + data[i + 1]) / 2) print(out) ###Output _____no_output_____ ###Markdown View Solutiondata = np.array([1, 3, 5, 7, 9, 11])out = (data[:-1] + data[1:]) / 2print(out) View Bonus Solutiondata = np.array([1, 3, 5, 7, 9, 11])out = (data[2:] + data[1:-1] + data[:-2]) / 3print(out) EXERCISE: Given the array of data below, calculate the total of each of the columns (i.e. add each of the three rows together): ###Code data = np.arange(12).reshape(3, 4) # total = ? ###Output _____no_output_____ ###Markdown View Solutionprint(data[0] + data[1] + data[2]) Or we can use numpy's sum and use the "axis" argumentprint(np.sum(data, axis=0)) The solution to the last exercise introduces an important concept when working with NumPy: the axis. This indicates the particular dimension along which a function should operate (provided the function does something taking multiple values and converts to a single value). Let's look at a concrete example with `sum`: ###Code a # This calculates the total of all values in the array np.sum(a) # Keep this in mind: a.shape # Instead, take the sum across the rows: np.sum(a, axis=0) # Or do the same and take the some across columns: np.sum(a, axis=1) ###Output _____no_output_____ ###Markdown EXERCISE: Finish the code below to calculate advection. The trick is to figure out how to do the summation. ###Code # Synthetic data temp = np.random.randn(100, 50) u = np.random.randn(100, 50) v = np.random.randn(100, 50) # Calculate the gradient components gradx, grady = np.gradient(temp) # Turn into an array of vectors: # axis 0 is x position # axis 1 is y position # axis 2 is the vector components grad_vec = np.dstack([gradx, grady]) print(grad_vec.shape) # Turn wind components into vector wind_vec = np.dstack([u, v]) # Calculate advection, the dot product of wind and the negative of gradient # DON'T USE NUMPY.DOT (doesn't work). Multiply and add. ###Output _____no_output_____ ###Markdown View Solutionadvec = (wind_vec * -grad_vec).sum(axis=-1)print(advec.shape) Top 2. Indexing Arrays with Boolean ValuesNumpy can easily create arrays of boolean values and use those to select certain values to extract from an array ###Code # Create some synthetic data representing temperature and wind speed data np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 50 + 2 * np.random.randn(100)) spd = (np.abs(10 * np.sin(np.linspace(0, 2 * np.pi, 100)) + 10 + 5 * np.random.randn(100))) %matplotlib inline import matplotlib.pyplot as plt plt.plot(temp, 'tab:red') plt.plot(spd, 'tab:blue'); ###Output _____no_output_____ ###Markdown By doing a comparision between a NumPy array and a value, we get anarray of values representing the results of the comparison betweeneach element and the value ###Code temp > 45 ###Output _____no_output_____ ###Markdown We can take the resulting array and use this to index into theNumPy array and retrieve the values where the result was true ###Code print(temp[temp > 45]) ###Output _____no_output_____ ###Markdown So long as the size of the boolean array matches the data, the boolean array can come from anywhere ###Code print(temp[spd > 10]) # Make a copy so we don't modify the original data temp2 = temp.copy() # Replace all places where spd is <10 with NaN (not a number) so matplotlib skips it temp2[spd < 10] = np.nan plt.plot(temp2, 'tab:red') ###Output _____no_output_____ ###Markdown Can also combine multiple boolean arrays using the syntax for bitwise operations. **MUST HAVE PARENTHESES** due to operator precedence. ###Code print(temp[(temp < 45) & (spd > 10)]) ###Output _____no_output_____ ###Markdown EXERCISE: Heat index is only defined for temperatures >= 80F and relative humidity values >= 40%. Using the data generated below, use boolean indexing to extract the data where heat index has a valid value. ###Code import numpy as np # Here's the "data" np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100)) rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) # Create a mask for the two conditions described above # good_heat_index = # Use this mask to grab the temperature and relative humidity values that together # will give good heat index values # temp[] ? # BONUS POINTS: Plot only the data where heat index is defined by # inverting the mask (using `~mask`) and setting invalid values to np.nan ###Output _____no_output_____ ###Markdown View Solutionimport numpy as np Here's the "data"np.random.seed(19990503) Make sure we all have the same datatemp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100))rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) Create a mask for the two conditions described abovegood_heat_index = (temp >= 80) & (rh >= 0.4) Use this mask to grab the temperature and relative humidity values that together will give good heat index valuesprint(temp[good_heat_index]) BONUS POINTS: Plot only the data where heat index is defined by inverting the mask (using `~mask`) and setting invalid values to np.nantemp[~good_heat_index] = np.nanplt.plot(temp, 'tab:red') Top 3. Indexing using arrays of indicesYou can also use a list or array of indices to extract particular values--this is a natural extension of the regular indexing. For instance, just as we can select the first element: ###Code print(temp[0]) ###Output _____no_output_____ ###Markdown We can also extract the first, fifth, and tenth elements: ###Code print(temp[[0, 4, 9]]) ###Output _____no_output_____ ###Markdown One of the ways this comes into play is trying to sort numpy arrays using `argsort`. This function returns the indices of the array that give the items in sorted order. So for our temp "data": ###Code inds = np.argsort(temp) print(inds) ###Output _____no_output_____ ###Markdown We can use this array of indices to pass into temp to get it in sorted order: ###Code print(temp[inds]) ###Output _____no_output_____ ###Markdown Or we can slice `inds` to only give the 10 highest temperatures: ###Code ten_highest = inds[-10:] print(temp[ten_highest]) ###Output _____no_output_____ ###Markdown There are other numpy arg functions that return indices for operating: ###Code np.*arg*? ###Output _____no_output_____ ###Markdown Intermediate NumPyUnidata Python Workshop Overview:* **Teaching:** 20 minutes* **Exercises:** 25 minutes Questions1. How do we work with the multiple dimensions in a NumPy Array?1. How can we extract irregular subsets of data?1. How can we sort an array? Objectives1. Index and slice arrays1. Index arrays using true and false1. Index arrays using arrays of indices 1. Index and slice arraysIndexing is how we pull individual data items out of an array. Slicing extends this process to pulling out a regular set of the items. ###Code # Convention for import to get shortened namespace import numpy as np # Create an array for testing a = np.arange(12).reshape(3, 4) a ###Output _____no_output_____ ###Markdown Indexing in Python is 0-based, so the command below looks for the 2nd item along the first dimension (row) and the 3rd along the second dimension (column). ###Code a[1, 2] ###Output _____no_output_____ ###Markdown Can also just index on one dimension ###Code a[2] ###Output _____no_output_____ ###Markdown Negative indices are also allowed, which permit indexing relative to the end of the array. ###Code a[0, -1] ###Output _____no_output_____ ###Markdown Slicing syntax is written as `start:stop[:step]`, where all numbers are optional.- defaults: - start = 0 - end = len(dim) - step = 1- The second colon is also optional if no step is used.It should be noted that end represents one past the last item; one can also think of it as a half open interval: `[start, end)` ###Code # Get the 2nd and 3rd rows a[1:3] # All rows and 3rd column a[:, 2] # ... can be used to replace one or more full slices a[..., 2] # Slice every other row a[::2] # You can also slice using negative indices a[:, :-1] ###Output _____no_output_____ ###Markdown EXERCISE: The code below calculates a two point average using a Python list and loop. Convert it do obtain the same results using NumPy slicing Bonus points: Can you extend the NumPy version to do a 3 point (running) average? ###Code data = [1, 3, 5, 7, 9, 11] out = [] # Look carefully at the loop. Think carefully about the sequence of values # that data[i] takes--is there some way to get those values as a numpy slice? # What about for data[i + 1]? for i in range(len(data) - 1): out.append((data[i] + data[i + 1]) / 2) print(out) # %load solutions/average.py # %load solutions/average3.py ###Output _____no_output_____ ###Markdown EXERCISE: Given the array of data below, calculate the total of each of the columns (i.e. add each of the three rows together): ###Code data = np.arange(12).reshape(3, 4) # total = ? # %load solutions/column_sums.py ###Output _____no_output_____ ###Markdown The solution to the last exercise introduces an important concept when working with NumPy: the axis. This indicates the particular dimension along which a function should operate (provided the function does something taking multiple values and converts to a single value). Let's look at a concrete example with `sum`: ###Code a # This calculates the total of all values in the array np.sum(a) # Keep this in mind: a.shape # Instead, take the sum across the rows: np.sum(a, axis=0) # Or do the same and take the some across columns: np.sum(a, axis=1) ###Output _____no_output_____ ###Markdown EXERCISE: Finish the code below to calculate advection. The trick is to figure out how to do the summation. ###Code # Synthetic data temp = np.random.randn(100, 50) u = np.random.randn(100, 50) v = np.random.randn(100, 50) # Calculate the gradient components gradx, grady = np.gradient(temp) # Turn into an array of vectors: # axis 0 is x position # axis 1 is y position # axis 2 is the vector components grad_vec = np.dstack([gradx, grady]) print(grad_vec.shape) # Turn wind components into vector wind_vec = np.dstack([u, v]) # Calculate advection, the dot product of wind and the negative of gradient # DON'T USE NUMPY.DOT (doesn't work). Multiply and add. # %load solutions/advection.py ###Output _____no_output_____ ###Markdown Top 2. Indexing Arrays with Boolean ValuesNumpy can easily create arrays of boolean values and use those to select certain values to extract from an array ###Code # Create some synthetic data representing temperature and wind speed data np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 50 + 2 * np.random.randn(100)) spd = (np.abs(10 * np.sin(np.linspace(0, 2 * np.pi, 100)) + 10 + 5 * np.random.randn(100))) %matplotlib inline import matplotlib.pyplot as plt plt.plot(temp, 'tab:red') plt.plot(spd, 'tab:blue'); ###Output _____no_output_____ ###Markdown By doing a comparision between a NumPy array and a value, we get anarray of values representing the results of the comparison betweeneach element and the value ###Code temp > 45 ###Output _____no_output_____ ###Markdown We can take the resulting array and use this to index into theNumPy array and retrieve the values where the result was true ###Code print(temp[temp > 45]) ###Output _____no_output_____ ###Markdown So long as the size of the boolean array matches the data, the boolean array can come from anywhere ###Code print(temp[spd > 10]) # Make a copy so we don't modify the original data temp2 = temp.copy() # Replace all places where spd is <10 with NaN (not a number) so matplotlib skips it temp2[spd < 10] = np.nan plt.plot(temp2, 'tab:red') ###Output _____no_output_____ ###Markdown Can also combine multiple boolean arrays using the syntax for bitwise operations. **MUST HAVE PARENTHESES** due to operator precedence. ###Code print(temp[(temp < 45) & (spd > 10)]) ###Output _____no_output_____ ###Markdown EXERCISE: Heat index is only defined for temperatures >= 80F and relative humidity values >= 40%. Using the data generated below, use boolean indexing to extract the data where heat index has a valid value. ###Code import numpy as np # Here's the "data" np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100)) rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) # Create a mask for the two conditions described above # good_heat_index = # Use this mask to grab the temperature and relative humidity values that together # will give good heat index values # temp[] ? # BONUS POINTS: Plot only the data where heat index is defined by # inverting the mask (using `~mask`) and setting invalid values to np.nan # %load solutions/heat_index.py ###Output _____no_output_____ ###Markdown Top 3. Indexing using arrays of indicesYou can also use a list or array of indices to extract particular values--this is a natural extension of the regular indexing. For instance, just as we can select the first element: ###Code print(temp[0]) ###Output _____no_output_____ ###Markdown We can also extract the first, fifth, and tenth elements: ###Code print(temp[[0, 4, 9]]) ###Output _____no_output_____ ###Markdown One of the ways this comes into play is trying to sort numpy arrays using `argsort`. This function returns the indices of the array that give the items in sorted order. So for our temp "data": ###Code inds = np.argsort(temp) print(inds) ###Output _____no_output_____ ###Markdown We can use this array of indices to pass into temp to get it in sorted order: ###Code print(temp[inds]) ###Output _____no_output_____ ###Markdown Or we can slice `inds` to only give the 10 highest temperatures: ###Code ten_highest = inds[-10:] print(temp[ten_highest]) ###Output _____no_output_____ ###Markdown There are other numpy arg functions that return indices for operating: ###Code np.*arg*? ###Output _____no_output_____ ###Markdown Intermediate NumPyUnidata Python Workshop Overview:* **Teaching:** 20 minutes* **Exercises:** 25 minutes Questions1. How do we work with the multiple dimensions in a NumPy Array?1. How can we extract irregular subsets of data?1. How can we sort an array? Objectives1. Index and slice arrays1. Index arrays using true and false1. Index arrays using arrays of indices 1. Index and slice arraysIndexing is how we pull individual data items out of an array. Slicing extends this process to pulling out a regular set of the items. ###Code # Convention for import to get shortened namespace import numpy as np # Create an array for testing a = np.arange(12).reshape(3, 4) a ###Output _____no_output_____ ###Markdown Indexing in Python is 0-based, so the command below looks for the 2nd item along the first dimension (row) and the 3rd along the second dimension (column). ###Code a[1, 2] ###Output _____no_output_____ ###Markdown Can also just index on one dimension ###Code a[2] ###Output _____no_output_____ ###Markdown Negative indices are also allowed, which permit indexing relative to the end of the array. ###Code a[0, -1] ###Output _____no_output_____ ###Markdown Slicing syntax is written as `start:stop[:step]`, where all numbers are optional.- defaults: - start = 0 - end = len(dim) - step = 1- The second colon is also optional if no step is used.It should be noted that end represents one past the last item; one can also think of it as a half open interval: `[start, end)` ###Code # Get the 2nd and 3rd rows a[1:3] # All rows and 3rd column a[:, 2] # ... can be used to replace one or more full slices a[..., 2] # Slice every other row a[::2] # You can also slice using negative indices a[:, :-1] ###Output _____no_output_____ ###Markdown EXERCISE: The code below calculates a two point average using a Python list and loop. Convert it do obtain the same results using NumPy slicing Bonus points: Can you extend the NumPy version to do a 3 point (running) average? ###Code data = [1, 3, 5, 7, 9, 11] out = [] # Look carefully at the loop. Think carefully about the sequence of values # that data[i] takes--is there some way to get those values as a numpy slice? # What about for data[i + 1]? for i in range(len(data) - 1): out.append((data[i] + data[i + 1]) / 2) print(out) ###Output _____no_output_____ ###Markdown View Solutiondata = np.array([1, 3, 5, 7, 9, 11])out = (data[:-1] + data[1:]) / 2print(out) View Bonus Solutiondata = np.array([1, 3, 5, 7, 9, 11])out = (data[2:] + data[1:-1] + data[:-2]) / 3print(out) EXERCISE: Given the array of data below, calculate the total of each of the columns (i.e. add each of the three rows together): ###Code data = np.arange(12).reshape(3, 4) # total = ? ###Output _____no_output_____ ###Markdown View Solutionprint(data[0] + data[1] + data[2])\ Or we can use numpy's sum and use the "axis" argumentprint(np.sum(data, axis=0)) The solution to the last exercise introduces an important concept when working with NumPy: the axis. This indicates the particular dimension along which a function should operate (provided the function does something taking multiple values and converts to a single value). Let's look at a concrete example with `sum`: ###Code a # This calculates the total of all values in the array np.sum(a) # Keep this in mind: a.shape # Instead, take the sum across the rows: np.sum(a, axis=0) # Or do the same and take the some across columns: np.sum(a, axis=1) ###Output _____no_output_____ ###Markdown EXERCISE: Finish the code below to calculate advection. The trick is to figure out how to do the summation. ###Code # Synthetic data temp = np.random.randn(100, 50) u = np.random.randn(100, 50) v = np.random.randn(100, 50) # Calculate the gradient components gradx, grady = np.gradient(temp) # Turn into an array of vectors: # axis 0 is x position # axis 1 is y position # axis 2 is the vector components grad_vec = np.dstack([gradx, grady]) print(grad_vec.shape) # Turn wind components into vector wind_vec = np.dstack([u, v]) # Calculate advection, the dot product of wind and the negative of gradient # DON'T USE NUMPY.DOT (doesn't work). Multiply and add. ###Output _____no_output_____ ###Markdown View Solutionadvec = (wind_vec * -grad_vec).sum(axis=-1)print(advec.shape) Top 2. Indexing Arrays with Boolean ValuesNumpy can easily create arrays of boolean values and use those to select certain values to extract from an array ###Code # Create some synthetic data representing temperature and wind speed data np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 50 + 2 * np.random.randn(100)) spd = (np.abs(10 * np.sin(np.linspace(0, 2 * np.pi, 100)) + 10 + 5 * np.random.randn(100))) %matplotlib inline import matplotlib.pyplot as plt plt.plot(temp, 'tab:red') plt.plot(spd, 'tab:blue'); ###Output _____no_output_____ ###Markdown By doing a comparision between a NumPy array and a value, we get anarray of values representing the results of the comparison betweeneach element and the value ###Code temp > 45 ###Output _____no_output_____ ###Markdown We can take the resulting array and use this to index into theNumPy array and retrieve the values where the result was true ###Code print(temp[temp > 45]) ###Output _____no_output_____ ###Markdown So long as the size of the boolean array matches the data, the boolean array can come from anywhere ###Code print(temp[spd > 10]) # Make a copy so we don't modify the original data temp2 = temp.copy() # Replace all places where spd is <10 with NaN (not a number) so matplotlib skips it temp2[spd < 10] = np.nan plt.plot(temp2, 'tab:red') ###Output _____no_output_____ ###Markdown Can also combine multiple boolean arrays using the syntax for bitwise operations. **MUST HAVE PARENTHESES** due to operator precedence. ###Code print(temp[(temp < 45) & (spd > 10)]) ###Output _____no_output_____ ###Markdown EXERCISE: Heat index is only defined for temperatures >= 80F and relative humidity values >= 40%. Using the data generated below, use boolean indexing to extract the data where heat index has a valid value. ###Code import numpy as np # Here's the "data" np.random.seed(19990503) # Make sure we all have the same data temp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100)) rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100))) # Create a mask for the two conditions described above # good_heat_index = # Use this mask to grab the temperature and relative humidity values that together # will give good heat index values # temp[] ? # BONUS POINTS: Plot only the data where heat index is defined by # inverting the mask (using `~mask`) and setting invalid values to np.nan ###Output _____no_output_____ ###Markdown View Solutionimport numpy as np\ Here's the "data"np.random.seed(19990503) Make sure we all have the same datatemp = (20 * np.cos(np.linspace(0, 2 * np.pi, 100)) + 80 + 2 * np.random.randn(100))rh = (np.abs(20 * np.cos(np.linspace(0, 4 * np.pi, 100)) + 50 + 5 * np.random.randn(100)))\ Create a mask for the two conditions described abovegood_heat_index = (temp >= 80) & (rh >= 0.4)\ Use this mask to grab the temperature and relative humidity values that together\ will give good heat index valuesprint(temp[good_heat_index]) \ BONUS POINTS: Plot only the data where heat index is defined by\ inverting the mask (using `~mask`) and setting invalid values to np.nantemp[~good_heat_index] = np.nanplt.plot(temp, 'tab:red') Top 3. Indexing using arrays of indicesYou can also use a list or array of indices to extract particular values--this is a natural extension of the regular indexing. For instance, just as we can select the first element: ###Code print(temp[0]) ###Output _____no_output_____ ###Markdown We can also extract the first, fifth, and tenth elements: ###Code print(temp[[0, 4, 9]]) ###Output _____no_output_____ ###Markdown One of the ways this comes into play is trying to sort numpy arrays using `argsort`. This function returns the indices of the array that give the items in sorted order. So for our temp "data": ###Code inds = np.argsort(temp) print(inds) ###Output _____no_output_____ ###Markdown We can use this array of indices to pass into temp to get it in sorted order: ###Code print(temp[inds]) ###Output _____no_output_____ ###Markdown Or we can slice `inds` to only give the 10 highest temperatures: ###Code ten_highest = inds[-10:] print(temp[ten_highest]) ###Output _____no_output_____ ###Markdown There are other numpy arg functions that return indices for operating: ###Code np.*arg*? ###Output _____no_output_____
intermediate_notebooks/benchmarks/cugraph_benchmarks/louvain_benchmark.ipynb
###Markdown Louvain Performance BenchmarkingThis notebook benchmarks performance improvement of running the Louvain clustering algorithm within cuGraph against NetworkX. The test is run over eight test networks (graphs) and then results plotted. Notebook Credits Original Authors: Bradley Rees Last Edit: 08/06/2019 Test Environment RAPIDS Versions: 0.9.0 Test Hardware: GV100 32G, CUDA 10,0 Intel(R) Core(TM) CPU i7-7800X @ 3.50GHz 32GB system memory Updates- moved loading ploting libraries to front so that dependencies can be checked before running algorithms- added edge values - changed timing to including Graph creation for both cuGraph and NetworkX. This will better represent end-to-end times Dependencies- RAPIDS cuDF and cuGraph version 0.6.0 - NetworkX - Matplotlib - Scipy - data prep script run Note: Comparison against published resultsThe cuGraph blog post included performance numbers that were collected over a year ago. For the test graphs, int32 values are now used. That improves GPUs performance. Additionally, the initial benchamrks were measured on a P100 GPU. This test only comparse the modularity scores and a success is if the scores are within 15% of each other. That comparison is done by adjusting the NetworkX modularity score and then verifying that the cuGraph score is higher.cuGraph did a full validation of NetworkX results against cuGraph results. That included cross-validation of every cluster. That test is very slow and not included here ###Code # Import needed libraries import time import cugraph import cudf import os # NetworkX libraries try: import community except ModuleNotFoundError: os.system('pip install python-louvain') import community import networkx as nx from scipy.io import mmread # Loading plotting libraries import matplotlib.pyplot as plt; plt.rcdefaults() import numpy as np import matplotlib.pyplot as plt !bash dataPrep.sh ###Output mkdir: cannot create directory 'data': File exists --2019-11-01 20:49:03-- https://sparse.tamu.edu/MM/DIMACS10/preferentialAttachment.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2027782 (1.9M) [application/x-gzip] Saving to: 'preferentialAttachment.tar.gz' preferentialAttachm 100%[===================>] 1.93M 3.48MB/s in 0.6s 2019-11-01 20:49:04 (3.48 MB/s) - 'preferentialAttachment.tar.gz' saved [2027782/2027782] --2019-11-01 20:49:04-- https://sparse.tamu.edu/MM/DIMACS10/caidaRouterLevel.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2418742 (2.3M) [application/x-gzip] Saving to: 'caidaRouterLevel.tar.gz' caidaRouterLevel.ta 100%[===================>] 2.31M 3.76MB/s in 0.6s 2019-11-01 20:49:05 (3.76 MB/s) - 'caidaRouterLevel.tar.gz' saved [2418742/2418742] --2019-11-01 20:49:05-- https://sparse.tamu.edu/MM/DIMACS10/coAuthorsDBLP.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 3206075 (3.1M) [application/x-gzip] Saving to: 'coAuthorsDBLP.tar.gz' coAuthorsDBLP.tar.g 100%[===================>] 3.06M 3.99MB/s in 0.8s 2019-11-01 20:49:06 (3.99 MB/s) - 'coAuthorsDBLP.tar.gz' saved [3206075/3206075] --2019-11-01 20:49:06-- https://sparse.tamu.edu/MM/LAW/dblp-2010.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2235407 (2.1M) [application/x-gzip] Saving to: 'dblp-2010.tar.gz' dblp-2010.tar.gz 100%[===================>] 2.13M 3.75MB/s in 0.6s 2019-11-01 20:49:07 (3.75 MB/s) - 'dblp-2010.tar.gz' saved [2235407/2235407] --2019-11-01 20:49:07-- https://sparse.tamu.edu/MM/DIMACS10/citationCiteseer.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 5082095 (4.8M) [application/x-gzip] Saving to: 'citationCiteseer.tar.gz' citationCiteseer.ta 100%[===================>] 4.85M 4.23MB/s in 1.1s 2019-11-01 20:49:08 (4.23 MB/s) - 'citationCiteseer.tar.gz' saved [5082095/5082095] --2019-11-01 20:49:08-- https://sparse.tamu.edu/MM/DIMACS10/coPapersDBLP.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 36298718 (35M) [application/x-gzip] Saving to: 'coPapersDBLP.tar.gz' coPapersDBLP.tar.gz 100%[===================>] 34.62M 4.93MB/s in 7.2s 2019-11-01 20:49:16 (4.79 MB/s) - 'coPapersDBLP.tar.gz' saved [36298718/36298718] --2019-11-01 20:49:16-- https://sparse.tamu.edu/MM/DIMACS10/coPapersCiteseer.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 36652888 (35M) [application/x-gzip] Saving to: 'coPapersCiteseer.tar.gz' coPapersCiteseer.ta 100%[===================>] 34.95M 4.93MB/s in 7.2s 2019-11-01 20:49:23 (4.82 MB/s) - 'coPapersCiteseer.tar.gz' saved [36652888/36652888] --2019-11-01 20:49:23-- https://sparse.tamu.edu/MM/SNAP/as-Skitter.tar.gz Resolving sparse.tamu.edu (sparse.tamu.edu)... 128.194.136.136 Connecting to sparse.tamu.edu (sparse.tamu.edu)|128.194.136.136|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 33172905 (32M) [application/x-gzip] Saving to: 'as-Skitter.tar.gz' as-Skitter.tar.gz 100%[===================>] 31.64M 4.92MB/s in 6.6s 2019-11-01 20:49:30 (4.79 MB/s) - 'as-Skitter.tar.gz' saved [33172905/33172905] preferentialAttachment/preferentialAttachment.mtx caidaRouterLevel/caidaRouterLevel.mtx coAuthorsDBLP/coAuthorsDBLP.mtx dblp-2010/dblp-2010.mtx citationCiteseer/citationCiteseer.mtx coPapersDBLP/coPapersDBLP.mtx coPapersCiteseer/coPapersCiteseer.mtx as-Skitter/as-Skitter.mtx find: paths must precede expression: caidaRouterLevel.mtx Usage: find [-H] [-L] [-P] [-Olevel] [-D help|tree|search|stat|rates|opt|exec|time] [path...] [expression] ###Markdown Define the test data ###Code # Test File data = { 'preferentialAttachment' : './data/preferentialAttachment.mtx', 'caidaRouterLevel' : './data/caidaRouterLevel.mtx', 'coAuthorsDBLP' : './data/coAuthorsDBLP.mtx', 'dblp' : './data/dblp-2010.mtx', 'citationCiteseer' : './data/citationCiteseer.mtx', 'coPapersDBLP' : './data/coPapersDBLP.mtx', 'coPapersCiteseer' : './data/coPapersCiteseer.mtx', 'as-Skitter' : './data/as-Skitter.mtx' } ###Output _____no_output_____ ###Markdown Define the testing functions ###Code # Read in a dataset in MTX format def read_mtx_file(mm_file): print('Reading ' + str(mm_file) + '...') d = mmread(mm_file).asfptype() M = d.tocsr() if M is None: raise TypeError('Could not read the input graph') if M.shape[0] != M.shape[1]: raise TypeError('Shape is not square') return M # Run the cuGraph Louvain analytic (using nvGRAPH function) def cugraph_call(M): t1 = time.time() # data row_offsets = cudf.Series(M.indptr) col_indices = cudf.Series(M.indices) data = cudf.Series(M.data) # create graph G = cugraph.Graph() G.add_adj_list(row_offsets, col_indices, data) # cugraph Louvain Call print(' cuGraph Solving... ') df, mod = cugraph.louvain(G) t2 = time.time() - t1 return t2, mod # Run the NetworkX Louvain analytic. THis is done in two parts since the modularity score is not returned def networkx_call(M): t1 = time.time() # Directed NetworkX graph Gnx = nx.Graph(M) # Networkx print(' NetworkX Solving... ') parts = community.best_partition(Gnx) # Calculating modularity scores for comparison mod = community.modularity(parts, Gnx) t2 = time.time() - t1 return t2, mod ###Output _____no_output_____ ###Markdown Run the benchmarks ###Code # Loop through each test file and compute the speedup perf = [] names = [] for k,v in data.items(): M = read_mtx_file(v) tr, modc = cugraph_call(M) tn, modx = networkx_call(M) speedUp = (tn / tr) names.append(k) perf.append(speedUp) mod_delta = (0.85 * modx) print(str(speedUp) + "x faster => cugraph " + str(tr) + " vs " + str(tn)) print("Modularity => cugraph " + str(modc) + " should be greater than " + str(mod_delta)) ###Output Reading ./data/preferentialAttachment.mtx... cuGraph Solving... NetworkX Solving... 3509.4500202625027x faster => cugraph 0.8648371696472168 vs 3035.1028225421906 Modularity => cugraph 0.19461682219817675 should be greater than 0.21973558127621454 Reading ./data/caidaRouterLevel.mtx... cuGraph Solving... NetworkX Solving... 7076.7607431556x faster => cugraph 0.04834103584289551 vs 342.0979447364807 Modularity => cugraph 0.7872923202092253 should be greater than 0.7289947349239256 Reading ./data/coAuthorsDBLP.mtx... cuGraph Solving... NetworkX Solving... 11893.139026724633x faster => cugraph 0.06750750541687012 vs 802.8761472702026 Modularity => cugraph 0.7648739273488195 should be greater than 0.7026254024456955 Reading ./data/dblp-2010.mtx... cuGraph Solving... NetworkX Solving... 12969.744546806074x faster => cugraph 0.07826042175292969 vs 1015.0176782608032 Modularity => cugraph 0.7506256512679915 should be greater than 0.7450002914515801 Reading ./data/citationCiteseer.mtx... cuGraph Solving... NetworkX Solving... 16875.667838933237x faster => cugraph 0.07159066200256348 vs 1208.1402323246002 Modularity => cugraph 0.6726575224227932 should be greater than 0.6845554405196591 Reading ./data/coPapersDBLP.mtx... cuGraph Solving... NetworkX Solving... ###Markdown plot the output ###Code %matplotlib inline y_pos = np.arange(len(names)) plt.bar(y_pos, perf, align='center', alpha=0.5) plt.xticks(y_pos, names) plt.ylabel('Speed Up') plt.title('Performance Speedup: cuGraph vs NetworkX') plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Louvain Performance BenchmarkingThis notebook benchmarks performance improvement of running the Louvain clustering algorithm within cuGraph against NetworkX. The test is run over eight test networks (graphs) and then results plotted. Notebook Credits Original Authors: Bradley Rees Last Edit: 08/06/2019 Test Environment RAPIDS Versions: 0.9.0 Test Hardware: GV100 32G, CUDA 10,0 Intel(R) Core(TM) CPU i7-7800X @ 3.50GHz 32GB system memory Updates- moved loading ploting libraries to front so that dependencies can be checked before running algorithms- added edge values - changed timing to including Graph creation for both cuGraph and NetworkX. This will better represent end-to-end times Dependencies- RAPIDS cuDF and cuGraph version 0.6.0 - NetworkX - Matplotlib - Scipy - data prep script run Note: Comparison against published resultsThe cuGraph blog post included performance numbers that were collected over a year ago. For the test graphs, int32 values are now used. That improves GPUs performance. Additionally, the initial benchamrks were measured on a P100 GPU. This test only comparse the modularity scores and a success is if the scores are within 15% of each other. That comparison is done by adjusting the NetworkX modularity score and then verifying that the cuGraph score is higher.cuGraph did a full validation of NetworkX results against cuGraph results. That included cross-validation of every cluster. That test is very slow and not included here ###Code # Import needed libraries import time import cugraph import cudf # NetworkX libraries import community import networkx as nx from scipy.io import mmread # Loading plotting libraries import matplotlib.pyplot as plt; plt.rcdefaults() import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Define the test data ###Code # Test File data = { 'preferentialAttachment' : './data/preferentialAttachment.mtx', 'caidaRouterLevel' : './data/caidaRouterLevel.mtx', 'coAuthorsDBLP' : './data/coAuthorsDBLP.mtx', 'dblp' : './data/dblp-2010.mtx', 'citationCiteseer' : './data/citationCiteseer.mtx', 'coPapersDBLP' : './data/coPapersDBLP.mtx', 'coPapersCiteseer' : './data/coPapersCiteseer.mtx', 'as-Skitter' : './data/as-Skitter.mtx' } ###Output _____no_output_____ ###Markdown Define the testing functions ###Code # Read in a dataset in MTX format def read_mtx_file(mm_file): print('Reading ' + str(mm_file) + '...') d = mmread(mm_file).asfptype() M = d.tocsr() if M is None: raise TypeError('Could not read the input graph') if M.shape[0] != M.shape[1]: raise TypeError('Shape is not square') return M # Run the cuGraph Louvain analytic (using nvGRAPH function) def cugraph_call(M): t1 = time.time() # data row_offsets = cudf.Series(M.indptr) col_indices = cudf.Series(M.indices) data = cudf.Series(M.data) # create graph G = cugraph.Graph() G.add_adj_list(row_offsets, col_indices, data) # cugraph Louvain Call print(' cuGraph Solving... ') df, mod = cugraph.louvain(G) t2 = time.time() - t1 return t2, mod # Run the NetworkX Louvain analytic. THis is done in two parts since the modularity score is not returned def networkx_call(M): t1 = time.time() # Directed NetworkX graph Gnx = nx.Graph(M) # Networkx print(' NetworkX Solving... ') parts = community.best_partition(Gnx) # Calculating modularity scores for comparison mod = community.modularity(parts, Gnx) t2 = time.time() - t1 return t2, mod ###Output _____no_output_____ ###Markdown Run the benchmarks ###Code # Loop through each test file and compute the speedup perf = [] names = [] for k,v in data.items(): M = read_mtx_file(v) tr, modc = cugraph_call(M) tn, modx = networkx_call(M) speedUp = (tn / tr) names.append(k) perf.append(speedUp) mod_delta = (0.85 * modx) print(str(speedUp) + "x faster => cugraph " + str(tr) + " vs " + str(tn)) print("Modularity => cugraph " + str(modc) + " should be greater than " + str(mod_delta)) ###Output Reading ./data/preferentialAttachment.mtx... cuGraph Solving... NetworkX Solving... 1793.7776019147623x faster => cugraph 1.5131187438964844 vs 2714.198511838913 Modularity => cugraph 0.19461682219817675 should be greater than 0.2311266525308378 Reading ./data/caidaRouterLevel.mtx... cuGraph Solving... NetworkX Solving... 4924.058903541453x faster => cugraph 0.06783390045166016 vs 334.0181214809418 Modularity => cugraph 0.7872923202092253 should be greater than 0.7343989484495378 Reading ./data/coAuthorsDBLP.mtx... cuGraph Solving... NetworkX Solving... 10092.197501839399x faster => cugraph 0.06966948509216309 vs 703.1182034015656 Modularity => cugraph 0.7648739273488195 should be greater than 0.7009634341960012 Reading ./data/dblp-2010.mtx... cuGraph Solving... NetworkX Solving... 8046.712017220588x faster => cugraph 0.08462047576904297 vs 680.9165992736816 Modularity => cugraph 0.7506256512679915 should be greater than 0.7443468993795386 Reading ./data/citationCiteseer.mtx... cuGraph Solving... NetworkX Solving... 14291.698679682855x faster => cugraph 0.08543086051940918 vs 1220.9521164894104 Modularity => cugraph 0.6726575224227932 should be greater than 0.6839370382870856 Reading ./data/coPapersDBLP.mtx... cuGraph Solving... NetworkX Solving... 6898.94562364113x faster => cugraph 0.26548314094543457 vs 1831.553753376007 Modularity => cugraph 0.7286893741920047 should be greater than 0.7312262365408457 Reading ./data/coPapersCiteseer.mtx... cuGraph Solving... NetworkX Solving... 6244.639026072336x faster => cugraph 0.26204490661621094 vs 1636.3758504390717 Modularity => cugraph 0.8398191858860514 should be greater than 0.7812069006518058 Reading ./data/as-Skitter.mtx... cuGraph Solving... NetworkX Solving... 14900.09553131095x faster => cugraph 0.33395862579345703 vs 4976.015427827835 Modularity => cugraph 0.7690203783842553 should be greater than 0.7119040255319047 ###Markdown plot the output ###Code %matplotlib inline y_pos = np.arange(len(names)) plt.bar(y_pos, perf, align='center', alpha=0.5) plt.xticks(y_pos, names) plt.ylabel('Speed Up') plt.title('Performance Speedup: cuGraph vs NetworkX') plt.xticks(rotation=90) plt.show() ###Output _____no_output_____
class_4-1/592B-F19-class_4-1.ipynb
###Markdown 592B, Class 4.1 (09/24). Aliasing and the Sampling theorem ###Code import numpy as np import matplotlib.pyplot as plt import scipy.io.wavfile as wavfile import scipy.signal as signal import librosa from ipywidgets import interactive from IPython.display import Audio, display ###Output _____no_output_____ ###Markdown AliasingConsider the following function:$$y(t) = \cos \left(\frac{9\pi}{2}t\right ) $$***In class-exercise: What is the (fundamental) frequency of $y(t)$?*** ###Code fs = 100 # Sampling rate of 1000 Hz t_start = 0; t_stop = 4 ns = int((t_stop - t_start) * fs + 1) x = np.linspace(0,4,ns) y = np.cos(9*np.pi/2*x) plt.figure("1000 Hz sampling rate") plt.plot(x,y) plt.title("1000 Hz sampling rate") ###Output _____no_output_____ ###Markdown ***In-class exercise: resampling at different rates***Now let's try sampling this signal at some different sampling rates:1. 100 Hz2. 10 Hz3. 1 HzHere's some sample code for doing 100 Hz. You could of course write a function that takes the desired sampling rate as an argument. Try all three sampling rates, and feel free to try some other as well. ###Code ns_100 = int((t_stop - t_start) * 100 + 1) x_100 = np.linspace(0,4,ns_100) y_100 = np.cos(9*np.pi/2*x_100) ###Output _____no_output_____ ###Markdown OK, so let's do some plotting to see what our samples are recovering from the original signal. Here's some sample code for plotting for 100 Hz sampling rate. ***Plot for your other sampling rates, too.*** ###Code plt.figure("100 Hz sampling rate, stem plot") plt.xlim(0,1) plt.plot(x,y) markerline, stemlines, baseline = plt.stem(x_100,y_100, '-.', use_line_collection = True) plt.setp(baseline, 'color', 'r', 'linewidth', 2) plt.figure("100 Hz sampling rate, dots") plt.xlim(0,2) plt.plot(x,y, 'g.', x_100, y_100, 'ro') ###Output _____no_output_____ ###Markdown Wow, we sure are missing a lot of data--could we still recover the original signal $y(t)$?$$y(t) = \cos \left(\frac{9\pi}{2}t\right ) $$***In-class exercise: can you think of a function $z(t)$ that has the same values as our $y(t)$ at the sampled timepoints when we sample with a rate of 1Hz? If so, plot it together with the original signal and the 1 Hz sampling points.*** To do this, you could change```plt.plot(x,y)```to something like this, where `z` is your definition of $z(t)$ and `x2` is a vector of the sampled time points for 1 Hz sampling rate:```plt.plot(x,y, 'g.', x2, z, 'ro-')``` ###Code plt.figure("1 Hz sampling rate, aliasing") plt.plot(x,y) # change this to add in plot of z(t) markerline, stemlines, baseline = plt.stem(x_1,y_1, '-.', use_line_collection = True) # 1Hz sampling rate ###Output _____no_output_____ ###Markdown ***In-class exercise: suppose you sample at a sampling rate of 4.5 Hz. Overlay the stem plot with the original signal for this sampling rate (like the previous plots).*** The sampling theoremThe minimal sampling rate that can be used to reconstruct a signal from its samples is two times the frequency of the highest frequency component $\nu_{max}$ in the signal: sampling rate $> 2\nu_{max}$The frequency 2$\nu_{max}$ is often called the **Nyquist frequency**.***In-class exercise: What is the Nyquist frequency for $y(t)$ below?***$$y(t) = \cos \left(\frac{9\pi}{2}t\right ) $$ So for a complex wave (a sum of sinusoids), increasing the frequency of the highest frequency component $\nu_{max}$ drives up the required sampling rate for reconstruction. Sometimes there is no highest frequency, e.g., in an infinite series like for a square wave.Here's a intuitive example to play with. Plot a signal composed of a low frequency sinusoid and a high frequency sinusoid. As the gap in frequencies between the two frequency components increases, the resulting complex wave looks closer and closer to the lower frequency component, with lots of squigglies up and down at the frequency of the higher frequency component. ###Code def plot_play_summed_sines(f1 = 440, f2 = 880, t_start = 0, t_stop = 2, fs = 44100, xlim_max = 0.02): x = np.linspace(t_start, t_stop, fs * (t_stop - t_start)) y1 = np.sin(2*np.pi*f1*x) y2 = np.sin(2*np.pi*f2*x) plt.xlim(t_start,xlim_max) plt.plot(x , y1, "-g", label="y1") plt.plot(x , y2, "-b", label="y2") plt.plot(x , y1 + y2, "-r", label="y1+y2") plt.legend(loc="upper right") plt.xlabel('Time (s)') plt.ylabel('Amplitude (dB)') plt.title("Adding up sines") display(Audio(data=y1, rate=fs)) display(Audio(data=y2, rate=fs)) display(Audio(data=y1+y2, rate=fs)) v = interactive(plot_play_summed_sines, f1=(50,200), f2=(1000,5000), t_start = (0,0), t_stop = (0,5), xlim_max = (0.01,0.1)) display(v) ###Output _____no_output_____
section_2/02_neuron.ipynb
###Markdown ニューロンの実装単一のニューロンを、Pythonのコードで実装します。 ニューロンを表す関数Pythonの関数を使って、単一のニューロンを実装します。 以下のコードは、入力`x`と重み`w`の各要素をかけ合わせて総和をとり、バイアスを足し合わせて`u`としています。 今回は活性化関数としてステップ関数を使うので、`u`の値が0より小さい時は出力`y`は0、それ以外の場合は1とします。 ###Code import numpy as np import matplotlib.pyplot as plt def neuron(x, w, b): # x:入力 w:重み b:バイアス u = np.sum(x*w) + b y = 0 if u < 0 else 1 # ステップ関数 return y # 練習用 ###Output _____no_output_____ ###Markdown ニューロンを使用する単一ニューロンの関数を使用し、様々な入力に対する反応を確認します。 以下のコードは2つの入力を用意し、それぞれを変化させてニューロンに入力し、出力を確認します。 出力は2次元配列に格納し、ライブラリmatplotlibを使って画像として表示します。 ###Code steps = 20 # 入力を変化させるステップ数 r = 1.0 # 入力を変化させる範囲(-1から1まで) X1 = np.linspace(-r, r, steps) # 入力1 X2 = np.linspace(-r, r, steps) # 入力2 image = np.zeros((steps, steps)) # 出力を格納する2次元配列 w = np.array([-0.5, 0.5]) # 重み b = 0 # バイアス for i_1 in range(steps): # 入力1を変化させる for i_2 in range(steps): # 入力2を変化させる x = np.array([X1[i_1], X2[i_2]]) # 入力 image[i_1, i_2] = neuron(x, w, b) # 出力を配列に格納 plt.imshow(image, "gray", vmin=0.0, vmax=1.0) # 配列を画像として表示 plt.colorbar() plt.xticks([0, steps-1], [-r, r]) # x軸ラベルの表示 plt.yticks([0, steps-1], [-r, r]) # y軸ラベルの表示 plt.show() # 練習用 ###Output _____no_output_____
Perceptron Binary Classification Learning Algorithm Tutorial.ipynb
###Markdown Perceptron Binary Classification Learning Algorithm Tutorial註:這個 Tutorial 主要還是介紹怎麼使用 FukuML,如果非必要並不會涉入太多演算法或數學式的細節,若大家對機器學習有興趣,還是建議觀看完整的課程。Perceptron Binary Classification Learning Algorithm(PLA)是最基礎的機器學習算法,主要用在讓機器學習分類,基礎我們會使用在二元分類,再慢慢推廣至多元分類。其核心想法也不難,追根究底就是個知錯能改的演算法,只要有錯就修正分類器,直到不會犯錯為止。PLA 也是一個最基礎的類神經網路的運算神經元,現在很紅的 Deep Learning 的最基礎概念其實就是 PLA,因此了解 PLA 對未來學習機器學習這門課程是很有幫助的。底下列出幾個 PLA 相關的數學式,方便大家日後學習時查閱: PLA 假設$$h(x) = sign(w^Tx)$$表示 PLA 對資料每一個維度的權重假設,這個權重向量在式子中以 w 表示,所以我們利用 PLA 學習出最能夠分好類的 w 之後,將 x 丟進去這個 PLA 假設,它就會告訴你分類的結果。 PLA 犯錯 $$sign(w_t^Tx_{n(t)}) \neq y_{n(t)}$$表示 PLA 對哪個資料點是預測錯誤的,其實就是對目前的假設 $w_t$ 對 $x_{n(t)}$ 點進行內積再取正負號,如果與 $y_{n(t)}$ 不同,那就代表 PLA 犯錯了。 PLA 修正假設$$w_{t+1} = w_t + y_{n(t)}x_{n(t)}$$表示 PLA 犯錯之後怎麼修正,如果 PLA 猜 +1 但答案是 -1,那就往 $-1(x_{n(t)})$ 對 $w_t$ 做修正;如果 PLA 猜 -1 但答案是 +1,那就往 $+1(x_{n(t)})$ 對 $w_t$ 做修正。 使用 FukuML 的 PLA 做二元分類接下來讓我們一步一步學習如何使用 FukuML 的 PLA 來做二元分類,首先讓我們將 PLA 引進來: ###Code import FukuML.PLA as pla ###Output _____no_output_____ ###Markdown 然後建構一個 PLA 二元分類物件: ###Code pla_bc = pla.BinaryClassifier() ###Output _____no_output_____ ###Markdown 我希望 FukuML 能儘量簡單易用,因此大家只要牢記 1. 載入訓練資料 -> 2. 設定參數 -> 3. 初始化 -> 4. 訓練 -> 5. 預測 這五個步驟就可以完成機器學習了~現在第一個步驟要先載入訓練資料,但如果現在要讓大家生出一筆訓練資料應該會有困難,所以 FukuML 每個機器學習演算法都會有一個 Demo 用的內建資料,讓我們先用 Demo 用的內建資料來試試看。 ###Code pla_bc.load_train_data() ###Output _____no_output_____ ###Markdown 這樣就載入了 PLA 的 Demo 訓練資料,不信的話大家可以使用 `pla_bc.train_X` 及 `pla_bc.train_Y` 印出來看看: ###Code print(pla_bc.train_X) ###Output [[ 1. 0.97681 0.10723 0.64385 0.29556 ] [ 1. 0.67194 0.2418 0.83075 0.42741 ] [ 1. 0.20619 0.23321 0.81004 0.98691 ] ..., [ 1. 0.50468 0.99699 0.75136 0.51681 ] [ 1. 0.55852 0.067689 0.666 0.98482 ] [ 1. 0.83188 0.66817 0.23403 0.72472 ]] ###Markdown 訓練資料的特徵資料就存在 `train_X` 中,矩陣的每一個列就代表一筆資料,然後每一個行就代表一個特徵值,請注意矩陣的第一行都是 1,這是我們演算法自己補上的 $x_0$,並不是原本訓練資料就會有的特徵值,以這個 Demo 資料來說,每筆資料只有 4 個特徵值(feature),像第一筆資料的 4 個特徵值就是 0.97681 0.10723 0.64385 0.29556,演算法將前面補上 $x_0 = 1$,就變成了現在看到的樣子。 ###Code print(pla_bc.train_Y) ###Output [ 1. 1. 1. 1. 1. 1. -1. 1. -1. -1. 1. 1. 1. -1. -1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. -1. -1. 1. 1. -1. 1. 1. -1. -1. 1. -1. -1. 1. -1. 1. 1. 1. -1. -1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. -1. 1. -1. 1. -1. -1. 1. -1. 1. -1. -1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. -1. 1. 1. 1. -1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1. 1. -1. 1. 1. -1. 1. 1. 1. 1. -1. 1. -1. -1. -1. 1. 1. 1. 1. 1. 1. 1. -1. -1. 1. 1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. 1. -1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. -1. -1. -1. 1. -1. 1. -1. 1. -1. 1. 1. -1. -1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. -1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. -1. -1. -1. -1. 1. -1. 1. 1. -1. 1. -1. -1. 1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. -1. 1. 1. 1. 1. -1. 1. -1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. 1. -1. -1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 1. 1. -1. -1. -1. 1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. 1. -1. 1. 1. -1. -1. -1. 1. 1. -1. -1. 1. -1. -1. -1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1. 1. 1. -1. -1. 1. -1. 1. 1. -1. 1. 1. 1. 1. 1. -1. 1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 1. 1. -1. 1. -1. 1. 1. 1. -1. 1. 1. 1. -1. -1. 1. 1. 1. 1. 1. 1. 1. 1.] ###Markdown 然後訓練資料的答案就存在 `train_Y` 中,也就代表每筆訓練資料的答案是什麼,正分類就是 1,負分類就是 -1。接下來讓我們進行下一步,設定參數: ###Code pla_bc.set_param(loop_mode='naive_cycle', step_alpha=1) ###Output _____no_output_____ ###Markdown PLA 這個演算法我只提供兩個參數可以調,一個是 `loop_mode`,用來調整 PLA 選擇訓練資料來檢查自己猜錯或猜對的選法,預設是使用 `naive_cycle` ,會照著訓練資料的順序一個一個檢測,有錯就修正 w。你也可以設成使用 `random`,這樣 PLA 檢測時就會隨便選擇一個點來檢測,有錯就修正 w。另一個參數是 `step_alpha`,用來調整 PLA 每次有錯就修正 w 要修正多少量,原則上設成 1 就可以了。接下來就可以再進行下一步,初始化: ###Code pla_bc.init_W() ###Output _____no_output_____ ###Markdown 初始化時,我們可以得到一個最初的權重值 w,通常就是個 0 向量了,但有時我們可以用 Linear Regression 來初始化,加速演算法,之後我們會再介紹,一樣我們將初始化的 w 印出來看看: ###Code print(pla_bc.W) ###Output [ 0. 0. 0. 0. 0.] ###Markdown 好!果然是 0 向量,一切準備就緒,接下來就是重頭戲「訓練」了: ###Code pla_bc.train() ###Output _____no_output_____ ###Markdown 登登登!訓練完成,我們會得到一個全新的權重值 w,根據 PLA 的運算,這個 w 可以將資料完全分類正確!這就是機器學習神奇的地方!我們一樣把 PLA 計算出來的 w 印出來看看: ###Code print(pla_bc.W) ###Output [-3. 3.0841436 -1.583081 2.391305 4.5287635] ###Markdown 果然不是個 0 向量了呢!有了這個 w,我們就可以用它來預測未來的資料,讓我拿一筆測試資料 0.97959 0.40402 0.96303 0.28133 1 來預測看看,前面 4 個值是這筆測試資料的特徵值,後面的 1 代表這筆測試資料的答案,我們來看看預測結果: ###Code test_data = '0.97959 0.40402 0.96303 0.28133 1' prediction = pla_bc.prediction(test_data) ###Output _____no_output_____ ###Markdown 將預測結果印出來看看: ###Code print(prediction) ###Output {'prediction': 1.0, 'input_data_x': array([ 1. , 0.97959, 0.40402, 0.96303, 0.28133]), 'input_data_y': 1.0} ###Markdown prediction 這個方法會把預測結果回傳成一個 dictionary,預測結果的 key 是 prediction,value 是 1,測試資料的答案也是 1,所以 PLA 正確預測了結果!假設我們現在要預測的是未知的資料、一些我們還沒有分好類的資料,那我們就是把資料特徵值向量丟進去 prediction 方法,並設定 ``mode='future_data'`,代表是做未知資料的預測,就可以進行預測了,比如丟進去 0.29634 0.4012 0.40266 0.67864 這筆特徵資料試試看: ###Code future_data = '0.29634 0.4012 0.40266 0.67864' prediction = pla_bc.prediction(future_data, mode='future_data') ###Output _____no_output_____ ###Markdown 將預測結果印出來看看: ###Code print(prediction) ###Output {'prediction': 1.0, 'input_data_x': array([ 1. , 0.29634, 0.4012 , 0.40266, 0.67864]), 'input_data_y': None} ###Markdown PLA 會忠實的觀察資料給出答案,它認為這筆資料的答案也是 1。(事實上真的是)當然,如果只是看一、兩筆資料猜對,大家可能會認為這只是運氣好,所以我們必須計算 PLA 在整個訓練資料集及整個測試資料集的預測表現如何。我們提供了很簡易的方法可以計算整體的錯誤率,如果要看 PLA 在整個訓練資料集的預測錯誤率($E_{in}$): ###Code print(pla_bc.calculate_avg_error(pla_bc.train_X, pla_bc.train_Y, pla_bc.W)) ###Output 0.0 ###Markdown PLA 在訓練資料的預測錯誤率是完美的 0!這是當然的,因為 PLA 在線性可分的資料裡,一定會調整到沒有錯誤為止。現在我們來看看 PLA 在整個測試資料集的預測錯誤率($E_{out}$),在此之前,我們必須先載入測試資料集,一樣 FukuML 有提供 Demo 版本的測試資料集: ###Code pla_bc.load_test_data() ###Output _____no_output_____ ###Markdown 載入測試資料之後,我們就可以計算 PLA 在測試資料集的預測錯誤率($E_{out}$): ###Code print(pla_bc.calculate_test_data_avg_error()) ###Output 0.0 ###Markdown PLA 在測試資料的預測錯誤率也是完美的 0,當然這某種程度是因為我們的 Demo 資料有設計過,不過理論上測試資料的預測錯誤率應該不會和訓練資料的預測錯誤率差太多,只要實驗過程是一個客觀的過程、沒有經過人為的污染,機器學習的演算法的確可以做到正確的預測。以上,你大概已經學會使用 FukuML 提供的 PLA 做訓練,然後使用訓練完成的 w 來進行未知資料的預測了,真的五個步驟就可以做完了!很簡單吧! 使用自己的訓練資料集和測試資料集前面的教學我們是使用 FukuML 所提供的訓練資料集和測試資料集,真實情況你當然使用自己的資料,那要怎麼做呢?FukuML 提供了很簡易的方法可以讓大家載入自己的資料:```your_training_data_file = '/path/to/your/training_data/file'pla_bc.load_train_data(your_training_data_file)your_testing_data_file = '/path/to/your/testing_data/file'pla_bc.load_test_data(your_testing_data_file)```就是這麼簡單,讓我們來實際演示一下: ###Code pla_bc = pla.BinaryClassifier() pla_bc.load_train_data('/Users/fukuball/Projects/fuku-ml/FukuML/dataset/linear_separable_train.dat') pla_bc.load_test_data('/Users/fukuball/Projects/fuku-ml/FukuML/dataset/linear_separable_test.dat') ###Output _____no_output_____ ###Markdown 看吧,都順利載入資料了,接下來的問題只剩下資料集的格式是怎麼樣,這個可以直接看 FukuML 提供的資料集一窺究竟:https://github.com/fukuball/fuku-ml/blob/master/FukuML/dataset/pla_binary_train.dat其實格式真的很簡單,就是將每筆資料的特徵值用空格隔開,然後放成一橫行,然後將這筆資料的答案用空格隔開放在最後,答案是正分類就是 1,負分類就是 -1,這樣就完成了。所以比如你想做銀行核卡預測,然後審核的特徵是年薪、年齡、性別,那假設小明年薪 100W、年齡 30、性別男性且通過核卡了,那這筆資料就是:100 30 1 1假設小華年薪 20W、年齡 25、性別男性,沒有通過核卡,這筆資料就是:20 25 1 -1假設小美年薪 30W、年齡 24、性別女性,有過核卡,這筆資料就是:30 24 0 1以此類推,簡簡單單、輕輕鬆鬆,大家就可以使用自己的資料來玩玩看機器學習囉~ 使用二維資料來幫助理解其實 PLA 分類演算法計算出來的 w 就是去找出一條可以將資料點完美分開的線,書本上的範例可能會使用二維的資料集並畫成圖示呈現給大家看,但在真實世界中,我們的資料通常不會只是二維的,這樣找出來的 w 就會是一個在高維空間將資料完美分類的超平面,我們很難在平面上呈現這樣的結果,因此還是請大家多去從抽象化的高維空間去思考機器學習的過程,不要遷就於圖示。不過如果你剛接觸機器學習,使用二維資料來慢慢理解機器學習演算法也是一個不錯的學習方法,我這邊稍微展示一下如何印出二維資料點及機器學習訓練出來的 w。載入資料點時,我們就可以在平面上印出所有的資料點,正分類印成紅色的,負分類印成藍色的: ###Code %matplotlib inline import FukuML.PLA as pla import matplotlib.pyplot as plt pla_bc = pla.BinaryClassifier() pla_bc.load_train_data('/Users/fukuball/Projects/fuku-ml/FukuML/dataset/linear_separable_train.dat') for idx, val in enumerate(pla_bc.train_Y): if val==1: plt.plot(pla_bc.train_X[idx,1], pla_bc.train_X[idx,2], "ro") else: plt.plot(pla_bc.train_X[idx,1], pla_bc.train_X[idx,2], "bo") plt.axis("tight") plt.show() ###Output _____no_output_____ ###Markdown 機器訓練完之後,我們可以得到 w,這時只要使用 $w_2*x_2+w_1*x_1+w_0*x_0=0$ 的線性方程式找出斜率,就可以在平面上畫出 w: ###Code pla_bc.set_param(loop_mode='naive_cycle', step_alpha=1) pla_bc.init_W() pla_bc.train() for idx, val in enumerate(pla_bc.train_Y): if val==1: plt.plot(pla_bc.train_X[idx,1], pla_bc.train_X[idx,2], "ro") else: plt.plot(pla_bc.train_X[idx,1], pla_bc.train_X[idx,2], "bo") a0 = -4; a1 = (-pla_bc.W[0]-pla_bc.W[1]*a0)/pla_bc.W[2] b0 = 4; b1 = (-pla_bc.W[0]-pla_bc.W[1]*b0)/pla_bc.W[2] plt.plot([a0, b0], [a1, b1], "k") plt.axis("tight") plt.show() ###Output _____no_output_____
cloud_tpu_colabs/Wave_Equation.ipynb
###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image # Make sure the Colab Runtime is set to Accelerator: TPU. import requests import os if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print(config.FLAGS.jax_backend_target) ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as jnp import numpy as np import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = jnp.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return jnp.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return jnp.moveaxis(jnp.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = jnp.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return jnp.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return jnp.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/jnp.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/jnp.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: np.stack([np.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = jnp.linspace(0, 8, num=8*1024, endpoint=False) y = jnp.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = jnp.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = jnp.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = jnp.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = np.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([np.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image from jax.tools import colab_tpu colab_tpu.setup_tpu() ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as jnp import numpy as np import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = jnp.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return jnp.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return jnp.moveaxis(jnp.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = jnp.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return jnp.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return jnp.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/jnp.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/jnp.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: np.stack([np.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = jnp.linspace(0, 8, num=8*1024, endpoint=False) y = jnp.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = jnp.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = jnp.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = jnp.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = np.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([np.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image # Make sure the Colab Runtime is set to Accelerator: TPU. import requests import os if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print(config.FLAGS.jax_backend_target) ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as np import numpy as onp import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = np.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return np.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return np.moveaxis(np.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = np.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return np.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return np.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/np.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/np.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: onp.stack([onp.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = np.linspace(0, 8, num=8*1024, endpoint=False) y = np.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = np.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = np.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = np.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = onp.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([onp.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as jnp import numpy as np import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = jnp.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return jnp.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = array.at[axis_slice(array.ndim, slice(None, padding), axis)].set(left) array = array.at[axis_slice(array.ndim, slice(-padding, None), axis)].set(right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return jnp.moveaxis(jnp.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = jnp.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return jnp.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return jnp.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/jnp.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/jnp.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_map(lambda *xs: np.stack([np.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = jnp.linspace(0, 8, num=8*1024, endpoint=False) y = jnp.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = jnp.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = jnp.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = jnp.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = np.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([np.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog # Make sure the Colab Runtime is set to Accelerator: TPU. import requests import os if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print(config.FLAGS.jax_backend_target) ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as np import numpy as onp import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = np.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return np.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return np.moveaxis(np.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = np.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return np.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return np.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/np.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/np.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: onp.stack([onp.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = np.linspace(0, 8, num=8*1024, endpoint=False) y = np.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = np.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = np.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = np.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = onp.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([onp.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. from google.colab import files files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as jnp import numpy as np import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = jnp.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return jnp.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return jnp.moveaxis(jnp.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = jnp.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return jnp.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return jnp.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/jnp.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/jnp.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: np.stack([np.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = jnp.linspace(0, 8, num=8*1024, endpoint=False) y = jnp.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = jnp.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = jnp.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = jnp.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = np.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([np.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab newest JAX version. !pip install --upgrade -q jax==0.1.54 jaxlib==0.1.37 # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog # Make sure the Colab Runtime is set to Accelerator: TPU. import requests import os if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print(config.FLAGS.jax_backend_target) ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as np import numpy as onp import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = np.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return np.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(None, padding), axis), left) array = jax.ops.index_update( array, axis_slice(array.ndim, slice(-padding, None), axis), right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return np.moveaxis(np.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = np.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return np.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return np.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/np.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/np.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: onp.stack([onp.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = np.linspace(0, 8, num=8*1024, endpoint=False) y = np.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = np.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = np.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = np.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = onp.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([onp.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. from google.colab import files files.download('wave_movie.gif') ###Output _____no_output_____ ###Markdown Solving the wave equation on cloud TPUs[_Stephan Hoyer_](https://twitter.com/shoyer)In this notebook, we solve the 2D [wave equation](https://en.wikipedia.org/wiki/Wave_equation):$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$We use a simple [finite difference](https://en.wikipedia.org/wiki/Finite_difference_method) formulation with [Leapfrog time integration](https://en.wikipedia.org/wiki/Leapfrog_integration).Note: It is natural to express finite difference methods as convolutions, but here we intentionally avoid convolutions in favor of array indexing/arithmetic. This is because "batch" and "feature" dimensions in TPU convolutions are padded to multiples of either 8 and 128, but in our case both these dimensions are effectively of size 1. Setup required environment ###Code # Grab other packages for this demo. !pip install -U -q Pillow moviepy proglog scikit-image import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() ###Output _____no_output_____ ###Markdown Simulation code ###Code from functools import partial import jax from jax import jit, pmap from jax import lax from jax import tree_util import jax.numpy as jnp import numpy as np import matplotlib.pyplot as plt import skimage.filters import proglog from moviepy.editor import ImageSequenceClip device_count = jax.device_count() # Spatial partitioning via halo exchange def send_right(x, axis_name): # Note: if some devices are omitted from the permutation, lax.ppermute # provides zeros instead. This gives us an easy way to apply Dirichlet # boundary conditions. left_perm = [(i, (i + 1) % device_count) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def send_left(x, axis_name): left_perm = [((i + 1) % device_count, i) for i in range(device_count - 1)] return lax.ppermute(x, perm=left_perm, axis_name=axis_name) def axis_slice(ndim, index, axis): slices = [slice(None)] * ndim slices[axis] = index return tuple(slices) def slice_along_axis(array, index, axis): return array[axis_slice(array.ndim, index, axis)] def tree_vectorize(func): def wrapper(x, *args, **kwargs): return tree_util.tree_map(lambda x: func(x, *args, **kwargs), x) return wrapper @tree_vectorize def halo_exchange_padding(array, padding=1, axis=0, axis_name='x'): if not padding > 0: raise ValueError(f'invalid padding: {padding}') array = jnp.array(array) if array.ndim == 0: return array left = slice_along_axis(array, slice(None, padding), axis) right = slice_along_axis(array, slice(-padding, None), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) return jnp.concatenate([left, array, right], axis) @tree_vectorize def halo_exchange_inplace(array, padding=1, axis=0, axis_name='x'): left = slice_along_axis(array, slice(padding, 2*padding), axis) right = slice_along_axis(array, slice(-2*padding, -padding), axis) right, left = send_left(left, axis_name), send_right(right, axis_name) array = array.at[axis_slice(array.ndim, slice(None, padding), axis)].set(left) array = array.at[axis_slice(array.ndim, slice(-padding, None), axis)].set(right) return array # Reshaping inputs/outputs for pmap def split_with_reshape(array, num_splits, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis tile_size, remainder = divmod(array.shape[split_axis], num_splits) if remainder: raise ValueError('num_splits must equally divide the dimension size') new_shape = list(array.shape) new_shape[split_axis] = tile_size new_shape.insert(split_axis, num_splits) return jnp.moveaxis(jnp.reshape(array, new_shape), split_axis, tile_id_axis) def stack_with_reshape(array, *, split_axis=0, tile_id_axis=None): if tile_id_axis is None: tile_id_axis = split_axis array = jnp.moveaxis(array, tile_id_axis, split_axis) new_shape = array.shape[:split_axis] + (-1,) + array.shape[split_axis+2:] return jnp.reshape(array, new_shape) def shard(func): def wrapper(state): sharded_state = tree_util.tree_map( lambda x: split_with_reshape(x, device_count), state) sharded_result = func(sharded_state) result = tree_util.tree_map(stack_with_reshape, sharded_result) return result return wrapper # Physics def shift(array, offset, axis): index = slice(offset, None) if offset >= 0 else slice(None, offset) sliced = slice_along_axis(array, index, axis) padding = [(0, 0)] * array.ndim padding[axis] = (-min(offset, 0), max(offset, 0)) return jnp.pad(sliced, padding, mode='constant', constant_values=0) def laplacian(array, step=1): left = shift(array, +1, axis=0) right = shift(array, -1, axis=0) up = shift(array, +1, axis=1) down = shift(array, -1, axis=1) convolved = (left + right + up + down - 4 * array) if step != 1: convolved *= (1 / step ** 2) return convolved def scalar_wave_equation(u, c=1, dx=1): return c ** 2 * laplacian(u, dx) @jax.jit def leapfrog_step(state, dt=0.5, c=1): # https://en.wikipedia.org/wiki/Leapfrog_integration u, u_t = state u_tt = scalar_wave_equation(u, c) u_t = u_t + u_tt * dt u = u + u_t * dt return (u, u_t) # Time stepping def multi_step(state, count, dt=1/jnp.sqrt(2), c=1): return lax.fori_loop(0, count, lambda i, s: leapfrog_step(s, dt, c), state) def multi_step_pmap(state, count, dt=1/jnp.sqrt(2), c=1, exchange_interval=1, save_interval=1): def exchange_and_multi_step(state_padded): c_padded = halo_exchange_padding(c, exchange_interval) evolved = multi_step(state_padded, exchange_interval, dt, c_padded) return halo_exchange_inplace(evolved, exchange_interval) @shard @partial(jax.pmap, axis_name='x') def simulate_until_output(state): stop = save_interval // exchange_interval state_padded = halo_exchange_padding(state, exchange_interval) advanced = lax.fori_loop( 0, stop, lambda i, s: exchange_and_multi_step(s), state_padded) xi = exchange_interval return tree_util.tree_map(lambda array: array[xi:-xi, ...], advanced) results = [state] for _ in range(count // save_interval): state = simulate_until_output(state) tree_util.tree_map(lambda x: x.copy_to_host_async(), state) results.append(state) results = jax.device_get(results) return tree_util.tree_multimap(lambda *xs: np.stack([np.array(x) for x in xs]), *results) multi_step_jit = jax.jit(multi_step) ###Output _____no_output_____ ###Markdown Initial conditions ###Code x = jnp.linspace(0, 8, num=8*1024, endpoint=False) y = jnp.linspace(0, 1, num=1*1024, endpoint=False) x_mesh, y_mesh = jnp.meshgrid(x, y, indexing='ij') # NOTE: smooth initial conditions are important, so we aren't exciting # arbitrarily high frequencies (that cannot be resolved) u = skimage.filters.gaussian( ((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) < 0.1 ** 2, sigma=1) # u = jnp.exp(-((x_mesh - 1/3) ** 2 + (y_mesh - 1/4) ** 2) / 0.1 ** 2) # u = skimage.filters.gaussian( # (x_mesh > 1/3) & (x_mesh < 1/2) & (y_mesh > 1/3) & (y_mesh < 1/2), # sigma=5) v = jnp.zeros_like(u) c = 1 # could also use a 2D array matching the mesh shape u.shape ###Output _____no_output_____ ###Markdown Test scaling from 1 to 8 chips ###Code %%time # single TPU chip u_final, _ = multi_step_jit((u, v), count=2**13, c=c, dt=0.5) %%time # 8x TPU chips, 4x more steps in roughly half the time! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.5, exchange_interval=4, save_interval=2**15) 18.3 / (10.3 / 4) # near linear scaling (8x would be perfect) ###Output _____no_output_____ ###Markdown Save a bunch of outputs for a movie ###Code %%time # save more outputs for a movie -- this is slow! u_final, _ = multi_step_pmap( (u, v), count=2**15, c=c, dt=0.2, exchange_interval=4, save_interval=2**10) u_final.shape u_final.nbytes / 1e9 plt.figure(figsize=(18, 6)) plt.axis('off') plt.imshow(u_final[-1].T, cmap='RdBu'); fig, axes = plt.subplots(9, 1, figsize=(14, 14)) [ax.axis('off') for ax in axes] axes[0].imshow(u_final[0].T, cmap='RdBu', aspect='equal', vmin=-1, vmax=1) for i in range(8): axes[i+1].imshow(u_final[4*i+1].T / abs(u_final[4*i+1]).max(), cmap='RdBu', aspect='equal', vmin=-1, vmax=1) import matplotlib.cm import matplotlib.colors from PIL import Image def make_images(data, cmap='RdBu', vmax=None): images = [] for frame in data: if vmax is None: this_vmax = np.max(abs(frame)) else: this_vmax = vmax norm = matplotlib.colors.Normalize(vmin=-this_vmax, vmax=this_vmax) mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap) rgba = mappable.to_rgba(frame, bytes=True) image = Image.fromarray(rgba, mode='RGBA') images.append(image) return images def save_movie(images, path, duration=100, loop=0, **kwargs): images[0].save(path, save_all=True, append_images=images[1:], duration=duration, loop=loop, **kwargs) images = make_images(u_final[::, ::8, ::8].transpose(0, 2, 1)) # Show Movie proglog.default_bar_logger = partial(proglog.default_bar_logger, None) ImageSequenceClip([np.array(im) for im in images], fps=25).ipython_display() # Save GIF. save_movie(images,'wave_movie.gif', duration=[2000]+[200]*(len(images)-2)+[2000]) # The movie sometimes takes a second before showing up in the file system. import time; time.sleep(1) # Download animation. try: from google.colab import files except ImportError: pass else: files.download('wave_movie.gif') ###Output _____no_output_____
docs/ipynb/load.ipynb
###Markdown If the data is too large to put in memory all at once, we can load it batch by batch into memory from disk with tf.data.Dataset.This [function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory) can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code import autokeras as ak import tensorflow as tf import os dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" local_file_path = tf.keras.utils.get_file(origin=dataset_url, fname='image_data', extract=True) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, 'flower_photos') print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in the same class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown You can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, 'aclImdb') # Remove the unused data folder. import shutil shutil.rmtree(os.path.join(data_dir, 'train/unsup')) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'train'), batch_size=batch_size) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'test'), shuffle=False, batch_size=batch_size) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown If you want to use generators, you can refer to the following code. ###Code import math import numpy as np N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data of batch_size with n_features.""" def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) ###Output _____no_output_____ ###Markdown If the data is too large to put in memory all at once, we can load it batch by batch into memory from disk with tf.data.Dataset.This [function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory) can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code import autokeras as ak import tensorflow as tf import os dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" local_file_path = tf.keras.utils.get_file(origin=dataset_url, fname='image_data', extract=True) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, 'flower_photos') print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in the same class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown You can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, 'aclImdb') # Remove the unused data folder. import shutil shutil.rmtree(os.path.join(data_dir, 'train/unsup')) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'train'), batch_size=batch_size) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'test'), shuffle=False, batch_size=batch_size) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown If you want to use generators, you can refer to the following code. ###Code import math import numpy as np N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data of batch_size with n_features.""" def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) ###Output _____no_output_____ ###Markdown Load Images from DiskIf the data is too large to put in memory all at once, we can load it batch bybatch into memory from disk with tf.data.Dataset. This[function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory)can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" # noqa: E501 local_file_path = tf.keras.utils.get_file( origin=dataset_url, fname="image_data", extract=True ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, "flower_photos") print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in thesame class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Texts from DiskYou can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, "aclImdb") # Remove the unused data folder. shutil.rmtree(os.path.join(data_dir, "train/unsup")) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, "train"), batch_size=batch_size ) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, "test"), shuffle=False, batch_size=batch_size ) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Data with Python GeneratorsIf you want to use generators, you can refer to the following code. ###Code N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data. The shape of the data is (batch_size, n_features). """ def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) ###Output _____no_output_____ ###Markdown Load Images from DiskIf the data is too large to put in memory all at once, we can load it batch by batch into memory from disk with tf.data.Dataset.This [function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory) can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code import autokeras as ak import tensorflow as tf import os dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" local_file_path = tf.keras.utils.get_file(origin=dataset_url, fname='image_data', extract=True) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, 'flower_photos') print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in the same class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Texts from DiskYou can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, 'aclImdb') # Remove the unused data folder. import shutil shutil.rmtree(os.path.join(data_dir, 'train/unsup')) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'train'), batch_size=batch_size) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, 'test'), shuffle=False, batch_size=batch_size) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Data with Python GeneratorsIf you want to use generators, you can refer to the following code. ###Code import math import numpy as np N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data of batch_size with n_features.""" def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) ###Output _____no_output_____ ###Markdown If the data is too large to put in memory all at once, we can load it batch by batch into memory from disk with tf.data.Dataset.This [function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory) can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code import tensorflow as tf import os # dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" # local_file_path = tf.keras.utils.get_file(origin=dataset_url, # fname='image_data', # extract=True) # # The file is extracted in the same directory as the downloaded file. # local_dir_path = os.path.dirname(local_file_path) # # After check mannually, we know the extracted data is in 'flower_photos'. # data_dir = os.path.join(local_dir_path, 'flower_photos') # print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in the same class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 # train_data = tf.keras.preprocessing.image_dataset_from_directory( # data_dir, # # Use 20% data as testing data. # validation_split=0.2, # subset="training", # # Set seed to ensure the same split when loading testing data. # seed=123, # image_size=(img_height, img_width), # batch_size=batch_size) # test_data = tf.keras.preprocessing.image_dataset_from_directory( # data_dir, # validation_split=0.2, # subset="validation", # seed=123, # image_size=(img_height, img_width), # batch_size=batch_size) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code import autokeras as ak # clf = ak.ImageClassifier(overwrite=True, max_trials=1) # clf.fit(train_data, epochs=1) # print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown You can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, 'aclImdb') # Remove the unused data folder. import shutil shutil.rmtree(os.path.join(data_dir, 'train/unsup')) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(data_dir, 'train'), class_names=['pos', 'neg'], validation_split=0.2, subset="training", # shuffle=False, seed=123, batch_size=batch_size) val_data = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(data_dir, 'train'), class_names=['pos', 'neg'], validation_split=0.2, subset="validation", # shuffle=False, seed=123, batch_size=batch_size) test_data = tf.keras.preprocessing.text_dataset_from_directory( os.path.join(data_dir, 'test'), class_names=['pos', 'neg'], shuffle=False, batch_size=batch_size) for x, y in train_data: print(x.numpy()[0]) print(y.numpy()[0]) # record_x = x.numpy() # record_y = y.numpy() break for x, y in train_data: print(x.numpy()[0]) print(y.numpy()[0]) break # train_data = tf.keras.preprocessing.text_dataset_from_directory( # os.path.join(data_dir, 'train'), # class_names=['pos', 'neg'], # shuffle=True, # seed=123, # batch_size=batch_size) # for x, y in train_data: # for i, a in enumerate(x.numpy()): # for j, b in enumerate(record_x): # if a == b: # print('*') # assert record_y[j] == y.numpy()[i] # import numpy as np # x_train = [] # y_train = [] # for x, y in train_data: # for a in x.numpy(): # x_train.append(a) # for a in y.numpy(): # y_train.append(a) # x_train = np.array(x_train) # y_train = np.array(y_train) # train_data = train_data.shuffle(1000, seed=123, reshuffle_each_iteration=False) clf = ak.TextClassifier(overwrite=True, max_trials=2) # clf.fit(train_data, validation_data=test_data) # clf.fit(train_data, validation_data=train_data) clf.fit(train_data, validation_data=val_data) # clf.fit(x_train, y_train) # clf.fit(train_data) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Images from DiskIf the data is too large to put in memory all at once, we can load it batch bybatch into memory from disk with tf.data.Dataset. This[function](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory)can help you build such a tf.data.Dataset for image data.First, we download the data and extract the files. ###Code dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" # noqa: E501 local_file_path = tf.keras.utils.get_file( origin=dataset_url, fname="image_data", extract=True ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, "flower_photos") print(data_dir) ###Output _____no_output_____ ###Markdown The directory should look like this. Each folder contains the images in thesame class.```flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/```We can split the data into training and testing as we load them. ###Code batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) ###Output _____no_output_____ ###Markdown Then we just do one quick demo of AutoKeras to make sure the dataset works. ###Code clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Texts from DiskYou can also load text datasets in the same way. ###Code dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, "aclImdb") # Remove the unused data folder. shutil.rmtree(os.path.join(data_dir, "train/unsup")) ###Output _____no_output_____ ###Markdown For this dataset, the data is already split into train and test.We just load them separately. ###Code print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, "train"), batch_size=batch_size ) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, "test"), shuffle=False, batch_size=batch_size ) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) ###Output _____no_output_____ ###Markdown Load Data with Python GeneratorsIf you want to use generators, you can refer to the following code. ###Code N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data. The shape of the data is (batch_size, n_features). """ def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) ###Output _____no_output_____
visualizations/bokeh/notebooks/glyphs/.ipynb_checkpoints/circle_x-checkpoint.ipynb
###Markdown Bokeh Circle X Glyph ###Code from bokeh.plotting import figure, output_file, show from bokeh.models import Range1d from math import radians fill_color = '#e08214' line_color = '#fdb863' output_file("../../figures/glyph-circle-x.html") p = figure(plot_width=400, plot_height=400) p.circle_x(x=0,y=0,size=100, fill_alpha=1,fill_color=fill_color, line_alpha=1, line_color=line_color, line_dash='dashed', line_width=5) p.circle_x(x=0,y=1,size=100, fill_alpha=0.8, fill_color=fill_color, line_alpha=1, line_color=line_color, line_dash='dotdash', line_width=8) p.circle_x(x=1,y=0,size=100, fill_alpha=0.6, fill_color = fill_color, line_alpha=1, line_color=line_color, line_dash='dotted', line_width=13) p.circle_x(x=1,y=1,size=100, fill_alpha=0.4, fill_color = fill_color, line_alpha=1, line_color=line_color, line_dash='solid', line_width=17) p.x_range = Range1d(-0.5,1.5, bounds=(-1,2)) p.y_range = Range1d(-0.5,1.5, bounds=(-1,2)) show(p) ###Output _____no_output_____
surface_realization.ipynb
###Markdown Surface realization ###Code from surface import grammar from surface import converter from surface import utils from collections import defaultdict import ast ###Output _____no_output_____ ###Markdown First we initialize the training and the test file to a variable, the files can be downloaded from the SRST 19 page. ###Code TRAIN_FILE = "pt_bosque-ud-train.conllu" TEST_FILE = "pt_bosque-Pred-Stanford.conllu" ###Output _____no_output_____ ###Markdown Then, we train the two static grammars (the first corresponds to the subgraphs from the ud trees, the second is the fallback grammar, where each rule is binary)Later, the dynamic grammars are generated from these ones. ###Code grammar.train_subgraphs(TRAIN_FILE, TEST_FILE) grammar.train_edges(TRAIN_FILE, TEST_FILE) SUBGRAPH_GRAMMAR_FILE = "train_subgraphs" EDGE_GRAMMAR_FILE = "train_edges" ###Output _____no_output_____ ###Markdown We need to extract the graphs from the conll format (conversion from conll to isi), and the rules that use the lin feature.The rules are for incorporating the lin feature, so we can dynamically delete every rule the contradicts the linearity. ###Code rules, _ = converter.extract_rules(TEST_FILE) graphs, _, id_graphs= converter.convert(TEST_FILE) _, sentences, _ = converter.convert(TEST_FILE) conll = grammar.get_conll_from_file(TEST_FILE) id_to_parse = {} stops = [] ###Output _____no_output_____ ###Markdown We run through the sentences and call the alto parser to generate the derivation and map the ud representation to string.The alto can be downloaded from [bitbucket](https://bitbucket.org/tclup/alto/downloads/). ###Code for sen_id in range(0, len(rules)): print(sen_id) try: grammar_fn = open('dep_grammar_spec.irtg', 'w') grammar.generate_grammar(SUBGRAPH_GRAMMAR_FILE, rules[sen_id], grammar_fn) grammar.generate_terminal_ids(conll[sen_id], grammar_fn) grammar_fn.close() set_parse("ewt_ones", id_graphs[sen_id]) !timeout 70 java -Xmx32G -cp alto-2.3.6-SNAPSHOT-all.jar de.up.ling.irtg.script.ParsingEvaluator ewt_ones -g dep_grammar_spec.irtg -I ud -O string=toString -o surface_eval_ewt text_parse, conll_parse = get_parse("surface_eval_ewt", conll[sen_id]) id_to_parse[sen_id] = (text_parse, conll_parse) except StopIteration: print("stop iteratioin") stops.append(sen_id) continue ###Output _____no_output_____ ###Markdown We then iterate through the sentences that took too long to parse with the original grammar, and switch to the binary grammar for faster results. ###Code for sen_id in stops: grammar_fn = open('dep_grammar_edges.irtg', 'w') grammar.generate_grammar(EDGE_GRAMMAR_FILE, rules[sen_id], grammar_fn) grammar.generate_terminal_ids(conll[sen_id], grammar_fn) grammar_fn.close() set_parse("ewt_ones", id_graphs[sen_id]) !java -Xmx32G -cp alto-2.3.6-SNAPSHOT-all.jar de.up.ling.irtg.script.ParsingEvaluator ewt_ones -g dep_grammar_edges.irtg -I ud -O string=toString -o surface_eval_ewt text_parse, conll_parse = get_parse("surface_eval_ewt", conll[sen_id]) id_to_parse[sen_id] = (text_parse, conll_parse) with open("pt_bosque-Pred-Stanford.conllu" , "w") as f: for i in id_to_parse: conll_f = id_to_parse[i][1] for line in conll_f: f.write(str(line) + "\t") f.write("\t".join(conll_f[line])) f.write("\n") converter.to_tokenized_output("test-results-inflected/", "tokenized_test_results/") ###Output _____no_output_____
docs/contents/tools/sabueso_UniProtKB_XMLDict/get_tissue_specificity.ipynb
###Markdown get tissue specificity ###Code #from sabueso.tools.string_uniprot import to_uniprotkb_XMLDict #from sabueso.tools.uniprotkb_XMLDict import get_tissue_specificity #item = to_uniprotkb_XMLDict('uniprot:P19367') #item = to_uniprotkb_XMLDict('uniprot:P46200') #item = to_uniprotkb_XMLDict('uniprot:P55197') #item = to_uniprotkb_XMLDict('uniprot:P05937') #item = to_uniprotkb_XMLDict('uniprot:P00374') #item = to_uniprotkb_XMLDict('uniprot:Q9FFX4') #tissue_specificity = get_tissue_specificity(item) #tissue_specificity ###Output _____no_output_____
Jupyter/qgis.ipynb
###Markdown Utilização do PyQGIS no Jupyter Webografia* https://lerryws.xyz/posts/PyQGIS-in-Jupyter-Notebook* https://github.com/3liz/qgis-nbextension/blob/master/examples/render_layer.py* https://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/ PyQGIS no JupyterO QGIS permite ser utilizado a partir do Python, de acordo com a API [PyQGIS](https://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/).Neste notebook faz-se um pequeno exemplo dessa ligação, para se conseguir ter mapas num notebook, que são produzidos pelo QGIS. No fundo vamos ter um QGIS a correr em offline e que nos entrega o mapa como uma sequência de bytes. Ligação ao QGIS (standard)Os paths específicos depende do sistema operativo e da forma como o QGIS foi instalado.No caso geral, bastaria a seguinte inicialização:```pythonfrom osgeo import ogrfrom qgis.core import *from qgis.gui import *from qgis import processingfrom qgis.PyQt.QtGui import QColor, QImagefrom qgis.PyQt.QtCore import QSize, QBuffer, QIODeviceqgs = QgsApplication([], False)qgs.initQgis()```Em Windows, a solução passa por instalar e arrancar o Jupyter no **ambiente Python do QGIS**. Pode-se fazer isso alterando a sccript `python-qgis.bat` em `OSGeo4W64\bin\`, acrescentando no fim:```pip install notebookjupyter notebook --notebook-dir ``` Ligação ao QGIS (não standard)Com o QGIS compilado localmente e instalado em `/usr/local`, como no caso seguinte, é preciso ajustar os caminhos para as bibliotecas Python. O exemplo seguinte é específico a um determinado ambiente, mas serve de inspiração para outros ambientes não standard, em que seja preciso ajustar caminhos. ###Code import os import sys from osgeo import ogr # os.environ['QT_QPA_PLATFORM'] = 'offscreen' sys.path.insert(0,'/usr/local/share/qgis/python') from qgis.core import * QgsApplication.setPrefixPath("/usr/local", True) from qgis.gui import * from qgis import processing from qgis.PyQt.QtGui import QColor, QImage from qgis.PyQt.QtCore import QSize, QBuffer, QIODevice qgs = QgsApplication([], False) qgs.initQgis() # print(QgsApplication.showSettings()) ###Output _____no_output_____ ###Markdown Carregar uma camada a partir de uma tabela guardada num geopackageUm geopackage pode conter vários layers. Associado ao layer pode estar associado um estilo predefinido, como no caso seguinte.No exemplo, adiciona-se ao QGIS (que ainda não tem nenhuma camada), a camada `concelho`. ###Code covid_gpkg = "covid-pt-latest.gpkg" + "|layername=concelho" concelho = QgsVectorLayer(covid_gpkg, "Concelhos", "ogr") if not concelho.isValid(): print("Layer failed to load!") else: QgsProject.instance().addMapLayer(concelho) print("Layer loaded") ###Output Layer loaded ###Markdown Percorrer as entidades da camada, e mostrar um atributo: ###Code for c in concelho.getFeatures(): print("Em {} há {} caso(s) confirmados".format(c["concelho"], c["confirmados_concelho_mais_recente"])) ###Output Em ÁGUEDA há 44 caso(s) confirmados Em ALBERGARIA-A-VELHA há 72 caso(s) confirmados Em ANADIA há 36 caso(s) confirmados Em AROUCA há 31 caso(s) confirmados Em AVEIRO há 278 caso(s) confirmados Em CASTELO DE PAIVA há 10 caso(s) confirmados Em ESPINHO há 69 caso(s) confirmados Em ESTARREJA há 60 caso(s) confirmados Em SANTA MARIA DA FEIRA há 387 caso(s) confirmados Em ÍLHAVO há 108 caso(s) confirmados Em MEALHADA há 16 caso(s) confirmados Em MURTOSA há 9 caso(s) confirmados Em OLIVEIRA DE AZEMÉIS há 163 caso(s) confirmados Em OLIVEIRA DO BAIRRO há 21 caso(s) confirmados Em OVAR há 564 caso(s) confirmados Em SÃO JOÃO DA MADEIRA há 57 caso(s) confirmados Em SEVER DO VOUGA há 31 caso(s) confirmados Em VAGOS há 18 caso(s) confirmados Em VALE DE CAMBRA há 102 caso(s) confirmados Em ALJUSTREL há NULL caso(s) confirmados Em ALMODÔVAR há 3 caso(s) confirmados Em ALVITO há NULL caso(s) confirmados Em BARRANCOS há NULL caso(s) confirmados Em BEJA há 9 caso(s) confirmados Em CASTRO VERDE há NULL caso(s) confirmados Em CUBA há 3 caso(s) confirmados Em FERREIRA DO ALENTEJO há NULL caso(s) confirmados Em MÉRTOLA há NULL caso(s) confirmados Em MOURA há 39 caso(s) confirmados Em ODEMIRA há 3 caso(s) confirmados Em OURIQUE há NULL caso(s) confirmados Em SERPA há 18 caso(s) confirmados Em VIDIGUEIRA há NULL caso(s) confirmados Em AMARES há 45 caso(s) confirmados Em BARCELOS há 202 caso(s) confirmados Em BRAGA há 1019 caso(s) confirmados Em CABECEIRAS DE BASTO há 15 caso(s) confirmados Em CELORICO DE BASTO há 19 caso(s) confirmados Em ESPOSENDE há 40 caso(s) confirmados Em FAFE há 84 caso(s) confirmados Em GUIMARÃES há 507 caso(s) confirmados Em PÓVOA DE LANHOSO há 44 caso(s) confirmados Em TERRAS DE BOURO há 9 caso(s) confirmados Em VIEIRA DO MINHO há 28 caso(s) confirmados Em VILA NOVA DE FAMALICÃO há 339 caso(s) confirmados Em VILA VERDE há 145 caso(s) confirmados Em VIZELA há 78 caso(s) confirmados Em ALFÂNDEGA DA FÉ há 4 caso(s) confirmados Em BRAGANÇA há 101 caso(s) confirmados Em CARRAZEDA DE ANSIÃES há 7 caso(s) confirmados Em FREIXO DE ESPADA À CINTA há NULL caso(s) confirmados Em MACEDO DE CAVALEIROS há 20 caso(s) confirmados Em MIRANDA DO DOURO há 7 caso(s) confirmados Em MIRANDELA há 18 caso(s) confirmados Em MOGADOURO há 3 caso(s) confirmados Em TORRE DE MONCORVO há 22 caso(s) confirmados Em VILA FLOR há 5 caso(s) confirmados Em VIMIOSO há 8 caso(s) confirmados Em VINHAIS há 26 caso(s) confirmados Em BELMONTE há NULL caso(s) confirmados Em CASTELO BRANCO há 5 caso(s) confirmados Em COVILHÃ há 7 caso(s) confirmados Em FUNDÃO há 3 caso(s) confirmados Em IDANHA-A-NOVA há NULL caso(s) confirmados Em OLEIROS há NULL caso(s) confirmados Em PENAMACOR há NULL caso(s) confirmados Em PROENÇA-A-NOVA há NULL caso(s) confirmados Em SERTÃ há 4 caso(s) confirmados Em VILA DE REI há NULL caso(s) confirmados Em VILA VELHA DE RÓDÃO há NULL caso(s) confirmados Em ARGANIL há 8 caso(s) confirmados Em CANTANHEDE há 50 caso(s) confirmados Em COIMBRA há 401 caso(s) confirmados Em CONDEIXA-A-NOVA há 68 caso(s) confirmados Em FIGUEIRA DA FOZ há 23 caso(s) confirmados Em GÓIS há 10 caso(s) confirmados Em LOUSÃ há 13 caso(s) confirmados Em MIRA há 4 caso(s) confirmados Em MIRANDA DO CORVO há 13 caso(s) confirmados Em MONTEMOR-O-VELHO há 16 caso(s) confirmados Em OLIVEIRA DO HOSPITAL há 10 caso(s) confirmados Em PAMPILHOSA DA SERRA há NULL caso(s) confirmados Em PENACOVA há 16 caso(s) confirmados Em PENELA há 3 caso(s) confirmados Em SOURE há 21 caso(s) confirmados Em TÁBUA há 33 caso(s) confirmados Em VILA NOVA DE POIARES há 4 caso(s) confirmados Em ALANDROAL há NULL caso(s) confirmados Em ARRAIOLOS há NULL caso(s) confirmados Em BORBA há NULL caso(s) confirmados Em ESTREMOZ há NULL caso(s) confirmados Em ÉVORA há 19 caso(s) confirmados Em MONTEMOR-O-NOVO há 5 caso(s) confirmados Em MORA há NULL caso(s) confirmados Em MOURÃO há NULL caso(s) confirmados Em PORTEL há 3 caso(s) confirmados Em REDONDO há NULL caso(s) confirmados Em REGUENGOS DE MONSARAZ há 5 caso(s) confirmados Em VENDAS NOVAS há 7 caso(s) confirmados Em VIANA DO ALENTEJO há NULL caso(s) confirmados Em VILA VIÇOSA há NULL caso(s) confirmados Em ALBUFEIRA há 69 caso(s) confirmados Em ALCOUTIM há NULL caso(s) confirmados Em ALJEZUR há NULL caso(s) confirmados Em CASTRO MARIM há 3 caso(s) confirmados Em FARO há 60 caso(s) confirmados Em LAGOA há 9 caso(s) confirmados Em LAGOS há 4 caso(s) confirmados Em LOULÉ há 61 caso(s) confirmados Em MONCHIQUE há NULL caso(s) confirmados Em OLHÃO há 15 caso(s) confirmados Em PORTIMÃO há 35 caso(s) confirmados Em SÃO BRÁS DE ALPORTEL há NULL caso(s) confirmados Em SILVES há 21 caso(s) confirmados Em TAVIRA há 30 caso(s) confirmados Em VILA DO BISPO há NULL caso(s) confirmados Em VILA REAL DE SANTO ANTÓNIO há 17 caso(s) confirmados Em AGUIAR DA BEIRA há NULL caso(s) confirmados Em ALMEIDA há 6 caso(s) confirmados Em CELORICO DA BEIRA há 9 caso(s) confirmados Em FIGUEIRA DE CASTELO RODRIGO há 3 caso(s) confirmados Em FORNOS DE ALGODRES há NULL caso(s) confirmados Em GOUVEIA há 19 caso(s) confirmados Em GUARDA há 20 caso(s) confirmados Em MANTEIGAS há 3 caso(s) confirmados Em MÊDA há NULL caso(s) confirmados Em PINHEL há 23 caso(s) confirmados Em SABUGAL há NULL caso(s) confirmados Em SEIA há 10 caso(s) confirmados Em TRANCOSO há 17 caso(s) confirmados Em VILA NOVA DE FOZ CÔA há 80 caso(s) confirmados Em ALCOBAÇA há 27 caso(s) confirmados Em ALVAIÁZERE há 27 caso(s) confirmados Em ANSIÃO há 5 caso(s) confirmados Em BATALHA há 4 caso(s) confirmados Em BOMBARRAL há 4 caso(s) confirmados Em CALDAS DA RAINHA há 19 caso(s) confirmados Em CASTANHEIRA DE PÊRA há NULL caso(s) confirmados Em FIGUEIRÓ DOS VINHOS há 4 caso(s) confirmados Em LEIRIA há 64 caso(s) confirmados Em MARINHA GRANDE há 16 caso(s) confirmados Em NAZARÉ há NULL caso(s) confirmados Em ÓBIDOS há NULL caso(s) confirmados Em PEDRÓGÃO GRANDE há 3 caso(s) confirmados Em PENICHE há 10 caso(s) confirmados Em POMBAL há 49 caso(s) confirmados Em PORTO DE MÓS há 8 caso(s) confirmados Em ALENQUER há 18 caso(s) confirmados Em ARRUDA DOS VINHOS há 5 caso(s) confirmados Em AZAMBUJA há 7 caso(s) confirmados Em CADAVAL há 5 caso(s) confirmados Em CASCAIS há 320 caso(s) confirmados Em LISBOA há 1413 caso(s) confirmados Em LOURES há 315 caso(s) confirmados Em LOURINHÃ há 5 caso(s) confirmados Em MAFRA há 67 caso(s) confirmados Em OEIRAS há 218 caso(s) confirmados Em SINTRA há 568 caso(s) confirmados Em SOBRAL DE MONTE AGRAÇO há NULL caso(s) confirmados Em TORRES VEDRAS há 31 caso(s) confirmados Em VILA FRANCA DE XIRA há 160 caso(s) confirmados Em AMADORA há 273 caso(s) confirmados Em ODIVELAS há 208 caso(s) confirmados Em ALTER DO CHÃO há NULL caso(s) confirmados Em ARRONCHES há NULL caso(s) confirmados Em AVIS há NULL caso(s) confirmados Em CAMPO MAIOR há NULL caso(s) confirmados Em CASTELO DE VIDE há NULL caso(s) confirmados Em CRATO há NULL caso(s) confirmados Em ELVAS há 8 caso(s) confirmados Em FRONTEIRA há NULL caso(s) confirmados Em GAVIÃO há NULL caso(s) confirmados Em MARVÃO há NULL caso(s) confirmados Em MONFORTE há NULL caso(s) confirmados Em NISA há NULL caso(s) confirmados Em PONTE DE SOR há NULL caso(s) confirmados Em PORTALEGRE há 6 caso(s) confirmados Em SOUSEL há NULL caso(s) confirmados Em AMARANTE há 81 caso(s) confirmados Em BAIÃO há 13 caso(s) confirmados Em FELGUEIRAS há 308 caso(s) confirmados Em GONDOMAR há 966 caso(s) confirmados Em LOUSADA há 174 caso(s) confirmados Em MAIA há 826 caso(s) confirmados Em MARCO DE CANAVESES há 63 caso(s) confirmados Em MATOSINHOS há 1017 caso(s) confirmados Em PAÇOS DE FERREIRA há 238 caso(s) confirmados Em PAREDES há 274 caso(s) confirmados Em PENAFIEL há 143 caso(s) confirmados Em PORTO há 1211 caso(s) confirmados Em PÓVOA DE VARZIM há 116 caso(s) confirmados Em SANTO TIRSO há 308 caso(s) confirmados Em VALONGO há 700 caso(s) confirmados Em VILA DO CONDE há 235 caso(s) confirmados Em VILA NOVA DE GAIA há 1263 caso(s) confirmados Em TROFA há 129 caso(s) confirmados Em ABRANTES há 8 caso(s) confirmados Em ALCANENA há 7 caso(s) confirmados Em ALMEIRIM há 14 caso(s) confirmados Em ALPIARÇA há 9 caso(s) confirmados Em BENAVENTE há 29 caso(s) confirmados Em CARTAXO há 23 caso(s) confirmados Em CHAMUSCA há 9 caso(s) confirmados Em CONSTÂNCIA há NULL caso(s) confirmados Em CORUCHE há 36 caso(s) confirmados Em ENTRONCAMENTO há 4 caso(s) confirmados Em FERREIRA DO ZÊZERE há NULL caso(s) confirmados Em GOLEGÃ há NULL caso(s) confirmados Em MAÇÃO há NULL caso(s) confirmados Em RIO MAIOR há 13 caso(s) confirmados Em SALVATERRA DE MAGOS há 8 caso(s) confirmados Em SANTARÉM há 73 caso(s) confirmados Em SARDOAL há NULL caso(s) confirmados Em TOMAR há 11 caso(s) confirmados Em TORRES NOVAS há 11 caso(s) confirmados Em VILA NOVA DA BARQUINHA há 3 caso(s) confirmados Em OURÉM há 29 caso(s) confirmados Em ALCÁCER DO SAL há 4 caso(s) confirmados Em ALCOCHETE há 14 caso(s) confirmados Em ALMADA há 231 caso(s) confirmados Em BARREIRO há 89 caso(s) confirmados Em GRÂNDOLA há 7 caso(s) confirmados Em MOITA há 61 caso(s) confirmados Em MONTIJO há 44 caso(s) confirmados Em PALMELA há 16 caso(s) confirmados Em SANTIAGO DO CACÉM há 14 caso(s) confirmados Em SEIXAL há 163 caso(s) confirmados Em SESIMBRA há 20 caso(s) confirmados Em SETÚBAL há 59 caso(s) confirmados Em SINES há NULL caso(s) confirmados Em ARCOS DE VALDEVEZ há 61 caso(s) confirmados Em CAMINHA há 14 caso(s) confirmados Em MELGAÇO há 38 caso(s) confirmados Em MONÇÃO há 68 caso(s) confirmados Em PAREDES DE COURA há 7 caso(s) confirmados Em PONTE DA BARCA há 7 caso(s) confirmados Em PONTE DE LIMA há 24 caso(s) confirmados Em VALENÇA há 7 caso(s) confirmados Em VIANA DO CASTELO há 144 caso(s) confirmados Em VILA NOVA DE CERVEIRA há 6 caso(s) confirmados Em ALIJÓ há 3 caso(s) confirmados Em BOTICAS há NULL caso(s) confirmados Em CHAVES há 25 caso(s) confirmados Em MESÃO FRIO há NULL caso(s) confirmados Em MONDIM DE BASTO há NULL caso(s) confirmados Em MONTALEGRE há 3 caso(s) confirmados Em MURÇA há 12 caso(s) confirmados Em PESO DA RÉGUA há 52 caso(s) confirmados Em RIBEIRA DE PENA há 3 caso(s) confirmados Em SABROSA há 7 caso(s) confirmados Em SANTA MARTA DE PENAGUIÃO há NULL caso(s) confirmados Em VALPAÇOS há 6 caso(s) confirmados Em VILA POUCA DE AGUIAR há 3 caso(s) confirmados Em VILA REAL há 151 caso(s) confirmados Em ARMAMAR há NULL caso(s) confirmados Em CARREGAL DO SAL há 12 caso(s) confirmados Em CASTRO DAIRE há 104 caso(s) confirmados Em CINFÃES há 10 caso(s) confirmados Em LAMEGO há 33 caso(s) confirmados Em MANGUALDE há 70 caso(s) confirmados Em MOIMENTA DA BEIRA há 11 caso(s) confirmados Em MORTÁGUA há 8 caso(s) confirmados Em NELAS há 14 caso(s) confirmados Em OLIVEIRA DE FRADES há 8 caso(s) confirmados Em PENALVA DO CASTELO há NULL caso(s) confirmados Em PENEDONO há NULL caso(s) confirmados Em RESENDE há 67 caso(s) confirmados Em SANTA COMBA DÃO há 9 caso(s) confirmados Em SÃO JOÃO DA PESQUEIRA há NULL caso(s) confirmados Em SÃO PEDRO DO SUL há 8 caso(s) confirmados Em SÁTÃO há 7 caso(s) confirmados Em SERNANCELHE há NULL caso(s) confirmados Em TABUAÇO há NULL caso(s) confirmados Em TAROUCA há NULL caso(s) confirmados Em TONDELA há 13 caso(s) confirmados Em VILA NOVA DE PAIVA há NULL caso(s) confirmados Em VISEU há 83 caso(s) confirmados Em VOUZELA há 7 caso(s) confirmados ###Markdown Em vez de percorrer toda a camada, pode-se criar um filtro sobre a camada. ###Code expr_sem_casos = QgsExpression( " \"confirmados_concelho_mais_recente\" IS NULL " ) virgens = list(concelho.getFeatures( QgsFeatureRequest( expr_sem_casos ) )) for c in virgens: print("Em {} não há pelos menos 3 casos confirmados".format(c["concelho"])) ###Output Em ALJUSTREL não há pelos menos 3 casos confirmados Em ALVITO não há pelos menos 3 casos confirmados Em BARRANCOS não há pelos menos 3 casos confirmados Em CASTRO VERDE não há pelos menos 3 casos confirmados Em FERREIRA DO ALENTEJO não há pelos menos 3 casos confirmados Em MÉRTOLA não há pelos menos 3 casos confirmados Em OURIQUE não há pelos menos 3 casos confirmados Em VIDIGUEIRA não há pelos menos 3 casos confirmados Em FREIXO DE ESPADA À CINTA não há pelos menos 3 casos confirmados Em BELMONTE não há pelos menos 3 casos confirmados Em IDANHA-A-NOVA não há pelos menos 3 casos confirmados Em OLEIROS não há pelos menos 3 casos confirmados Em PENAMACOR não há pelos menos 3 casos confirmados Em PROENÇA-A-NOVA não há pelos menos 3 casos confirmados Em VILA DE REI não há pelos menos 3 casos confirmados Em VILA VELHA DE RÓDÃO não há pelos menos 3 casos confirmados Em PAMPILHOSA DA SERRA não há pelos menos 3 casos confirmados Em ALANDROAL não há pelos menos 3 casos confirmados Em ARRAIOLOS não há pelos menos 3 casos confirmados Em BORBA não há pelos menos 3 casos confirmados Em ESTREMOZ não há pelos menos 3 casos confirmados Em MORA não há pelos menos 3 casos confirmados Em MOURÃO não há pelos menos 3 casos confirmados Em REDONDO não há pelos menos 3 casos confirmados Em VIANA DO ALENTEJO não há pelos menos 3 casos confirmados Em VILA VIÇOSA não há pelos menos 3 casos confirmados Em ALCOUTIM não há pelos menos 3 casos confirmados Em ALJEZUR não há pelos menos 3 casos confirmados Em MONCHIQUE não há pelos menos 3 casos confirmados Em SÃO BRÁS DE ALPORTEL não há pelos menos 3 casos confirmados Em VILA DO BISPO não há pelos menos 3 casos confirmados Em AGUIAR DA BEIRA não há pelos menos 3 casos confirmados Em FORNOS DE ALGODRES não há pelos menos 3 casos confirmados Em MÊDA não há pelos menos 3 casos confirmados Em SABUGAL não há pelos menos 3 casos confirmados Em CASTANHEIRA DE PÊRA não há pelos menos 3 casos confirmados Em NAZARÉ não há pelos menos 3 casos confirmados Em ÓBIDOS não há pelos menos 3 casos confirmados Em SOBRAL DE MONTE AGRAÇO não há pelos menos 3 casos confirmados Em ALTER DO CHÃO não há pelos menos 3 casos confirmados Em ARRONCHES não há pelos menos 3 casos confirmados Em AVIS não há pelos menos 3 casos confirmados Em CAMPO MAIOR não há pelos menos 3 casos confirmados Em CASTELO DE VIDE não há pelos menos 3 casos confirmados Em CRATO não há pelos menos 3 casos confirmados Em FRONTEIRA não há pelos menos 3 casos confirmados Em GAVIÃO não há pelos menos 3 casos confirmados Em MARVÃO não há pelos menos 3 casos confirmados Em MONFORTE não há pelos menos 3 casos confirmados Em NISA não há pelos menos 3 casos confirmados Em PONTE DE SOR não há pelos menos 3 casos confirmados Em SOUSEL não há pelos menos 3 casos confirmados Em CONSTÂNCIA não há pelos menos 3 casos confirmados Em FERREIRA DO ZÊZERE não há pelos menos 3 casos confirmados Em GOLEGÃ não há pelos menos 3 casos confirmados Em MAÇÃO não há pelos menos 3 casos confirmados Em SARDOAL não há pelos menos 3 casos confirmados Em SINES não há pelos menos 3 casos confirmados Em BOTICAS não há pelos menos 3 casos confirmados Em MESÃO FRIO não há pelos menos 3 casos confirmados Em MONDIM DE BASTO não há pelos menos 3 casos confirmados Em SANTA MARTA DE PENAGUIÃO não há pelos menos 3 casos confirmados Em ARMAMAR não há pelos menos 3 casos confirmados Em PENALVA DO CASTELO não há pelos menos 3 casos confirmados Em PENEDONO não há pelos menos 3 casos confirmados Em SÃO JOÃO DA PESQUEIRA não há pelos menos 3 casos confirmados Em SERNANCELHE não há pelos menos 3 casos confirmados Em TABUAÇO não há pelos menos 3 casos confirmados Em TAROUCA não há pelos menos 3 casos confirmados Em VILA NOVA DE PAIVA não há pelos menos 3 casos confirmados ###Markdown A geração do mapa tem algumas questões técnicas. O melhor seria encapsular estas questões numa função. Fica o desafio. ###Code xt = concelho.extent() # print(xt) width = 200 height = int(width*xt.height()/xt.width()) print("Gerar mapa com {} por {}".format(width, height)) options = QgsMapSettings() options.setLayers([concelho]) options.setBackgroundColor(QColor(255, 255, 255)) options.setOutputSize(QSize(width, height)) options.setExtent(xt) render = QgsMapRendererParallelJob(options) render.start() render.waitForFinished() image = render.renderedImage() from IPython.display import Image imgbuf= QBuffer() imgbuf.open( QIODevice.ReadWrite ) image.save( imgbuf,"PNG" ) Image( imgbuf.data() ) ###Output _____no_output_____ ###Markdown Se se quizer fechar a instância do QGIS que está a correr, termina-se com: ###Code qgs.exitQgis() ###Output _____no_output_____
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization/week5/Initialization/Initialization.ipynb
###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[0. 0. 0.] [0. 0. 0.]] b1 = [[0.] [0.]] W2 = [[0. 0.]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1])*10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[0.] [0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output C:\Users\abdur\Desktop\DL\DL_Course2\week5\Initialization\init_utils.py:145: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) C:\Users\abdur\Desktop\DL\DL_Course2\week5\Initialization\init_utils.py:145: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers import math for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1])*math.sqrt(2./layers_dims[l-1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))*math.sqrt(2./layers_dims[l-1]) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____
docs/tutorials/rv-multi.ipynb
###Markdown (rv-multi)= RVs with multiple instruments ###Code import exoplanet exoplanet.utils.docs_setup() print(f"exoplanet.__version__ = '{exoplanet.__version__}'") ###Output _____no_output_____ ###Markdown In this case study, we will look at how we can use exoplanet and PyMC3 to combine datasets from different RV instruments to fit the orbit of an exoplanet system.Before getting started, I want to emphasize that the exoplanet code doesn't have strong opinions about how your data are collected, it only provides extensions that allow PyMC3 to evaluate some astronomy-specific functions.This means that you can build any kind of observation model that PyMC3 supports, and support for multiple instruments isn't really a *feature* of exoplanet, even though it is easy to implement.For the example, we'll use public observations of Pi Mensae which hosts two planets, but we'll ignore the inner planet because the significance of the RV signal is small enough that it won't affect our results.The datasets that we'll use are from the Anglo-Australian Planet Search (AAT) and the HARPS archive.As is commonly done, we will treat the HARPS observations as two independent datasets split in June 2015 when the HARPS hardware was upgraded.Therefore, we'll consider three datasets that we will allow to have different instrumental parameters (RV offset and jitter), but shared orbital parameters and stellar variability.In some cases you might also want to have a different astrophyscial variability model for each instrument (if, for example, the observations are made in very different bands), but we'll keep things simple for this example.The AAT data are available from [The Exoplanet Archive](https://exoplanetarchive.ipac.caltech.edu/) and the HARPS observations can be downloaded from the [ESO Archive](http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form).For the sake of simplicity, we have extracted the HARPS RVs from the archive in advance using [Megan Bedell's harps_tools library](https://github.com/megbedell/harps_tools).To start, download the data and plot them with a (very!) rough zero point correction. ###Code import numpy as np import pandas as pd from astropy.io import ascii import matplotlib.pyplot as plt aat = ascii.read( "https://exoplanetarchive.ipac.caltech.edu/data/ExoData/0026/0026394/data/UID_0026394_RVC_001.tbl" ) harps = pd.read_csv( "https://raw.githubusercontent.com/exoplanet-dev/case-studies/main/data/pi_men_harps_rvs.csv", skiprows=1, ) harps = harps.rename(lambda x: x.strip().strip("#"), axis=1) harps_post = np.array(harps.date > "2015-07-01", dtype=int) t = np.concatenate((aat["JD"], harps["bjd"])) rv = np.concatenate((aat["Radial_Velocity"], harps["rv"])) rv_err = np.concatenate((aat["Radial_Velocity_Uncertainty"], harps["e_rv"])) inst_id = np.concatenate((np.zeros(len(aat), dtype=int), harps_post + 1)) inds = np.argsort(t) t = np.ascontiguousarray(t[inds], dtype=float) rv = np.ascontiguousarray(rv[inds], dtype=float) rv_err = np.ascontiguousarray(rv_err[inds], dtype=float) inst_id = np.ascontiguousarray(inst_id[inds], dtype=int) inst_names = ["aat", "harps_pre", "harps_post"] num_inst = len(inst_names) for i, name in enumerate(inst_names): m = inst_id == i plt.errorbar( t[m], rv[m] - np.min(rv[m]), yerr=rv_err[m], fmt=".", label=name ) plt.legend(fontsize=10) plt.xlabel("BJD") _ = plt.ylabel("radial velocity [m/s]") ###Output _____no_output_____ ###Markdown Then set up the probabilistic model.Most of this is similar to the model in the [Radial velocity fitting](https://docs.exoplanet.codes/en/stable/tutorials/rv/) tutorial, but there are a few changes to highlight:1. Instead of a polynomial model for trends, stellar variability, and inner planets, we're using a Gaussian process here. This won't have a big effect here, but more careful consideration should be performed when studying lower signal-to-noise systems.2. There are three radial velocity offsets and three jitter parameters (one for each instrument) that will be treated independently. This is the key addition made by this case study. ###Code import pymc3 as pm import exoplanet as xo import aesara_theano_fallback.tensor as tt import pymc3_ext as pmx from celerite2.theano import terms, GaussianProcess t_phase = np.linspace(-0.5, 0.5, 5000) with pm.Model() as model: # Parameters describing the orbit log_K = pm.Normal("log_K", mu=np.log(300), sigma=10) log_P = pm.Normal("log_P", mu=np.log(2093.07), sigma=10) K = pm.Deterministic("K", tt.exp(log_K)) P = pm.Deterministic("P", tt.exp(log_P)) ecs = pmx.UnitDisk("ecs", testval=np.array([0.7, -0.3])) ecc = pm.Deterministic("ecc", tt.sum(ecs ** 2)) omega = pm.Deterministic("omega", tt.arctan2(ecs[1], ecs[0])) phase = pmx.UnitUniform("phase") tp = pm.Deterministic("tp", 0.5 * (t.min() + t.max()) + phase * P) orbit = xo.orbits.KeplerianOrbit( period=P, t_periastron=tp, ecc=ecc, omega=omega ) # Noise model parameters log_sigma_gp = pm.Normal("log_sigma_gp", mu=np.log(10), sigma=50) log_rho_gp = pm.Normal("log_rho_gp", mu=np.log(50), sigma=50) # Per instrument parameters means = pm.Normal( "means", mu=np.array([np.median(rv[inst_id == i]) for i in range(num_inst)]), sigma=200, shape=num_inst, ) sigmas = pm.HalfNormal("sigmas", sigma=10, shape=num_inst) # Compute the RV offset and jitter for each data point depending on its instrument mean = tt.zeros(len(t)) diag = tt.zeros(len(t)) for i in range(len(inst_names)): mean += means[i] * (inst_id == i) diag += (rv_err ** 2 + sigmas[i] ** 2) * (inst_id == i) pm.Deterministic("mean", mean) pm.Deterministic("diag", diag) resid = rv - mean def rv_model(x): return orbit.get_radial_velocity(x, K=K) kernel = terms.SHOTerm( sigma=tt.exp(log_sigma_gp), rho=tt.exp(log_rho_gp), Q=1.0 / 3 ) gp = GaussianProcess(kernel, t=t, diag=diag, mean=rv_model) gp.marginal("obs", observed=resid) pm.Deterministic("gp_pred", gp.predict(resid, include_mean=False)) pm.Deterministic("rv_phase", rv_model(P * t_phase + tp)) map_soln = model.test_point map_soln = pmx.optimize(map_soln, [means]) map_soln = pmx.optimize(map_soln, [means, phase]) map_soln = pmx.optimize(map_soln, [means, phase, log_K]) map_soln = pmx.optimize(map_soln, [means, tp, K, log_P, ecs]) map_soln = pmx.optimize(map_soln, [sigmas, log_sigma_gp, log_rho_gp]) map_soln = pmx.optimize(map_soln) ###Output _____no_output_____ ###Markdown After fitting for the parameters that maximize the posterior probability, we can plot this model to make sure that things are looking reasonable: ###Code t_pred = np.linspace(t.min() - 400, t.max() + 400, 5000) with model: plt.plot( t_pred, pmx.eval_in_model(rv_model(t_pred), map_soln), "k", lw=0.5 ) detrended = rv - map_soln["mean"] - map_soln["gp_pred"] plt.errorbar(t, detrended, yerr=rv_err, fmt=",k") plt.scatter( t, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10 ) plt.xlim(t_pred.min(), t_pred.max()) plt.xlabel("BJD") plt.ylabel("radial velocity [m/s]") _ = plt.title("map model", fontsize=14) ###Output _____no_output_____ ###Markdown That looks fine, so now we can run the MCMC sampler: ###Code with model: trace = pmx.sample( tune=1000, draws=1000, start=map_soln, chains=2, cores=2, return_inferencedata=True, random_seed=[39091, 39095], ) ###Output _____no_output_____ ###Markdown Then we can look at some summaries of the trace and the constraints on some of the key parameters: ###Code import corner import arviz as az corner.corner(trace, var_names=["P", "K", "tp", "ecc", "omega"]) az.summary( trace, var_names=["P", "K", "tp", "ecc", "omega", "means", "sigmas"] ) ###Output _____no_output_____ ###Markdown And finally we can plot the phased RV curve and overplot our posterior inference: ###Code flat_samps = trace.posterior.stack(sample=("chain", "draw")) mu = np.mean(flat_samps["mean"].values + flat_samps["gp_pred"].values, axis=-1) mu_var = np.var(flat_samps["mean"], axis=-1) jitter_var = np.median(flat_samps["diag"], axis=-1) period = np.median(flat_samps["P"]) tp = np.median(flat_samps["tp"]) detrended = rv - mu folded = ((t - tp + 0.5 * period) % period) / period plt.errorbar(folded, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k") plt.scatter( folded, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) plt.errorbar( folded + 1, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k" ) plt.scatter( folded + 1, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) x = t_phase + 0.5 y = np.mean(flat_samps["rv_phase"], axis=-1) plt.plot(x, y, "k", lw=0.5, alpha=0.5) plt.plot(x + 1, y, "k", lw=0.5, alpha=0.5) plt.axvline(1, color="k", lw=0.5) plt.xlim(0, 2) plt.xlabel("phase") plt.ylabel("radial velocity [m/s]") _ = plt.title("posterior inference", fontsize=14) ###Output _____no_output_____ ###Markdown CitationsAs described in the [citation tutorial](https://docs.exoplanet.codes/en/stable/tutorials/citation/), we can use [citations.get_citations_for_model](https://docs.exoplanet.codes/en/stable/user/api/exoplanet.citations.get_citations_for_model) to construct an acknowledgement and BibTeX listing that includes the relevant citations for this model. ###Code with model: txt, bib = xo.citations.get_citations_for_model() print(txt) print(bib.split("\n\n")[0] + "\n\n...") ###Output _____no_output_____ ###Markdown (rv-multi)= RVs with multiple instruments ###Code import exoplanet exoplanet.utils.docs_setup() print(f"exoplanet.__version__ = '{exoplanet.__version__}'") ###Output _____no_output_____ ###Markdown In this case study, we will look at how we can use exoplanet and PyMC3 to combine datasets from different RV instruments to fit the orbit of an exoplanet system.Before getting started, I want to emphasize that the exoplanet code doesn't have strong opinions about how your data are collected, it only provides extensions that allow PyMC3 to evaluate some astronomy-specific functions.This means that you can build any kind of observation model that PyMC3 supports, and support for multiple instruments isn't really a *feature* of exoplanet, even though it is easy to implement.For the example, we'll use public observations of Pi Mensae which hosts two planets, but we'll ignore the inner planet because the significance of the RV signal is small enough that it won't affect our results.The datasets that we'll use are from the Anglo-Australian Planet Search (AAT) and the HARPS archive.As is commonly done, we will treat the HARPS observations as two independent datasets split in June 2015 when the HARPS hardware was upgraded.Therefore, we'll consider three datasets that we will allow to have different instrumental parameters (RV offset and jitter), but shared orbital parameters and stellar variability.In some cases you might also want to have a different astrophyscial variability model for each instrument (if, for example, the observations are made in very different bands), but we'll keep things simple for this example.The AAT data are available from [The Exoplanet Archive](https://exoplanetarchive.ipac.caltech.edu/) and the HARPS observations can be downloaded from the [ESO Archive](http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form).For the sake of simplicity, we have extracted the HARPS RVs from the archive in advance using [Megan Bedell's harps_tools library](https://github.com/megbedell/harps_tools).To start, download the data and plot them with a (very!) rough zero point correction. ###Code import numpy as np import pandas as pd from astropy.io import ascii import matplotlib.pyplot as plt aat = ascii.read( "https://exoplanetarchive.ipac.caltech.edu/data/ExoData/0026/0026394/data/UID_0026394_RVC_001.tbl" ) harps = pd.read_csv( "https://raw.githubusercontent.com/exoplanet-dev/case-studies/main/data/pi_men_harps_rvs.csv", skiprows=1, ) harps = harps.rename(lambda x: x.strip().strip("#"), axis=1) harps_post = np.array(harps.date > "2015-07-01", dtype=int) t = np.concatenate((aat["JD"], harps["bjd"])) rv = np.concatenate((aat["Radial_Velocity"], harps["rv"])) rv_err = np.concatenate((aat["Radial_Velocity_Uncertainty"], harps["e_rv"])) inst_id = np.concatenate((np.zeros(len(aat), dtype=int), harps_post + 1)) inds = np.argsort(t) t = np.ascontiguousarray(t[inds], dtype=float) rv = np.ascontiguousarray(rv[inds], dtype=float) rv_err = np.ascontiguousarray(rv_err[inds], dtype=float) inst_id = np.ascontiguousarray(inst_id[inds], dtype=int) inst_names = ["aat", "harps_pre", "harps_post"] num_inst = len(inst_names) for i, name in enumerate(inst_names): m = inst_id == i plt.errorbar( t[m], rv[m] - np.min(rv[m]), yerr=rv_err[m], fmt=".", label=name ) plt.legend(fontsize=10) plt.xlabel("BJD") _ = plt.ylabel("radial velocity [m/s]") ###Output _____no_output_____ ###Markdown Then set up the probabilistic model.Most of this is similar to the model in the [Radial velocity fitting](https://gallery.exoplanet.codes/tutorials/rv/) tutorial, but there are a few changes to highlight:1. Instead of a polynomial model for trends, stellar variability, and inner planets, we're using a Gaussian process here. This won't have a big effect here, but more careful consideration should be performed when studying lower signal-to-noise systems.2. There are three radial velocity offsets and three jitter parameters (one for each instrument) that will be treated independently. This is the key addition made by this case study. ###Code import pymc3 as pm import exoplanet as xo import aesara_theano_fallback.tensor as tt import pymc3_ext as pmx from celerite2.theano import terms, GaussianProcess t_phase = np.linspace(-0.5, 0.5, 5000) with pm.Model() as model: # Parameters describing the orbit log_K = pm.Normal("log_K", mu=np.log(300), sigma=10) log_P = pm.Normal("log_P", mu=np.log(2093.07), sigma=10) K = pm.Deterministic("K", tt.exp(log_K)) P = pm.Deterministic("P", tt.exp(log_P)) ecs = pmx.UnitDisk("ecs", testval=np.array([0.7, -0.3])) ecc = pm.Deterministic("ecc", tt.sum(ecs**2)) omega = pm.Deterministic("omega", tt.arctan2(ecs[1], ecs[0])) phase = pmx.UnitUniform("phase") tp = pm.Deterministic("tp", 0.5 * (t.min() + t.max()) + phase * P) orbit = xo.orbits.KeplerianOrbit( period=P, t_periastron=tp, ecc=ecc, omega=omega ) # Noise model parameters log_sigma_gp = pm.Normal("log_sigma_gp", mu=np.log(10), sigma=50) log_rho_gp = pm.Normal("log_rho_gp", mu=np.log(50), sigma=50) # Per instrument parameters means = pm.Normal( "means", mu=np.array([np.median(rv[inst_id == i]) for i in range(num_inst)]), sigma=200, shape=num_inst, ) sigmas = pm.HalfNormal("sigmas", sigma=10, shape=num_inst) # Compute the RV offset and jitter for each data point depending on its instrument mean = tt.zeros(len(t)) diag = tt.zeros(len(t)) for i in range(len(inst_names)): mean += means[i] * (inst_id == i) diag += (rv_err**2 + sigmas[i] ** 2) * (inst_id == i) pm.Deterministic("mean", mean) pm.Deterministic("diag", diag) resid = rv - mean def rv_model(x): return orbit.get_radial_velocity(x, K=K) kernel = terms.SHOTerm( sigma=tt.exp(log_sigma_gp), rho=tt.exp(log_rho_gp), Q=1.0 / 3 ) gp = GaussianProcess(kernel, t=t, diag=diag, mean=rv_model) gp.marginal("obs", observed=resid) pm.Deterministic("gp_pred", gp.predict(resid, include_mean=False)) pm.Deterministic("rv_phase", rv_model(P * t_phase + tp)) map_soln = model.test_point map_soln = pmx.optimize(map_soln, [means]) map_soln = pmx.optimize(map_soln, [means, phase]) map_soln = pmx.optimize(map_soln, [means, phase, log_K]) map_soln = pmx.optimize(map_soln, [means, tp, K, log_P, ecs]) map_soln = pmx.optimize(map_soln, [sigmas, log_sigma_gp, log_rho_gp]) map_soln = pmx.optimize(map_soln) ###Output _____no_output_____ ###Markdown After fitting for the parameters that maximize the posterior probability, we can plot this model to make sure that things are looking reasonable: ###Code t_pred = np.linspace(t.min() - 400, t.max() + 400, 5000) with model: plt.plot( t_pred, pmx.eval_in_model(rv_model(t_pred), map_soln), "k", lw=0.5 ) detrended = rv - map_soln["mean"] - map_soln["gp_pred"] plt.errorbar(t, detrended, yerr=rv_err, fmt=",k") plt.scatter( t, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10 ) plt.xlim(t_pred.min(), t_pred.max()) plt.xlabel("BJD") plt.ylabel("radial velocity [m/s]") _ = plt.title("map model", fontsize=14) ###Output _____no_output_____ ###Markdown That looks fine, so now we can run the MCMC sampler: ###Code with model: trace = pmx.sample( tune=1000, draws=1000, start=map_soln, chains=2, cores=2, return_inferencedata=True, random_seed=[39091, 39095], ) ###Output _____no_output_____ ###Markdown Then we can look at some summaries of the trace and the constraints on some of the key parameters: ###Code import corner import arviz as az corner.corner(trace, var_names=["P", "K", "tp", "ecc", "omega"]) az.summary( trace, var_names=["P", "K", "tp", "ecc", "omega", "means", "sigmas"] ) ###Output _____no_output_____ ###Markdown And finally we can plot the phased RV curve and overplot our posterior inference: ###Code flat_samps = trace.posterior.stack(sample=("chain", "draw")) mu = np.mean(flat_samps["mean"].values + flat_samps["gp_pred"].values, axis=-1) mu_var = np.var(flat_samps["mean"], axis=-1) jitter_var = np.median(flat_samps["diag"], axis=-1) period = np.median(flat_samps["P"]) tp = np.median(flat_samps["tp"]) detrended = rv - mu folded = ((t - tp + 0.5 * period) % period) / period plt.errorbar(folded, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k") plt.scatter( folded, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) plt.errorbar( folded + 1, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k" ) plt.scatter( folded + 1, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) x = t_phase + 0.5 y = np.mean(flat_samps["rv_phase"], axis=-1) plt.plot(x, y, "k", lw=0.5, alpha=0.5) plt.plot(x + 1, y, "k", lw=0.5, alpha=0.5) plt.axvline(1, color="k", lw=0.5) plt.xlim(0, 2) plt.xlabel("phase") plt.ylabel("radial velocity [m/s]") _ = plt.title("posterior inference", fontsize=14) ###Output _____no_output_____ ###Markdown CitationsAs described in the [citation tutorial](https://docs.exoplanet.codes/en/stable/tutorials/citation/), we can use [citations.get_citations_for_model](https://docs.exoplanet.codes/en/stable/user/api/exoplanet.citations.get_citations_for_model) to construct an acknowledgement and BibTeX listing that includes the relevant citations for this model. ###Code with model: txt, bib = xo.citations.get_citations_for_model() print(txt) print(bib.split("\n\n")[0] + "\n\n...") ###Output _____no_output_____ ###Markdown (rv-multi)= RVs with multiple instruments ###Code import exoplanet exoplanet.utils.docs_setup() print(f"exoplanet.__version__ = '{exoplanet.__version__}'") ###Output _____no_output_____ ###Markdown In this case study, we will look at how we can use exoplanet and PyMC3 to combine datasets from different RV instruments to fit the orbit of an exoplanet system.Before getting started, I want to emphasize that the exoplanet code doesn't have strong opinions about how your data are collected, it only provides extensions that allow PyMC3 to evaluate some astronomy-specific functions.This means that you can build any kind of observation model that PyMC3 supports, and support for multiple instruments isn't really a *feature* of exoplanet, even though it is easy to implement.For the example, we'll use public observations of Pi Mensae which hosts two planets, but we'll ignore the inner planet because the significance of the RV signal is small enough that it won't affect our results.The datasets that we'll use are from the Anglo-Australian Planet Search (AAT) and the HARPS archive.As is commonly done, we will treat the HARPS observations as two independent datasets split in June 2015 when the HARPS hardware was upgraded.Therefore, we'll consider three datasets that we will allow to have different instrumental parameters (RV offset and jitter), but shared orbital parameters and stellar variability.In some cases you might also want to have a different astrophyscial variability model for each instrument (if, for example, the observations are made in very different bands), but we'll keep things simple for this example.The AAT data are available from [The Exoplanet Archive](https://exoplanetarchive.ipac.caltech.edu/) and the HARPS observations can be downloaded from the [ESO Archive](http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form).For the sake of simplicity, we have extracted the HARPS RVs from the archive in advance using [Megan Bedell's harps_tools library](https://github.com/megbedell/harps_tools).To start, download the data and plot them with a (very!) rough zero point correction. ###Code import numpy as np import pandas as pd from astropy.io import ascii import matplotlib.pyplot as plt aat = ascii.read( "https://exoplanetarchive.ipac.caltech.edu/data/ExoData/0026/0026394/data/UID_0026394_RVC_001.tbl" ) harps = pd.read_csv( "https://raw.githubusercontent.com/exoplanet-dev/case-studies/main/data/pi_men_harps_rvs.csv", skiprows=1, ) harps = harps.rename(lambda x: x.strip().strip("#"), axis=1) harps_post = np.array(harps.date > "2015-07-01", dtype=int) t = np.concatenate((aat["JD"], harps["bjd"])) rv = np.concatenate((aat["Radial_Velocity"], harps["rv"])) rv_err = np.concatenate((aat["Radial_Velocity_Uncertainty"], harps["e_rv"])) inst_id = np.concatenate((np.zeros(len(aat), dtype=int), harps_post + 1)) inds = np.argsort(t) t = np.ascontiguousarray(t[inds], dtype=float) rv = np.ascontiguousarray(rv[inds], dtype=float) rv_err = np.ascontiguousarray(rv_err[inds], dtype=float) inst_id = np.ascontiguousarray(inst_id[inds], dtype=int) inst_names = ["aat", "harps_pre", "harps_post"] num_inst = len(inst_names) for i, name in enumerate(inst_names): m = inst_id == i plt.errorbar( t[m], rv[m] - np.min(rv[m]), yerr=rv_err[m], fmt=".", label=name ) plt.legend(fontsize=10) plt.xlabel("BJD") _ = plt.ylabel("radial velocity [m/s]") ###Output _____no_output_____ ###Markdown Then set up the probabilistic model.Most of this is similar to the model in the [Radial velocity fitting](https://docs.exoplanet.codes/en/stable/tutorials/rv/) tutorial, but there are a few changes to highlight:1. Instead of a polynomial model for trends, stellar varaiability, and inner planets, we're using a Gaussian process here. This won't have a big effect here, but more careful consideration should be performed when studying lower signal-to-noise systems.2. There are three radial velocity offests and three jitter parameters (one for each instrument) that will be treated independently. This is the key addition made by this case study. ###Code import pymc3 as pm import exoplanet as xo import aesara_theano_fallback.tensor as tt import pymc3_ext as pmx from celerite2.theano import terms, GaussianProcess t_phase = np.linspace(-0.5, 0.5, 5000) with pm.Model() as model: # Parameters describing the orbit log_K = pm.Normal("log_K", mu=np.log(300), sigma=10) log_P = pm.Normal("log_P", mu=np.log(2093.07), sigma=10) K = pm.Deterministic("K", tt.exp(log_K)) P = pm.Deterministic("P", tt.exp(log_P)) ecs = pmx.UnitDisk("ecs", testval=np.array([0.7, -0.3])) ecc = pm.Deterministic("ecc", tt.sum(ecs ** 2)) omega = pm.Deterministic("omega", tt.arctan2(ecs[1], ecs[0])) phase = pmx.UnitUniform("phase") tp = pm.Deterministic("tp", 0.5 * (t.min() + t.max()) + phase * P) orbit = xo.orbits.KeplerianOrbit( period=P, t_periastron=tp, ecc=ecc, omega=omega ) # Noise model parameters log_sigma_gp = pm.Normal("log_sigma_gp", mu=np.log(10), sigma=50) log_rho_gp = pm.Normal("log_rho_gp", mu=np.log(50), sigma=50) # Per instrument parameters means = pm.Normal( "means", mu=np.array([np.median(rv[inst_id == i]) for i in range(num_inst)]), sigma=200, shape=num_inst, ) sigmas = pm.HalfNormal("sigmas", sigma=10, shape=num_inst) # Compute the RV offset and jitter for each data point depending on its instrument mean = tt.zeros(len(t)) diag = tt.zeros(len(t)) for i in range(len(inst_names)): mean += means[i] * (inst_id == i) diag += (rv_err ** 2 + sigmas[i] ** 2) * (inst_id == i) pm.Deterministic("mean", mean) pm.Deterministic("diag", diag) resid = rv - mean def rv_model(x): return orbit.get_radial_velocity(x, K=K) kernel = terms.SHOTerm( sigma=tt.exp(log_sigma_gp), rho=tt.exp(log_rho_gp), Q=1.0 / 3 ) gp = GaussianProcess(kernel, t=t, diag=diag, mean=rv_model) gp.marginal("obs", observed=resid) pm.Deterministic("gp_pred", gp.predict(resid, include_mean=False)) pm.Deterministic("rv_phase", rv_model(P * t_phase + tp)) map_soln = model.test_point map_soln = pmx.optimize(map_soln, [means]) map_soln = pmx.optimize(map_soln, [means, phase]) map_soln = pmx.optimize(map_soln, [means, phase, log_K]) map_soln = pmx.optimize(map_soln, [means, tp, K, log_P, ecs]) map_soln = pmx.optimize(map_soln, [sigmas, log_sigma_gp, log_rho_gp]) map_soln = pmx.optimize(map_soln) ###Output _____no_output_____ ###Markdown After fitting for the parameters that maximize the posterior probability, we can plot this model to make sure that things are looking reasonable: ###Code t_pred = np.linspace(t.min() - 400, t.max() + 400, 5000) with model: plt.plot( t_pred, pmx.eval_in_model(rv_model(t_pred), map_soln), "k", lw=0.5 ) detrended = rv - map_soln["mean"] - map_soln["gp_pred"] plt.errorbar(t, detrended, yerr=rv_err, fmt=",k") plt.scatter( t, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10 ) plt.xlim(t_pred.min(), t_pred.max()) plt.xlabel("BJD") plt.ylabel("radial velocity [m/s]") _ = plt.title("map model", fontsize=14) ###Output _____no_output_____ ###Markdown That looks fine, so now we can run the MCMC sampler: ###Code with model: trace = pmx.sample( tune=1000, draws=1000, start=map_soln, chains=2, cores=2, return_inferencedata=True, random_seed=[39091, 39095], ) ###Output _____no_output_____ ###Markdown Then we can look at some summaries of the trace and the constraints on some of the key parameters: ###Code import corner import arviz as az corner.corner(trace, var_names=["P", "K", "tp", "ecc", "omega"]) az.summary( trace, var_names=["P", "K", "tp", "ecc", "omega", "means", "sigmas"] ) ###Output _____no_output_____ ###Markdown And finally we can plot the phased RV curve and overplot our posterior inference: ###Code flat_samps = trace.posterior.stack(sample=("chain", "draw")) mu = np.mean(flat_samps["mean"].values + flat_samps["gp_pred"].values, axis=-1) mu_var = np.var(flat_samps["mean"], axis=-1) jitter_var = np.median(flat_samps["diag"], axis=-1) period = np.median(flat_samps["P"]) tp = np.median(flat_samps["tp"]) detrended = rv - mu folded = ((t - tp + 0.5 * period) % period) / period plt.errorbar(folded, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k") plt.scatter( folded, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) plt.errorbar( folded + 1, detrended, yerr=np.sqrt(mu_var + jitter_var), fmt=",k" ) plt.scatter( folded + 1, detrended, c=inst_id, s=8, zorder=100, cmap="tab10", vmin=0, vmax=10, ) x = t_phase + 0.5 y = np.mean(flat_samps["rv_phase"], axis=-1) plt.plot(x, y, "k", lw=0.5, alpha=0.5) plt.plot(x + 1, y, "k", lw=0.5, alpha=0.5) plt.axvline(1, color="k", lw=0.5) plt.xlim(0, 2) plt.xlabel("phase") plt.ylabel("radial velocity [m/s]") _ = plt.title("posterior inference", fontsize=14) ###Output _____no_output_____ ###Markdown CitationsAs described in the [citation tutorial](https://docs.exoplanet.codes/en/stable/tutorials/citation/), we can use [citations.get_citations_for_model](https://docs.exoplanet.codes/en/stable/user/api/exoplanet.citations.get_citations_for_model) to construct an acknowledgement and BibTeX listing that includes the relevant citations for this model. ###Code with model: txt, bib = xo.citations.get_citations_for_model() print(txt) print(bib.split("\n\n")[0] + "\n\n...") ###Output _____no_output_____
assignments/0315-CUDA_Alternatives_in-class-assignment.ipynb
###Markdown [Link to this document's Jupyter Notebook](./0315-CUDA_Alternatives_in-class-assignment.ipynb) In order to successfully complete this assignment you need to participate both individually and in groups during class. If you attend class in-person then have one of the instructors check your notebook and sign you out before leaving class on **Monday March 15**. If you are attending asynchronously, turn in your assignment using D2L no later than **_11:59pm on Monday March 15**. --- In-Class Assignment: Alternatives Agenda for today's class (70 minutes)1. (20 minutes) [Pre class Review](Pre-class-Review)2. (5 minutes) [Submitting CUDA Jobs on the HPCC](Submitting-CUDA-Jobs-on-the-HPCC)4. (20 minutes) [Homework Questions](Homework-Questions)5. (25 minutes) [Introducing MPI](Introducing-MPI) --- 1. Pre class Review[0314--CUDA_Alternatives_pre-class-assignment](0314--CUDA_Alternatives_pre-class-assignment.ipynb)As a class we will discuss the various alternatives to cuda and their pros and cons. --- 2. Submitting CUDA Jobs on the HPCC ###Code %%writefile cuda_submit.sb #!/bin/bash #SBATCH --time=01:00:00 #SBATCH -c 1 #SBATCH -N 1 #SBATCH --gres=gpu:1 #SBATCH --mem=4gb time srun ./mycudaprogram #Prints out job statistics js ${SLURM_JOB_ID} !sbatch cuda_submit.sb ###Output _____no_output_____ ###Markdown --- 3. Homework QuestionsHomework is due Thursday of this weeks. What final questions do you have? - [0318-HW3_CUDA](0318-HW3_CUDA.ipynb) --- 4. Introducing MPIOur next big topic in class will be doing "Shared Network Parallization" using MPI (Message Passing Interface). MPI and it's libraries are loaded by default on the HPCC. &9989; **DO THIS:** Get either the Pandemic or Galaxsee example working using MPI on the HPCC. Here are the basic steps:1. Compile the code without X11 options (there are no monitors on the HPC side. 2. Write a submission script (similar to the one below). 3. Submit the job and debug any errors. ###Code %%writefile cuda_submit.sb #!/bin/bash #SBATCH --time=01:00:00 #SBATCH -c 1 #SBATCH -N 10 #SBATCH --mem=40gb time srun ./mympiprogram #Prints out job statistics js ${SLURM_JOB_ID} ###Output _____no_output_____
6-Chapter-6/test_your_knowledge/test_your_knowledge_excel_solution.ipynb
###Markdown We will compare the 1-day forcast with historical values. ###Code forecast_df_shifted_1 = forecast_df.copy() forecast_df_shifted_1.index = forecast_df.index + pd.Timedelta(days=1) forecast_df_shifted_1.head() combined_df = forecast_df_shifted_1.merge(daily_mean_historical, left_index=True, right_index=True) combined_df.head() combined_df[['load_d1', 'Actual Load (MWh)']].plot() ###Output _____no_output_____
metrics/cross-entropy.ipynb
###Markdown Cross Entropy ###Code import numpy as np # Write a function that takes as input two lists Y, P, # and returns the float corresponding to their cross-entropy. def cross_entropy(Y, P): Y = np.float_(Y) P = np.float_(P) return -np.sum(Y * np.log(P) + (1 - Y) * np.log(1 - P)) Y=[1,0,1,1] P=[0.4,0.6,0.1,0.5] cross_entropy(Y,P) ###Output _____no_output_____
src/classification/sexism_data_preprocessing.ipynb
###Markdown Loading Data ###Code data = pandas.read_csv('./../sexism-data.csv') new_data=data[data['scores']==1] new_data temp_data=data[data['scores']==0] temp_data=temp_data[0:500] data=new_data.append(temp_data) data train_data, test_data = train_test_split(data) words = Counter() word2idx = {} idx2word = {} def tokenizeText(sentence): tokens = word_tokenize(sentence) return tokens def sent2idx(split_text): sent2idx = [] for w in split_text: if w.lower() in word2idx: sent2idx.append(word2idx[w.lower()]) else: sent2idx.append(word2idx['_UNK']) return sent2idx def processTextData(df,isTrain): global words global word2idx global idx2word df = df.copy() df['tokenized'] = df.texts.apply(lambda x: (tokenizeText(x.lower()))) if isTrain: for sent in tqdm(df.tokenized.values): words.update(w for w in sent) words = sorted(words, key=words.get, reverse=True) words = ['_PAD','_UNK'] + words word2idx = {o:i for i,o in enumerate(words)} idx2word = {i:o for i,o in enumerate(words)} df['vectorized'] = df.texts.apply(lambda x: sent2idx(x)) return df train_data = processTextData(train_data,True) test_data = processTextData(test_data,False) def label(score): l=[0,0] l[score]=1 return l train_data['label']=train_data['scores'].apply(label) test_data['label']=test_data['scores'].apply(label) train_data class VectorizeData(Dataset): def __init__(self, df, maxlen=10): self.maxlen = maxlen self.df = df self.df['text_padded'] = self.df.vectorized.apply(lambda x: self.pad_data(x)) def __len__(self): return self.df.shape[0] def __getitem__(self, idx): text = self.df.text_padded.values[idx] sexism_label = self.df.label.values[idx] sexism_type = self.df['class'].values[idx] return text,sexism_label,sexism_type def pad_data(self, s): padded = np.zeros((self.maxlen,), dtype=np.int64) if len(s) > self.maxlen: padded[:] = s[:self.maxlen] else: padded[:len(s)] = s return padded trainDataset = VectorizeData(train_data) testDataset = VectorizeData(test_data) trainLoader = DataLoader(dataset=trainDataset, batch_size=100, shuffle=True) testLoader = DataLoader(dataset=testDataset, batch_size=100, shuffle=False) for i, samples in enumerate(trainLoader): print(i) print(samples[1]) break ###Output 0 [tensor([1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])] ###Markdown Sentence to model input ###Code def pad_data(s,maxlen): padded = np.zeros((maxlen,), dtype=np.int64) if len(s) > maxlen: padded[:] = s[:maxlen] else: padded[:len(s)] = s return padded def sentToTensor(text,word2idx,vectors): padded_vector = pad_data(sent2idx(tokenizeText(text)),10) return torch.tensor(padded_vector).reshape(1,-1) ###Output _____no_output_____ ###Markdown Extrapolating to MultiClass Problem ###Code class VectorizeDataMultiClass(Dataset): def __init__(self, df, maxlen=10): self.maxlen = maxlen self.df = df self.df['text_padded'] = self.df.vectorized.apply(lambda x: self.pad_data(x)) def __len__(self): return self.df.shape[0] def __getitem__(self, idx): text = self.df.text_padded.values[idx] sexism_label = self.df.scores.values[idx] sexism_type = self.df['class'].values[idx] if sexism_label == 0 and sexism_type == 0: return text,0 if sexism_label == 1 and sexism_type == 1: return text,1 if sexism_label == 1 and sexism_type == 2: return text,2 def pad_data(self, s): padded = np.zeros((self.maxlen,), dtype=np.int64) if len(s) > self.maxlen: padded[:] = s[:self.maxlen] else: padded[:len(s)] = s return padded trainDatasetMC = VectorizeDataMultiClass(train_data) testDatasetMC = VectorizeDataMultiClass(test_data) trainLoaderMC = DataLoader(dataset=trainDatasetMC, batch_size=100, shuffle=True) testLoaderMC = DataLoader(dataset=testDatasetMC, batch_size=100, shuffle=False) print('Multiclass data') for i, samples in enumerate(trainLoader): print(i) print(samples[0]) print(samples[1]) print(samples[2]) break ###Output 0 tensor([[ 6370, 2674, 1070, 1070, 1941, 373, 2, 1, 7, 373], [ 8, 2616, 1, 1118, 1070, 445, 1115, 690, 1, 1070], [16686, 445, 373, 1090, 1, 1469, 1115, 1070, 1941, 1941], [ 2674, 7, 3683, 8, 812, 4253, 1, 1090, 2674, 690], [ 812, 1070, 1, 1090, 1115, 445, 1415, 3176, 690, 1115], [ 3176, 7, 2674, 7, 7, 812, 1, 2674, 445, 966], [ 8, 1, 6370, 7, 373, 1, 2616, 1070, 1115, 1], [ 8, 1090, 373, 1, 1941, 1070, 373, 373, 8, 1958], [ 1415, 2674, 690, 1415, 3176, 1, 1070, 445, 1090, 1], [ 1070, 812, 1, 1090, 2674, 8, 373, 1, 6370, 690], [ 926, 690, 1090, 171, 373, 1, 2616, 8, 812, 1469], [ 2674, 690, 7, 1115, 1090, 1958, 1115, 690, 7, 3176], [ 8, 1, 926, 8, 3683, 690, 1, 1958, 1118, 1], [ 2674, 690, 1, 1090, 2674, 690, 1, 1115, 690, 7], [ 1090, 2674, 690, 1, 1958, 1070, 1469, 1118, 1, 3176], [ 1118, 445, 966, 3, 1, 1090, 2674, 8, 373, 1], [ 373, 812, 7, 1941, 373, 2674, 1070, 1090, 1, 2616], [ 6370, 690, 1, 6370, 1070, 445, 926, 1469, 1, 926], [ 2616, 1070, 1115, 1, 1090, 2674, 8, 373, 1, 3], [16686, 445, 1469, 4253, 8, 812, 4253, 1, 7, 373], [ 926, 7, 373, 1090, 1, 812, 8, 4253, 2674, 1090], [ 1090, 2674, 8, 373, 1, 8, 373, 1, 7, 926], [ 1415, 1070, 966, 690, 1, 1415, 2674, 690, 1415, 3176], [ 4253, 1070, 1090, 1, 1090, 2674, 690, 966, 1, 1415], [ 1070, 1415, 1090, 1070, 1958, 690, 1115, 1, 6370, 690], [ 2616, 690, 966, 8, 812, 8, 373, 1090, 1, 1958], [ 1070, 812, 690, 1, 1070, 2616, 1, 1090, 2674, 690], [ 1941, 1070, 373, 1090, 690, 1469, 1, 1958, 1118, 1], [ 6370, 690, 1, 2674, 7, 3683, 690, 1, 1090, 2674], [ 1941, 926, 690, 7, 373, 690, 1, 373, 7, 1118], [ 1090, 2674, 8, 373, 1, 7, 8, 812, 1090, 1], [ 1090, 6370, 1070, 1, 1415, 1070, 445, 1941, 926, 690], [ 1070, 445, 1090, 1, 6370, 8, 1090, 2674, 1, 1090], [ 812, 8, 4253, 2674, 1090, 1, 3683, 8, 1958, 690], [ 7, 812, 1070, 1090, 2674, 690, 1115, 1, 4253, 1070], [ 1469, 1070, 1, 8, 1090, 1, 2616, 1070, 1115, 1], [ 1118, 1070, 445, 1090, 445, 1958, 690, 1115, 3, 1], [ 1090, 2674, 690, 1115, 690, 1, 7, 1115, 690, 1], [ 8, 1, 7, 8, 812, 1090, 1, 373, 690, 947], [ 2674, 7, 1941, 1941, 1118, 1, 1958, 8, 1115, 1090], [ 1090, 2674, 8, 373, 1, 4253, 445, 1118, 1, 1090], [ 8, 1090, 1, 1469, 1070, 690, 373, 812, 1090, 1], [ 1090, 1070, 812, 8, 4253, 2674, 1090, 3, 1, 926], [ 1115, 7, 1941, 690, 3, 1, 7, 1958, 445, 373], [ 8, 812, 1, 1090, 2674, 1115, 690, 690, 1, 6370], [ 1, 1090, 1070, 1469, 7, 1118, 1, 966, 7, 1115], [ 6370, 2674, 690, 812, 1, 1118, 1070, 445, 1, 4253], [ 6370, 1070, 966, 690, 812, 1, 7, 1115, 690, 1], [ 373, 1070, 1, 1958, 690, 4253, 8, 812, 1, 1090], [ 6370, 2674, 7, 1090, 1, 6370, 690, 1, 373, 7], [ 926, 8, 3176, 690, 1, 6370, 2674, 7, 1090, 1], [ 373, 445, 812, 1469, 7, 1118, 1, 966, 1070, 1115], [ 1941, 445, 1090, 1, 1118, 1070, 445, 1115, 1, 2616], [ 373, 8, 812, 1415, 690, 1, 445, 1941, 926, 1070], [ 1958, 690, 373, 1090, 1, 966, 690, 966, 690, 1], [ 373, 6370, 8, 1941, 690, 1, 1090, 1070, 1, 373], [ 8, 1, 4253, 1070, 1090, 1090, 7, 1, 1958, 690], [ 8, 1, 6370, 1070, 445, 926, 1469, 1, 373, 7], [ 1070, 966, 4253, 2, 1, 8, 1090, 171, 373, 1], [16686, 7, 1941, 1, 966, 690, 1090, 1115, 1070, 1941], [ 1090, 2674, 8, 373, 1, 1415, 1115, 7, 1415, 3176], [ 1958, 690, 1415, 1070, 966, 690, 1, 1070, 812, 690], [ 7, 1, 926, 8, 1090, 1090, 926, 690, 1, 966], [ 1090, 2674, 690, 1115, 690, 171, 373, 1, 812, 1070], [ 4253, 1115, 7, 812, 1, 2616, 8, 690, 373, 1090], [ 6370, 1070, 6370, 1, 2674, 1070, 6370, 1, 373, 690], [ 2674, 7, 1941, 1941, 1118, 1, 1090, 2674, 445, 1115], [ 3683, 690, 1115, 1118, 1, 6370, 690, 926, 926, 1], [ 1090, 2674, 690, 1, 6370, 7, 1118, 1, 8, 373], [ 8, 1941, 2674, 1070, 812, 690, 1, 8, 373, 1], [ 7, 1, 926, 1070, 3683, 690, 926, 1118, 1, 6370], [ 2616, 1070, 1415, 445, 373, 1, 1070, 812, 1, 6370], [ 373, 1090, 1115, 690, 812, 4253, 1090, 2674, 1, 8], [ 1090, 7, 4253, 1, 7, 1, 2616, 1115, 8, 690], [ 1090, 2674, 8, 373, 1, 6370, 8, 926, 926, 1], [ 966, 8, 373, 373, 1, 966, 1118, 1, 1958, 7], [ 1415, 2674, 690, 690, 373, 690, 1, 2616, 1070, 1115], [ 6370, 2674, 7, 1090, 1, 17, 1, 17, 1, 17], [ 2616, 690, 966, 8, 812, 8, 373, 966, 1, 8], [ 7, 373, 1, 926, 1070, 812, 4253, 1, 7, 373], [ 7, 812, 1469, 1, 2674, 690, 1115, 690, 1, 2674], [ 1070, 445, 1115, 1, 1070, 812, 926, 1118, 1, 926], [ 1090, 2674, 690, 1, 966, 1070, 3683, 690, 966, 690], [ 1090, 2674, 690, 1, 373, 1070, 7, 373, 1, 1415], [ 2674, 690, 1118, 1, 690, 3683, 690, 1115, 1118, 1070], [ 6370, 690, 1958, 373, 1, 1415, 7, 812, 1, 4253], [ 3176, 7, 2674, 8, 1, 1090, 1070, 2674, 1, 2674], [ 2616, 1070, 1115, 690, 3683, 690, 1115, 1, 7, 812], [ 8, 1, 6370, 1070, 445, 926, 1469, 1, 926, 8], [ 926, 690, 1090, 171, 373, 1, 1958, 690, 1, 1415], [ 2674, 690, 1115, 690, 1, 8, 373, 1, 7, 1], [ 6370, 2674, 1118, 1, 2616, 690, 966, 8, 812, 8], [ 6370, 7, 8, 373, 1090, 1, 1415, 926, 445, 1090], [ 1469, 690, 7, 1115, 1, 3683, 8, 690, 6370, 690], [ 1070, 445, 1090, 373, 1090, 7, 812, 1469, 8, 812], [ 2674, 7, 1958, 8, 1090, 7, 1090, 1, 1941, 1115], [ 2616, 1070, 1115, 1090, 445, 812, 7, 1090, 690, 926], [ 1090, 2674, 8, 373, 1, 8, 373, 1, 373, 1070], [ 8, 1, 373, 6370, 690, 7, 1115, 1, 8, 1], [ 6370, 690, 1, 7, 1415, 1090, 445, 7, 926, 926]]) [tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])] tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
BERT_Custom/Convert_txt.ipynb
###Markdown counting lines ###Code import re file_1 = open('train_alltags_2.txt') file_2 = open('test_alltags_2.txt') sentence_regex = re.compile("^(Sentence: )\d+") sent_no = 0 sent_count_train = 0 sent_count_test = 0 tmp =0 for line in file_1.readlines(): if len(line) <=3: continue sentence_search = sentence_regex.search(line) sent_no = int(sentence_search.group(0)[9:]) if sent_no != tmp: sent_count_train += 1 tmp = sent_no for line in file_2.readlines(): if len(line) <=3: continue sentence_search = sentence_regex.search(line) sent_no = int(sentence_search.group(0)[9:]) if sent_no != tmp: sent_count_test += 1 tmp = sent_no print(sent_count_train, sent_count_test) ###Output _____no_output_____
M33_fitting/Testing_Completeness_Experiement.ipynb
###Markdown Draw a Scechter Function with a -2 powerlaw ###Code def Cliff_pl_draw_schechter(ndraw,alpha,llim,ulim,M_c=1.e4,rseed=None,returnfull=False): alphapp=alpha+1. np.random.seed(rseed) rand=np.random.rand(ndraw) pdf=(rand*ulim**alphapp + (1.-rand)*llim**alphapp)**(1./alphapp) rand=np.random.rand(ndraw) select = rand < np.exp(-pdf/M_c) if returnfull: return pdf[select], pdf else: return pdf[select] drawn_masses=np.log10(Cliff_pl_draw_schechter(4000, -2, 300, 10**7, M_c=10**4.25 )) #Draw_ages and NMS with replacement from our distributions drawn_ages=np.random.choice(full_ages, size=len(drawn_masses)) drawn_nms=np.random.choice(full_nmses, size=len(drawn_masses)) ###Output _____no_output_____ ###Markdown Apply a completeness to determine detection1. Asses the completeness for a given cluster, given its mass, age, and NMS2. Draw a random number between 0:1 and if the number is less that the completeness value, the cluster was "Detected" ###Code #Defining the Compleness funcitons def pobs(M, mlim): k=6.3665 y=(1.+ exp(-k*(M-mlim)))**(-1) return y def c(NMS): m=0.7117385589429568 b=0.6066972150830925 y= (m*NMS)+b if NMS < 2.53: return 2.413 if 2.53 <= NMS <= 3.49: return y if NMS > 3.49: return 3.054 def M_lim(Tau, NMS): #fit from completeness limit a=0.06005753215407492 b=1.0190688706002926 c_=c(NMS) Tau_min=6.71 y= a*np.exp(b*(Tau-Tau_min))+c_ return y drawn_mlims=np.zeros((len(drawn_masses))) for i in range(len(drawn_masses)): drawn_mlims[i]=M_lim(drawn_ages[i], drawn_nms[i]) #determin "detected" clusters detected_masses=[] detected_mlims=[] for i in range(len(drawn_masses)): rand= np.random.rand() if rand < pobs(drawn_masses[i], drawn_mlims[i]): detected_masses.append(drawn_masses[i]) detected_mlims.append(drawn_mlims[i]) detected_masses=np.array(detected_masses) detected_mlims=np.array(detected_mlims) # only feed in detected clusters, and only take above the 50% compleness and re-run using_dm=detected_masses[np.where(detected_masses > detected_mlims)] using_mlims=10**detected_mlims[np.where(detected_masses > detected_mlims)] #Definging necesary funcitons def lnobs_like(M, mlim): k=6.3665 return -np.log(1.+ exp(-k*(M-mlim))) def Shecter_Z(M, mlim, alpha, M_c): x = M/M_c k=6.3665 pobs= 1./(1.+ exp((-k)*(np.log10(M)-mlim))) return (x**alpha) * exp(-x) * pobs def lnlike(theta, M, mlim): alpha, M_c = theta lin_M_c= 10.**M_c lin_M= 10**M x= lin_M/lin_M_c ln_pobs=lnobs_like(M, np.log10(mlim)) norm= np.zeros(len(M)) err=np.zeros(len(M)) for i in range(len(M)): norm[i], err[i] = quad(Shecter_Z, mlim[i], 1.e7, args=(np.log10(mlim[i]), alpha, lin_M_c)) lnlike = np.sum((-x) + alpha*np.log(x) + ln_pobs - np.log(norm)) return lnlike def lnprior(theta): alpha, M_c = theta if -3 <= alpha <= -1 and 3 <= M_c <= 8: return 0.0 return -np.inf def lnprob(theta, M, mlim): lp = lnprior(theta) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, M, mlim) #Running the Maximum liklihood Fit nll = lambda *args: -lnprob(*args) starting_point=np.array([-2., 4.25]) fd_result=opt.minimize(nll, x0=starting_point, args=(using_dm, using_mlims)) fd_result['x'] ###Output _____no_output_____
Model backlog/Train XGBM/12-melanoma-5fold-xgbm-basic-fts-external-data-oof.ipynb
###Markdown Dependencies ###Code import warnings, json, re, math from melanoma_utility_scripts import * from kaggle_datasets import KaggleDatasets from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import KFold, RandomizedSearchCV, GridSearchCV from xgboost import XGBClassifier SEED = 42 seed_everything(SEED) warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown Model parameters ###Code config = { "N_FOLDS": 5, "N_USED_FOLDS": 5, "DATASET_PATH": 'melanoma-256x256' } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config ###Output _____no_output_____ ###Markdown Load data ###Code database_base_path = '/kaggle/input/siim-isic-melanoma-classification/' train = pd.read_csv(f"/kaggle/input/{config['DATASET_PATH']}/train.csv") train_ext = pd.read_csv(f"/kaggle/input/isic2019-256x256/train.csv") train_malig_1 = pd.read_csv(f"/kaggle/input/malignant-v2-256x256/train_malig_1.csv") train_malig_3 = pd.read_csv(f"/kaggle/input/malignant-v2-256x256/train_malig_3.csv") train['external'] = 0 train_ext['external'] = 1 train_malig_1['external'] = 0 train_malig_3['external'] = 0 train = pd.concat([train, train_ext, train_malig_1, train_malig_3]) test = pd.read_csv(database_base_path + 'test.csv') print('Train samples: %d' % len(train)) display(train.head()) print(f'Test samples: {len(test)}') display(test.head()) display(train.describe()) ###Output _____no_output_____ ###Markdown Missing values ###Code # age_approx (mean) train['age_approx'].fillna(train['age_approx'].mean(), inplace=True) test['age_approx'].fillna(train['age_approx'].mean(), inplace=True) # anatom_site_general_challenge (NaN) train['anatom_site_general_challenge'].fillna('NaN', inplace=True) test['anatom_site_general_challenge'].fillna('NaN', inplace=True) # sex (mode) train['sex'].fillna(train['sex'].mode()[0], inplace=True) test['sex'].fillna(train['sex'].mode()[0], inplace=True) ###Output _____no_output_____ ###Markdown Feature engineering ###Code ### Label ecoding enc = LabelEncoder() train['sex_enc'] = enc.fit_transform(train['sex'].astype('str')) test['sex_enc'] = enc.transform(test['sex'].astype('str')) ### One-hot ecoding # train = pd.concat([train, pd.get_dummies(train['sex'], prefix='sex_enc', drop_first=True)], axis=1) # test = pd.concat([test, pd.get_dummies(test['sex'], prefix='sex_enc', drop_first=True)], axis=1) ### Mean ecoding # Sex train['sex_mean'] = train['sex'].map(train.groupby(['sex'])['target'].mean()) test['sex_mean'] = test['sex'].map(train.groupby(['sex'])['target'].mean()) # # External features # train_img_ft = pd.read_csv('../input/landscape/TrainSuperTab.csv') # test_img_ft = pd.read_csv('../input/landscape/TestSuperTab.csv') # ext_fts = ['V1', 'V2', 'V3', 'V4','V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', # 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', # 'V26', 'V27', 'V28', 'V29', 'V30', 'V31', 'V32', 'V33', 'V34', 'V35', 'V36', 'V37'] # for ft in ext_fts: # train[ft] = train_img_ft[ft] # test[ft] = test_img_ft[ft] print('Train set') display(train.head()) print('Test set') display(test.head()) ###Output Train set ###Markdown Model ###Code features = ['age_approx', 'sex_mean'] ohe_features = [col for col in train.columns if 'enc' in col] features += ohe_features # External features # features += ext_fts print(features) # Hyperparameter grid param_grid = { 'max_depth': list(range(2, 12, 2)), 'learning_rate': list(np.logspace(np.log10(0.005), np.log10(0.5), base=10, num=1000)), 'reg_alpha': list(np.linspace(0, 1)), 'reg_lambda': list(np.linspace(0, 1)), 'colsample_bytree': list(np.linspace(0.3, 1, 10)), 'subsample': list(np.linspace(0.5, 1, 100)), 'scale_pos_weight': list(np.linspace(1, (len(train[train['target'] == 0]) / len(train[train['target'] == 1])), 10)), } skf = KFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED) def get_idxs(): for fold,(idxT, idxV) in enumerate(skf.split(np.arange(15))): x_train = train[(train['tfrecord'].isin(idxT) & (train['external'] == 0)) | # 2020 data (train['tfrecord'].isin(idxT * 2) & (train['external'] == 1)) | # 2018 data (train['tfrecord'].isin(idxT + 30) & (train['external'] == 0)) | # 2019 & 2018 data (malig) (train['tfrecord'].isin(idxT + 15) & (train['external'] == 0)) # new data (malig) ] x_valid = train[~((train['tfrecord'].isin(idxT) & (train['external'] == 0)) | # 2020 data (train['tfrecord'].isin(idxT * 2) & (train['external'] == 1)) | # 2018 data (train['tfrecord'].isin(idxT + 30) & (train['external'] == 0)) | # 2019 & 2018 data (malig) (train['tfrecord'].isin(idxT + 15) & (train['external'] == 0))) # new data (malig) ] yield x_train.index, x_valid.index # Model model = XGBClassifier(n_estimators=300, random_state=SEED) grid_search = RandomizedSearchCV(param_distributions=param_grid, estimator=model, scoring='roc_auc', cv=iter(get_idxs()), n_jobs=-1, n_iter=100, verbose=1) result = grid_search.fit(train[features], train['target']) print("Best: %f using %s" % (result.best_score_, result.best_params_)) means = result.cv_results_['mean_test_score'] stds = result.cv_results_['std_test_score'] params = result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param)) params = result.best_params_ ###Output Fitting 5 folds for each of 100 candidates, totalling 500 fits ###Markdown Training ###Code skf = KFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED) test['target'] = 0 model_list = [] for fold,(idxT, idxV) in enumerate(skf.split(np.arange(15))): print(f'\nFOLD: {fold+1}') print(f'TRAIN: {idxT} VALID: {idxV}') train[f'fold_{fold+1}'] = train.apply(lambda x: 'train' if x['tfrecord'] in idxT else 'validation', axis=1) x_train = train[train['tfrecord'].isin(idxT)] y_train = x_train['target'] x_valid = train[~train['tfrecord'].isin(idxT)] y_valid = x_valid['target'] model = XGBClassifier(**params, random_state=SEED) model.fit(x_train[features], y_train, eval_set=[(x_valid[features], y_valid)], eval_metric='auc', verbose=0) model_list.append(model) # Evaludation preds = model.predict_proba(train[features])[:, 1] train[f'pred_fold_{fold+1}'] = preds # Inference preds = model.predict_proba(test[features])[:, 1] test[f'pred_fold_{fold+1}'] = preds test['target'] += preds / config['N_USED_FOLDS'] ###Output FOLD: 1 TRAIN: [ 1 2 3 4 5 6 7 8 10 12 13 14] VALID: [ 0 9 11] FOLD: 2 TRAIN: [ 0 1 2 3 4 6 7 9 10 11 12 14] VALID: [ 5 8 13] FOLD: 3 TRAIN: [ 0 3 4 5 6 7 8 9 10 11 12 13] VALID: [ 1 2 14] FOLD: 4 TRAIN: [ 0 1 2 3 5 6 8 9 11 12 13 14] VALID: [ 4 7 10] FOLD: 5 TRAIN: [ 0 1 2 4 5 7 8 9 10 11 13 14] VALID: [ 3 6 12] ###Markdown Model evaluation ###Code def func(x): if x['fold_1'] == 'validation': return x['pred_fold_1'] elif x['fold_2'] == 'validation': return x['pred_fold_2'] elif x['fold_3'] == 'validation': return x['pred_fold_3'] elif x['fold_4'] == 'validation': return x['pred_fold_4'] elif x['fold_5'] == 'validation': return x['pred_fold_5'] train['pred'] = train.apply(lambda x: func(x), axis=1) auc_oof = roc_auc_score(train['target'], train['pred']) print(f'Overall OOF AUC = {auc_oof:.3f}') df_oof = train[['image_name', 'target', 'pred']] df_oof.to_csv('oof.csv', index=False) display(df_oof.head()) display(df_oof.describe().T) ###Output Overall OOF AUC = 0.664 ###Markdown Feature importance ###Code for n_fold, model in enumerate(model_list): print(f'Fold: {n_fold + 1}') feature_importance = model.get_booster().get_score(importance_type='weight') keys = list(feature_importance.keys()) values = list(feature_importance.values()) importance = pd.DataFrame(data=values, index=keys, columns=['score']).sort_values(by='score', ascending=False) plt.figure(figsize=(16, 8)) sns.barplot(x=importance.score.iloc[:20], y=importance.index[:20], orient='h', palette='Reds_r') plt.show() ###Output Fold: 1 ###Markdown Model evaluation ###Code display(evaluate_model(train, config['N_USED_FOLDS']).style.applymap(color_map)) display(evaluate_model_Subset(train, config['N_USED_FOLDS']).style.applymap(color_map)) ###Output _____no_output_____ ###Markdown Adversarial Validation ###Code ### Adversarial set adv_train = train.copy() adv_test = test.copy() adv_train['dataset'] = 1 adv_test['dataset'] = 0 x_adv = pd.concat([adv_train, adv_test], axis=0) y_adv = x_adv['dataset'] ### Adversarial model model_adv = XGBClassifier(**params, random_state=SEED) model_adv.fit(x_adv[features], y_adv, eval_metric='auc', verbose=0) ### Preds preds = model_adv.predict_proba(x_adv[features])[:, 1] ### Plot feature importance and ROC AUC curve fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10)) # Feature importance feature_importance = model_adv.get_booster().get_score(importance_type='weight') keys = list(feature_importance.keys()) values = list(feature_importance.values()) importance = pd.DataFrame(data=values, index=keys, columns=['score']).sort_values(by='score', ascending=False) ax1.set_title('Feature Importances') sns.barplot(x=importance.score.iloc[:20], y=importance.index[:20], orient='h', palette='Reds_r', ax=ax1) # Plot ROC AUC curve fpr_train, tpr_train, _ = roc_curve(y_adv, preds) roc_auc_train = auc(fpr_train, tpr_train) ax2.set_title('ROC AUC curve') ax2.plot(fpr_train, tpr_train, color='blue', label='Adversarial AUC = %0.2f' % roc_auc_train) ax2.legend(loc = 'lower right') ax2.plot([0, 1], [0, 1],'r--') ax2.set_xlim([0, 1]) ax2.set_ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ###Output _____no_output_____ ###Markdown Visualize predictions ###Code train['pred'] = 0 for n_fold in range(config['N_USED_FOLDS']): train['pred'] += train[f'pred_fold_{n_fold+1}'] / config['N_FOLDS'] print('Label/prediction distribution') print(f"Train positive labels: {len(train[train['target'] > .5])}") print(f"Train positive predictions: {len(train[train['pred'] > .5])}") print(f"Train positive correct predictions: {len(train[(train['target'] > .5) & (train['pred'] > .5)])}") print('Top 10 samples') display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].query('target == 1').head(10)) print('Top 10 predicted positive samples') display(train[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'diagnosis', 'target', 'pred'] + [c for c in train.columns if (c.startswith('pred_fold'))]].query('pred > .5').head(10)) ###Output Label/prediction distribution Train positive labels: 8502 Train positive predictions: 4347 Train positive correct predictions: 1431 Top 10 samples ###Markdown Visualize test predictions ###Code print(f"Test predictions {len(test[test['target'] > .5])}|{len(test[test['target'] <= .5])}") print('Top 10 samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target'] + [c for c in test.columns if (c.startswith('pred_fold'))]].head(10)) print('Top 10 positive samples') display(test[['image_name', 'sex', 'age_approx','anatom_site_general_challenge', 'target'] + [c for c in test.columns if (c.startswith('pred_fold'))]].query('target > .5').head(10)) ###Output Test predictions 377|10605 Top 10 samples ###Markdown Test set predictions ###Code submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission['target'] = test['target'] fig = plt.subplots(figsize=(20, 6)) plt.hist(submission['target'], bins=100) plt.title('Preds', size=18) plt.show() display(submission.head(10)) display(submission.describe()) submission[['image_name', 'target']].to_csv('submission.csv', index=False) ###Output _____no_output_____
notebooks/vvl/Final_scale_e3t_forcing.ipynb
###Markdown Read in e3t and create a +/-2 m SSH versions ###Code import xarray as xr import numpy as np import time from datetime import datetime, timedelta from dateutil.parser import parse import os from netCDF4 import Dataset ###Output _____no_output_____ ###Markdown User input ###Code date_begin = parse('5 june 2015') date_end = parse('12 june 2015') path = '/results2/SalishSea/nowcast-green.201806/' filetype = 'carp_T' depth_change = 2 out_e3t_frac = '/home/rmueller/Projects/MIDOSS/analysis-rachael/notebooks/vvl/e3t_frac_dz_2.nc' # pick Salmon Bank location [256,265], but remember that MOHID is transposed! such that SSC [yloc_ssc,xloc_ssc]-> [xloc_ssc,yloc_ssc]_mohid = [yloc_mohid,xloc_mohid] yloc_mohid = 265 xloc_mohid = 256 def mung_array(SSC_gridded_array, array_slice_type): """Transform an array containing SalishSeaCast-gridded data and transform it into a MOHID-gridded array by: 1) Cutting off the grid edges 2) Transposing the X and Y axes 3) Flipping the depth dimension, if it is present 4) Converting the NaNs to 0 :arg SSC_gridded_array: SalishSeaCast-gridded array :type numpy.ndarray: :py:class:'ndarray' :arg array_slice_type: str, one of '2D' or '3D' :type str: :py:class:'str' :return MOHID_gridded_array: MOHID-gridded array produced by applying operation 1-4 on SSC_gridded_array :type numpy.ndarray: :py:class:'ndarray' """ shape = SSC_gridded_array.shape ndims = len(shape) assert(array_slice_type in ('2D', '3D')), f"Invalid option {array_slice_type}. array_slice_type must be one of ('2D', '3D')" if array_slice_type is '2D': assert(ndims in (2,3)), f'The shape of the array given is {shape}, while the option chosen was {array_slice_type}' if ndims == 2: MOHID_gridded_array = SSC_gridded_array[1:897:,1:397] del(SSC_gridded_array) MOHID_gridded_array = np.transpose(MOHID_gridded_array, [1,0]) else: MOHID_gridded_array = SSC_gridded_array[...,1:897:,1:397] del(SSC_gridded_array) MOHID_gridded_array = np.transpose(MOHID_gridded_array, [0,2,1]) else: assert(ndims in (3,4)), f'The shape of the array given is {shape}, while the option chosen was {array_slice_type}' MOHID_gridded_array = SSC_gridded_array[...,1:897:,1:397] del(SSC_gridded_array) if ndims == 3: MOHID_gridded_array = np.transpose(MOHID_gridded_array, [0,2,1]) MOHID_gridded_array = np.flip(MOHID_gridded_array, axis = 0) else: MOHID_gridded_array = np.transpose(MOHID_gridded_array, [0,1,3,2]) MOHID_gridded_array = np.flip(MOHID_gridded_array, axis = 1) MOHID_gridded_array = np.nan_to_num(MOHID_gridded_array).astype('float64') return MOHID_gridded_array ###Output _____no_output_____ ###Markdown Ashu's function for writing HDF5 file ###Code def write_grid(data, datearrays, metadata, filename, groupname, accumulator, compression_level): shape = data[0].shape with h5py.File(filename) as f: time_group = f.get('/Time') if time_group is None: time_group = f.create_group('/Time') data_group_path = f'/Results/{groupname}' data_group = f.get(data_group_path) if data_group is None: data_group = f.create_group(data_group_path) for i, datearray in enumerate(datearrays): numeric_attribute = ((5 - len(str(i + accumulator))) * '0') + str(i + accumulator) child_name = 'Time_' + numeric_attribute timestamp = time_group.get(child_name) if timestamp is None: dataset = time_group.create_dataset( child_name, shape = (6,), data = datearray, chunks = (6,), compression = 'gzip', compression_opts = compression_level ) time_metadata = { 'Maximum' : np.array(datearray[0]), 'Minimum' : np.array([-0.]), 'Units' : b'YYYY/MM/DD HH:MM:SS' } dataset.attrs.update(time_metadata) else: assert (np.asarray(timestamp) == datearray).all(), f'Time record {child_name} exists and does not match with {datearray}' child_name = groupname + '_' + numeric_attribute if data_group.get(child_name) is not None: print(f'Dataset already exists at {child_name}') else: dataset = data_group.create_dataset( child_name, shape = shape, data = data[i], chunks = shape, compression = 'gzip', compression_opts = compression_level ) dataset.attrs.update(metadata) ###Output _____no_output_____ ###Markdown Generate list of dates from user input ###Code daterange = [date_begin, date_end] # append all filename strings within daterange to lists e3t_list = [] for day in range(np.diff(daterange)[0].days + 1): datestamp = daterange[0] + timedelta(days = day) datestr1 = datestamp.strftime('%d%b%y').lower() datestr2 = datestamp.strftime('%Y%m%d') # check if file exists. exit if it does not. add path to list if it does. file_path = f'{path}{datestr1}/SalishSea_1h_{datestr2}_{datestr2}_{filetype}.nc' if not os.path.exists(file_path): print(f'File {file_path} not found. Check Directory and/or Date Range.') e3t_list.append(file_path) e3t_list ###Output _____no_output_____ ###Markdown Create mask ###Code mask = mung_array(xr.open_dataset('https://salishsea.eos.ubc.ca/erddap/griddap/ubcSSn3DMeshMaskV17-02').isel(time = 0).tmask.values, '3D') ###Output _____no_output_____ ###Markdown Test process with one file ###Code data = xr.open_dataset(e3t_list[0]) datetimelist = data.time_counter.values.astype('datetime64[s]').astype(datetime) datearrays = [np.array( [d.year, d.month, d.day, d.hour, d.minute,d.second] ).astype('float64') for d in datetimelist] del(datetimelist) e3t = data.e3t.values e3t = mung_array(e3t, '3D') e3t = e3t*mask metadata = { 'FillValue' : np.array([0.]), 'Units' : b'?C' } ###Output _____no_output_____ ###Markdown Create a matrix of %depth values for all locations and times by looping through time and space ###Code total_depth = e3t.sum(1) e3t_frac_dz = np.empty_like(e3t) if os.path.isfile('/home/rmueller/data/vvl/test_e3t_frac.nc'): test = xr.open_dataset('/home/rmueller/data/vvl/test_e3t_frac.nc') print('Loading e3t_frac_dz from file') else: print('Creating matrix of percent total depth for e3t levels (this will take some time)') for t in range(e3t.shape[0]): for i in range(e3t.shape[2]): for j in range(e3t.shape[3]): for z in range(e3t.shape[1]): e3t_frac_dz[t,z,i,j] = e3t[t,z,i,j]/total_depth[t,i,j] print('saving to ', out_e3t_frac) # convert to xarray for ease of output xrfrac = xr.DataArray(e3t_frac_dz) xrfrac.to_netcdf('/home/rmueller/data/vvl/test_e3t_frac.nc') # Calculate new e3t based on desired depth change e3t_new = (total_depth[1,256,265] + depth_change) * e3t_frac_dz e3t_new.shape ###Output _____no_output_____ ###Markdown Test process with multiple files ###Code for file_path in e3t_list: data = xr.open_dataset(file_path) datetimelist = data.time_counter.values.astype('datetime64[s]').astype(datetime) datearrays = [np.array( [d.year, d.month, d.day, d.hour, d.minute,d.second] ).astype('float64') for d in datetimelist] del(datetimelist) e3t = data.e3t.values e3t = mung_array(e3t, '3D') e3t = e3t*mask metadata = { 'FillValue' : np.array([0.]), 'Units' : b'?C' } e3t.shape ###Output _____no_output_____
notebooks/1_hsv_values_ds_colors.ipynb
###Markdown Get general average HSV values for Daniel Smith cropped images ###Code import pandas as pd paths_df = pd.read_csv('/Users/macbook/Box/git_hub/Insight_Project_clean/data/paths_df.csv') #create the lists to hold the averaged hsv values h = [] s = [] v = [] import cv2 #uses cv2 to import the cropped images and calculate the mean of the whole image for each channel for i in range(0,len(paths_df)): image_path = paths_df.crop_path[i] image = cv2.imread(image_path) image_h_mean = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).mean(axis=1)[:,0].mean() image_s_mean = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).mean(axis=1)[:,1].mean() image_v_mean = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).mean(axis=1)[:,2].mean() h.append(image_h_mean) s.append(image_s_mean) v.append(image_v_mean) #append the values to the dataframe paths_df['h'] = h paths_df['s'] = s paths_df['v'] = v ###Output _____no_output_____ ###Markdown Upload the complete pigment information df to SQL ###Code from sqlalchemy import create_engine from sqlalchemy_utils import database_exists, create_database import psycopg2 import pandas as pd import sys sys.path.append('/Users/macbook/Box/git_hub/Insight_Project_clean/scripts/') #import scripts.sql_con as sql import sql_con from sql_con import df_from_query paths_df.to_sql('ds_data', engine, if_exists='replace') sql_query = """SELECT * FROM ds_data LIMIT 5""" df = df_from_query(sql_query) df ###Output _____no_output_____ ###Markdown Generating the average color data for the clustering.To capture the variation in each swatch. I am taking the average for each row of pixels in the cropped swatch ###Code ds_swatches = pd.DataFrame() for i in range(0,len(paths_df)): image_path = paths_df.crop_path[i] image = cv2.imread(image_path) image_mean = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).mean(axis=0) imported =pd.DataFrame(image_mean, columns=["h","s","v"]) imported["name"] = paths_df.name[i] imported["label"] = paths_df.label[i] ds_swatches = pd.concat([ds_swatches,imported], ignore_index=True) ds_swatches.to_sql('ds_swatches', engine, if_exists='replace') sql_query2 = """ SELECT *FROM ds_swatches LIMIT 10; """ color_data_from_sql = df_from_query(sql_query2) color_data_from_sql ###Output postgresql://macbook:DarwinRulez!1@localhost/colors
DNA classification using ML-NLP.ipynb
###Markdown DNA sequence data with Machiine Learning and Natural Language Processing Classification model that can predict a gene's function on the DNA sequence of the coding sequence alone. ###Code #installing the necessary package import numpy as np import pandas as pd import matplotlib.pyplot as plt #Human gene data human_data = pd.read_table('C:\\Users\\mesho\\OneDrive\\Desktop\\DNA classification using ML-NLP\\dataset\\human_data.txt') print(human_data.head()) print(human_data.shape) print(human_data.columns) print(human_data.isnull()) ###Output sequence class 0 False False 1 False False 2 False False 3 False False 4 False False ... ... ... 4375 False False 4376 False False 4377 False False 4378 False False 4379 False False [4380 rows x 2 columns] ###Markdown We have some data for human DNA sequence coding regions and a class label. These are mainly chinpanzee and Dogs ###Code #Chimpanze data chimp_data = pd.read_table('C:\\Users\\mesho\\OneDrive\\Desktop\\DNA classification using ML-NLP\\dataset\\chimp_data.txt') print(chimp_data.head()) print(chimp_data.shape) print(chimp_data.columns) print(chimp_data.isnull()) #Dog_data dog_data = pd.read_table('C:\\Users\\mesho\\OneDrive\\Desktop\\DNA classification using ML-NLP\\dataset\\dog_data.txt') print(dog_data.head()) print(dog_data.shape) print(dog_data.columns) print(dog_data.isnull()) ## Summary Stats for genes def Summary_stats(data): stats = data.describe(include = 'all') print('The summary statastics of the data:', stats) Summary_stats(human_data) Summary_stats(chimp_data) Summary_stats(dog_data) sequence_len = [] def sequence_length(dataframe): for sequence in dataframe.iteritems(): length = dataframe.sequence.str.len() print(length) human_len=sequence_length(human_data) print(human_len) ###Output 0 207 1 681 2 1686 3 1206 4 1437 ... 4375 57 4376 5883 4377 5817 4378 753 4379 459 Name: sequence, Length: 4380, dtype: int64 0 207 1 681 2 1686 3 1206 4 1437 ... 4375 57 4376 5883 4377 5817 4378 753 4379 459 Name: sequence, Length: 4380, dtype: int64 None ###Markdown The definition for each of 7 classes and how many are trainable for training data. ###Code from IPython.display import Image Image('C:\\Users\\mesho\\OneDrive\\Desktop\\DNA classification using ML-NLP\\img\\Class.PNG') ###Output _____no_output_____ ###Markdown Treating DNA sequence as a "language", otherwise known as k-mer counting for applying NLP technique As we can see that the length of the sequence isn't uniform so there is not a uniform length of vector which is the requirement for feeding data to a classification or regression model. So, APPLYING K-MERS FUCTIONALITY OF NLP to break the DNA sequences in an uniform length k and use them as vectors.The method used here breaks the string into k-mer length (hexamers or octamers).Eg. 'ATGGGCAGCGCCAGCCCCGGCCTGAGCAGCGTGTCCCCCAGCCG' ->> (hexamers) 'ATGGGC' , 'AGCGCC', 'AGCCCC' and so on. Or. (octamers) 'ATGGGCAG', 'CGCCAGCC', 'CCGGCCTG' and so on.These will then be converted into fixed set of vectors using Natural Language Processing technique. Function to converting the sequence into the uniform length (taking octamers in this case). We are applying k-mers to complete sequences. ###Code ## Function to create kmers words of length 6 (hexamers) def build_kmers(sequence, size=6): return [sequence[x:x+size].upper() for x in range(len(sequence) - size +1)] ###Output _____no_output_____ ###Markdown Now we can convert training data sequences into short overlapping k-mers from sequence string ###Code #Adding a k_mers column to respective dataframes human_data['k_mers'] = human_data.apply(lambda x: build_kmers(x['sequence']), axis=1) chimp_data['k_mers'] = chimp_data.apply(lambda x: build_kmers(x['sequence']), axis=1) dog_data['k_mers'] = dog_data.apply(lambda x: build_kmers(x['sequence']), axis=1) human_data.head chimp_data dog_data human_data.drop('sequence',inplace=True, axis=1) print(human_data) chimp_data.drop('sequence',inplace=True, axis=1) dog_data.drop('sequence',inplace=True, axis=1) print(chimp_data,dog_data) ###Output class k_mers 0 4 [ATGCCC, TGCCCC, GCCCCA, CCCCAA, CCCAAC, CCAAC... 1 4 [ATGAAC, TGAACG, GAACGA, AACGAA, ACGAAA, CGAAA... 2 4 [ATGGCC, TGGCCT, GGCCTC, GCCTCG, CCTCGC, CTCGC... 3 4 [ATGGCC, TGGCCT, GGCCTC, GCCTCG, CCTCGC, CTCGC... 4 6 [ATGGGC, TGGGCA, GGGCAG, GGCAGC, GCAGCG, CAGCG... ... ... ... 1677 5 [ATGCTG, TGCTGA, GCTGAG, CTGAGC, TGAGCG, GAGCG... 1678 5 [ATGCTG, TGCTGA, GCTGAG, CTGAGC, TGAGCG, GAGCG... 1679 6 [ATGAAG, TGAAGC, GAAGCG, AAGCGA, AGCGAC, GCGAC... 1680 3 [ATGACT, TGACTG, GACTGG, ACTGGA, CTGGAA, TGGAA... 1681 3 [ATGTTG, TGTTGC, GTTGCC, TTGCCC, TGCCCA, GCCCA... [1682 rows x 2 columns] class k_mers 0 4 [ATGCCA, TGCCAC, GCCACA, CCACAG, CACAGC, ACAGC... 1 4 [ATGAAC, TGAACG, GAACGA, AACGAA, ACGAAA, CGAAA... 2 6 [ATGGAA, TGGAAA, GGAAAC, GAAACA, AAACAC, AACAC... 3 6 [ATGTGC, TGTGCA, GTGCAC, TGCACT, GCACTA, CACTA... 4 0 [ATGAGC, TGAGCC, GAGCCG, AGCCGG, GCCGGC, CCGGC... .. ... ... 815 5 [ATGGTC, TGGTCG, GGTCGG, GTCGGT, TCGGTC, CGGTC... 816 6 [ATGGCG, TGGCGG, GGCGGC, GCGGCG, CGGCGA, GGCGA... 817 6 [ATGAGC, TGAGCT, GAGCTC, AGCTCG, GCTCGG, CTCGG... 818 1 [GCCCCG, CCCCGA, CCCGAG, CCGAGG, CGAGGA, GAGGA... 819 6 [ATGGCC, TGGCCT, GGCCTG, GCCTGG, CCTGGG, CTGGG... [820 rows x 2 columns] ###Markdown Now we are converting the strings into list of strings so that we can apply NLP techniques to convert them into verctors. ###Code human_texts = list(human_data['k_mers']) for item in range(len(human_texts)): human_texts[item] = ' '.join(human_texts[item]) y_data = human_data.iloc[:,0].values print(human_texts[0]) print(len(y_data)) #Similarly applying the same for chimpanzee and dog as well chimp_texts = list(chimp_data['k_mers']) for item in range(len(chimp_texts)): chimp_texts[item] = ' '.join(chimp_texts[item]) y_chimp = chimp_data.iloc[:,0].values dog_texts = list(dog_data['k_mers']) for item in range(len(dog_texts)): dog_texts[item] = ' '.join(dog_texts[item]) y_dog = dog_data.iloc[:,0].values print(len(y_chimp)) print(len(y_data)) ###Output 1682 4380 ###Markdown Applying BoW (Bag of Words using CountVectorizer using Natural Language Processing) ###Code #Creating bag of words using count vectorier #This is equal to k-mer counting #The n-gram size of 3 from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(ngram_range=(3,3)) X = cv.fit_transform(human_texts) X_chimp = cv.transform(chimp_texts) X_dog = cv.transform(dog_texts) print(X.shape) print(X_chimp.shape) print(X_dog.shape) human_data['class'].value_counts().sort_index().plot.bar() plt.xlabel('Class') plt.ylabel('Counts (in nos.)') plt.show() ###Output _____no_output_____ ###Markdown Using train_test_split on the human dataset to split into testing and training data ###Code from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X, y_data, test_size=0.20, random_state=42) print(X_train.shape) print(X_test.shape) ###Output (3504, 65447) (876, 65447) ###Markdown Applying Multinomial naive Bayers classifier. Here n-grams size of 4 is used and a model alpha of 0.2 is used! ###Code from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB(alpha=0.2, class_prior=None, fit_prior=True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Calculating some some model performce metrics like the confusion matrix, accuracy, precision, recall and f1 score. ###Code from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) def get_metrics(y_test, y_predicted): accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='weighted') recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted') return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1)) ###Output Confusion matrix Predicted 0 1 2 3 4 5 6 Actual 0 97 0 0 0 3 0 2 1 1 93 0 0 2 0 10 2 0 0 77 0 0 0 1 3 0 0 0 121 0 0 4 4 2 0 0 0 142 0 5 5 0 0 0 0 0 48 3 6 0 0 0 2 1 1 261 accuracy = 0.958 precision = 0.960 recall = 0.958 f1 = 0.958 ###Markdown Calculating the same for ngrams of size of 4 and a model alpha of 0.2 is used! ###Code #Creating bag of words using count vectorier #This is equal to k-mer counting #The n-gram size of 4 from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(ngram_range=(4,4)) X = cv.fit_transform(human_texts) X_chimp = cv.fit_transform(chimp_texts) X_dog = cv.fit_transform(dog_texts) print(X.shape) print(X_chimp.shape) print(X_dog.shape) human_data['class'].value_counts().sort_index().plot.bar() plt.xlabel('Class') plt.ylabel('Counts (in nos.)') plt.show() from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X, y_data, test_size=0.20, random_state=42) print(X_train.shape) print(X_test.shape) ###Output (3504, 232414) (876, 232414) ###Markdown Applying Multinomial naive Bayers classifier. Here n-grams size of 4 is used with and a model alpha of 0.2 is used! ###Code from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB(alpha=0.2, class_prior=None, fit_prior=True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) def get_metrics(y_test, y_predicted): accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='weighted') recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted') return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1)) ###Output Confusion matrix Predicted 0 1 2 3 4 5 6 Actual 0 100 0 0 0 1 0 1 1 0 104 0 0 0 0 2 2 0 0 78 0 0 0 0 3 0 0 0 124 1 0 0 4 1 0 0 0 145 0 3 5 0 0 0 0 0 51 0 6 1 0 0 1 0 0 263 accuracy = 0.987 precision = 0.988 recall = 0.987 f1 = 0.987 ###Markdown We achieve highest possible f-1 score of 98.7% in human dataset when we kept alpha of the model 0.2 and ngram equal to 4 Applying Multinomial naive Bayers classifier. Here n-grams size of 4 is used with a model alpha of 0.2 is used for Chimpanzee dataset ###Code chimp_data['class'].value_counts().sort_index().plot.bar() plt.xlabel('Class') plt.ylabel('Counts (in nos.)') plt.show() from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X_chimp, y_chimp, test_size=0.20, random_state=42) print(X_train.shape) print(X_test.shape) from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB(alpha=0.2, class_prior=None, fit_prior=True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) def get_metrics(y_test, y_predicted): accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='weighted') recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted') return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1)) ###Output Confusion matrix Predicted 0 1 2 3 4 5 6 Actual 0 27 0 0 1 0 0 0 1 0 38 0 1 0 0 0 2 0 0 26 0 0 0 1 3 0 0 0 41 1 0 1 4 0 1 0 5 42 0 4 5 3 0 0 0 3 19 4 6 0 0 0 2 0 0 117 accuracy = 0.920 precision = 0.925 recall = 0.920 f1 = 0.918 ###Markdown We achieve highest possible f-1 score in case of Chimpanzee of 91.8% when we kept alpha of the model 0.2 and ngram equal to 4 Applying Multinomial naive Bayers classifier. Here n-grams size of 4 is used and a model alpha of 0.2 is used for Dog dataset. ###Code dog_data['class'].value_counts().sort_index().plot.bar() plt.xlabel('Class') plt.ylabel('Counts (in nos.)') plt.show() from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X_dog, y_dog, test_size=0.20, random_state=42) print(X_train.shape) print(X_test.shape) from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB(alpha=0.2, class_prior=None, fit_prior=True) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) def get_metrics(y_test, y_predicted): accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='weighted') recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted') return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1)) ###Output Confusion matrix Predicted 0 1 2 3 4 5 6 Actual 0 19 0 0 0 0 2 6 1 0 15 1 1 0 0 2 2 1 0 10 0 0 0 3 3 2 0 0 10 0 0 4 4 4 0 0 4 8 0 7 5 3 0 0 0 0 7 3 6 1 0 0 3 2 0 46 accuracy = 0.701 precision = 0.731 recall = 0.701 f1 = 0.693
notebooks/11_temporal_probability_models/index3.ipynb
###Markdown Robot LocalizationIn robot localization, we know the map, but not the robot’s position. An example of observations would be vectors of range finder readings, this means our agent has a couple of sensors, each reporting the distance in a specific direction with an obstacle. State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$. Due to this property of problem, particle filtering is a main technique.So, we use many particles, uniformly distributed in the map. Then, after each iteration, we become reluctant to those of them that do not have probable readings. As a result, trusting that map would have been different to the eyes of our particles, we would end up with our particles centered at the real position.The below depiction shows this perfectly. The red dots represent particles. Notice how the algorithm can't decide between two positions until entering a room.What algorithm do you think would be better to drive the agent with, so that we can find and benefit from asymmetries in the map? (Think about random walks) ![robot localization](resource/robot-localization.gif) We can even even go a step further, and forget about the map. This problem is called **Simultaneous Localization And Mapping** or **SLAM** for short. In this version of problem, we neither do know where the agent is, nor know what the map is. We have to find them both.To solve this problem, we extend our states to also cover the map. For example, we can show our map with a matrix of 1s and 0s where every element is 1 if the map is blocked in the corresponding region on the map.To solve this problem we use Kalman filtering and particle methods.Notice how the robot starts with complete certainty about its position, and as the time goes on, it doubts if the position indeed is probable if it was a little bit away from its current position (like the readings would have been close to what they are now) and this leads to uncertainty even about the position. When the agent reachs a full cycle, it understands that it should be at the same position now, so its certainty about its position rises once again. Dynamic Bayes NetDynamic Bayesian Networks (**DBN**) extend standard Bayesian networks with the concept of time. This allows us to model time series or sequences. In fact they can model complex multivariate time series, which means we can model the relationships between multiple time series in the same model, and also different regimes of behavior, since time series often behave differently in different contexts.![dbn](resource/dbn.png) DBN Particle FiltersA particle is a complete sample for a time step. This is similar to reqgular filtering where we have to use sampling methods introduced earlier in the course instead of just a distribution.Below are the steps we have to follow:* InitializeGenerate prior samples for the $t=1$ Bayes net. e.g. particle $G_1^a = (3,3) G_1^b = (5,3)$ for above image.* Elapse timeSample a successor for each particle. e.g. successor $G_2^a = (2,3) G_2^b = (6,3)$* ObserveWeight each entire sample by the likelihood of the evidence conditioned on the sample.Likelihood $p(E_1^a |G_1^a) \times p(E_1^b |G_1^b)$ * ResampleSelect prior samples (tuples of values) in proportion to their likelihood. Most Likely Explanation![mle](resource/mle.png)We are introducing a new query, we can ask our temporal model. The query statement is as follows: What is the most likely path of states that would have produced the current result.Or more formally if our states are $X_i$ our observations are $E_i$, we want to find$$argmax_{x_{1:t}} P(x_{1:t}|e_{1:t})$$But how can we answer this query?First, let's define the **state trellis**.![trellis](resource/trellis.png)State trellis is a directed weighted graph $G$ that its nodes are the states, and an arc between two states $u$, and $v$ represents a transition between these two states. The weight of this arc is defined by the probablity of this arc happening. More formally, assume we have a transition between $x_{t-1}$ and $x_t$. Then the weight of the arc between these two will be $P(x_{t}|x_{t-1}) \times P(e_t|x_t)$Note that with this definition, each path is a sequence of states, and the product of weights in this path is the probability of this path, provided the evidence. Viterbi's AlgorithmViterbi, uses dynamic programming model, to find the best path along the states. It first finds how probable a state at time $t-1$ is, and then reasons that the state at time $t$ relies solely on last state, and so having those probablities is enough to find the probability of new steps. Finally, the state that helps us find the most likely last state is it's parent.\begin{align*}m_t[x_t] &= max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \\&= P(e_t|x_t)max_{x_{t-1}} P(x_t|x_{t-1})m_{t-1}[x_{t-1}]\end{align*}$$p_t[x_t] = argmax_{x_{t-1}} P(x_t|x_{t-1})m_{t-1}[x_{t-1}]$$ ExampleConsider a village where all villagers are either healthy or have a fever and only the village doctor can determine whether each has a fever. The doctor diagnoses fever by asking patients how they feel. The villagers may only answer that they feel normal, dizzy, or cold.The doctor believes that the health condition of his patients operates as a discrete Markov chain. There are two states, "Healthy" and "Fever", but the doctor cannot observe them directly; they are hidden from him. On each day, there is a certain chance that the patient will tell the doctor he is "normal", "cold", or "dizzy", depending on his health condition.The observations (normal, cold, dizzy) along with a hidden state (healthy, fever) form a hidden Markov model (HMM).In this piece of code, start_p represents the doctor's belief about which state the HMM is in when the patient first visits (all he knows is that the patient tends to be healthy). The particular probability distribution used here is not the equilibrium one, which is (given the transition probabilities) approximately `{'Healthy': 0.57, 'Fever': 0.43}`. The transition_p represents the change of the health condition in the underlying Markov chain. In this example, there is only a 30% chance that tomorrow the patient will have a fever if he is healthy today. The emit_p represents how likely each possible observation, normal, cold, or dizzy is given their underlying condition, healthy or fever. If the patient is healthy, there is a 50% chance that he feels normal; if he has a fever, there is a 60% chance that he feels dizzy. ![health](resource/health.png)The patient visits three days in a row and the doctor discovers that on the first day he feels normal, on the second day he feels cold, on the third day he feels dizzy. The doctor has a question: what is the most likely sequence of health conditions of the patient that would explain these observations? ###Code obs = ("normal", "cold", "dizzy") states = ("Healthy", "Fever") start_p = {"Healthy": 0.6, "Fever": 0.4} trans_p = { "Healthy": {"Healthy": 0.7, "Fever": 0.3}, "Fever": {"Healthy": 0.4, "Fever": 0.6}, } emit_p = { "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1}, "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6}, } def viterbi(obs, states, start_p, trans_p, emit_p): V = [{}] for st in states: V[0][st] = {"prob": start_p[st] * emit_p[st][obs[0]], "prev": None} # Run Viterbi when t > 0 for t in range(1, len(obs)): V.append({}) for st in states: max_tr_prob = V[t - 1][states[0]]["prob"] * trans_p[states[0]][st] prev_st_selected = states[0] for prev_st in states[1:]: tr_prob = V[t - 1][prev_st]["prob"] * trans_p[prev_st][st] if tr_prob > max_tr_prob: max_tr_prob = tr_prob prev_st_selected = prev_st max_prob = max_tr_prob * emit_p[st][obs[t]] V[t][st] = {"prob": max_prob, "prev": prev_st_selected} for line in dptable(V): print(line) opt = [] max_prob = 0.0 best_st = None # Get most probable state and its backtrack for st, data in V[-1].items(): if data["prob"] > max_prob: max_prob = data["prob"] best_st = st opt.append(best_st) previous = best_st # Follow the backtrack till the first observation for t in range(len(V) - 2, -1, -1): opt.insert(0, V[t + 1][previous]["prev"]) previous = V[t + 1][previous]["prev"] print ("The steps of states are " + " ".join(opt) + " with highest probability of %s" % max_prob) def dptable(V): # Print a table of steps from dictionary yield " " * 5 + " ".join(("%3d" % i) for i in range(len(V))) for state in V[0]: yield "%.7s: " % state + " ".join("%.7s" % ("%lf" % v[state]["prob"]) for v in V) viterbi(obs, states, start_p, trans_p, emit_p) ###Output 0 1 2 Healthy: 0.30000 0.08400 0.00588 Fever: 0.04000 0.02700 0.01512 The steps of states are Healthy Healthy Fever with highest probability of 0.01512
data-science/metrics/MetricsNN_MAE.ipynb
###Markdown ###Code # Imports import pandas as pd import numpy as np from sklearn.metrics import mean_absolute_error # Load the raw data w1_results_df = pd.read_csv('https://raw.githubusercontent.com/JimKing100/NFL-Live/master/data-science/data/rnn-combined/predictions-week1.csv') #### The week 1 predictions # week1-cur = 2018 total points # week1-pred = predicted points for the season # week1-act = actual points for the season # weekn-cur = week (n-1) actual points # weekn-pred = predicted points for the rest of the season (n-17) # weekn-act = actual points for the rest of the season (n-17) w1_results_df.head() # Calculate the MAE for predicted points vs. actual points # Calculate the MAE for current points using the average of previous weeks column_names = ['week', 'nn', 'average'] metric_df = pd.DataFrame(columns = column_names) for i in range(1, 18): filename = 'https://raw.githubusercontent.com/JimKing100/NFL-Live/master/data-science/data/rnn-combined/predictions-week' + str(i) + '.csv' # Column names week_cur = 'week' + str(i) + '-cur' week_pred = 'week' + str(i) + '-pred' week_act = 'week' + str(i) + '-act' # Weekly predictions results_df = pd.read_csv(filename) # Create the current points list using 2018 points in week 1 and average points going forward if i == 1: week_current = results_df['week1-cur'].tolist() else: # for each player (element) calculate the average points (element/(i-1)) and multiply by remaining games (17-(i-1)) # the 17th week is 0 and represents the bye week (17 weeks and 16 games) week_list = results_df[week_cur].tolist() week_current = [((element / (i -1)) * (17 - (i -1))) for element in week_list] # Creat the prediction and actual lists week_pred = results_df[week_pred].tolist() week_act = results_df[week_act].tolist() # Calculate the MAE for predicted vs. actual week_pa_mae = mean_absolute_error(week_act, week_pred) print('MAE predicted vs actual week {0:2d} {1:3.2f}'.format(i, week_pa_mae)) # Calculate the MAE for current vs. actual week_ca_mae = mean_absolute_error(week_act, week_current) print('MAE current vs actual week {0:2d} {1:3.2f}'.format(i, week_ca_mae), '\n') metric_df = metric_df.append({'week': i, 'nn': week_pa_mae, 'average': week_ca_mae}, ignore_index=True) file_name = '/content/nn_metrics.csv' metric_df.to_csv(file_name, index=False) ###Output MAE predicted vs actual week 1 28.69 MAE current vs actual week 1 36.57 MAE predicted vs actual week 2 27.83 MAE current vs actual week 2 51.02 MAE predicted vs actual week 3 24.86 MAE current vs actual week 3 38.27 MAE predicted vs actual week 4 22.99 MAE current vs actual week 4 33.01 MAE predicted vs actual week 5 21.49 MAE current vs actual week 5 29.42 MAE predicted vs actual week 6 20.25 MAE current vs actual week 6 27.21 MAE predicted vs actual week 7 19.39 MAE current vs actual week 7 24.31 MAE predicted vs actual week 8 18.00 MAE current vs actual week 8 21.69 MAE predicted vs actual week 9 16.28 MAE current vs actual week 9 19.55 MAE predicted vs actual week 10 15.04 MAE current vs actual week 10 17.19 MAE predicted vs actual week 11 13.30 MAE current vs actual week 11 14.80 MAE predicted vs actual week 12 11.76 MAE current vs actual week 12 12.71 MAE predicted vs actual week 13 10.44 MAE current vs actual week 13 10.93 MAE predicted vs actual week 14 8.57 MAE current vs actual week 14 8.92 MAE predicted vs actual week 15 6.75 MAE current vs actual week 15 7.11 MAE predicted vs actual week 16 5.06 MAE current vs actual week 16 5.35 MAE predicted vs actual week 17 2.94 MAE current vs actual week 17 3.21
dd_1/Part 4/Section 02 - Classes/11 - Read-Only and Computed Properties.ipynb
###Markdown Read-Only and Computed Properties Although write-only properties are not that common, read-only properties (i.e. that define a getter but not a setter) are quite common for a number of things. Of course, we can create read-only properties, but since nothing is private, at best we are "suggesting" to the users of our class they should treat the property as read-only. There's always a way to hack around that of course.But still, it's good to be able to at least explicitly indicate to a user that a property is meant to be read-only. The use case I'm going to focus on in this video, is one of computed properties. Those are properties that may not actually have a backing variable, but are instead calculated on the fly. Consider this simple example of a `Circle` class where we can read/write the radius of the circle, but want a computed property for the area. We don't need to store the area value, we can alway calculate it given the current radius value. ###Code from math import pi class Circle: def __init__(self, radius): self.radius = radius @property def area(self): print('calculating area...') return pi * (self.radius ** 2) c = Circle(1) c.area ###Output calculating area... ###Markdown We could certainly just use a class method `area()`, but the area is more a property of the circle, so it makes more sense to just retrive it as a property, without the extra `()` to make the call. The advantage of how we did this is that shoudl the radius of the circle ever change, the area property will immediately reflect that. ###Code c.radius = 2 c.area ###Output calculating area... ###Markdown On the other hand, it's also a weakness - every time we need the area of the circle, it gets recalculated, even if the radius has not changed! ###Code c.area c.area ###Output calculating area... calculating area... ###Markdown So now we can use properties to fix this problem without breaking our interface!We are going to cache the area value, and only-recalculate it if the radius has changed.In order for us to know if the radius has changed, we are going to make it into a property, and the setter will keep track of whether the radius is set, in which case it will invalidate the cached area value. ###Code class Circle: def __init__(self, radius): self.radius = radius self._area = None @property def radius(self): return self._radius @radius.setter def radius(self, value): # if radius value is set we invalidate our cached _area value # we could make this more intelligent and see if the radius has actually changed # but keeping it simple self._area = None # we could even add validation here, like value has to be numeric, non-negative, etc self._radius = value @property def area(self): if self._area is None: # value not cached - calculate it print('Calculating area...') self._area = pi * (self.radius ** 2) return self._area c = Circle(1) c.area c.area c.radius = 2 c.area c.area ###Output _____no_output_____ ###Markdown There are a lot of other uses for calculate properties.Some properties may even do a lot work, like retrieving data from a database, making a call to some external API, and so on. Example Let's write a class that takes a URL, downloads the web page for that URL and provides us some metrics on that URL - like how long it took to download, the size (in bytes) of the page. Although I am going to use the `urllib` module for this, I strongly recommend you use the `requests` 3rd party library instead: http://docs.python-requests.org ###Code import urllib from time import perf_counter class WebPage: def __init__(self, url): self.url = url self._page = None self._load_time_secs = None self._page_size = None @property def url(self): return self._url @url.setter def url(self, value): self._url = value self._page = None # we'll lazy load the page - i.e. we wait until some property is requested @property def page(self): if self._page is None: self.download_page() return self._page @property def page_size(self): if self._page is None: # need to first download the page self.download_page() return self._page_size @property def time_elapsed(self): if self._page is None: self.download_page() return self._load_time_secs def download_page(self): self._page_size = None self._load_time_secs = None start_time = perf_counter() with urllib.request.urlopen(self.url) as f: self._page = f.read() end_time = perf_counter() self._page_size = len(self._page) self._load_time_secs = end_time - start_time urls = [ 'https://www.google.com', 'https://www.python.org', 'https://www.yahoo.com' ] for url in urls: page = WebPage(url) print(f'{url} \tsize={format(page.page_size, "_")} \telapsed={page.time_elapsed:.2f} secs') ###Output https://www.google.com size=11_489 elapsed=0.20 secs https://www.python.org size=49_132 elapsed=0.18 secs https://www.yahoo.com size=524_548 elapsed=0.77 secs
Notebooks/NewExperiments/NExperiment_6_NNOOA.ipynb
###Markdown Tutorial with 1d advection equationCode pipeline from the PNAS 2020 paper by Jiawei Zhuang et al. ###Code # %%capture # !pip install -U numpy==1.18.5 # !pip install h5py==2.10.0 'Comment above cell and restart and run all before' 'Check numpys version BEFORE and AFTER runtime restart' import numpy as np import matplotlib.pyplot as plt print(np.__version__) ###Output 1.18.5 ###Markdown Setup ###Code %%capture !git clone https://github.com/aditya5252/Multiprocessor_Advection_.git !pip install git+https://github.com/JiaweiZhuang/data-driven-pdes@fix-beam %tensorflow_version 1.x import os import matplotlib.pyplot as plt import numpy as np from numpy.random import choice import pandas as pd import tensorflow as tf tf.enable_eager_execution() %matplotlib inline import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.size'] = 14 from google.colab import files # colab-specific utilities; comment out when running locally tf.enable_eager_execution() tf.__version__, tf.keras.__version__ import xarray from datadrivenpdes.core import grids from datadrivenpdes.core import integrate from datadrivenpdes.core import models from datadrivenpdes.core import tensor_ops from datadrivenpdes.advection import equations as advection_equations from datadrivenpdes.pipelines import model_utils # tf.keras.backend.set_floatx('float32') 'Find dt for Advection-1d equation' def _dx_dt(data,adv_coff): dx=2*np.pi/(data.shape[1]) return dx,dx*0.08/adv_coff 'Plot time propagation of dataset' def plot_time_prop(data,t0,t1,t2): plt.plot(data[t0],label=f'Max_{t0}={data[t0].max()}') plt.plot(data[t1],label=f'Max_{t1}={data[t1].max()}') plt.plot(data[t2],label=f'Max_{t2}={data[t2].max()}') plt.legend() 'Create initial_state dictionary from dataset' def create_init_state_from_2d_data(data,adv_coff): c_init=data[0][np.newaxis,:,np.newaxis] initial_state_obj = { 'concentration': c_init.astype(np.float32), # tensorflow code expects float32 'x_velocity': adv_coff*np.ones(c_init.shape, np.float32) * 1.0, 'y_velocity': np.zeros(c_init.shape, np.float32) } for k, v in initial_state_obj.items(): print(k, v.shape) # (sample, x, y) return initial_state_obj 'Create xarray DatArray from integrated dictionary' def wrap_as_xarray(integrated): dr = xarray.DataArray( integrated['concentration'].numpy().squeeze(-1), dims = ('time', 'sample', 'x'), coords = {'time': time_steps, 'x': x_coarse.squeeze()} ) return dr def delay_(max_delay,prob_dist): allowed_delays=np.arange(0.,max_delay) delay_chosen=choice(allowed_delays,p=prob_dist) return delay_chosen def modify_data(sub_data,DAsync=None): one_arr=np.ones_like(sub_data) boundary_arr=np.zeros_like(sub_data) boundary_arr[:,0]=1. boundary_arr[:,-1]=1. if (DAsync==0): delay_arr=np.zeros_like(sub_data) elif (DAsync==1): delay_arr=np.zeros_like(sub_data) for i in range(delay_arr.shape[0]): delay_arr[i,0]=delay_(nlevels,prob_set) delay_arr[i,-1]=delay_(nlevels,prob_set) del_arr = delay_arr + boundary_arr + one_arr sub_data_modified=np.multiply(del_arr,sub_data) return sub_data_modified # This data-generation code is a bit involved, mostly because we use multi-step loss function. # To produce large training data in parallel, refer to the create_training_data.py script in source code. def reference_solution(initial_state_fine, fine_grid, coarse_grid, coarse_time_steps=256): 'What does this function do' 'Runs high-accuracy model at high-resolution' 'smaller dx, => More Nx => More Nt' 'Subsample with subsampling_factor=Resamplingfactor ' 'High accuracy data achieved on a coarse grid' 'So essentially obtain coarse-grained, HIGH-ACCURACY, GROUND TRUTH data' 'Return dict of items' 'For my simple use-case , Resamplingfactor = 1 ' 'Hence, given sync_data dataset(128 x 32)' 'sync_data dataset itself is taken as the ground truth' 'Hence we do not need this function to obtain Ground truth data ' # use high-order traditional scheme as reference model equation = advection_equations.VanLeerAdvection(cfl_safety_factor=0.08) key_defs = equation.key_definitions # reference model runs at high resolution model = models.FiniteDifferenceModel(equation, fine_grid) # need 8x more time steps for 8x higher resolution to satisfy CFL coarse_ratio = fine_grid.size_x // coarse_grid.size_x steps = np.arange(0, coarse_time_steps*coarse_ratio+1, coarse_ratio) # solve advection at high resolution integrated_fine = integrate.integrate_steps(model, initial_state_fine, steps) # regrid to coarse resolution integrated_coarse = tensor_ops.regrid( integrated_fine, key_defs, fine_grid, coarse_grid) return integrated_coarse def ground_dict_from_data(data): conc_ground=tf.convert_to_tensor(data[:,np.newaxis,:,np.newaxis], dtype=tf.float32, dtype_hint=None, name=None) ground_soln_dict = { 'concentration': conc_ground, # tensorflow code expects float32 'x_velocity': tf.ones_like(conc_ground, dtype=None, name=None) * 1.0, 'y_velocity': tf.zeros_like(conc_ground, dtype=None, name=None) } for k, v in ground_soln_dict.items(): print(k, v.shape) # (sample, x, y) return ground_soln_dict def make_train_data(integrated_coarse, coarse_time_steps=256, example_time_steps=4): # we need to re-format data so that single-step input maps to multi-step output # remove the last several time steps, as training input train_input = {k: v[:-example_time_steps] for k, v in integrated_coarse.items()} # merge time and sample dimension as required by model n_time, n_sample, n_x, n_y = train_input['concentration'].shape for k in train_input: train_input[k] = tf.reshape(train_input[k], [n_sample * n_time, n_x, n_y]) print('\n train_input shape:') for k, v in train_input.items(): print(k, v.shape) # (merged_sample, x, y) # pick the shifted time series, as training output output_list = [] for shift in range(1, example_time_steps+1): # output time series, starting from each single time step output_slice = integrated_coarse['concentration'][shift:coarse_time_steps - example_time_steps + shift + 1] # merge time and sample dimension as required by training n_time, n_sample, n_x, n_y = output_slice.shape output_slice = tf.reshape(output_slice, [n_sample * n_time, n_x, n_y]) output_list.append(output_slice) train_output = tf.stack(output_list, axis=1) # concat along shift_time dimension, after sample dimension print('\n train_output shape:', train_output.shape) # (merged_sample, shift_time, x, y) # sanity check on shapes assert train_output.shape[0] == train_input['concentration'].shape[0] # merged_sample assert train_output.shape[2] == train_input['concentration'].shape[1] # x assert train_output.shape[3] == train_input['concentration'].shape[2] # y assert train_output.shape[1] == example_time_steps return train_input, train_output ###Output _____no_output_____ ###Markdown Define Grids & Get Data from Analytical Solution ###Code err_ls=[] # we mostly run simulation on coarse grid # the fine grid is only for obtaining training data and generate the reference "truth" for ord in range(4,8): res=2**ord numPE=1 grid_length = 2*np.pi fine_grid_resolution = res # 1d domain, so only 1 point along y dimension fine_grid = grids.Grid( size_x=fine_grid_resolution, size_y=1, step=grid_length/fine_grid_resolution ) x_fine, _ = fine_grid.get_mesh() print(x_fine.shape) #Data on 1000 time-steps init_values=np.sin(x_fine) CFL=0.08 u0=1. dx=grid_length/len(x_fine) dt=dx*CFL/u0 tend=10. N_t=int(tend//dt) data_ls=[np.sin(x_fine-u0*dt*n) for n in range(N_t)] data_ana=np.stack(data_ls) 'Create initial state from data' data_ana=np.squeeze(data_ana) initial_state=create_init_state_from_2d_data(data_ana,u0) model_nn = models.PseudoLinearModel( advection_equations.FiniteDifferenceAdvection(0.08), fine_grid, num_time_steps=4, # multi-step loss function stencil_size=3, kernel_size=(3, 1), num_layers=4, filters=32, constrained_accuracy_order=1, learned_keys = {'concentration_x', 'concentration_y'}, # finite volume view, use edge concentration activation='relu',) print(advection_equations.FiniteDifferenceAdvection(0.08).get_time_step(fine_grid,u0) == dt) tf.random.set_random_seed(14) time_steps=np.arange(N_t) %time integrated_untrained = integrate.integrate_steps(model_nn, initial_state, time_steps) plot_time_prop(integrated_untrained['concentration'].numpy().squeeze(),0,N_t//2,N_t-1) plt.title('Untrained Model Predictions') plt.show() ground_soln_dict=ground_dict_from_data(data_ana) train_input, train_output = make_train_data(ground_soln_dict,data_ana.shape[0]-1, 4) %%time # same as training standard Keras model model_nn.compile( optimizer='adam', loss='mae' ) # tf.random.set_random_seed(42) # np.random.seed(42) history = model_nn.fit( train_input, train_output, epochs=20, batch_size=64, verbose=0, shuffle=True ) df_history = pd.DataFrame(history.history) df_history.plot(marker='.') plt.show() time_steps=np.arange(N_t) %time integrated_trained = integrate.integrate_steps(model_nn, initial_state, time_steps) plot_time_prop(integrated_trained['concentration'].numpy().squeeze(),0,N_t//2,N_t-1) plt.title('Trained Model Predictions') plt.show() erAr=integrated_trained['concentration'].numpy().squeeze()[N_t-1]-data_ana[N_t-1] err_=np.mean(np.abs(erAr)) err_ls.append(err_) ###Output (16, 1) concentration (1, 16, 1) x_velocity (1, 16, 1) y_velocity (1, 16, 1) True CPU times: user 4.75 s, sys: 16.2 ms, total: 4.77 s Wall time: 7.21 s ###Markdown Calculate O.O.A ###Code type(err_ls) err_ls=np.array(err_ls) ls=np.array([2**i for i in range(4,8)]) print(ls) print(np.log(ls)) plt.plot(np.log(ls),-1*np.log(ls),'r') plt.plot(np.log(ls),np.log(err_ls),'b') plt.plot(np.log(ls),-2*np.log(ls),'r') plt.plot(np.log(ls),np.log(err_ls),'b') plt.plot(np.log(ls),-3*np.log(ls)+6,'r') plt.plot(np.log(ls),np.log(err_ls),'b') ###Output _____no_output_____
note/tutorial/quickstart.ipynb
###Markdown Quickstart Preliminaries Imports ###Code import mercs import numpy as np from mercs.tests import load_iris, default_dataset from mercs.core import Mercs import pandas as pd ###Output _____no_output_____ ###Markdown FitHere a small MERCS testdrive for what I suppose you'll need. First, let us generate a basic dataset. Some utility-functions are integrated in MERCS so that goes like this ###Code train, test = default_dataset(n_features=3) df = pd.DataFrame(train) df.head() df.describe() ###Output _____no_output_____ ###Markdown Now let's train a MERCS model. To know what options you have, come talk to me or dig in the code. For induction, `nb_targets` and `nb_iterations` matter most. Number of targets speaks for itself, number of iterations manages the amount of trees _for each target_. With `n_jobs` you can do multi-core learning (with joblib, really basic, but works fine on single machine), that makes stuff faster. `fraction_missing` sets the amount of attributes that is missing for a tree. However, this parameter only has an effect if you use the `random` selection algorithm. The alternative is the `base` algorithm, which selects targets, and uses all the rest as input. ###Code clf = Mercs( max_depth=4, selection_algorithm="random", fraction_missing=0.6, nb_targets=2, nb_iterations=2, n_jobs=1, verbose=1, inference_algorithm="own", max_steps=8, prediction_algorithm="it", ) ###Output _____no_output_____ ###Markdown You have to specify the nominal attributes yourself. This determines whether a regressor or a classifier is learned for that target. MERCS takes care of grouping targets such that no mixed sets are created. ###Code nominal_ids = {train.shape[1]-1} nominal_ids clf.fit(train, nominal_attributes=nominal_ids) ###Output _____no_output_____ ###Markdown So, now we have learned trees with two targets, but only a single target was nominal. If MERCS worked well, it should have learned single-target classifiers (for attribute 4) and multi-target regressors for all other target sets. ###Code for idx, m in enumerate(clf.m_list): msg = """ Model with index: {} {} """.format(idx, m.model) print(msg) ###Output _____no_output_____ ###Markdown So, that looks good already. Let's examine up close. ###Code clf.m_codes ###Output _____no_output_____ ###Markdown That's the matrix that summarizes everything. This can be dense to parse, and there's alternatives to gain insights, for instance; ###Code for m_idx, m in enumerate(clf.m_list): msg = """ Tree with id: {} has source attributes: {} has target attributes: {}, and predicts {} attributes """.format(m_idx, m.desc_ids, m.targ_ids, m.out_kind) print(msg) ###Output _____no_output_____ ###Markdown And that concludes my quick tour of how to fit with MERCS. PredictionFirst, we generate a query. ###Code m = clf.m_list[0] m m.out_kind clf.m_fimps # Single target q_code=np.zeros(clf.m_codes[0].shape[0], dtype=int) q_code[-1:] = 1 print("Query code is: {}".format(q_code)) y_pred = clf.predict(test, q_code=q_code) y_pred[:10] clf.show_q_diagram() # Multi-target q_code=np.zeros(clf.m_codes[0].shape[0], dtype=int) q_code[-2:] = 1 print("Query code is: {}".format(q_code)) y_pred = clf.predict(test, q_code=q_code) y_pred[:10] %debug %debug clf.show_q_diagram() # Missing attributes q_code=np.zeros(clf.m_codes[0].shape[0], dtype=int) q_code[-1:] = 1 q_code[:2] = -1 print("Query code is: {}".format(q_code)) y_pred = clf.predict(test, q_code=q_code) y_pred[:10] clf.show_q_diagram() ###Output _____no_output_____ ###Markdown Quickstartmissmercs quickstart guide. Preliminaries Imports ###Code import missmercs import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____ ###Markdown Quickstartsandboxes quickstart guide. Preliminaries Imports ###Code import sandboxes import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____ ###Markdown QuickstartDummynator quickstart Preliminaries Imports ###Code import dummynator import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] matrix.shape ###Output _____no_output_____ ###Markdown Fit ###Code from dummynator import Dummynator clf = Dummynator() clf.fit(matrix, strategy='prior') ###Output _____no_output_____ ###Markdown Predict ###Code clf.predict(X, 4) ###Output _____no_output_____ ###Markdown Quickstartalso_anomaly_detector quickstart guide. Preliminaries Imports ###Code import also_anomaly_detector import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____ ###Markdown Quickstartnba-anomaly-generator quickstart guide. Preliminaries Imports ###Code import nba-anomaly-generator import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____ ###Markdown Quickstartaffe quickstart guide. Preliminaries ###Code # This is a code-formatter, you cann comment it without losing functionality %load_ext lab_black ###Output _____no_output_____ ###Markdown Imports ###Code import affe import numpy as np import pandas as pd from affe.execs import ( CompositeExecutor, NativeExecutor, JoblibExecutor, GNUParallelExecutor, ) from affe import Flow from affe.tests import get_dummy_flow ###Output _____no_output_____ ###Markdown Basic Illustration: Flows saying _"hi"_To illustrate, let us create 10 different workflows. Each of those says "hi" in a signature way. ###Code # Making a flow is very easy. flows = [ get_dummy_flow(message="hi" * (i + 1), content=dict(i=i * 10)) for i in range(3) ] flow = flows[0] flow.config ###Output _____no_output_____ ###Markdown Flow ExecutionNow you can print some hello worlds, embedded in a Flow object. ###Code flow.run() flow.run_with_log() flows[1].run_with_log() ###Output Hello world 2 secs passed hi ###Markdown Flow Scheduling= Execution of multiple flows, for instance via a tool like `joblib` ###Code e = NativeExecutor c_jl = JoblibExecutor(flows, e, n_jobs=3) c_jl.run() ###Output _____no_output_____ ###Markdown Manual Creation of FlowsThe "hi"-flows defined above were nice because they illustrate in the simplest way possible what a flow is and how it can be used. In this section, we dive in a bit deeper in how you can make a Flow yourself, from scratch. Your workflowTypicall, you start from a certain workflow. As illustrated above, a _workflow_ is a piece of work you care about, and you want to be able to execute it in a controlled, experiment-like fashion. Here, we assume you are interested in the archetype machine learning task of predicting the specifies of the Iris flower ###Code from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load data X, y = datasets.load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42 ) # Fit classifier clf = DecisionTreeClassifier(max_depth=2) clf.fit(X_train, y_train) # Predict and Evaluate y_pred = clf.predict(X_test) score = accuracy_score(y_test, y_pred, normalize=True) score ###Output _____no_output_____ ###Markdown Make your _workflow_ into a _Flow_Now that you what you want to do, you want obtain a flow that implements this. The advantage is that annoying things like- logging- timeouts- execution- schedulingare all taken care of, as soon as you succeed. This means removing boilerplate, and using battle-tested code instead. Basic Example (passing a function as argument)In its most basic form, this is a really simple thing, as we can just throw in a random python function _directly_. Consider this the _lazy_ way of doing things, which is supported.The only assumption is that your `flow` function has one input, typically named `config`. For the time being, this is a fairly constant assumption across `affe`. ###Code def hello_world(config): print("Hello World") return f = Flow(flow=hello_world) ###Output _____no_output_____ ###Markdown So that's nice and all, this is quick and dirty and it fails when you are trying to run this through a more advanced executor, such as one with logging. ###Code f.run_with_log() ###Output _____no_output_____ ###Markdown If you check the logfile, you can get some information as to why this is happening. Essentially, a common problem with abstracted execution is that you do need to have some kind of persistence of the code you wish to run. This is just to motivate that at times, you would want to build your custom subclass `Flow` object, which will not be plagued by such limitations. Your Flow as a Flow-SubclassThis, we could consider the right way to do things in `affe`- Subclass the Flow class- Add anything you like Implementation in Notebook ###Code from affe import Flow from time import sleep class IrisFlow(Flow): def __init__(self, max_depth=None, sleep_seconds=0, **kwargs): """ All the information you want to pass inside the flow function, you can embed in the config dictionary. """ self.config = dict(max_depth=max_depth, sleep_seconds=sleep_seconds) super().__init__(config=self.config, **kwargs) return @staticmethod def imports(): """For remote executions, you better specify your imports explicitly. Depending on the use-case, this is not necessary, but it will never hurt. """ from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from time import sleep return def flow(self, config): """ This function is basically a verbatim copy of your workflow above. Prerequisites: - This function has to be called flow - It expects one input: config The only design pattern to take into account is that you can assume one input only, which then by definition constitutes your "configuration" for your workflow. Whatever parameters you need, you can extract from this. This pattern is somewhat restricitive, but if you are implementing experiments, you probably should be this strict anyway; you're welcome. The other thing is the name of this function: it has to be "flow", in order for some of the executioners to properly find it. Obviously, if your only usecase is to run the flow function yourself, this does not matter at all. But in most cases it does, and again: adhering to this pattern will never hurt you, deviation could. """ # Obtain configuration max_depth = config.get("max_depth", None) sleep_seconds = config.get("sleep_seconds", 0) print("I am about to execute the IRIS FLOW") print("BUT FIRST: I shall sleep {} seconds".format(sleep_seconds)) sleep(sleep_seconds) print("I WOKE UP, gonna do my stuff now.") # Load data X, y = datasets.load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42 ) # Fit classifier clf = DecisionTreeClassifier(max_depth=max_depth) clf.fit(X_train, y_train) # Predict and Evaluate y_pred = clf.predict(X_test) score = accuracy_score(y_test, y_pred, normalize=True) msg = """ I am DONE executing the IRIS FLOW """ print(msg) return score ###Output _____no_output_____ ###Markdown TryoutNow, we can verify how this thing works. ###Code iris_flow_02 = IrisFlow(max_depth=1) iris_flow_02.run() iris_flow_10 = IrisFlow(max_depth=10) iris_flow_10.run() ###Output I am about to execute the IRIS FLOW BUT FIRST: I shall sleep 0 seconds I WOKE UP, gonna do my stuff now. I am DONE executing the IRIS FLOW ###Markdown Implementation in CodebaseAlright, that looked pretty nice already. Now the question is: _what is in it for me?_ Well you get:- logging- timeouts- boilerplate filesystem managment- fancy executioners- and so much more! So let's dive into that.However, the `IrisFlow` object does not exist outside of our Jupyter notebook, and that is unfortunately not OK for `affe` when running something in a subprocess/another shell, which is what you need to get these fancy functionalities.But, allow us to resume via a demonstration flow, which learns a decision tree on the iris dataset (yes, exactly what we were doing with our IrisFlow already). You can check the source code to verify that this does exactly the same thing as the IrisFlow above, with then the added feature that `IrisDemo` actually exists in your python path etc. ImportLet us import the `IrisDemo` object, and demonstrate that it behaves exactly similar. ###Code from affe.demo import IrisDemo demoflow = IrisDemo(max_depth=3, log_filepath="logs/irisdemo") demoflow.run() ###Output I am about to execute the IRIS FLOW BUT FIRST: I shall sleep 0 seconds I WOKE UP, gonna do my stuff now. I am DONE executing the IRIS FLOW ###Markdown LoggingDepending how you run the flow, another executioner is called in the backend. And some of those executors actually give you logging outside of the box, if you do it right.In our case, we need this one:- `DTAIExperimenterProcessExecutor` which is used in the `run_with_log_via_shell` functionAdditionally, if we specify the logfile parameter, we can give the logfiles custom names etc, which allows us to demonstrate. ###Code demoflow = IrisDemo(max_depth=3, log_filepath="logs/irisdemo") demoflow.run_with_log_via_shell() ###Output _____no_output_____ ###Markdown TimeoutsTo see how the timeouts work, we can use the "sleep" functionality to enforce our iris flow to take a bit longer. If force the workflow (due to sleeping) to take longer than the timeout, execution will abort. ###Code # this will just work, because the run() method has no notion of timeout iris_flow = IrisDemo( max_depth=10, sleep_seconds=5, log_filepath="logs/via-subprocess", timeout_s=3 ) iris_flow.run() ###Output I am about to execute the IRIS FLOW BUT FIRST: I shall sleep 5 seconds I WOKE UP, gonna do my stuff now. I am DONE executing the IRIS FLOW ###Markdown So in this case, nothing really happens. Things change, however, when executing through shell. ###Code # timeout is higher than the actual execution time iris_flow = IrisDemo( max_depth=10, sleep_seconds=2, log_filepath="logs/timeout-sufficient", timeout_s=10 ) iris_flow.run_with_log_via_shell() # timeout lower than execution time iris_flow = IrisDemo( max_depth=10, sleep_seconds=15, log_filepath="logs/timeout-insufficient", timeout_s=10, ) iris_flow.run_with_log_via_shell() ###Output _____no_output_____ ###Markdown You can check those logfiles yourself, and see what happens. The second logfile will tell you that it aborted due to hitting its timelimit, as it should. Filesystem ManagementThis is not _by default_ in a Flow object, in order to keep things clean. However, there exists another object, which is called `FlowOne`. This is still very much a bare-bones object: it is a subclass of Flow, with some minimal bookkeeping for a common experimental filesystem configuration baked in.In that way, it becomes a very nice starting point for future extensions. ###Code from affe.flow import FlowOne def hello_world(config): print("Hello World") return f = FlowOne(flow=hello_world, identifier="HelloWorld") # The logfile will end up inside this out directory f.out_dp f.run_with_log() ###Output _____no_output_____ ###Markdown Quickstartresidual_anomaly_detector quickstart guide. Preliminaries Imports ###Code import residual_anomaly_detector import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____ ###Markdown Quickstartelki_interface quickstart guide. Preliminaries Imports ###Code import elki_interface import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris ###Output _____no_output_____ ###Markdown Setup ###Code iris = load_iris() X = iris.get('data') y = iris.get('target') matrix = np.c_[X, y] ###Output _____no_output_____
0307 - RERWITE Rebalancing for Benchmark-Add unrealized GainLoss.ipynb
###Markdown nominal_price_resul[0-3]: The Transaction Records for evenly rebalancing the portfolio for [1 year, 6 months, 3 months, 1 months], REGARDLESS of Commission Cost and FX Change;actual_price_result[0-3]: The Transaction Records for evenly rebalancing the portfolio for [1 year, 6 months, 3 months, 1 months], CONSIDERING of Commission Cost and FX Change; ###Code price_df_list = pickle.load(open("0306-adjusted market prices.out", "rb")) plt.plot(nominal_price_result) ###Output _____no_output_____ ###Markdown price_df_list[0-2]: The History data for three indexes [^BVSP, ^TWII, ^IXIC] within a given range, with Nominal Price['Price'], and Actual Price ['Actual Price'], where the Cummulative FX Change ['Cum FX Change'] is considered ###Code nominal_plot_data_list = [] actual_plot_data_list = [] # for balance_freq in range(4): for balance_freq in [1]: # We only draw the 6-month rebalancing # 1. Get Nominal Price Transaction Records nominal = nominal_price_result[balance_freq] trans_date_df = pd.DataFrame([tmp['Date']for tmp in nominal], columns = ['Date']) # ^ Action dates in the five years nominal_trans_df_list = [] for i in range(3): # nominal_df_list[0-2] for three assets asset_df = pd.DataFrame([tmp['Record'][i] for tmp in nominal]) # ^ Get the asset weightage at each time result_df = pd.concat([trans_date_df, asset_df], axis=1) result_df.rename(columns={'0':'Date'}, inplace=True) nominal_trans_df_list.append(result_df) # 2. Get Actual Price Transaction Records actual = actual_price_result[balance_freq] trans_date_df = pd.DataFrame([tmp['Date']for tmp in actual], columns = ['Date']) actual_trans_df_list = [] for i in range(3): asset_df = pd.DataFrame([tmp['Record'][i] for tmp in actual]) result_df = pd.concat([trans_date_df, asset_df], axis=1) result_df.rename(columns={'0':'Date'}, inplace=True) actual_trans_df_list.append(result_df) for market_num in range(3): tmp_trans_df = actual_trans_df_list[market_num] trans_date = tmp_trans_df['Date'] start_date = list(trans_date)[0] end_date = list(price_df_list[0]['Date'])[-1] history_df = price_df_list[market_num] all_price_date = history_df['Date'][(history_df['Date']>=start_date) & (history_df['Date']<= end_date)] plot_data = [] number = 0 net_value = 0 price = 0 for date in all_price_date: if (trans_date == date).any(): # If rebalanced at that day: number = tmp_trans_df['Number'][tmp_trans_df['Date']==date].values[0] net_value = tmp_trans_df['Net Value'][tmp_trans_df['Date']==date].values[0] price = tmp_trans_df['Price'][tmp_trans_df['Date']==date].values[0] else: price = history_df['Actual Price'][history_df['Date']==date].values[0] net_value = number*price plot_data.append({ "Date": date, "Number": number, "Price": price, "Net Value": net_value }) actual_plot_data_list.append(plot_data) for market_num in range(3): tmp_trans_df = nominal_trans_df_list[market_num] trans_date = tmp_trans_df['Date'] start_date = list(trans_date)[0] end_date = list(price_df_list[0]['Date'])[-1] history_df = price_df_list[market_num] all_price_date = history_df['Date'][(history_df['Date']>=start_date) & (history_df['Date']<= end_date)] plot_data = [] number = 0 net_value = 0 price = 0 for date in all_price_date: if (trans_date == date).any(): # If rebalanced at that day: number = tmp_trans_df['Number'][tmp_trans_df['Date']==date].values[0] net_value = tmp_trans_df['Net Value'][tmp_trans_df['Date']==date].values[0] price = tmp_trans_df['Price'][tmp_trans_df['Date']==date].values[0] else: price = history_df['Actual Price'][history_df['Date']==date].values[0] net_value = number*price plot_data.append({ "Date": date, "Number": number, "Price": price, "Net Value": net_value }) nominal_plot_data_list.append(plot_data) import matplotlib.pyplot as plt import numpy as np from matplotlib.gridspec import GridSpec from CSVUtils import * DIR = "./from github/Stock-Trading-Environment/data" file_names = ["^BVSP", "^TWII", "^IXIC"] source_list = ["yahoo", "yahoo", "yahoo"] nominal_labels = ["high risk-^BVSP_nominal", "mid risk-^TWII_nominal", "low risk-^IXIC"] actual_labels = ["high risk-^BVSP_actual", "mid risk-^TWII_actual", "low rick-^IXIC"] plt.rcParams['figure.facecolor'] = 'white' fig=plt.figure(figsize=(40,25)) axs = [] gs=GridSpec(5,1) # 5 rows, 1 columns axs.append(fig.add_subplot(gs[0,0])) # First row, first column axs.append(fig.add_subplot(gs[1,0])) # First row, second column axs.append(fig.add_subplot(gs[2,0])) # First row, third column axs.append(fig.add_subplot(gs[3:,:])) # Second row, span all columns for i, plot_data in enumerate(nominal_plot_data_list): plot_data = pd.DataFrame(plot_data) axs[i].plot(plot_data['Date'], np.log(plot_data['Net Value']/plot_data['Net Value'][0]), color="C0", label = nominal_labels[i]+"_Log Market Value") axs[i].bar(nominal_trans_df_list[i]['Date'], np.log(nominal_trans_df_list[i]['Net Value']/nominal_trans_df_list[i]['Net Value'][0]), width=2, color="C0") axs[i].plot(nominal_trans_df_list[i]['Date'], np.log(nominal_trans_df_list[i]['Net Value']/nominal_trans_df_list[i]['Net Value'][0]), linestyle='--', color="C0", label = nominal_labels[i]+"_Log Book Value") axs[i].axhline(y=0, color = "grey", linestyle='--') axs[i].legend() axs[i].set_title('Portfolio Weights') axs[i].set_xlabel('Date') axs[i].set_ylabel('Market Value (US$)') for i, plot_data in enumerate(actual_plot_data_list): plot_data = pd.DataFrame(plot_data) axs[i].plot(plot_data['Date'], np.log(plot_data['Net Value']/plot_data['Net Value'][0]), color="orange", label = actual_labels[i]+"_Log Market Value") axs[i].bar(actual_trans_df_list[i]['Date'], np.log(actual_trans_df_list[i]['Net Value']/actual_trans_df_list[i]['Net Value'][0]), width=2, color="orange") axs[i].plot(actual_trans_df_list[i]['Date'], np.log(actual_trans_df_list[i]['Net Value']/actual_trans_df_list[i]['Net Value'][0]), linestyle='--', color="orange", label = actual_labels[i]+"_Log Book Value") axs[i].plot(price_df_list[i]['Date'], np.log(price_df_list[i]['Cum FX Change']), color="green", linestyle='--', label = nominal_labels[i]+"_Log FX Change") axs[i].axhline(y=0, color = "grey", linestyle='--') # axs[i].set_ylim((0, 300000)) axs[i].legend() axs[i].set_title('Log Portfolio Value') axs[i].set_xlabel('Date') axs[i].set_ylabel('Log Value') for i in range(2,-1,-1): # Inverse: Low-Mid-High df = csv2df(DIR, file_names[i]+".csv",source = source_list[i]) df['Date'] = pd.to_datetime(df['Date']) df = df[(df['Date']>=pd.to_datetime("2015-01-01"))&(df['Date']<=pd.to_datetime("2019-12-31"))].reset_index(drop=True) j = 0 init_price = df['Price'][j] while np.isnan(init_price): j+=1 init_price = df['Price'][j] y = np.log(df['Price'][j:] / init_price) x = df['Date'][j:] axs[3].plot(x,y,label = nominal_labels[i]) axs[3].axhline(y=0, color = "grey", linestyle='--') # axs[3].set_ylim((-1,1)) axs[3].legend() axs[3].set_title('Log Market Price') axs[3].set_xlabel('Date') axs[3].set_ylabel('log(Market Price)') plt.show() ###Output _____no_output_____
Data Science and Machine Learning/Machine-Learning-In-Python-THOROUGH/EXAMPLES/DIFFERENT/10_MINUTES_TO_PANDAS.ipynb
###Markdown Reduction in the dimensions of the returned object: ###Code df.loc["20130102", ["A","B"]] ###Output _____no_output_____ ###Markdown For getting a scalar value: ###Code df.loc[dates[0], "A"] ###Output _____no_output_____ ###Markdown For getting fast access to a scalar (equivalent to the prior method): ###Code df.at[dates[0], "A"] ###Output _____no_output_____ ###Markdown Selection by position Select via the position of the passed integers: ###Code df.iloc[3] ###Output _____no_output_____ ###Markdown By integer slices, acting similar to numpy/Python: ###Code df.iloc[3:5 , 0:2] ###Output _____no_output_____ ###Markdown By lists of integer position locations, similar to the NumPy/Python style: ###Code df.iloc[[1, 2, 4], [0, 2]] ###Output _____no_output_____ ###Markdown For slicing rows explicitly: ###Code df.iloc[1:3, :] ###Output _____no_output_____ ###Markdown For slicing columns explicitly: ###Code df.iloc[ : , 1:3 ] ###Output _____no_output_____ ###Markdown For getting a value explicitly: ###Code df.iloc[1,1] ###Output _____no_output_____ ###Markdown For getting fast access to a scalar (equivalent to the prior method): ###Code df.iat[1,1] ###Output _____no_output_____ ###Markdown Boolean indexing Using a single column’s values to select data. ###Code df[df["A"] > 0] ###Output _____no_output_____ ###Markdown Selecting values from a DataFrame where a boolean condition is met. ###Code df[df > 0] ###Output _____no_output_____ ###Markdown Using the isin() method for filtering: ###Code df2 = df.copy() df2["E"] = ["one", "one", "two", "three", "four", "three"] df2 df2[df2["E"].isin(["two", "four"])] ###Output _____no_output_____ ###Markdown Setting Setting a new column automatically aligns the data by the indexes. ###Code s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20130102", periods=6)) s1 df["F"] = s1 ###Output _____no_output_____ ###Markdown Setting values by label: ###Code df.at[dates[0], "A"] = 0 ###Output _____no_output_____ ###Markdown Setting values by position: ###Code df.iat[0, 1] = 0 ###Output _____no_output_____ ###Markdown Setting by assigning with a NumPy array: ###Code df.loc[:, "D"] = np.array([5] * len(df)) ###Output _____no_output_____ ###Markdown The result of the prior setting operations. ###Code df ###Output _____no_output_____ ###Markdown A where operation with setting. ###Code df3 = df.copy() df3[df3>0] = - df3 df3 ###Output _____no_output_____ ###Markdown Missing data pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the Missing Data section. Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data. ###Code df4 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"]) df4.loc[dates[0] : dates[1], "E"] = 1 df4 ###Output _____no_output_____ ###Markdown To drop any rows that have missing data. ###Code df4.dropna(how="any") ###Output _____no_output_____ ###Markdown Filling missing data. ###Code df4.fillna(value=5) ###Output _____no_output_____ ###Markdown To get the boolean mask where values are nan. ###Code pd.isnull(df4) ###Output _____no_output_____ ###Markdown OPERATIONS Stats Operations in general exclude missing data Performing a descriptive statistic ###Code df.mean() ###Output _____no_output_____ ###Markdown Same operation on the other axis: ###Code df.mean(1) ###Output _____no_output_____ ###Markdown Operating with objects that have different dimensionality and need alignment. In addition, pandasautomatically broadcasts along the specified dimension. ###Code s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) s df.sub(s, axis='index') ###Output _____no_output_____ ###Markdown Apply Applying functions to the data ###Code df.apply(np.cumsum) df.apply(lambda x: x.max() - x.min()) ###Output _____no_output_____ ###Markdown Histogramming ###Code s = pd.Series(np.random.randint(0, 7, size=10)) s s.value_counts() ###Output _____no_output_____ ###Markdown String Method Series is equipped with a set of string processing methods in the str attribute that make it easy tooperate on each element of the array, as in the code snippet below. Note that patternmatchinginstr generally uses regular expressions by default (and in some cases always uses them). ###Code s = pd.Series(['A', 'B', 'C', 'Aa145ba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() ###Output _____no_output_____ ###Markdown Merge Concat Pandas provides various facilities for easily combining together Series, DataFrame, and Panelobjects with various kinds of set logic for the indexes and relational algebra functionality in the caseof join / mergetypeoperations. Concatenating pandas objects together with **concat()**: ###Code df = pd.DataFrame(np.random.randn(10, 4)) df ###Output _____no_output_____ ###Markdown break it into pieces ###Code pieces = [df[:3], df[3:7], df[7:]] pieces pd.concat(pieces) ###Output _____no_output_____ ###Markdown Join SQL style merges: ###Code left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) left right pd.merge(left, right, on="key") ###Output _____no_output_____ ###Markdown Append Append rows to a dataframe: ###Code df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) df s = df.iloc[3] s df.append(s, ignore_index=True) df ###Output _____no_output_____ ###Markdown Grouping By **“group by”** we are referring to a process involving one or more of the following steps: * **Spliting** the data into groups based on some criteria* **Applying** a function to each group independently* **Combining** the results into a data structure ###Code df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C' : np.random.randn(8), 'D' : np.random.randn(8)}) df ###Output _____no_output_____ ###Markdown Grouping and then applying a function **sum** to the resulting groups: ###Code df.groupby('A').sum() df.groupby('B').sum() ###Output _____no_output_____ ###Markdown Grouping by multiple columns forms a hierarchical index, which we then apply the function: ###Code df.groupby(["A", "B"]).sum() df.groupby(["B", "A"]).sum() ###Output _____no_output_____ ###Markdown Reshaping Stack ###Code tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) tuples index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) df df2 = df[:4] df2 ###Output _____no_output_____ ###Markdown The **stack()** method “compresses” a level in the DataFrame’s columns. ###Code stacked = df2.stack() stacked pd.DataFrame(stacked) ###Output _____no_output_____ ###Markdown With a “stacked” DataFrame or Series (having a **MultiIndex** as the index), the inverse operation of**stack()** is **unstack()**, which by default unstacks the last level: ###Code stacked.unstack() stacked.unstack(1) stacked.unstack(0) ###Output _____no_output_____ ###Markdown Pivot Tables ###Code df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, 'D' : np.random.randn(12), 'E' : np.random.randn(12)}) df ###Output _____no_output_____ ###Markdown We can produce **pivot tables** from this data very easily: ###Code pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) ###Output _____no_output_____ ###Markdown Time Series Pandas has simple, powerful, and efficient functionality for performing resampling operations duringfrequency conversion (e.g., converting secondly data into 5minutelydata). This is extremelycommon in, but not limited to, financial applications ###Code rng = pd.date_range('1/1/2012', periods=100, freq='S') ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) ts ts.resample('5Min') ###Output _____no_output_____ ###Markdown Time zone representation ###Code rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') ts = pd.Series(np.random.randn(len(rng)), rng) ts ts_utc = ts.tz_localize('UTC') ts_utc ###Output _____no_output_____ ###Markdown **Convert to another time zone** ###Code rng = pd.date_range('1/1/2012', periods=5, freq='M') ts = pd.Series(np.random.randn(len(rng)), index=rng) ts ps = ts.to_period() ps ps.to_timestamp() ###Output _____no_output_____ ###Markdown Converting between period and timestamp enables some convenient arithmetic functions to beused. In the following example, we convert a quarterly frequency with year ending in November to9am of the end of the month following the quarter end: ###Code prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') ts = pd.Series(np.random.randn(len(prng)), prng) ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 ts.head() ###Output _____no_output_____ ###Markdown Categoricals Since version 0.15, pandas can include categorical data in a **DataFrame**. ###Code df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a','a','e']}) ###Output _____no_output_____ ###Markdown Convert the raw grades to a categorical data type. ###Code df["grade"] = df["raw_grade"].astype("category") df["grade"] ###Output _____no_output_____ ###Markdown Rename the categories to more meaningful names (assigning to **Series.cat.categories()** isinplace!) ###Code df["grade"].cat.categories = ["very good", "good", "very bad"] ###Output _____no_output_____ ###Markdown Reorder the categories and simultaneously add the missing categories (methods under **Series.cat()** return a new **Series** per default). ###Code df["grade"] = df["grade"].cat.set_categories( ["very bad", "bad", "medium", "good", "very good"] ) df["grade"] ###Output _____no_output_____ ###Markdown Sorting is per order in the categories, not lexical order: ###Code df.sort_values(by="grade") ###Output _____no_output_____ ###Markdown Grouping by a categorical column also shows empty categories: ###Code df.groupby("grade").size() ###Output _____no_output_____ ###Markdown Plotting ###Code import matplotlib.pyplot as plt plt.close("all") ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = ts.cumsum() ts.plot() ###Output _____no_output_____ ###Markdown On a DataFrame, the **plot()** method is a convenience to plot all of the columns with labels: ###Code df = pd.DataFrame( np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"] ) df = df.cumsum() plt.figure() df.plot() plt.legend(loc='best') ###Output _____no_output_____ ###Markdown Getting data in/out CSV Writing to a csv file: ###Code df.to_csv("10mpandas.csv") ###Output _____no_output_____ ###Markdown Reading from a csv file: ###Code pd.read_csv("10mpandas.csv") ###Output _____no_output_____ ###Markdown 10 minutes to pandas https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html This is a short introduction to pandas, geared mainly for new users. Customarily, we import as follows: ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Object creation Creating a Series by passing a list of values, letting pandas create a default integer index: ###Code s = pd.Series([1, 3, 5, np.nan, 6, 8]) s ###Output _____no_output_____ ###Markdown Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns: ###Code dates = pd.date_range("20130101", periods=6) dates df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD")) df ###Output _____no_output_____ ###Markdown Creating a DataFrame by passing a dict of objects that can be converted to series-like. ###Code df2 = pd.DataFrame( { "A": 1.0, "B": pd.Timestamp("20130102"), "C": pd.Series(1, index=list(range(4)), dtype="float32"), "D": np.array([3] * 4, dtype="int32"), "E": pd.Categorical(["test", "train", "test", "train"]), "F": "foo", } ) df2 ###Output _____no_output_____ ###Markdown The columns of the resulting DataFrame have different dtypes. ###Code df2.dtypes ###Output _____no_output_____ ###Markdown Viewing data Here is how to view the top and bottom rows of the frame: ###Code df.head() df.tail(4) ###Output _____no_output_____ ###Markdown Display the index, columns: ###Code df.index df.columns ###Output _____no_output_____ ###Markdown DataFrame.to_numpy() gives a NumPy representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between pandas and NumPy: NumPy arrays have one dtype for the entire array, while pandas DataFrames have one dtype per column. When you call DataFrame.to_numpy(), pandas will find the NumPy dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object. For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesn’t require copying data. ###Code df.to_numpy() ###Output _____no_output_____ ###Markdown For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive. ###Code df2.to_numpy() ###Output _____no_output_____ ###Markdown Note:**DataFrame.to_numpy()** does not include the index or column labels in the output. **describe()** shows a quick statistic summary of your data: ###Code df.describe() ###Output _____no_output_____ ###Markdown Transposing your data: ###Code df.T df.describe().T ###Output _____no_output_____ ###Markdown Sorting by an axis: ###Code df.sort_index(axis=1, ascending=False) ###Output _____no_output_____ ###Markdown Sorting by values: ###Code df.sort_values(by="B") ###Output _____no_output_____ ###Markdown Selection: Getting Selecting a single column, which yields a Series, equivalent to df.A: ###Code df["A"] ###Output _____no_output_____ ###Markdown Selecting via [], which slices the rows. ###Code df[0:3] df["20130102":"20130104"] ###Output _____no_output_____ ###Markdown Selection by label For getting a cross section using a label: ###Code df.loc[dates[0]] ###Output _____no_output_____ ###Markdown Selecting on a multi-axis by label: ###Code df.loc[:,["A","B"]] ###Output _____no_output_____ ###Markdown Showing label slicing, both endpoints are included: ###Code df.loc["20130102":"20130104", ["A","B"]] ###Output _____no_output_____
notebooks/Python-in-2-days/D1_L6_MatPlotLib_and_Seaborn/14-Visualization-With-Seaborn.ipynb
###Markdown Visualization with Seaborn Matplotlib has proven to be an incredibly useful and popular visualization tool, but even avid users will admit it often leaves much to be desired.There are several valid complaints about Matplotlib that often come up:- Prior to version 2.0, Matplotlib's defaults are not exactly the best choices. It was based off of MATLAB circa 1999, and this often shows.- Matplotlib's API is relatively low level. Doing sophisticated statistical visualization is possible, but often requires a *lot* of boilerplate code.- Matplotlib predated Pandas by more than a decade, and thus is not designed for use with Pandas ``DataFrame``s. In order to visualize data from a Pandas ``DataFrame``, you must extract each ``Series`` and often concatenate them together into the right format. It would be nicer to have a plotting library that can intelligently use the ``DataFrame`` labels in a plot.An answer to these problems is [Seaborn](http://seaborn.pydata.org/). Seaborn provides an API on top of Matplotlib that offers sane choices for plot style and color defaults, defines simple high-level functions for common statistical plot types, and integrates with the functionality provided by Pandas ``DataFrame``s.To be fair, the Matplotlib team is addressing this: it has recently added the ``plt.style`` tools discussed in *Customizing Matplotlib: Configurations and Style Sheets*, and is starting to handle Pandas data more seamlessly.The 2.0 release of the library will include a new default stylesheet that will improve on the current status quo.But for all the reasons just discussed, Seaborn remains an extremely useful addon. Seaborn Versus MatplotlibHere is an example of a simple random-walk plot in Matplotlib, using its classic plot formatting and colors.We start with the typical imports: ###Code import matplotlib.pyplot as plt plt.style.use('classic') %matplotlib inline import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Now we create some random walk data: ###Code # Create some data rng = np.random.RandomState(0) x = np.linspace(0, 10, 500) y = np.cumsum(rng.randn(500, 6), 0) ###Output _____no_output_____ ###Markdown And do a simple plot: ###Code # Plot the data with Matplotlib defaults plt.plot(x, y) plt.legend('ABCDEF', ncol=2, loc='upper left'); ###Output _____no_output_____ ###Markdown Although the result contains all the information we'd like it to convey, it does so in a way that is not all that aesthetically pleasing, and even looks a bit old-fashioned in the context of 21st-century data visualization.Now let's take a look at how it works with Seaborn.As we will see, Seaborn has many of its own high-level plotting routines, but it can also overwrite Matplotlib's default parameters and in turn get even simple Matplotlib scripts to produce vastly superior output.We can set the style by calling Seaborn's ``set()`` method.By convention, Seaborn is imported as ``sns``: ###Code import seaborn as sns sns.set() ###Output _____no_output_____ ###Markdown Now let's rerun the same two lines as before: ###Code # same plotting code as above! plt.plot(x, y) plt.legend('ABCDEF', ncol=2, loc='upper left'); ###Output _____no_output_____ ###Markdown Ah, much better! Exploring Seaborn PlotsThe main idea of Seaborn is that it provides high-level commands to create a variety of plot types useful for statistical data exploration, and even some statistical model fitting.Let's take a look at a few of the datasets and plot types available in Seaborn. Note that all of the following *could* be done using raw Matplotlib commands (this is, in fact, what Seaborn does under the hood) but the Seaborn API is much more convenient. Histograms, KDE, and densitiesOften in statistical data visualization, all you want is to plot histograms and joint distributions of variables.We have seen that this is relatively straightforward in Matplotlib: ###Code data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], size=2000) data = pd.DataFrame(data, columns=['x', 'y']) for col in 'xy': plt.hist(data[col], normed=True, alpha=0.5) ###Output C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: MatplotlibDeprecationWarning: The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead. """ ###Markdown Rather than a histogram, we can get a smooth estimate of the distribution using a kernel density estimation, which Seaborn does with ``sns.kdeplot``: ###Code for col in 'xy': sns.kdeplot(data[col], shade=True) ###Output _____no_output_____ ###Markdown Histograms and KDE can be combined using ``distplot``: ###Code sns.distplot(data['x']) sns.distplot(data['y']); ###Output _____no_output_____ ###Markdown If we pass the full two-dimensional dataset to ``kdeplot``, we will get a two-dimensional visualization of the data: ###Code sns.kdeplot(data); ###Output C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:679: UserWarning: Passing a 2D dataset for a bivariate plot is deprecated in favor of kdeplot(x, y), and it will cause an error in future versions. Please update your code. warnings.warn(warn_msg, UserWarning) ###Markdown We can see the joint distribution and the marginal distributions together using ``sns.jointplot``.For this plot, we'll set the style to a white background: ###Code with sns.axes_style('white'): sns.jointplot("x", "y", data, kind='kde'); ###Output _____no_output_____ ###Markdown There are other parameters that can be passed to ``jointplot``—for example, we can use a hexagonally based histogram instead: ###Code with sns.axes_style('white'): sns.jointplot("x", "y", data, kind='hex') ###Output _____no_output_____ ###Markdown Pair plotsWhen you generalize joint plots to datasets of larger dimensions, you end up with *pair plots*. This is very useful for exploring correlations between multidimensional data, when you'd like to plot all pairs of values against each other.We'll demo this with the well-known Iris dataset, which lists measurements of petals and sepals of three iris species: ###Code iris = sns.load_dataset("iris") iris.head() ###Output _____no_output_____ ###Markdown Visualizing the multidimensional relationships among the samples is as easy as calling ``sns.pairplot``: ###Code sns.pairplot(iris, hue='species', size=2.5); ###Output C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2065: UserWarning: The `size` parameter has been renamed to `height`; pleaes update your code. warnings.warn(msg, UserWarning) ###Markdown Faceted histogramsSometimes the best way to view data is via histograms of subsets. Seaborn's ``FacetGrid`` makes this extremely simple.We'll take a look at some data that shows the amount that restaurant staff receive in tips based on various indicator data: ###Code tips = sns.load_dataset('tips') tips.head() tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill'] grid = sns.FacetGrid(tips, row="sex", col="time", margin_titles=True) grid.map(plt.hist, "tip_pct", bins=np.linspace(0, 40, 15)); ###Output _____no_output_____ ###Markdown Factor plotsFactor plots can be useful for this kind of visualization as well. This allows you to view the distribution of a parameter within bins defined by any other parameter: ###Code with sns.axes_style(style='ticks'): g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box") g.set_axis_labels("Day", "Total Bill"); ###Output C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`. warnings.warn(msg) ###Markdown Joint distributionsSimilar to the pairplot we saw earlier, we can use ``sns.jointplot`` to show the joint distribution between different datasets, along with the associated marginal distributions: ###Code with sns.axes_style('white'): sns.jointplot("total_bill", "tip", data=tips, kind='hex') ###Output _____no_output_____ ###Markdown The joint plot can even do some automatic kernel density estimation and regression: ###Code sns.jointplot("total_bill", "tip", data=tips, kind='reg'); ###Output _____no_output_____ ###Markdown Bar plotsTime series can be plotted using ``sns.factorplot``. In the following example, we'll use the Planets data that we first saw in *Aggregation and Grouping*: ###Code planets = sns.load_dataset('planets') planets.head() with sns.axes_style('white'): g = sns.factorplot("year", data=planets, aspect=2, kind="count", color='steelblue') g.set_xticklabels(step=5) ###Output C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`. warnings.warn(msg) ###Markdown We can learn more by looking at the *method* of discovery of each of these planets: ###Code with sns.axes_style('white'): g = sns.factorplot("year", data=planets, aspect=4.0, kind='count', hue='method', order=range(2001, 2015)) g.set_ylabels('Number of Planets Discovered') ###Output _____no_output_____ ###Markdown For more information on plotting with Seaborn, see the [Seaborn documentation](http://seaborn.pydata.org/), a [tutorial](http://seaborn.pydata.org/tutorial.htm), and the [Seaborn gallery](http://seaborn.pydata.org/examples/index.html). Example: Exploring Marathon Finishing TimesHere we'll look at using Seaborn to help visualize and understand finishing results from a marathon.I've scraped the data from sources on the Web, aggregated it and removed any identifying information, and put it on GitHub where it can be downloaded(if you are interested in using Python for web scraping, I would recommend [*Web Scraping with Python*](http://shop.oreilly.com/product/0636920034391.do) by Ryan Mitchell).We will start by downloading the data fromthe Web, and loading it into Pandas: ###Code data = pd.read_csv('data/marathon-data.csv') data.head() ###Output _____no_output_____ ###Markdown By default, Pandas loaded the time columns as Python strings (type ``object``); we can see this by looking at the ``dtypes`` attribute of the DataFrame: ###Code data.dtypes ###Output _____no_output_____ ###Markdown Let's fix this by providing a converter for the times: ###Code import datetime def convert_time(s): h, m, s = map(int, s.split(':')) return datetime.timedelta(hours=h, minutes=m, seconds=s) data = pd.read_csv('data/marathon-data.csv', converters={'split':convert_time, 'final':convert_time}) data.head() data.dtypes ###Output _____no_output_____ ###Markdown That looks much better. For the purpose of our Seaborn plotting utilities, let's next add columns that give the times in seconds: ###Code data['split_sec'] = data['split'].astype(int) / 1E9 data['final_sec'] = data['final'].astype(int) / 1E9 data.head() ###Output _____no_output_____ ###Markdown To get an idea of what the data looks like, we can plot a ``jointplot`` over the data: ###Code with sns.axes_style('white'): g = sns.jointplot("split_sec", "final_sec", data, kind='hex') g.ax_joint.plot(np.linspace(4000, 16000), np.linspace(8000, 32000), ':k') ###Output _____no_output_____ ###Markdown The dotted line shows where someone's time would lie if they ran the marathon at a perfectly steady pace. The fact that the distribution lies above this indicates (as you might expect) that most people slow down over the course of the marathon.If you have run competitively, you'll know that those who do the opposite—run faster during the second half of the race—are said to have "negative-split" the race.Let's create another column in the data, the split fraction, which measures the degree to which each runner negative-splits or positive-splits the race: ###Code data['split_frac'] = 1 - 2 * data['split_sec'] / data['final_sec'] data.head() ###Output _____no_output_____ ###Markdown Where this split difference is less than zero, the person negative-split the race by that fraction.Let's do a distribution plot of this split fraction: ###Code sns.distplot(data['split_frac'], kde=False); plt.axvline(0, color="k", linestyle="--"); sum(data.split_frac < 0) ###Output _____no_output_____ ###Markdown Out of nearly 40,000 participants, there were only 250 people who negative-split their marathon.Let's see whether there is any correlation between this split fraction and other variables. We'll do this using a ``pairgrid``, which draws plots of all these correlations: ###Code g = sns.PairGrid(data, vars=['age', 'split_sec', 'final_sec', 'split_frac'], hue='gender', palette='RdBu_r') g.map(plt.scatter, alpha=0.8) g.add_legend(); ###Output _____no_output_____ ###Markdown It looks like the split fraction does not correlate particularly with age, but does correlate with the final time: faster runners tend to have closer to even splits on their marathon time.(We see here that Seaborn is no panacea for Matplotlib's ills when it comes to plot styles: in particular, the x-axis labels overlap. Because the output is a simple Matplotlib plot, however, the methods in *Customizing Ticks* can be used to adjust such things if desired.)The difference between men and women here is interesting. Let's look at the histogram of split fractions for these two groups: ###Code sns.kdeplot(data.split_frac[data.gender=='M'], label='men', shade=True) sns.kdeplot(data.split_frac[data.gender=='W'], label='women', shade=True) plt.xlabel('split_frac'); ###Output _____no_output_____ ###Markdown The interesting thing here is that there are many more men than women who are running close to an even split!This almost looks like some kind of bimodal distribution among the men and women. Let's see if we can suss-out what's going on by looking at the distributions as a function of age.A nice way to compare distributions is to use a *violin plot* ###Code sns.violinplot("gender", "split_frac", data=data, palette=["lightblue", "lightpink"]); ###Output _____no_output_____ ###Markdown This is yet another way to compare the distributions between men and women.Let's look a little deeper, and compare these violin plots as a function of age. We'll start by creating a new column in the array that specifies the decade of age that each person is in: ###Code data['age_dec'] = data.age.map(lambda age: 10 * (age // 10)) data.head() men = (data.gender == 'M') women = (data.gender == 'W') with sns.axes_style(style=None): sns.violinplot("age_dec", "split_frac", hue="gender", data=data, split=True, inner="quartile", palette=["lightblue", "lightpink"]); ###Output _____no_output_____ ###Markdown Looking at this, we can see where the distributions of men and women differ: the split distributions of men in their 20s to 50s show a pronounced over-density toward lower splits when compared to women of the same age (or of any age, for that matter).Also surprisingly, the 80-year-old women seem to outperform *everyone* in terms of their split time. This is probably due to the fact that we're estimating the distribution from small numbers, as there are only a handful of runners in that range: ###Code (data.age > 80).sum() ###Output _____no_output_____ ###Markdown Back to the men with negative splits: who are these runners? Does this split fraction correlate with finishing quickly? We can plot this very easily. We'll use ``regplot``, which will automatically fit a linear regression to the data: ###Code g = sns.lmplot('final_sec', 'split_frac', col='gender', data=data, markers=".", scatter_kws=dict(color='c')) g.map(plt.axhline, y=0.1, color="k", ls=":"); ###Output _____no_output_____
notebooks/feature-engineering/Section-09-Outlier-Engineering/09.02-Capping-IQR-proximity-rule.ipynb
###Markdown Outlier EngineeringAn outlier is a data point which is significantly different from the remaining data. “An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.” [D. Hawkins. Identification of Outliers, Chapman and Hall , 1980].Statistics such as the mean and variance are very susceptible to outliers. In addition, **some Machine Learning models are sensitive to outliers** which may decrease their performance. Thus, depending on which algorithm we wish to train, we often remove outliers from our variables.We discussed in section 3 of this course how to identify outliers. In this section, we we discuss how we can process them to train our machine learning models. How can we pre-process outliers?- Trimming: remove the outliers from our dataset- Treat outliers as missing data, and proceed with any missing data imputation technique- Discrestisation: outliers are placed in border bins together with higher or lower values of the distribution- Censoring: capping the variable distribution at a max and / or minimum value**Censoring** is also known as:- top and bottom coding- winsorization- capping Censoring or Capping.**Censoring**, or **capping**, means capping the maximum and /or minimum of a distribution at an arbitrary value. On other words, values bigger or smaller than the arbitrarily determined ones are **censored**.Capping can be done at both tails, or just one of the tails, depending on the variable and the user.Check my talk in [pydata](https://www.youtube.com/watch?v=KHGGlozsRtA) for an example of capping used in a finance company.The numbers at which to cap the distribution can be determined:- arbitrarily- using the inter-quantal range proximity rule- using the gaussian approximation- using quantiles Advantages- does not remove data Limitations- distorts the distributions of the variables- distorts the relationships among variables In this DemoWe will see how to perform capping with the inter-quantile range proximity rule using the Boston House Dataset ImportantWhen doing capping, we tend to cap values both in train and test set. It is important to remember that the capping values MUST be derived from the train set. And then use those same values to cap the variables in the test setI will not do that in this demo, but please keep that in mind when setting up your pipelines ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # for Q-Q plots import scipy.stats as stats # boston house dataset for the demo from sklearn.datasets import load_boston from feature_engine.outlier_removers import Winsorizer # load the the Boston House price data # load the boston dataset from sklearn boston_dataset = load_boston() # create a dataframe with the independent variables # I will use only 3 of the total variables for this demo boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)[[ 'RM', 'LSTAT', 'CRIM' ]] # add the target boston['MEDV'] = boston_dataset.target boston.head() # function to create histogram, Q-Q plot and # boxplot. We learned this in section 3 of the course def diagnostic_plots(df, variable): # function takes a dataframe (df) and # the variable of interest as arguments # define figure size plt.figure(figsize=(16, 4)) # histogram plt.subplot(1, 3, 1) sns.distplot(df[variable], bins=30) plt.title('Histogram') # Q-Q plot plt.subplot(1, 3, 2) stats.probplot(df[variable], dist="norm", plot=plt) plt.ylabel('Variable quantiles') # boxplot plt.subplot(1, 3, 3) sns.boxplot(y=df[variable]) plt.title('Boxplot') plt.show() # let's find outliers in RM diagnostic_plots(boston, 'RM') # visualise outliers in LSTAT diagnostic_plots(boston, 'LSTAT') # outliers in CRIM diagnostic_plots(boston, 'CRIM') ###Output _____no_output_____ ###Markdown There are outliers in all of the above variables. RM shows outliers in both tails, whereas LSTAT and CRIM only on the right tail.To find the outliers, let's re-utilise the function we learned in section 3: ###Code def find_skewed_boundaries(df, variable, distance): # Let's calculate the boundaries outside which sit the outliers # for skewed distributions # distance passed as an argument, gives us the option to # estimate 1.5 times or 3 times the IQR to calculate # the boundaries. IQR = df[variable].quantile(0.75) - df[variable].quantile(0.25) lower_boundary = df[variable].quantile(0.25) - (IQR * distance) upper_boundary = df[variable].quantile(0.75) + (IQR * distance) return upper_boundary, lower_boundary # find limits for RM RM_upper_limit, RM_lower_limit = find_skewed_boundaries(boston, 'RM', 1.5) RM_upper_limit, RM_lower_limit # limits for LSTAT LSTAT_upper_limit, LSTAT_lower_limit = find_skewed_boundaries(boston, 'LSTAT', 1.5) LSTAT_upper_limit, LSTAT_lower_limit # limits for CRIM CRIM_upper_limit, CRIM_lower_limit = find_skewed_boundaries(boston, 'CRIM', 1.5) CRIM_upper_limit, CRIM_lower_limit # Now let's replace the outliers by the maximum and minimum limit boston['RM']= np.where(boston['RM'] > RM_upper_limit, RM_upper_limit, np.where(boston['RM'] < RM_lower_limit, RM_lower_limit, boston['RM'])) # Now let's replace the outliers by the maximum and minimum limit boston['LSTAT']= np.where(boston['LSTAT'] > LSTAT_upper_limit, LSTAT_upper_limit, np.where(boston['LSTAT'] < LSTAT_lower_limit, LSTAT_lower_limit, boston['LSTAT'])) # Now let's replace the outliers by the maximum and minimum limit boston['CRIM']= np.where(boston['CRIM'] > CRIM_upper_limit, CRIM_upper_limit, np.where(boston['CRIM'] < CRIM_lower_limit, CRIM_lower_limit, boston['CRIM'])) # let's explore outliers in the trimmed dataset # for RM we see much less outliers as in the original dataset diagnostic_plots(boston, 'RM') diagnostic_plots(boston, 'LSTAT') diagnostic_plots(boston, 'CRIM') ###Output _____no_output_____ ###Markdown We can see that the outliers are gone, but the variable distribution was distorted quite a bit. Censoring with feature-engine ###Code # load the the Boston House price data # load the boston dataset from sklearn boston_dataset = load_boston() # create a dataframe with the independent variables # I will use only 3 of the total variables for this demo boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)[[ 'RM', 'LSTAT', 'CRIM' ]] # add the target boston['MEDV'] = boston_dataset.target boston.head() # create the capper windsoriser = Winsorizer(distribution='skewed', # choose skewed for IQR rule boundaries or gaussian for mean and std tail='both', # cap left, right or both tails fold=1.5, variables=['RM', 'LSTAT', 'CRIM']) windsoriser.fit(boston) boston_t = windsoriser.transform(boston) diagnostic_plots(boston, 'RM') diagnostic_plots(boston_t, 'RM') # we can inspect the minimum caps for each variable windsoriser.left_tail_caps_ # we can inspect the maximum caps for each variable windsoriser.right_tail_caps_ ###Output _____no_output_____
notebooks/19_intro_to_machine_leaning.ipynb
###Markdown Machine LearningUp till now, we've seen the tools necessary to solve a variety of problems. These problems, however, need to have a **finite** number of steps and states, so that we can account for each one. We need to define a set of rules; rules we can code, so that in every possible scenario our algorithm comes up with an answer. With our current knowledge we can't solve a problem with an **indefinite** number of states (e.g. a chess match). These algorithms, we can write are called **deterministic**. In contrast, there is another category of algorithms called **non-deterministic**, whose response is not hard-coded and can differ from run to run, even on the same input. Machine Learning (ML) will help us with the latter.> Machine Learning explores the study and construction of algorithms that can learn from and make predictions on data.So how does ML attempt to solve complex problems? Much like humans do, through trial and error! It learns to make associations from the data itself, without having any expert define or dictate a set of rules. These are formed on their own, through a procedure we call **training**. Let's not get too ahead of ourselves.A more formal definition of Machine Learning is the following:> A computer program is said to learn from experience (*E*) with respect to some class of tasks (*T*) and performance measure (*P*) if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.Let's try to break this down a bit:- The class of tasks (*T*), refers to the type of the problem (classification, clustering, etc.).- The performance measure (*P*) is a function that indicates how **well** the algorithm is doing in its task.- Experience (*E*), in the context of **training**, refers to the algorithm improving its performance on the task. Machine learning tasks fall into 3 broad categories:- **Supervised Learning**. Here the algorithm is presented with **labeled** data. It is the algorithm's job to associate the input with their labels. Classification and regression problems fall into this category.- **Unsupervised Learning**. The data in these types of problems has **no** labels. The algorithms job is to find patterns or clusters in the data. Clustering, density estimation and dimensionality reduction problems fall into this category.- **Reinforcement Learning**. The algorithm interacts with a dynamic environment in which it must perform a certain goal.The most popular category of Machine Learning is supervised learning. Supervised LearningIn this category we have a set of examples (or samples) $X$ and their labels (or targets) $Y$. The goal of the algorithm is to learn from $X$ and $Y$ in order to be able to predict the labels of future unseen examples.- If $Y$ is discrete, the problem we are trying to solve is called **classification**- If $Y$ is continuous, we are trying to solve a **regression** problem. Regression: Linear RegressionThe simplest problem we can solve is a linear regression problem.> In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable $y$ and one or more explanatory variables (or independent variables) denoted $x$.In the context of ML we usually refer to $x$ as a **training example** and $y$ as its **label**. Basically, we have $(x,y)$ data and try to find the line that fits this data the best.Let's define our problem: We'll take $100$ samples evenly distributed in $[0,100)$. These samples follow an underlying linear distribution but are infused with noise. The goal is to find a line that best *fits* the data. ###Code # CODE: # -------------------------------------------- from __future__ import print_function, division import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Ensure reproducability seed = 13 np.random.seed(seed) # Construct data x = np.linspace(0, 100, 100) # training examples y = 2 * x + 10 * np.random.normal(size=100) # labels # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Training examples and their labels') ###Output _____no_output_____ ###Markdown As we previously said, we are essentially looking for a line that best *fits* the data. A line is defined as $y = w \cdot x + b$, so we need to figure out. We'll draw a few lines to see the differences: ###Code # CODE: # -------------------------------------------- # Line 1 w1 = 1 b1 = 20 y1 = w1 * x + b1 # Line 2 w2 = 4 b2 = -20 y2 = w2 * x + b2 # Line 3 w3 = -0.5 b3 = 150 y3 = w3 * x + b3 # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the three lines ax.plot(x, y1, c='#ff7f0e', label='line 1') ax.plot(x, y2, c='#e377c2', label='line 2') ax.plot(x, y3, c='#2ca02c', label='line 3') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Data points and random lines') ###Output _____no_output_____ ###Markdown Now, to our question at hand. Which of these three lines best *fits* the data? Well, first it would help if we specify what we mean by the word *fits* more clearly. Or even better, if we can somehow **quantify** it. What we essentially need is a measure of how *close* the line is to the data. In the context of Machine Learning, we refer to this *measure* as a **performance metric**. This is one of the most important parts of machine learning, as it gives us a way of telling how *well* our algorithm is doing, or how *close* it is to reaching its goal; but most importantly is gives us a way to tell if our algorithm is *improving* or not!In this case we will select the [Mean Squared Error](https://en.wikipedia.org/wiki/Mean_squared_error) (MSE) as our performance metric:$$MSE = \frac{1}{N} \cdot \sum_{i=1}^N{\left( y_i - \hat y_i \right) ^2}$$where $N$ is the number of samples, $y_i$ is the label for data point $x_i$ and $\hat y_i$ is the *prediction* for the same data point.The smaller the MSE, the closer the line is our data. ###Code # CODE: # -------------------------------------------- def mse(y, y_hat): """ Calculates the Mean Squared Error between the labels (y) and the predictions (y_hat) """ return ((y - y_hat)**2).sum() / len(y) print('line1 MSE:', mse(y, y1)) print('line2 MSE:', mse(y, y2)) print('line3 MSE:', mse(y, y3)) ###Output line1 MSE: 1802.4096380013298 line2 MSE: 9934.38656402079 line3 MSE: 5821.561278104836 ###Markdown Judging by this `line1` is the best of the three.Now that we've clearly defined our goal (i.e. to achieve the lowest possible MSE), we can move on to creating a Linear Regression model that will do exactly that, find the line that minimizes the MSE.The first step in most Machine Learning algorithms is to **initialize** them, or set a starting point. This can be done simply by selecting random values for our two parameters $w$ and $b$.As a note here, the parameters $w$ and $b$ are referred to as **weights** and **biases**, while the output of the model (in this case $\hat y = w \cdot x + b$ is called a **prediction** or **hypothesis**. ###Code # CODE: # -------------------------------------------- np.random.seed(seed) # Initialize w and b randomly w = np.random.random() b = np.random.random() # Create a function that makes predictions based on the weights and biases def predict(x): """ Returns the predictions for x, based on the weights (w) and the biases (b) """ return w * x + b # Generate a prediction y_hat = predict(x) # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the prediction ax.plot(x, y_hat, c='#ff7f0e', label='prediction') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression (random initialization)') ###Output _____no_output_____ ###Markdown Initially, as we can see, the model isn't fairing so well.Now, begins the **training phase** of the algorithm, where it will begin improving until some criterion is met. The performance metric that is used to improve the algorithm's performance upon is called a **cost** (or **loss**) **function**. Thus, our goal is to **minimize** this cost function.If we look at this in a bit more detail, the cost function (denoted as $J$) is a function with two parameters: $w$ and $b$:$$J(w, b) = \frac{1}{2N} \cdot \sum_{i=1}^N{\left( y_i - \hat y_i \right) ^2} = \frac{1}{2N} \cdot \sum_{i=1}^N{\left( y_i - w \cdot x_i - b \right) ^2}$$To get a better understanding of how the cost function works, we'll first see the impact each parameter has on it, while keeping the other constant. ###Code # CODE: # -------------------------------------------- # calculate current cost J = mse(y, y_hat) # calculate the cost for different values of w w_range = np.arange(0, 4, 0.05) y_w = [v * x + b for v in w_range] J_w = [mse(y, v) for v in y_w] w_best = w_range[np.argmin(J_w)] # calculate the cost for different values of b b_range = np.arange(-10, 130, 1) y_b = [w * x + v for v in b_range] J_b = [mse(y, v) for v in y_b] b_best = b_range[np.argmin(J_b)] # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(12, 6)) # Subplot 1 ax1 = plt.subplot(121) # Draw artists for subplot 1 ax1.plot(w_range, J_w, c='#1f77b4', zorder=-1) # cost curve ax1.scatter(w, J, c='#ff7f0e', s=50, edgecolor='#1f77b4') # current w ax1.scatter(w_best, min(J_w), c='#e377c2', s=50, edgecolor='#1f77b4') # best w ax1.annotate('current $w$', xy=(w, J), xytext=(1.5, 7000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=60,angleB=15")) ax1.annotate('best $w$', xy=(w_best, min(J_w)), xytext=(1.5, 2000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=0,angleB=-90")) # Subplot 1 - aesthetic parameters ax1.set_xlabel('$w$') ax1.set_ylabel('$J$') ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax1.set_title('Cost with respect to $w$ ') # Subplot 2 ax2 = plt.subplot(122) # Draw artists for subplot 2 ax2.plot(b_range, J_b, c='#1f77b4', zorder=-1) ax2.scatter(b, J, c='#ff7f0e', s=50, edgecolor='#1f77b4') ax2.scatter(b_best, min(J_b), c='#e377c2', s=50, edgecolor='#1f77b4') ax2.annotate('current $b$', xy=(b, J), xytext=(40, 4000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=-50,angleB=0")) ax2.annotate('best $b$', xy=(b_best, min(J_b)), xytext=(50, 2000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=0,angleB=-90")) # Subplot 2 - aesthetic parameters ax2.set_xlabel('$b$') ax2.set_ylabel('$J$') ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') ax2.set_title('Cost with respect to $b$ ') ###Output _____no_output_____ ###Markdown The two figures above illustrate how the cost changes with respect to each of the two variables. Our starting position is also depicted in the two figures, as well as our *goal* (the value of each parameter that minimizes the cost function). In this problem it isn't so hard to calculate the cost for every parameter and draw the curves, however this is **impossible** in more complex problems. Furthermore, the previous figures assume we optimize each parameter independent of the other. Preferrably, we'd want to optimize them together. ![cost function](https://i.imgur.com/hizeAC7.png)In the figure above, the darker the color the lower the value of the cost function. Again, we need a way to navigate from the *current position* (acquired from the random initialization of our two parameters $w$ and $b$) to the *best position* (a position that is unknown in real world problems).One way to tackle this is through **[Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent)**.How does this work? By computing the **gradients of the cost function w.r.t each of the parameters**, we are essentially calculating the *slope* of this function at our current position. The slope, in turn, shows us the *direction* that will reduce the cost function's value! The two partial derivatives we need to compute are the following:$$ \frac{dJ}{dw} \quad and \quad \frac{dJ}{db} $$Afterwards, we need to change the values of our parameters $w$ and $b$, in such a way to *move in that direction*. This change is called an **update**.$$ w^{new} \leftarrow w + \lambda \cdot \frac{dJ}{dw} \quad and \quad b^{new} \leftarrow b + \lambda \cdot \frac{dJ}{db}$$After the first update, a new prediction is made (using the new values of our two parameters), the new cost is calculated, the derivatives are computed once again and a new update is made. These steps are repeated again and again, until the cost function stops dropping. This procedure is referred to as the **training phase**.Another term we use in machine learning is the term **epoch**. An epoch is when an algorithm has *seen* all of the training data once and has updated its parameters accordingly. In this case, an epoch is concluded each time the weights are updated. An example training phase can be seen in the figure below.![gradient descent](https://i.imgur.com/vJ8fbyO.png)The $\lambda$ parameter we saw before is called the **learning rate** and dictates how *large* will each update will be. Too small and we will require many steps to reach our goal; too large and we might *overshoot* the minima and the algorithm might never converge. This can be seen in the figure below:![learning rates](https://i.imgur.com/6KnQu6V.png)The partial derivatives in linear regression are:$$\frac{dJ}{dw} = - \frac{2}{N} \cdot \sum_{i=1}^N x_i \left(y_i - w \cdot x_i - b \right)$$$$\frac{dJ}{db} = - \frac{2}{N} \cdot \sum_{i=1}^N \left(y_i - w \cdot x_i - b \right) $$ ###Code # CODE: # -------------------------------------------- # Create two functions that will help us train the algorithm def compute_derivatives(x, y): """ First generate a prediction for x and then compute the derivatives of the cost function with respect to the weights (w) and the biases (b). """ y_hat = predict(x) dw = - (2 / len(x)) * sum(x * (y - y_hat)) db = - (2 / len(x)) * sum(y - y_hat) return dw, db def update(x, y, lr=0.00005): """ Generates a prediction for x, computes the partial derivatives of the cost function and uses them to update the values of the weights (w) and biases (b) according to learning rate (lr). It doesn't overwrite the old parameters; instead it returns the new values. """ dw, db = compute_derivatives(x, y) new_w = w - (lr * dw) new_b = b - (lr * db) return new_w, new_b # The initial weights and biases are stored in the variables 'w' and 'b'. # We'll now calculate the weights and biases of the second epoch # (after the first update) w1, b1 = w, b # parameters of the 1st epoch y1 = predict(x) # initial prediction J1 = mse(y, y1) # initial cost w, b = update(x, y) # overwrite the old parameters # Same thing for the third and fourth epochs w2, b2 = w, b # parameters of the 2nd epoch y2 = predict(x) # 2nd epoch prediction J2 = mse(y, y2) # 2nd epoch cost w, b = update(x, y) w3, b3 = w, b # parameters of the 3rd epoch y3 = predict(x) # 3rd epoch prediction J3 = mse(y, y3) # 3rd epoch cost w, b = update(x, y) w4, b4 = w, b # parameters of the 4th epoch y4 = predict(x) # 4th epoch prediction J4 = mse(y, y4) # 4th epoch cost # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the predictions for the first four epochs ax.plot(x, y1, c='#ff7f0e', label='1st epoch', alpha=1/8) ax.plot(x, y2, c='#ff7f0e', label='2nd epoch', alpha=1/4) ax.plot(x, y3, c='#ff7f0e', label='3rd epoch', alpha=1/2) ax.plot(x, y4, c='#ff7f0e', label='4th epoch') # Write the cost of each prediction next to it ax.text(len(x)+1, y1[-1], str(int(J1)), color='#ff7f0e', alpha=1/8) ax.text(len(x)+1, y2[-1], str(int(J2)), color='#ff7f0e', alpha=1/4) ax.text(len(x)+1, y3[-1], str(int(J3)), color='#ff7f0e', alpha=1/2) ax.text(len(x)+1, y4[-1], str(int(J4)), color='#ff7f0e') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression (first four epochs)') ###Output _____no_output_____ ###Markdown It's clear that the model is improving after each epoch, evident by the fact that both the prediction approaches what it should be and that the cost is dropping.Now, we can finally put it all together and create a Linear Regression class. ###Code # CODE: # -------------------------------------------- class LinearRegression: def __init__(self, epochs=100, learning_rate=0.00005, random_seed=13): """ This class creates a Linear Regression model and attempts to fit it to the given data through gradient descent. :param epoch (int): The number of epochs. :param learning_rate (float): The learning rate of the algorithm. :param random_seed (int): A number to used as the seed for the random number generator. """ self.epochs = epochs self.lr = learning_rate self.w, self.b = self.initialize(random_seed) self.w_history = [] self.b_history = [] def initialize(self, seed): """ Method that initializes the weights and biases to random values. """ np.random.seed(seed) w = np.random.random() b = np.random.random() return w, b def predict(self, x): """ Method that makes predictions for a number of points. """ return self.w * x + self.b def cost(self, x, y): """ Method that calculates the cost of the prediction on a series of data points. """ y_hat = self.predict(x) return sum(((y - y_hat)**2)) / len(y) def update(self, x, y): """ Method that runs one iteration of gradient descent and updates the class' weights and biases """ y_hat = self.predict(x) dw = - (2 / len(x)) * sum(x * (y - y_hat)) db = - (2 / len(x)) * sum(y - y_hat) self.w -= (self.lr * dw) self.b -= (self.lr * db) def fit(self, x, y): """ Method that handles the whole training procedure. """ for ep in range(self.epochs): self.w_history.append(self.w) self.b_history.append(self.b) self.update(x, y) ###Output _____no_output_____ ###Markdown Let's see if it works. ###Code # CODE: # -------------------------------------------- model = LinearRegression(epochs=10) model.fit(x, y) # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the predictions for the first four epochs predictions = [model.w_history[i] * x + model.b_history[i] for i in range(len(model.w_history))] for i in range(len(model.w_history)): ax.plot(x, predictions[i], c='#ff7f0e', alpha=i/len(predictions)) # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Linear Regression (first {} epochs)'.format(model.epochs)) ###Output _____no_output_____ ###Markdown Multi-variable Linear RegressionWhat happens if we have more than one input variables? Not much actually changes, apart from the fact that we now have a separate weight for each input variable. Variables are often referred to as **features** in Machine Learning.Suppose we have a dataset of $N$ training examples, each consisting of $M$ features. We could represent the training data as an $N \times M$ array $X$: $$X = \left( \begin{array}{cccc}x_{11} & x_{12} & ... & x_{1M} \\x_{21} & x_{22} & ... & x_{2M} \\... & ... & ... & ... \\x_{N1} & x_{N2} & ... & x_{NM} \end{array} \right)$$Each example ($X_i$) is accompanied by a label ($y_i$), like before:$$y = \left( \begin{array}{c}y_1 \\y_2 \\... \\y_N\end{array} \right)$$Each prediction is essentially a linear combination of all the features for the input example. **Each feature has its own weight**:$$\hat y_i = x_{i1} \cdot w_{1} + x_{i2} \cdot w_{2} + ... + x_{iM} \cdot w_{M} + b$$The whole prediction array would look like this:$$\hat y = X \cdot W + b = \left( \begin{array}{cccc}x_{11} & x_{12} & ... & x_{1M} \\x_{21} & x_{22} & ... & x_{2M} \\... & ... & ... & ... \\x_{N1} & x_{N2} & ... & x_{NM} \end{array} \right) \cdot\left( \begin{array}{cccc}w_1 \\w_2 \\... \\w_M\end{array} \right) + b$$The final $+$ operation is possible through broadcasting. The mathematical equivalent would be if $b$ was a $1 \times N$ array $\left( \begin{array}{cccc} b & b & ... & b \end{array} \right)^T$. Linear Regression DiscussionLinear regression is a very simple algorithm that usually doesn't work well in real world applications. This is because it makes a lot of **assumptions** for the data. Some of these are:- First of all, it assumes a **linear relationship** between the data and their labels. As a result it cannot sufficiently model non-linear problems.- Secondly, in the case of multiple input features, it assumes little to no **multicollinearity** in them. This means that the input features shouldn't be highly correlated with each other.- A third assumption made is that there isn't any **autocorrelation** in the data. Autocorrelation occurs when the labels are not independent from one another (e.g. in time-series each label is dependent on its previous values).- Another assumption on the data is **homoscedasticity**. This means that the variance of the label stays the same through all training examples.These are all very strong assumptions, making Linear Regression ill-suited for many real world applications where some of these assumptions are violated. Thus, we are forced to look for stronger algorithms, capable of modelling more complex problems.Before moving on, it's worth mentioning two extensions to Linear Regression, called [Lasso][1] and [Ridge](https://en.wikipedia.org/wiki/Tikhonov_regularization) regressions. [1]: https://en.wikipedia.org/wiki/Lasso_(statistics) Classification: Logistic RegressionContrary to regression, in classification the labels are a set of **discrete** values.We'll try to solve a problem, where we want to classify *bananas* and *oranges* according to their length. These two are called **classes**. When we have only two classes, we refer to it as a **binary classification** problem. ###Code # CODE: # -------------------------------------------- np.random.seed(5) n = 100 # number of examples x = np.concatenate([(5 * np.random.random(n) + 3), (6 * np.random.random(n) + 7)]) # training examples c = (['orange'] * int(len(x)/2)) + (['banana'] * int(len(x)/2)) # class labels c_enc = np.array([0] * n + [1] * n) # encode the labels to 0 - 1 df = pd.DataFrame({'x': x, 'c': c, 'y': c_enc}) df.sort_values('x', inplace=True) # PLOTTING: # -------------------------------------------- # Create a subplot and scatter the data points ax = plt.subplot(111) ax.scatter(x, c_enc) # Set plot limits ax.set_xlim([-0.3 + x.min(), x.max() + 0.25]) ax.set_ylim([-0.1, 1.4]) # Set custom labels on the y axis ax.set_yticks([0, 1]) # Set x and y axis labels ax.set_xlabel('length (cm)') ax.set_ylabel('y') # Rest aesthetic parameters ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Binary Classification Task') ###Output _____no_output_____ ###Markdown Since we know how linear regression works, we'll try to use that to solve our binary classification task. First, let's fit a linear regression on the data. ###Code # CODE: # -------------------------------------------- model = LinearRegression(epochs=50, learning_rate=0.01) model.b = -0.6 # because the code isn't optimal, this is used to ensure convergeance model.fit(x, c_enc) preds = model.predict(x) df['pred_lr'] = model.predict(df[['x']]) # PLOTTING: # -------------------------------------------- # Draw the data and the linear regression line ax = plt.subplot(111) ax.scatter(x, c_enc, label='data points') ax.plot(x, preds, c='#ff7f0e', label='linear regression') # Aesthetic parameters ax.set_xlabel('length (cm)') ax.set_ylabel('y') ax.set_yticks([0, 1]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression on binary data') ###Output _____no_output_____ ###Markdown Now by applying a threshold (let's say at $0.5$, which is the middle of the encoded $y$ values), we could use the value of the regression line to classify the given examples. ###Code # PLOTTING: # -------------------------------------------- # Scatter the data poitns, the linear regression line, a horizontal line depicting the threshold value # and the resulting line of the threshold. ax = plt.subplot(111) ax.scatter(df.x, df.y, label='data points') ax.plot(df.x, df.pred_lr, color='#ff7f0e', alpha=0.3, label='linear regression') ax.plot([df.x.min(), df.x.max()], [0.5, 0.5], color='0.5', alpha=0.6, label='threshold', linestyle='--') ax.plot(df.x, np.where(df.pred_lr > 0.5, 1, 0), color='#ff7f0e', lw=2, label='thresholded regression') # Add a text box above the threshold line ax.text(4, 0.55, 'threshold = $0.5$', color='0.5') # Aesthetic parameters ax.set_xlim([-0.3 + df.x.min(), df.x.max() + 0.25]) ax.set_ylim([-0.1, 1.4]) ax.set_xlabel('length (cm)') ax.set_ylabel('y') ax.set_yticks([0, 1]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.legend() ax.set_title('Applying a threshold to Linear Regression line') ###Output _____no_output_____ ###Markdown Machine LearningUp till now, we've seen the tools necessary to solve a variety of problems. These problems, however, need to have a **finite** number of steps and states, so that we can account for each one. We need to define a set of rules; rules we can code, so that in every possible scenario our algorithm comes up with an answer. With our current knowledge we can't solve a problem with an **indefinite** number of states (e.g. a chess match). These algorithms, we can write are called **deterministic**. In contrast, there is another category of algorithms called **non-deterministic**, whose response is not hard-coded and can differ from run to run, even on the same input. Machine Learning (ML) will help us with the latter.> Machine Learning explores the study and construction of algorithms that can learn from and make predictions on data.So how does ML attempt to solve complex problems? Much like humans do, through trial and error! It learns to make associations from the data itself, without having any expert define or dictate a set of rules. These are formed on their own, through a procedure we call **training**. Let's not get too ahead of ourselves.A more formal definition of Machine Learning is the following:> A computer program is said to learn from experience (*E*) with respect to some class of tasks (*T*) and performance measure (*P*) if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.Let's try to break this down a bit:- The class of tasks (*T*), refers to the type of the problem (classification, clustering, etc.).- The performance measure (*P*) is a function that indicates how **well** the algorithm is doing in its task.- Experience (*E*), in the context of **training**, refers to the algorithm improving its performance on the task. Machine learning tasks fall into 3 broad categories:- **Supervised Learning**. Here the algorithm is presented with **labeled** data. It is the algorithm's job to associate the input with their labels. Classification and regression problems fall into this category.- **Unsupervised Learning**. The data in these types of problems has **no** labels. The algorithms job is to find patterns or clusters in the data. Clustering, density estimation and dimensionality reduction problems fall into this category.- **Reinforcement Learning**. The algorithm interacts with a dynamic environment in which it must perform a certain goal.The most popular category of Machine Learning is supervised learning. Supervised LearningIn this category we have a set of examples (or samples) $X$ and their labels (or targets) $Y$. The goal of the algorithm is to learn from $X$ and $Y$ in order to be able to predict the labels of future unseen examples.- If $Y$ is discrete, the problem we are trying to solve is called **classification**- If $Y$ is continuous, we are trying to solve a **regression** problem. Regression: Linear RegressionThe simplest problem we can solve is a linear regression problem.> In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable $y$ and one or more explanatory variables (or independent variables) denoted $x$.In the context of ML we usually refer to $x$ as a **training example** and $y$ as its **label**. Basically, we have $(x,y)$ data and try to find the line that fits this data the best.Let's define our problem: We'll take $100$ samples evenly distributed in $[0,100)$. These samples follow an underlying linear distribution but are infused with noise. The goal is to find a line that best *fits* the data. ###Code # CODE: # -------------------------------------------- from __future__ import print_function, division import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Ensure reproducability seed = 13 np.random.seed(seed) # Construct data x = np.linspace(0, 100, 100) # training examples y = 2 * x + 10 * np.random.normal(size=100) # labels # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Training examples and their labels') ###Output _____no_output_____ ###Markdown As we previously said, we are essentially looking for a line that best *fits* the data. A line is defined as $y = w \cdot x + b$, so we need to figure out. We'll draw a few lines to see the differences: ###Code # CODE: # -------------------------------------------- # Line 1 w1 = 1 b1 = 20 y1 = w1 * x + b1 # Line 2 w2 = 4 b2 = -20 y2 = w2 * x + b2 # Line 3 w3 = -0.5 b3 = 150 y3 = w3 * x + b3 # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the three lines ax.plot(x, y1, c='#ff7f0e', label='line 1') ax.plot(x, y2, c='#e377c2', label='line 2') ax.plot(x, y3, c='#2ca02c', label='line 3') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Data points and random lines') ###Output _____no_output_____ ###Markdown Now, to our question at hand. Which of these three lines best *fits* the data? Well, first it would help if we specify what we mean by the word *fits* more clearly. Or even better, if we can somehow **quantify** it. What we essentially need is a measure of how *close* the line is to the data. In the context of Machine Learning, we refer to this *measure* as a **performance metric**. This is one of the most important parts of machine learning, as it gives us a way of telling how *well* our algorithm is doing, or how *close* it is to reaching its goal; but most importantly is gives us a way to tell if our algorithm is *improving* or not!In this case we will select the [Mean Squared Error](https://en.wikipedia.org/wiki/Mean_squared_error) (MSE) as our performance metric:$$MSE = \frac{1}{N} \cdot \sum_{i=1}^N{\left( y_i - \hat y_i \right) ^2}$$where $N$ is the number of samples, $y_i$ is the label for data point $x_i$ and $\hat y_i$ is the *prediction* for the same data point.The smaller the MSE, the closer the line is our data. ###Code # CODE: # -------------------------------------------- def mse(y, y_hat): """ Calculates the Mean Squared Error between the labels (y) and the predictions (y_hat) """ return ((y - y_hat)**2).sum() / len(y) print('line1 MSE:', mse(y, y1)) print('line2 MSE:', mse(y, y2)) print('line3 MSE:', mse(y, y3)) ###Output line1 MSE: 1802.4096380013298 line2 MSE: 9934.38656402079 line3 MSE: 5821.561278104836 ###Markdown Judging by this `line1` is the best of the three.Now that we've clearly defined our goal (i.e. to achieve the lowest possible MSE), we can move on to creating a Linear Regression model that will do exactly that, find the line that minimizes the MSE.The first step in most Machine Learning algorithms is to **initialize** them, or set a starting point. This can be done simply by selecting random values for our two parameters $w$ and $b$.As a note here, the parameters $w$ and $b$ are referred to as **weights** and **biases**, while the output of the model (in this case $\hat y = w \cdot x + b$ is called a **prediction** or **hypothesis**. ###Code # CODE: # -------------------------------------------- np.random.seed(seed) # Initialize w and b randomly w = np.random.random() b = np.random.random() # Create a function that makes predictions based on the weights and biases def predict(x): """ Returns the predictions for x, based on the weights (w) and the biases (b) """ return w * x + b # Generate a prediction y_hat = predict(x) # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the prediction ax.plot(x, y_hat, c='#ff7f0e', label='prediction') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression (random initialization)') ###Output _____no_output_____ ###Markdown Initially, as we can see, the model isn't fairing so well.Now, begins the **training phase** of the algorithm, where it will begin improving until some criterion is met. The performance metric that is used to improve the algorithm's performance upon is called a **cost** (or **loss**) **function**. Thus, our goal is to **minimize** this cost function.If we look at this in a bit more detail, the cost function (denoted as $J$) is a function with two parameters: $w$ and $b$:$$J(w, b) = \frac{1}{2N} \cdot \sum_{i=1}^N{\left( y_i - \hat y_i \right) ^2} = \frac{1}{2N} \cdot \sum_{i=1}^N{\left( y_i - w \cdot x_i - b \right) ^2}$$To get a better understanding of how the cost function works, we'll first see the impact each parameter has on it, while keeping the other constant. ###Code # CODE: # -------------------------------------------- # calculate current cost J = mse(y, y_hat) # calculate the cost for different values of w w_range = np.arange(0, 4, 0.05) y_w = [v * x + b for v in w_range] J_w = [mse(y, v) for v in y_w] w_best = w_range[np.argmin(J_w)] # calculate the cost for different values of b b_range = np.arange(-10, 130, 1) y_b = [w * x + v for v in b_range] J_b = [mse(y, v) for v in y_b] b_best = b_range[np.argmin(J_b)] # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(12, 6)) # Subplot 1 ax1 = plt.subplot(121) # Draw artists for subplot 1 ax1.plot(w_range, J_w, c='#1f77b4', zorder=-1) # cost curve ax1.scatter(w, J, c='#ff7f0e', s=50, edgecolor='#1f77b4') # current w ax1.scatter(w_best, min(J_w), c='#e377c2', s=50, edgecolor='#1f77b4') # best w ax1.annotate('current $w$', xy=(w, J), xytext=(1.5, 7000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=60,angleB=15")) ax1.annotate('best $w$', xy=(w_best, min(J_w)), xytext=(1.5, 2000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=0,angleB=-90")) # Subplot 1 - aesthetic parameters ax1.set_xlabel('$w$') ax1.set_ylabel('$J$') ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax1.set_title('Cost with respect to $w$ ') # Subplot 2 ax2 = plt.subplot(122) # Draw artists for subplot 2 ax2.plot(b_range, J_b, c='#1f77b4', zorder=-1) ax2.scatter(b, J, c='#ff7f0e', s=50, edgecolor='#1f77b4') ax2.scatter(b_best, min(J_b), c='#e377c2', s=50, edgecolor='#1f77b4') ax2.annotate('current $b$', xy=(b, J), xytext=(40, 4000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=-50,angleB=0")) ax2.annotate('best $b$', xy=(b_best, min(J_b)), xytext=(50, 2000), arrowprops=dict(arrowstyle='->', connectionstyle="angle3,angleA=0,angleB=-90")) # Subplot 2 - aesthetic parameters ax2.set_xlabel('$b$') ax2.set_ylabel('$J$') ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') ax2.set_title('Cost with respect to $b$ ') ###Output _____no_output_____ ###Markdown The two figures above illustrate how the cost changes with respect to each of the two variables. Our starting position is also depicted in the two figures, as well as our *goal* (the value of each parameter that minimizes the cost function). In this problem it isn't so hard to calculate the cost for every parameter and draw the curves, however this is **impossible** in more complex problems. Furthermore, the previous figures assume we optimize each parameter independent of the other. Preferrably, we'd want to optimize them together. ![cost function](https://i.imgur.com/hizeAC7.png)In the figure above, the darker the color the lower the value of the cost function. Again, we need a way to navigate from the *current position* (acquired from the random initialization of our two parameters $w$ and $b$) to the *best position* (a position that is unknown in real world problems).One way to tackle this is through **[Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent)**.How does this work? By computing the **gradients of the cost function w.r.t each of the parameters**, we are essentially calculating the *slope* of this function at our current position. The slope, in turn, shows us the *direction* that will reduce the cost function's value! The two partial derivatives we need to compute are the following:$$ \frac{dJ}{dw} \quad and \quad \frac{dJ}{db} $$Afterwards, we need to change the values of our parameters $w$ and $b$, in such a way to *move in that direction*. This change is called an **update**.$$ w^{new} \leftarrow w + \lambda \cdot \frac{dJ}{dw} \quad and \quad b^{new} \leftarrow b + \lambda \cdot \frac{dJ}{db}$$After the first update, a new prediction is made (using the new values of our two parameters), the new cost is calculated, the derivatives are computed once again and a new update is made. These steps are repeated again and again, until the cost function stops dropping. This procedure is referred to as the **training phase**.Another term we use in machine learning is the term **epoch**. An epoch is when an algorithm has *seen* all of the training data once and has updated its parameters accordingly. In this case, an epoch is concluded each time the weights are updated. An example training phase can be seen in the figure below.![gradient descent](https://i.imgur.com/vJ8fbyO.png)The $\lambda$ parameter we saw before is called the **learning rate** and dictates how *large* will each update will be. Too small and we will require many steps to reach our goal; too large and we might *overshoot* the minima and the algorithm might never converge. This can be seen in the figure below:![learning rates](https://i.imgur.com/6KnQu6V.png)The partial derivatives in linear regression are:$$\frac{dJ}{dw} = - \frac{2}{N} \cdot \sum_{i=1}^N x_i \left(y_i - w \cdot x_i - b \right)$$$$\frac{dJ}{db} = - \frac{2}{N} \cdot \sum_{i=1}^N \left(y_i - w \cdot x_i - b \right) $$ ###Code # CODE: # -------------------------------------------- # Create two functions that will help us train the algorithm def compute_derivatives(x, y): """ First generate a prediction for x and then compute the derivatives of the cost function with respect to the weights (w) and the biases (b). """ y_hat = predict(x) dw = - (2 / sum(x)) * sum(x * (y - y_hat)) db = - (2 / sum(x)) * sum(y - y_hat) return dw, db def update(x, y, lr=0.001): """ Generates a prediction for x, computes the partial derivatives of the cost function and uses them to update the values of the weights (w) and biases (b) according to learning rate (lr). It doesn't overwrite the old parameters; instead it returns the new values. """ dw, db = compute_derivatives(x, y) new_w = w - (lr * dw) new_b = b - (lr * db) return new_w, new_b # The initial weights and biases are stored in the variables 'w' and 'b'. # We'll now calculate the weights and biases of the second epoch # (after the first update) w1, b1 = w, b # parameters of the 1st epoch y1 = predict(x) # initial prediction J1 = mse(y, y1) # initial cost w, b = update(x, y) # overwrite the old parameters # Same thing for the third and fourth epochs w2, b2 = w, b # parameters of the 2nd epoch y2 = predict(x) # 2nd epoch prediction J2 = mse(y, y2) # 2nd epoch cost w, b = update(x, y) w3, b3 = w, b # parameters of the 3rd epoch y3 = predict(x) # 3rd epoch prediction J3 = mse(y, y3) # 3rd epoch cost w, b = update(x, y) w4, b4 = w, b # parameters of the 4th epoch y4 = predict(x) # 4th epoch prediction J4 = mse(y, y4) # 4th epoch cost # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the predictions for the first four epochs ax.plot(x, y1, c='#ff7f0e', label='1st epoch', alpha=1/8) ax.plot(x, y2, c='#ff7f0e', label='2nd epoch', alpha=1/4) ax.plot(x, y3, c='#ff7f0e', label='3rd epoch', alpha=1/2) ax.plot(x, y4, c='#ff7f0e', label='4th epoch') # Write the cost of each prediction next to it ax.text(len(x)+1, y1[-1], str(int(J1)), color='#ff7f0e', alpha=1/8) ax.text(len(x)+1, y2[-1], str(int(J2)), color='#ff7f0e', alpha=1/4) ax.text(len(x)+1, y3[-1], str(int(J3)), color='#ff7f0e', alpha=1/2) ax.text(len(x)+1, y4[-1], str(int(J4)), color='#ff7f0e') # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression (first four epochs)') ###Output _____no_output_____ ###Markdown It's clear that the model is improving after each epoch, evident by the fact that both the prediction approaches what it should be and that the cost is dropping.Now, we can finally put it all together and create a Linear Regression class. ###Code # CODE: # -------------------------------------------- class LinearRegression: def __init__(self, epochs=100, learning_rate=0.001, random_seed=13): """ This class creates a Linear Regression model and attempts to fit it to the given data through gradient descent. :param epoch (int): The number of epochs. :param learning_rate (float): The learning rate of the algorithm. :param random_seed (int): A number to used as the seed for the random number generator. """ self.epochs = epochs self.lr = learning_rate self.w, self.b = self.initialize(random_seed) self.w_history = [] self.b_history = [] def initialize(self, seed): """ Method that initializes the weights and biases to random values. """ np.random.seed(seed) w = np.random.random() b = np.random.random() return w, b def predict(self, x): """ Method that makes predictions for a number of points. """ return self.w * x + self.b def cost(self, x, y): """ Method that calculates the cost of the prediction on a series of data points. """ y_hat = self.predict(x) return sum(((y - y_hat)**2)) / len(y) def update(self, x, y): """ Method that runs one iteration of gradient descent and updates the class' weights and biases """ y_hat = self.predict(x) dw = - (2 / sum(x)) * sum(x * (y - y_hat)) db = - (2 / sum(x)) * sum(y - y_hat) self.w -= (self.lr * dw) self.b -= (self.lr * db) def fit(self, x, y): """ Method that handles the whole training procedure. """ for ep in range(self.epochs): self.w_history.append(self.w) self.b_history.append(self.b) self.update(x, y) ###Output _____no_output_____ ###Markdown Let's see if it works. ###Code # CODE: # -------------------------------------------- model = LinearRegression(epochs=15) model.fit(x, y) # PLOTTING: # -------------------------------------------- # Create figure fig = plt.figure(figsize=(7, 5)) ax = plt.subplot(111) # Scatter data points ax.scatter(x, y, c='#1f77b4', label='data points') # Draw the predictions for the first four epochs predictions = [model.w_history[i] * x + model.b_history[i] for i in range(len(model.w_history))] for i in range(len(model.w_history)): ax.plot(x, predictions[i], c='#ff7f0e', alpha=i/len(predictions)) # Aesthetic parameters ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim([-20, 220]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Linear Regression (first {} epochs)'.format(model.epochs)) ###Output _____no_output_____ ###Markdown Multi-variable Linear RegressionWhat happens if we have more than one input variables? Not much actually changes, apart from the fact that we now have a separate weight for each input variable. Variables are often referred to as **features** in Machine Learning.Suppose we have a dataset of $N$ training examples, each consisting of $M$ features. We could represent the training data as an $N \times M$ array $X$: $$X = \left( \begin{array}{cccc}x_{11} & x_{12} & ... & x_{1M} \\x_{21} & x_{22} & ... & x_{2M} \\... & ... & ... & ... \\x_{N1} & x_{N2} & ... & x_{NM} \end{array} \right)$$Each example ($X_i$) is accompanied by a label ($y_i$), like before:$$y = \left( \begin{array}{c}y_1 \\y_2 \\... \\y_N\end{array} \right)$$Each prediction is essentially a linear combination of all the features for the input example. **Each feature has its own weight**:$$\hat y_i = x_{i1} \cdot w_{1} + x_{i2} \cdot w_{2} + ... + x_{iM} \cdot w_{M} + b$$The whole prediction array would look like this:$$\hat y = X \cdot W + b = \left( \begin{array}{cccc}x_{11} & x_{12} & ... & x_{1M} \\x_{21} & x_{22} & ... & x_{2M} \\... & ... & ... & ... \\x_{N1} & x_{N2} & ... & x_{NM} \end{array} \right) \cdot\left( \begin{array}{cccc}w_1 \\w_2 \\... \\w_M\end{array} \right) + b$$The final $+$ operation is possible through broadcasting. The mathematical equivalent would be if $b$ was a $1 \times N$ array $\left( \begin{array}{cccc} b & b & ... & b \end{array} \right)^T$. Linear Regression DiscussionLinear regression is a very simple algorithm that usually doesn't work well in real world applications. This is because it makes a lot of **assumptions** for the data. Some of these are:- First of all, it assumes a **linear relationship** between the data and their labels. As a result it cannot sufficiently model non-linear problems.- Secondly, in the case of multiple input features, it assumes little to no **multicollinearity** in them. This means that the input features shouldn't be highly correlated with each other.- A third assumption made is that there isn't any **autocorrelation** in the data. Autocorrelation occurs when the labels are not independent from one another (e.g. in time-series each label is dependent on its previous values).- Another assumption on the data is **homoscedasticity**. This means that the variance of the label stays the same through all training examples.These are all very strong assumptions, making Linear Regression ill-suited for many real world applications where some of these assumptions are violated. Thus, we are forced to look for stronger algorithms, capable of modelling more complex problems.Before moving on, it's worth mentioning two extensions to Linear Regression, called [Lasso][1] and [Ridge](https://en.wikipedia.org/wiki/Tikhonov_regularization) regressions. [1]: https://en.wikipedia.org/wiki/Lasso_(statistics) Classification: Logistic RegressionContrary to regression, in classification the labels are a set of **discrete** values.We'll try to solve a problem, where we want to classify *bananas* and *oranges* according to their length. These two are called **classes**. When we have only two classes, we refer to it as a **binary classification** problem. ###Code # CODE: # -------------------------------------------- np.random.seed(5) n = 100 # number of examples x = np.concatenate([(5 * np.random.random(n) + 3), (6 * np.random.random(n) + 7)]) # training examples c = (['orange'] * int(len(x)/2)) + (['banana'] * int(len(x)/2)) # class labels c_enc = np.array([0] * n + [1] * n) # encode the labels to 0 - 1 df = pd.DataFrame({'x': x, 'c': c, 'y': c_enc}) df.sort_values('x', inplace=True) # PLOTTING: # -------------------------------------------- # Create a subplot and scatter the data points ax = plt.subplot(111) ax.scatter(x, c_enc) # Set plot limits ax.set_xlim([-0.3 + x.min(), x.max() + 0.25]) ax.set_ylim([-0.1, 1.4]) # Set custom labels on the y axis ax.set_yticks([0, 1]) # Set x and y axis labels ax.set_xlabel('length (cm)') ax.set_ylabel('y') # Rest aesthetic parameters ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_title('Binary Classification Task') ###Output _____no_output_____ ###Markdown Since we know how linear regression works, we'll try to use that to solve our binary classification task. First, let's fit a linear regression on the data. ###Code # CODE: # -------------------------------------------- model = LinearRegression(epochs=50, learning_rate=0.01) model.b = -0.6 # because the code isn't optimal, this is used to ensure convergeance model.fit(x, c_enc) preds = model.predict(x) df['pred_lr'] = model.predict(df[['x']]) # PLOTTING: # -------------------------------------------- # Draw the data and the linear regression line ax = plt.subplot(111) ax.scatter(x, c_enc, label='data points') ax.plot(x, preds, c='#ff7f0e', label='linear regression') # Aesthetic parameters ax.set_xlabel('length (cm)') ax.set_ylabel('y') ax.set_yticks([0, 1]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='lower right') ax.set_title('Linear Regression on binary data') ###Output _____no_output_____ ###Markdown Now by applying a threshold (let's say at $0.5$, which is the middle of the encoded $y$ values), we could use the value of the regression line to classify the given examples. ###Code # PLOTTING: # -------------------------------------------- # Scatter the data poitns, the linear regression line, a horizontal line depicting the threshold value # and the resulting line of the threshold. ax = plt.subplot(111) ax.scatter(df.x, df.y, label='data points') ax.plot(df.x, df.pred_lr, color='#ff7f0e', alpha=0.3, label='linear regression') ax.plot([df.x.min(), df.x.max()], [0.5, 0.5], color='0.5', alpha=0.6, label='threshold', linestyle='--') ax.plot(df.x, np.where(df.pred_lr > 0.5, 1, 0), color='#ff7f0e', lw=2, label='thresholded regression') # Add a text box above the threshold line ax.text(4, 0.55, 'threshold = $0.5$', color='0.5') # Aesthetic parameters ax.set_xlim([-0.3 + df.x.min(), df.x.max() + 0.25]) ax.set_ylim([-0.1, 1.4]) ax.set_xlabel('length (cm)') ax.set_ylabel('y') ax.set_yticks([0, 1]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.legend() ax.set_title('Applying a threshold to Linear Regression line') ###Output _____no_output_____
1_time_series_arima.ipynb
###Markdown Time series forecasting with ARIMAIn this notebook, we demonstrate how to:- prepare time series data for training an ARIMA times series forecasting model- implement a simple ARIMA model to forecast the next HORIZON steps ahead (time *t+1* through *t+HORIZON*) in the time series- evaluate the model The data in this example is taken from the GEFCom2014 forecasting competition1. It consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. The task is to forecast future values of electricity load. In this example, we show how to forecast one time step ahead, using historical load data only.1Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016. ###Code import os import warnings import matplotlib.pyplot as plt import numpy as np import pandas as pd import datetime as dt import math from pandas.tools.plotting import autocorrelation_plot # from pyramid.arima import auto_arima from statsmodels.tsa.statespace.sarimax import SARIMAX from sklearn.preprocessing import MinMaxScaler from common.utils import load_data, mape from IPython.display import Image %matplotlib inline pd.options.display.float_format = '{:,.2f}'.format np.set_printoptions(precision=2) warnings.filterwarnings("ignore") # specify to ignore warning messages ###Output _____no_output_____ ###Markdown Load the data from csv into a Pandas dataframe ###Code energy = load_data('./data')[['load']] energy.head(10) ###Output _____no_output_____ ###Markdown Plot all available load data (January 2012 to Dec 2014) ###Code energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) plt.xlabel('timestamp', fontsize=12) plt.ylabel('load', fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Create training and testing data setsWe separate our dataset into train and test sets. We train the model on the train set. After the model has finished training, we evaluate the model on the test set. We must ensure that the test set cover a later period in time from the training set, to ensure that the model does not gain from information from future time periods.We will allocate the period 1st September 2014 to 31st October to training set (2 months) and the period 1st November 2014 to 31st December 2014 to the test set (2 months). Since this is daily consumption of energy, there is a strong seasonal pattern, but the consumption is most similar to the consumption in the recent days. Therefore, using a relatively small window of time for training the data should be sufficient.> NOTE: Since function we use to fit ARIMA model uses in-sample validation during feeting, we will omit the validation data from this notebook. ###Code train_start_dt = '2014-11-01 00:00:00' test_start_dt = '2014-12-30 00:00:00' energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) plt.xlabel('timestamp', fontsize=12) plt.ylabel('load', fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Data preparation Our data preparation for the training set will involve the following steps:1. Filter the original dataset to include only that time period reserved for the training set2. Scale the time series such that the values fall within the interval (0, 1) Create training set containing only the model features ###Code train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] test = energy.copy()[energy.index >= test_start_dt][['load']] print('Training data shape: ', train.shape) print('Test data shape: ', test.shape) ###Output Training data shape: (1416, 1) Test data shape: (48, 1) ###Markdown Scale data to be in range (0, 1). This transformation should be calibrated on the training set only. This is to prevent information from the validation or test sets leaking into the training data. ###Code scaler = MinMaxScaler() train['load'] = scaler.fit_transform(train) train.head(10) ###Output _____no_output_____ ###Markdown Original vs scaled data: ###Code energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Let's also scale the test data ###Code test['load'] = scaler.transform(test) test.head() ###Output _____no_output_____ ###Markdown Implement ARIMA method An ARIMA, which stands for **A**uto**R**egressive **I**ntegrated **M**oving **A**verage, model can be created using the statsmodels library. In the next section, we perform the following steps:1. Define the model by calling SARIMAX() and passing in the model parameters: p, d, and q parameters, and P, D, and Q parameters.2. The model is prepared on the training data by calling the fit() function.3. Predictions can be made by calling the forecast() function and specifying the number of steps (horizon) which to forecastIn an ARIMA model there are 3 parameters that are used to help model the major aspects of a times series: seasonality, trend, and noise. These parameters are:- **p** is the parameter associated with the auto-regressive aspect of the model, which incorporates past values. - **d** is the parameter associated with the integrated part of the model, which effects the amount of differencing to apply to a time series. - **q** is the parameter associated with the moving average part of the model.If our model has a seasonal component, we use a seasonal ARIMA model (SARIMA). In that case we have another set of parameters: P, D, and Q which describe the same associations as p,d, and q, but correspond with the seasonal components of the model. ###Code # Specify the number of steps to forecast ahead HORIZON = 3 print('Forecasting horizon:', HORIZON, 'hours') ###Output Forecasting horizon: 3 hours ###Markdown Selecting the best parameters for an Arima model can be challenging - somewhat subjective and time intesive, so we'll leave it as an exercise to the user. We used an **auto_arima()** function and some additional manual selection to find a decent model.>NOTE: For more info on selecting an Arima model, please refer to the an arima notebook in /ReferenceNotebook directory. ###Code order = (4, 1, 0) seasonal_order = (1, 1, 0, 24) model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) results = model.fit() print(results.summary()) ###Output Statespace Model Results ========================================================================================== Dep. Variable: load No. Observations: 1416 Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.240 Date: Mon, 08 Oct 2018 AIC -6942.479 Time: 12:56:56 BIC -6911.053 Sample: 11-01-2014 HQIC -6930.728 - 12-29-2014 Covariance Type: opg ============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------ ar.L1 0.8406 0.016 52.084 0.000 0.809 0.872 ar.L2 -0.5230 0.034 -15.384 0.000 -0.590 -0.456 ar.L3 0.1531 0.044 3.461 0.001 0.066 0.240 ar.L4 -0.0785 0.036 -2.178 0.029 -0.149 -0.008 ar.S.L24 -0.2349 0.024 -9.831 0.000 -0.282 -0.188 sigma2 0.0004 8.32e-06 47.353 0.000 0.000 0.000 =================================================================================== Ljung-Box (Q): 90.44 Jarque-Bera (JB): 1460.40 Prob(Q): 0.00 Prob(JB): 0.00 Heteroskedasticity (H): 0.84 Skew: 0.14 Prob(H) (two-sided): 0.07 Kurtosis: 8.01 =================================================================================== Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step). ###Markdown Next we display the distribution of residuals. A zero mean in the residuals may indicate that there is no bias in the prediction. Evaluate the model We will perform the so-called **walk forward validation**. In practice, time series models are re-trained each time a new data becomes available. This allows the model to make the best forecast at each time step. Starting at the beginning of the time series, we train the model on the train data set. Then we make a prediction on the next time step. The prediction is then evaluated against the known value. The training set is then expanded to include the known value and the process is repeated. (Note that we keep the training set window fixed, for more efficient training, so every time we add a new observation to the training set, we remove the observation from the beginning of the set.)This process provides a more robust estimation of how the model will perform in practice. However, it comes at the computation cost of creating so many models. This is acceptable if the data is small or if the model is simple, but could be an issue at scale. Walk-forward validation is the gold standard of time series model evaluation and is recommended for your own projects. ###Code Image('./images/ts_cross_validation.png') ###Output _____no_output_____ ###Markdown Create a test data point for each HORIZON step. ###Code test_shifted = test.copy() for t in range(1, HORIZON): test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') test_shifted = test_shifted.dropna(how='any') test_shifted.head(5) ###Output _____no_output_____ ###Markdown Make predictions on the test data ###Code %%time training_window = 720 # dedicate 30 days (720 hours) for training train_ts = train['load'] test_ts = test_shifted history = [x for x in train_ts] history = history[(-training_window):] predictions = list() # let's user simpler model for demonstration order = (2, 1, 0) seasonal_order = (1, 1, 0, 24) for t in range(test_ts.shape[0]): model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) model_fit = model.fit() yhat = model_fit.forecast(steps = HORIZON) predictions.append(yhat) obs = list(test_ts.iloc[t]) # move the training window history.append(obs[0]) history.pop(0) print(test_ts.index[t]) print(t+1, ': predicted =', yhat, 'expected =', obs) ###Output 2014-12-30 00:00:00 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] 2014-12-30 01:00:00 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] 2014-12-30 02:00:00 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] 2014-12-30 03:00:00 4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716] 2014-12-30 04:00:00 5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166] 2014-12-30 05:00:00 6 : predicted = [0.4 0.56 0.67] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368] 2014-12-30 06:00:00 7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115] 2014-12-30 07:00:00 8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463] 2014-12-30 08:00:00 9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856] 2014-12-30 09:00:00 10 : predicted = [0.76 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483] 2014-12-30 10:00:00 11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307] 2014-12-30 11:00:00 12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425] 2014-12-30 12:00:00 13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255] 2014-12-30 13:00:00 14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068] 2014-12-30 14:00:00 15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931] 2014-12-30 15:00:00 16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765] 2014-12-30 16:00:00 17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793] 2014-12-30 17:00:00 18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038] 2014-12-30 18:00:00 19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924] 2014-12-30 19:00:00 20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477] 2014-12-30 20:00:00 21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777] 2014-12-30 21:00:00 22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718] 2014-12-30 22:00:00 23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697] 2014-12-30 23:00:00 24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596] 2014-12-31 00:00:00 25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544] 2014-12-31 01:00:00 26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963] 2014-12-31 02:00:00 27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791] 2014-12-31 03:00:00 28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477] 2014-12-31 04:00:00 29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886] 2014-12-31 05:00:00 30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919] 2014-12-31 06:00:00 31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613] 2014-12-31 07:00:00 32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039] 2014-12-31 08:00:00 33 : predicted = [0.78 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696] 2014-12-31 09:00:00 34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452] 2014-12-31 10:00:00 35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416] 2014-12-31 11:00:00 36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727] 2014-12-31 12:00:00 37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307] 2014-12-31 13:00:00 38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431] 2014-12-31 14:00:00 39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511] 2014-12-31 15:00:00 40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573] 2014-12-31 16:00:00 41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547] 2014-12-31 17:00:00 42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982] 2014-12-31 18:00:00 43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643] 2014-12-31 19:00:00 44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325] 2014-12-31 20:00:00 45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621] 2014-12-31 21:00:00 46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454] CPU times: user 26min 45s, sys: 12min 48s, total: 39min 33s Wall time: 7min 12s ###Markdown Compare predictions to actual load ###Code eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) eval_df.head() ###Output _____no_output_____ ###Markdown Compute the **mean absolute percentage error (MAPE)** over all predictions$$MAPE = \frac{1}{n} \sum_{t=1}^{n}|\frac{actual_t - predicted_t}{actual_t}|$$ ###Code if(HORIZON > 1): eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] print(eval_df.groupby('h')['APE'].mean()) print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') ###Output Multi-step forecast MAPE: 1.1433392660923376 % ###Markdown Plot the predictions vs the actuals for the first week of the test set ###Code if(HORIZON == 1): ## Plotting single step forecast eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) else: ## Plotting multi step forecast plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] for t in range(1, HORIZON+1): plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values fig = plt.figure(figsize=(15, 8)) ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) ax = fig.add_subplot(111) for t in range(1, HORIZON+1): x = plot_df['timestamp'][(t-1):] y = plot_df['t+'+str(t)][0:len(x)] ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) ax.legend(loc='best') plt.xlabel('timestamp', fontsize=12) plt.ylabel('load', fontsize=12) plt.show() ###Output _____no_output_____
boards/Pynq-Z2/mqttsn/notebooks/04_network_processor.ipynb
###Markdown Network IO ProcessorThe Network IO Processor (IOP) enables raw access to the Ethernet interface from within Python.The usage is similar in many ways to sending and receiving Ethernet frames using raw sockets.The advantages of this access include:1. Packets can be sent with low-latency, bypassing the normal Linux kernel stack.2. Access to the network interface is memory-mapped, enabling network-connected accelerators to be prototyped on the ARM cores and then migrated into the Programmable Logic (PL). 1. Downloading overlayNow let's download the overlay and do necessary configurations. ###Code from pynq_networking import MqttsnOverlay from site import getsitepackages import os mqttsn_bit = os.path.join(getsitepackages()[0], 'pynq_networking', 'overlays', 'mqttsn', 'mqttsn.bit') overlay = MqttsnOverlay(mqttsn_bit) overlay.download() import timeit import logging logging.getLogger("kamene.runtime").setLevel(logging.ERROR) from kamene.all import * from wurlitzer import sys_pipes from pynq_networking.lib.network_iop import NetworkIOP from pynq_networking.lib.slurper import PacketSlurper from pynq_networking.lib.pynqsocket import L2PynqSocket conf.L2PynqSocket = L2PynqSocket ###Output _____no_output_____ ###Markdown 3. Bring up interfaces and modulesWe can bring up a network interface for testing. For hardware acceleration, we need to inject the Linux kernel driver.The Python class `LinkManager` is a wrapper for the following commands:```cshchmod 777 ./kernel_module/*.shifconfig br0:1 192.168.3.99ifconfig br0:0 192.168.1.99./kernel_module/link_up.sh``` ###Code from pynq_networking import LinkManager if_manager = LinkManager() if_manager.if_up("br0:1", "192.168.3.99") if_manager.if_up("br0:0", "192.168.1.99") if_manager.kernel_up() ###Output _____no_output_____ ###Markdown The kernel module only needs to be run 1 time after the board has been booted. ###Code mynet = NetworkIOP() conf.L2PynqSocket().flush() ###Output 156 packets flushed ###Markdown 4. Measuring performanceWe can do a bit of research here. Let's find out how fast we can push out packets first, as shown below. ###Code import numpy as np import matplotlib.pyplot as plt from pynq import PL from pynq import MMIO from pynq_networking import * sizes = [64, 128, 256, 512, 1024, 1500] count = 500 pps = [] bps = [] usperpacket = [] cyclesperword = [] theoretical = [] mmio = MMIO(0xFFFC0000, 0x10000) my_ip_str = '192.168.1.104' my_mac_str = '8a:70:bd:29:2b:40' for size in sizes: payload = b''.join([b'0' for _ in range(size)]) frame = Ether(src=my_mac_str, dst='FF:FF:FF:FF:FF:FF')/\ IP(src=my_ip_str, dst="192.168.1.2")/\ UDP(sport=50000, dport=1884)/MQTTSN()/MQTTSN_CONNECT() frame = bytes(frame) + payload slurper = conf.L2PynqSocket().slurper kameneSocket = conf.L2socket() write32 = slurper.write32 array = slurper.mmio.array mem = slurper.mmio.mem leng = len(frame) start_time = timeit.default_timer() for _ in range(count): frame_bytes = bytes(frame) slurper.send(frame_bytes) elapsed = timeit.default_timer() - start_time bps.append(count*len(frame)*8/elapsed) pps.append(count/elapsed) usperpacket.append(1000000/(count/elapsed)) cyclesperword.append((100000000*elapsed)/(count*(len(frame)/4))) theoretical.append(100000000/(len(frame)/4)) plt.title("Delay / microseconds per packet") plt.plot(sizes, usperpacket, linewidth=2.0) plt.ylim(ymin=0) plt.xlabel('Packet size / bytes') plt.grid(True) plt.show() plt.title("Achieved cycles per word") plt.plot(sizes, cyclesperword, linewidth=2.0) plt.ylim(ymin=0) plt.xlabel('Packet size / bytes') plt.grid(True) plt.show() plt.title("Achieved bits per second") plt.plot(sizes, bps, linewidth=2.0) plt.xlabel('Packet size / bytes') plt.grid(True) plt.show() plt.title("Packets per second") plot0, = plt.plot(sizes, theoretical, label='Theoretical', linewidth=2.0, color='red') plot1, = plt.plot(sizes, pps, label='Achieved', linewidth=2.0, color='green') plt.legend(handles=[plot0, plot1]) plt.ylim(ymin=0, ymax=3500000) plt.xlabel('Packet size / bytes') plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown 5. CleanupWe can remove the kernel module and close the interfaces in the end. ###Code if_manager.kernel_down() if_manager.if_down('br0:0') if_manager.if_down('br0:1') ###Output _____no_output_____
tensorflow_probability/examples/jupyter_notebooks/Probabilistic_Layers_Regression.ipynb
###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TF_Installation == "Nightly": !pip install -q tf-nightly print("Installation of `tf-nightly` complete.") elif TF_Installation == "Stable": !pip install -q --upgrade tensorflow print("Installation of `tensorflow` complete.") elif TF_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) import tensorflow.compat.v2 as tf import tensorflow_probability as tfp tf.enable_v2_behavior() %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=10): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.05), loss=negloglik) model.fit(x, y, epochs=500, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='fit', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.05), loss=negloglik) model.fit(x, y, epochs=500, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='fit'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'$\mu+\sigma$'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'$\mu-\sigma$'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.05), loss=negloglik) model.fit(x, y, epochs=500, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='fit', linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='fit', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.05), loss=negloglik) model.fit(x, y, epochs=500, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='fit', linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label=r'$\mu+\sigma$'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label=r'$\mu-\sigma$'); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='fit', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty [Experimental] ###Code #@title Custom PSD Kernel class KernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(KernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._bias_variance = self.add_variable( initializer=tf.constant_initializer(.54), dtype=dtype, name='bias_variance') self._slope_variance = self.add_variable( initializer=tf.constant_initializer(.54), dtype=dtype, name='slope_variance') self._period = self.add_variable( initializer=tf.constant_initializer(2 * np.pi), dtype=dtype, name='period') self._amplitude = self.add_variable( initializer=tf.constant_initializer(.54), dtype=dtype, name='amplitude') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): linear = tfp.positive_semidefinite_kernels.Linear( bias_variance=tf.nn.softplus(self._bias_variance), slope_variance=tf.nn.softplus(self._slope_variance)) periodic = tfp.positive_semidefinite_kernels.ExpSinSquared( amplitude=tf.nn.softplus(self._amplitude), period=tf.nn.softplus(self._period)) return linear * periodic # VGP is data hungry! y, x, x_tst = load_dataset(n=1000, n_tst=1000) # Build model. num_inducing_points = 50 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=KernelFn(dtype=x.dtype), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]) ), ]) # Do inference. batch_size = 64 loss=lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile( optimizer=tf.optimizers.Adam(learning_rate=0.1, beta_1=0.5, beta_2=0.9), loss=loss) model.fit(x, y, epochs=500, batch_size=batch_size, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 samples_ = yhat.sample(num_samples).numpy() plt.plot(np.tile(x_tst, num_samples), samples_[..., 0].T, 'r', linewidth=0.9, label='fit'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Probability Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Import { display-mode: "form" } from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output WARNING: GPU device not found. ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.python import tf2 if not tf2.enabled(): import tensorflow.compat.v2 as tf tf.enable_v2_behavior() assert tf2.enabled() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.positive_semidefinite_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(dtype=x.dtype), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.python import tf2 if not tf2.enabled(): import tensorflow.compat.v2 as tf tf.enable_v2_behavior() assert tf2.enabled() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.positive_semidefinite_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.python import tf2 if not tf2.enabled(): import tensorflow.compat.v2 as tf tf.enable_v2_behavior() assert tf2.enabled() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.positive_semidefinite_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.python import tf2 if not tf2.enabled(): import tensorflow.compat.v2 as tf tf.enable_v2_behavior() assert tf2.enabled() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.positive_semidefinite_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1], dtype=x.dtype), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(dtype=x.dtype), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression Run in Google Colab View source on GitHub In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Install { display-mode: "form" } TF_Installation = 'TF2 Nightly (GPU)' #@param ['TF2 Nightly (GPU)', 'TF2 Stable (GPU)', 'TF1 Nightly (GPU)', 'TF1 Stable (GPU)','System'] if TF_Installation == 'TF2 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu-2.0-preview print('Installation of `tf-nightly-gpu-2.0-preview` complete.') elif TF_Installation == 'TF2 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu==2.0.0-alpha0 print('Installation of `tensorflow-gpu==2.0.0-alpha0` complete.') elif TF_Installation == 'TF1 Nightly (GPU)': !pip install -q --upgrade tf-nightly-gpu print('Installation of `tf-nightly-gpu` complete.') elif TF_Installation == 'TF1 Stable (GPU)': !pip install -q --upgrade tensorflow-gpu print('Installation of `tensorflow-gpu` complete.') elif TF_Installation == 'System': pass else: raise ValueError('Selection Error: Please select a valid ' 'installation option.') #@title Install { display-mode: "form" } TFP_Installation = "Nightly" #@param ["Nightly", "Stable", "System"] if TFP_Installation == "Nightly": !pip install -q tfp-nightly print("Installation of `tfp-nightly` complete.") elif TFP_Installation == "Stable": !pip install -q --upgrade tensorflow-probability print("Installation of `tensorflow-probability` complete.") elif TFP_Installation == "System": pass else: raise ValueError("Selection Error: Please select a valid " "installation option.") #@title Import { display-mode: "form" } from __future__ import absolute_import from __future__ import division from __future__ import print_function from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.python import tf2 if not tf2.enabled(): import tensorflow.compat.v2 as tf tf.enable_v2_behavior() assert tf2.enabled() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Probability Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown TFP Probabilistic Layers: Regression View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this example we show how to fit regression models using TFP's "probabilistic layers." Dependencies & Prerequisites ###Code #@title Import { display-mode: "form" } from pprint import pprint import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp sns.reset_defaults() #sns.set_style('whitegrid') #sns.set_context('talk') sns.set_context(context='talk',font_scale=0.7) %matplotlib inline tfd = tfp.distributions ###Output _____no_output_____ ###Markdown Make things Fast! Before we dive in, let's make sure we're using a GPU for this demo. To do this, select "Runtime" -> "Change runtime type" -> "Hardware accelerator" -> "GPU".The following snippet will verify that we have access to a GPU. ###Code if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) ###Output WARNING: GPU device not found. ###Markdown Note: if for some reason you cannot access a GPU, this colab will still work. (Training will just take longer.) Motivation Wouldn't it be great if we could use TFP to specify a probabilistic model then simply minimize the negative log-likelihood, i.e., ###Code negloglik = lambda y, rv_y: -rv_y.log_prob(y) ###Output _____no_output_____ ###Markdown Well not only is it possible, but this colab shows how! (In context of linear regression problems.) ###Code #@title Synthesize dataset. w0 = 0.125 b0 = 5. x_range = [-20, 60] def load_dataset(n=150, n_tst=150): np.random.seed(43) def s(x): g = (x - x_range[0]) / (x_range[1] - x_range[0]) return 3 * (0.25 + g**2.) x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0] eps = np.random.randn(n) * s(x) y = (w0 * x * (1. + np.sin(x)) + b0) + eps x = x[..., np.newaxis] x_tst = np.linspace(*x_range, num=n_tst).astype(np.float32) x_tst = x_tst[..., np.newaxis] return y, x, x_tst y, x, x_tst = load_dataset() ###Output _____no_output_____ ###Markdown Case 1: No Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 1: No uncertainty. w = np.squeeze(model.layers[-2].kernel.numpy()) b = np.squeeze(model.layers[-2].bias.numpy()) plt.figure(figsize=[6, 1.5]) # inches #plt.figure(figsize=[8, 5]) # inches plt.plot(x, y, 'b.', label='observed'); plt.plot(x_tst, yhat.mean(),'r', label='mean', linewidth=4); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig1.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 2: Aleatoric Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tf.keras.layers.Dense(1 + 1), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.05 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 2: Aleatoric Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); m = yhat.mean() s = yhat.stddev() plt.plot(x_tst, m, 'r', linewidth=4, label='mean'); plt.plot(x_tst, m + 2 * s, 'g', linewidth=2, label=r'mean + 2 stddev'); plt.plot(x_tst, m - 2 * s, 'g', linewidth=2, label=r'mean - 2 stddev'); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig2.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 3: Epistemic Uncertainty ###Code # Specify the surrogate posterior over `keras.layers.Dense` `kernel` and `bias`. def posterior_mean_field(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size c = np.log(np.expm1(1.)) return tf.keras.Sequential([ tfp.layers.VariableLayer(2 * n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)), ]) # Specify the prior over `keras.layers.Dense` `kernel` and `bias`. def prior_trainable(kernel_size, bias_size=0, dtype=None): n = kernel_size + bias_size return tf.keras.Sequential([ tfp.layers.VariableLayer(n, dtype=dtype), tfp.layers.DistributionLambda(lambda t: tfd.Independent( tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)), ]) # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 3: Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.clf(); plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 25: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=0.5) avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig3.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 4: Aleatoric & Epistemic Uncertainty ###Code # Build model. model = tf.keras.Sequential([ tfp.layers.DenseVariational(1 + 1, posterior_mean_field, prior_trainable, kl_weight=1/x.shape[0]), tfp.layers.DistributionLambda( lambda t: tfd.Normal(loc=t[..., :1], scale=1e-3 + tf.math.softplus(0.01 * t[...,1:]))), ]) # Do inference. model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik) model.fit(x, y, epochs=1000, verbose=False); # Profit. [print(np.squeeze(w.numpy())) for w in model.weights]; yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 4: Both Aleatoric & Epistemic Uncertainty plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); yhats = [model(x_tst) for _ in range(100)] avgm = np.zeros_like(x_tst[..., 0]) for i, yhat in enumerate(yhats): m = np.squeeze(yhat.mean()) s = np.squeeze(yhat.stddev()) if i < 15: plt.plot(x_tst, m, 'r', label='ensemble means' if i == 0 else None, linewidth=1.) plt.plot(x_tst, m + 2 * s, 'g', linewidth=0.5, label='ensemble means + 2 ensemble stdev' if i == 0 else None); plt.plot(x_tst, m - 2 * s, 'g', linewidth=0.5, label='ensemble means - 2 ensemble stdev' if i == 0 else None); avgm += m plt.plot(x_tst, avgm/len(yhats), 'r', label='overall mean', linewidth=4) plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig4.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____ ###Markdown Case 5: Functional Uncertainty ###Code #@title Custom PSD Kernel class RBFKernelFn(tf.keras.layers.Layer): def __init__(self, **kwargs): super(RBFKernelFn, self).__init__(**kwargs) dtype = kwargs.get('dtype', None) self._amplitude = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='amplitude') self._length_scale = self.add_variable( initializer=tf.constant_initializer(0), dtype=dtype, name='length_scale') def call(self, x): # Never called -- this is just a layer so it can hold variables # in a way Keras understands. return x @property def kernel(self): return tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude=tf.nn.softplus(0.1 * self._amplitude), length_scale=tf.nn.softplus(5. * self._length_scale) ) # For numeric stability, set the default floating-point dtype to float64 tf.keras.backend.set_floatx('float64') # Build model. num_inducing_points = 40 model = tf.keras.Sequential([ tf.keras.layers.InputLayer(input_shape=[1]), tf.keras.layers.Dense(1, kernel_initializer='ones', use_bias=False), tfp.layers.VariationalGaussianProcess( num_inducing_points=num_inducing_points, kernel_provider=RBFKernelFn(), event_shape=[1], inducing_index_points_initializer=tf.constant_initializer( np.linspace(*x_range, num=num_inducing_points, dtype=x.dtype)[..., np.newaxis]), unconstrained_observation_noise_variance_initializer=( tf.constant_initializer(np.array(0.54).astype(x.dtype))), ), ]) # Do inference. batch_size = 32 loss = lambda y, rv_y: rv_y.variational_loss( y, kl_weight=np.array(batch_size, x.dtype) / x.shape[0]) model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=loss) model.fit(x, y, batch_size=batch_size, epochs=1000, verbose=False) # Profit. yhat = model(x_tst) assert isinstance(yhat, tfd.Distribution) #@title Figure 5: Functional Uncertainty y, x, _ = load_dataset() plt.figure(figsize=[6, 1.5]) # inches plt.plot(x, y, 'b.', label='observed'); num_samples = 7 for i in range(num_samples): sample_ = yhat.sample().numpy() plt.plot(x_tst, sample_[..., 0].T, 'r', linewidth=0.9, label='ensemble means' if i == 0 else None); plt.ylim(-0.,17); plt.yticks(np.linspace(0, 15, 4)[1:]); plt.xticks(np.linspace(*x_range, num=9)); ax=plt.gca(); ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_smart_bounds(True) #ax.spines['bottom'].set_smart_bounds(True) plt.legend(loc='center left', fancybox=True, framealpha=0., bbox_to_anchor=(1.05, 0.5)) plt.savefig('/tmp/fig5.png', bbox_inches='tight', dpi=300) ###Output _____no_output_____
Python_Stock/Technical_Indicators/DEMA.ipynb
###Markdown Double Exponential Moving Average (DEMA) https://www.investopedia.com/terms/d/double-exponential-moving-average.asp ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # yfinance is used to fetch data import yfinance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-08-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() import talib as ta df['EMA'] = ta.EMA(df['Adj Close'], timeperiod=5) df['EMA_S'] = ta.EMA(df['EMA'], timeperiod=5) df['DEMA'] = (2*df['EMA']) - df['EMA_S'] df.head(15) # Line Chart fig = plt.figure(figsize=(16,8)) ax1 = plt.subplot(111) ax1.plot(df.index, df['Adj Close']) ax1.plot(df.index, df['DEMA']) ax1.axhline(y=df['Adj Close'].mean(),color='r') ax1.grid() #ax1.grid(True, which='both') #ax1.grid(which='minor', linestyle='-', linewidth='0.5', color='black') #ax1.grid(which='major', linestyle='-', linewidth='0.5', color='red') #ax1.minorticks_on() ax1.legend(loc='best') ax1v = ax1.twinx() ax1v.fill_between(df.index[0:],0, df.Volume[0:], facecolor='#0079a3', alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ###Output _____no_output_____ ###Markdown Candlestick with DEMA ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = mdates.date2num(dfc['Date'].astype(dt.date)) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(16,8)) ax1 = plt.subplot(111) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.plot(df.index, df['DEMA']) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ###Output _____no_output_____ ###Markdown Double Exponential Moving Average (DEMA) https://www.investopedia.com/terms/d/double-exponential-moving-average.asp ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # fix_yahoo_finance is used to fetch data import fix_yahoo_finance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-08-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() import talib as ta df['EMA'] = ta.EMA(df['Adj Close'], timeperiod=5) df['EMA_S'] = ta.EMA(df['EMA'], timeperiod=5) df['DEMA'] = (2*df['EMA']) - df['EMA_S'] df.head(15) # Line Chart fig = plt.figure(figsize=(16,8)) ax1 = plt.subplot(111) ax1.plot(df.index, df['Adj Close']) ax1.plot(df.index, df['DEMA']) ax1.axhline(y=df['Adj Close'].mean(),color='r') ax1.grid() #ax1.grid(True, which='both') #ax1.grid(which='minor', linestyle='-', linewidth='0.5', color='black') #ax1.grid(which='major', linestyle='-', linewidth='0.5', color='red') #ax1.minorticks_on() ax1.legend(loc='best') ax1v = ax1.twinx() ax1v.fill_between(df.index[0:],0, df.Volume[0:], facecolor='#0079a3', alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ###Output _____no_output_____ ###Markdown Candlestick with DEMA ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = mdates.date2num(dfc['Date'].astype(dt.date)) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(16,8)) ax1 = plt.subplot(111) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.plot(df.index, df['DEMA']) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ###Output _____no_output_____
course4/week3-ungraded-labs/C4_W3_Lab_1_Intro_to_KFP/C4_W3_Lab_1_Kubeflow_Pipelines.ipynb
###Markdown Ungraded Lab: Building ML Pipelines with Kubeflow In this lab, you will have some hands-on practice with [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/). As mentioned in the lectures, modern ML engineering is moving towards pipeline automation for rapid iteration and experiment tracking. This is especially useful in production deployments where models need to be frequently retrained to catch trends in newer data.Kubeflow Pipelines is one component of the [Kubeflow](https://www.kubeflow.org/) suite of tools for machine learning workflows. It is deployed on top of a Kubernetes cluster and builds an infrastructure for orchestrating ML pipelines and monitoring inputs and outputs of each component. You will use this tool in Google Cloud Platform in the first assignment this week and this lab will help prepare you for that by exploring its features on a local deployment. In particular, you will:* setup [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/) in your local workstation* get familiar with the Kubeflow Pipelines UI* build pipeline components with Python and the Kubeflow Pipelines SDK* run an ML pipeline with Kubeflow PipelinesLet's begin! SetupYou will need these tool installed in your local machine to complete the exercises:1. Docker - platform for building and running containerized applications. You should already have this installed from the previous ungraded labs. If not, you can see the instructions [here](https://docs.docker.com/get-docker/). If you are using Docker for Desktop (Mac or Windows), you may need to increase the resource limits to start Kubeflow Pipelines later. You can click on the Docker icon in your Task Bar, choose `Preferences` and adjust the CPU to 4, Storage to 50GB, and the memory to at least 4GB (8GB recommended). Just make sure you are not maxing out any of these limits (i.e. the slider should ideally be at the midpoint or less) since it can make your machine slow or unresponsive. If you're constrained on resources, don't worry. You can still use this notebook as reference since we'll show the expected outputs at each step. The important thing is to become familiar with this Kubeflow Pipelines before you get more hands-on in the assignment. 2. kubectl - tool for running commands on Kubernetes clusters. This should also be installed from the previous labs. If not, please see the instructions [here](https://kubernetes.io/docs/tasks/tools/)3. [kind](https://kind.sigs.k8s.io/) - a Kubernetes distribution for running local clusters using Docker. Please follow the instructions [here](https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/kind) to install kind and create a local cluster.4. Kubeflow Pipelines - a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers. Once you've created a local cluster using kind, you can deploy Kubeflow Pipelines with these commands.```export PIPELINE_VERSION=1.7.0kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.iokubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref=$PIPELINE_VERSION"```You can enter the commands above one line at a time. These will setup all the deployments and spin up the pods for the entire application. These will be found in the `kubeflow` namespace. After sending the last command, it will take a moment (around 30 minutes) for all the deployments to be ready. You can send the command `kubectl get deploy -n kubeflow` a few times to check the status. You should see all deployments with the `READY` status before you can proceed to the next section.```NAME READY UP-TO-DATE AVAILABLE AGEcache-deployer-deployment 1/1 1 1 21hcache-server 1/1 1 1 21hmetadata-envoy-deployment 1/1 1 1 21hmetadata-grpc-deployment 1/1 1 1 21hmetadata-writer 1/1 1 1 21hminio 1/1 1 1 21hml-pipeline 1/1 1 1 21hml-pipeline-persistenceagent 1/1 1 1 21hml-pipeline-scheduledworkflow 1/1 1 1 21hml-pipeline-ui 1/1 1 1 21hml-pipeline-viewer-crd 1/1 1 1 21hml-pipeline-visualizationserver 1/1 1 1 21hmysql 1/1 1 1 21hworkflow-controller 1/1 1 1 21h```When everything is ready, you can run the following command to access the `ml-pipeline-ui` service.```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80```The terminal should respond with something like this:```Forwarding from 127.0.0.1:8080 -> 3000Forwarding from [::1]:8080 -> 3000```You can then open your browser and go to `http://localhost:8080` to see the user interface. Operationalizing your ML PipelinesAs you know, generating a trained model involves executing a sequence of steps. Here is a high level overview of what these steps might look like:You can recall the very first model you ever built and more likely than not, your code then also followed a similar flow. In essence, building an ML pipeline mainly involves implementing these steps but you will need to optimize your operations to deliver value to your team. Platforms such as Kubeflow helps you to build ML pipelines that can be automated, reproducible, and easily monitored. You will see these as you build your pipeline in the next sections below. Pipeline componentsThe main building blocks of your ML pipeline are referred to as [components](https://www.kubeflow.org/docs/components/pipelines/overview/concepts/component/). In the context of Kubeflow, these are containerized applications that run a specific task in the pipeline. Moreover, these components generate and consume *artifacts* from other components. For example, a download task will generate a dataset artifact and this will be consumed by a data splitting task. If you go back to the simple pipeline image above and describe it using tasks and artifacts, it will look something like this:This relationship between tasks and their artifacts are what constitutes a pipeline and is also called a [directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph).Kubeflow Pipelines let's you create components either by [building the component specification directly](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/component-spec) or through [Python functions](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). For this lab, you will use the latter since it is more intuitive and allows for quick iteration. As you gain more experience, you can explore building the component specification directly especially if you want to use different languages other than Python.You will begin by installing the Kubeflow Pipelines SDK. Remember to restart the runtime to load the newly installed modules in Colab. ###Code # Install the KFP SDK !pip install --upgrade kfp ###Output _____no_output_____ ###Markdown **Note:** *Please do not proceed to the next steps without restarting the Runtime after installing `kfp`. You can do that by either pressing the `Restart Runtime` button at the end of the cell output above, or going to the `Runtime` button at the Colab toolbar above and selecting `Restart Runtime`.* Now you will import the modules you will be using to construct the Kubeflow pipeline. You will know more what these are for in the next sections. ###Code # Import the modules you will use import kfp # For creating the pipeline from kfp.v2 import dsl # For building components from kfp.v2.dsl import component # Type annotations for the component artifacts from kfp.v2.dsl import ( Input, Output, Artifact, Dataset, Model, Metrics ) ###Output _____no_output_____ ###Markdown In this lab, you will build a pipeline to train a multi-output model trained on the [Energy Effeciency dataset from the UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. You will follow the five-task graph above with some slight differences in the generated artifacts.You will now build the component to load your data into the pipeline. The code is shown below and we will discuss the syntax in more detail after running it. ###Code @component( packages_to_install=["pandas", "openpyxl"], output_component_file="download_data_component.yaml" ) def download_data(url:str, output_csv:Output[Dataset]): import pandas as pd # Use pandas excel reader df = pd.read_excel(url) df = df.sample(frac=1).reset_index(drop=True) df.to_csv(output_csv.path, index=False) ###Output _____no_output_____ ###Markdown When building a component, it's good to determine first its inputs and outputs.* The dataset you want to download is an Excel file hosted by UCI [here](https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx) and you can load that using Pandas. Instead of hardcoding the URL in your code, you can design your function to accept an *input* string parameter so you can use other URLs in case the data has been transferred. * For the *output*, you will want to pass the downloaded dataset to the next task (i.e. data splitting). You should assign this as an `Output` type and specify what kind of artifact it is. Kubeflow provides [several of these](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.py) such as `Dataset`, `Model`, `Metrics`, etc. All artifacts are saved by Kubeflow to a storage server. For local deployments, the default will be a [MinIO](https://min.io/) server. The [path](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL51) property fetches the location where this artifact will be saved and that's what you did above when you called `df.to_csv(output_csv.path, index=False)`The inputs and outputs are declared as parameters in the function definition. As you can see in the code we defined a `url` parameter with a `str` type and an `output_csv` parameter with an `Output[Dataset]` type.Lastly, you'll need to use the `component` decorator to specify that this is a Kubeflow Pipeline component. The [documentation](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/component_decorator.pyL23) shows several parameters you can set and two of them are used in the code above. As the name suggests, the `packages_to_install` argument declares any extra packages outside the base image that is needed to run your code. As of writing, the default base image is `python:3.7` so you'll need `pandas` and `openpyxl` to load the Excel file. The `output_component_file` is an output file that contains the specification for your newly built component. You should see it in the Colab file explorer once you've ran the cell above. You'll see your code there and other settings that pertain to your component. You can use this file when building other pipelines if necessary. You don't have to redo your code again in a notebook in your next project as long as you have this YAML file. You can also pass this to your team members or use it in another machine. Kubeflow also hosts other reusable modules in their repo [here](https://github.com/kubeflow/pipelines/tree/master/components). For example, if you want a file downloader component in one of your projects, you can load the component from that repo using the [load_component_from_url](https://kubeflow-pipelines.readthedocs.io/en/latest/source/kfp.components.htmlkfp.components.ComponentStore.load_component_from_url) function as shown below. The [YAML file](https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml) of that component should tell you the inputs and outputs so you can use it accordingly.```web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml')``` Next, you will build the next component in the pipeline. Like in the previous step, you should design it first with inputs and outputs in mind. You know that the input of this component will come from the artifact generated by the `download_data()` function above. To declare input artifacts, you can annotate your parameter with the `Input[Dataset]` data type as shown below. For the outputs, you want to have two: train and test datasets. You can see the implementation below: ###Code @component( packages_to_install=["pandas", "sklearn"], output_component_file="split_data_component.yaml" ) def split_data(input_csv: Input[Dataset], train_csv: Output[Dataset], test_csv: Output[Dataset]): import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv(input_csv.path) train, test = train_test_split(df, test_size=0.2) train.to_csv(train_csv.path, index=False) test.to_csv(test_csv.path, index=False) ###Output _____no_output_____ ###Markdown Building and Running a Pipeline Now that you have at least two components, you can try building a pipeline just to quickly see how it works. The code is shown below. Basically, you just define a function with the sequence of steps then use the `dsl.pipeline` decorator. Notice in the last line (i.e. `split_data_task`) that to get a particular artifact from a previous step, you will need to use the `outputs` dictionary and use the parameter name as the key. ###Code @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) ###Output _____no_output_____ ###Markdown To generate your pipeline specification file, you need to compile your pipeline function using the [`Compiler`](https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.compiler.htmlkfp.compiler.Compiler) class as shown below. ###Code kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown After running the cell, you'll see a `pipeline.yaml` file in the Colab file explorer. Please download that because it will be needed in the next step.You can run a pipeline programmatically or from the UI. For this exercise, you will do it from the UI and you will see how it is done programmatically in the Qwiklabs later this week. Please go back to the Kubeflow Pipelines UI and click `Upload Pipelines` from the `Pipelines` page.Next, select `Upload a file` and choose the `pipeline.yaml` you downloaded earlier then click `Create`. This will open a screen showing your simple DAG (just two tasks). Click `Create Run` then scroll to the bottom to input the URL of the Excel file: https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx . Then Click `Start`.Select the topmost entry in the `Runs` page and you should see the progress of your run. You can click on the `download-data` box to see more details about that particular task (i.e. the URL input and the container logs). After it turns green, you should also see the output artifact and you can download it if you want by clicking the minio link. Eventually, both tasks will turn green indicating that the run completed successfully. Nicely done! Generate the rest of the components Now that you've seen a sample workflow, you can build the rest of the components for preprocessing, model training, and model evaluation. The functions will be longer because the task is more complex. Nonetheless, it follows the same principles as before such as declaring inputs and outputs, and specifying the additional packages.In the `eval_model()` function, you'll notice the use of the [`log_metric()`](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL123) to record the results. You'll see this in the `Visualizations` tab of that task after it has completed. ###Code @component( packages_to_install=["pandas", "numpy"], output_component_file="preprocess_data_component.yaml" ) def preprocess_data(input_train_csv: Input[Dataset], input_test_csv: Input[Dataset], output_train_x: Output[Dataset], output_test_x: Output[Dataset], output_train_y: Output[Artifact], output_test_y: Output[Artifact]): import pandas as pd import numpy as np import pickle def format_output(data): y1 = data.pop('Y1') y1 = np.array(y1) y2 = data.pop('Y2') y2 = np.array(y2) return y1, y2 def norm(x, train_stats): return (x - train_stats['mean']) / train_stats['std'] train = pd.read_csv(input_train_csv.path) test = pd.read_csv(input_test_csv.path) train_stats = train.describe() # Get Y1 and Y2 as the 2 outputs and format them as np arrays train_stats.pop('Y1') train_stats.pop('Y2') train_stats = train_stats.transpose() train_Y = format_output(train) with open(output_train_y.path, "wb") as file: pickle.dump(train_Y, file) test_Y = format_output(test) with open(output_test_y.path, "wb") as file: pickle.dump(test_Y, file) # Normalize the training and test data norm_train_X = norm(train, train_stats) norm_test_X = norm(test, train_stats) norm_train_X.to_csv(output_train_x.path, index=False) norm_test_X.to_csv(output_test_x.path, index=False) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="train_model_component.yaml" ) def train_model(input_train_x: Input[Dataset], input_train_y: Input[Artifact], output_model: Output[Model], output_history: Output[Artifact]): import pandas as pd import tensorflow as tf import pickle from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input norm_train_X = pd.read_csv(input_train_x.path) with open(input_train_y.path, "rb") as file: train_Y = pickle.load(file) def model_builder(train_X): # Define model layers. input_layer = Input(shape=(len(train_X.columns),)) first_dense = Dense(units='128', activation='relu')(input_layer) second_dense = Dense(units='128', activation='relu')(first_dense) # Y1 output will be fed directly from the second dense y1_output = Dense(units='1', name='y1_output')(second_dense) third_dense = Dense(units='64', activation='relu')(second_dense) # Y2 output will come via the third dense y2_output = Dense(units='1', name='y2_output')(third_dense) # Define the model with the input layer and a list of output layers model = Model(inputs=input_layer, outputs=[y1_output, y2_output]) print(model.summary()) return model model = model_builder(norm_train_X) # Specify the optimizer, and compile the model with loss functions for both outputs optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=optimizer, loss={'y1_output': 'mse', 'y2_output': 'mse'}, metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(), 'y2_output': tf.keras.metrics.RootMeanSquaredError()}) # Train the model for 500 epochs history = model.fit(norm_train_X, train_Y, epochs=100, batch_size=10) model.save(output_model.path) with open(output_history.path, "wb") as file: train_Y = pickle.dump(history.history, file) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="eval_model_component.yaml" ) def eval_model(input_model: Input[Model], input_history: Input[Artifact], input_test_x: Input[Dataset], input_test_y: Input[Artifact], MLPipeline_Metrics: Output[Metrics]): import pandas as pd import tensorflow as tf import pickle model = tf.keras.models.load_model(input_model.path) norm_test_X = pd.read_csv(input_test_x.path) with open(input_test_y.path, "rb") as file: test_Y = pickle.load(file) # Test the model and print loss and mse for both outputs loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y) print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse)) MLPipeline_Metrics.log_metric("loss", loss) MLPipeline_Metrics.log_metric("Y1_loss", Y1_loss) MLPipeline_Metrics.log_metric("Y2_loss", Y2_loss) MLPipeline_Metrics.log_metric("Y1_rmse", Y1_rmse) MLPipeline_Metrics.log_metric("Y2_rmse", Y2_rmse) ###Output _____no_output_____ ###Markdown Build and run the complete pipeline You can then build and run the entire pipeline as you did earlier. It will take around 20 minutes for all the tasks to complete and you can see the `Logs` tab of each task to see how it's going. For instance, you can see there the model training epochs as you normally see in a notebook environment. ###Code # Define a pipeline and create a task from a component: @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) preprocess_data_task = preprocess_data(input_train_csv=split_data_task.outputs['train_csv'], input_test_csv=split_data_task.outputs['test_csv']) train_model_task = train_model(input_train_x=preprocess_data_task.outputs["output_train_x"], input_train_y=preprocess_data_task.outputs["output_train_y"]) eval_model_task = eval_model(input_model=train_model_task.outputs["output_model"], input_history=train_model_task.outputs["output_history"], input_test_x=preprocess_data_task.outputs["output_test_x"], input_test_y=preprocess_data_task.outputs["output_test_y"]) kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown Ungraded Lab: Building ML Pipelines with Kubeflow In this lab, you will have some hands-on practice with [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/). As mentioned in the lectures, modern ML engineering is moving towards pipeline automation for rapid iteration and experiment tracking. This is especially useful in production deployments where models need to be frequently retrained to catch trends in newer data.Kubeflow Pipelines is one component of the [Kubeflow](https://www.kubeflow.org/) suite of tools for machine learning workflows. It is deployed on top of a Kubernetes cluster and builds an infrastructure for orchestrating ML pipelines and monitoring inputs and outputs of each component. You will use this tool in Google Cloud Platform in the first assignment this week and this lab will help prepare you for that by exploring its features on a local deployment. In particular, you will:* setup [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/) in your local workstation* get familiar with the Kubeflow Pipelines UI* build pipeline components with Python and the Kubeflow Pipelines SDK* run an ML pipeline with Kubeflow PipelinesLet's begin! SetupYou will need these tool installed in your local machine to complete the exercises:1. Docker - platform for building and running containerized applications. You should already have this installed from the previous ungraded labs. If not, you can see the instructions [here](https://docs.docker.com/get-docker/). If you are using Docker for Desktop (Mac or Windows), you may need to increase the resource limits to start Kubeflow Pipelines later. You can click on the Docker icon in your Task Bar, choose `Preferences` and adjust the CPU to 4, Storage to 50GB, and the memory to at least 4GB (8GB recommended). Just make sure you are not maxing out any of these limits (i.e. the slider should ideally be at the midpoint or less) since it can make your machine slow or unresponsive. If you're constrained on resources, don't worry. You can still use this notebook as reference since we'll show the expected outputs at each step. The important thing is to become familiar with this Kubeflow Pipelines before you get more hands-on in the assignment. 2. kubectl - tool for running commands on Kubernetes clusters. This should also be installed from the previous labs. If not, please see the instructions [here](https://kubernetes.io/docs/tasks/tools/)3. [kind](https://kind.sigs.k8s.io/) - a Kubernetes distribution for running local clusters using Docker. Please follow the instructions [here](https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/kind) to install kind and create a local cluster.4. Kubeflow Pipelines - a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers. Once you've created a local cluster using kind, you can deploy Kubeflow Pipelines with these commands.```export PIPELINE_VERSION=1.7.0kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.iokubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref=$PIPELINE_VERSION"```You can enter the commands above one line at a time. These will setup all the deployments and spin up the pods for the entire application. These will be found in the `kubeflow` namespace. After sending the last command, it will take a moment (around 30 minutes) for all the deployments to be ready. You can send the command `kubectl get deploy -n kubeflow` a few times to check the status. You should see all deployments with the `READY` status before you can proceed to the next section.```NAME READY UP-TO-DATE AVAILABLE AGEcache-deployer-deployment 1/1 1 1 21hcache-server 1/1 1 1 21hmetadata-envoy-deployment 1/1 1 1 21hmetadata-grpc-deployment 1/1 1 1 21hmetadata-writer 1/1 1 1 21hminio 1/1 1 1 21hml-pipeline 1/1 1 1 21hml-pipeline-persistenceagent 1/1 1 1 21hml-pipeline-scheduledworkflow 1/1 1 1 21hml-pipeline-ui 1/1 1 1 21hml-pipeline-viewer-crd 1/1 1 1 21hml-pipeline-visualizationserver 1/1 1 1 21hmysql 1/1 1 1 21hworkflow-controller 1/1 1 1 21h```When everything is ready, you can run the following command to access the `ml-pipeline-ui` service.```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80```The terminal should respond with something like this:```Forwarding from 127.0.0.1:8080 -> 3000Forwarding from [::1]:8080 -> 3000```You can then open your browser and go to `http://localhost:8080` to see the user interface. Operationalizing your ML PipelinesAs you know, generating a trained model involves executing a sequence of steps. Here is a high level overview of what these steps might look like:You can recall the very first model you ever built and more likely than not, your code then also followed a similar flow. In essence, building an ML pipeline mainly involves implementing these steps but you will need to optimize your operations to deliver value to your team. Platforms such as Kubeflow helps you to build ML pipelines that can be automated, reproducible, and easily monitored. You will see these as you build your pipeline in the next sections below. Pipeline componentsThe main building blocks of your ML pipeline are referred to as [components](https://www.kubeflow.org/docs/components/pipelines/overview/concepts/component/). In the context of Kubeflow, these are containerized applications that run a specific task in the pipeline. Moreover, these components generate and consume *artifacts* from other components. For example, a download task will generate a dataset artifact and this will be consumed by a data splitting task. If you go back to the simple pipeline image above and describe it using tasks and artifacts, it will look something like this:This relationship between tasks and their artifacts are what constitutes a pipeline and is also called a [directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph).Kubeflow Pipelines let's you create components either by [building the component specification directly](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/component-spec) or through [Python functions](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). For this lab, you will use the latter since it is more intuitive and allows for quick iteration. As you gain more experience, you can explore building the component specification directly especially if you want to use different languages other than Python.You will begin by installing the Kubeflow Pipelines SDK. Remember to restart the runtime to load the newly installed modules in Colab. ###Code # Install the KFP SDK !pip install --upgrade kfp ###Output _____no_output_____ ###Markdown **Note:** *Please do not proceed to the next steps without restarting the Runtime after installing `kfp`. You can do that by either pressing the `Restart Runtime` button at the end of the cell output above, or going to the `Runtime` button at the Colab toolbar above and selecting `Restart Runtime`.* Now you will import the modules you will be using to construct the Kubeflow pipeline. You will know more what these are for in the next sections. ###Code # Import the modules you will use import kfp # For creating the pipeline from kfp.v2 import dsl # For building components from kfp.v2.dsl import component # Type annotations for the component artifacts from kfp.v2.dsl import ( Input, Output, Artifact, Dataset, Model, Metrics ) ###Output _____no_output_____ ###Markdown In this lab, you will build a pipeline to train a multi-output model trained on the [Energy Effeciency dataset from the UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. You will follow the five-task graph above with some slight differences in the generated artifacts.You will now build the component to load your data into the pipeline. The code is shown below and we will discuss the syntax in more detail after running it. ###Code @component( packages_to_install=["pandas", "openpyxl"], output_component_file="download_data_component.yaml" ) def download_data(url:str, output_csv:Output[Dataset]): import pandas as pd # Use pandas excel reader df = pd.read_excel(url) df = df.sample(frac=1).reset_index(drop=True) df.to_csv(output_csv.path, index=False) ###Output _____no_output_____ ###Markdown When building a component, it's good to determine first its inputs and outputs.* The dataset you want to download is an Excel file hosted by UCI [here](https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx) and you can load that using Pandas. Instead of hardcoding the URL in your code, you can design your function to accept an *input* string parameter so you can use other URLs in case the data has been transferred. * For the *output*, you will want to pass the downloaded dataset to the next task (i.e. data splitting). You should assign this as an `Output` type and specify what kind of artifact it is. Kubeflow provides [several of these](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.py) such as `Dataset`, `Model`, `Metrics`, etc. All artifacts are saved by Kubeflow to a storage server. For local deployments, the default will be a [MinIO](https://min.io/) server. The [path](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL51) property fetches the location where this artifact will be saved and that's what you did above when you called `df.to_csv(output_csv.path, index=False)`The inputs and outputs are declared as parameters in the function definition. As you can see in the code we defined a `url` parameter with a `str` type and an `output_csv` parameter with an `Output[Dataset]` type.Lastly, you'll need to use the `component` decorator to specify that this is a Kubeflow Pipeline component. The [documentation](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/component_decorator.pyL23) shows several parameters you can set and two of them are used in the code above. As the name suggests, the `packages_to_install` argument declares any extra packages outside the base image that is needed to run your code. As of writing, the default base image is `python:3.7` so you'll need `pandas` and `openpyxl` to load the Excel file. The `output_component_file` is an output file that contains the specification for your newly built component. You should see it in the Colab file explorer once you've ran the cell above. You'll see your code there and other settings that pertain to your component. You can use this file when building other pipelines if necessary. You don't have to redo your code again in a notebook in your next project as long as you have this YAML file. You can also pass this to your team members or use it in another machine. Kubeflow also hosts other reusable modules in their repo [here](https://github.com/kubeflow/pipelines/tree/master/components). For example, if you want a file downloader component in one of your projects, you can load the component from that repo using the [load_component_from_url](https://kubeflow-pipelines.readthedocs.io/en/latest/source/kfp.components.htmlkfp.components.ComponentStore.load_component_from_url) function as shown below. The [YAML file](https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml) of that component should tell you the inputs and outputs so you can use it accordingly.```web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml')``` Next, you will build the next component in the pipeline. Like in the previous step, you should design it first with inputs and outputs in mind. You know that the input of this component will come from the artifact generated by the `download_data()` function above. To declare input artifacts, you can annotate your parameter with the `Input[Dataset]` data type as shown below. For the outputs, you want to have two: train and test datasets. You can see the implementation below: ###Code @component( packages_to_install=["pandas", "sklearn"], output_component_file="split_data_component.yaml" ) def split_data(input_csv: Input[Dataset], train_csv: Output[Dataset], test_csv: Output[Dataset]): import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv(input_csv.path) train, test = train_test_split(df, test_size=0.2) train.to_csv(train_csv.path, index=False) test.to_csv(test_csv.path, index=False) ###Output _____no_output_____ ###Markdown Building and Running a Pipeline Now that you have at least two components, you can try building a pipeline just to quickly see how it works. The code is shown below. Basically, you just define a function with the sequence of steps then use the `dsl.pipeline` decorator. Notice in the last line (i.e. `split_data_task`) that to get a particular artifact from a previous step, you will need to use the `outputs` dictionary and use the parameter name as the key. ###Code @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) ###Output _____no_output_____ ###Markdown To generate your pipeline specification file, you need to compile your pipeline function using the [`Compiler`](https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.compiler.htmlkfp.compiler.Compiler) class as shown below. ###Code kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown After running the cell, you'll see a `pipeline.yaml` file in the Colab file explorer. Please download that because it will be needed in the next step.You can run a pipeline programmatically or from the UI. For this exercise, you will do it from the UI and you will see how it is done programmatically in the Qwiklabs later this week. Please go back to the Kubeflow Pipelines UI and click `Upload Pipelines` from the `Pipelines` page.Next, select `Upload a file` and choose the `pipeline.yaml` you downloaded earlier then click `Create`. This will open a screen showing your simple DAG (just two tasks). Click `Create Run` then scroll to the bottom to input the URL of the Excel file: https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx . Then Click `Start`.Select the topmost entry in the `Runs` page and you should see the progress of your run. You can click on the `download-data` box to see more details about that particular task (i.e. the URL input and the container logs). After it turns green, you should also see the output artifact and you can download it if you want by clicking the minio link. Eventually, both tasks will turn green indicating that the run completed successfully. Nicely done! Generate the rest of the components Now that you've seen a sample workflow, you can build the rest of the components for preprocessing, model training, and model evaluation. The functions will be longer because the task is more complex. Nonetheless, it follows the same principles as before such as declaring inputs and outputs, and specifying the additional packages.In the `eval_model()` function, you'll notice the use of the [`log_metric()`](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL123) to record the results. You'll see this in the `Visualizations` tab of that task after it has completed. ###Code @component( packages_to_install=["pandas", "numpy"], output_component_file="preprocess_data_component.yaml" ) def preprocess_data(input_train_csv: Input[Dataset], input_test_csv: Input[Dataset], output_train_x: Output[Dataset], output_test_x: Output[Dataset], output_train_y: Output[Artifact], output_test_y: Output[Artifact]): import pandas as pd import numpy as np import pickle def format_output(data): y1 = data.pop('Y1') y1 = np.array(y1) y2 = data.pop('Y2') y2 = np.array(y2) return y1, y2 def norm(x, train_stats): return (x - train_stats['mean']) / train_stats['std'] train = pd.read_csv(input_train_csv.path) test = pd.read_csv(input_test_csv.path) train_stats = train.describe() # Get Y1 and Y2 as the 2 outputs and format them as np arrays train_stats.pop('Y1') train_stats.pop('Y2') train_stats = train_stats.transpose() train_Y = format_output(train) with open(output_train_y.path, "wb") as file: pickle.dump(train_Y, file) test_Y = format_output(test) with open(output_test_y.path, "wb") as file: pickle.dump(test_Y, file) # Normalize the training and test data norm_train_X = norm(train, train_stats) norm_test_X = norm(test, train_stats) norm_train_X.to_csv(output_train_x.path, index=False) norm_test_X.to_csv(output_test_x.path, index=False) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="train_model_component.yaml" ) def train_model(input_train_x: Input[Dataset], input_train_y: Input[Artifact], output_model: Output[Model], output_history: Output[Artifact]): import pandas as pd import tensorflow as tf import pickle from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input norm_train_X = pd.read_csv(input_train_x.path) with open(input_train_y.path, "rb") as file: train_Y = pickle.load(file) def model_builder(train_X): # Define model layers. input_layer = Input(shape=(len(train_X.columns),)) first_dense = Dense(units='128', activation='relu')(input_layer) second_dense = Dense(units='128', activation='relu')(first_dense) # Y1 output will be fed directly from the second dense y1_output = Dense(units='1', name='y1_output')(second_dense) third_dense = Dense(units='64', activation='relu')(second_dense) # Y2 output will come via the third dense y2_output = Dense(units='1', name='y2_output')(third_dense) # Define the model with the input layer and a list of output layers model = Model(inputs=input_layer, outputs=[y1_output, y2_output]) print(model.summary()) return model model = model_builder(norm_train_X) # Specify the optimizer, and compile the model with loss functions for both outputs optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=optimizer, loss={'y1_output': 'mse', 'y2_output': 'mse'}, metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(), 'y2_output': tf.keras.metrics.RootMeanSquaredError()}) # Train the model for 500 epochs history = model.fit(norm_train_X, train_Y, epochs=100, batch_size=10) model.save(output_model.path) with open(output_history.path, "wb") as file: train_Y = pickle.dump(history.history, file) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="eval_model_component.yaml" ) def eval_model(input_model: Input[Model], input_history: Input[Artifact], input_test_x: Input[Dataset], input_test_y: Input[Artifact], MLPipeline_Metrics: Output[Metrics]): import pandas as pd import tensorflow as tf import pickle model = tf.keras.models.load_model(input_model.path) norm_test_X = pd.read_csv(input_test_x.path) with open(input_test_y.path, "rb") as file: test_Y = pickle.load(file) # Test the model and print loss and mse for both outputs loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y) print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse)) MLPipeline_Metrics.log_metric("loss", loss) MLPipeline_Metrics.log_metric("Y1_loss", Y1_loss) MLPipeline_Metrics.log_metric("Y2_loss", Y2_loss) MLPipeline_Metrics.log_metric("Y1_rmse", Y1_rmse) MLPipeline_Metrics.log_metric("Y2_rmse", Y2_rmse) ###Output _____no_output_____ ###Markdown Build and run the complete pipeline You can then build and run the entire pipeline as you did earlier. It will take around 20 minutes for all the tasks to complete and you can see the `Logs` tab of each task to see how it's going. For instance, you can see there the model training epochs as you normally see in a notebook environment. ###Code # Define a pipeline and create a task from a component: @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) preprocess_data_task = preprocess_data(input_train_csv=split_data_task.outputs['train_csv'], input_test_csv=split_data_task.outputs['test_csv']) train_model_task = train_model(input_train_x=preprocess_data_task.outputs["output_train_x"], input_train_y=preprocess_data_task.outputs["output_train_y"]) eval_model_task = eval_model(input_model=train_model_task.outputs["output_model"], input_history=train_model_task.outputs["output_history"], input_test_x=preprocess_data_task.outputs["output_test_x"], input_test_y=preprocess_data_task.outputs["output_test_y"]) kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown Ungraded Lab: Building ML Pipelines with Kubeflow In this lab, you will have some hands-on practice with [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/). As mentioned in the lectures, modern ML engineering is moving towards pipeline automation for rapid iteration and experiment tracking. This is especially useful in production deployments where models need to be frequently retrained to catch trends in newer data.Kubeflow Pipelines is one component of the [Kubeflow](https://www.kubeflow.org/) suite of tools for machine learning workflows. It is deployed on top of a Kubernetes cluster and builds an infrastructure for orchestrating ML pipelines and monitoring inputs and outputs of each component. You will use this tool in Google Cloud Platform in the first assignment this week and this lab will help prepare you for that by exploring its features on a local deployment. In particular, you will:* setup [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/) in your local workstation* get familiar with the Kubeflow Pipelines UI* build pipeline components with Python and the Kubeflow Pipelines SDK* run an ML pipeline with Kubeflow PipelinesLet's begin! SetupYou will need these tool installed in your local machine to complete the exercises:1. Docker - platform for building and running containerized applications. You should already have this installed from the previous ungraded labs. If not, you can see the instructions [here](https://docs.docker.com/get-docker/). If you are using Docker for Desktop (Mac or Windows), you may need to increase the resource limits to start Kubeflow Pipelines later. You can click on the Docker icon in your Task Bar, choose `Preferences` and adjust the CPU to 4, Storage to 50GB, and the memory to at least 4GB (8GB recommended). Just make sure you are not maxing out any of these limits (i.e. the slider should ideally be at the midpoint or less) since it can make your machine slow or unresponsive. If you're constrained on resources, don't worry. You can still use this notebook as reference since we'll show the expected outputs at each step. The important thing is to become familiar with this Kubeflow Pipelines before you get more hands-on in the assignment. 2. kubectl - tool for running commands on Kubernetes clusters. This should also be installed from the previous labs. If not, please see the instructions [here](https://kubernetes.io/docs/tasks/tools/)3. [kind](https://kind.sigs.k8s.io/) - a Kubernetes distribution for running local clusters using Docker. Please follow the instructions [here](https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/kind) to install kind and create a local cluster.4. Kubeflow Pipelines - a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers. Once you've created a local cluster using kind, you can deploy Kubeflow Pipelines with these commands.```export PIPELINE_VERSION=1.7.0kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.iokubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref=$PIPELINE_VERSION"```You can enter the commands above one line at a time. These will setup all the deployments and spin up the pods for the entire application. These will be found in the `kubeflow` namespace. After sending the last command, it will take a moment (around 30 minutes) for all the deployments to be ready. You can send the command `kubectl get deploy -n kubeflow` a few times to check the status. You should see all deployments with the `READY` status before you can proceed to the next section.```NAME READY UP-TO-DATE AVAILABLE AGEcache-deployer-deployment 1/1 1 1 21hcache-server 1/1 1 1 21hmetadata-envoy-deployment 1/1 1 1 21hmetadata-grpc-deployment 1/1 1 1 21hmetadata-writer 1/1 1 1 21hminio 1/1 1 1 21hml-pipeline 1/1 1 1 21hml-pipeline-persistenceagent 1/1 1 1 21hml-pipeline-scheduledworkflow 1/1 1 1 21hml-pipeline-ui 1/1 1 1 21hml-pipeline-viewer-crd 1/1 1 1 21hml-pipeline-visualizationserver 1/1 1 1 21hmysql 1/1 1 1 21hworkflow-controller 1/1 1 1 21h```When everything is ready, you can run the following command to access the `ml-pipeline-ui` service.```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80```The terminal should respond with something like this:```Forwarding from 127.0.0.1:8080 -> 3000Forwarding from [::1]:8080 -> 3000```You can then open your browser and go to `http://localhost:8080` to see the user interface. Operationalizing your ML PipelinesAs you know, generating a trained model involves executing a sequence of steps. Here is a high level overview of what these steps might look like:You can recall the very first model you ever built and more likely than not, your code then also followed a similar flow. In essence, building an ML pipeline mainly involves implementing these steps but you will need to optimize your operations to deliver value to your team. Platforms such as Kubeflow helps you to build ML pipelines that can be automated, reproducible, and easily monitored. You will see these as you build your pipeline in the next sections below. Pipeline componentsThe main building blocks of your ML pipeline are referred to as [components](https://www.kubeflow.org/docs/components/pipelines/overview/concepts/component/). In the context of Kubeflow, these are containerized applications that run a specific task in the pipeline. Moreover, these components generate and consume *artifacts* from other components. For example, a download task will generate a dataset artifact and this will be consumed by a data splitting task. If you go back to the simple pipeline image above and describe it using tasks and artifacts, it will look something like this:This relationship between tasks and their artifacts are what constitutes a pipeline and is also called a [directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph).Kubeflow Pipelines let's you create components either by [building the component specification directly](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/component-spec) or through [Python functions](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). For this lab, you will use the latter since it is more intuitive and allows for quick iteration. As you gain more experience, you can explore building the component specification directly especially if you want to use different languages other than Python.You will begin by installing the Kubeflow Pipelines SDK. Remember to restart the runtime to load the newly installed modules in Colab. ###Code # Install the KFP SDK !pip install --upgrade kfp ###Output _____no_output_____ ###Markdown **Note:** *Please do not proceed to the next steps without restarting the Runtime after installing `kfp`. You can do that by either pressing the `Restart Runtime` button at the end of the cell output above, or going to the `Runtime` button at the Colab toolbar above and selecting `Restart Runtime`.* Now you will import the modules you will be using to construct the Kubeflow pipeline. You will know more what these are for in the next sections. ###Code # Import the modules you will use import kfp # For creating the pipeline from kfp.v2 import dsl # For building components from kfp.v2.dsl import component # Type annotations for the component artifacts from kfp.v2.dsl import ( Input, Output, Artifact, Dataset, Model, Metrics ) ###Output _____no_output_____ ###Markdown In this lab, you will build a pipeline to train a multi-output model trained on the [Energy Effeciency dataset from the UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. You will follow the five-task graph above with some slight differences in the generated artifacts.You will now build the component to load your data into the pipeline. The code is shown below and we will discuss the syntax in more detail after running it. ###Code @component( packages_to_install=["pandas", "openpyxl"], output_component_file="download_data_component.yaml" ) def download_data(url:str, output_csv:Output[Dataset]): import pandas as pd # Use pandas excel reader df = pd.read_excel(url) df = df.sample(frac=1).reset_index(drop=True) df.to_csv(output_csv.path, index=False) ###Output _____no_output_____ ###Markdown When building a component, it's good to determine first its inputs and outputs.* The dataset you want to download is an Excel file hosted by UCI [here](https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx) and you can load that using Pandas. Instead of hardcoding the URL in your code, you can design your function to accept an *input* string parameter so you can use other URLs in case the data has been transferred. * For the *output*, you will want to pass the downloaded dataset to the next task (i.e. data splitting). You should assign this as an `Output` type and specify what kind of artifact it is. Kubeflow provides [several of these](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.py) such as `Dataset`, `Model`, `Metrics`, etc. All artifacts are saved by Kubeflow to a storage server. For local deployments, the default will be a [MinIO](https://min.io/) server. The [path](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL51) property fetches the location where this artifact will be saved and that's what you did above when you called `df.to_csv(output_csv.path, index=False)`The inputs and outputs are declared as parameters in the function definition. As you can see in the code we defined a `url` parameter with a `str` type and an `output_csv` parameter with an `Output[Dataset]` type.Lastly, you'll need to use the `component` decorator to specify that this is a Kubeflow Pipeline component. The [documentation](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/component_decorator.pyL23) shows several parameters you can set and two of them are used in the code above. As the name suggests, the `packages_to_install` argument declares any extra packages outside the base image that is needed to run your code. As of writing, the default base image is `python:3.7` so you'll need `pandas` and `openpyxl` to load the Excel file. The `output_component_file` is an output file that contains the specification for your newly built component. You should see it in the Colab file explorer once you've ran the cell above. You'll see your code there and other settings that pertain to your component. You can use this file when building other pipelines if necessary. You don't have to redo your code again in a notebook in your next project as long as you have this YAML file. You can also pass this to your team members or use it in another machine. Kubeflow also hosts other reusable modules in their repo [here](https://github.com/kubeflow/pipelines/tree/master/components). For example, if you want a file downloader component in one of your projects, you can load the component from that repo using the [load_component_from_url](https://kubeflow-pipelines.readthedocs.io/en/latest/source/kfp.components.htmlkfp.components.ComponentStore.load_component_from_url) function as shown below. The [YAML file](https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml) of that component should tell you the inputs and outputs so you can use it accordingly.```web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml')``` Next, you will build the next component in the pipeline. Like in the previous step, you should design it first with inputs and outputs in mind. You know that the input of this component will come from the artifact generated by the `download_data()` function above. To declare input artifacts, you can annotate your parameter with the `Input[Dataset]` data type as shown below. For the outputs, you want to have two: train and test datasets. You can see the implementation below: ###Code @component( packages_to_install=["pandas", "sklearn"], output_component_file="split_data_component.yaml" ) def split_data(input_csv: Input[Dataset], train_csv: Output[Dataset], test_csv: Output[Dataset]): import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv(input_csv.path) train, test = train_test_split(df, test_size=0.2) train.to_csv(train_csv.path, index=False) test.to_csv(test_csv.path, index=False) ###Output _____no_output_____ ###Markdown Building and Running a Pipeline Now that you have at least two components, you can try building a pipeline just to quickly see how it works. The code is shown below. Basically, you just define a function with the sequence of steps then use the `dsl.pipeline` decorator. Notice in the last line (i.e. `split_data_task`) that to get a particular artifact from a previous step, you will need to use the `outputs` dictionary and use the parameter name as the key. ###Code @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) ###Output _____no_output_____ ###Markdown To generate your pipeline specification file, you need to compile your pipeline function using the [`Compiler`](https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.compiler.htmlkfp.compiler.Compiler) class as shown below. ###Code kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown After running the cell, you'll see a `pipeline.yaml` file in the Colab file explorer. Please download that because it will be needed in the next step.You can run a pipeline programmatically or from the UI. For this exercise, you will do it from the UI and you will see how it is done programmatically in the Qwiklabs later this week. Please go back to the Kubeflow Pipelines UI and click `Upload Pipelines` from the `Pipelines` page.Next, select `Upload a file` and choose the `pipeline.yaml` you downloaded earlier then click `Create`. This will open a screen showing your simple DAG (just two tasks). Click `Create Run` then scroll to the bottom to input the URL of the Excel file: https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx . Then Click `Start`.Select the topmost entry in the `Runs` page and you should see the progress of your run. You can click on the `download-data` box to see more details about that particular task (i.e. the URL input and the container logs). After it turns green, you should also see the output artifact and you can download it if you want by clicking the minio link. Eventually, both tasks will turn green indicating that the run completed successfully. Nicely done! Generate the rest of the components Now that you've seen a sample workflow, you can build the rest of the components for preprocessing, model training, and model evaluation. The functions will be longer because the task is more complex. Nonetheless, it follows the same principles as before such as declaring inputs and outputs, and specifying the additional packages.In the `eval_model()` function, you'll notice the use of the [`log_metric()`](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL123) to record the results. You'll see this in the `Visualizations` tab of that task after it has completed. ###Code @component( packages_to_install=["pandas", "numpy"], output_component_file="preprocess_data_component.yaml" ) def preprocess_data(input_train_csv: Input[Dataset], input_test_csv: Input[Dataset], output_train_x: Output[Dataset], output_test_x: Output[Dataset], output_train_y: Output[Artifact], output_test_y: Output[Artifact]): import pandas as pd import numpy as np import pickle def format_output(data): y1 = data.pop('Y1') y1 = np.array(y1) y2 = data.pop('Y2') y2 = np.array(y2) return y1, y2 def norm(x, train_stats): return (x - train_stats['mean']) / train_stats['std'] train = pd.read_csv(input_train_csv.path) test = pd.read_csv(input_test_csv.path) train_stats = train.describe() # Get Y1 and Y2 as the 2 outputs and format them as np arrays train_stats.pop('Y1') train_stats.pop('Y2') train_stats = train_stats.transpose() train_Y = format_output(train) with open(output_train_y.path, "wb") as file: pickle.dump(train_Y, file) test_Y = format_output(test) with open(output_test_y.path, "wb") as file: pickle.dump(test_Y, file) # Normalize the training and test data norm_train_X = norm(train, train_stats) norm_test_X = norm(test, train_stats) norm_train_X.to_csv(output_train_x.path, index=False) norm_test_X.to_csv(output_test_x.path, index=False) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="train_model_component.yaml" ) def train_model(input_train_x: Input[Dataset], input_train_y: Input[Artifact], output_model: Output[Model], output_history: Output[Artifact]): import pandas as pd import tensorflow as tf import pickle from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input norm_train_X = pd.read_csv(input_train_x.path) with open(input_train_y.path, "rb") as file: train_Y = pickle.load(file) def model_builder(train_X): # Define model layers. input_layer = Input(shape=(len(train_X.columns),)) first_dense = Dense(units='128', activation='relu')(input_layer) second_dense = Dense(units='128', activation='relu')(first_dense) # Y1 output will be fed directly from the second dense y1_output = Dense(units='1', name='y1_output')(second_dense) third_dense = Dense(units='64', activation='relu')(second_dense) # Y2 output will come via the third dense y2_output = Dense(units='1', name='y2_output')(third_dense) # Define the model with the input layer and a list of output layers model = Model(inputs=input_layer, outputs=[y1_output, y2_output]) print(model.summary()) return model model = model_builder(norm_train_X) # Specify the optimizer, and compile the model with loss functions for both outputs optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=optimizer, loss={'y1_output': 'mse', 'y2_output': 'mse'}, metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(), 'y2_output': tf.keras.metrics.RootMeanSquaredError()}) # Train the model for 500 epochs history = model.fit(norm_train_X, train_Y, epochs=100, batch_size=10) model.save(output_model.path) with open(output_history.path, "wb") as file: train_Y = pickle.dump(history.history, file) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="eval_model_component.yaml" ) def eval_model(input_model: Input[Model], input_history: Input[Artifact], input_test_x: Input[Dataset], input_test_y: Input[Artifact], MLPipeline_Metrics: Output[Metrics]): import pandas as pd import tensorflow as tf import pickle model = tf.keras.models.load_model(input_model.path) norm_test_X = pd.read_csv(input_test_x.path) with open(input_test_y.path, "rb") as file: test_Y = pickle.load(file) # Test the model and print loss and mse for both outputs loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y) print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse)) MLPipeline_Metrics.log_metric("loss", loss) MLPipeline_Metrics.log_metric("Y1_loss", Y1_loss) MLPipeline_Metrics.log_metric("Y2_loss", Y2_loss) MLPipeline_Metrics.log_metric("Y1_rmse", Y1_rmse) MLPipeline_Metrics.log_metric("Y2_rmse", Y2_rmse) ###Output _____no_output_____ ###Markdown Build and run the complete pipeline You can then build and run the entire pipeline as you did earlier. It will take around 20 minutes for all the tasks to complete and you can see the `Logs` tab of each task to see how it's going. For instance, you can see there the model training epochs as you normally see in a notebook environment. ###Code # Define a pipeline and create a task from a component: @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) preprocess_data_task = preprocess_data(input_train_csv=split_data_task.outputs['train_csv'], input_test_csv=split_data_task.outputs['test_csv']) train_model_task = train_model(input_train_x=preprocess_data_task.outputs["output_train_x"], input_train_y=preprocess_data_task.outputs["output_train_y"]) eval_model_task = eval_model(input_model=train_model_task.outputs["output_model"], input_history=train_model_task.outputs["output_history"], input_test_x=preprocess_data_task.outputs["output_test_x"], input_test_y=preprocess_data_task.outputs["output_test_y"]) kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown Ungraded Lab: Building ML Pipelines with Kubeflow In this lab, you will have some hands-on practice with [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/). As mentioned in the lectures, modern ML engineering is moving towards pipeline automation for rapid iteration and experiment tracking. This is especially useful in production deployments where models need to be frequently retrained to catch trends in newer data.Kubeflow Pipelines is one component of the [Kubeflow](https://www.kubeflow.org/) suite of tools for machine learning workflows. It is deployed on top of a Kubernetes cluster and builds an infrastructure for orchestrating ML pipelines and monitoring inputs and outputs of each component. You will use this tool in Google Cloud Platform in the first assignment this week and this lab will help prepare you for that by exploring its features on a local deployment. In particular, you will:* setup [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/) in your local workstation* get familiar with the Kubeflow Pipelines UI* build pipeline components with Python and the Kubeflow Pipelines SDK* run an ML pipeline with Kubeflow PipelinesLet's begin! SetupYou will need these tool installed in your local machine to complete the exercises:1. Docker - platform for building and running containerized applications. You should already have this installed from the previous ungraded labs. If not, you can see the instructions [here](https://docs.docker.com/get-docker/). If you are using Docker for Desktop (Mac or Windows), you may need to increase the resource limits to start Kubeflow Pipelines later. You can click on the Docker icon in your Task Bar, choose `Preferences` and adjust the CPU to 4, Storage to 50GB, and the memory to at least 4GB (8GB recommended). Just make sure you are not maxing out any of these limits (i.e. the slider should ideally be at the midpoint or less) since it can make your machine slow or unresponsive. If you're constrained on resources, don't worry. You can still use this notebook as reference since we'll show the expected outputs at each step. The important thing is to become familiar with this Kubeflow Pipelines before you get more hands-on in the assignment. 2. kubectl - tool for running commands on Kubernetes clusters. This should also be installed from the previous labs. If not, please see the instructions [here](https://kubernetes.io/docs/tasks/tools/)3. [kind](https://kind.sigs.k8s.io/) - a Kubernetes distribution for running local clusters using Docker. Please follow the instructions [here](https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/kind) to install kind and create a local cluster.4. Kubeflow Pipelines - a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers. Once you've created a local cluster using kind, you can deploy Kubeflow Pipelines with these commands.```export PIPELINE_VERSION=1.7.0kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.iokubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref=$PIPELINE_VERSION"```You can enter the commands above one line at a time. These will setup all the deployments and spin up the pods for the entire application. These will be found in the `kubeflow` namespace. After sending the last command, it will take a moment (around 30 minutes) for all the deployments to be ready. You can send the command `kubectl get deploy -n kubeflow` a few times to check the status. You should see all deployments with the `READY` status before you can proceed to the next section.```NAME READY UP-TO-DATE AVAILABLE AGEcache-deployer-deployment 1/1 1 1 21hcache-server 1/1 1 1 21hmetadata-envoy-deployment 1/1 1 1 21hmetadata-grpc-deployment 1/1 1 1 21hmetadata-writer 1/1 1 1 21hminio 1/1 1 1 21hml-pipeline 1/1 1 1 21hml-pipeline-persistenceagent 1/1 1 1 21hml-pipeline-scheduledworkflow 1/1 1 1 21hml-pipeline-ui 1/1 1 1 21hml-pipeline-viewer-crd 1/1 1 1 21hml-pipeline-visualizationserver 1/1 1 1 21hmysql 1/1 1 1 21hworkflow-controller 1/1 1 1 21h```When everything is ready, you can run the following command to access the `ml-pipeline-ui` service.```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80```The terminal should respond with something like this:```Forwarding from 127.0.0.1:8080 -> 3000Forwarding from [::1]:8080 -> 3000```You can then open your browser and go to `http://localhost:8080` to see the user interface. Operationalizing your ML PipelinesAs you know, generating a trained model involves executing a sequence of steps. Here is a high level overview of what these steps might look like:You can recall the very first model you ever built and more likely than not, your code then also followed a similar flow. In essence, building an ML pipeline mainly involves implementing these steps but you will need to optimize your operations to deliver value to your team. Platforms such as Kubeflow helps you to build ML pipelines that can be automated, reproducible, and easily monitored. You will see these as you build your pipeline in the next sections below. Pipeline componentsThe main building blocks of your ML pipeline are referred to as [components](https://www.kubeflow.org/docs/components/pipelines/overview/concepts/component/). In the context of Kubeflow, these are containerized applications that run a specific task in the pipeline. Moreover, these components generate and consume *artifacts* from other components. For example, a download task will generate a dataset artifact and this will be consumed by a data splitting task. If you go back to the simple pipeline image above and describe it using tasks and artifacts, it will look something like this:This relationship between tasks and their artifacts are what constitutes a pipeline and is also called a [directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph).Kubeflow Pipelines let's you create components either by [building the component specification directly](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/component-spec) or through [Python functions](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). For this lab, you will use the latter since it is more intuitive and allows for quick iteration. As you gain more experience, you can explore building the component specification directly especially if you want to use different languages other than Python.You will begin by installing the Kubeflow Pipelines SDK. Remember to restart the runtime to load the newly installed modules in Colab. ###Code # Install the KFP SDK !pip install --upgrade kfp ###Output _____no_output_____ ###Markdown **Note:** *Please do not proceed to the next steps without restarting the Runtime after installing `kfp`. You can do that by either pressing the `Restart Runtime` button at the end of the cell output above, or going to the `Runtime` button at the Colab toolbar above and selecting `Restart Runtime`.* Now you will import the modules you will be using to construct the Kubeflow pipeline. You will know more what these are for in the next sections. ###Code # Import the modules you will use import kfp # For creating the pipeline from kfp.v2 import dsl # For building components from kfp.v2.dsl import component # Type annotations for the component artifacts from kfp.v2.dsl import ( Input, Output, Artifact, Dataset, Model, Metrics ) ###Output _____no_output_____ ###Markdown In this lab, you will build a pipeline to train a multi-output model trained on the [Energy Effeciency dataset from the UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. You will follow the five-task graph above with some slight differences in the generated artifacts.You will now build the component to load your data into the pipeline. The code is shown below and we will discuss the syntax in more detail after running it. ###Code @component( packages_to_install=["pandas", "openpyxl"], output_component_file="download_data_component.yaml" ) def download_data(url:str, output_csv:Output[Dataset]): import pandas as pd # Use pandas excel reader df = pd.read_excel(url) df = df.sample(frac=1).reset_index(drop=True) df.to_csv(output_csv.path, index=False) ###Output _____no_output_____ ###Markdown When building a component, it's good to determine first its inputs and outputs.* The dataset you want to download is an Excel file hosted by UCI [here](https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx) and you can load that using Pandas. Instead of hardcoding the URL in your code, you can design your function to accept an *input* string parameter so you can use other URLs in case the data has been transferred. * For the *output*, you will want to pass the downloaded dataset to the next task (i.e. data splitting). You should assign this as an `Output` type and specify what kind of artifact it is. Kubeflow provides [several of these](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.py) such as `Dataset`, `Model`, `Metrics`, etc. All artifacts are saved by Kubeflow to a storage server. For local deployments, the default will be a [MinIO](https://min.io/) server. The [path](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL51) property fetches the location where this artifact will be saved and that's what you did above when you called `df.to_csv(output_csv.path, index=False)`The inputs and outputs are declared as parameters in the function definition. As you can see in the code we defined a `url` parameter with a `str` type and an `output_csv` parameter with an `Output[Dataset]` type.Lastly, you'll need to use the `component` decorator to specify that this is a Kubeflow Pipeline component. The [documentation](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/component_decorator.pyL23) shows several parameters you can set and two of them are used in the code above. As the name suggests, the `packages_to_install` argument declares any extra packages outside the base image that is needed to run your code. As of writing, the default base image is `python:3.7` so you'll need `pandas` and `openpyxl` to load the Excel file. The `output_component_file` is an output file that contains the specification for your newly built component. You should see it in the Colab file explorer once you've ran the cell above. You'll see your code there and other settings that pertain to your component. You can use this file when building other pipelines if necessary. You don't have to redo your code again in a notebook in your next project as long as you have this YAML file. You can also pass this to your team members or use it in another machine. Kubeflow also hosts other reusable modules in their repo [here](https://github.com/kubeflow/pipelines/tree/master/components). For example, if you want a file downloader component in one of your projects, you can load the component from that repo using the [load_component_from_url](https://kubeflow-pipelines.readthedocs.io/en/latest/source/kfp.components.htmlkfp.components.ComponentStore.load_component_from_url) function as shown below. The [YAML file](https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml) of that component should tell you the inputs and outputs so you can use it accordingly.```web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml')``` Next, you will build the next component in the pipeline. Like in the previous step, you should design it first with inputs and outputs in mind. You know that the input of this component will come from the artifact generated by the `download_data()` function above. To declare input artifacts, you can annotate your parameter with the `Input[Dataset]` data type as shown below. For the outputs, you want to have two: train and test datasets. You can see the implementation below: ###Code @component( packages_to_install=["pandas", "sklearn"], output_component_file="split_data_component.yaml" ) def split_data(input_csv: Input[Dataset], train_csv: Output[Dataset], test_csv: Output[Dataset]): import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv(input_csv.path) train, test = train_test_split(df, test_size=0.2) train.to_csv(train_csv.path, index=False) test.to_csv(test_csv.path, index=False) ###Output _____no_output_____ ###Markdown Building and Running a Pipeline Now that you have at least two components, you can try building a pipeline just to quickly see how it works. The code is shown below. Basically, you just define a function with the sequence of steps then use the `dsl.pipeline` decorator. Notice in the last line (i.e. `split_data_task`) that to get a particular artifact from a previous step, you will need to use the `outputs` dictionary and use the parameter name as the key. ###Code @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) ###Output _____no_output_____ ###Markdown To generate your pipeline specification file, you need to compile your pipeline function using the [`Compiler`](https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.compiler.htmlkfp.compiler.Compiler) class as shown below. ###Code kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown After running the cell, you'll see a `pipeline.yaml` file in the Colab file explorer. Please download that because it will be needed in the next step.You can run a pipeline programmatically or from the UI. For this exercise, you will do it from the UI and you will see how it is done programmatically in the Qwiklabs later this week. Please go back to the Kubeflow Pipelines UI and click `Upload Pipelines` from the `Pipelines` page.Next, select `Upload a file` and choose the `pipeline.yaml` you downloaded earlier then click `Create`. This will open a screen showing your simple DAG (just two tasks). Click `Create Run` then scroll to the bottom to input the URL of the Excel file: https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx . Then Click `Start`.Select the topmost entry in the `Runs` page and you should see the progress of your run. You can click on the `download-data` box to see more details about that particular task (i.e. the URL input and the container logs). After it turns green, you should also see the output artifact and you can download it if you want by clicking the minio link. Eventually, both tasks will turn green indicating that the run completed successfully. Nicely done! Generate the rest of the components Now that you've seen a sample workflow, you can build the rest of the components for preprocessing, model training, and model evaluation. The functions will be longer because the task is more complex. Nonetheless, it follows the same principles as before such as declaring inputs and outputs, and specifying the additional packages.In the `eval_model()` function, you'll notice the use of the [`log_metric()`](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL123) to record the results. You'll see this in the `Visualizations` tab of that task after it has completed. ###Code @component( packages_to_install=["pandas", "numpy"], output_component_file="preprocess_data_component.yaml" ) def preprocess_data(input_train_csv: Input[Dataset], input_test_csv: Input[Dataset], output_train_x: Output[Dataset], output_test_x: Output[Dataset], output_train_y: Output[Artifact], output_test_y: Output[Artifact]): import pandas as pd import numpy as np import pickle def format_output(data): y1 = data.pop('Y1') y1 = np.array(y1) y2 = data.pop('Y2') y2 = np.array(y2) return y1, y2 def norm(x, train_stats): return (x - train_stats['mean']) / train_stats['std'] train = pd.read_csv(input_train_csv.path) test = pd.read_csv(input_test_csv.path) train_stats = train.describe() # Get Y1 and Y2 as the 2 outputs and format them as np arrays train_stats.pop('Y1') train_stats.pop('Y2') train_stats = train_stats.transpose() train_Y = format_output(train) with open(output_train_y.path, "wb") as file: pickle.dump(train_Y, file) test_Y = format_output(test) with open(output_test_y.path, "wb") as file: pickle.dump(test_Y, file) # Normalize the training and test data norm_train_X = norm(train, train_stats) norm_test_X = norm(test, train_stats) norm_train_X.to_csv(output_train_x.path, index=False) norm_test_X.to_csv(output_test_x.path, index=False) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="train_model_component.yaml" ) def train_model(input_train_x: Input[Dataset], input_train_y: Input[Artifact], output_model: Output[Model], output_history: Output[Artifact]): import pandas as pd import tensorflow as tf import pickle from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input norm_train_X = pd.read_csv(input_train_x.path) with open(input_train_y.path, "rb") as file: train_Y = pickle.load(file) def model_builder(train_X): # Define model layers. input_layer = Input(shape=(len(train_X.columns),)) first_dense = Dense(units='128', activation='relu')(input_layer) second_dense = Dense(units='128', activation='relu')(first_dense) # Y1 output will be fed directly from the second dense y1_output = Dense(units='1', name='y1_output')(second_dense) third_dense = Dense(units='64', activation='relu')(second_dense) # Y2 output will come via the third dense y2_output = Dense(units='1', name='y2_output')(third_dense) # Define the model with the input layer and a list of output layers model = Model(inputs=input_layer, outputs=[y1_output, y2_output]) print(model.summary()) return model model = model_builder(norm_train_X) # Specify the optimizer, and compile the model with loss functions for both outputs optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=optimizer, loss={'y1_output': 'mse', 'y2_output': 'mse'}, metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(), 'y2_output': tf.keras.metrics.RootMeanSquaredError()}) # Train the model for 500 epochs history = model.fit(norm_train_X, train_Y, epochs=100, batch_size=10) model.save(output_model.path) with open(output_history.path, "wb") as file: train_Y = pickle.dump(history.history, file) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="eval_model_component.yaml" ) def eval_model(input_model: Input[Model], input_history: Input[Artifact], input_test_x: Input[Dataset], input_test_y: Input[Artifact], MLPipeline_Metrics: Output[Metrics]): import pandas as pd import tensorflow as tf import pickle model = tf.keras.models.load_model(input_model.path) norm_test_X = pd.read_csv(input_test_x.path) with open(input_test_y.path, "rb") as file: test_Y = pickle.load(file) # Test the model and print loss and mse for both outputs loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y) print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse)) MLPipeline_Metrics.log_metric("loss", loss) MLPipeline_Metrics.log_metric("Y1_loss", Y1_loss) MLPipeline_Metrics.log_metric("Y2_loss", Y2_loss) MLPipeline_Metrics.log_metric("Y1_rmse", Y1_rmse) MLPipeline_Metrics.log_metric("Y2_rmse", Y2_rmse) ###Output _____no_output_____ ###Markdown Build and run the complete pipeline You can then build and run the entire pipeline as you did earlier. It will take around 20 minutes for all the tasks to complete and you can see the `Logs` tab of each task to see how it's going. For instance, you can see there the model training epochs as you normally see in a notebook environment. ###Code # Define a pipeline and create a task from a component: @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) preprocess_data_task = preprocess_data(input_train_csv=split_data_task.outputs['train_csv'], input_test_csv=split_data_task.outputs['test_csv']) train_model_task = train_model(input_train_x=preprocess_data_task.outputs["output_train_x"], input_train_y=preprocess_data_task.outputs["output_train_y"]) eval_model_task = eval_model(input_model=train_model_task.outputs["output_model"], input_history=train_model_task.outputs["output_history"], input_test_x=preprocess_data_task.outputs["output_test_x"], input_test_y=preprocess_data_task.outputs["output_test_y"]) kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown Ungraded Lab: Building ML Pipelines with Kubeflow In this lab, you will have some hands-on practice with [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/). As mentioned in the lectures, modern ML engineering is moving towards pipeline automation for rapid iteration and experiment tracking. This is especially useful in production deployments where models need to be frequently retrained to catch trends in newer data.Kubeflow Pipelines is one component of the [Kubeflow](https://www.kubeflow.org/) suite of tools for machine learning workflows. It is deployed on top of a Kubernetes cluster and builds an infrastructure for orchestrating ML pipelines and monitoring inputs and outputs of each component. You will use this tool in Google Cloud Platform in the first assignment this week and this lab will help prepare you for that by exploring its features on a local deployment. In particular, you will:* setup [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/) in your local workstation* get familiar with the Kubeflow Pipelines UI* build pipeline components with Python and the Kubeflow Pipelines SDK* run an ML pipeline with Kubeflow PipelinesLet's begin! SetupYou will need these tool installed in your local machine to complete the exercises:1. Docker - platform for building and running containerized applications. You should already have this installed from the previous ungraded labs. If not, you can see the instructions [here](https://docs.docker.com/get-docker/). If you are using Docker for Desktop (Mac or Windows), you may need to increase the resource limits to start Kubeflow Pipelines later. You can click on the Docker icon in your Task Bar, choose `Preferences` and adjust the CPU to 4, Storage to 50GB, and the memory to at least 4GB (8GB recommended). Just make sure you are not maxing out any of these limits (i.e. the slider should ideally be at the midpoint or less) since it can make your machine slow or unresponsive. If you're constrained on resources, don't worry. You can still use this notebook as reference since we'll show the expected outputs at each step. The important thing is to become familiar with this Kubeflow Pipelines before you get more hands-on in the assignment. 2. kubectl - tool for running commands on Kubernetes clusters. This should also be installed from the previous labs. If not, please see the instructions [here](https://kubernetes.io/docs/tasks/tools/)3. [kind](https://kind.sigs.k8s.io/) - a Kubernetes distribution for running local clusters using Docker. Please follow the instructions [here](https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/kind) to install kind and create a local cluster.4. Kubeflow Pipelines - a platform for building and deploying portable, scalable machine learning (ML) workflows based on Docker containers. Once you've created a local cluster using kind, you can deploy Kubeflow Pipelines with these commands.```export PIPELINE_VERSION=1.7.0kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.iokubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref=$PIPELINE_VERSION"```You can enter the commands above one line at a time. These will setup all the deployments and spin up the pods for the entire application. These will be found in the `kubeflow` namespace. After sending the last command, it will take a moment (around 30 minutes) for all the deployments to be ready. You can send the command `kubectl get deploy -n kubeflow` a few times to check the status. You should see all deployments with the `READY` status before you can proceed to the next section.```NAME READY UP-TO-DATE AVAILABLE AGEcache-deployer-deployment 1/1 1 1 21hcache-server 1/1 1 1 21hmetadata-envoy-deployment 1/1 1 1 21hmetadata-grpc-deployment 1/1 1 1 21hmetadata-writer 1/1 1 1 21hminio 1/1 1 1 21hml-pipeline 1/1 1 1 21hml-pipeline-persistenceagent 1/1 1 1 21hml-pipeline-scheduledworkflow 1/1 1 1 21hml-pipeline-ui 1/1 1 1 21hml-pipeline-viewer-crd 1/1 1 1 21hml-pipeline-visualizationserver 1/1 1 1 21hmysql 1/1 1 1 21hworkflow-controller 1/1 1 1 21h```When everything is ready, you can run the following command to access the `ml-pipeline-ui` service.```kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80```The terminal should respond with something like this:```Forwarding from 127.0.0.1:8080 -> 3000Forwarding from [::1]:8080 -> 3000```You can then open your browser and go to `http://localhost:8080` to see the user interface. Operationalizing your ML PipelinesAs you know, generating a trained model involves executing a sequence of steps. Here is a high level overview of what these steps might look like:You can recall the very first model you ever built and more likely than not, your code then also followed a similar flow. In essence, building an ML pipeline mainly involves implementing these steps but you will need to optimize your operations to deliver value to your team. Platforms such as Kubeflow helps you to build ML pipelines that can be automated, reproducible, and easily monitored. You will see these as you build your pipeline in the next sections below. Pipeline componentsThe main building blocks of your ML pipeline are referred to as [components](https://www.kubeflow.org/docs/components/pipelines/overview/concepts/component/). In the context of Kubeflow, these are containerized applications that run a specific task in the pipeline. Moreover, these components generate and consume *artifacts* from other components. For example, a download task will generate a dataset artifact and this will be consumed by a data splitting task. If you go back to the simple pipeline image above and describe it using tasks and artifacts, it will look something like this:This relationship between tasks and their artifacts are what constitutes a pipeline and is also called a [directed acyclic graph (DAG)](https://en.wikipedia.org/wiki/Directed_acyclic_graph).Kubeflow Pipelines let's you create components either by [building the component specification directly](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/component-spec) or through [Python functions](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). For this lab, you will use the latter since it is more intuitive and allows for quick iteration. As you gain more experience, you can explore building the component specification directly especially if you want to use different languages other than Python.You will begin by installing the Kubeflow Pipelines SDK. Remember to restart the runtime to load the newly installed modules in Colab. ###Code # Install the KFP SDK !pip install --upgrade kfp ###Output _____no_output_____ ###Markdown **Note:** *Please do not proceed to the next steps without restarting the Runtime after installing `kfp`. You can do that by either pressing the `Restart Runtime` button at the end of the cell output above, or going to the `Runtime` button at the Colab toolbar above and selecting `Restart Runtime`.* Now you will import the modules you will be using to construct the Kubeflow pipeline. You will know more what these are for in the next sections. ###Code # Import the modules you will use import kfp # For creating the pipeline from kfp.v2 import dsl # For building components from kfp.v2.dsl import component # Type annotations for the component artifacts from kfp.v2.dsl import ( Input, Output, Artifact, Dataset, Model, Metrics ) ###Output _____no_output_____ ###Markdown In this lab, you will build a pipeline to train a multi-output model trained on the [Energy Effeciency dataset from the UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Energy+efficiency). It uses the bulding features (e.g. wall area, roof area) as inputs and has two outputs: Cooling Load and Heating Load. You will follow the five-task graph above with some slight differences in the generated artifacts.You will now build the component to load your data into the pipeline. The code is shown below and we will discuss the syntax in more detail after running it. ###Code @component( packages_to_install=["pandas", "openpyxl"], output_component_file="download_data_component.yaml" ) def download_data(url:str, output_csv:Output[Dataset]): import pandas as pd # Use pandas excel reader df = pd.read_excel(url) df = df.sample(frac=1).reset_index(drop=True) df.to_csv(output_csv.path, index=False) ###Output _____no_output_____ ###Markdown When building a component, it's good to determine first its inputs and outputs.* The dataset you want to download is an Excel file hosted by UCI [here](https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx) and you can load that using Pandas. Instead of hardcoding the URL in your code, you can design your function to accept an *input* string parameter so you can use other URLs in case the data has been transferred. * For the *output*, you will want to pass the downloaded dataset to the next task (i.e. data splitting). You should assign this as an `Output` type and specify what kind of artifact it is. Kubeflow provides [several of these](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.py) such as `Dataset`, `Model`, `Metrics`, etc. All artifacts are saved by Kubeflow to a storage server. For local deployments, the default will be a [MinIO](https://min.io/) server. The [path](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL51) property fetches the location where this artifact will be saved and that's what you did above when you called `df.to_csv(output_csv.path, index=False)`The inputs and outputs are declared as parameters in the function definition. As you can see in the code we defined a `url` parameter with a `str` type and an `output_csv` parameter with an `Output[Dataset]` type.Lastly, you'll need to use the `component` decorator to specify that this is a Kubeflow Pipeline component. The [documentation](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/component_decorator.pyL23) shows several parameters you can set and two of them are used in the code above. As the name suggests, the `packages_to_install` argument declares any extra packages outside the base image that is needed to run your code. As of writing, the default base image is `python:3.7` so you'll need `pandas` and `openpyxl` to load the Excel file. The `output_component_file` is an output file that contains the specification for your newly built component. You should see it in the Colab file explorer once you've ran the cell above. You'll see your code there and other settings that pertain to your component. You can use this file when building other pipelines if necessary. You don't have to redo your code again in a notebook in your next project as long as you have this YAML file. You can also pass this to your team members or use it in another machine. Kubeflow also hosts other reusable modules in their repo [here](https://github.com/kubeflow/pipelines/tree/master/components). For example, if you want a file downloader component in one of your projects, you can load the component from that repo using the [load_component_from_url](https://kubeflow-pipelines.readthedocs.io/en/latest/source/kfp.components.htmlkfp.components.ComponentStore.load_component_from_url) function as shown below. The [YAML file](https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml) of that component should tell you the inputs and outputs so you can use it accordingly.```web_downloader_op = kfp.components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/master/components/web/Download/component-sdk-v2.yaml')``` Next, you will build the next component in the pipeline. Like in the previous step, you should design it first with inputs and outputs in mind. You know that the input of this component will come from the artifact generated by the `download_data()` function above. To declare input artifacts, you can annotate your parameter with the `Input[Dataset]` data type as shown below. For the outputs, you want to have two: train and test datasets. You can see the implementation below: ###Code @component( packages_to_install=["pandas", "sklearn"], output_component_file="split_data_component.yaml" ) def split_data(input_csv: Input[Dataset], train_csv: Output[Dataset], test_csv: Output[Dataset]): import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv(input_csv.path) train, test = train_test_split(df, test_size=0.2) train.to_csv(train_csv.path, index=False) test.to_csv(test_csv.path, index=False) ###Output _____no_output_____ ###Markdown Building and Running a Pipeline Now that you have at least two components, you can try building a pipeline just to quickly see how it works. The code is shown below. Basically, you just define a function with the sequence of steps then use the `dsl.pipeline` decorator. Notice in the last line (i.e. `split_data_task`) that to get a particular artifact from a previous step, you will need to use the `outputs` dictionary and use the parameter name as the key. ###Code @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) ###Output _____no_output_____ ###Markdown To generate your pipeline specification file, you need to compile your pipeline function using the [`Compiler`](https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.compiler.htmlkfp.compiler.Compiler) class as shown below. ###Code kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____ ###Markdown After running the cell, you'll see a `pipeline.yaml` file in the Colab file explorer. Please download that because it will be needed in the next step.You can run a pipeline programmatically or from the UI. For this exercise, you will do it from the UI and you will see how it is done programmatically in the Qwiklabs later this week. Please go back to the Kubeflow Pipelines UI and click `Upload Pipelines` from the `Pipelines` page.Next, select `Upload a file` and choose the `pipeline.yaml` you downloaded earlier then click `Create`. This will open a screen showing your simple DAG (just two tasks). Click `Create Run` then scroll to the bottom to input the URL of the Excel file: https://archive.ics.uci.edu/ml/machine-learning-databases/00242/ENB2012_data.xlsx . Then Click `Start`.Select the topmost entry in the `Runs` page and you should see the progress of your run. You can click on the `download-data` box to see more details about that particular task (i.e. the URL input and the container logs). After it turns green, you should also see the output artifact and you can download it if you want by clicking the minio link. Eventually, both tasks will turn green indicating that the run completed successfully. Nicely done! Generate the rest of the components Now that you've seen a sample workflow, you can build the rest of the components for preprocessing, model training, and model evaluation. The functions will be longer because the task is more complex. Nonetheless, it follows the same principles as before such as declaring inputs and outputs, and specifying the additional packages.In the `eval_model()` function, you'll notice the use of the [`log_metric()`](https://github.com/kubeflow/pipelines/blob/master/sdk/python/kfp/v2/components/types/artifact_types.pyL123) to record the results. You'll see this in the `Visualizations` tab of that task after it has completed. ###Code @component( packages_to_install=["pandas", "numpy"], output_component_file="preprocess_data_component.yaml" ) def preprocess_data(input_train_csv: Input[Dataset], input_test_csv: Input[Dataset], output_train_x: Output[Dataset], output_test_x: Output[Dataset], output_train_y: Output[Artifact], output_test_y: Output[Artifact]): import pandas as pd import numpy as np import pickle def format_output(data): y1 = data.pop('Y1') y1 = np.array(y1) y2 = data.pop('Y2') y2 = np.array(y2) return y1, y2 def norm(x, train_stats): return (x - train_stats['mean']) / train_stats['std'] train = pd.read_csv(input_train_csv.path) test = pd.read_csv(input_test_csv.path) train_stats = train.describe() # Get Y1 and Y2 as the 2 outputs and format them as np arrays train_stats.pop('Y1') train_stats.pop('Y2') train_stats = train_stats.transpose() train_Y = format_output(train) with open(output_train_y.path, "wb") as file: pickle.dump(train_Y, file) test_Y = format_output(test) with open(output_test_y.path, "wb") as file: pickle.dump(test_Y, file) # Normalize the training and test data norm_train_X = norm(train, train_stats) norm_test_X = norm(test, train_stats) norm_train_X.to_csv(output_train_x.path, index=False) norm_test_X.to_csv(output_test_x.path, index=False) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="train_model_component.yaml" ) def train_model(input_train_x: Input[Dataset], input_train_y: Input[Artifact], output_model: Output[Model], output_history: Output[Artifact]): import pandas as pd import tensorflow as tf import pickle from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input norm_train_X = pd.read_csv(input_train_x.path) with open(input_train_y.path, "rb") as file: train_Y = pickle.load(file) def model_builder(train_X): # Define model layers. input_layer = Input(shape=(len(train_X.columns),)) first_dense = Dense(units='128', activation='relu')(input_layer) second_dense = Dense(units='128', activation='relu')(first_dense) # Y1 output will be fed directly from the second dense y1_output = Dense(units='1', name='y1_output')(second_dense) third_dense = Dense(units='64', activation='relu')(second_dense) # Y2 output will come via the third dense y2_output = Dense(units='1', name='y2_output')(third_dense) # Define the model with the input layer and a list of output layers model = Model(inputs=input_layer, outputs=[y1_output, y2_output]) print(model.summary()) return model model = model_builder(norm_train_X) # Specify the optimizer, and compile the model with loss functions for both outputs optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) model.compile(optimizer=optimizer, loss={'y1_output': 'mse', 'y2_output': 'mse'}, metrics={'y1_output': tf.keras.metrics.RootMeanSquaredError(), 'y2_output': tf.keras.metrics.RootMeanSquaredError()}) # Train the model for 500 epochs history = model.fit(norm_train_X, train_Y, epochs=100, batch_size=10) model.save(output_model.path) with open(output_history.path, "wb") as file: train_Y = pickle.dump(history.history, file) @component( packages_to_install=["tensorflow", "pandas"], output_component_file="eval_model_component.yaml" ) def eval_model(input_model: Input[Model], input_history: Input[Artifact], input_test_x: Input[Dataset], input_test_y: Input[Artifact], MLPipeline_Metrics: Output[Metrics]): import pandas as pd import tensorflow as tf import pickle model = tf.keras.models.load_model(input_model.path) norm_test_X = pd.read_csv(input_test_x.path) with open(input_test_y.path, "rb") as file: test_Y = pickle.load(file) # Test the model and print loss and mse for both outputs loss, Y1_loss, Y2_loss, Y1_rmse, Y2_rmse = model.evaluate(x=norm_test_X, y=test_Y) print("Loss = {}, Y1_loss = {}, Y1_mse = {}, Y2_loss = {}, Y2_mse = {}".format(loss, Y1_loss, Y1_rmse, Y2_loss, Y2_rmse)) MLPipeline_Metrics.log_metric("loss", loss) MLPipeline_Metrics.log_metric("Y1_loss", Y1_loss) MLPipeline_Metrics.log_metric("Y2_loss", Y2_loss) MLPipeline_Metrics.log_metric("Y1_rmse", Y1_rmse) MLPipeline_Metrics.log_metric("Y2_rmse", Y2_rmse) ###Output _____no_output_____ ###Markdown Build and run the complete pipeline You can then build and run the entire pipeline as you did earlier. It will take around 20 minutes for all the tasks to complete and you can see the `Logs` tab of each task to see how it's going. For instance, you can see there the model training epochs as you normally see in a notebook environment. ###Code # Define a pipeline and create a task from a component: @dsl.pipeline( name="my-pipeline", ) def my_pipeline(url: str): download_data_task = download_data(url=url) split_data_task = split_data(input_csv=download_data_task.outputs['output_csv']) preprocess_data_task = preprocess_data(input_train_csv=split_data_task.outputs['train_csv'], input_test_csv=split_data_task.outputs['test_csv']) train_model_task = train_model(input_train_x=preprocess_data_task.outputs["output_train_x"], input_train_y=preprocess_data_task.outputs["output_train_y"]) eval_model_task = eval_model(input_model=train_model_task.outputs["output_model"], input_history=train_model_task.outputs["output_history"], input_test_x=preprocess_data_task.outputs["output_test_x"], input_test_y=preprocess_data_task.outputs["output_test_y"]) kfp.compiler.Compiler(mode=kfp.dsl.PipelineExecutionMode.V2_COMPATIBLE).compile( pipeline_func=my_pipeline, package_path='pipeline.yaml') ###Output _____no_output_____
.ipynb_checkpoints/StevenSmiley-BreastCancer-ML-checkpoint.ipynb
###Markdown Using Machine Learning to Diagnose Breast Cancer in Python by: Steven Smiley Problem Statement:Find a Machine Learning (ML) model that accurately predicts breast cancer based on the 30 features described below. 1. Background:Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29Attribute Information:1) ID number 2) Diagnosis (M = malignant, B = benign) 3-32)Ten real-valued features are computed for each cell nucleus:a) radius (mean of distances from center to points on the perimeter) b) texture (standard deviation of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths) f) compactness (perimeter^2 / area - 1.0) g) concavity (severity of concave portions of the contour) h) concave points (number of concave portions of the contour) i) symmetry j) fractal dimension ("coastline approximation" - 1)The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.All feature values are recoded with four significant digits.Missing attribute values: noneClass distribution: 357 benign, 212 malignant 2. Abstract: When it comes to diagnosing breast cancer, we want to make sure we don't have too many false positives (you have cancer, but told you dont) or false negatives (you don't have cancer, but told you do and go on treatments). Therefore, the highest overall accuracy model was chosen, which was the Gradient Boosted model. Several different models were evaluated through k-crossfold validation and GridSearchCV, which iterates on different algorithm's hyperparameters: * Logistic Regression * Support Vector Machine * Neural Network * Random Forest * Gradient Boost * eXtreme Gradient Boost All of the models performed well after fine tunning their hyperparameters, but the best model was the Gradient Boosted model as shown with an accuracy of ~97.4%. Out of the 20% of data witheld in this test (114 random individuals), only 3 were misdiagnosed. Two of which were misdiagnosed via False Positive, which means they had cancer, but told they didn't. One was misdiganosed via False Negative, which means they didn't have cancer, but told they did. No model is perfect, but I am happy about how accurate my model is here. If on average only 3 people out of 114 are misdiagnosed, that is a good start for making a model. Furthermore, the Feature Importance plots show that the "concave points mean" was by far the most significant feature to extract from a biopsy and should be taken each time if possible for predicting breast cancer. 3. Import Libraries ###Code import warnings import os # Get Current Directory from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score import pandas as pd # data processing, CSV file I/O (e.i. pd.read_csv) import numpy as np import matplotlib.pyplot as plt import seaborn as sns import joblib from time import time from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.decomposition import PCA from scipy import stats import subprocess from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.utils.multiclass import unique_labels import itertools ###Output _____no_output_____ ###Markdown 3. Hide Warnings ###Code warnings.filterwarnings("ignore") pd.set_option('mode.chained_assignment', None) ###Output _____no_output_____ ###Markdown 4. Get Current Directory ###Code currentDirectory=os.getcwd() print(currentDirectory) ###Output /Users/stevensmiley/Desktop/GraduateSchool/Python/PythonCodes/BreastCancer ###Markdown 5. Import and View Data ###Code #data= pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv') data=os.path.join(currentDirectory,'data.csv') data= pd.read_csv(data) data.head(10) # view the first 10 columns ###Output _____no_output_____ ###Markdown 5.1 Import and View Data: Check for Missing ValuesAs the background stated, no missing values should be present. The following verifies that. The last column doesn't hold any information and should be removed. In addition, the diagnosis should be changed to a binary classification of 0= benign and 1=malignant. ###Code data.isnull().sum() # Drop Unnamed: 32 variable that has NaN values. data.drop(['Unnamed: 32'],axis=1,inplace=True) # Convert Diagnosis for Cancer from Categorical Variable to Binary diagnosis_num={'B':0,'M':1} data['diagnosis']=data['diagnosis'].map(diagnosis_num) # Verify Data Changes, look at first 5 rows data.head(5) ###Output _____no_output_____ ###Markdown 6. Split Data for Training A good rule of thumb is to hold out 20 percent of the data for testing. ###Code X = data.drop(['id','diagnosis'], axis= 1) y = data.diagnosis X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 42) # Use Pandas DataFrame X_train = pd.DataFrame(X_train) X_test=pd.DataFrame(X_test) y_train = pd.DataFrame(y_train) y_test=pd.DataFrame(y_test) tr_features=X_train tr_labels=y_train val_features = X_test val_labels=y_test ###Output _____no_output_____ ###Markdown Verify the data was split correctly ###Code print('X_train - length:',len(X_train), 'y_train - length:',len(y_train)) print('X_test - length:',len(X_test),'y_test - length:',len(y_test)) print('Percent heldout for testing:', round(100*(len(X_test)/len(data)),0),'%') ###Output X_train - length: 455 y_train - length: 455 X_test - length: 114 y_test - length: 114 Percent heldout for testing: 20.0 % ###Markdown 7. Machine Learning:In order to find a good model, several algorithms are tested on the training dataset. A senstivity study using different Hyperparameters of the algorithms are iterated on with GridSearchCV in order optimize each model. The best model is the one that has the highest accuracy without overfitting by looking at both the training data and the validation data results. Computer time does not appear to be an issue for these models, so it has little weight on deciding between models. GridSearch CVclass sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, n_jobs=None, iid='deprecated', refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False)[source]¶Exhaustive search over specified parameter values for an estimator.Important members are fit, predict.GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Function: print_results ###Code def print_results(results,name,filename_pr): with open(filename_pr, mode='w') as file_object: print(name,file=file_object) print(name) print('BEST PARAMS: {}\n'.format(results.best_params_),file=file_object) print('BEST PARAMS: {}\n'.format(results.best_params_)) means = results.cv_results_['mean_test_score'] stds = results.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, results.cv_results_['params']): print('{} {} (+/-{}) for {}'.format(name,round(mean, 3), round(std * 2, 3), params),file=file_object) print('{} {} (+/-{}) for {}'.format(name,round(mean, 3), round(std * 2, 3), params)) print(GridSearchCV) ###Output <class 'sklearn.model_selection._search.GridSearchCV'> ###Markdown 7.1 Machine Learning Models: Logistic Regression Logistic Regression: Hyperparameter used in GridSearchCV HP1, C: float, optional (default=1.0)Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. DetailsRegularization is when a penality is applied with increasing value to prevent overfitting. The inverse of regularization strength means as the value of C goes up, the value of the regularization strength goes down and vice versa. Values chosen'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] ###Code LR_model_dir=os.path.join(currentDirectory,'LR_model.pkl') if os.path.exists(LR_model_dir) == False: lr = LogisticRegression() parameters = { 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] } cv=GridSearchCV(lr, parameters, cv=5) cv.fit(tr_features,tr_labels.values.ravel()) print_results(cv,'Logistic Regression (LR)','LR_GridSearchCV_results.txt') cv.best_estimator_ LR_model_dir=os.path.join(currentDirectory,'LR_model.pkl') joblib.dump(cv.best_estimator_,LR_model_dir) else: print('Already have LR') ###Output Already have LR ###Markdown 7.2 Machine Learning Models: Support Vector Machine Support Vector Machine: Hyperparameter used in GridSearchCV HP1, kernelstring, optional (default=’rbf’)Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples). DetailsA linear kernel type is good when the data is Linearly seperable, which means it can be separated by a single Line.A radial basis function (rbf) kernel type is an expontential function of the squared Euclidean distance between two vectors and a constant. Since the value of RBF kernel decreases with distance and ranges between zero and one, it has a ready interpretation as a similiarity measure. Values chosen'kernel': ['linear','rbf'] HP2, C: float, optional (default=1.0)Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. DetailsRegularization is when a penality is applied with increasing value to prevent overfitting. The inverse of regularization strength means as the value of C goes up, the value of the regularization strength goes down and vice versa. Values chosen'C': [0.1, 1, 10] ###Code print(SVC()) SVM_model_dir=os.path.join(currentDirectory,'SVM_model.pkl') if os.path.exists(SVM_model_dir) == False: svc = SVC() parameters = { 'kernel': ['linear','rbf'], 'C': [0.1, 1, 10] } cv=GridSearchCV(svc,parameters, cv=5) cv.fit(tr_features, tr_labels.values.ravel()) print_results(cv,'Support Vector Machine (SVM)','SVM_GridSearchCV_results.txt') cv.best_estimator_ SVM_model_dir=os.path.join(currentDirectory,'SVM_model.pkl') joblib.dump(cv.best_estimator_,SVM_model_dir) else: print('Already have SVM') ###Output Already have SVM ###Markdown 7.3 Machine Learning Models: Neural Network Neural Network: (sklearn) Hyperparameter used in GridSearchCV HP1, hidden_layer_sizes: tuple, length = n_layers - 2, default (100,)The ith element represents the number of neurons in the ith hidden layer. DetailsA rule of thumb is (2/3)*( of input features) = neurons per hidden layer. Values chosen'hidden_layer_sizes': [(10,),(50,),(100,)] HP2, activation: {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default ‘relu’Activation function for the hidden layer. Details* ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x* ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).* ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).* ‘relu’, the rectified linear unit function, returns f(x) = max(0, x) Values chosen'hidden_layer_sizes': [(10,),(50,),(100,)] HP3, learning_rate: {‘constant’, ‘invscaling’, ‘adaptive’}, default ‘constant’Learning rate schedule for weight updates. Details* ‘constant’ is a constant learning rate given by ‘learning_rate_init’.* ‘invscaling’ gradually decreases the learning rate at each time step ‘t’ using an inverse scaling exponent of ‘power_t’. effective_learning_rate = learning_rate_init / pow(t, power_t)* ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is on, the current learning rate is divided by 5.Only used when solver='sgd'. Values chosen'learning_rate': ['constant','invscaling','adaptive'] ###Code print(MLPClassifier()) MLP_model_dir=os.path.join(currentDirectory,'MLP_model.pkl') if os.path.exists(MLP_model_dir) == False: mlp = MLPClassifier() parameters = { 'hidden_layer_sizes': [(10,),(50,),(100,)], 'activation': ['relu','tanh','logistic'], 'learning_rate': ['constant','invscaling','adaptive'] } cv=GridSearchCV(mlp, parameters, cv=5) cv.fit(tr_features, tr_labels.values.ravel()) print_results(cv,'Neural Network (MLP)','MLP_GridSearchCV_results.txt') cv.best_estimator_ MLP_model_dir=os.path.join(currentDirectory,'MLP_model.pkl') joblib.dump(cv.best_estimator_,MLP_model_dir) else: print('Already have MLP') ###Output Already have MLP ###Markdown 7.4 Machine Learning Models: Random Forest Random Forest: Hyperparameter used in GridSearchCV HP1, n_estimators: integer, optional (default=100)The number of trees in the forest.Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in 0.22. DetailsUsually 500 does the trick and the accuracy and out of bag error doesn't change much after. Values chosen'n_estimators': [500], HP2, max_depth: integer or None, optional (default=None)The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. DetailsNone usually does the trick, but a few shallow trees are tested. Values chosen'max_depth': [5,7,9, None] ###Code print(RandomForestClassifier()) RF_model_dir=os.path.join(currentDirectory,'RF_model.pkl') if os.path.exists(RF_model_dir) == False: rf = RandomForestClassifier(oob_score=False) parameters = { 'n_estimators': [500], 'max_depth': [5,7,9, None] } cv = GridSearchCV(rf, parameters, cv=5) cv.fit(tr_features, tr_labels.values.ravel()) print_results(cv,'Random Forest (RF)','RF_GridSearchCV_results.txt') cv.best_estimator_ RF_model_dir=os.path.join(currentDirectory,'RF_model.pkl') joblib.dump(cv.best_estimator_,RF_model_dir) else: print('Already have RF') ###Output Already have RF ###Markdown 7.4 Machine Learning Models: Gradient Boosting Gradient Boosting: Hyperparameter used in GridSearchCV HP1, n_estimators: int (default=100)The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. DetailsUsually 500 does the trick and the accuracy and out of bag error doesn't change much after. Values chosen'n_estimators': [5, 50, 250, 500], HP2, max_depth: integer, optional (default=3)maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. DetailsA variety of shallow trees are tested. Values chosen'max_depth': [1, 3, 5, 7, 9], HP3, learning_rate: float, optional (default=0.1)learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and n_estimators. DetailsA variety was chosen because of the trade-off. Values chosen'learning_rate': [0.01, 0.1, 1] ###Code print(GradientBoostingClassifier()) GB_model_dir=os.path.join(currentDirectory,'GB_model.pkl') if os.path.exists(GB_model_dir) == False: gb = GradientBoostingClassifier() parameters = { 'n_estimators': [5, 50, 250, 500], 'max_depth': [1, 3, 5, 7, 9], 'learning_rate': [0.01, 0.1, 1] } cv=GridSearchCV(gb, parameters, cv=5) cv.fit(tr_features, tr_labels.values.ravel()) print_results(cv,'Gradient Boost (GB)','GR_GridSearchCV_results.txt') cv.best_estimator_ GB_model_dir=os.path.join(currentDirectory,'GB_model.pkl') joblib.dump(cv.best_estimator_,GB_model_dir) else: print('Already have GB') ###Output Already have GB ###Markdown 7.5 Machine Learning Models: eXtreme Gradient Boosting eXtreme Gradient Boosting: Hyperparameter used in GridSearchCV HP1, n_estimators: (int) – Number of trees to fit. DetailsUsually 500 does the trick and the accuracy and out of bag error doesn't change much after. Values chosen'n_estimators': [5, 50, 250, 500], HP2, max_depth: (int) – Maximum tree depth for base learners. DetailsA variety of shallow trees are tested. Values chosen'max_depth': [1, 3, 5, 7, 9], HP3, learning_rate: (float) – Boosting learning rate (xgb’s “eta”) DetailsA variety was chosen because of the trade-off. Values chosen'learning_rate': [0.01, 0.1, 1] ###Code XGB_model_dir=os.path.join(currentDirectory,'XGB_model.pkl') if os.path.exists(XGB_model_dir) == False: xgb = XGBClassifier() parameters = { 'n_estimators': [5, 50, 250, 500], 'max_depth': [1, 3, 5, 7, 9], 'learning_rate': [0.01, 0.1, 1] } cv=GridSearchCV(xgb, parameters, cv=5) cv.fit(tr_features, tr_labels.values.ravel()) print_results(cv,'eXtreme Gradient Boost (XGB)','XGB_GridSearchCV_results.txt') cv.best_estimator_ XGB_model_dir=os.path.join(currentDirectory,'XGB_model.pkl') joblib.dump(cv.best_estimator_,XGB_model_dir) else: print('Already have XGB') ###Output Already have XGB ###Markdown 8. Evaluate Models ###Code ## all models models = {} #for mdl in ['LR', 'SVM', 'MLP', 'RF', 'GB','XGB']: for mdl in ['LR', 'SVM', 'MLP', 'RF', 'GB','XGB']: model_path=os.path.join(currentDirectory,'{}_model.pkl') models[mdl] = joblib.load(model_path.format(mdl)) ###Output _____no_output_____ ###Markdown Function: evaluate_model ###Code def evaluate_model(name, model, features, labels, y_test_ev, fc): start = time() pred = model.predict(features) end = time() y_truth=y_test_ev accuracy = round(accuracy_score(labels, pred), 3) precision = round(precision_score(labels, pred), 3) recall = round(recall_score(labels, pred), 3) print('{} -- Accuracy: {} / Precision: {} / Recall: {} / Latency: {}ms'.format(name, accuracy, precision, recall, round((end - start)*1000, 1))) pred=pd.DataFrame(pred) pred.columns=['diagnosis'] # Convert Diagnosis for Cancer from Binary to Categorical diagnosis_name={0:'Benign',1:'Malginant'} y_truth['diagnosis']=y_truth['diagnosis'].map(diagnosis_name) pred['diagnosis']=pred['diagnosis'].map(diagnosis_name) class_names = ['Benign','Malginant'] cm = confusion_matrix(y_test_ev, pred, class_names) FP_L='False Positive' FP = cm[0][1] #print(FP_L) #print(FP) FN_L='False Negative' FN = cm[1][0] #print(FN_L) #print(FN) TP_L='True Positive' TP = cm[1][1] #print(TP_L) #print(TP) TN_L='True Negative' TN = cm[0][0] #print(TN_L) #print(TN) #TPR_L= 'Sensitivity, hit rate, recall, or true positive rate' TPR_L= 'Sensitivity' TPR = round(TP/(TP+FN),3) #print(TPR_L) #print(TPR) #TNR_L= 'Specificity or true negative rate' TNR_L= 'Specificity' TNR = round(TN/(TN+FP),3) #print(TNR_L) #print(TNR) #PPV_L= 'Precision or positive predictive value' PPV_L= 'Precision' PPV = round(TP/(TP+FP),3) #print(PPV_L) #print(PPV) #NPV_L= 'Negative predictive value' NPV_L= 'NPV' NPV = round(TN/(TN+FN),3) #print(NPV_L) #print(NPV) #FPR_L= 'Fall out or false positive rate' FPR_L= 'FPR' FPR = round(FP/(FP+TN),3) #print(FPR_L) #print(FPR) #FNR_L= 'False negative rate' FNR_L= 'FNR' FNR = round(FN/(TP+FN),3) #print(FNR_L) #print(FNR) #FDR_L= 'False discovery rate' FDR_L= 'FDR' FDR = round(FP/(TP+FP),3) #print(FDR_L) #print(FDR) ACC_L= 'Accuracy' ACC = round((TP+TN)/(TP+FP+FN+TN),3) #print(ACC_L) #print(ACC) stats_data = {'Name':name, ACC_L:ACC, FP_L:FP, FN_L:FN, TP_L:TP, TN_L:TN, TPR_L:TPR, TNR_L:TNR, PPV_L:PPV, NPV_L:NPV, FPR_L:FPR, FNR_L:FDR} fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm,cmap=plt.cm.gray_r) plt.title('Figure {}.A: {} Confusion Matrix on Unseen Test Data'.format(fc,name),y=1.08) fig.colorbar(cax) ax.set_xticklabels([''] + class_names) ax.set_yticklabels([''] + class_names) # Loop over data dimensions and create text annotations. for i in range(len(class_names)): for j in range(len(class_names)): text = ax.text(j, i, cm[i, j], ha="center", va="center", color="r") plt.xlabel('Predicted') plt.ylabel('True') plt.savefig('Figure{}.A_{}_Confusion_Matrix.png'.format(fc,name),dpi=400,bbox_inches='tight') #plt.show() if name == 'RF' or name == 'GB' or name == 'XGB': # Get numerical feature importances importances = list(model.feature_importances_) importances=100*(importances/max(importances)) feature_list = list(features.columns) sorted_ID=np.argsort(importances) plt.figure() plt.barh(sort_list(feature_list,importances),importances[sorted_ID],align='center') plt.title('Figure {}.B: {} Variable Importance Plot'.format(fc,name)) plt.xlabel('Relative Importance') plt.ylabel('Feature') plt.savefig('Figure{}.B_{}_Variable_Importance_Plot.png'.format(fc,name),dpi=300,bbox_inches='tight') #plt.show() return accuracy,name, model, stats_data ###Output _____no_output_____ ###Markdown Function: sort_list ###Code def sort_list(list1, list2): zipped_pairs = zip(list2, list1) z = [x for _, x in sorted(zipped_pairs)] return z ###Output _____no_output_____ ###Markdown Search for best model using test features ###Code ev_accuracy=[None]*len(models) ev_name=[None]*len(models) ev_model=[None]*len(models) ev_stats=[None]*len(models) count=1 for name, mdl in models.items(): y_test_ev=y_test ev_accuracy[count-1],ev_name[count-1],ev_model[count-1], ev_stats[count-1] = evaluate_model(name,mdl,val_features, val_labels, y_test_ev,count) diagnosis_name={'Benign':0,'Malginant':1} y_test['diagnosis']=y_test['diagnosis'].map(diagnosis_name) count=count+1 best_name=ev_name[ev_accuracy.index(max(ev_accuracy))] #picks the maximum accuracy print('Best Model:',best_name,'with Accuracy of ',max(ev_accuracy)) best_model=ev_model[ev_accuracy.index(max(ev_accuracy))] #picks the maximum accuracy if best_name == 'RF' or best_name == 'GB' or best_name == 'XGB': # Get numerical feature importances importances = list(best_model.feature_importances_) importances=100*(importances/max(importances)) feature_list = list(X.columns) sorted_ID=np.argsort(importances) plt.figure() plt.barh(sort_list(feature_list,importances),importances[sorted_ID],align='center') plt.title('Figure 7: Variable Importance Plot -- {}'.format(best_name)) plt.xlabel('Relative Importance') plt.ylabel('Feature') plt.savefig('Figure7.png',dpi=300,bbox_inches='tight') plt.show() ###Output Best Model: GB with Accuracy of 0.974 ###Markdown 9. Conclusions When it comes to diagnosing breast cancer, we want to make sure we don't have too many false positives (you have cancer, but told you dont) or false negatives (you don't have cancer, but told you do and go on treatments). Therefore, the highest overall accuracy model is chosen. All of the models performed well after fine tunning their hyperparameters, but the best model was the Gradient Boosted model as shown with an accuracy of ~97.4%. Out of the 20% of data witheld in this test (114 random individuals), only 3 were misdiagnosed. Two of which were misdiagnosed via False Positive, which means they had cancer, but told they didn't. One was misdiganosed via False Negative, which means they didn't have cancer, but told they did. No model is perfect, but I am happy about how accurate my model is here. If on average only 3 people out of 114 are misdiagnosed, that is a good start for making a model. Furthermore, the Feature Importance plots show that the "concave points mean" was by far the most significant feature to extract from a biopsy and should be taken each time if possible for predicting breast cancer. ###Code ev_stats=pd.DataFrame(ev_stats) print(ev_stats.head(10)) ###Output Name Accuracy False Positive False Negative True Positive \ 0 LR 0.965 2 2 41 1 SVM 0.939 3 4 39 2 MLP 0.965 3 1 42 3 RF 0.965 1 3 40 4 GB 0.974 2 1 42 5 XGB 0.956 2 3 40 True Negative Sensitivity Specificity Precision NPV FPR FNR 0 69 0.953 0.972 0.953 0.972 0.028 0.047 1 68 0.907 0.958 0.929 0.944 0.042 0.071 2 68 0.977 0.958 0.933 0.986 0.042 0.067 3 70 0.930 0.986 0.976 0.959 0.014 0.024 4 69 0.977 0.972 0.955 0.986 0.028 0.045 5 69 0.930 0.972 0.952 0.958 0.028 0.048
Informatics/Deep Learning/TensorFlow - deeplearning.ai/3. NLP/Course_3_Week_2_Lesson_3.ipynb
###Markdown ###Code # NOTE: PLEASE MAKE SURE YOU ARE RUNNING THIS IN A PYTHON3 ENVIRONMENT import tensorflow as tf print(tf.__version__) # Double check TF 2.0x is installed. If you ran the above block, there was a # 'reset all runtimes' button at the bottom that you needed to press import tensorflow as tf print(tf.__version__) # If the import fails, run this # !pip install -q tensorflow-datasets import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds imdb, info = tfds.load("imdb_reviews/subwords8k", with_info=True, as_supervised=True, data_dir='./', download=False) train_data, test_data = imdb['train'], imdb['test'] tokenizer = info.features['text'].encoder print(tokenizer.subwords) sample_string = 'TensorFlow, from basics to mastery' tokenized_string = tokenizer.encode(sample_string) print ('Tokenized string is {}'.format(tokenized_string)) original_string = tokenizer.decode(tokenized_string) print ('The original string: {}'.format(original_string)) for ts in tokenized_string: print ('{} ----> {}'.format(ts, tokenizer.decode([ts]))) BUFFER_SIZE = 10000 BATCH_SIZE = 64 train_dataset = train_data.shuffle(BUFFER_SIZE) train_dataset = train_dataset.padded_batch(BATCH_SIZE, tf.compat.v1.data.get_output_shapes(train_dataset)) test_dataset = test_data.padded_batch(BATCH_SIZE, tf.compat.v1.data.get_output_shapes(test_data)) embedding_dim = 64 model = tf.keras.Sequential([ tf.keras.layers.Embedding(tokenizer.vocab_size, embedding_dim), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(6, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.summary() num_epochs = 10 model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) history = model.fit(train_dataset, epochs=num_epochs, validation_data=test_dataset) import matplotlib.pyplot as plt def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() plot_graphs(history, "accuracy") plot_graphs(history, "loss") # remember we are working with subwords, not words e = model.layers[0] weights = e.get_weights()[0] print(weights.shape) # shape: (vocab_size, embedding_dim) import io out_v = io.open('vecs3.tsv', 'w', encoding='utf-8') out_m = io.open('meta3.tsv', 'w', encoding='utf-8') for word_num in range(1, tokenizer.vocab_size): word = tokenizer.decode([word_num]) embeddings = weights[word_num] out_m.write(word + "\n") out_v.write('\t'.join([str(x) for x in embeddings]) + "\n") out_v.close() out_m.close() try: from google.colab import files except ImportError: pass else: files.download('vecs3.tsv') files.download('meta3.tsv') ###Output (8185, 64)
normal/data_process.ipynb
###Markdown 图片与标注文件配对 ###Code # 在图片存在的情况下,标注文件不存在 则转移图片;反之亦然 def move_img(imgp, txtp, error): if os.path.exists(imgp) and not os.path.exists(txtp): shutil.move(imgp, error) def check_image_label(image_paths, label_root): for imgp in tqdm(image_paths): name = os.path.basename(imgp) txtp = os.path.join(label_root, name.replace('jpg', 'txt')) move_img(imgp, txtp, error) label_root = '/mnt/data/street/tricycle/' image_root = '/mnt/data/street/tricycle/' error = '/mnt/data/street/error/tricycle/' # coco # train_image_paths = glob(os.path.join(image_root, 'train2017/', '*.jpg')) # val_image_paths = glob(os.path.join(image_root, 'val2017/', '*.jpg')) # check_image_label(train_image_paths, os.path.join(label_root, 'train2017')) # street image_paths = glob(os.path.join(image_root, '*.jpg')) check_image_label(image_paths, label_root) ###Output 100%|██████████| 546/546 [00:00<00:00, 50749.92it/s] ###Markdown 重命名爬取的数据并移动到相应位置 ###Code img_paths = glob('/mnt/data/street/motor/*.jpg') + \ glob('/mnt/data/street/shop/*.jpg') + \ glob('/mnt/data/street/trashbin/*.jpg') + \ glob('/mnt/data/street/tricycle/*.jpg') train_img_paths, val_img_paths = train_test_split(img_paths, test_size=0.1, random_state=47) train_txt_paths = [p.replace('jpg', 'txt') for p in train_img_paths] val_txt_paths = [p.replace('jpg', 'txt') for p in val_img_paths] for p in val_txt_paths: shutil.copy(p, '/mnt/data/street_sub/labels/val/') # for i, imgp in enumerate(img_paths): # txtp = imgp.replace('jpg', 'txt') # xmlp = imgp.replace('jpg', 'xml') # root = os.path.dirname(imgp) # new_profix = 'rz_' + str(i) # new_img_name = new_profix + '.jpg' # new_img_path = os.path.join(root, new_img_name) # new_txt_path = new_img_path.replace('jpg', 'txt') # new_xml_path = new_img_path.replace('jpg', 'xml') # os.rename(imgp, os.path.join(root, new_img_path)) # os.rename(txtp, os.path.join(root, new_txt_path)) # os.rename(xmlp, os.path.join(root, new_xml_path)) ###Output _____no_output_____
exploring data more.ipynb
###Markdown See this tutorial http://www.dataperspective.info/2019/02/how-to-import-data-into-google-colab.html for info on how to import data from google drive. ###Code import numpy as np import random import matplotlib.pyplot as plt import matplotlib.cm as cm import os !wget https://drive.google.com/drive/folders/1bY4gtwdeu7x9otU3eb_0BFXwaXrFY59C/z_first_ionization_z013.00_Hllfilter1_RHIIfilter1_RHImax50_200_300Mpc fname = '1bY4gtwdeu7x9otU3eb_0BFXwaXrFY59C/z_first_ionization_z013.00_Hllfilter1_RHIIfilter1_RHImax50_200_300Mpc' f = open(fname, "rb") ###Output _____no_output_____
Python_Stock/Candlestick_Patterns/CandlestickExample.ipynb
###Markdown Candlestick Chart Example mplfinance https://github.com/matplotlib/mplfinance ###Code import yfinance as yf import mplfinance as mpf import pandas as pd import matplotlib.pyplot as plt symbol = "NVDA" start = "2020-12-01" end = "2021-10-04" data = yf.download(symbol, start=start, end=end) mpf.plot(data,volume=True,type='candle', #savefig=dict(fname=figsave("full"),dpi=1200) title = symbol + " Candlestick Chart") import datetime x=datetime.datetime.now() y=str(x.year-1)+'-'+str(x.strftime("%m")) z=str(x.year)+'-'+str(int(x.strftime("%m"))-1) #Last one year chart s = mpf.make_mpf_style(base_mpf_style='charles',mavcolors=['#1f77b4','#ff7f0e','#2ca02c']) mpf.plot(data[y:], volume=True, type='candle', figratio=(24,10), mav=(20,50,100), style= s, ylabel='Price (₹)', title='Stock', ylabel_lower='Traded\nVolume', tight_layout=False, #savefig=dict(fname=figsave("Year"),dpi=1200) #show_nontrading=True if needed to show trading day gaps ) s = mpf.make_mpf_style(base_mpf_style='charles',mavcolors=['#1f77b4','#ff7f0e','#2ca02c']) mpf.plot(data[z:], volume=True, type='candle', figratio=(24,10), mav=(20,50,100), style= s, ylabel='Price (₹)', title='Stock', ylabel_lower='Traded\nVolume', tight_layout=False, #savefig=dict(fname=figsave("Month"),dpi=1200) #show_nontrading=True if needed to show trading day gaps ) ###Output _____no_output_____ ###Markdown TA-Lib Pattern Recognition Candlestick https://mrjbq7.github.io/ta-lib/func_groups/pattern_recognition.html ###Code import talib df = yf.download("NVDA", start="2020-12-01", end="2021-10-04") # Get Morning star pattern analysis df['Morningstars'] = talib.CDLMORNINGSTAR(data['Open'], data['High'], data['Low'], data['Close']) df.loc[df['Morningstars'] !=0] df[df["Morningstars"] != 0] df['Adj Close'].loc[df["Morningstars"] != 0] df['Adj Close'].loc[df["Morningstars"] != 0].index morning_stars = df['Morningstars'] morning_stars[morning_stars !=0] morning_stars[morning_stars !=0].index ###Output _____no_output_____ ###Markdown Create Candlestick Chart using mplfinance ###Code from mplfinance.original_flavor import candlestick_ohlc from matplotlib import dates as mdates import datetime as dt # input symbol = 'AMD' start = '2019-01-01' end = '2020-01-01' # Read data df = yf.download(symbol,start,end) dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = pd.to_datetime(dfc['Date']) dfc['Date'] = dfc['Date'].apply(mdates.date2num) dfc.head() fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(2, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ###Output _____no_output_____ ###Markdown Different types of background and style ###Code mpf.available_styles() s = mpf.make_mpf_style(base_mpf_style='nightclouds', rc={'font.size': 6}) fig = mpf.figure(figsize=(14,10), style=s) ax1 = plt.subplot(2, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) #ax1.grid(True, which='both') #ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') s = mpf.make_mpf_style(base_mpf_style='blueskies', rc={'font.size': 12}) fig = mpf.figure(figsize=(14,10), style=s) ax = plt.subplot(2, 1, 1) av = fig.add_subplot(2,1,2, sharex=ax) mpf.plot(df, type='candle', volume=av, ax=ax, ylabel = 'Prices') ax.set_title('Stock '+ symbol +' Closing Price') # Trim volume to avoid exponential form df['Volume'] = df['Volume'] / 1000 # Create MACD df["macd"], df["macd_signal"], df["macd_hist"] = talib.MACD(df['Close']) # macd panel colors = ['g' if v >= 0 else 'r' for v in df["macd_hist"]] macd_hist_plot = mpf.make_addplot(df["macd_hist"], type='bar', panel=1, color=colors) # Plot mpf.plot(df, type='candle', style='yahoo', addplot=macd_hist_plot, title='Stock '+ symbol +' Closing Price', ylabel='') mpf.plot(df, type='candle', style='yahoo', figratio=(12,6) ,addplot=macd_hist_plot, title='Stock '+ symbol +' Closing Price', ylabel='') ###Output _____no_output_____
AppStat2022/Week2/ExampleSolutions/LikelihoodFit/LikelihoodFit_ExampleSolution.ipynb
###Markdown Principle of Maximum Likelihood Description:Python script for illustrating the principle of maximum likelihood and a likelihood fit.__This is both an exercise, but also an attempt to illustrate four things:__ 1. How to make a (binned and unbinned) Likelihood function/fit. 2. The difference and a comparison between a Chi-square and a (binned) Likelihood. 3. The difference and a comparison between a binned and unbinned Likelihood. 4. What goes on behind the scenes in Minuit, when it is asked to fit something.In this respect, the exercise is more of an illustration rather than something to be used directly, which is why it is followed later by another exercise, where you can test if you have understood the differences, and how and when to apply which fit method.The example uses 50 exponentially distributed random times, with the goal of finding the best estimate of the lifetime (data is generated with lifetime, tau = 1). Three estimates are considered: 1. Chi-square fit (chi2) 2. Binned Likelihood fit (bllh) 3. Unbinned Likelihood fit (ullh)The three methods are based on a scan of values for tau in the range [0.5, 2.0]. For each value of tau, the chi2, bllh, and ullh are calculated. In the two likelihood cases, it is actually -2*log(likelihood) which is calculated, which you should (by now) understand why. Note that the unbinned likelihood is in principle the "optimal" fit, but also the most difficult for several reasons (convergence, numerical problems, implementation, speed, etc.). However, all three methods/constructions essentially yield the same results, when there is enough statistics (i.e. errors are Gaussian), though the $\chi^2$ also gives a fit quality. The problem is explicitly chosen to have only one fit parameter, such that simple 1D graphs can show what goes on. In this case, the analytical solution (simple mean) is actually prefered (see Barlow). Real world problems will almost surely be more complex.Also, the exercise is mostly for illustration. In reality, one would hardly ever calculate and plot the Chi-square or Likelihood values, but rather do the minimization using an algorithm (Minuit) to do the hard work. Authors: - Troels C. Petersen (Niels Bohr Institute, [email protected])- Étienne Bourbeau ([email protected]) Date: - 26-11-2021 (latest update) Reference:- Barlow, chapter 5 (5.1-5.7)- Cowan, chapter 6*** ###Code import numpy as np # Matlab like syntax for linear algebra and functions import matplotlib.pyplot as plt # Plots and figures like you know them from Matlab import seaborn as sns # Make the plots nicer to look at from iminuit import Minuit # The actual fitting tool, better than scipy's import sys # Module to see files and folders in directories from scipy import stats sys.path.append('../../../External_Functions') from ExternalFunctions import Chi2Regression, BinnedLH, UnbinnedLH from ExternalFunctions import nice_string_output, add_text_to_ax # useful functions to print fit results on figure plt.rcParams['font.size'] = 16 # set some basic plotting parameters ###Output _____no_output_____ ###Markdown Program settings: ###Code save_plots = False # Determining if plots are saved or not verbose = True # Should the program print or not? veryverbose = True # Should the program print a lot or not? ScanChi2 = True # In addition to fit for minimum, do a scan... # Parameters of the problem: Ntimes = 50 # Number of time measurements. tau_truth = 1.0; # We choose (like Gods!) the lifetime. # Binning: Nbins = 50 # Number of bins in histogram tmax = 10.0 # Maximum time in histogram binwidth = tmax / Nbins # Size of bins (s) # General settings: r = np.random # Random numbers r.seed(42) # We set the numbers to be random, but the same for each run ###Output _____no_output_____ ###Markdown Generate data: ###Code # Produce array of exponentially distributed times and put them in a histogram: t = r.exponential(tau_truth, Ntimes) # Exponential with lifetime tau. yExp, xExp_edges = np.histogram(t, bins=Nbins, range=(0, tmax)) ###Output _____no_output_____ ###Markdown Is the data plotted like we wouls like to? Let's check... ###Code # In case you want to check that the numbers really come out as you want to (very healthy to do at first): if (veryverbose) : for index, time in enumerate(t) : print(f" {index:2d}: t = {time:5.3f}") if index > 10: break # let's restrain ourselves ###Output 0: t = 0.469 1: t = 3.010 2: t = 1.317 3: t = 0.913 4: t = 0.170 5: t = 0.170 6: t = 0.060 7: t = 2.011 8: t = 0.919 9: t = 1.231 10: t = 0.021 11: t = 3.504 ###Markdown Looks like values are coming int, but are they actually giving an exponential? Remember the importance of __plotting your data before hand__! ###Code X_center = xExp_edges[:-1] + (xExp_edges[1]-xExp_edges[0])/2.0 # Get the value of the histogram bin centers plt.plot(X_center,yExp,'o') plt.show() ###Output _____no_output_____ ###Markdown Check that it looks like you are producing the data that you want. If this is the case, move on (and possibly comment out the plot!). Analyse data:The following is "a manual fit", i.e. scanning over possible values of the fitting parameter(s) - here luckely only one, tau - and seeing what value of chi2, bllh, and ullh it yields. When plotting these, one should find a parabola, the minimum value of which is the optimal fitting parameter of tau. The rate of increase around this minimum represents the uncertainty of the fitting parameter. ###Code # Define the number of tau values and their range to test in Chi2 and LLH: # As we know the "truth", namely tau = 1, the range [0.5, 1.5] seems fitting for the mean. # The number of bins can be increased at will, but for now 50 seems fitting. Ntau_steps = 50 min_tau = 0.5 max_tau = 1.5 delta_tau = (max_tau-min_tau) / Ntau_steps # Loop over hypothesis for the value of tau and calculate Chi2 and (B)LLH: chi2_minval = 999999.9 # Minimal Chi2 value found chi2_minpos = 0.0 # Position (i.e. time) of minimal Chi2 value bllh_minval = 999999.9 bllh_minpos = 0.0 ullh_minval = 999999.9 ullh_minpos = 0.0 tau = np.zeros(Ntau_steps+1) chi2 = np.zeros(Ntau_steps+1) bllh = np.zeros(Ntau_steps+1) ullh = np.zeros(Ntau_steps+1) # Now loop of POSSIBLE tau estimates: for itau in range(Ntau_steps+1): tau_hypo = min_tau + itau*delta_tau # Scan in values of tau tau[itau] = tau_hypo # Calculate Chi2 and binned likelihood (from loop over bins in histogram): chi2[itau] = 0.0 bllh[itau] = 0.0 for ibin in range (Nbins) : # Note: The number of EXPECTED events is the intergral over the bin! xlow_bin = xExp_edges[ibin] xhigh_bin = xExp_edges[ibin+1] # Given the start and end of the bin, we calculate the INTEGRAL over the bin, # to get the expected number of events in that bin: nexp = Ntimes * (np.exp(-xlow_bin/tau_hypo) - np.exp(-xhigh_bin/tau_hypo)) # The observed number of events... that is just the data! nobs = yExp[ibin] if (nobs > 0): # For ChiSquare but not LLH, we need to require Nobs > 0, as we divide by this: chi2[itau] += (nobs-nexp)**2 / nobs # Chi2 summation/function bllh[itau] += -2.0*np.log(stats.poisson.pmf(int(nobs), nexp)) # Binned LLH function if (veryverbose and itau == 0) : print(f" Nexp: {nexp:10.7f} Nobs: {nobs:3.0f} Chi2: {chi2[itau]:5.1f} BLLH: {bllh[itau]:5.1f}") # Calculate Unbinned likelihood (from loop over events): ullh[itau] = 0.0 for time in t : # i.e. for every data point generated... ullh[itau] += -2.0*np.log(1.0/tau_hypo*np.exp(-time/tau_hypo)) # Unbinned LLH function if (verbose) : print(f" {itau:3d}: tau = {tau_hypo:4.2f} chi2 = {chi2[itau]:6.2f} log(bllh) = {bllh[itau]:6.2f} log(ullh) = {ullh[itau]:6.2f}") # Search for minimum values of chi2, bllh, and ullh: if (chi2[itau] < chi2_minval) : chi2_minval = chi2[itau] chi2_minpos = tau_hypo if (bllh[itau] < bllh_minval) : bllh_minval = bllh[itau] bllh_minpos = tau_hypo if (ullh[itau] < ullh_minval) : ullh_minval = ullh[itau] ullh_minpos = tau_hypo print(f" Decay time of minimum found: chi2: {chi2_minpos:7.4f}s bllh: {bllh_minpos:7.4f}s ullh: {ullh_minpos:7.4f}s") print(f" Chi2 value at minimum: chi2 = {chi2_minval:.1f}") ###Output Chi2 value at minimum: chi2 = 6.8 ###Markdown Plot and fit results: ###Code # Define range around minimum to be fitted: min_fit = 0.15 max_fit = 0.20 fig, axes = plt.subplots(2, 2, figsize=(16, 12)) ax_chi2 = axes[0,0] ax_bllh = axes[1,0] ax_ullh = axes[0,1] # A fourth plot is available for plotting whatever you want :) # ChiSquare: # ---------- ax_chi2.plot(tau, chi2, 'k.', label='chi2') ax_chi2.set_xlim(chi2_minpos-2*min_fit, chi2_minpos+2*max_fit) ax_chi2.set_title("ChiSquare") ax_chi2.set_xlabel(r"Value of $\tau$") ax_chi2.set_ylabel("Value of ChiSquare") # Binned Likelihood: # ---------- ax_bllh.plot(tau, bllh,'bo') ax_bllh.set_xlim(bllh_minpos-2*min_fit, bllh_minpos+2*max_fit) ax_bllh.set_title("Binned Likelihood") ax_bllh.set_xlabel(r"Value of $\tau$") ax_bllh.set_ylabel(r"Value of $\ln{LLH}$") # Unbinned Likelihood: # ---------- ax_ullh.plot(tau, ullh, 'g.') ax_ullh.set_xlim(ullh_minpos-2*min_fit, ullh_minpos+2*max_fit) ax_ullh.set_title("Unbinned Likelihood") ax_ullh.set_xlabel(r"Value of $\tau$") ax_ullh.set_ylabel(r"Value of $\ln{LLH}$") fig; ###Output _____no_output_____ ###Markdown --- Parabola functionNote that the parabola is defined differently than normally. The parameters are: * `minval`: Minimum value (i.e. constant) * `minpos`: Minimum position (i.e. x of minimum) * `quadratic`: Quadratic term. ###Code def func_para(x, minval, minpos, quadratic) : return minval + quadratic*(x-minpos)**2 func_para_vec = np.vectorize(func_para) # Note: This line makes it possible to send vectors through the function! ###Output _____no_output_____ ###Markdown --- Double parabola with different slopes on each side of the minimum:In case the uncertainties are asymmetric, the parabola will also be so, and hence needs to be fitted with two separate parabolas meeting at the top point. Parameters are now as follows: * `minval`: Minimum value (i.e. constant) * `minpos`: Minimum position (i.e. x of minimum) * `quadlow`: Quadratic term on lower side * `quadhigh`: Quadratic term on higher side ###Code def func_asympara(x, minval, minpos, quadlow, quadhigh) : if (x < minpos) : return minval + quadlow*(x-minpos)**2 else : return minval + quadhigh*(x-minpos)**2 func_asympara_vec = np.vectorize(func_asympara) # Note: This line makes it possible to send vectors through the function! ###Output _____no_output_____ ###Markdown Perform both fits: ###Code # Fit chi2 values with our parabola: indexes = (tau>chi2_minpos-min_fit) & (tau<chi2_minpos+max_fit) # Fit with parabola: chi2_object_chi2 = Chi2Regression(func_para, tau[indexes], chi2[indexes]) minuit_chi2 = Minuit(chi2_object_chi2, minval=chi2_minval, minpos=chi2_minpos, quadratic=20.0) minuit_chi2.errordef = 1.0 minuit_chi2.migrad() # Fit with double parabola: chi2_object_chi2_doublep = Chi2Regression(func_asympara, tau[indexes], chi2[indexes]) minuit_chi2_doublep = Minuit(chi2_object_chi2_doublep, minval=chi2_minval, minpos=chi2_minpos, quadlow=20.0, quadhigh=20.0) minuit_chi2_doublep.errordef = 1.0 minuit_chi2_doublep.migrad(); # Plot (simple) fit: minval, minpos, quadratic = minuit_chi2.values # Note how one can "extract" the three values from the object. print(minval) minval_2p, minpos_2p, quadlow_2p, quadhigh_2p = minuit_chi2_doublep.values print(minval_2p) x_fit = np.linspace(chi2_minpos-min_fit, chi2_minpos+max_fit, 1000) y_fit_simple = func_para_vec(x_fit, minval, minpos, quadratic) ax_chi2.plot(x_fit, y_fit_simple, 'b-') d = {'Chi2 value': minval, 'Fitted tau (s)': minpos, 'quadratic': quadratic} text = nice_string_output(d, extra_spacing=3, decimals=3) add_text_to_ax(0.02, 0.95, text, ax_chi2, fontsize=14) fig.tight_layout() if save_plots: fig.savefig("FitMinimum.pdf", dpi=600) fig # Given the parabolic fit, we can now extract the uncertainty on tau (think about why the below formula works!): err = 1.0 / np.sqrt(quadratic) # For comparison, I give one extra decimal, than I would normally do: print(f" Chi2 fit gives: tau = {minpos:.3f} +- {err:.3f}") # For the asymmetric case, there are naturally two errors to calculate. #err_lower = 1.0 / np.sqrt(quadlow) #err_upper = 1.0 / np.sqrt(quadhigh) # Go through tau values to find minimum and +-1 sigma: # This assumes knowing the minimum value, and Chi2s above Chi2_min+1 if (ScanChi2) : if (((chi2[0] - chi2_minval) > 1.0) and ((chi2[Ntau_steps] - chi2_minval) > 1.0)) : found_lower = False found_upper = False for itau in range (Ntau_steps+1) : if ((not found_lower) and ((chi2[itau] - chi2_minval) < 1.0)) : tau_lower = tau[itau] found_lower = True if ((found_lower) and (not found_upper) and ((chi2[itau] - chi2_minval) > 1.0)) : tau_upper = tau[itau] found_upper = True print(f" Chi2 scan gives: tau = {chi2_minpos:6.4f} + {tau_upper-chi2_minpos:6.4f} - {chi2_minpos-tau_lower:6.4f}") else : print(f" Error: Chi2 values do not fulfill requirements for finding minimum and errors!") ###Output Chi2 scan gives: tau = 0.8600 + 0.3200 - 0.1800 ###Markdown Discussion:One could here of course have chosen a finer binning, but that is still not very satisfactory, and in any case very slow. That is why we of course want to use e.g. iMinuit to perform the fit, and extract all the relevant fitting parameters in a nice, fast, numerically stable, etc. way. --- Fit the data using iminuit (both chi2 and binned likelihood fits)Now we want to see, what a "real" fit gives, in order to compare our result with the one provided by Minuit. ###Code # Define the function to fit with: def func_exp(x, N0, tau) : return N0 * binwidth / tau * np.exp(-x/tau) # Define the function to fit with: def func_exp2(x, tau) : return Ntimes * binwidth / tau * np.exp(-x/tau) ###Output _____no_output_____ ###Markdown $\chi^2$ fit: ###Code # Prepare figure fig_fit, ax_fit = plt.subplots(figsize=(8, 6)) ax_fit.set_title("tau values directly fitted with iminuit") ax_fit.set_xlabel("Lifetimes [s]") ax_fit.set_ylabel("Frequency [ev/0.1s]") # Plot our tau values indexes = yExp>0 # only bins with values! xExp = (xExp_edges[1:] + xExp_edges[:-1])/2 # Move from bins edges to bin centers syExp = np.sqrt(yExp) # Uncertainties ax_fit.errorbar(xExp[indexes], yExp[indexes], syExp[indexes], fmt='k_', ecolor='k', elinewidth=1, capsize=2, capthick=1) # Chisquare-fit tau values with our function: chi2_object_fit = Chi2Regression(func_exp, xExp[indexes], yExp[indexes], syExp[indexes]) # NOTE: The constant for normalization is NOT left free in order to have only ONE parameter! minuit_fit_chi2 = Minuit(chi2_object_fit, N0=Ntimes, tau=tau_truth) minuit_fit_chi2.fixed["N0"] = True minuit_fit_chi2.errordef = 1.0 minuit_fit_chi2.migrad() # Plot fit x_fit = np.linspace(0, 10, 1000) y_fit_simple = func_exp(x_fit, *minuit_fit_chi2.values) ax_fit.plot(x_fit, y_fit_simple, 'b-', label="ChiSquare fit") # Print the obtained fit results: # print(minuit_fit_chi2.values["tau"], minuit_fit_chi2.errors["tau"]) tau_fit = minuit_fit_chi2.values["tau"] etau_fit = minuit_fit_chi2.errors["tau"] print(f" Decay time of minimum found: chi2: {tau_fit:.3f} +- {etau_fit:.3f}s") print(f" Chi2 value at minimum: chi2 = {minuit_fit_chi2.fval:.1f}") # Alternatively to the above, one can in iMinuit actually ask for the Chi2 curve to be plotted by one command: minuit_fit_chi2.draw_mnprofile('tau') ###Output _____no_output_____ ###Markdown --- Binned likelihood fit:Below is an example of a binned likelihood fit. Try to write an unbinned likelihood fit yourself! ###Code # Binned likelihood-fit tau values with our function # extended=True because we have our own normalization in our fit function bllh_object_fit = BinnedLH(func_exp2, t, bins=Nbins, bound=(0, tmax), extended=True) minuit_fit_bllh = Minuit(bllh_object_fit, tau=tau_truth) minuit_fit_bllh.errordef = 0.5 # Value for likelihood fit minuit_fit_bllh.migrad() # Plot fit x_fit = np.linspace(0, 10, 1000) y_fit_simple = func_exp2(x_fit, *minuit_fit_bllh.values[:]) ax_fit.plot(x_fit, y_fit_simple, 'r-', label="Binned Likelihood fit") # Define the ranges: ax_fit.set_xlim(0, 5) ax_fit.set_ylim(bottom=0) # We don't want to see values below this! fig_fit.legend(loc=[0.45, 0.75]) fig_fit.tight_layout() fig_fit if (save_plots) : fig_fit.savefig("ExponentialDist_Fitted.pdf", dpi=600) ###Output _____no_output_____
Assignment_4(Ensemble_Learning).ipynb
###Markdown Import Libraries ###Code import numpy as np from sklearn.base import clone import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.datasets import make_circles from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import StackingClassifier def plotDataset(X, y): for label in np.unique(y): plt.scatter(X[y == label, 0], X[y == label, 1], label=label) plt.legend() plt.show() def plotEstimator(trX, trY, teX, teY, estimator, title=''): estimator = clone(estimator).fit(trX, trY) h = .02 x_min, x_max = teX[:, 0].min() - .5, teX[:, 0].max() + .5 y_min, y_max = teX[:, 1].min() - .5, teX[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) Z = estimator.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=cm, alpha=0.8) plt.scatter(teX[:, 0], teX[:, 1], c=teY, cmap=cm_bright, edgecolors='k', alpha=0.6) #plt.legend() plt.title(title) plt.show() ###Output _____no_output_____ ###Markdown Data Sets Circle dataset ###Code rs = 0 X, y = make_circles(300, noise=0.1, random_state=rs) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=rs) plotDataset(X,y) ###Output _____no_output_____ ###Markdown Classification dataset ###Code rs = 0 X2, y2 = make_classification(300, random_state=rs) X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2, test_size=0.2,random_state=rs) plotDataset(X2,y2) ###Output _____no_output_____ ###Markdown Decision Tree **(4)** Use Circle Dataset. Apply decision tree on the Circle Dataset, set criterion as gini and entropy, get the accuracy of the testing results, plot the decision boundaries and explain the difference between these criterion (4.1) DT with gini Index ###Code dtEstimator_gini = DecisionTreeClassifier(criterion="gini") dtEstimator_gini.fit(X_train, y_train) predY = dtEstimator_gini.predict(X_test) dtAccuracy = accuracy_score(y_test, predY) print("test accuracy is: ",round(dtAccuracy,3)) plotEstimator(X_train, y_train, X_test, y_test, dtEstimator_gini, 'Decision Tree with gini index') ###Output test accuracy is: 0.6 ###Markdown (4.2) DT with entropy ###Code dtEstimator_entropy = DecisionTreeClassifier(criterion="entropy") dtEstimator_entropy.fit(X_train, y_train) predY = dtEstimator_entropy.predict(X_test) dtAccuracy = accuracy_score(y_test, predY) print("test accuracy is: ",round(dtAccuracy,3)) plotEstimator(X_train, y_train, X_test, y_test, dtEstimator_entropy, 'Decision Tree with entropy') ###Output test accuracy is: 0.717 ###Markdown Gini measurement is the probability of a random sample being classified incorrectly if we randomly pick a label according to the distribution in a branch.Entropy is a measurement of information (or rather lack thereof). You calculate the information gain by making a split. Which is the difference in entripies. This measures how you reduce the uncertainty about the label. **(5)** Use Classification Dataset. Use training set to obtain the importance of features. Plot Validation Accuracy (y-axis) vs Top K Important Feature (x-axis) curve; where 4-fold cross validation should be used, and also plot Test Accuracy vs Top K Important Feature curve ###Code def plot_importance_vs_accuracys(values, axis_values, title): plt.figure(figsize=(8,5)) if len(axis_values) == 4: axis_1 = plt.plot(values, axis_values[0], color='red', marker='*', linestyle='-', label = '1st fold') axis_2 = plt.plot(values, axis_values[1], color='green', marker='*', linestyle='-', label = '2nd fold') axis_3 = plt.plot(values, axis_values[2], color='blue', marker='*', linestyle='-', label = '3rd fold') axis_4 = plt.plot(values, axis_values[3], color='yellow', marker='*', linestyle='-', label = '4th fold') plt.title(title) plt.xlabel('Top K Important Features') plt.ylabel('Validation Accuracy') plt.xticks([x for x in range(len(values))]) y_ticks = [x for x in range(60,101,5)] plt.yticks(y_ticks) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: axis1 = plt.plot(values, axis_values, color='blue', marker='*', linestyle='-') plt.title(title) plt.xlabel('Top K Important Features') plt.ylabel('Test Accuracy') plt.xticks([x for x in range(len(values))]) y_ticks = [x for x in range(80,101,2)] plt.yticks(y_ticks) plt.show ###Output _____no_output_____ ###Markdown **(5.1)** get top K important features ###Code tree_model = DecisionTreeClassifier(random_state=0) tree_model.fit(X_train2, y_train2) features_import = tree_model.feature_importances_ idx_sorted = np.argsort(-features_import)[0:7] idx_sorted ###Output _____no_output_____ ###Markdown **(5.2)** fit DT model with top K features using 4-folds cross validation ###Code test_accuracy = [] validation_accuracy = [] l1 = idx_sorted[0:1] l2 = idx_sorted[0:2] l3 = idx_sorted[0:3] l4 = idx_sorted[0:4] l5 = idx_sorted[0:5] l6 = idx_sorted[0:6] l7 = idx_sorted[0:7] feature_list = [l1,l2,l3,l4,l5,l6,l7] for features in feature_list: valid_acc = cross_val_score(tree_model, X_train2[:,features], y_train2, cv=4, scoring='accuracy') validation_accuracy.append(valid_acc * 100) tree_model.fit(X_train2[:,features], y_train2) y_pred = tree_model.predict(X_test2[:, features]) test_acc = accuracy_score(y_test2, y_pred) test_accuracy.append(test_acc * 100) valid_acc = list(map(list, zip(*validation_accuracy))) ###Output _____no_output_____ ###Markdown **(5.3)** Plot Validation Accuracy (y-axis) vs Top K Important Feature (x-axis) curve with 4-folds ###Code values = [x for x in range(1,8)] plot_importance_vs_accuracys(values[:8], valid_acc, "Top K Features VS Fold accuracy") ###Output _____no_output_____ ###Markdown **(5.4)** plot Test Accuracy vs Top K Important Feature curve ###Code values = [x for x in range(1,8)] plot_importance_vs_accuracys(values[:8], test_accuracy, "Top K Features VS Test Accuracy"); ###Output _____no_output_____ ###Markdown Bagging **(6)** Use Circle Dataset. Set the number of estimators as 2, 5, 15, 20 respectively, and generate the results accordingly (i.e., accuracy and decision boundary) ###Code for n_est in [2,5,15,20]: estimator = BaggingClassifier(n_estimators=n_est, random_state=0) score = estimator.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, estimator, f'Bagging with n_estimator = {n_est} has accuracy = {score}') ###Output _____no_output_____ ###Markdown **(7)** Explain why bagging can reduce the variance and mitigate the overfitting problem Bagging can create many predictors by bootstrapping the data randomly subsample the dataset many times, and train a model using each subsample.We can then aggregate our models, e.g., averaging out the predictions of each model. and this can reduce variance and overfitting Random Forest **(8)** Use Circle Dataset. Set the number of estimators as 2, 5, 15, 20 respectively, and generate the results accordingly (i.e., accuracy and decision boundary) ###Code for n_est in [2,5,15,20]: estimator = RandomForestClassifier(n_estimators=n_est, random_state=0) score = estimator.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, estimator, f'RF with n_estimator = {n_est} has accuracy = {score}') ###Output _____no_output_____ ###Markdown **(9)** Compare with bagging results and explain the difference between Bagging and Random Forest The fundamental difference is that in Random forests, only a subset of features are selected at random out of the total and the best split feature from the subset is used to split each node in a tree, unlike in bagging where all features are considered for splitting a node. Boosting **(10)** Use Circle Dataset. There are 2 important hyperparameters in AdaBoost, i.e., the number of estimators (ne), and learning rate (lr). Please plot 12 subfigures as the following table's setup. Each figure should plot the decision boundary and each of their title should be the same format as {n_estimaotrs}, {learning_rate}, {accuracy} ###Code n_estimator = [10,50,100,200] l_rate = [0.1,1,2] for l in l_rate: for n_est in n_estimator: estimator = AdaBoostClassifier(n_estimators= n_est, learning_rate= l) score = estimator.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, estimator, f' {n_est} , {l} , {score}') ###Output _____no_output_____ ###Markdown Stacking **(11)** We have tuned the Decision Tree, Bagging, Random Forest, and AdaBoost in the previous section. Use these fine tuned model as base estimators and use Naive Bayes, Logistic Regression, and Decision Tree as aggregators to generate the results accordingly (i.e., accuracy and decision boundary) Base Estimaters ###Code base_estimaters = list() base_estimaters.append(('DT',DecisionTreeClassifier(criterion="entropy", random_state=0))) base_estimaters.append(('Bagging' ,BaggingClassifier(n_estimators=5, random_state=0))) base_estimaters.append(('RF', RandomForestClassifier(n_estimators=5, random_state=0))) base_estimaters.append(('Adaboost', AdaBoostClassifier(n_estimators=50, learning_rate= 1, random_state=0))) ###Output _____no_output_____ ###Markdown (11.1) Naive Bayes as Aggregator ###Code aggregator1 =GaussianNB() model1 = StackingClassifier(estimators=base_estimaters, final_estimator=aggregator1, cv=5) score = model1.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, model1, f'Accuracy of Gaussian as aggregator = {score}') ###Output _____no_output_____ ###Markdown (11.2) Logistic Regression as Aggregator ###Code aggregator2 =LogisticRegression() model2 = StackingClassifier(estimators=base_estimaters, final_estimator=aggregator2, cv=5) score = model2.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, model2, f'Accuracy of Logistic Regression as aggregator = {score}') ###Output _____no_output_____ ###Markdown (11.3) Decision Tree as Aggregator ###Code aggregator3 =DecisionTreeClassifier() model3 = StackingClassifier(estimators=base_estimaters, final_estimator=aggregator3, cv=5) score = model3.fit(X_train, y_train).score(X_test, y_test) plotEstimator(X_train, y_train, X_test, y_test, model3, f'Accuracy of DT as aggregator = {score}') ###Output _____no_output_____
Introduction to Portfolio Construction and Analysis with Python/W3/.ipynb_checkpoints/Monte Carlo Simulation-checkpoint.ipynb
###Markdown Monte Carlo Simulation and Random Walk Generation $$ \frac{ S_{1+dt} - S_t}{S_t} = \mu dt + \sigma \sqrt {dt} \xi_t $$ ###Code import numpy as np import pandas as pd def gbm(n_years =10, n_scenarios = 1000, mu=0.07,sigma = 0.15, steps_per_year = 12, s_0 = 100.0): """ Evolution of a Stock Price using Geometric Browian Motion Model (Monte Carlo Simulation) """ dt = 1/steps_per_year n_steps = int(n_years * steps_per_year) rets_plus_1 = np.random.normal(loc= (1+mu*dt),scale = (sigma*np.sqrt(dt)),size = (n_steps, n_scenarios), ) rets_plus_1[0] = 1 prices = s_0*pd.DataFrame(rets_plus_1).cumprod() return prices import ashmodule as ash ax = gbm(n_scenarios = 20).plot(legend = False,figsize = (12,6)); ax.set_xlim(left = 0); gbm(n_scenarios = 10).head() %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Using IPyWidget to Interact Plotting the Monte Carlo Simulation ###Code import ipywidgets as widgets from IPython.display import display import matplotlib.pyplot as plt def show_gbm(n_scenarios=1000, mu=0.07, sigma=0.15, s_0=100.0): """ Draw the results of a stock price evolution under a Geometric Brownian Motion model """ s_0=s_0 prices = gbm(n_scenarios=n_scenarios, mu=mu, sigma=sigma, s_0=s_0) ax = prices.plot(legend=False, color="indianred", alpha = 0.5, linewidth=2, figsize=(12,5)) ax.axhline(y=s_0, ls=":", color="black") # draw a dot at the origin ax.plot(0,s_0, marker='o',color='darkred', alpha=0.2) gbm_controls = widgets.interactive(ash.show_gbm, n_scenarios = widgets.IntSlider(min=1,max=1000,step=5), mu =(-0.3,0.3,0.05), sigma =(0,0.5,0.01), s_0 =(1,500,10) ) display(gbm_controls) ###Output _____no_output_____ ###Markdown Using IPyWidgets to interact with Monte Carlo Simulations and CPPI ###Code def show_cppi(n_scenarios=50, mu=0.07, sigma=0.15, m=3, floor=0.0, riskfree_rate=0.03, y_max=100,s_0=100, steps_per_year = 12): """ Plot the results of a Monte Carlo Simulation of CPPI """ start = s_0 sim_rets = ash.gbm(n_scenarios=n_scenarios, mu=mu, sigma=sigma, steps_per_year=steps_per_year) risky_r = pd.DataFrame(sim_rets) # run the "back"-test btr = ash.run_cppi(risky_r=pd.DataFrame(risky_r),riskfree_rate=riskfree_rate,m=m, start=start, floor=floor) wealth = btr["risky_r"] # calculate terminal wealth stats y_max=wealth.values.max()*y_max/100 ax = wealth.plot(legend = False, alpha = 0.3, color = "indianred", figsize = (12,6)) ax.axhline(y=start, ls=":", color= "black") ax.axhline(y=start*floor, ls="--",color = "red") ax.set_ylim(top=y_max) cppi_controls = widgets.interactive(show_cppi, n_scenarios=widgets.IntSlider(min=1, max=1000, step=5, value=50), mu=(0., +.2, .01), sigma=(0, .30, .05), floor=(0, 2, .1), m=(1, 5, .5), riskfree_rate=(0, .05, .01), y_max=widgets.IntSlider(min=0, max=100, step=1, value=100, description="Zoom Y Axis") ) display(cppi_controls) r_asset = ash.gbm(n_scenarios=50) r_asset ash.run_cppi((r_asset))["risky_r"][0].plot(legend=False,figsize =(12,6)) ash.run_cppi(r_asset,start = 100)["Wealth"].head() r_asset.shape r_asset.index = pd.date_range("2000-01",periods=r_asset.shape[0],freq="MS").to_period("M") r_asset.head() ash.run_cppi(r_asset,start = 100)["risky_r"].plot(legend = False); ash.run_cppi(r_asset,start = 100)["risky_r"].plot(legend = False,figsize = (12,6),color= "red", alpha = 0.3); ###Output _____no_output_____
finance/Efficient Frontier.ipynb
###Markdown The Efficient Frontier of Optimal Portfolio Transactions Introduction[Almgren and Chriss](https://cims.nyu.edu/~almgren/papers/optliq.pdf) showed that for each value of risk aversion there is a unique optimal execution strategy. The optimal strategy is obtained by minimizing the **Utility Function** $U(x)$:\begin{equation}U(x) = E(x) + \lambda V(x)\end{equation}where $E(x)$ is the **Expected Shortfall**, $V(x)$ is the **Variance of the Shortfall**, and $\lambda$ corresponds to the trader’s risk aversion. The expected shortfall and variance of the optimal trading strategy are given by:In this notebook, we will learn how to visualize and interpret these equations. The Expected ShortfallAs we saw in the previous notebook, even if we use the same trading list, we are not guaranteed to always get the same implementation shortfall due to the random fluctuations in the stock price. This is why we had to reframe the problem of finding the optimal strategy in terms of the average implementation shortfall and the variance of the implementation shortfall. We call the average implementation shortfall, the expected shortfall $E(x)$, and the variance of the implementation shortfall $V(x)$. So, whenever we talk about the expected shortfall we are really talking about the average implementation shortfall. Therefore, we can think of the expected shortfall as follows. Given a single trading list, the expected shortfall will be the value of the average implementation shortfall if we were to implement this trade list in the stock market many times. To see this, in the code below we implement the same trade list on 50,000 trading simulations. We call each trading simulation an episode. Each episode will consist of different random fluctuations in stock price. For each episode we will compute the corresponding implemented shortfall. After all the 50,000 trading simulations have been carried out we calculate the average implementation shortfall and the variance of the implemented shortfalls. We can then compare these values with the values given by the equations for $E(x)$ and $V(x)$ from the Almgren and Chriss model. ###Code %matplotlib inline import matplotlib.pyplot as plt import utils # Set the default figure size plt.rcParams['figure.figsize'] = [17.0, 7.0] # Set the liquidation time l_time = 60 # Set the number of trades n_trades = 60 # Set trader's risk aversion t_risk = 1e-6 # Set the number of episodes to run the simulation episodes = 10 utils.get_av_std(lq_time = l_time, nm_trades = n_trades, tr_risk = t_risk, trs = episodes) # Get the AC Optimal strategy for the given parameters ac_strategy = utils.get_optimal_vals(lq_time = l_time, nm_trades = n_trades, tr_risk = t_risk) ac_strategy ###Output Average Implementation Shortfall: $579,001.15 Standard Deviation of the Implementation Shortfall: $524,293.07 ###Markdown Extreme Trading StrategiesBecause some investors may be willing to take more risk than others, when looking for the optimal strategy we have to consider a wide range of risk values, ranging from those traders that want to take zero risk to those who want to take as much risk as possible. Let's take a look at these two extreme cases. We will define the **Minimum Variance** strategy as that one followed by a trader that wants to take zero risk and the **Minimum Impact** strategy at that one followed by a trader that wants to take as much risk as possible. Let's take a look at the values of $E(x)$ and $V(x)$ for these extreme trading strategies. The `utils.get_min_param()` uses the above equations for $E(x)$ and $V(x)$, along with the parameters from the trading environment to calculate the expected shortfall and standard deviation (the square root of the variance) for these strategies. We'll start by looking at the Minimum Impact strategy. ###Code import utils # Get the minimum impact and minimum variance strategies minimum_impact, minimum_variance = utils.get_min_param() ###Output _____no_output_____ ###Markdown Minimum Impact StrategyThis trading strategy will be taken by trader that has no regard for risk. In the Almgren and Chriss model this will correspond to having the trader's risk aversion set to $\lambda = 0$. In this case the trader will sell the shares at a constant rate over a long period of time. By doing so, he will minimize market impact, but will be at risk of losing a lot of money due to the large variance. Hence, this strategy will yield the lowest possible expected shortfall and the highest possible variance, for a given set of parameters. We can see that for the given parameters, this strategy yields an expected shortfall of \$197,000 dollars but has a very big standard deviation of over 3 million dollars. ###Code minimum_impact ###Output _____no_output_____ ###Markdown Minimum Variance StrategyThis trading strategy will be taken by trader that wants to take zero risk, regardless of transaction costs. In the Almgren and Chriss model this will correspond to having a variance of $V(x) = 0$. In this case, the trader would prefer to sell the all his shares immediately, causing a known price impact, rather than risk trading in small increments at successively adverse prices. This strategy will yield the smallest possible variance, $V(x) = 0$, and the highest possible expected shortfall, for a given set of parameters. We can see that for the given parameters, this strategy yields an expected shortfall of over 2.5 million dollars but has a standard deviation equal of zero. ###Code minimum_variance ###Output _____no_output_____ ###Markdown The Efficient FrontierThe goal of Almgren and Chriss was to find the optimal strategies that lie between these two extremes. In their paper, they showed how to compute the trade list that minimizes the expected shortfall for a wide range of risk values. In their model, Almgren and Chriss used the parameter $\lambda$ to measure a trader's risk-aversion. The value of $\lambda$ tells us how much a trader is willing to penalize the variance of the shortfall, $V(X)$, relative to expected shortfall, $E(X)$. They showed that for each value of $\lambda$ there is a uniquely determined optimal execution strategy. We define the **Efficient Frontier** to be the set of all these optimal trading strategies. That is, the efficient frontier is the set that contains the optimal trading strategy for each value of $\lambda$.The efficient frontier is often visualized by plotting $(x,y)$ pairs for a wide range of $\lambda$ values, where the $x$-coordinate is given by the equation of the expected shortfall, $E(X)$, and the $y$-coordinate is given by the equation of the variance of the shortfall, $V(X)$. Therefore, for a given a set of parameters, the curve defined by the efficient frontier represents the set of optimal trading strategies that give the lowest expected shortfall for a defined level of risk.In the code below, we plot the efficient frontier for $\lambda$ values in the range $(10^{-7}, 10^{-4})$, using the default parameters in our trading environment. Each point of the frontier represents a distinct strategy for optimally liquidating the same number of stocks. A risk-averse trader, who wishes to sell quickly to reduce exposure to stock price volatility, despite the trading costs incurred in doing so, will likely choose a value of $\lambda = 10^{-4}$. On the other hand, a traderwho likes risk, who wishes to postpones selling, will likely choose a value of $\lambda = 10^{-7}$. In the code, you can choose a particular value of $\lambda$ to see the expected shortfall and level of variance corresponding to that particular value of trader's risk aversion. ###Code %matplotlib inline import matplotlib.pyplot as plt import utils # Set the default figure size plt.rcParams['figure.figsize'] = [17.0, 7.0] # Plot the efficient frontier for the default values. The plot points out the expected shortfall and variance of the # optimal strategy for the given the trader's risk aversion. Valid range for the trader's risk aversion (1e-7, 1e-4). utils.plot_efficient_frontier(tr_risk = 1e-6) ###Output _____no_output_____ ###Markdown The Efficient Frontier of Optimal Portfolio Transactions Introduction[Almgren and Chriss](https://cims.nyu.edu/~almgren/papers/optliq.pdf) showed that for each value of risk aversion there is a unique optimal execution strategy. The optimal strategy is obtained by minimizing the **Utility Function** $U(x)$:\begin{equation}U(x) = E(x) + \lambda V(x)\end{equation}where $E(x)$ is the **Expected Shortfall**, $V(x)$ is the **Variance of the Shortfall**, and $\lambda$ corresponds to the trader’s risk aversion. The expected shortfall and variance of the optimal trading strategy are given by:In this notebook, we will learn how to visualize and interpret these equations. The Expected ShortfallAs we saw in the previous notebook, even if we use the same trading list, we are not guaranteed to always get the same implementation shortfall due to the random fluctuations in the stock price. This is why we had to reframe the problem of finding the optimal strategy in terms of the average implementation shortfall and the variance of the implementation shortfall. We call the average implementation shortfall, the expected shortfall $E(x)$, and the variance of the implementation shortfall $V(x)$. So, whenever we talk about the expected shortfall we are really talking about the average implementation shortfall. Therefore, we can think of the expected shortfall as follows. Given a single trading list, the expected shortfall will be the value of the average implementation shortfall if we were to implement this trade list in the stock market many times. To see this, in the code below we implement the same trade list on 50,000 trading simulations. We call each trading simulation an episode. Each episode will consist of different random fluctuations in stock price. For each episode we will compute the corresponding implemented shortfall. After all the 50,000 trading simulations have been carried out we calculate the average implementation shortfall and the variance of the implemented shortfalls. We can then compare these values with the values given by the equations for $E(x)$ and $V(x)$ from the Almgren and Chriss model. ###Code %matplotlib inline import matplotlib.pyplot as plt import utils # Set the default figure size plt.rcParams['figure.figsize'] = [17.0, 7.0] # Set the liquidation time l_time = 60 # Set the number of trades n_trades = 60 # Set trader's risk aversion t_risk = 1e-6 # Set the number of episodes to run the simulation episodes = 100 utils.get_av_std(lq_time = l_time, nm_trades = n_trades, tr_risk = t_risk, trs = episodes) # Get the AC Optimal strategy for the given parameters ac_strategy = utils.get_optimal_vals(lq_time = l_time, nm_trades = n_trades, tr_risk = t_risk) ac_strategy episodes = 100 ac_strategy = utils.get_optimal_vals(lq_time = l_time, nm_trades = n_trades, tr_risk = t_risk) ac_strategy ###Output _____no_output_____ ###Markdown Extreme Trading StrategiesBecause some investors may be willing to take more risk than others, when looking for the optimal strategy we have to consider a wide range of risk values, ranging from those traders that want to take zero risk to those who want to take as much risk as possible. Let's take a look at these two extreme cases. We will define the **Minimum Variance** strategy as that one followed by a trader that wants to take zero risk and the **Minimum Impact** strategy at that one followed by a trader that wants to take as much risk as possible. Let's take a look at the values of $E(x)$ and $V(x)$ for these extreme trading strategies. The `utils.get_min_param()` uses the above equations for $E(x)$ and $V(x)$, along with the parameters from the trading environment to calculate the expected shortfall and standard deviation (the square root of the variance) for these strategies. We'll start by looking at the Minimum Impact strategy. ###Code import utils # Get the minimum impact and minimum variance strategies minimum_impact, minimum_variance = utils.get_min_param() ###Output _____no_output_____ ###Markdown Minimum Impact StrategyThis trading strategy will be taken by trader that has no regard for risk. In the Almgren and Chriss model this will correspond to having the trader's risk aversion set to $\lambda = 0$. In this case the trader will sell the shares at a constant rate over a long period of time. By doing so, he will minimize market impact, but will be at risk of losing a lot of money due to the large variance. Hence, this strategy will yield the lowest possible expected shortfall and the highest possible variance, for a given set of parameters. We can see that for the given parameters, this strategy yields an expected shortfall of \$197,000 dollars but has a very big standard deviation of over 3 million dollars. ###Code minimum_impact ###Output _____no_output_____ ###Markdown Minimum Variance StrategyThis trading strategy will be taken by trader that wants to take zero risk, regardless of transaction costs. In the Almgren and Chriss model this will correspond to having a variance of $V(x) = 0$. In this case, the trader would prefer to sell the all his shares immediately, causing a known price impact, rather than risk trading in small increments at successively adverse prices. This strategy will yield the smallest possible variance, $V(x) = 0$, and the highest possible expected shortfall, for a given set of parameters. We can see that for the given parameters, this strategy yields an expected shortfall of over 2.5 million dollars but has a standard deviation equal of zero. ###Code minimum_variance ###Output _____no_output_____ ###Markdown The Efficient FrontierThe goal of Almgren and Chriss was to find the optimal strategies that lie between these two extremes. In their paper, they showed how to compute the trade list that minimizes the expected shortfall for a wide range of risk values. In their model, Almgren and Chriss used the parameter $\lambda$ to measure a trader's risk-aversion. The value of $\lambda$ tells us how much a trader is willing to penalize the variance of the shortfall, $V(X)$, relative to expected shortfall, $E(X)$. They showed that for each value of $\lambda$ there is a uniquely determined optimal execution strategy. We define the **Efficient Frontier** to be the set of all these optimal trading strategies. That is, the efficient frontier is the set that contains the optimal trading strategy for each value of $\lambda$.The efficient frontier is often visualized by plotting $(x,y)$ pairs for a wide range of $\lambda$ values, where the $x$-coordinate is given by the equation of the expected shortfall, $E(X)$, and the $y$-coordinate is given by the equation of the variance of the shortfall, $V(X)$. Therefore, for a given a set of parameters, the curve defined by the efficient frontier represents the set of optimal trading strategies that give the lowest expected shortfall for a defined level of risk.In the code below, we plot the efficient frontier for $\lambda$ values in the range $(10^{-7}, 10^{-4})$, using the default parameters in our trading environment. Each point of the frontier represents a distinct strategy for optimally liquidating the same number of stocks. A risk-averse trader, who wishes to sell quickly to reduce exposure to stock price volatility, despite the trading costs incurred in doing so, will likely choose a value of $\lambda = 10^{-4}$. On the other hand, a traderwho likes risk, who wishes to postpones selling, will likely choose a value of $\lambda = 10^{-7}$. In the code, you can choose a particular value of $\lambda$ to see the expected shortfall and level of variance corresponding to that particular value of trader's risk aversion. ###Code %matplotlib inline import matplotlib.pyplot as plt import utils # Set the default figure size plt.rcParams['figure.figsize'] = [17.0, 7.0] # Plot the efficient frontier for the default values. The plot points out the expected shortfall and variance of the # optimal strategy for the given the trader's risk aversion. Valid range for the trader's risk aversion (1e-7, 1e-4). utils.plot_efficient_frontier(tr_risk = 1e-6) ###Output _____no_output_____
notebooks/20-creating-datasets.ipynb
###Markdown 2.0: Reproducible Data Sources"In God we trust. All others must bring data.” – W. Edwards Deming" ###Code %load_ext autoreload %autoreload 2 import logging from src.logging import logger logger.setLevel(logging.INFO) ###Output _____no_output_____ ###Markdown Introducing the `DataSource`The `DataSource` object handles downloading, unpacking, and processing raw data files, and serves as a container for some basic metadata about the raw data, including **documentation** and **license** information.Raw data files are downloaded to `paths.raw_data_path`. Cache files and unpacked raw files are saved to `paths.interim_data_path`. Example: LVQ-Pak, a Finnish phonetic datasetThe Learning Vector Quantization (lvq-pak) project includes a simple Finnish phonetic datasetconsisting 20-dimensional Mel Frequency Cepstrum Coefficients (MFCCs) labelled with target phoneme information. Our goal is to explore this dataset, process it into a useful form, and make it a part of a reproducible data science workflow. The project can be found at: http://www.cis.hut.fi/research/lvq_pak/ For this example, we are going create a `DataSource` for the LVQ-Pak dataset. The process will consist of1. Downloading and unpacking the raw data files. 2. Generating (and recording) hash values for these files.3. Adding LICENSE and DESCR (description) metadata to this DataSource4. Adding the complete `DataSource` to the Catalog Downloading Raw Data Source Files ###Code from src.data import DataSource from src.utils import list_dir from src import paths # Create a data source object datasource_name = 'lvq-pak' dsrc = DataSource(datasource_name) # Add URL(s) for raw data files dsrc.add_url("http://www.cis.hut.fi/research/lvq_pak/lvq_pak-3.1.tar") # Fetch the files logger.setLevel(logging.DEBUG) dsrc.fetch() ###Output _____no_output_____ ###Markdown By default, data files are downloaded to the `paths.raw_data_path` directory: ###Code !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown Since we did not specify a hash, or target filename, these are inferred from the downloaded file: ###Code dsrc.file_list ###Output _____no_output_____ ###Markdown Remove a file from the file_list ###Code # Note that if we add a url again, we end up with more of the same file in the file list dsrc.add_url("http://www.cis.hut.fi/research/lvq_pak/lvq_pak-3.1.tar") dsrc.file_list dsrc.fetch() ###Output _____no_output_____ ###Markdown Fetch is smart enough to not redownload the same file in this case. Still, this is messy and cumbersome. We can remove entries by removing them from the `file_list`. ###Code dsrc.file_list.pop(1) dsrc.file_list dsrc.fetch(force=True) ###Output _____no_output_____ ###Markdown Sometimes we make mistakes when entering information ###Code dsrc.add_url("http://www.cis.hut.fi/research/lvq_pak/lvq_pak-3.1.tar", name='cat', file_name='dog') dsrc.file_list dsrc.fetch() !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown We now have a copy of `lvq_pak-3.1.tar` called `dog`. Every time we fetch, we will fetch twice unless we get rid of the entry for `dog`.First, we will want to remove `dog` from our raw data.Let's take the "Nuke it from orbit. It's the only way to be sure" approach and clean our entire raw data directory. ###Code !cd .. && make clean_raw !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown The other option would have been to manually remove the `dog` file and then forced a refetch. Exercise: Remove the entry for dog and refetch ###Code # You should now only see the lvq_pak-3.1.tar file !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown Cached Downloads The DataSource object keeps track of whether the fetch has been performed successfully. Subsequent downloads will be skipped by default: ###Code dsrc.fetch() ###Output _____no_output_____ ###Markdown We can override this, which will check if the downloaded file exists, redownloading if necessary ###Code dsrc.fetch(force=True) ###Output _____no_output_____ ###Markdown In the previous case, the raw data file existed on the filesystem, and had the correct hash. If the local file has a checksum that doesn't match the saved hash, it will be re-downloaded automatically. Let's corrupt the file and see what happens. ###Code !echo "XXX" >> $paths.raw_data_path/lvq_pak-3.1.tar dsrc.fetch(force=True) ###Output _____no_output_____ ###Markdown Exercise: Creating an F-MNIST `DataSource` For this excercise, you are going build a `DataSource` out of the Fashion-MNIST dataset.[Fashion-MNIST][FMNIST] is available from GitHub. Looking at their [README], we see that the raw data is distributed as a set of 4 files with the following checksums:[FMNIST]: https://github.com/zalandoresearch/fashion-mnist[README]: https://github.com/zalandoresearch/fashion-mnist/blob/master/README.md| Name | Content | Examples | Size | Link | MD5 Checksum|| --- | --- |--- | --- |--- |--- || `train-images-idx3-ubyte.gz` | training set images | 60,000|26 MBytes | [Download](http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz)|`8d4fb7e6c68d591d4c3dfef9ec88bf0d`|| `train-labels-idx1-ubyte.gz` | training set labels |60,000|29 KBytes | [Download](http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz)|`25c81989df183df01b3e8a0aad5dffbe`|| `t10k-images-idx3-ubyte.gz` | test set images | 10,000|4.3 MBytes | [Download](http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz)|`bef4ecab320f06d8554ea6380940ec79`|| `t10k-labels-idx1-ubyte.gz` | test set labels | 10,000| 5.1 KBytes | [Download](http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz)|`bb300cfdad3c16e7a12a480ee83cd310`|By the end of this running example, you will build a `DataSource` that downloads these raw files and verifies that the hash values are as expected. You should make sure to include **Description** and **License** metadata in this `DataSource`. When you are finished, save the `DataSource` to the Catalog. Exercise: Download Raw Data Source Files for F-MNIST ###Code # Create an fmnist data source object # Add URL(s) for raw data files # Note that you will be adding four files to the DataSource object # and that the hash values have already been provided above! # Fetch the files # Check for your new files !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown Unpacking Raw Data Files ###Code unpack_dir = dsrc.unpack() ###Output _____no_output_____ ###Markdown By default, files are decompressed/unpacked to the `paths.interim_data_path`/`datasource_name` directory: ###Code !ls -la $paths.interim_data_path # We unpack everything into interim_data_path/datasource_name, which is returned by `unpack()` !ls -la $unpack_dir !ls -la $unpack_dir/lvq_pak-3.1 ###Output _____no_output_____ ###Markdown Exercise: Unpack raw data files for F-MNIST ###Code # Check for your files in the unpacked dirs ###Output _____no_output_____ ###Markdown Adding Metadata to Raw DataWait, what have we actually downloaded, and are we actually allowed to **use** this data? We keep track of two key pieces of metadata along with a raw dataset:* Description (`DESCR`) Text: Human-readable text describing the dataset, its source, and what it represents* License (`LICENSE`) Text: Terms of use for this dataset, often in the form of a license agreement Often, a dataset comes complete with its own README and LICENSE files. If these are available via URL, we can add these like we add any other data file, tagging them as metadata using the `name` field: ###Code dsrc.add_url("http://www.cis.hut.fi/research/lvq_pak/README", file_name='lvq-pak.readme', name='DESCR') dsrc.fetch() dsrc.unpack() # We now fetch 2 files. Note the metadata has been tagged accordingly in the `name` field dsrc.file_list ###Output _____no_output_____ ###Markdown We need to dig a little deeper to find the license. we find it at the beginning of the README file contained within that distribution: ###Code !head -35 $paths.interim_data_path/lvq-pak/lvq_pak-3.1/README ###Output _____no_output_____ ###Markdown Rather than trying to be clever, let's just add the license metadata from a python string that we cut and paste from the above. ###Code license_txt = ''' ************************************************************************ * * * LVQ_PAK * * * * The * * * * Learning Vector Quantization * * * * Program Package * * * * Version 3.1 (April 7, 1995) * * * * Prepared by the * * LVQ Programming Team of the * * Helsinki University of Technology * * Laboratory of Computer and Information Science * * Rakentajanaukio 2 C, SF-02150 Espoo * * FINLAND * * * * Copyright (c) 1991-1995 * * * ************************************************************************ * * * NOTE: This program package is copyrighted in the sense that it * * may be used for scientific purposes. The package as a whole, or * * parts thereof, cannot be included or used in any commercial * * application without written permission granted by its producents. * * No programs contained in this package may be copied for commercial * * distribution. * * * * All comments concerning this program package may be sent to the * * e-mail address '[email protected]'. * * * ************************************************************************ ''' dsrc.add_metadata(contents=license_txt, kind='LICENSE') ###Output _____no_output_____ ###Markdown Under the hood, this will create a file, storing the creation instructions in the same `file_list` we use to store the URLs we wish to download: ###Code dsrc.file_list ###Output _____no_output_____ ###Markdown Now when we fetch, the license file is created from this information: ###Code logger.setLevel(logging.DEBUG) dsrc.fetch(force=True) dsrc.unpack() !ls -la $paths.raw_data_path ###Output _____no_output_____ ###Markdown Exercise: Add metadata to F-MNIST Adding Raw Data to the Catalog ###Code from src import workflow workflow.available_datasources() workflow.add_datasource(dsrc) workflow.available_datasources() ###Output _____no_output_____ ###Markdown We will make use of this raw dataset catalog later in this tutorial. We can now load our `DataSource` by name: ###Code ds = DataSource.from_name('lvq-pak') ds.file_list ###Output _____no_output_____ ###Markdown Exercise: Add F-MNIST to the Raw Dataset Catalog ###Code # Your fmnist dataset should now show up here: workflow.available_datasources() ###Output _____no_output_____ ###Markdown Nuke it from OrbitNow we can blow away all the data that we've downloaded and set up so far, and recreate it from the workflow datasource. Or, use some of our `make` commands! ###Code !cd .. && make clean_raw !ls -la $paths.raw_data_path !cd .. && make fetch_sources !ls -la $paths.raw_data_path # What about fetch and unpack? !cd .. && make clean_raw && make clean_interim !ls -la $paths.raw_data_path !cd .. && make unpack_sources !ls -la $paths.raw_data_path !ls -la $paths.interim_data_path ###Output _____no_output_____
examples/compare-czt-fft.ipynb
###Markdown Example: Compare CZT to FFT ###Code %load_ext autoreload %autoreload 2 import numpy as np import matplotlib.pyplot as plt # CZT package import czt # https://github.com/garrettj403/SciencePlots plt.style.use(['science', 'notebook']) ###Output _____no_output_____ ###Markdown Generate Time-Domain Signal for Example ###Code # Time data t = np.arange(0, 20, 0.1) * 1e-3 dt = t[1] - t[0] Fs = 1 / dt N = len(t) print("Sampling period: {:5.2f} ms".format(dt * 1e3)) print("Sampling frequency: {:5.2f} kHz".format(Fs / 1e3)) print("Nyquist frequency: {:5.2f} kHz".format(Fs / 2 / 1e3)) print("Number of points: {:5d}".format(N)) # Signal data def model1(t): """Exponentially decaying sine wave with higher-order distortion.""" output = (1.0 * np.sin(2 * np.pi * 1e3 * t) + 0.3 * np.sin(2 * np.pi * 2.5e3 * t) + 0.1 * np.sin(2 * np.pi * 3.5e3 * t)) * np.exp(-1e3 * t) return output def model2(t): """Exponentially decaying sine wave without higher-order distortion.""" output = (1.0 * np.sin(2 * np.pi * 1e3 * t)) * np.exp(-1e3 * t) return output sig = model1(t) # Plot time-domain data plt.figure() t_tmp = np.linspace(0, 6, 601) / 1e3 plt.plot(t_tmp*1e3, model1(t_tmp), 'k', lw=0.5, label='Data') plt.plot(t*1e3, sig, 'ro--', label='Samples') plt.xlabel("Time (ms)") plt.ylabel("Signal") plt.xlim([0, 6]) plt.legend() plt.title("Time-domain signal"); ###Output _____no_output_____ ###Markdown Frequency-domain ###Code sig_fft = np.fft.fftshift(np.fft.fft(sig)) f_fft = np.fft.fftshift(np.fft.fftfreq(N, d=dt)) freq, sig_f = czt.time2freq(t, sig) plt.figure() plt.plot(f_fft / 1e3, np.abs(sig_fft), 'k', label='FFT') plt.plot(freq / 1e3, np.abs(sig_f), 'ro--', label='CZT') plt.xlabel("Frequency (kHz)") plt.ylabel("Signal magnitude") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]) plt.legend() plt.title("Frequency-domain") plt.savefig("results/freq-domain.png", dpi=600) plt.figure() plt.plot(f_fft / 1e3, np.angle(sig_fft), 'k', label='FFT') plt.plot(freq / 1e3, np.angle(sig_f), 'ro--', label='CZT') plt.xlabel("Frequency (kHz)") plt.ylabel("Signal phase") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]) plt.legend() plt.title("Frequency-domain"); ###Output _____no_output_____ ###Markdown Example: Compare CZT to FFT ###Code %load_ext autoreload %autoreload 2 import numpy as np import matplotlib.pyplot as plt # CZT package import czt # https://github.com/garrettj403/SciencePlots plt.style.use(['science', 'notebook']) ###Output _____no_output_____ ###Markdown Generate Time-Domain Signal ###Code # Time data t = np.arange(0, 20, 0.1) * 1e-3 dt = t[1] - t[0] Fs = 1 / dt N = len(t) print("Sampling period: {:5.2f} ms".format(dt * 1e3)) print("Sampling frequency: {:5.2f} kHz".format(Fs / 1e3)) print("Nyquist frequency: {:5.2f} kHz".format(Fs / 2 / 1e3)) print("Number of points: {:5d}".format(N)) # Signal data def model1(t): """Exponentially decaying sine wave with higher-order distortion.""" output = (1.0 * np.sin(2 * np.pi * 1e3 * t) + 0.3 * np.sin(2 * np.pi * 2.5e3 * t) + 0.1 * np.sin(2 * np.pi * 3.5e3 * t)) * np.exp(-1e3 * t) return output def model2(t): """Exponentially decaying sine wave without higher-order distortion.""" output = (1.0 * np.sin(2 * np.pi * 1e3 * t)) * np.exp(-1e3 * t) return output sig = model1(t) # Plot time-domain data plt.figure() t_tmp = np.linspace(0, 6, 601) / 1e3 plt.plot(t_tmp*1e3, model1(t_tmp), 'k', lw=0.5, label='Data') plt.plot(t*1e3, sig, 'ro--', label='Samples') plt.xlabel("Time (ms)") plt.ylabel("Signal") plt.xlim([0, 6]) plt.legend() plt.title("Time-domain signal"); ###Output _____no_output_____ ###Markdown Frequency-domain ###Code sig_fft = np.fft.fftshift(np.fft.fft(sig)) f_fft = np.fft.fftshift(np.fft.fftfreq(N, d=dt)) freq, sig_f = czt.time2freq(t, sig) # Plot results fig1 = plt.figure(1) frame1a = fig1.add_axes((.1,.3,.8,.6)) plt.plot(f_fft / 1e3, np.abs(sig_fft), 'k', label='FFT') plt.plot(freq / 1e3, np.abs(sig_f), 'ro--', label='CZT') plt.ylabel("Signal magnitude") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]) plt.legend() plt.title("Frequency-domain") frame1b = fig1.add_axes((.1,.1,.8,.2)) plt.plot(f_fft / 1e3, (np.abs(sig_fft) - np.abs(sig_f)) * 1e13, 'r-', label="Data") plt.xlabel("Frequency (kHz)") plt.ylabel("Residual\n" + r"($\times10^{-13}$)") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]) plt.savefig("results/freq-domain.png", dpi=600) # Plot results fig2 = plt.figure(2) frame2a = fig2.add_axes((.1,.3,.8,.6)) plt.plot(f_fft / 1e3, np.angle(sig_fft), 'k', label='FFT') plt.plot(freq / 1e3, np.angle(sig_f), 'ro--', label='CZT') plt.ylabel("Signal phase") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]) plt.legend() plt.title("Frequency-domain") frame2b = fig2.add_axes((.1,.1,.8,.2)) plt.plot(f_fft / 1e3, (np.angle(sig_fft) - np.angle(sig_f)) * 1e13, 'r-', label="Data") plt.xlabel("Frequency (kHz)") plt.ylabel("Residual\n" + r"($\times10^{-13}$)") plt.xlim([f_fft.min()/1e3, f_fft.max()/1e3]); ###Output _____no_output_____
GRBAnalysis/1.LATGRBAnalysis/1.LATGRBAnalysis.ipynb
###Markdown LAT Gamma-Ray Burst AnalysisThis procedure provides a step-by-step example of extracting and modeling a LAT Gamma-Ray Burst observation and modeling the prompt and temporally extended emissions using the X-Ray Spectral Fitting Package (**Xspec**) and **gtlike**, respectively. It should be noted that the LAT Low Energy (LLE) data products can also be used for LAT-detected GRBs (see [GRB Analysis Using GTBurst](https://fermidev.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html)). Prerequisites* [gtbin](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtbin.txt)* [gtdiffrsp](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtdiffrsp.txt)* [gtexpmap](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtexpmap.txt)* [gtfindsrc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtfindsrc.txt)* [gtltcube](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtltcube.txt)* [gtmktime](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtmktime.txt)* [gtrspgen](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtrspgen.txt)* [gtselect](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtselect.txt)* [gtvcut](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtvcut.txt)* XSPEC, used as a spectral analysis tool in Step 3 of this procedure (See [Xanadu Data Analysis for X-Ray Astronomy](http://heasarc.gsfc.nasa.gov/docs/xanadu/).)* The FITS viewer [*fv*](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/heasarc.gsfc.nasa.gov/ftools/fv.html)* The astronomical imaging and data visualization application [*ds9*](http://hea-www.harvard.edu/RD/ds9/) AssumptionsIt is assumed that:* The referenced files reside in your working directory.* You know the time and location of the burst you wish to analyze. Note: For this thread, we will analyze GRB080916C, one of the brightest LAT GRBs on record. The relevant burst properties are: * T0 = 00:12:45.614 UT, 16 September 2008, corresponding to 243216766.614 seconds (MET) * Trigger 243216766 * RA = 121.8 degrees * Dec = -61.3 degrees * You have extracted the files used in this tutorial. You can download them in the code cell below, or you can extract them yourself in the [LAT Data Server](http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi) with the following selections:```GRB080916CSearch Center (RA,Dec) = (121.8,-61.3)Radius = 40 degreesStart Time (MET) = 243216266.6 seconds (2011-03-28T00:00:00)Stop Time (MET) = 243218766.6 seconds (2011-04-04T00:00:00)Minimum Energy = 100 MeVMaximum Energy = 300000 MeV``` In this case, the GRB in question is of a sufficiently short duration, e.g. ~10's of seconds, so that the accumulation of LAT background counts is negligible. In order to study delayed emission, e.g. 10's of minutes to ~hour timescales, a likelihood analysis will be required. ###Code !wget https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/data/latGrbAnalysis/LAT_GRB_analysis.tgz !mkdir data !mv LAT_GRB_analysis.tgz ./data !tar -xzvf ./data/LAT_GRB_analysis.tgz -C ./data ###Output _____no_output_____ ###Markdown Steps:1. [Localize the GRB.](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlTS)2. [Generating the analysis files.](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlFILESGEN)3. [Binned analysis with XSPEC (prompt emission).](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlXSPEC)4. [Unbinned analysis using gtlike (extended emission).](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlGTLIKE)**NOTE**: During the analysis of the prompt emission (Steps 1 to 3) we will make use of the `P8R3_TRANSIENT020_V2` [response function](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_overview.html), while in the analysis of the extended emission (Step 4) the `P8R3_SOURCE_V2` response function will be used. 1. Localize the GRB**a) Select LAT data during prompt burst phase**This can either be done using a time interval ascertained from data from other instruments (e.g., using the GBM trigger time and T90 values reported in the [Fermi/GBM circular](http://gcn.gsfc.nasa.gov/gcn3/8245.gcn3)), or it can be estimated directly from the LAT light curve. Open the light curve `lc_zmax100.fits` with [*fv*](http://heasarc.nasa.gov/ftools/fv/): ###Code !fv ./data/LAT_GRB_analysis/lc_zmax100.fits ###Output _____no_output_____ ###Markdown You should get something that looks like this: Here, we have plotted TIME-243216766 on the x-axis (with TIMEDEL as error) and COUNTS on the y-axis (with ERROR as error). Hovering the cursor over the plot will yield its x-y coordinates; in this case, a plausible estimate of the LAT emission interval is (T0, T0+40s).We run **gtselect** to extract the data for this time interval.Remember to set `evclass=16` on the command line to ensure that we retain the transient class events: ###Code %%bash gtselect evclass=16 ./data/LAT_GRB_analysis/filtered_zmax100.fits ./data/LAT_GRB_analysis/localize_zmax100.fits INDEF INDEF 15 243216766 243216806 100 300000 100 ###Output _____no_output_____ ###Markdown Note that we have also reduced the acceptance cone to 15 degrees to filter out non-burst photons. **b) Run the localization tools, gtfindsrc and gtbin**If the data are essentially background-free as is the case here with a burst duration of ~50 sec, one can run the localization tools **gtfindsrc** and **gtbin** directly on the FT1 file (obtained when downloading the data file from the FSSC LAT Data server).**gtfindsrc** is necessary to centroid the GRB. For longer intervals where the background is significant, we can model the instrumental and celestial backgrounds using diffuse model components. For these data, the integration time is about 40 seconds so the diffuse and instrumental background components will make a negligible contribution to the total counts, so we proceed assuming they are negligible.We run **gtfindsrc** first to find the local maximum of the log-likelihood of a point source model as well as an estimate of the error radius. We will use this information to specify the size of the TS map in order to ensure that it contains the error circles we desire. ###Code %%bash gtfindsrc ./data/LAT_GRB_analysis/localize_zmax100.fits ./data/LAT_GRB_analysis/L1506171634094365357F22_SC00.fits ./data/LAT_GRB_analysis/GRB080916C_gtfindsrc.txt P8R3_TRANSIENT020_V3 none none none CEL 121.8 -61.3 MINUIT 1e-2 0.01 ###Output _____no_output_____ ###Markdown In this example of running **gtfindsrc**, the `FT2.fits` file was the renamed spacecraft data file downloaded from the FSSC LAT Data server.Since our source model comprises only a point source to represent the signal from the GRB, we do not provide a source model file or a target source name.Similarly, since the exposure map is used for diffuse components, we do not need to provide an unbinned exposure map. Use of a livetime cube will make the point source exposure calculation faster, but for integrations less than 1000 s, it is generally not needed. We have now obtained a position of maximum likelihood; we will use (119.861, -56.581) as our burst location from now on. It should be noted that GRB080916C is an exceptionally bright event in the LAT, and centroiding it with **gtfindsrc** is fast and adequate. In many other cases, a GRB may have far fewer LAT counts and the creation of a counts map using **gtbin** will be useful in localizing it: ###Code %%bash gtbin CMAP ./data/LAT_GRB_analysis/localize_zmax100.fits ./data/LAT_GRB_analysis/GRB080916C_counts_map.fits NONE 30 30 0.2 CEL 119.861 -56.581 0 AIT ###Output _____no_output_____ ###Markdown We can now view the counts map in *ds9*: ###Code !ds9 ./data/LAT_GRB_analysis/GRB080916C_counts_map.fits ###Output _____no_output_____ ###Markdown The counts map should look something like this: 2. Generating the analysis filesIn this subsection, we'll use the same data we extracted as for the localization analysis above.The purpose is to illustrate the steps necessary to model a GRB that is significantly fainter than GRB080916C; i.e., one for which the residual and diffuse backgrounds need to be modeled. This means that we will include diffuse components in the model definition and that will necessitate the exposure map calculation in order for the code to compute the predicted number of events. We'll see from the fit to the data that these diffuse components do indeed provide a negligible contribution to the overall counts for this burst. **a) Data subselection**Rerun **gtselect** with (119.861, -56.581) as the new search center: ###Code %%bash gtselect evclass=16 ./data/LAT_GRB_analysis/filtered_zmax100.fits ./data/LAT_GRB_analysis/prompt_select.fits 119.861 -56.581 15 243216766 243216806 100 300000 100 ###Output _____no_output_____ ###Markdown **b) Model definition**The model will include a point source at the GRB location, an isotropic component (to represent the extragalactic diffuse and/or the residual background), and a Galactic diffuse component that uses the recommend Galactic diffuse model, `gal_2yearp7v6_v0.fits`. This file is available at the [LAT background models](http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html) page via the [FSSC Data Access](http://fermi.gsfc.nasa.gov/ssc/data/access/) page.The easiest way to generate a simple 3 component model like this would be to use the [modeleditor](http://www.slac.stanford.edu/exp/glast/wb/prod/pages/sciTools_modeleditor/modelEditor.html) program (included in the [Fermitools](http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/)) by typing `ModelEditor` at the prompt. Here, we have added three sources to our model:1. GRB_080916C (you can rename the source by typing into the "Source Name:" text input box), with a PowerLaw2 spectrum. (The [Model Selection](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Likelihood/Model_Selection.html) page of the Cicerone lists the possible spectral models.) We have adjusted the Lower Limit of its spectrum to be 100.0. We have also inputted the RA and Dec (calculated from gtfindsrc) into its spatial model. We have kept all other default values.2. GALPROP Diffuse (there is a specific option for this in the "Source" menu). Edit the `File:` entry of the spatial model to point to your local copy of `gll_iem_v07.fits`. We have kept all other defaults.3. Extragalactic Diffuse (there is a specific option for this). We have kept all the default values.If our analysis region had been close to any known LAT sources, we would have had to include them in our model (see this [tutorial](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/likelihood_tutorial.htmlcreateSourceModel)). The xml file `GRB080916C_model.xml` should look like this:```xml ``` You can also create and edit model files by hand rather than use the modeleditor so long as the sources have the correct formats. For your convenience, you can create a local copy of the xml by running the python script below. ###Code with open('./data/LAT_GRB_analysis/GRB080916C_model.xml', 'w') as file: file.write("""<?xml version="1.0" ?> <source_library title="Source Library" xmlns="http://fermi.gsfc.nasa.gov/source_library"> <source name="GRB_080916C" type="PointSource"> <spectrum type="PowerLaw2"> <parameter free="true" max="1000.0" min="1e-05" name="Integral" scale="1e-06" value="1.0"/> <parameter free="true" max="-1.0" min="-5.0" name="Index" scale="1.0" value="-2.0"/> <parameter free="false" max="200000.0" min="20.0" name="LowerLimit" scale="1.0" value="20.0"/> <parameter free="false" max="200000.0" min="20.0" name="UpperLimit" scale="1.0" value="200000.0"/> </spectrum> <spatialModel type="SkyDirFunction"> <parameter free="false" max="360.0" min="0.0" name="RA" scale="1.0" value="119.861"/> <parameter free="false" max="90.0" min="-90.0" name="DEC" scale="1.0" value="-56.581"/> </spatialModel> </source> <source name="GALPROP Diffuse Source" type="DiffuseSource"> <spectrum type="ConstantValue"> <parameter free="true" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/> </spectrum> <spatialModel file="$(FERMI_DIR)/refdata/fermi/galdiffuse/gll_iem_v07.fits" type="MapCubeFunction"> <parameter free="false" max="1000.0" min="0.001" name="Normalization" scale="1.0" value="1.0"/> </spatialModel> </source> <source name="Extragalactic Diffuse Source" type="DiffuseSource"> <spectrum type="PowerLaw"> <parameter free="true" max="100.0" min="1e-05" name="Prefactor" scale="1e-07" value="1.6"/> <parameter free="false" max="-1.0" min="-3.5" name="Index" scale="1.0" value="-2.1"/> <parameter free="false" max="200.0" min="50.0" name="Scale" scale="1.0" value="100.0"/> </spectrum> <spatialModel type="ConstantValue"> <parameter free="false" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/> </spatialModel> </source> </source_library>""") ###Output _____no_output_____ ###Markdown **c) Refining the good time intervals (GTIs)**In general, our next step would be to run **gtmktime** to remove the time intervals whose events fell outside of our zenith angle cut and apply temporal cuts to the data based on the spacecraft file (`FT2.fits`). However, as our data encompasses a short period of time, this step is inappropriate in this case (**gtmktime** will report errors).It would be necessary if were analyzing a longer period of time such as a longer burst, or extended emission as at the end of this thread (see the [Likelihood Tutorial](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/likelihood_tutorial.html) for more information).Also, if we use **gtvcut** to review the file `prompt_select.fits`, we can see that the GTIs span the entire time selection we have made. **d) Diffuse response calculation**Since we are dealing with `evclass=16` (transient class) events, we need to run the **gtdiffrsp** tool.For each diffuse component in the model, the **gtdiffrsp** tool populates the `DIFRSP0` and `DIFRSP1` columns. They contain the integral over the source extent (for the Galactic and isotropic components this is essentially the entire sky) of the source intensity spatial distribution times the PSF and effective area. It computes the counts model density of the various diffuse components at each measured photon location, arrival time, and energy, and this information is used in maximizing the likelihood computation. This integral is also computed for the point sources in the model, but since those sources are delta-functions in sky position, the spatial part of the integral is trivial.Note that the large size of the [new Galactic diffuse background model](http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html) makes this a very resource-intensive process. ###Code !wget https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/gll_iem_v07.fits !mv gll_iem_v07.fits $FERMI_DIR/refdata/fermi/galdiffuse %%bash gtdiffrsp ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_TRANSIENT020_V3 ###Output _____no_output_____ ###Markdown As mentioned before, **gtdiffrsp** modifies the input file by adding values to the `DIFRSP0` and `DIFRSP1` columns. In the tar file, for comparison purposes, the user can find two copies of the input file, one used as input of **gtdiffrsp** (named `prompt_select_pre_gtdiffrsp.fits`) and one obtained after running with **gtdiffrsp** and with the columns modified (named `prompt_select.fits`). **e) Livetime cube generation**For analysis of longer time intervals, we would need to run **gtltcube** to calculate a livetime cube. For this analysis, this step is unnecessary due to the short timescales involved. **f) Exposure map generation**We now use **gtexpmap** to generate the [exposure map](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data_Exploration/livetime_and_exposure.html). Note that the exposure maps from this tool are intended for use with **unbinned likelihood analysis only**: ###Code %%bash gtexpmap ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/FT2.fits none ./data/LAT_GRB_analysis/prompt_expmap.fits P8R3_TRANSIENT020_V3 25 100 100 20 ###Output _____no_output_____ ###Markdown The radius of the source region should be larger than the extraction region in the FT1 data in order to account for PSF tail contributions of sources just outside the extraction region.For energies down to 100 MeV, a 10 degree buffer is recommended (i.e., the total radius is the sum of the extraction radius and the buffer area, totaling 25 in our case); for higher energy lower bounds, e.g., 1 GeV, 5 degrees or less is acceptable. Again, note that we did not provide an "exposure hypercube" (the livetime cube) file.For data durations less than about 1ks, **gtexpmap** will execute faster doing the time integration over the livetimes in the FT2 file directly. For longer integrations, computing the livetime cube with **gtltcube** will be faster (more information can be found in the [Explore LAT Data section](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/explore_latdata.html)). At this step, the flux and spectral shape of the GRB prompt emission can be estimated using the **gtlike** tool (see section 4f). 3. Binned analysis with XSPEC (prompt emission)We will now perform a spectral analysis on the prompt emission using XSPEC. (A basic knowledge of the use of XSPEC is assumed.)This requires a `PHA` (spectral) file and a `RSP` (response) file. It should be noted that as an alternative to XSPEC, the RMFIT software (available as a user contribution) can be used for spectral modeling; however, it is not distributed as part of the Fermitools. **a) Generating PHA and RSP files**We use **gtbin** to create the `PHA1` file (the choice of `PHA1` for `Type of output file` indicates that you want to create a `PHA` file — the standard FITS file containing a single binned spectrum — spanning the entire time range): ###Code %%bash gtbin PHA1 ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/080916C_LAT.pha ./data/LAT_GRB_analysis/FT2.fits LOG 100 300000 30 ###Output _____no_output_____ ###Markdown The **gtrspgen** tool is then run to generate an XSPEC-compatible response matrix from the LAT IRFs. ###Code %%bash gtrspgen PS ./data/LAT_GRB_analysis/080916C_LAT.pha ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/080916C_LAT.rsp 90 0.5 CALDB LOG 100 300000 100 ###Output _____no_output_____ ###Markdown **Notes**:* One should always use the `PS` response calculation method despite the option of using `GRB`. The latter was a method used in the early stages of the software creation but was later never fully developed. Ultimately, the `PS` method should always be more accurate, in particular for longer bursts. For short bursts, the difference in results and execution time between `PS` and `GRB` is negligible.* In **gtrspgen** you choose the incident photon energy bins; i.e., the energy bins over which the incident photon model is computed. **gtrspgen** reads the output photon channel energy grid from the PHA file. The RSP created by **gtrspgen** is the mapping from the incident photon energy bins into the output photon channels. These incident photon energy bins need not be the same as the output channels and they should generally over-sample them: * If there are only a few channels then the calculation of the expected number of photons in each channel will be more accurate if there are more incident photon energy bins. * You might want to include some incident photon energy bins above and below the range of channels to account for the LAT's finite energy resolution. Incident energy bins above the highest channel energy is particularly important if some for the photon's energy leaks out of the detector. **b) Backgrounds**For the prompt emission of GRB 080916C (and most LAT bursts), there is minimal background contamination. For analyses of longer integrations, one can estimate the background using off-source regions as for more traditional X-ray analyses. **c) Running XSPEC**You now have the two files necessary to analyze the burst spectrum with XSPEC:* A PHA file with the spectrum.* A RSP file with the response function.Note that there is no background file. All non-burst sources are expected to produce less than 1 photon in the extraction region during the burst! Here we provide the simplest example of fitting a spectrum with XSPEC; for further details you should consult the [XSPEC manual](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/). 1. Start XSPEC**Note**: The default version is now release 12 (XSPEC12). 2. Load in the data: ```%%bash>>xspecdata ./data/080916C_LAT.pha``` When you specify a data file, XSPEC will try to load the response file in the PHA file's header. Alternatively, you can specify the response file separately with the command `response 080916C_LAT.rsp`.We now load in a power law model for fitting the data. For more information on available models, see [this example](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/xspec11/manual/node26.html). 3. Load the model: ```%%bash>>xspecmodel pow``` 4. Set XSPEC to plot the data and to select the statistical method for fitting: ```bash>>xspeccpd /xssetplot energyplot ldata chistatistic cstat``` The `cpd` command sets the current plotting device, which in this case is the `xserve` option (an xwindow that persists after XSPEC has been closed).The next two commands tell XSPEC to create a logarithmic (the "l" of `ldata`) plot of the energy (along the x-axis), using the data file specified before, with the fit statistic. (Consult the [manual](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/xspec11/manual/node26.html) for another example.)It is important to note that, for LAT GRB analysis, we generally want to use the C-statistic instead of chi-squared due to the small number of counts. (However, the command for plotting is still `chi` or `chisq` regardless of the statistic used.) We have set this in the last step. 5. Perform a fit and plot the results: ```%%bash>>xspecfitplot ldata residplot ldata ratio``` They should all be invoked in the same xspec instance, so combining all of the steps above will yield: ###Code %%bash #For ldata resid xspec data ./data/LAT_GRB_analysis/080916C_LAT.pha model pow cpd /xs setplot energy plot ldata chi statistic cstat fit plot ldata resid ###Output _____no_output_____ ###Markdown This will give you something that looks like: ###Code %%bash # For ldata ratio xspec data ./data/LAT_GRB_analysis/080916C_LAT.pha model pow cpd /xs setplot energy plot ldata chi statistic cstat fit plot ldata ratio ###Output _____no_output_____ ###Markdown And this will give you something that looks like: 4. Unbinned analysis using gtlike (temporally expanded emission)**a) Data subselection**Here, we will search for emission which may occur after the prompt GRB event; temporally extended high-energy emission has been detected in a large number of LAT bursts. We rerun **gtselect** on a time interval of ~40 to 400 seconds after the trigger on the file downloaded from the archive (i.e. the EV file) and renamed `FT1.fits`, choosing to [exclude "transient"](http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html) class photons for the analysis of extended emission. (A longer interval has been chosen to demonstrate **gtmktime**, **gtltcube**, etc.)Remember to set `evclass=128` on the command line to ensure that we use the source class events. ###Code # Make a copy of the EV file and rename it to FT1.fits. !cp ./data/LAT_GRB_analysis/L1506171634094365357F22_EV00.fits ./data/LAT_GRB_analysis/FT1.fits %%bash gtselect evclass=128 ./data/LAT_GRB_analysis/FT1.fits ./data/LAT_GRB_analysis/extended_select.fits 119.861 -56.581 15 243216806 243217166 100 300000 100 ###Output _____no_output_____ ###Markdown **b) Refining the GTIs**Since our subselection encompasses a longer period of time, we run gtmktime to exclude bad time intervals with the filter expression suggested in the [Cicerone](https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/): ###Code %%bash gtmktime ./data/LAT_GRB_analysis/FT2.fits (DATA_QUAL>0)&&(LAT_CONFIG==1) yes ./data/LAT_GRB_analysis/extended_select.fits ./data/LAT_GRB_analysis/extended_mktime.fits ###Output _____no_output_____ ###Markdown Note: In an analysis of *transient* class events, we set the data quality portion of the filter expression to `DATA_QUAL>0` to retain these events. **c) Diffuse response calculation**We run now **gtdiffrsp**, making sure to use the correct response function.Again, note that the pass 8 Galactic diffuse background model causes this to be very resource-intensive. The tool modifies the input event data file, inserting values in the `DIFRSP0` and `DIFRSP1` columns. ###Code %%bash gtdiffrsp ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_SOURCE_V3 ###Output _____no_output_____ ###Markdown **d) Livetime cube generation**Now that our data file encompasses a longer period of time, it requires us to calculate the livetime cube using **gtltcube**: ###Code %%bash gtltcube ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_ltcube.fits 0.025 0.5 ###Output _____no_output_____ ###Markdown **e) Exposure map generation**This time we will specify a livetime cube file: ###Code %%bash gtexpmap ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_ltcube.fits ./data/LAT_GRB_analysis/extended_expmap.fits P8R3_SOURCE_V3 25 100 100 20 ###Output _____no_output_____ ###Markdown **f) Calculating the likelihood**We will use **gtlike** for this analysis. The `plot=yes` command brings up a plot of the fit results; `results=results.dat` saves a copy of the fit results to the file `results.dat`. ###Code %%bash gtlike plot=yes results=./data/LAT_GRB_analysis/results.dat UNBINNED ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/extended_expmap.fits ./data/LAT_GRB_analysis/extended_ltcube.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_SOURCE_V3 MINUIT ###Output _____no_output_____ ###Markdown LAT Gamma-Ray Burst AnalysisThis procedure provides a step-by-step example of extracting and modeling a LAT Gamma-Ray Burst observation and modeling the prompt and temporally extended emissions using the X-Ray Spectral Fitting Package (**Xspec**) and **gtlike**, respectively. It should be noted that the LAT Low Energy (LLE) data products can also be used for LAT-detected GRBs (see [GRB Analysis Using GTBurst](https://fermidev.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html)). Prerequisites* [gtbin](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtbin.txt)* [gtdiffrsp](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtdiffrsp.txt)* [gtexpmap](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtexpmap.txt)* [gtfindsrc](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtfindsrc.txt)* [gtltcube](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtltcube.txt)* [gtmktime](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtmktime.txt)* [gtrspgen](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtrspgen.txt)* [gtselect](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtselect.txt)* [gtvcut](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtvcut.txt)* XSPEC, used as a spectral analysis tool in Step 3 of this procedure (See [Xanadu Data Analysis for X-Ray Astronomy](http://heasarc.gsfc.nasa.gov/docs/xanadu/).)* The FITS viewer [*fv*](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/heasarc.gsfc.nasa.gov/ftools/fv.html)* The astronomical imaging and data visualization application [*ds9*](http://hea-www.harvard.edu/RD/ds9/) AssumptionsIt is assumed that:* The referenced files reside in your working directory.* You know the time and location of the burst you wish to analyze. Note: For this thread, we will analyze GRB080916C, one of the brightest LAT GRBs on record. The relevant burst properties are: * T0 = 00:12:45.614 UT, 16 September 2008, corresponding to 243216766.614 seconds (MET) * Trigger 243216766 * RA = 121.8 degrees * Dec = -61.3 degrees * You have extracted the files used in this tutorial. You can download them in the code cell below, or you can extract them yourself in the [LAT Data Server](http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi) with the following selections:```GRB080916CSearch Center (RA,Dec) = (121.8,-61.3)Radius = 40 degreesStart Time (MET) = 243216266.6 seconds (2011-03-28T00:00:00)Stop Time (MET) = 243218766.6 seconds (2011-04-04T00:00:00)Minimum Energy = 100 MeVMaximum Energy = 300000 MeV``` In this case, the GRB in question is of a sufficiently short duration, e.g. ~10's of seconds, so that the accumulation of LAT background counts is negligible. In order to study delayed emission, e.g. 10's of minutes to ~hour timescales, a likelihood analysis will be required. ###Code !wget https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/data/latGrbAnalysis/LAT_GRB_analysis.tgz !mkdir data !mv LAT_GRB_analysis.tgz ./data !tar -xzvf ./data/LAT_GRB_analysis.tgz -C ./data ###Output x ./._LAT_GRB_analysis x LAT_GRB_analysis/ x LAT_GRB_analysis/._080916C_LAT.pha x LAT_GRB_analysis/080916C_LAT.pha x LAT_GRB_analysis/._080916C_LAT.rsp x LAT_GRB_analysis/080916C_LAT.rsp x LAT_GRB_analysis/._cmap_zmax100.fits x LAT_GRB_analysis/cmap_zmax100.fits x LAT_GRB_analysis/._extended_expmap.fits x LAT_GRB_analysis/extended_expmap.fits x LAT_GRB_analysis/._extended_ltcube.fits x LAT_GRB_analysis/extended_ltcube.fits x LAT_GRB_analysis/._extended_mktime.fits x LAT_GRB_analysis/extended_mktime.fits x LAT_GRB_analysis/._extended_select.fits x LAT_GRB_analysis/extended_select.fits x LAT_GRB_analysis/._filtered_zmax100.fits x LAT_GRB_analysis/filtered_zmax100.fits x LAT_GRB_analysis/._FT2.fits x LAT_GRB_analysis/FT2.fits x LAT_GRB_analysis/._glg_cspec_n0_bn080916009_v07.rsp x LAT_GRB_analysis/glg_cspec_n0_bn080916009_v07.rsp x LAT_GRB_analysis/._glg_tte_n0_bn080916009_v01.fit x LAT_GRB_analysis/glg_tte_n0_bn080916009_v01.fit x LAT_GRB_analysis/._GRB080916C_model.xml x LAT_GRB_analysis/GRB080916C_model.xml x LAT_GRB_analysis/._L1506171634094365357F22_EV00.fits x LAT_GRB_analysis/L1506171634094365357F22_EV00.fits x LAT_GRB_analysis/._L1506171634094365357F22_SC00.fits x LAT_GRB_analysis/L1506171634094365357F22_SC00.fits x LAT_GRB_analysis/._lc_zmax100.fits x LAT_GRB_analysis/lc_zmax100.fits x LAT_GRB_analysis/._localize_zmax100.fits x LAT_GRB_analysis/localize_zmax100.fits x LAT_GRB_analysis/._prompt_expmap.fits x LAT_GRB_analysis/prompt_expmap.fits x LAT_GRB_analysis/._prompt_select.fits x LAT_GRB_analysis/prompt_select.fits x LAT_GRB_analysis/._results.dat x LAT_GRB_analysis/results.dat ###Markdown Steps:1. [Localize the GRB.](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlTS)2. [Generating the analysis files.](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlFILESGEN)3. [Binned analysis with XSPEC (prompt emission).](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlXSPEC)4. [Unbinned analysis using gtlike (extended emission).](https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/lat_grb_analysis.htmlGTLIKE)**NOTE**: During the analysis of the prompt emission (Steps 1 to 3) we will make use of the `P8R3_TRANSIENT020_V2` [response function](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_overview.html), while in the analysis of the extended emission (Step 4) the `P8R3_SOURCE_V2` response function will be used. 1. Localize the GRB**a) Select LAT data during prompt burst phase**This can either be done using a time interval ascertained from data from other instruments (e.g., using the GBM trigger time and T90 values reported in the [Fermi/GBM circular](http://gcn.gsfc.nasa.gov/gcn3/8245.gcn3)), or it can be estimated directly from the LAT light curve. Open the light curve `lc_zmax100.fits` with [*fv*](http://heasarc.nasa.gov/ftools/fv/): ###Code !fv ./data/LAT_GRB_analysis/lc_zmax100.fits ###Output /bin/sh: fv: command not found ###Markdown You should get something that looks like this: Here, we have plotted TIME-243216766 on the x-axis (with TIMEDEL as error) and COUNTS on the y-axis (with ERROR as error). Hovering the cursor over the plot will yield its x-y coordinates; in this case, a plausible estimate of the LAT emission interval is (T0, T0+40s).We run **gtselect** to extract the data for this time interval.Remember to set `evclass=16` on the command line to ensure that we retain the transient class events: ###Code %%bash gtselect evclass=16 ./data/LAT_GRB_analysis/filtered_zmax100.fits ./data/LAT_GRB_analysis/localize_zmax100.fits INDEF INDEF 15 243216766 243216806 100 300000 100 ###Output Input FT1 file[./data/LAT_GRB_analysis/FT1.fits] ./data/LAT_GRB_analysis/fil tered_zmax100.fits Output FT1 file[./data/LAT_GRB_analysis/extended_select.fits] ./data/LAT_GRB _analysis/localize_zmax100.fits RA for new search center (degrees) (0:360) [119.861] INDEF Dec for new search center (degrees) (-90:90) [-56.581] INDEF radius of new search region (degrees) (0:180) [15] 15 start time (MET in s) (0:) [243216806] 243216766 end time (MET in s) (0:) [243217166] 243216806 lower energy limit (MeV) (0:) [100] 100 upper energy limit (MeV) (0:) [300000] 300000 maximum zenith angle value (degrees) (0:180) [100] 100 Done. ###Markdown Note that we have also reduced the acceptance cone to 15 degrees to filter out non-burst photons. **b) Run the localization tools, gtfindsrc and gtbin**If the data are essentially background-free as is the case here with a burst duration of ~50 sec, one can run the localization tools **gtfindsrc** and **gtbin** directly on the FT1 file (obtained when downloading the data file from the FSSC LAT Data server).**gtfindsrc** is necessary to centroid the GRB. For longer intervals where the background is significant, we can model the instrumental and celestial backgrounds using diffuse model components. For these data, the integration time is about 40 seconds so the diffuse and instrumental background components will make a negligible contribution to the total counts, so we proceed assuming they are negligible.We run **gtfindsrc** first to find the local maximum of the log-likelihood of a point source model as well as an estimate of the error radius. We will use this information to specify the size of the TS map in order to ensure that it contains the error circles we desire. ###Code %%bash gtfindsrc ./data/LAT_GRB_analysis/localize_zmax100.fits ./data/LAT_GRB_analysis/L1506171634094365357F22_SC00.fits ./data/LAT_GRB_analysis/GRB080916C_gtfindsrc.txt P8R3_TRANSIENT020_V2 none none none CEL 121.8 -61.3 MINUIT 1e-2 0.01 ###Output Event file[] ./data/LAT_GRB_analysis/localize_zmax100.fits Spacecraft file[] ./data/LAT_GRB_analysis/L1506171634094365357F22_SC00.fits Output file for trial points[] ./data/LAT_GRB_analysis/GRB080916C_gtfindsrc. txt Response functions to use[CALDB] P8R3_TRANSIENT020_V2 Livetime cube file[none] none Unbinned exposure map[none] none Source model file[none] none Target source name[] Source ' ' not found in source model. Enter coordinates for test source: Coordinate system (CEL|GAL) [CEL] CEL Intial source Right Ascension (deg) (-360:360) [0] 121.8 Initial source Declination (deg) (-90:90) [0] -61.3 Optimizer (DRMNFB|NEWMINUIT|MINUIT|DRMNGB|LBFGS) [MINUIT] MINUIT Tolerance for -log(Likelihood) at each trial point[1e-2] 1e-2 Covergence tolerance for positional fit[0.01] 0.01 Best fit position: 119.889, -56.6719 Error circle radius: 0.0663046 ###Markdown In this example of running **gtfindsrc**, the `FT2.fits` file was the renamed spacecraft data file downloaded from the FSSC LAT Data server.Since our source model comprises only a point source to represent the signal from the GRB, we do not provide a source model file or a target source name.Similarly, since the exposure map is used for diffuse components, we do not need to provide an unbinned exposure map. Use of a livetime cube will make the point source exposure calculation faster, but for integrations less than 1000 s, it is generally not needed. We have now obtained a position of maximum likelihood; we will use (119.861, -56.581) as our burst location from now on. It should be noted that GRB080916C is an exceptionally bright event in the LAT, and centroiding it with **gtfindsrc** is fast and adequate. In many other cases, a GRB may have far fewer LAT counts and the creation of a counts map using **gtbin** will be useful in localizing it: ###Code %%bash gtbin CMAP ./data/LAT_GRB_analysis/localize_zmax100.fits ./data/LAT_GRB_analysis/GRB080916C_counts_map.fits NONE 30 30 0.2 CEL 119.861 -56.581 0 AIT ###Output This is gtbin version HEAD Type of output file (CCUBE|CMAP|LC|PHA1|PHA2|HEALPIX) [PHA1] CMAP Event data file name[./data/LAT_GRB_analysis/prompt_select.fits] ./data/LAT_ GRB_analysis/localize_zmax100.fits Output file name[./data/LAT_GRB_analysis/080916C_LAT.pha] ./data/LAT_GRB_ana lysis/GRB080916C_counts_map.fits Spacecraft data file name[./data/LAT_GRB_analysis/FT2.fits] NONE Size of the X axis in pixels[30] 30 Size of the Y axis in pixels[30] 30 Image scale (in degrees/pixel)[0.2] 0.2 Coordinate system (CEL - celestial, GAL -galactic) (CEL|GAL) [CEL] CEL First coordinate of image center in degrees (RA or galactic l)[119.861] 119. 861 Second coordinate of image center in degrees (DEC or galactic b)[-56.581] -5 6.581 Rotation angle of image axis, in degrees[0] 0 Projection method e.g. AIT|ARC|CAR|GLS|MER|NCP|SIN|STG|TAN:[AIT] AIT ###Markdown We can now view the counts map in *ds9*: ###Code !ds9 ./data/LAT_GRB_analysis/GRB080916C_counts_map.fits ###Output _____no_output_____ ###Markdown The counts map should look something like this: 2. Generating the analysis filesIn this subsection, we'll use the same data we extracted as for the localization analysis above.The purpose is to illustrate the steps necessary to model a GRB that is significantly fainter than GRB080916C; i.e., one for which the residual and diffuse backgrounds need to be modeled. This means that we will include diffuse components in the model definition and that will necessitate the exposure map calculation in order for the code to compute the predicted number of events. We'll see from the fit to the data that these diffuse components do indeed provide a negligible contribution to the overall counts for this burst. **a) Data subselection**Rerun **gtselect** with (119.861, -56.581) as the new search center: ###Code %%bash gtselect evclass=16 ./data/LAT_GRB_analysis/filtered_zmax100.fits ./data/LAT_GRB_analysis/prompt_select.fits 119.861 -56.581 15 243216766 243216806 100 300000 100 ###Output Input FT1 file[./data/LAT_GRB_analysis/filtered_zmax100.fits] ./data/LAT_GRB _analysis/filtered_zmax100.fits Output FT1 file[./data/LAT_GRB_analysis/localize_zmax100.fits] ./data/LAT_GR B_analysis/prompt_select.fits RA for new search center (degrees) (0:360) [INDEF] 119.861 Dec for new search center (degrees) (-90:90) [INDEF] -56.581 radius of new search region (degrees) (0:180) [15] 15 start time (MET in s) (0:) [243216766] 243216766 end time (MET in s) (0:) [243216806] 243216806 lower energy limit (MeV) (0:) [100] 100 upper energy limit (MeV) (0:) [300000] 300000 maximum zenith angle value (degrees) (0:180) [100] 100 Done. ###Markdown **b) Model definition**The model will include a point source at the GRB location, an isotropic component (to represent the extragalactic diffuse and/or the residual background), and a Galactic diffuse component that uses the recommend Galactic diffuse model, `gal_2yearp7v6_v0.fits`. This file is available at the [LAT background models](http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html) page via the [FSSC Data Access](http://fermi.gsfc.nasa.gov/ssc/data/access/) page.The easiest way to generate a simple 3 component model like this would be to use the [modeleditor](http://www.slac.stanford.edu/exp/glast/wb/prod/pages/sciTools_modeleditor/modelEditor.html) program (included in the [Fermitools](http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/)) by typing `ModelEditor` at the prompt. Here, we have added three sources to our model:1. GRB_080916C (you can rename the source by typing into the "Source Name:" text input box), with a PowerLaw2 spectrum. (The [Model Selection](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Likelihood/Model_Selection.html) page of the Cicerone lists the possible spectral models.) We have adjusted the Lower Limit of its spectrum to be 100.0. We have also inputted the RA and Dec (calculated from gtfindsrc) into its spatial model. We have kept all other default values.2. GALPROP Diffuse (there is a specific option for this in the "Source" menu). Edit the `File:` entry of the spatial model to point to your local copy of `gll_iem_v06.fits`. We have kept all other defaults.3. Extragalactic Diffuse (there is a specific option for this). We have kept all the default values.If our analysis region had been close to any known LAT sources, we would have had to include them in our model (see this [tutorial](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/likelihood_tutorial.htmlcreateSourceModel)). The xml file `GRB080916C_model.xml` should look like this:```xml ``` You can also create and edit model files by hand rather than use the modeleditor so long as the sources have the correct formats. For your convenience, you can create a local copy of the xml by running the python script below. ###Code with open('./data/LAT_GRB_analysis/GRB080916C_model.xml', 'w') as file: file.write("""<?xml version="1.0" ?> <source_library title="Source Library" xmlns="http://fermi.gsfc.nasa.gov/source_library"> <source name="GRB_080916C" type="PointSource"> <spectrum type="PowerLaw2"> <parameter free="true" max="1000.0" min="1e-05" name="Integral" scale="1e-06" value="1.0"/> <parameter free="true" max="-1.0" min="-5.0" name="Index" scale="1.0" value="-2.0"/> <parameter free="false" max="200000.0" min="20.0" name="LowerLimit" scale="1.0" value="20.0"/> <parameter free="false" max="200000.0" min="20.0" name="UpperLimit" scale="1.0" value="200000.0"/> </spectrum> <spatialModel type="SkyDirFunction"> <parameter free="false" max="360.0" min="0.0" name="RA" scale="1.0" value="119.861"/> <parameter free="false" max="90.0" min="-90.0" name="DEC" scale="1.0" value="-56.581"/> </spatialModel> </source> <source name="GALPROP Diffuse Source" type="DiffuseSource"> <spectrum type="ConstantValue"> <parameter free="true" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/> </spectrum> <spatialModel file="$(FERMI_DIR)/refdata/fermi/galdiffuse/gll_iem_v06.fits" type="MapCubeFunction"> <parameter free="false" max="1000.0" min="0.001" name="Normalization" scale="1.0" value="1.0"/> </spatialModel> </source> <source name="Extragalactic Diffuse Source" type="DiffuseSource"> <spectrum type="PowerLaw"> <parameter free="true" max="100.0" min="1e-05" name="Prefactor" scale="1e-07" value="1.6"/> <parameter free="false" max="-1.0" min="-3.5" name="Index" scale="1.0" value="-2.1"/> <parameter free="false" max="200.0" min="50.0" name="Scale" scale="1.0" value="100.0"/> </spectrum> <spatialModel type="ConstantValue"> <parameter free="false" max="10.0" min="0.0" name="Value" scale="1.0" value="1.0"/> </spatialModel> </source> </source_library>""") ###Output _____no_output_____ ###Markdown **c) Refining the good time intervals (GTIs)**In general, our next step would be to run **gtmktime** to remove the time intervals whose events fell outside of our zenith angle cut and apply temporal cuts to the data based on the spacecraft file (`FT2.fits`). However, as our data encompasses a short period of time, this step is inappropriate in this case (**gtmktime** will report errors).It would be necessary if were analyzing a longer period of time such as a longer burst, or extended emission as at the end of this thread (see the [Likelihood Tutorial](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/likelihood_tutorial.html) for more information).Also, if we use **gtvcut** to review the file `prompt_select.fits`, we can see that the GTIs span the entire time selection we have made. **d) Diffuse response calculation**Since we are dealing with `evclass=16` (transient class) events, we need to run the **gtdiffrsp** tool.For each diffuse component in the model, the **gtdiffrsp** tool populates the `DIFRSP0` and `DIFRSP1` columns. They contain the integral over the source extent (for the Galactic and isotropic components this is essentially the entire sky) of the source intensity spatial distribution times the PSF and effective area. It computes the counts model density of the various diffuse components at each measured photon location, arrival time, and energy, and this information is used in maximizing the likelihood computation. This integral is also computed for the point sources in the model, but since those sources are delta-functions in sky position, the spatial part of the integral is trivial.Note that the large size of the [new Galactic diffuse background model](http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html) makes this a very resource-intensive process. ###Code !wget https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/gll_iem_v06.fits !mv gll_iem_v06.fits $FERMI_DIR/refdata/fermi/galdiffuse %%bash gtdiffrsp ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_TRANSIENT020_V2 ###Output Event data file[./data/LAT_GRB_analysis/extended_mktime.fits] ./data/LAT_GRB _analysis/prompt_select.fits Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Source model file[./data/LAT_GRB_analysis/GRB080916C_model.xml] ./data/LAT_G RB_analysis/GRB080916C_model.xml Response functions to use[P8R3_SOURCE_V2] P8R3_TRANSIENT020_V2 adding source Extragalactic Diffuse Source adding source GALPROP Diffuse Source ###Markdown As mentioned before, **gtdiffrsp** modifies the input file by adding values to the `DIFRSP0` and `DIFRSP1` columns. In the tar file, for comparison purposes, the user can find two copies of the input file, one used as input of **gtdiffrsp** (named `prompt_select_pre_gtdiffrsp.fits`) and one obtained after running with **gtdiffrsp** and with the columns modified (named `prompt_select.fits`). **e) Livetime cube generation**For analysis of longer time intervals, we would need to run **gtltcube** to calculate a livetime cube. For this analysis, this step is unnecessary due to the short timescales involved. **f) Exposure map generation**We now use **gtexpmap** to generate the [exposure map](http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data_Exploration/livetime_and_exposure.html). Note that the exposure maps from this tool are intended for use with **unbinned likelihood analysis only**: ###Code %%bash gtexpmap ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/FT2.fits none ./data/LAT_GRB_analysis/prompt_expmap.fits P8R3_TRANSIENT020_V2 25 100 100 20 ###Output Event data file[./data/LAT_GRB_analysis/extended_mktime.fits] ./data/LAT_GRB _analysis/prompt_select.fits Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Exposure hypercube file[./data/LAT_GRB_analysis/extended_ltcube.fits] none output file name[./data/LAT_GRB_analysis/extended_expmap.fits] ./data/LAT_GR B_analysis/prompt_expmap.fits Response functions[P8R3_SOURCE_V2] P8R3_TRANSIENT020_V2 Radius of the source region (in degrees)[25] 25 Number of longitude points (2:1000) [100] 100 Number of latitude points (2:1000) [100] 100 Number of energies (2:100) [20] 20 Computing the ExposureMap (no expCube file given) ###Markdown The radius of the source region should be larger than the extraction region in the FT1 data in order to account for PSF tail contributions of sources just outside the extraction region.For energies down to 100 MeV, a 10 degree buffer is recommended (i.e., the total radius is the sum of the extraction radius and the buffer area, totaling 25 in our case); for higher energy lower bounds, e.g., 1 GeV, 5 degrees or less is acceptable. Again, note that we did not provide an "exposure hypercube" (the livetime cube) file.For data durations less than about 1ks, **gtexpmap** will execute faster doing the time integration over the livetimes in the FT2 file directly. For longer integrations, computing the livetime cube with **gtltcube** will be faster (more information can be found in the [Explore LAT Data section](http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/explore_latdata.html)). At this step, the flux and spectral shape of the GRB prompt emission can be estimated using the **gtlike** tool (see section 4f). 3. Binned analysis with XSPEC (prompt emission)We will now perform a spectral analysis on the prompt emission using XSPEC. (A basic knowledge of the use of XSPEC is assumed.)This requires a `PHA` (spectral) file and a `RSP` (response) file. It should be noted that as an alternative to XSPEC, the RMFIT software (available as a user contribution) can be used for spectral modeling; however, it is not distributed as part of the Fermitools. **a) Generating PHA and RSP files**We use **gtbin** to create the `PHA1` file (the choice of `PHA1` for `Type of output file` indicates that you want to create a `PHA` file — the standard FITS file containing a single binned spectrum — spanning the entire time range): ###Code %%bash gtbin PHA1 ./data/LAT_GRB_analysis/prompt_select.fits ./data/LAT_GRB_analysis/080916C_LAT.pha ./data/LAT_GRB_analysis/FT2.fits LOG 100 300000 30 ###Output This is gtbin version HEAD Type of output file (CCUBE|CMAP|LC|PHA1|PHA2|HEALPIX) [CMAP] PHA1 Event data file name[./data/LAT_GRB_analysis/localize_zmax100.fits] ./data/L AT_GRB_analysis/prompt_select.fits Output file name[./data/LAT_GRB_analysis/GRB080916C_counts_map.fits] ./data/ LAT_GRB_analysis/080916C_LAT.pha Spacecraft data file name[NONE] ./data/LAT_GRB_analysis/FT2.fits Algorithm for defining energy bins (FILE|LIN|LOG) [LOG] LOG Start value for first energy bin in MeV[100] 100 Stop value for last energy bin in MeV[300000] 300000 Number of logarithmically uniform energy bins[30] 30 ###Markdown The **gtrspgen** tool is then run to generate an XSPEC-compatible response matrix from the LAT IRFs. ###Code %%bash gtrspgen PS ./data/LAT_GRB_analysis/080916C_LAT.pha ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/080916C_LAT.rsp 90 0.5 CALDB LOG 100 300000 100 ###Output This is gtrspgen version HEAD Response calculation method (GRB|PS) [GRB] PS Spectrum file name[] ./data/LAT_GRB_analysis/080916C_LAT.pha Spacecraft data file name[] ./data/LAT_GRB_analysis/FT2.fits Output file name[] ./data/LAT_GRB_analysis/080916C_LAT.rsp Cutoff angle for binning SC pointings (degrees)[60.] 90 Size of bins for binning SC pointings (cos(theta))[.05] 0.5 Response function to use, Handoff|DC2|DC2A|DC2FA|DC2BA|DC2FB etc[P6_V3_DIFFUSE] CALDB Algorithm for defining true energy bins (FILE|LIN|LOG) [LOG] LOG Start value for first energy bin in MeV[30.] 100 Stop value for last energy bin in MeV[200000.] 300000 Number of logarithmically uniform energy bins[100] 100 ###Markdown **Notes**:* One should always use the `PS` response calculation method despite the option of using `GRB`. The latter was a method used in the early stages of the software creation but was later never fully developed. Ultimately, the `PS` method should always be more accurate, in particular for longer bursts. For short bursts, the difference in results and execution time between `PS` and `GRB` is negligible.* In **gtrspgen** you choose the incident photon energy bins; i.e., the energy bins over which the incident photon model is computed. **gtrspgen** reads the output photon channel energy grid from the PHA file. The RSP created by **gtrspgen** is the mapping from the incident photon energy bins into the output photon channels. These incident photon energy bins need not be the same as the output channels and they should generally over-sample them: * If there are only a few channels then the calculation of the expected number of photons in each channel will be more accurate if there are more incident photon energy bins. * You might want to include some incident photon energy bins above and below the range of channels to account for the LAT's finite energy resolution. Incident energy bins above the highest channel energy is particularly important if some for the photon's energy leaks out of the detector. **b) Backgrounds**For the prompt emission of GRB 080916C (and most LAT bursts), there is minimal background contamination. For analyses of longer integrations, one can estimate the background using off-source regions as for more traditional X-ray analyses. **c) Running XSPEC**You now have the two files necessary to analyze the burst spectrum with XSPEC:* A PHA file with the spectrum.* A RSP file with the response function.Note that there is no background file. All non-burst sources are expected to produce less than 1 photon in the extraction region during the burst! Here we provide the simplest example of fitting a spectrum with XSPEC; for further details you should consult the [XSPEC manual](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/). 1. Start XSPEC**Note**: The default version is now release 12 (XSPEC12). 2. Load in the data: ```%%bash>>xspecdata ./data/080916C_LAT.pha``` When you specify a data file, XSPEC will try to load the response file in the PHA file's header. Alternatively, you can specify the response file separately with the command `response 080916C_LAT.rsp`.We now load in a power law model for fitting the data. For more information on available models, see [this example](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/xspec11/manual/node26.html). 3. Load the model: ```%%bash>>xspecmodel pow``` 4. Set XSPEC to plot the data and to select the statistical method for fitting: ```bash>>xspeccpd /xssetplot energyplot ldata chistatistic cstat``` The `cpd` command sets the current plotting device, which in this case is the `xserve` option (an xwindow that persists after XSPEC has been closed).The next two commands tell XSPEC to create a logarithmic (the "l" of `ldata`) plot of the energy (along the x-axis), using the data file specified before, with the fit statistic. (Consult the [manual](http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/xspec11/manual/node26.html) for another example.)It is important to note that, for LAT GRB analysis, we generally want to use the C-statistic instead of chi-squared due to the small number of counts. (However, the command for plotting is still `chi` or `chisq` regardless of the statistic used.) We have set this in the last step. 5. Perform a fit and plot the results: ```%%bash>>xspecfitplot ldata residplot ldata ratio``` They should all be invoked in the same xspec instance, so combining all of the steps above will yield: ###Code %%bash #For ldata resid xspec data ./data/LAT_GRB_analysis/080916C_LAT.pha model pow cpd /xs setplot energy plot ldata chi statistic cstat fit plot ldata resid ###Output bash: line 2: xspec: command not found bash: line 3: data: command not found bash: line 4: model: command not found bash: line 7: cpd: command not found bash: line 8: setplot: command not found bash: line 9: plot: command not found bash: line 10: statistic: command not found bash: line 11: fit: command not found bash: line 12: plot: command not found ###Markdown This will give you something that looks like: ###Code %%bash # For ldata ratio xspec data ./data/LAT_GRB_analysis/080916C_LAT.pha model pow cpd /xs setplot energy plot ldata chi statistic cstat fit plot ldata ratio ###Output bash: line 2: xspec: command not found bash: line 3: data: command not found bash: line 4: model: command not found bash: line 7: cpd: command not found bash: line 8: setplot: command not found bash: line 9: plot: command not found bash: line 10: statistic: command not found bash: line 11: fit: command not found bash: line 12: plot: command not found ###Markdown And this will give you something that looks like: 4. Unbinned analysis using gtlike (temporally expanded emission)**a) Data subselection**Here, we will search for emission which may occur after the prompt GRB event; temporally extended high-energy emission has been detected in a large number of LAT bursts. We rerun **gtselect** on a time interval of ~40 to 400 seconds after the trigger on the file downloaded from the archive (i.e. the EV file) and renamed `FT1.fits`, choosing to [exclude "transient"](http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html) class photons for the analysis of extended emission. (A longer interval has been chosen to demonstrate **gtmktime**, **gtltcube**, etc.)Remember to set `evclass=128` on the command line to ensure that we use the source class events. ###Code # Make a copy of the EV file and rename it to FT1.fits. !cp ./data/LAT_GRB_analysis/L1506171634094365357F22_EV00.fits ./data/LAT_GRB_analysis/FT1.fits %%bash gtselect evclass=128 ./data/LAT_GRB_analysis/FT1.fits ./data/LAT_GRB_analysis/extended_select.fits 119.861 -56.581 15 243216806 243217166 100 300000 100 ###Output Input FT1 file[./data/LAT_GRB_analysis/filtered_zmax100.fits] ./data/LAT_GRB _analysis/FT1.fits Output FT1 file[./data/LAT_GRB_analysis/prompt_select.fits] ./data/LAT_GRB_a nalysis/extended_select.fits RA for new search center (degrees) (0:360) [119.861] 119.861 Dec for new search center (degrees) (-90:90) [-56.581] -56.581 radius of new search region (degrees) (0:180) [15] 15 start time (MET in s) (0:) [243216766] 243216806 end time (MET in s) (0:) [243216806] 243217166 lower energy limit (MeV) (0:) [100] 100 upper energy limit (MeV) (0:) [300000] 300000 maximum zenith angle value (degrees) (0:180) [100] 100 Done. ###Markdown **b) Refining the GTIs**Since our subselection encompasses a longer period of time, we run gtmktime to exclude bad time intervals with the filter expression suggested in the [Cicerone](https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/): ###Code %%bash gtmktime ./data/LAT_GRB_analysis/FT2.fits (DATA_QUAL>0)&&(LAT_CONFIG==1) yes ./data/LAT_GRB_analysis/extended_select.fits ./data/LAT_GRB_analysis/extended_mktime.fits ###Output Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Filter expression[(DATA_QUAL>0)&&(LAT_CONFIG==1)] (DATA_QUAL>0)&&(LAT_CONFIG ==1) Apply ROI-based zenith angle cut[yes] yes Event data file[./data/LAT_GRB_analysis/extended_select.fits] ./data/LAT_GRB _analysis/extended_select.fits Output event file name[./data/LAT_GRB_analysis/extended_mktime.fits] ./data/ LAT_GRB_analysis/extended_mktime.fits ###Markdown Note: In an analysis of *transient* class events, we set the data quality portion of the filter expression to `DATA_QUAL>0` to retain these events. **c) Diffuse response calculation**We run now **gtdiffrsp**, making sure to use the correct response function.Again, note that the pass 8 Galactic diffuse background model causes this to be very resource-intensive. The tool modifies the input event data file, inserting values in the `DIFRSP0` and `DIFRSP1` columns. ###Code %%bash gtdiffrsp ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_SOURCE_V2 ###Output Event data file[./data/LAT_GRB_analysis/prompt_select.fits] ./data/LAT_GRB_a nalysis/extended_mktime.fits Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Source model file[./data/LAT_GRB_analysis/GRB080916C_model.xml] ./data/LAT_G RB_analysis/GRB080916C_model.xml Response functions to use[P8R3_TRANSIENT020_V2] P8R3_SOURCE_V2 adding source Extragalactic Diffuse Source adding source GALPROP Diffuse Source ###Markdown **d) Livetime cube generation**Now that our data file encompasses a longer period of time, it requires us to calculate the livetime cube using **gtltcube**: ###Code %%bash gtltcube ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_ltcube.fits 0.025 0.5 ###Output Event data file[./data/LAT_GRB_analysis/extended_mktime.fits] ./data/LAT_GRB _analysis/extended_mktime.fits Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Output file[./data/LAT_GRB_analysis/extended_ltcube.fits] ./data/LAT_GRB_ana lysis/extended_ltcube.fits Step size in cos(theta) (0.:1.) [0.025] 0.025 Pixel size (degrees)[0.5] 0.5 ###Markdown **e) Exposure map generation**This time we will specify a livetime cube file: ###Code %%bash gtexpmap ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_ltcube.fits ./data/LAT_GRB_analysis/extended_expmap.fits P8R3_SOURCE_V2 25 100 100 20 ###Output Event data file[./data/LAT_GRB_analysis/prompt_select.fits] ./data/LAT_GRB_a nalysis/extended_mktime.fits Spacecraft data file[./data/LAT_GRB_analysis/FT2.fits] ./data/LAT_GRB_analys is/FT2.fits Exposure hypercube file[none] ./data/LAT_GRB_analysis/extended_ltcube.fits output file name[./data/LAT_GRB_analysis/prompt_expmap.fits] ./data/LAT_GRB_ analysis/extended_expmap.fits Response functions[P8R3_TRANSIENT020_V2] P8R3_SOURCE_V2 Radius of the source region (in degrees)[25] 25 Number of longitude points (2:1000) [100] 100 Number of latitude points (2:1000) [100] 100 Number of energies (2:100) [20] 20 Computing the ExposureMap using ./data/LAT_GRB_analysis/extended_ltcube.fits ###Markdown **f) Calculating the likelihood**We will use **gtlike** for this analysis. The `plot=yes` command brings up a plot of the fit results; `results=results.dat` saves a copy of the fit results to the file `results.dat`. ###Code %%bash gtlike plot=yes results=./data/LAT_GRB_analysis/results.dat UNBINNED ./data/LAT_GRB_analysis/FT2.fits ./data/LAT_GRB_analysis/extended_mktime.fits ./data/LAT_GRB_analysis/extended_expmap.fits ./data/LAT_GRB_analysis/extended_ltcube.fits ./data/LAT_GRB_analysis/GRB080916C_model.xml P8R3_SOURCE_V2 MINUIT ###Output Statistic to use (BINNED|UNBINNED) [UNBINNED] UNBINNED Spacecraft file[none] ./data/LAT_GRB_analysis/FT2.fits Event file[none] ./data/LAT_GRB_analysis/extended_mktime.fits Unbinned exposure map[none] ./data/LAT_GRB_analysis/extended_expmap.fits Exposure hypercube file[none] ./data/LAT_GRB_analysis/extended_ltcube.fits Source model file[] ./data/LAT_GRB_analysis/GRB080916C_model.xml Response functions to use[CALDB] P8R3_SOURCE_V2 Optimizer (DRMNFB|NEWMINUIT|MINUIT|DRMNGB|LBFGS) [MINUIT] MINUIT ********** ** 1 **SET PRINT .000 ********** ********** ** 2 **SET NOWARN ********** PARAMETER DEFINITIONS: NO. NAME VALUE STEP SIZE LIMITS 1 'Prefactor ' 1.6000 1.0000 .10000E-04 100.00 2 'Value ' 1.0000 1.0000 .0000 10.000 3 'Integral ' 1.0000 1.0000 .10000E-04 1000.0 4 'Index ' -2.0000 1.0000 -5.0000 -1.0000 ********** ** 3 **SET ERR .5000 ********** ********** ** 4 **SET GRAD 1.000 ********** ********** ** 5 **MINIMIZE 800.0 2.000 ********** MIGRAD MINIMIZATION HAS CONVERGED. MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. FCN= 612.1321 FROM MIGRAD STATUS=CONVERGED 70 CALLS 71 TOTAL EDM= .80E-04 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Prefactor .21271E-04 .99149 .84415E-01** at limit ** 2 Value 2.1292 .42566 .46267E-01 .37155E-01 3 Integral 321.48 90.971 .43760E-01 .81086E-01 4 Index -2.0185 .12374 .16695E-01 .15893 ERR DEF= .500 Final values: Prefactor = 2.12712e-05 Value = 2.12921 Integral = 321.485 Index = -2.01851 ********** ** 6 **HESSE ********** FCN= 612.1321 FROM HESSE STATUS=OK 23 CALLS 94 TOTAL EDM= .73E-04 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL NO. NAME VALUE ERROR STEP SIZE VALUE 1 Prefactor .21271E-04 1.0063 .24006E-02 -1.5715 WARNING - - ABOVE PARAMETER IS AT LIMIT. 2 Value 2.1292 .42399 .24968E-03 5.6716 3 Integral 321.48 79.580 .20312E-03 -.36509 4 Index -2.0185 .10807 .73783E-04 19.363 ERR DEF= .500 Minuit fit quality: 3 estimated distance: 7.2751e-05 Minuit parameter uncertainties: 1 0.00674714 2 0.42475 3 79.9698 4 0.108139 Computing TS values for each source (3 total) Photon fluxes are computed for the energy range 100 to 300000 MeV Extragalactic Diffuse Source: Prefactor: 2.12712e-05 +/- 0.00674714 Index: -2.1 Scale: 100 Npred: 4.35898e-05 Flux: 2.43125e-09 +/- 7.70682e-07 photons/cm^2/s GALPROP Diffuse Source: Value: 2.12921 +/- 0.42475 Npred: 28.6587 Flux: 0.0010404 +/- 0.00020753 photons/cm^2/s GRB_080916C: Integral: 321.485 +/- 79.9698 Index: -2.01851 +/- 0.108139 LowerLimit: 20 UpperLimit: 200000 Npred: 70.4164 ROI distance: 0 TS value: 451.168 Flux: 6.24327e-05 +/- 8.09301e-06 photons/cm^2/s Total number of observed counts: 99 Total number of model events: 99.0752 -log(Likelihood): 612.1321133 Elapsed CPU time: 22.44168
python-tuts/1-intermediate/04 - Iteration tools/Project /Project - Description.ipynb
###Markdown Project For this project you have 4 files containing information about persons.The files are:* `personal_info.csv` - personal information such as name, gender, etc. (one row per person)* `vehicles.csv` - what vehicle people own (one row per person)* `employment.csv` - where a person is employed (one row per person)* `update_status.csv` - when the person's data was created and last updatedEach file contains a key, `SSN`, which **uniquely** identifies a person.This key is present in **all** four files.You are guaranteed that the same SSN value is present in **every** file, and that it only appears **once per file**.In addition, the files are all sorted by SSN, i.e. the SSN values appear in the same order in each file. Goal 1Your first task is to create iterators for each of the four files that contained cleaned up data, of the correct type (e.g. string, int, date, etc), and represented by a named tuple.For now these four iterators are just separate, independent iterators. Goal 2Create a single iterable that combines all the columns from all the iterators.The iterable should yield named tuples containing all the columns.Make sure that the SSN's across the files match!All the files are guaranteed to be in SSN sort order, and every SSN is unique, and every SSN appears in every file.Make sure the SSN is not repeated 4 times - one time per row is enough! Goal 3Next, you want to identify any stale records, where stale simply means the record has not been updated since 3/1/2017 (e.g. last update date < 3/1/2017). Create an iterator that only contains current records (i.e. not stale) based on the `last_updated` field from the `status_update` file. Goal 4Find the largest group of car makes for each gender.Possibly more than one such group per gender exists (equal sizes). Hints You will not be able to use a simple split approach here, as I explain in the video.Instead you should use the `csv` module and the `reader` function.Here's a simple example of how to use it - you will need to expand on this for your project goals, but this is a good starting point. ###Code import csv def read_file(file_name): with open(file_name) as f: rows = csv.reader(f, delimiter=',', quotechar='"') yield from rows from itertools import islice rows = read_file('personal_info.csv') for row in islice(rows, 5): print(row) ###Output ['ssn', 'first_name', 'last_name', 'gender', 'language'] ['100-53-9824', 'Sebastiano', 'Tester', 'Male', 'Icelandic'] ['101-71-4702', 'Cayla', 'MacDonagh', 'Female', 'Lao'] ['101-84-0356', 'Nomi', 'Lipprose', 'Female', 'Yiddish'] ['104-22-0928', 'Justinian', 'Kunzelmann', 'Male', 'Dhivehi']
AutoSortFolders.ipynb
###Markdown Auto Sort Downloads Folder on macSort through certain file types in the downloads Folder- images (png, jpeg, jpg, etc.)- videos (mp4, etc.) ###Code # Import dependencies import os import shutil mainpath='/Users/jacobmannix/Desktop/folder' mainfiles = os.listdir(sourcepath) image_path = sourcepath + "/images" video_path = sourcepath + "/videos" audio_path = sourcepath + "/audio" svg_path = sourcepath + "/images/svg" # https://www.computerhope.com/issues/ch001789.htm image_types = ('.jpeg', 'jpg', 'JPG', 'jpeg-2000', 'png', 'HEIC', 'openexr', 'tiff', 'gif', 'raw') video_types = ('mp4', '.avi', 'mkv', '.h264', '.h265', 'm4v', 'mov', 'mpg', 'mpeg', 'wmv') audio_types = ('aif', 'cda', 'mid', 'midi', 'mp3', 'mpa', 'ogg', 'wav', 'wma', 'wpl') svg_types = ('.svg') for file in mainfiles: if file.endswith(image_types): shutil.move(os.path.join(sourcepath, file), os.path.join(image_path, file)) elif file.endswith(video_types): shutil.move(os.path.join(sourcepath, file), os.path.join(video_path, file)) elif file.endswith(audio_types): shutil.move(os.path.join(sourcepath, file), os.path.join(video_path, file)) mainpath='/Users/jacobmannix/Desktop/folder' mainfiles = os.listdir(sourcepath) folders = ((image_types, image_path), (video_types, video_path), (audio_types, audio_path)) for types, path in folders: for file in mainfiles: if file.endswith(types): shutil.move(os.path.join(sourcepath, file), os.path.join(sourcepath + path, file)) other = ('image') types_path = ((other_type, other_path)) # print(types_path) # Auto Sort Downloads mainpath='/Users/jacobmannix/Desktop/folder' mainfiles = os.listdir(mainpath) folders = ( ( # Images "/images", ('.jpeg', 'jpg', 'JPG', 'jpeg-2000', 'png', 'HEIC', 'openexr', 'tiff', 'gif', 'raw') ), ( # Video "/videos", ('mp4', '.avi', 'mkv', '.h264', '.h265', 'm4v', 'mov', 'mpg', 'mpeg', 'wmv') ), ( # Audio "/audio", ('aif', 'cda', 'mid', 'midi', 'mp3', 'mpa', 'ogg', 'wav', 'wma', 'wpl') ), ( # SVG "/images/svg", ('.svg') ) ) for path, types in folders: if os.path.isdir(sourcepath + path) == True: for file in mainfiles: if file.endswith(types): shutil.move(os.path.join(sourcepath, file), os.path.join(sourcepath + path, file)) else: os.mkdir(sourcepath + path) path = '/Users/jacobmannix/Desktop/folder/videos' os.mkdir(path) if os.path.isdir(sourcepath + path) == True: print(sourcepath + path) else: print('false') ###Output false
Modulo2/Tarea4_GalindoAriadna.ipynb
###Markdown Tarea 4. Midiendo rendimiento y riesgo en un portafolio.**Resumen.**> En esta tarea, calcularás medidas de rendimiento esperado diario y volatilidad para cuatro diferentes portafolios. Usarás los históricos de precios que ya descargaste en la tarea anterior.**Criterio de revisión.**> Se te calificará de acuerdo a los resultados finales que reportes, basados en tu análisis.**Antes de comenzar.**> Por favor, copiar y pegar este archivo en otra ubicación. Antes de comenzar, nombrarlo *Tarea4_ApellidoNombre*, sin acentos y sin espacios; por ejemplo, en mi caso el archivo se llamaría *Tarea4_JimenezEsteban*. Resolver todos los puntos en dicho archivo y subir en este espacio. 1. Descarga de datos (20 puntos)Descargar los precios diarios ajustados en el cierre para el índice S&P 500 (^GSPC), Microsoft (MSFT), Walgreens (WBA), y Tesla Motors (TSLA) durante el periodo comprendido del primero de enero del 2011 hasta el 31 de diciembre del 2015.1. Mostrar el DataFrame de los precios diarios (5 puntos).2. Graficar los precios (5 puntos).3. Mostrar el DataFrame de los rendimientos porcentuales diarios (5 puntos).4. Graficar los rendimientos (5 puntos). ###Code #importamos librerias import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import pandas_datareader.data as web def get_adj_closes(tickers, start_date= '2011-01-01' , end_date='2015-12-15'): closes = web.DataReader(name=tickers, data_source='yahoo', start=start_date, end=end_date) closes = closes['Adj Close'] closes.sort_index(inplace=True) return closes #descargamos los datos port=web.DataReader(name=['^GSPC','MSFT','WBA','TSLA'], data_source='yahoo', start='2011-01-01') names= ['^GSPC','MSFT','WBA','TSLA'] start='2011-01-01' end= '2015-12-15' #1 closes= get_adj_closes(tickers=names, start_date=start, end_date= end) closes.head() #2 #graficamos closes.plot() #3 #obtenemos los rendimientos r_port=closes.pct_change().dropna() r_port.head() #4 #graficamos los rendimientos r_port.plot(grid=True) ###Output _____no_output_____ ###Markdown 2. Rendimiento esperado y volatilidad para cada activo (30 puntos)Usando los datos de rendimientos diarios de MSFT, WBA, y TSLA:1. Reportar en un DataFrame el rendimiento esperado diario y la volatilidad diaria para cada activo. Reportar en otro DataFrame el rendimiento esperado anual y la volatilidad anual para cada activo (10 puntos).2. Calcular la matriz de varianza-covarianza (base diaria) para los activos MSFT, WBA, y TSLA (10 puntos).3. Calcular la matriz de correlación (base diaria) para los activos MSFT, WBA, y TSLA (10 puntos). ###Code #1 #rendimiento esperado y volatilidad diarios tabla= pd.DataFrame(data={'Mean':r_port.mean(), 'Volatility':r_port.std()}, index=r_port.columns) tabla #1 #Cambiamos los datos diarios a anuales tabla2= pd.DataFrame(data={'Mean':r_port.mean()*252 ,'Volatility':np.sqrt(252)*r_port.std()}, index=r_port.columns) tabla2 #2 #matriz varianza-covarianza r_port.cov() #3 #matriz correlaciones r_port.corr() ###Output _____no_output_____ ###Markdown 3. Rentimiento esperado y volatilidad para portafolios (30 puntos)1. Calcular los rendimientos diarios de los siguientes portafolios. Reportar en un DataFrame el rendimiento esperado anual y la volatilidad anual para cada portafolio, calculando lo anterior tratando cada portafolio como si fuera un activo individual (15 puntos). - Portafolio 1: igualmente ponderado entre MSFT, WBA, y TSLA. - Portafolio 2: 30% MSFT, 20% WBA, y 50% TSLA. - Portafolio 3: 50% MSFT, 30% WBA, y 20% TSLA. - Portafolio 4: 20% MSFT, 50% WBA, y 30% TSLA.2. Para cada uno de los anteriores portafolios, reportar en otro DataFrame el rendimiento esperado anual y la volatilidad anual para cada portafolio, calculando lo anterior mediante las fórmulas de rendimiento esperado y volatilidad para portafolios derivadas en clase (10 puntos).3. Comparar los resultados del punto uno con los del punto dos (5 puntos). ###Code #1 #añadimos los nuevos portafolios r_port['Port1']= 1/3*r_port['MSFT']+1/3*r_port['WBA']+ 1/3*r_port['TSLA'] r_port['Port2']= 0.3*r_port['MSFT']+0.2*r_port['WBA']+ 0.5*r_port['TSLA'] r_port['Port3']= 0.5*r_port['MSFT']+0.3*r_port['WBA']+ 0.2*r_port['TSLA'] r_port['Port4']= 0.2*r_port['MSFT']+0.5*r_port['WBA']+ 0.3*r_port['TSLA'] r_port.head() #1 #Obtenemos los rendimientos esperados Er1 = r_port['Port1'].mean() Er2 = r_port['Port2'].mean() Er3 = r_port['Port3'].mean() Er4 = r_port['Port4'].mean() Er1, Er2, Er3, Er4 #obtenemos volatilidad s1 = r_port['Port1'].std() s2 = r_port['Port2'].std() s3 = r_port['Port3'].std() s4 = r_port['Port4'].std() s1,s2,s3,s4 #1 #datos anuales en DataFrame tabla3 = pd.DataFrame(data={'Mean':[Er1,Er2,Er3,Er4] ,'Volatility':[s1,s2,s3,s4]} ,index=['Port1','Port2','Port3','Port4']) tabla3.Mean = tabla3.Mean*252 tabla3.Volatility = tabla3.Volatility*252**(1/2) tabla3 #peso de los activos en los portafolios tabla4 = pd.DataFrame([[0,1/3,1/3,1/3] ,[0,0.3,0.2,0.5] ,[0,0.5,0.3,0.2] ,[0,0.2,0.5,0.3]], columns=['^GSPC','MSFT','WBA','TSLA'] ,index=['Port12','Port22','Port32','Port42']) tabla4 rE1=(tabla['Mean']*tabla4.iloc[0]).sum() rE2=(tabla['Mean']*tabla4.iloc[1]).sum() rE3=(tabla['Mean']*tabla4.iloc[2]).sum() rE4=(tabla['Mean']*tabla4.iloc[3]).sum() vol1 =((tabla['Mean']*(tabla4.iloc[0]-rE1)**2).sum())**0.5 vol2 =((tabla['Mean']*(tabla4.iloc[1]-rE2)**2).sum())**0.5 vol3 =((tabla['Mean']*(tabla4.iloc[2]-rE3)**2).sum())**0.5 vol4 =((tabla['Mean']*(tabla4.iloc[3]-rE4)**2).sum())**0.5 tabla5= pd.DataFrame(data={'Mean':[(rE1,rE2,rE3,rE4)*252] , 'Volatility':[(np.sqrt(252)*(vol1, vol2, vol3, vol4))]}, index=['Port12','Port22','Port32','Port42']) tabla5 ###Output _____no_output_____ ###Markdown **Observaciones**Con ambos métodos es posible realizar los calculos necesarios, asi como cambiarlos de diarios a anuales, pero creo yo que el primero es un poco más sencillo. 4. Gráfico de rendimientos esperados vs. volatilidad (20 puntos)Crear un gráfico de puntos que muestre el rendimiento esperado y la volatilidad para cada uno de los activos, el índice S&P500, y los cuatro portafolios en el espacio rendimiento esperado (eje y) contra volatilidad (eje x). Etiquetar cada uno de los puntos y los ejes apropiadamente. ###Code #mostramos tabla tabla X = pd.concat([tabla3['Volatility'],tabla2['Volatility']]) Y = pd.concat([tabla3['Mean'],tabla2['Mean']]) plt.scatter(X,Y) plt.xlabel('Volatility') plt.ylabel('Expected return') plt.text(X[0],Y[0], 'Port1') plt.text(X[1],Y[1], 'Port2') plt.text(X[2],Y[2], 'Port3') plt.text(X[3],Y[3], 'Port4') plt.text(X[4],Y[4], 'MSFT') plt.text(X[5],Y[5], 'TSLA') plt.text(X[6],Y[6], 'WBA') plt.text(X[7],Y[7], 'GSPC') plt.grid() plt.show() ###Output _____no_output_____
figure_DA.ipynb
###Markdown illusstration figure on best-possible analysis errors ###Code exp_id = '92' exp_ids_deepNet = [exp_id] win_lens_deepNet, rmses_analysis_deepNet = get_analysis_rmses_4DVar_exp(exp_ids=exp_ids_deepNet) plt.plot(np.array(rmses_analysis_deepNet).squeeze()) plt.show() from mpl_toolkits.axes_grid1.inset_locator import inset_axes exp_names = os.listdir('experiments_DA/') conf_exp = exp_names[np.where(np.array([name.split('_')[0] for name in exp_names])==str(exp_id))[0][0]][:-4] args = setup_4DVar(conf_exp=f'experiments_DA/{conf_exp}.yml') args.pop('conf_exp') K,J = args['K'], args['J'] T_win = args['T_win'] model_pars = { 'exp_id' : args['model_exp_id'], 'model_forwarder' : 'rk4_default', 'K_net' : args['K'], 'J_net' : args['J'], 'dt_net' : args['dt'] } model, model_forwarder, _ = get_model(model_pars, res_dir=res_dir, exp_dir='') obs_pars = {'obs_operator' : ObsOp_rotsampleGaussian, 'obs_operator_args' : {'frq' : args['obs_operator_frq'], 'sigma2' : args['obs_operator_sig2']}} model_observer = obs_pars['obs_operator'](**obs_pars['obs_operator_args']) prior = torch.distributions.normal.Normal(loc=torch.zeros((1,J+1,K)), scale=1.*torch.ones((1,J+1,K))) gen = GenModel(model_forwarder, model_observer, prior, T=T_win, x_init=None) save_dir = 'results/data_assimilation/' + args['exp_id'] + '/' fn = save_dir + 'out.npy' out = np.load(res_dir + fn, allow_pickle=True)[()] def get_pred_rmses_4DVar_exp(exp_id, forecast_len=120): exp_names = os.listdir('experiments_DA/') conf_exp = exp_names[np.where(np.array([name.split('_')[0] for name in exp_names])==str(exp_id))[0][0]][:-4] args = setup_4DVar(conf_exp=f'experiments_DA/{conf_exp}.yml') args.pop('conf_exp') #assert args['T_win'] == 64 # we want 4d integration window here K,J = args['K'], args['J'] T_win = args['T_win'] model_pars = { 'exp_id' : args['model_exp_id'], 'model_forwarder' : 'rk4_default', 'K_net' : args['K'], 'J_net' : args['J'], 'dt_net' : args['dt'] } model, model_forwarder, _ = get_model(model_pars, res_dir=res_dir, exp_dir='') obs_operator = args['obs_operator'] obs_pars = {} if obs_operator=='ObsOp_subsampleGaussian': obs_pars['obs_operator'] = ObsOp_subsampleGaussian obs_pars['obs_operator_args'] = {'r' : args['obs_operator_r'], 'sigma2' : args['obs_operator_sig2']} elif obs_operator=='ObsOp_identity': obs_pars['obs_operator'] = ObsOp_identity obs_pars['obs_operator_args'] = {} elif obs_operator=='ObsOp_rotsampleGaussian': obs_pars['obs_operator'] = ObsOp_rotsampleGaussian obs_pars['obs_operator_args'] = {'frq' : args['obs_operator_frq'], 'sigma2' : args['obs_operator_sig2']} else: raise NotImplementedError() model_observer = obs_pars['obs_operator'](**obs_pars['obs_operator_args']) prior = torch.distributions.normal.Normal(loc=torch.zeros((1,J+1,K)), scale=1.*torch.ones((1,J+1,K))) # ### define generative model for observed data gen = GenModel(model_forwarder, model_observer, prior, T=T_win, x_init=None) forecast_win = int(forecast_len/1.5) # 5d forecast eval_every = int(1.5/1.5) # every 6h save_dir = 'results/data_assimilation/' + args['exp_id'] + '/' fn = save_dir + 'out.npy' out = np.load(res_dir + fn, allow_pickle=True)[()] J = args['J'] n_steps = args['n_steps'] T_win = args['T_win'] T_shift = args['T_shift'] if args['T_shift'] >= 0 else T_win dt = args['dt'] data = out['out'] y, m = out['y'], out['m'] x_sols = out['x_sols'] print('percent of NaN sols', str(np.mean(np.isnan(x_sols)))) losses, times = out['losses'], out['times'] assert T_win == out['T_win'] mses = np.zeros(((data.shape[0] - forecast_win - T_win) // T_shift + 1, forecast_win//eval_every+1, y.shape[1])) for i in range(len(mses)): forecasts = gen._forward(x=as_tensor(x_sols[i]), T_obs=np.arange(0,forecast_win+1,eval_every)) n = i * T_shift for j in range(mses.shape[1]): # loop over integration windows forecast = forecasts[j].detach().cpu().numpy() if np.any(np.isnan(forecast)): print('warning - had NaN in forecasts!') y_obs = data[n+j*eval_every] mses[i,j] = np.nanmean((forecast - y_obs)**2, axis=(-2, -1)) pred_lens = 1.5/24 * np.arange(0, forecast_win+1, eval_every) return pred_lens, np.sqrt(mses) pred_lens_deepNet, rmses_pred_deepNet = get_pred_rmses_4DVar_exp(exp_id=exp_id, forecast_len=int(T_win*1.5)) np.mean(rmses_pred_deepNet[:,:,:].mean(axis=(0,2))) i = 0 i_plot = 1 plt.figure(figsize=(12, 8)) plt.subplot(2,3,1) plt.plot(rmses_pred_deepNet[:,:,:].mean(axis=(0,2))) plt.ylabel('analysis RMSE') plt.xlabel('position within integration window') for offset in [0, np.argmin(rmses_pred_deepNet[:,:,:].mean(axis=(0,2)))]: x_true = sortL96fromChannels(out['out'])[offset:out['x_sols'].shape[0]+offset,i,:].T x_sols = sortL96fromChannels(out['x_sols'])[:,i,:].T x_pred = gen._forward(sortL96intoChannels(as_tensor(x_sols.T),J=0) , T_obs=[offset])[0].detach().cpu().numpy() x_pred = sortL96fromChannels(x_pred).T plt.subplot(3,3,i_plot+1) plt.imshow(x_true, aspect='auto') plt.colorbar() if i_plot == 1: plt.ylabel('true state') plt.yticks([]) plt.title(f'offset={offset}') plt.subplot(3,3,i_plot+4) plt.imshow(x_pred, aspect='auto') plt.colorbar() if i_plot == 1: plt.ylabel('4D-Var analysis') plt.yticks([]) plt.subplot(3,3,i_plot+7) plt.imshow(x_true - x_pred, cmap='bwr', aspect='auto') plt.colorbar() if i_plot == 1: plt.ylabel('difference') plt.yticks([]) i_plot += 1 plt.show() ###Output _____no_output_____
notebooks/cv/01_image_basics.ipynb
###Markdown ###Code from matplotlib import pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Black Image ###Code black = np.zeros([10,10]) black plt.imshow(np.zeros([10,10]), cmap="gray", vmin=0, vmax=255) ###Output _____no_output_____ ###Markdown White Image ###Code white = np.full((10,10), 255) white white.shape plt.imshow(white, cmap="gray", vmin=0, vmax=255) ###Output _____no_output_____ ###Markdown Gray Image ###Code gray = np.full((10,10), 170) gray plt.imshow(gray, cmap="gray", vmin=0, vmax=255) ###Output _____no_output_____ ###Markdown Addressing Pixels ###Code gray[0,0] = 0 gray plt.imshow(gray, cmap="gray", vmin=0, vmax=255) ###Output _____no_output_____ ###Markdown Addressing Ranges ###Code gray gray[0:8,0:2] = 0 gray plt.imshow(gray, cmap="gray", vmin=0, vmax=255) ###Output _____no_output_____ ###Markdown Colors ###Code rgb = np.zeros((10,10,3)) plt.imshow(rgb, vmin=0, vmax=255) rgb[:,:,2] = 255 plt.imshow(rgb, vmin=0, vmax=255) rgb[0,0,0] = 170 plt.imshow(rgb, vmin=0, vmax=255) ###Output _____no_output_____
Lesson-05_Logistic_Classification.ipynb
###Markdown Lab 5: Logistic Classification Author: Seungjae Lee (이승재) We use elemental PyTorch to implement linear regression here. However, in most actual applications, abstractions such as nn.Module or nn.Linear are used. You can see those implementations near the end of this notebook. Reminder: Logistic Regression Hypothesis $$ H(X) = \frac{1}{1+e^{-W^T X}} $$ Cost $$ cost(W) = -\frac{1}{m} \sum y \log\left(H(x)\right) + (1-y) \left( \log(1-H(x) \right) $$ - If $y \simeq H(x)$, cost is near 0. - If $y \neq H(x)$, cost is high. Weight Update via Gradient Descent $$ W := W - \alpha \frac{\partial}{\partial W} cost(W) $$ - $\alpha$: Learning rate Imports ###Code import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # For reproducibility torch.manual_seed(1) ###Output _____no_output_____ ###Markdown Training Data ###Code x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] y_data = [[0], [0], [0], [1], [1], [1]] ###Output _____no_output_____ ###Markdown Consider the following classification problem: given the number of hours each student spent watching the lecture and working in the code lab, predict whether the student passed or failed a course. For example, the first (index 0) student watched the lecture for 1 hour and spent 2 hours in the lab session ([1, 2]), and ended up failing the course ([0]). ###Code x_train = torch.FloatTensor(x_data) y_train = torch.FloatTensor(y_data) ###Output _____no_output_____ ###Markdown As always, we need these data to be in `torch.Tensor` format, so we convert them. ###Code print(x_train.shape) print(y_train.shape) ###Output torch.Size([6, 2]) torch.Size([6, 1]) ###Markdown Computing the Hypothesis $$ H(X) = \frac{1}{1+e^{-W^T X}} $$ PyTorch has a `torch.exp()` function that resembles the exponential function. ###Code print('e^1 equals: ', torch.exp(torch.FloatTensor([1]))) ###Output e^1 equals: tensor([2.7183]) ###Markdown We can use it to compute the hypothesis function conveniently. ###Code W = torch.zeros((2, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) hypothesis = 1 / (1 + torch.exp(-(x_train.matmul(W) + b))) print(hypothesis) print(hypothesis.shape) ###Output tensor([[0.5000], [0.5000], [0.5000], [0.5000], [0.5000], [0.5000]], grad_fn=<MulBackward>) torch.Size([6, 1]) ###Markdown Or, we could use `torch.sigmoid()` function! This resembles the sigmoid function: ###Code print('1/(1+e^{-1}) equals: ', torch.sigmoid(torch.FloatTensor([1]))) ###Output 1/(1+e^{-1}) equals: tensor([0.7311]) ###Markdown Now, the code for hypothesis function is cleaner. ###Code hypothesis = torch.sigmoid(x_train.matmul(W) + b) print(hypothesis) print(hypothesis.shape) ###Output tensor([[0.5000], [0.5000], [0.5000], [0.5000], [0.5000], [0.5000]], grad_fn=<SigmoidBackward>) torch.Size([6, 1]) ###Markdown Computing the Cost Function (Low-level) $$ cost(W) = -\frac{1}{m} \sum y \log\left(H(x)\right) + (1-y) \left( \log(1-H(x) \right) $$ We want to measure the difference between `hypothesis` and `y_train`. ###Code print(hypothesis) print(y_train) ###Output tensor([[0.5000], [0.5000], [0.5000], [0.5000], [0.5000], [0.5000]], grad_fn=<SigmoidBackward>) tensor([[0.], [0.], [0.], [1.], [1.], [1.]]) ###Markdown For one element, the loss can be computed as follows: ###Code -(y_train[0] * torch.log(hypothesis[0]) + (1 - y_train[0]) * torch.log(1 - hypothesis[0])) ###Output _____no_output_____ ###Markdown To compute the losses for the entire batch, we can simply input the entire vector. ###Code losses = -(y_train * torch.log(hypothesis) + (1 - y_train) * torch.log(1 - hypothesis)) print(losses) ###Output tensor([[0.6931], [0.6931], [0.6931], [0.6931], [0.6931], [0.6931]], grad_fn=<NegBackward>) ###Markdown Then, we just `.mean()` to take the mean of these individual losses. ###Code cost = losses.mean() print(cost) ###Output tensor(0.6931, grad_fn=<MeanBackward1>) ###Markdown Computing the Cost Function with `F.binary_cross_entropy` In reality, binary classification is used so often that PyTorch has a simple function called `F.binary_cross_entropy` implemented to lighten the burden. ###Code F.binary_cross_entropy(hypothesis, y_train) ###Output _____no_output_____ ###Markdown Training with Low-level Binary Cross Entropy Loss ###Code x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]] y_data = [[0], [0], [0], [1], [1], [1]] x_train = torch.FloatTensor(x_data) y_train = torch.FloatTensor(y_data) # 모델 초기화 W = torch.zeros((2, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) # optimizer 설정 optimizer = optim.SGD([W, b], lr=1) nb_epochs = 1000 for epoch in range(nb_epochs + 1): # Cost 계산 hypothesis = torch.sigmoid(x_train.matmul(W) + b) # or .mm or @ cost = -(y_train * torch.log(hypothesis) + (1 - y_train) * torch.log(1 - hypothesis)).mean() # cost로 H(x) 개선 optimizer.zero_grad() cost.backward() optimizer.step() # 100번마다 로그 출력 if epoch % 100 == 0: print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.item() )) ###Output Epoch 0/1000 Cost: 0.693147 Epoch 100/1000 Cost: 0.134722 Epoch 200/1000 Cost: 0.080643 Epoch 300/1000 Cost: 0.057900 Epoch 400/1000 Cost: 0.045300 Epoch 500/1000 Cost: 0.037261 Epoch 600/1000 Cost: 0.031673 Epoch 700/1000 Cost: 0.027556 Epoch 800/1000 Cost: 0.024394 Epoch 900/1000 Cost: 0.021888 Epoch 1000/1000 Cost: 0.019852 ###Markdown Training with `F.binary_cross_entropy` ###Code # 모델 초기화 W = torch.zeros((2, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) # optimizer 설정 optimizer = optim.SGD([W, b], lr=1) nb_epochs = 1000 for epoch in range(nb_epochs + 1): # Cost 계산 hypothesis = torch.sigmoid(x_train.matmul(W) + b) # or .mm or @ cost = F.binary_cross_entropy(hypothesis, y_train) # cost로 H(x) 개선 optimizer.zero_grad() cost.backward() optimizer.step() # 100번마다 로그 출력 if epoch % 100 == 0: print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.item() )) ###Output Epoch 0/1000 Cost: 0.693147 Epoch 100/1000 Cost: 0.134722 Epoch 200/1000 Cost: 0.080643 Epoch 300/1000 Cost: 0.057900 Epoch 400/1000 Cost: 0.045300 Epoch 500/1000 Cost: 0.037261 Epoch 600/1000 Cost: 0.031672 Epoch 700/1000 Cost: 0.027556 Epoch 800/1000 Cost: 0.024394 Epoch 900/1000 Cost: 0.021888 Epoch 1000/1000 Cost: 0.019852 ###Markdown Loading Real Data ###Code import numpy as np xy = np.loadtxt('data-03-diabetes.csv', delimiter=',', dtype=np.float32) x_data = xy[:, 0:-1] y_data = xy[:, [-1]] x_train = torch.FloatTensor(x_data) y_train = torch.FloatTensor(y_data) print(x_train[0:5]) print(y_train[0:5]) ###Output tensor([[-0.2941, 0.4874, 0.1803, -0.2929, 0.0000, 0.0015, -0.5312, -0.0333], [-0.8824, -0.1457, 0.0820, -0.4141, 0.0000, -0.2072, -0.7669, -0.6667], [-0.0588, 0.8392, 0.0492, 0.0000, 0.0000, -0.3055, -0.4927, -0.6333], [-0.8824, -0.1055, 0.0820, -0.5354, -0.7778, -0.1624, -0.9240, 0.0000], [ 0.0000, 0.3769, -0.3443, -0.2929, -0.6028, 0.2846, 0.8873, -0.6000]]) tensor([[0.], [1.], [0.], [1.], [0.]]) ###Markdown Training with Real Data using low-level Binary Cross Entropy Loss ###Code # 모델 초기화 W = torch.zeros((8, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) # optimizer 설정 optimizer = optim.SGD([W, b], lr=1) nb_epochs = 100 for epoch in range(nb_epochs + 1): # Cost 계산 hypothesis = torch.sigmoid(x_train.matmul(W) + b) # or .mm or @ cost = -(y_train * torch.log(hypothesis) + (1 - y_train) * torch.log(1 - hypothesis)).mean() # cost로 H(x) 개선 optimizer.zero_grad() cost.backward() optimizer.step() # 10번마다 로그 출력 if epoch % 10 == 0: print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.item() )) ###Output Epoch 0/100 Cost: 0.693148 Epoch 10/100 Cost: 0.572727 Epoch 20/100 Cost: 0.539493 Epoch 30/100 Cost: 0.519708 Epoch 40/100 Cost: 0.507066 Epoch 50/100 Cost: 0.498539 Epoch 60/100 Cost: 0.492549 Epoch 70/100 Cost: 0.488209 Epoch 80/100 Cost: 0.484985 Epoch 90/100 Cost: 0.482543 Epoch 100/100 Cost: 0.480661 ###Markdown Training with Real Data using `F.binary_cross_entropy` ###Code # 모델 초기화 W = torch.zeros((8, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) # optimizer 설정 optimizer = optim.SGD([W, b], lr=1) nb_epochs = 100 for epoch in range(nb_epochs + 1): # Cost 계산 hypothesis = torch.sigmoid(x_train.matmul(W) + b) # or .mm or @ cost = F.binary_cross_entropy(hypothesis, y_train) # cost로 H(x) 개선 optimizer.zero_grad() cost.backward() optimizer.step() # 10번마다 로그 출력 if epoch % 10 == 0: print('Epoch {:4d}/{} Cost: {:.6f}'.format( epoch, nb_epochs, cost.item() )) ###Output Epoch 0/100 Cost: 0.693147 Epoch 10/100 Cost: 0.572727 Epoch 20/100 Cost: 0.539494 Epoch 30/100 Cost: 0.519708 Epoch 40/100 Cost: 0.507065 Epoch 50/100 Cost: 0.498539 Epoch 60/100 Cost: 0.492549 Epoch 70/100 Cost: 0.488208 Epoch 80/100 Cost: 0.484985 Epoch 90/100 Cost: 0.482543 Epoch 100/100 Cost: 0.480661 ###Markdown Checking the Accuracy our our Model After we finish training the model, we want to check how well our model fits the training set. ###Code hypothesis = torch.sigmoid(x_train.matmul(W) + b) print(hypothesis[:5]) ###Output tensor([[0.4103], [0.9242], [0.2300], [0.9411], [0.1772]], grad_fn=<SliceBackward>) ###Markdown We can change **hypothesis** (real number from 0 to 1) to **binary predictions** (either 0 or 1) by comparing them to 0.5. ###Code prediction = hypothesis >= torch.FloatTensor([0.5]) print(prediction[:5]) ###Output tensor([[0], [1], [0], [1], [0]], dtype=torch.uint8) ###Markdown Then, we compare it with the correct labels `y_train`. ###Code print(prediction[:5]) print(y_train[:5]) correct_prediction = prediction.float() == y_train print(correct_prediction[:5]) ###Output tensor([[1], [1], [1], [1], [1]], dtype=torch.uint8) ###Markdown Finally, we can calculate the accuracy by counting the number of correct predictions and dividng by total number of predictions. ###Code accuracy = correct_prediction.sum().item() / len(correct_prediction) print('The model has an accuracy of {:2.2f}% for the training set.'.format(accuracy * 100)) ###Output The model has an accuracy of 76.68% for the training set. ###Markdown Optional: High-level Implementation with `nn.Module` ###Code class BinaryClassifier(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(8, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): return self.sigmoid(self.linear(x)) model = BinaryClassifier() # optimizer 설정 optimizer = optim.SGD(model.parameters(), lr=1) nb_epochs = 100 for epoch in range(nb_epochs + 1): # H(x) 계산 hypothesis = model(x_train) # cost 계산 cost = F.binary_cross_entropy(hypothesis, y_train) # cost로 H(x) 개선 optimizer.zero_grad() cost.backward() optimizer.step() # 20번마다 로그 출력 if epoch % 10 == 0: prediction = hypothesis >= torch.FloatTensor([0.5]) correct_prediction = prediction.float() == y_train accuracy = correct_prediction.sum().item() / len(correct_prediction) print('Epoch {:4d}/{} Cost: {:.6f} Accuracy {:2.2f}%'.format( epoch, nb_epochs, cost.item(), accuracy * 100, )) ###Output Epoch 0/100 Cost: 0.704829 Accuracy 45.72% Epoch 10/100 Cost: 0.572391 Accuracy 67.59% Epoch 20/100 Cost: 0.539563 Accuracy 73.25% Epoch 30/100 Cost: 0.520042 Accuracy 75.89% Epoch 40/100 Cost: 0.507561 Accuracy 76.15% Epoch 50/100 Cost: 0.499125 Accuracy 76.42% Epoch 60/100 Cost: 0.493177 Accuracy 77.21% Epoch 70/100 Cost: 0.488846 Accuracy 76.81% Epoch 80/100 Cost: 0.485612 Accuracy 76.28% Epoch 90/100 Cost: 0.483146 Accuracy 76.55% Epoch 100/100 Cost: 0.481234 Accuracy 76.81%
NeoBlog.ipynb
###Markdown Grab data Commentary:The popular [Abalone](https://archive.ics.uci.edu/ml/datasets/Abalone) data set originally from the UCI data repository \[1\] will be used.> \[1\] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. ###Code from pathlib import Path import boto3 for p in ['raw_data', 'training_data', 'validation_data']: Path(p).mkdir(exist_ok=True) s3 = boto3.client('s3') s3.download_file('sagemaker-sample-files', 'datasets/tabular/uci_abalone/abalone.libsvm', 'raw_data/abalone') ###Output _____no_output_____ ###Markdown Prepare training and validation data ###Code from sklearn.datasets import load_svmlight_file, dump_svmlight_file from sklearn.model_selection import train_test_split X, y = load_svmlight_file('raw_data/abalone') x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=1984, shuffle=True) dump_svmlight_file(x_train, y_train, 'training_data/abalone.train') dump_svmlight_file(x_test, y_test, 'validation_data/abalone.test') ###Output _____no_output_____ ###Markdown Train model Commentary:Notice that the [SageMaker XGBoost container](https://github.com/aws/sagemaker-xgboost-container) framework version is set to be `1.2-1`. This is extremely important – the older `0.90-2` version will NOT work with SageMaker Neo out of the box. This is because in February of 2021, the SageMaker Neo team updated their XGBoost library version to `1.2` and backwards compatibility was not kept.Moreover, notice that we are using the open source XGBoost algorithm version, so we must provide our own training script and model loading function. These two required components are defined in `entrypoint.py`, which is part of the `neo-blog` repository. The training script is very basic, and the inspiration was taken from another sample notebook [here](https://github.com/aws/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone_dist_script_mode.ipynb). Please note also that for `instance_count` and `instance_type`, the values are `1` and `local`, respectively, which means that the training job will run locally on our notebook instance. This is beneficial because it eliminates the startup time of training instances when a job runs remotely instead.Finally, notice that the number of boosting rounds has been set to 10,000. This means that the model will consist of 10,000 individual trees and will be computationally expensive to run, which we want for load testing purposes. A side effect will be that the model will severely overfit on the training data, but that is okay since accuracy is not a priority here. A computationally expensive model could have also been achieved by increasing the `max_depth` parameter as well. ###Code import sagemaker from sagemaker.xgboost.estimator import XGBoost from sagemaker.session import Session from sagemaker.inputs import TrainingInput bucket = Session().default_bucket() role = sagemaker.get_execution_role() # initialize hyperparameters hyperparameters = { "max_depth":"5", "eta":"0.2", "gamma":"4", "min_child_weight":"6", "subsample":"0.7", "verbosity":"1", "objective":"reg:squarederror", "num_round":"10000" } # construct a SageMaker XGBoost estimator # specify the entry_point to your xgboost training script estimator = XGBoost(entry_point = "entrypoint.py", framework_version='1.2-1', # 1.x MUST be used hyperparameters=hyperparameters, role=role, instance_count=1, instance_type='local', output_path=f's3://{bucket}/neo-demo') # gets saved in bucket/neo-demo/job_name/model.tar.gz # define the data type and paths to the training and validation datasets content_type = "libsvm" train_input = TrainingInput('file://training_data', content_type=content_type) validation_input = TrainingInput('file://validation_data', content_type=content_type) # execute the XGBoost training job estimator.fit({'train': train_input, 'validation': validation_input}, logs=['Training']) ###Output _____no_output_____ ###Markdown Deploy unoptimized model Commentary:There are two interesting things to note here. The first of which is that although the training job was local, the model artifact was still set up to be stored in [Amazon S3](https://aws.amazon.com/s3/) upon job completion. The other peculiarity here is that we must create an `XGBoostModel` object and use its `deploy` method, rather than calling the `deploy` method of the estimator itself. This is due to the fact that we ran the training job in local mode, so the estimator is not aware of any “official” training job that is viewable in the SageMaker console and associable with the model artifact. Because of this, the estimator will error out if its own `deploy` method is used, and the `XGBoostModel` object must be constructed first instead. Notice also that we will be hosting the model on a c5 (compute-optimized) instance type. This instance will be particularly well suited for hosting the XGBoost model, since XGBoost by default runs on CPU and it’s a CPU-bound algorithm for inference (on the other hand, during training XGBoost is a memory bound algorithm). The c5.large instance type is also marginally cheaper to run in the us-east-1 region at $0.119 per hour compared to a t2.large at $0.1299 per hour. ###Code from sagemaker.xgboost.model import XGBoostModel # grab the model artifact that was written out by the local training job s3_model_artifact = estimator.latest_training_job.describe()['ModelArtifacts']['S3ModelArtifacts'] # we have to switch from local mode to remote mode xgboost_model = XGBoostModel( model_data=s3_model_artifact, role=role, entry_point="entrypoint.py", framework_version='1.2-1', ) unoptimized_endpoint_name = 'unoptimized-c5' xgboost_model.deploy( initial_instance_count = 1, instance_type='ml.c5.large', endpoint_name=unoptimized_endpoint_name ) ###Output _____no_output_____ ###Markdown Optimize model with SageMaker Neo ###Code job_name = s3_model_artifact.split("/")[-2] neo_model = xgboost_model.compile( target_instance_family="ml_c5", role=role, input_shape =f'{{"data": [1, {X.shape[1]}]}}', output_path =f's3://{bucket}/neo-demo/{job_name}', # gets saved in bucket/neo-demo/model-ml_c5.tar.gz framework = "xgboost", job_name=job_name # what it shows up as in console ) ###Output _____no_output_____ ###Markdown Deploy Neo model ###Code optimized_endpoint_name = 'neo-optimized-c5' neo_model.deploy( initial_instance_count = 1, instance_type='ml.c5.large', endpoint_name=optimized_endpoint_name ) ###Output _____no_output_____ ###Markdown Validate that endpoints are working ###Code import boto3 smr = boto3.client('sagemaker-runtime') resp = smr.invoke_endpoint(EndpointName='neo-optimized-c5', Body=b'2,0.675,0.55,0.175,1.689,0.694,0.371,0.474', ContentType='text/csv') print('neo-optimized model response: ', resp['Body'].read()) resp = smr.invoke_endpoint(EndpointName='unoptimized-c5', Body=b'2,0.675,0.55,0.175,1.689,0.694,0.371,0.474', ContentType='text/csv') print('unoptimized model response: ', resp['Body'].read()) ###Output _____no_output_____ ###Markdown Create CloudWatch dashboard for monitoring performance ###Code import json cw = boto3.client('cloudwatch') dashboard_name = 'NeoDemo' region = Session().boto_region_name # get region we're currently in body = { "widgets": [ { "type": "metric", "x": 0, "y": 0, "width": 24, "height": 12, "properties": { "metrics": [ [ "AWS/SageMaker", "Invocations", "EndpointName", optimized_endpoint_name, "VariantName", "AllTraffic", { "stat": "Sum", "yAxis": "left" } ], [ "...", unoptimized_endpoint_name, ".", ".", { "stat": "Sum", "yAxis": "left" } ], [ ".", "ModelLatency", ".", ".", ".", "." ], [ "...", optimized_endpoint_name, ".", "." ], [ "/aws/sagemaker/Endpoints", "CPUUtilization", ".", ".", ".", ".", { "yAxis": "right" } ], [ "...", unoptimized_endpoint_name, ".", ".", { "yAxis": "right" } ] ], "view": "timeSeries", "stacked": False, "region": region, "stat": "Average", "period": 60, "title": "Performance Metrics", "start": "-PT1H", "end": "P0D" } } ] } cw.put_dashboard(DashboardName=dashboard_name, DashboardBody=json.dumps(body)) print('link to dashboard:') print(f'https://console.aws.amazon.com/cloudwatch/home?region={region}#dashboards:name={dashboard_name}') ###Output _____no_output_____ ###Markdown Install node.js ###Code %conda install -c conda-forge nodejs ###Output _____no_output_____ ###Markdown Validate successful installation ###Code !node --version ###Output _____no_output_____ ###Markdown Install Serverless framework and Serverless Artillery ###Code !npm install -g [email protected] [email protected] ###Output _____no_output_____ ###Markdown Validate successful installations ###Code !serverless --version !slsart --version ###Output _____no_output_____ ###Markdown Deploy Serverless Artillery Commentary:The most important file that makes up part of the load generating function under the `serverless_artillery` directory is `processor.js`, which is responsible for generating the payload body and signed headers of each request that gets sent to the SageMaker endpoints. Please take a moment to review the file’s contents. In it, you’ll see that we’re manually signing our requests using the AWS Signature Version 4 algorithm. When you use any AWS SDK like [boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/index.html), your requests are automatically signed for you by the library. Here, however, we are directly interacting with AWS’s SageMaker API endpoints, so we must sign requests ourselves. The access keys and session token of the load-generating lambda function’s role are used to sign the request, and the role is given permissions to invoke SageMaker endpoints in its role statements (defined in serverless.yml on line 18). When a request is sent, AWS will first validate the signed headers, then validate that the assumed role has permission to invoke endpoints, and then finally let the request from the Lambda to pass through. ###Code !cd serverless_artillery && npm install && slsart deploy --stage dev ###Output _____no_output_____ ###Markdown Create Serverless Artillery load test script ###Code from IPython.core.magic import register_line_cell_magic @register_line_cell_magic def writefilewithvariables(line, cell): with open(line, 'w') as f: f.write(cell.format(**globals())) # Get region that we're currently in region = Session().boto_region_name %%writefilewithvariables script.yaml config: variables: unoptimizedEndpointName: {unoptimized_endpoint_name} # the xgboost model has 10000 trees optimizedEndpointName: {optimized_endpoint_name} # the xgboost model has 10000 trees numRowsInRequest: 125 # Each request to the endpoint contains 125 rows target: 'https://runtime.sagemaker.{region}.amazonaws.com' phases: - duration: 120 arrivalRate: 20 # 1200 total invocations per minute (600 per endpoint) - duration: 120 arrivalRate: 40 # 2400 total invocations per minute (1200 per endpoint) - duration: 120 arrivalRate: 60 # 3600 total invocations per minute (1800 per endpoint) - duration: 120 arrivalRate: 80 # 4800 invocations per minute (2400 per endpoint... this is the max of the unoptimized endpoint) - duration: 120 arrivalRate: 120 # only the neo endpoint can handle this load... - duration: 120 arrivalRate: 160 processor: './processor.js' scenarios: - flow: - post: url: '/endpoints/{{{{ unoptimizedEndpointName }}}}/invocations' beforeRequest: 'setRequest' - flow: - post: url: '/endpoints/{{{{ optimizedEndpointName }}}}/invocations' beforeRequest: 'setRequest' ###Output _____no_output_____ ###Markdown Perform load tests ###Code !slsart invoke --stage dev --path script.yaml print("Here's the link to the dashboard again:") print(f'https://console.aws.amazon.com/cloudwatch/home?region={region}#dashboards:name={dashboard_name}') ###Output _____no_output_____ ###Markdown Clean up resources ###Code # delete endpoints and endpoint configurations sm = boto3.client('sagemaker') for name in [unoptimized_endpoint_name, optimized_endpoint_name]: sm.delete_endpoint(EndpointName=name) sm.delete_endpoint_config(EndpointConfigName=name) # remove serverless artillery resources !slsart remove --stage dev ###Output _____no_output_____
densenet exp.ipynb
###Markdown changed packages:keras 2.2.4 to 2.4.3keras pre processing : 1.0.9 to 1.1.2pillow : 5.3.0 to 7.1.2 ###Code !pip install Pillow==5.3.0 Keras==2.2.4 Keras-Preprocessing==1.0.9 pip install absl-py==0.12.0 alabaster==0.7.12 albumentations==0.1.12 altair==4.1.0 appdirs==1.4.4 argon2-cffi==20.1.0 astor==0.8.1 astropy==4.2.1 astunparse==1.6.3 async-generator==1.10 atari-py==0.2.6 atomicwrites==1.4.0 attrs==20.3.0 audioread==2.1.9 autograd==1.3 Babel==2.9.0 backcall==0.2.0 blis==0.4.1 bokeh==2.3.1 Bottleneck==1.3.2 branca==0.4.2 catalogue==1.0.0 certifi==2020.12.5 cffi==1.14.5 chainer==7.4.0 chardet==3.0.4 click==7.1.2 cloudpickle==1.3.0 cmake==3.12.0 cmdstanpy==0.9.5 colorcet==2.0.6 colorlover==0.3.0 community==1.0.0b1 contextlib2==0.5.5 convertdate==2.3.2 coverage==3.7.1 coveralls==0.5 crcmod==1.7 cufflinks==0.17.3 cupy-cuda101==7.4.0 cvxopt==1.2.6 cvxpy==1.0.31 cycler==0.10.0 cymem==2.0.5 Cython==0.29.22 daft==0.0.4 dask==2.12.0 datascience==0.10.6 debugpy==1.0.0 decorator==4.4.2 defusedxml==0.7.1 descartes==1.1.0 dill==0.3.3 distributed==1.25.3 dlib==19.18.0 dm-tree==0.1.6 docopt==0.6.2 docutils==0.17 dopamine-rl==1.0.5 earthengine-api==0.1.260 easydict==1.9 ecos==2.0.7.post1 editdistance==0.5.3 en-core-web-sm==2.2.5 entrypoints==0.3 ephem==3.7.7.1 et-xmlfile==1.0.1 fa2==0.3.5 fancyimpute==0.4.3 fastprogress==1.0.0 fastrlock==0.6 fbprophet==0.7.1 feather-format==0.4.1 filelock==3.0.12 firebase-admin==4.4.0 fix-yahoo-finance==0.0.22 Flask==1.1.2 flatbuffers==1.12 folium==0.8.3 future==0.16.0 gast==0.3.3 GDAL==2.2.2 gdown==3.6.4 gensim==3.6.0 geographiclib==1.50 geopy==1.17.0 gin-config==0.4.0 glob2==0.7 google==2.0.3 google-api-core==1.26.3 google-api-python-client==1.12.8 google-auth==1.28.1 google-auth-httplib2==0.0.4 google-auth-oauthlib==0.4.4 google-cloud-bigquery==1.21.0 google-cloud-bigquery-storage==1.1.0 google-cloud-core==1.0.3 google-cloud-datastore==1.8.0 google-cloud-firestore==1.7.0 google-cloud-language==1.2.0 google-cloud-storage==1.18.1 google-cloud-translate==1.5.0 google-colab==1.0.0 google-pasta==0.2.0 google-resumable-media==0.4.1 googleapis-common-protos==1.53.0 googledrivedownloader==0.4 graphviz==0.10.1 greenlet==1.0.0 grpcio==1.32.0 gspread==3.0.1 gspread-dataframe==3.0.8 gym==0.17.3 h5py==2.10.0 HeapDict==1.0.1 hijri-converter==2.1.1 holidays==0.10.5.2 holoviews==1.14.3 html5lib==1.0.1 httpimport==0.5.18 httplib2==0.17.4 httplib2shim==0.0.3 humanize==0.5.1 hyperopt==0.1.2 ideep4py==2.0.0.post3 idna==2.10 imageio==2.4.1 imagesize==1.2.0 imbalanced-learn==0.4.3 imblearn==0.0 imgaug==0.2.9 importlib-metadata==3.10.1 importlib-resources==5.1.2 imutils==0.5.4 inflect==2.1.0 iniconfig==1.1.1 intel-openmp==2021.2.0 intervaltree==2.1.0 ipykernel==4.10.1 ipython==5.5.0 ipython-genutils==0.2.0 ipython-sql==0.3.9 ipywidgets==7.6.3 itsdangerous==1.1.0 jax==0.2.12 jaxlib==0.1.65+cuda110 jdcal==1.4.1 jedi==0.18.0 jieba==0.42.1 Jinja2==2.11.3 joblib==1.0.1 jpeg4py==0.1.4 jsonschema==2.6.0 jupyter==1.0.0 jupyter-client==5.3.5 jupyter-console==5.2.0 jupyter-core==4.7.1 jupyterlab-pygments==0.1.2 jupyterlab-widgets==1.0.0 kaggle==1.5.12 kapre==0.1.3.1 Keras==2.4.3 Keras-Preprocessing==1.1.2 keras-vis==0.4.1 kiwisolver==1.3.1 knnimpute==0.1.0 korean-lunar-calendar==0.2.1 librosa==0.8.0 lightgbm==2.2.3 llvmlite==0.34.0 lmdb==0.99 LunarCalendar==0.0.9 lxml==4.2.6 Markdown==3.3.4 MarkupSafe==1.1.1 matplotlib==3.2.2 matplotlib-venn==0.11.6 missingno==0.4.2 mistune==0.8.4 mizani==0.6.0 mkl==2019.0 mlxtend==0.14.0 more-itertools==8.7.0 moviepy==0.2.3.5 mpmath==1.2.1 msgpack==1.0.2 multiprocess==0.70.11.1 multitasking==0.0.9 murmurhash==1.0.5 music21==5.5.0 natsort==5.5.0 nbclient==0.5.3 nbconvert==5.6.1 nbformat==5.1.3 nest-asyncio==1.5.1 networkx==2.5.1 nibabel==3.0.2 nltk==3.2.5 notebook==5.3.1 np-utils==0.5.12.1 numba==0.51.2 numexpr==2.7.3 numpy==1.19.5 nvidia-ml-py3==7.352.0 oauth2client==4.1.3 oauthlib==3.1.0 okgrade==0.4.3 opencv-contrib-python==4.1.2.30 opencv-python==4.1.2.30 openpyxl==2.5.9 opt-einsum==3.3.0 osqp==0.6.2.post0 packaging==20.9 palettable==3.3.0 pandas==1.1.5 pandas-datareader==0.9.0 pandas-gbq==0.13.3 pandas-profiling==1.4.1 pandocfilters==1.4.3 panel==0.11.2 param==1.10.1 parso==0.8.2 pathlib==1.0.1 patsy==0.5.1 pexpect==4.8.0 pickleshare==0.7.5 Pillow==7.1.2 pip-tools==4.5.1 plac==1.1.3 plotly==4.4.1 plotnine==0.6.0 pluggy==0.7.1 pooch==1.3.0 portpicker==1.3.1 prefetch-generator==1.0.1 preshed==3.0.5 prettytable==2.1.0 progressbar2==3.38.0 prometheus-client==0.10.1 promise==2.3 prompt-toolkit==1.0.18 protobuf==3.12.4 psutil==5.4.8 psycopg2==2.7.6.1 ptyprocess==0.7.0 py==1.10.0 pyarrow==3.0.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycocotools==2.0.2 pycparser==2.20 pyct==0.4.8 pydata-google-auth==1.1.0 pydot==1.3.0 pydot-ng==2.0.0 pydotplus==2.0.2 PyDrive==1.3.1 pyemd==0.5.1 pyerfa==1.7.2 pyglet==1.5.0 Pygments==2.6.1 pygobject==3.26.1 pymc3==3.7 PyMeeus==0.5.11 pymongo==3.11.3 pymystem3==0.2.0 PyOpenGL==3.1.5 pyparsing==2.4.7 pyrsistent==0.17.3 pysndfile==1.3.8 PySocks==1.7.1 pystan==2.19.1.1 pytest==3.6.4 python-apt==0.0.0 python-chess==0.23.11 python-dateutil==2.8.1 python-louvain==0.15 python-slugify==4.0.1 python-utils==2.5.6 pytz==2018.9 pyviz-comms==2.0.1 PyWavelets==1.1.1 PyYAML==3.13 pyzmq==22.0.3 qdldl==0.1.5.post0 qtconsole==5.0.3 QtPy==1.9.0 regex==2019.12.20 requests==2.23.0 requests-oauthlib==1.3.0 resampy==0.2.2 retrying==1.3.3 rpy2==3.4.3 rsa==4.7.2 scikit-image==0.16.2 scikit-learn==0.22.2.post1 scipy==1.4.1 screen-resolution-extra==0.0.0 scs==2.1.3 seaborn==0.11.1 Send2Trash==1.5.0 setuptools-git==1.2 Shapely==1.7.1 simplegeneric==0.8.1 six==1.15.0 sklearn==0.0 sklearn-pandas==1.8.0 smart-open==5.0.0 snowballstemmer==2.1.0 sortedcontainers==2.3.0 SoundFile==0.10.3.post1 spacy==2.2.4 Sphinx==1.8.5 sphinxcontrib-serializinghtml==1.1.4 sphinxcontrib-websupport==1.2.4 SQLAlchemy==1.4.7 sqlparse==0.4.1 srsly==1.0.5 statsmodels==0.10.2 sympy==1.7.1 tables==3.4.4 tabulate==0.8.9 tblib==1.7.0 tensorboard==2.4.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.4.1 tensorflow-datasets==4.0.1 tensorflow-estimator==2.4.0 tensorflow-gcs-config==2.4.0 tensorflow-hub==0.12.0 tensorflow-metadata==0.29.0 tensorflow-probability==0.12.1 termcolor==1.1.0 terminado==0.9.4 testpath==0.4.4 text-unidecode==1.3 textblob==0.15.3 textgenrnn==1.4.1 Theano==1.0.5 thinc==7.4.0 tifffile==2021.4.8 toml==0.10.2 toolz==0.11.1 torch==1.8.1+cu101 torchsummary==1.5.1 torchtext==0.9.1 torchvision==0.9.1+cu101 tornado==5.1.1 tqdm==4.41.1 traitlets==5.0.5 tweepy==3.10.0 typeguard==2.7.1 typing-extensions==3.7.4.3 tzlocal==1.5.1 uritemplate==3.0.1 urllib3==1.24.3 vega-datasets==0.9.0 wasabi==0.8.2 wcwidth==0.2.5 webencodings==0.5.1 Werkzeug==1.0.1 widgetsnbextension==3.5.1 wordcloud==1.5.0 wrapt==1.12.1 xarray==0.15.1 xgboost==0.90 xkit==0.0.0 xlrd==1.1.0 xlwt==1.3.0 yellowbrick==0.9.1 zict==2.0.0 zipp==3.4.1 ###Output _____no_output_____ ###Markdown pip install absl-py==0.12.0 alabaster==0.7.12 altair==4.1.0 appdirs==1.4.4 argon2-cffi==20.1.0 astor==0.8.1 astropy==4.2.1 astunparse==1.6.3 async-generator==1.10 atari-py==0.2.6 atomicwrites==1.4.0 attrs==20.3.0 audioread==2.1.9 autograd==1.3 Babel==2.9.0 backcall==0.2.0 blis==0.4.1 bokeh==2.3.1 Bottleneck==1.3.2 branca==0.4.2 catalogue==1.0.0 certifi==2020.12.5 cffi==1.14.5 chainer==7.4.0 chardet==3.0.4 click==7.1.2 cloudpickle==1.3.0 cmake==3.12.0 cmdstanpy==0.9.5 colorcet==2.0.6 colorlover==0.3.0 community==1.0.0b1 contextlib2==0.5.5 convertdate==2.3.2 coverage==3.7.1 coveralls==0.5 crcmod==1.7 cufflinks==0.17.3 cupy-cuda101==7.4.0 cvxopt==1.2.6 cvxpy==1.0.31 cycler==0.10.0 cymem==2.0.5 Cython==0.29.22 daft==0.0.4 dask==2.12.0 debugpy==1.0.0 decorator==4.4.2 defusedxml==0.7.1 descartes==1.1.0 dill==0.3.3 distributed==1.25.3 dlib==19.18.0 dm-tree==0.1.6 docopt==0.6.2 docutils==0.17 dopamine-rl==1.0.5 easydict==1.9 ecos==2.0.7.post1 editdistance==0.5.3 entrypoints==0.3 ephem==3.7.7.1 et-xmlfile==1.0.1 fa2==0.3.5 fancyimpute==0.4.3 fastprogress==1.0.0 fastrlock==0.6 fbprophet==0.7.1 feather-format==0.4.1 filelock==3.0.12 firebase-admin==4.4.0 fix-yahoo-finance==0.0.22 Flask==1.1.2 flatbuffers==1.12 folium future==0.16.0 gast==0.3.3 GDAL==2.2.2 gdown==3.6.4 gensim==3.6.0 geographiclib==1.50 geopy==1.17.0 gin-config==0.4.0 glob2==0.7 google==2.0.3 graphviz==0.10.1 greenlet==1.0.0 grpcio==1.32.0 gspread==3.0.1 gspread-dataframe==3.0.8 gym==0.17.3 h5py==2.10.0 HeapDict==1.0.1 hijri-converter==2.1.1 holidays==0.10.5.2 holoviews==1.14.3 html5lib==1.0.1 httpimport==0.5.18 httplib2==0.17.4 httplib2shim==0.0.3 humanize==0.5.1 hyperopt==0.1.2 idna==2.10 imageio==2.4.1 imagesize==1.2.0 imbalanced-learn==0.4.3 imblearn==0.0 importlib-metadata==3.10.1 importlib-resources==5.1.2 imutils==0.5.4 inflect==2.1.0 iniconfig==1.1.1 intel-openmp==2021.2.0 intervaltree==2.1.0 ipython==5.5.0 ipython-genutils==0.2.0 ipython-sql==0.3.9 ipywidgets==7.6.3 itsdangerous==1.1.0 jax==0.2.12 jdcal==1.4.1 jedi==0.18.0 jieba==0.42.1 Jinja2==2.11.3 joblib==1.0.1 jpeg4py==0.1.4 jsonschema==2.6.0 jupyter==1.0.0 jupyter-core==4.7.1 jupyterlab-pygments==0.1.2 jupyterlab-widgets==1.0.0 kaggle==1.5.12 kapre==0.1.3.1 Keras==2.4.3 Keras-Preprocessing==1.1.2 keras-vis==0.4.1 kiwisolver==1.3.1 knnimpute==0.1.0 korean-lunar-calendar==0.2.1 librosa==0.8.0 lightgbm==2.2.3 llvmlite==0.34.0 lmdb==0.99 LunarCalendar==0.0.9 lxml==4.2.6 Markdown==3.3.4 MarkupSafe==1.1.1 matplotlib==3.2.2 matplotlib-venn==0.11.6 missingno==0.4.2 mistune==0.8.4 mizani==0.6.0 mkl==2019.0 mlxtend==0.14.0 more-itertools==8.7.0 moviepy==0.2.3.5 mpmath==1.2.1 msgpack==1.0.2 multiprocess==0.70.11.1 multitasking==0.0.9 murmurhash==1.0.5 music21==5.5.0 natsort==5.5.0 nbconvert==5.6.1 nbformat==5.1.3 nest-asyncio==1.5.1 networkx==2.5.1 nibabel==3.0.2 nltk==3.2.5 notebook==5.3.1 np-utils==0.5.12.1 numba==0.51.2 numexpr==2.7.3 numpy==1.19.5 nvidia-ml-py3==7.352.0 oauth2client==4.1.3 oauthlib==3.1.0 okgrade==0.4.3 opencv-contrib-python==4.1.2.30 opencv-python==4.1.2.30 openpyxl==2.5.9 opt-einsum==3.3.0 osqp==0.6.2.post0 packaging==20.9 palettable==3.3.0 pandas==1.1.5 pandas-datareader==0.9.0 pandas-gbq==0.13.3 pandas-profiling==1.4.1 pandocfilters==1.4.3 panel==0.11.2 param==1.10.1 parso==0.8.2 pathlib==1.0.1 patsy==0.5.1 pexpect==4.8.0 pickleshare==0.7.5 Pillow==7.1.2 pip-tools==4.5.1 plac==1.1.3 plotly==4.4.1 plotnine==0.6.0 pluggy==0.7.1 pooch==1.3.0 portpicker==1.3.1 prefetch-generator==1.0.1 preshed==3.0.5 prettytable==2.1.0 progressbar2==3.38.0 prometheus-client==0.10.1 promise==2.3 prompt-toolkit==1.0.18 protobuf==3.12.4 psutil==5.4.8 psycopg2==2.7.6.1 ptyprocess==0.7.0 py==1.10.0 pyarrow==3.0.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycocotools==2.0.2 pycparser==2.20 pyct==0.4.8 pydata-google-auth==1.1.0 pydot==1.3.0 pydot-ng==2.0.0 pydotplus==2.0.2 PyDrive==1.3.1 pyemd==0.5.1 pyerfa==1.7.2 pyglet==1.5.0 Pygments==2.6.1 pygobject pymc3==3.7 PyMeeus==0.5.11 pymongo==3.11.3 pymystem3==0.2.0 PyOpenGL==3.1.5 pyparsing==2.4.7 pyrsistent==0.17.3 pysndfile==1.3.8 PySocks==1.7.1 pystan==2.19.1.1 pytest==3.6.4 python-apt==0.0.0 python-chess==0.23.11 python-dateutil==2.8.1 python-louvain==0.15 python-slugify==4.0.1 python-utils==2.5.6 pytz==2018.9 pyviz-comms==2.0.1 PyWavelets==1.1.1 PyYAML==3.13 pyzmq==22.0.3 qdldl==0.1.5.post0 qtconsole==5.0.3 QtPy==1.9.0 regex==2019.12.20 requests==2.23.0 requests-oauthlib==1.3.0 resampy==0.2.2 retrying==1.3.3 rpy2==3.4.3 rsa==4.7.2 scikit-image==0.16.2 scikit-learn==0.22.2.post1 scipy==1.4.1 scs==2.1.3 seaborn==0.11.1 Send2Trash==1.5.0 setuptools-git==1.2 Shapely==1.7.1 simplegeneric==0.8.1 six==1.15.0 sklearn==0.0 sklearn-pandas==1.8.0 smart-open==5.0.0 snowballstemmer==2.1.0 sortedcontainers==2.3.0 SoundFile==0.10.3.post1 spacy==2.2.4 Sphinx==1.8.5 sphinxcontrib-serializinghtml==1.1.4 sphinxcontrib-websupport==1.2.4 SQLAlchemy==1.4.7 sqlparse==0.4.1 srsly==1.0.5 statsmodels==0.10.2 sympy==1.7.1 tables==3.4.4 tabulate==0.8.9 tblib==1.7.0 tensorboard==2.4.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.4.1 tensorflow-datasets==4.0.1 tensorflow-estimator==2.4.0 tensorflow-gcs-config==2.4.0 tensorflow-hub==0.12.0 tensorflow-metadata==0.29.0 tensorflow-probability==0.12.1 termcolor==1.1.0 terminado==0.9.4 testpath==0.4.4 text-unidecode==1.3 textblob==0.15.3 textgenrnn==1.4.1 Theano==1.0.5 thinc==7.4.0 tifffile==2021.4.8 toml==0.10.2 toolz==0.11.1 torchsummary==1.5.1 tornado==5.1.1 tqdm==4.41.1 traitlets==5.0.5 tweepy==3.10.0 typeguard==2.7.1 typing-extensions==3.7.4.3 tzlocal==1.5.1 uritemplate==3.0.1 urllib3==1.24.3 vega-datasets==0.9.0 wasabi==0.8.2 wcwidth==0.2.5 webencodings==0.5.1 Werkzeug==1.0.1 widgetsnbextension==3.5.1 wordcloud==1.5.0 wrapt==1.12.1 xarray==0.15.1 xlrd==1.1.0 xlwt==1.3.0 yellowbrick==0.9.1 zict==2.0.0 zipp==3.4.1 ipykernel jupyter-client jupyter-console nbclient ###Code datascience==0.10.6 folium==0.8.3 google-api-core==1.26.3 google-api-python-client==1.12.8 google-auth==1.28.1 google-auth-httplib2==0.0.4 google-auth-oauthlib==0.4.4 google-cloud-bigquery==1.21.0 google-cloud-bigquery-storage==1.1.0 google-cloud-core==1.0.3 google-cloud-datastore==1.8.0 google-cloud-firestore==1.7.0 google-cloud-language==1.2.0 google-cloud-storage==1.18.1 google-cloud-translate==1.5.0 google-colab==1.0.0 google-pasta==0.2.0 google-resumable-media==0.4.1 googleapis-common-protos==1.53.0 googledrivedownloader==0.4 earthengine-api==0.1.260 ###Output _____no_output_____
Code/Fig_4_5_experimental_data.ipynb
###Markdown Loica and Flapjack setup ###Code !pip install git+https://github.com/SynBioUC/flapjack.git --quiet #uncomment when this work !pip install git+https://github.com/SynBioUC/LOICA.git --quiet from google.colab import drive drive.mount("/content/gdrive") % cd /content/gdrive/My Drive/ #uncomment if you dont have LOICA cloned in your drive or to update it #!git clone https://github.com/SynBioUC/LOICA.git % cd LOICA/ #!pip install -e . from flapjack import * from loica import * import numpy as np import getpass import datetime import random as rd import pandas as pd from numpy.fft import fft, ifft, fftfreq from scipy.interpolate import interp1d, UnivariateSpline from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_poisson_deviance from sklearn.metrics import mean_gamma_deviance from sklearn.metrics import mean_absolute_error from scipy.signal import savgol_filter, medfilt import matplotlib.pyplot as plt import seaborn as sns color_inverse = 'dodgerblue' color_direct = 'orangered' color_indirect ='gold' %matplotlib inline SMALL_SIZE = 6 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=SMALL_SIZE) # fontsize of the figure title ###Output _____no_output_____ ###Markdown Login ###Code user = input() passwd = getpass.getpass() fj = Flapjack('flapjack.rudge-lab.org:8000') fj.log_in(username=user, password=passwd) dna = fj.get('dna', name='Rep') if len(dna)==0: dna = fj.create('dna', name='Rep') vector = fj.get('vector', name='Rep') if len(vector)==0: vector = fj.create('vector', name='Rep', dnas=dna.id) cfp = fj.get('signal', name='CFP') yfp = fj.get('signal', name='YFP') rfp = fj.get('signal', name='RFP') media = fj.get('media', name='Loica') if len(media)==0: media = fj.create('media', name='Loica', description='Simulated loica media') strain = fj.get('strain', name='Loica strain') if len(strain)==0: strain = fj.create('strain', name='Loica strain', description='Loica test strain') biomass_signal = fj.get('signal', name='OD') media_id = fj.get('media', name='M9-glycerol').id strain_id = fj.get('strain', name='Top10').id peda_id = fj.get('vector', name='pEDA').id pbaa_id = fj.get('vector', name='pBAA').id pbca_id = fj.get('vector', name='pBCA').id paaa_id = fj.get('vector', name='pAAA').id pgaa_id = fj.get('vector', name='pGAA').id rfp_id = fj.get('signal', name='RFP').id yfp_id = fj.get('signal', name='YFP').id cfp_id = fj.get('signal', name='CFP').id od_id = fj.get('signal', name='OD').id study_id = fj.get('study', search='context').id df_direct = fj.analysis(study=study_id, media=media_id, strain=strain_id, signal=yfp_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, biomass_signal=od_id, ) df_ref = fj.analysis(study=study_id, vector=paaa_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id, ) df = fj.analysis(study=study_id, vector=pbaa_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id, ) df_indirect = fj.analysis(study=study_id, media=media_id, strain=strain_id, signal=yfp_id, type='Expression Rate (indirect)', pre_smoothing=11, post_smoothing=0, biomass_signal=od_id, ) ###Output 100%|██████████| 100/100 [00:25<00:00, 3.85it/s] ###Markdown pAAA ###Code medias = ['M9-glycerol', 'M9-glucose'] strains = ['MG1655z1', 'Top10'] for media in medias: for strain in strains: media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_indirect = fj.analysis( media=media_id, study=study_id, strain=strain_id, vector=paaa_id, type='Expression Rate (indirect)', biomass_signal=od_id, pre_smoothing=11, post_smoothing=0, #bg_correction=2, #min_biomass=0.05, #remove_data=False ) df_direct = fj.analysis(study=study_id, vector=paaa_id, media=media_id, strain=strain_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, biomass_signal=od_id, ) df_inverse = fj.analysis(study=study_id, vector=paaa_id, media=media_id, strain=strain_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id, ) signals = ['OD', 'RFP', 'YFP', 'CFP'] titles = ['Growth', 'RFP', 'YFP', 'CFP'] colors = ['k', 'r', 'g', 'b'] w = 3.16 #3.3 fig,axs = plt.subplots(2,2,figsize=(w, w* 0.75), sharex=True) for sig,ax,title,color in zip(signals, axs.ravel(), titles, colors): rfp_direct = df_direct[df_direct.Signal==sig].groupby('Time').mean().Rate t_direct = df_direct[df_direct.Signal==sig].groupby('Time').mean().index rfp_direct_std = df_direct[df_direct.Signal==sig].groupby('Time').std().Rate rfp_inverse = df_inverse[df_inverse.Signal==sig].groupby('Time').mean().Rate t_inverse = df_inverse[df_inverse.Signal==sig].groupby('Time').mean().index rfp_inverse_std = df_inverse[df_inverse.Signal==sig].groupby('Time').std().Rate rfp_indirect = df_indirect[df_indirect.Signal==sig].groupby('Time').mean().Rate t_indirect = df_indirect[df_indirect.Signal==sig].groupby('Time').mean().index ax.plot(rfp_indirect, color=color_indirect, linestyle='-', linewidth='0.5') ax.plot(rfp_direct, color=color_direct, linestyle='-', linewidth='0.5') #plt.fill_between(t_direct, rfp_direct-rfp_direct_std, rfp_direct+rfp_direct_std, color='red', alpha=0.2) ax.plot(rfp_inverse, color=color_inverse, linestyle='-', linewidth='0.5') #plt.fill_between(t_inverse, rfp_inverse-rfp_inverse_std, rfp_inverse+rfp_inverse_std, color='blue', alpha=0.2) #plt.ticklabel_format(axis='y', style='sci', scilimits=(-1,1)) ax.set_xticks([0,12,24]) ax.set_ylabel('Expr. rate (AU/h)') ax.set_ylim(-0.5, rfp_inverse.max()*1.2) #ax.set_title(title) ax.ticklabel_format(axis='y', style='sci', scilimits=(-1,1)) #plt.suptitle(f'{media}, {strain}') axs[0,0].set_ylabel(r'Growth rate ($h^{-1}$)') axs[1,0].set_xlabel('Time (h)') axs[1,1].set_xlabel('Time (h)') #plt.legend(['Direct', 'Inverse']) plt.tight_layout() plt.subplots_adjust(top=0.9) plt.savefig(f'pAAA_{media}_{strain}_subplots.png', dpi=300) rfp_inverse.max() ###Output _____no_output_____ ###Markdown Context ###Code prom_map = { 'A': 'J23101', 'B': 'J23106', 'C': 'J23107', 'D': 'R0011', 'E': 'R0040', 'F': 'pLas81', 'G': 'pLux76' } ###Output _____no_output_____ ###Markdown Direct YFP profiles ###Code yfp_vectors = [ ['pBFA', 'pEFA', 'pGFA'], ['pBDA', 'pEDA', 'pGDA'], ['pBCA', 'pECA', 'pGCA'], ['pAAA', 'pBAA', 'pEAA', 'pGAA'] ] yfp_vector_ids = [[fj.get('vector', name=name).id[0] for name in vecs] for vecs in yfp_vectors] yfp_id = fj.get('signal', name='YFP').id medias = ['M9-glycerol', 'M9-glucose'] strains = ['Top10', 'MG1655z1'] # YFP figures for media in medias: for strain in strains: print(media, strain) media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_ref = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=yfp_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id, ) df_ref_gr = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_ref_gr = df_ref_gr.groupby('Time').mean() ref_grt = mdf_ref_gr.index ref_gr = mdf_ref_gr.Rate ref_pk_idx = np.where(ref_gr==ref_gr.max())[0][0] ref_pk_time = ref_grt[ref_pk_idx] print('ref_pk_time ', ref_pk_time) for vi,vector_id in enumerate(yfp_vector_ids): df = fj.analysis(vector=vector_id, media=media_id, strain=strain_id, signal=yfp_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) plt.figure(figsize=(1.5,1.25)) fname = '-'.join([media, strain, yfp_vectors[vi][0][2], '-direct-YFP.png']) for name,vec in df.groupby('Vector'): print(name) yfp = vec.groupby('Time').mean().Rate yfpt = vec.groupby('Time').mean().index df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) plt.plot(yfpt - pk_time, (yfp-yfp.mean()) / yfp.std(), linewidth=0.5) yfp_ref = df_ref.groupby('Time').mean().Rate tref = df_ref.groupby('Time').mean().index plt.plot(tref - ref_pk_time, (yfp_ref-yfp_ref.mean()) / yfp_ref.std(), 'k--', linewidth=0.5) plt.title(f'{media}, {strain}') #plt.legend([prom_map[vec[1]] for vec in yfp_vectors]) plt.tight_layout() #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') #for vec in yfp_vectors[vi]: # rfp_code = vec[1] # fig.update_traces(name=prom_map[rfp_code], selector=dict(name=vec)) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) yfp_vectors = [ ['pBFA', 'pEFA', 'pGFA'], ['pBDA', 'pEDA', 'pGDA'], ['pBCA', 'pECA', 'pGCA'], ['pAAA', 'pBAA', 'pEAA', 'pGAA']] for vectors in yfp_vectors: print(vectors) plt.figure() for v in vectors: plt.plot(0,0) plt.legend([prom_map[vec[1]] for vec in vectors]) plt.savefig(f'legend-{vectors[0][2]}-YFP.png', dpi=300) ###Output ['pBFA', 'pEFA', 'pGFA'] ['pBDA', 'pEDA', 'pGDA'] ['pBCA', 'pECA', 'pGCA'] ['pAAA', 'pBAA', 'pEAA', 'pGAA'] ###Markdown Direct RFP profiles ###Code rfp_vectors = [ ['pBAA', 'pBCA', 'pBDA', 'pBFA'], ['pEAA', 'pECA', 'pEDA', 'pEFA'], ['pGAA', 'pGCA', 'pGDA', 'pGEA', 'pGFA'] ] rfp_vector_ids = [[fj.get('vector', name=name).id[0] for name in vecs] for vecs in rfp_vectors] rfp_id = fj.get('signal', name='RFP').id medias = ['M9-glucose', 'M9-glycerol'] strains = ['MG1655z1', 'Top10'] # RFP figures for media in medias: for strain in strains: print(media, strain) media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_ref = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id, ) df_ref_gr = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_ref_gr = df_ref_gr.groupby('Time').mean() ref_grt = mdf_ref_gr.index ref_gr = mdf_ref_gr.Rate ref_pk_idx = np.where(ref_gr==ref_gr.max())[0][0] ref_pk_time = ref_grt[ref_pk_idx] print('ref_pk_time ', ref_pk_time) for vi,vector_id in enumerate(rfp_vector_ids): df = fj.analysis(vector=vector_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) plt.figure(figsize=(1.5,1.25)) fname = '-'.join([media, strain, rfp_vectors[vi][0][1], '-direct-RFP.png']) for name,vec in df.groupby('Vector'): print(name) rfp = vec.groupby('Time').mean().Rate rfpt = vec.groupby('Time').mean().index df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (direct)', degr=0, eps_L=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) plt.plot(rfpt - pk_time, (rfp-rfp.mean()) / rfp.std(), linewidth=0.5) rfp_ref = df_ref.groupby('Time').mean().Rate tref = df_ref.groupby('Time').mean().index plt.plot(tref - ref_pk_time, (rfp_ref-rfp_ref.mean()) / rfp_ref.std(), 'k--', linewidth=0.5) plt.title(f'{media}, {strain}') plt.tight_layout() #ax.set_ylim([0,1]) #ax.set_xticks([0,12,24]) #ax.set_yticks([0,0.5,1]) #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') #for vec in yfp_vectors[vi]: # rfp_code = vec[1] # fig.update_traces(name=prom_map[rfp_code], selector=dict(name=vec)) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) rfp_vectors = [ ['pBAA', 'pBCA', 'pBDA', 'pBFA'], ['pEAA', 'pECA', 'pEDA', 'pEFA'], ['pGAA', 'pGCA', 'pGDA', 'pGEA', 'pGFA'] ] for vectors in rfp_vectors: print(vectors) plt.figure() for v in vectors: plt.plot(0,0) plt.legend([prom_map[vec[2]] for vec in vectors]) plt.savefig(f'legend-{vectors[0][1]}-RFP.png', dpi=300) ###Output ['pBAA', 'pBCA', 'pBDA', 'pBFA'] ['pEAA', 'pECA', 'pEDA', 'pEFA'] ['pGAA', 'pGCA', 'pGDA', 'pGEA', 'pGFA'] ###Markdown Inverse YFP profilesChange direct to inverse, change eps_L for eps, did I need to change eps -3? ###Code yfp_vectors = [ ['pBFA', 'pEFA', 'pGFA'], #['pBDA', 'pEDA', 'pGDA'], #['pBCA', 'pECA', 'pGCA'], #['pAAA', 'pBAA', 'pEAA', 'pGAA'] ] yfp_vector_ids = [[fj.get('vector', name=name).id[0] for name in vecs] for vecs in yfp_vectors] yfp_id = fj.get('signal', name='YFP').id medias = ['M9-glycerol'] #, 'M9-glucose'] strains = ['Top10'] #, 'MG1655z1'] # YFP figures for media in medias: for strain in strains: print(media, strain) media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_ref = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=yfp_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id, ) df_ref_gr = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) mdf_ref_gr = df_ref_gr.groupby('Time').mean() ref_grt = mdf_ref_gr.index ref_gr = mdf_ref_gr.Rate ref_pk_idx = np.where(ref_gr==ref_gr.max())[0][0] ref_pk_time = ref_grt[ref_pk_idx] print('ref_pk_time ', ref_pk_time) for vi,vector_id in enumerate(yfp_vector_ids): df = fj.analysis(vector=vector_id, media=media_id, strain=strain_id, signal=[yfp_id, cfp_id], type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) plt.figure(figsize=(1.5,1.25)) fname = '-'.join([media, strain, yfp_vectors[vi][0][2], '-inverse-YFP.png']) for name,vec in df.groupby('Vector'): print(name) yfp = vec[vec.Signal=='YFP'].groupby('Time').mean().Rate cfp = vec[vec.Signal=='CFP'].groupby('Time').mean().Rate yfpt = vec[vec.Signal=='YFP'].groupby('Time').mean().index df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) #plt.plot(yfpt - pk_time, (yfp-yfp.mean()) / yfp.std(), linewidth=0.5) plt.plot(yfpt - pk_time, yfp/cfp.mean(), linewidth=0.5) yfp_ref = df_ref.groupby('Time').mean().Rate tref = df_ref.groupby('Time').mean().index #plt.plot(tref - ref_pk_time, (yfp_ref-yfp_ref.mean()) / yfp_ref.std(), 'k--', linewidth=0.5) plt.title(f'{media}, {strain}') plt.tight_layout() #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') #for vec in yfp_vectors[vi]: # rfp_code = vec[1] # fig.update_traces(name=prom_map[rfp_code], selector=dict(name=vec)) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) ###Output M9-glycerol Top10 ###Markdown Inverse RFP profiles ###Code rfp_vectors = [ ['pBAA', 'pBCA', 'pBDA', 'pBFA'], ['pEAA', 'pECA', 'pEDA', 'pEFA'], ['pGAA', 'pGCA', 'pGDA', 'pGEA', 'pGFA'] ] rfp_vector_ids = [[fj.get('vector', name=name).id[0] for name in vecs] for vecs in rfp_vectors] rfp_id = fj.get('signal', name='RFP').id medias = ['M9-glucose', 'M9-glycerol'] strains = ['MG1655z1', 'Top10'] # RFP figures for media in medias: for strain in strains: print(media, strain) media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_ref = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (inverse)', degr=0, eps=1e-5, n_gaussians=24, biomass_signal=od_id, ) df_ref_gr = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_ref_gr = df_ref_gr.groupby('Time').mean() ref_grt = mdf_ref_gr.index ref_gr = mdf_ref_gr.Rate ref_pk_idx = np.where(ref_gr==ref_gr.max())[0][0] ref_pk_time = ref_grt[ref_pk_idx] print('ref_pk_time ', ref_pk_time) for vi,vector_id in enumerate(rfp_vector_ids): df = fj.analysis(vector=vector_id, media=media_id, strain=strain_id, signal=rfp_id, type='Expression Rate (inverse)', degr=0, eps=1e-5, n_gaussians=24, biomass_signal=od_id) plt.figure(figsize=(1.5,1.25)) fname = '-'.join([media, strain, rfp_vectors[vi][0][1], '-inverse-RFP.png']) for name,vec in df.groupby('Vector'): print(name) rfp = vec.groupby('Time').mean().Rate rfpt = vec.groupby('Time').mean().index df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-5, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) plt.plot(rfpt - pk_time, (rfp-rfp.mean()) / rfp.std(), linewidth=0.5) rfp_ref = df_ref.groupby('Time').mean().Rate tref = df_ref.groupby('Time').mean().index plt.plot(tref - ref_pk_time, (rfp_ref-rfp_ref.mean()) / rfp_ref.std(), 'k--', linewidth=0.5) plt.title(f'{media}, {strain}') plt.tight_layout() #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') #for vec in yfp_vectors[vi]: # rfp_code = vec[1] # fig.update_traces(name=prom_map[rfp_code], selector=dict(name=vec)) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) ###Output M9-glucose MG1655z1 ###Markdown Inverse all CFP profiles ###Code medias = ['M9-glycerol','M9-glucose'] strains = ['Top10', 'MG1655z1'] cfp_id = fj.get('signal', name='CFP').id for media in medias: for strain in strains: media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df = fj.analysis(study=study_id, signal=cfp_id, media=media_id, strain=strain_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) plt.figure(figsize=(1.5,1.25)) for name,vec in df.groupby('Vector'): cfp = vec.groupby('Time').mean().Rate cfpt = vec.groupby('Time').mean().index df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) plt.plot(cfpt - pk_time, (cfp-cfp.mean()) / cfp.std(), linewidth=0.5, color='blue', alpha=0.2) plt.title(f'{media}, {strain}') plt.tight_layout() #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_traces(showlegend=False, line=dict(color='rgba(0, 0, 255, 0.2)')) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') fname = fname = '-'.join([media, strain, 'CFP.png']) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) ###Output _____no_output_____ ###Markdown Growth ###Code medias = ['M9-glycerol', 'M9-glucose'] strains = ['Top10', 'MG1655z1'] cfp_id = fj.get('signal', name='CFP').id for media in medias: for strain in strains: media_id = fj.get('media', name=media).id strain_id = fj.get('strain', name=strain).id df_ref_gr = fj.analysis(vector=paaa_id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) mdf_ref_gr = df_ref_gr.groupby('Time').mean() ref_grt = mdf_ref_gr.index ref_gr = mdf_ref_gr.Rate ref_pk_idx = np.where(ref_gr==ref_gr.max())[0][0] ref_pk_time = ref_grt[ref_pk_idx] print('ref_pk_time ', ref_pk_time) #for vi,vector_id in enumerate(yfp_vector_ids): fname = '-'.join([media, strain, '-inverse-gr.png']) #for name,vec in df.groupby('Vector'): #print(name) df_gr = fj.analysis(vector=fj.get('vector', name=name).id, media=media_id, strain=strain_id, signal=od_id, type='Expression Rate (inverse)', degr=0, eps=1e-2, n_gaussians=24, biomass_signal=od_id) mdf_gr = df_gr.groupby('Time').mean() grt = mdf_gr.index gr = mdf_gr.Rate pk_idx = np.where(gr==gr.max())[0][0] pk_time = grt[pk_idx] print(pk_time) #yfp = vec.groupby('Time').mean().Rate #yfpt = vec.groupby('Time').mean().index yfp = df_gr.groupby('Time').mean().Rate yfpt = df_gr.groupby('Time').mean().index plt.plot(yfpt - pk_time, (yfp-yfp.mean()) / yfp.std(), linewidth=0.5) #yfp_ref = df_ref.groupby('Time').mean().Rate #tref = df_ref.groupby('Time').mean().index yfp_ref = df_ref_gr.groupby('Time').mean().Rate tref = df_ref_gr.groupby('Time').mean().index plt.plot(tref - ref_pk_time, (yfp_ref-yfp_ref.mean()) / yfp_ref.std(), 'k--', linewidth=0.5) plt.title(f'{media}, {strain}') plt.tight_layout() #fig = flapjack.layout_print(fig, width=1.5, height=1.25) #fig.update_yaxes(title='') #fig.update_xaxes(title='') #fig.layout.annotations[0].update(text=f'{media}, {strain}') #for vec in yfp_vectors[vi]: # rfp_code = vec[1] # fig.update_traces(name=prom_map[rfp_code], selector=dict(name=vec)) #io.write_image(fig, fname) plt.savefig(fname, dpi=300) ###Output _____no_output_____
notebooks/crispr/Dual CRISPR 5-Count Plots.ipynb
###Markdown Dual CRISPR Screen Analysis Count PlotsAmanda Birmingham, CCBB, UCSD ([email protected]) InstructionsTo run this notebook reproducibly, follow these steps:1. Click **Kernel** > **Restart & Clear Output**2. When prompted, click the red **Restart & clear all outputs** button3. Fill in the values for your analysis for each of the variables in the [Input Parameters](input-parameters) section4. Click **Cell** > **Run All** Input Parameters ###Code g_timestamp = "" g_dataset_name = "20160510_A549" g_count_alg_name = "19mer_1mm_py" g_fastq_counts_dir = '/Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/data/interim/20160510_D00611_0278_BHK55CBCXX_A549' g_fastq_counts_run_prefix = "19mer_1mm_py_20160615223822" g_collapsed_counts_dir = "/Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/data/processed/20160510_A549" g_collapsed_counts_run_prefix = "20160510_A549_19mer_1mm_py_20160616101309" g_combined_counts_dir = "" g_combined_counts_run_prefix = "" g_plots_dir = "" g_plots_run_prefix = "" g_code_location = "/Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/src/python" ###Output _____no_output_____ ###Markdown Matplotlib Display ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown CCBB Library Imports ###Code import sys sys.path.append(g_code_location) ###Output _____no_output_____ ###Markdown Automated Set-Up ###Code # %load -s describe_var_list /Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/src/python/ccbbucsd/utilities/analysis_run_prefixes.py def describe_var_list(input_var_name_list): description_list = ["{0}: {1}\n".format(name, eval(name)) for name in input_var_name_list] return "".join(description_list) from ccbbucsd.utilities.analysis_run_prefixes import check_or_set, get_run_prefix, get_timestamp g_timestamp = check_or_set(g_timestamp, get_timestamp()) g_collapsed_counts_dir = check_or_set(g_collapsed_counts_dir, g_fastq_counts_dir) g_collapsed_counts_run_prefix = check_or_set(g_collapsed_counts_run_prefix, g_fastq_counts_run_prefix) g_combined_counts_dir = check_or_set(g_combined_counts_dir, g_collapsed_counts_dir) g_combined_counts_run_prefix = check_or_set(g_combined_counts_run_prefix, g_collapsed_counts_run_prefix) g_plots_dir = check_or_set(g_plots_dir, g_combined_counts_dir) g_plots_run_prefix = check_or_set(g_plots_run_prefix, get_run_prefix(g_dataset_name, g_count_alg_name, g_timestamp)) print(describe_var_list(['g_timestamp','g_collapsed_counts_dir', 'g_collapsed_counts_run_prefix', 'g_combined_counts_dir', 'g_combined_counts_run_prefix', 'g_plots_dir', 'g_plots_run_prefix'])) from ccbbucsd.utilities.files_and_paths import verify_or_make_dir verify_or_make_dir(g_collapsed_counts_dir) verify_or_make_dir(g_combined_counts_dir) verify_or_make_dir(g_plots_dir) ###Output _____no_output_____ ###Markdown Count File Suffixes ###Code # %load -s get_counts_file_suffix /Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/src/python/ccbbucsd/malicrispr/construct_counter.py def get_counts_file_suffix(): return "counts.txt" # %load -s get_collapsed_counts_file_suffix,get_combined_counts_file_suffix /Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/src/python/ccbbucsd/malicrispr/count_combination.py def get_collapsed_counts_file_suffix(): return "collapsed.txt" def get_combined_counts_file_suffix(): return "counts_combined.txt" ###Output _____no_output_____ ###Markdown Count Plots Functions ###Code # %load /Users/Birmingham/Repositories/ccbb_tickets/20160210_mali_crispr/src/python/ccbbucsd/malicrispr/count_plots.py # third-party libraries import matplotlib.pyplot import numpy import pandas # ccbb libraries from ccbbucsd.utilities.analysis_run_prefixes import strip_run_prefix from ccbbucsd.utilities.files_and_paths import build_multipart_fp, get_file_name_pieces, get_filepaths_by_prefix_and_suffix # project-specific libraries from ccbbucsd.malicrispr.count_files_and_dataframes import get_counts_df __author__ = "Amanda Birmingham" __maintainer__ = "Amanda Birmingham" __email__ = "[email protected]" __status__ = "prototype" DEFAULT_PSEUDOCOUNT = 1 def get_boxplot_suffix(): return "boxplots.png" def make_log2_series(input_series, pseudocount_val): revised_series = input_series + pseudocount_val log2_series = revised_series.apply(numpy.log2) nan_log2_series = log2_series.replace([numpy.inf, -numpy.inf], numpy.nan) return nan_log2_series.dropna().reset_index(drop=True) # note that .reset_index(drop=True) is necessary as matplotlib boxplot function (perhaps among others) # throws an error if the input series doesn't include an item with index 0--which can be the case if # that first item was NaN and was dropped, and series wasn't reindexed. def show_and_save_histogram(output_fp, title, count_data): matplotlib.pyplot.figure(figsize=(20,20)) matplotlib.pyplot.hist(count_data) matplotlib.pyplot.title(title) matplotlib.pyplot.xlabel("log2(raw counts)") matplotlib.pyplot.ylabel("Frequency") matplotlib.pyplot.savefig(output_fp) matplotlib.pyplot.show() def show_and_save_boxplot(output_fp, title, samples_names, samples_data, rotation_val=0): fig = matplotlib.pyplot.figure(1, figsize=(20,20)) ax = fig.add_subplot(111) bp = ax.boxplot(samples_data) ax.set_xticklabels(samples_names, rotation=rotation_val) ax.set_xlabel("samples") ax.set_ylabel("log2(raw counts)") matplotlib.pyplot.title(title) fig.savefig(output_fp, bbox_inches='tight') matplotlib.pyplot.show() def plot_raw_counts(input_dir, input_run_prefix, counts_suffix, output_dir, output_run_prefix, boxplot_suffix): counts_fps_for_run = get_filepaths_by_prefix_and_suffix(input_dir, input_run_prefix, counts_suffix) for curr_counts_fp in counts_fps_for_run: _, curr_sample, _ = get_file_name_pieces(curr_counts_fp) stripped_sample = strip_run_prefix(curr_sample, input_run_prefix) count_header, curr_counts_df = get_counts_df(curr_counts_fp, input_run_prefix) curr_counts_df.rename(columns={count_header:stripped_sample}, inplace=True) count_header = stripped_sample log2_series = make_log2_series(curr_counts_df[count_header], DEFAULT_PSEUDOCOUNT) title = " ".join([input_run_prefix, count_header, "with pseudocount", str(DEFAULT_PSEUDOCOUNT)]) output_fp_prefix = build_multipart_fp(output_dir, [count_header, input_run_prefix]) boxplot_fp = output_fp_prefix + "_" + boxplot_suffix show_and_save_boxplot(boxplot_fp, title, [count_header], log2_series) hist_fp = output_fp_prefix + "_" + "hist.png" show_and_save_histogram(hist_fp, title, log2_series) def plot_combined_raw_counts(input_dir, input_run_prefix, combined_suffix, output_dir, output_run_prefix, boxplot_suffix): output_fp = build_multipart_fp(output_dir, [output_run_prefix, boxplot_suffix]) combined_counts_fp = build_multipart_fp(input_dir, [input_run_prefix, combined_suffix]) combined_counts_df = pandas.read_table(combined_counts_fp) samples_names = combined_counts_df.columns.values[1:] # TODO: remove hardcode samples_data = [] for curr_name in samples_names: log2_series = make_log2_series(combined_counts_df[curr_name], DEFAULT_PSEUDOCOUNT) samples_data.append(log2_series.tolist()) title = " ".join([input_run_prefix, "all samples", "with pseudocount", str(DEFAULT_PSEUDOCOUNT)]) show_and_save_boxplot(output_fp, title, samples_names, samples_data, 90) ###Output _____no_output_____ ###Markdown Individual fastq Plots ###Code from ccbbucsd.utilities.files_and_paths import summarize_filenames_for_prefix_and_suffix print(summarize_filenames_for_prefix_and_suffix(g_fastq_counts_dir, g_fastq_counts_run_prefix, get_counts_file_suffix())) # this call makes one boxplot per raw fastq plot_raw_counts(g_fastq_counts_dir, g_fastq_counts_run_prefix, get_counts_file_suffix(), g_plots_dir, g_plots_run_prefix, get_boxplot_suffix()) ###Output _____no_output_____ ###Markdown Individual Sample Plots ###Code print(summarize_filenames_for_prefix_and_suffix(g_collapsed_counts_dir, g_collapsed_counts_run_prefix, get_collapsed_counts_file_suffix())) plot_raw_counts(g_collapsed_counts_dir, g_collapsed_counts_run_prefix, get_collapsed_counts_file_suffix(), g_plots_dir, g_plots_run_prefix, get_boxplot_suffix()) ###Output _____no_output_____ ###Markdown Combined Samples Plots ###Code print(summarize_filenames_for_prefix_and_suffix(g_combined_counts_dir, g_combined_counts_run_prefix, get_combined_counts_file_suffix())) plot_combined_raw_counts(g_combined_counts_dir, g_combined_counts_run_prefix, get_combined_counts_file_suffix(), g_plots_dir, g_plots_run_prefix, get_boxplot_suffix()) ###Output _____no_output_____
intrinsic_dim/plots/more/fnn_mnist.ipynb
###Markdown 2-layer FNN on MNISTThis is MLP (784-200-200-10) on MNIST. Adam algorithm (lr=0.001) with 100 epoches. 100 hidden units Total params: 89,610 Trainable params: 89,610 Non-trainable params: 0 200 hidden units Total params: 199,210 Trainable params: 199,210 Non-trainable params: 0 200 hidden units with 10 intrinsic dim Total params: 2,191,320 Trainable params: 10 Non-trainable params: 2,191,310 200 hidden units with 5000 intrinsic dim Total params: 996,254,210 Trainable params: 5,000 Non-trainable params: 996,249,210 ###Code import os, sys import numpy as np from matplotlib.pyplot import * %matplotlib inline results_dir = '../results' class Results(): def __init__(self): self.train_loss = [] self.train_accuracy = [] self.train_loss = [] self.valid_loss = [] self.run_time = [] def add_entry(self, train_loss, train_accuracy, valid_loss, valid_accuracy, run_time): self.train_loss.append(train_loss) self.train_accuracy.append(train_accuracy) self.train_loss.append(train_loss) self.valid_loss.append(valid_loss) self.run_time.append(run_time) def add_entry_list(self, entry): self.add_entry(entry[0], entry[1], entry[2], entry[3], entry[4]) def list2np(self): self.train_loss = [] self.train_accuracy = [] self.train_loss = [] self.valid_loss = [] self.run_time = [] dim = [10, 50, 100, 300, 500, 1000, 2000, 3000, 4000, 5000] i = 0 # filename list of diary diary_names = [] for subdir, dirs, files in os.walk(results_dir): for file in files: if file == 'diary': fname = os.path.join(subdir, file) diary_names.append(fname) diary_names_ordered = [] for d in dim: for f in diary_names: if str(d)+'/' in f: # print "%d is in" % d + f diary_names_ordered.append(f) if '_200dir/' in f: diary_names_dir = f if '_dir/' in f: diary_names_dir_100 = f # extrinsic update method with open(diary_names_dir,'r') as ff: lines0 = ff.readlines() R_dir = extract_num(lines0) with open(diary_names_dir_100,'r') as ff: lines0 = ff.readlines() R_dir_100 = extract_num(lines0) print "200 hiddent units:\n" + str(R_dir) + "\n" print "100 hiddent units:\n" + str(R_dir_100) + "\n" # intrinsic update method Rs = [] i = 0 for fname in diary_names_ordered: with open(fname,'r') as ff: lines0 = ff.readlines() R = extract_num(lines0) print "%d dim:\n"%dim[i] + str(R) + "\n" i += 1 Rs.append(R) Rs = np.array(Rs) def extract_num(lines0): valid_loss_str = lines0[-5] valid_accuracy_str = lines0[-6] train_loss_str = lines0[-8] train_accuracy_str = lines0[-9] run_time_str = lines0[-10] valid_loss = float(valid_loss_str.split( )[-1]) valid_accuracy = float(valid_accuracy_str.split( )[-1]) train_loss = float(train_loss_str.split( )[-1]) train_accuracy = float(train_accuracy_str.split( )[-1]) run_time = float(run_time_str.split( )[-1]) return valid_loss, valid_accuracy, train_loss, train_accuracy, run_time ###Output _____no_output_____ ###Markdown Performance comparison with Baseline ###Code N = 10 fig, ax = subplots(1) ax.plot(dim, Rs[:,0],'b-', label="Testing") ax.plot(dim, R_dir[0]*np.ones(N),'b-', label="Testing: baseline") ax.plot(dim, Rs[:,2],'g-', label="Training") ax.plot(dim, R_dir[2]*np.ones(N),'g-', label="Training: baseline") ax.scatter(dim, Rs[:,0]) ax.scatter(dim, Rs[:,2]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Loss') ax.set_title('Cross Entropy Loss') ax.legend() ax.grid() ax.set_ylim([-0.1,1.1]) fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, Rs[:,1],'b-', label="Testing") ax.plot(dim, R_dir[1]*np.ones(N),'b-', label="Testing: baseline") ax.plot(dim, Rs[:,3],'g-', label="Training") ax.plot(dim, R_dir[3]*np.ones(N),'g-', label="Training: baseline") ax.scatter(dim, Rs[:,1]) ax.scatter(dim, Rs[:,3]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Accuracy') ax.set_title('Cross Entropy Accuracy') ax.legend() ax.grid() ax.set_ylim([0.75,1.01]) fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, Rs[:,4],'g-', label="Training") ax.plot(dim, R_dir[4]*np.ones(N),'g-', label="Training: baseline") ax.scatter(dim, Rs[:,4]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Time (second)') ax.set_title('Wall Clock Time') ax.legend() ax.grid() # ax.set_ylim([0.75,100.01]) fig.set_size_inches(8, 5) ###Output _____no_output_____ ###Markdown Performance Per Dim ###Code NRs = Rs/np.array(dim).reshape(N,1) print NRs fig, ax = subplots(1) ax.plot(dim, NRs[:,0],'b-', label="Testing") ax.scatter(dim, NRs[:,0]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Loss per dim') ax.set_title('Cross Entropy Loss per Dim') ax.legend() ax.grid() fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, NRs[:,2],'g-', label="Training") ax.scatter(dim, NRs[:,2]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Loss per dim') ax.set_title('Cross Entropy Loss per Dim') ax.legend() ax.grid() fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, NRs[:,1],'b-', label="Testing") ax.scatter(dim, NRs[:,1]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Loss per dim') ax.set_title('Cross Entropy Loss per Dim') ax.legend() ax.grid() fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, NRs[:,3],'g-', label="Training") ax.scatter(dim, NRs[:,3]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Cross Entropy Loss per dim') ax.set_title('Cross Entropy Loss per Dim') ax.legend() ax.grid() fig.set_size_inches(8, 5) fig, ax = subplots(1) ax.plot(dim, NRs[:,4],'g-', label="Training") ax.scatter(dim, NRs[:,4]) ax.set_xlabel('Intrinsic Dim') ax.set_ylabel('Time (second)') ax.set_title('Wall Clock Time') ax.legend() ax.grid() # ax.set_ylim([0.75,100.01]) fig.set_size_inches(8, 5) ###Output _____no_output_____
notebooks/lesson4-collab.ipynb
###Markdown Collaborative Filtering using fastai--- ###Code %reload_ext autoreload %autoreload 2 %matplotlib inline from fastai.collab import * import fastai fastai.__version__ ###Output _____no_output_____ ###Markdown Load Movielens Data Download Data ###Code ! touch ~/.fastai/data/ml-100k.zip ! curl 'http://files.grouplens.org/datasets/movielens/ml-100k.zip' --output ~/.fastai/data/ml-100k.zip ! unzip ~/.fastai/data/ml-100k.zip -d ~/.fastai/data/ path = Path('/home/aman/.fastai/data/ml-100k') path.ls() ###Output _____no_output_____ ###Markdown Read into DataFrame ###Code ratings = pd.read_csv(path/'u.data', sep='\t', header=None, names=['userID', 'itemID','rating', 'timestamp']) ratings.head() movies = pd.read_csv(path/'u.item', sep='|', header=None, encoding='latin-1',names=['itemID', 'title', *[f'col_{i}' for i in range(22)]]) movies.head() movies_ratings = ratings.merge(movies[['itemID', 'title']]) movies_ratings.head() ###Output _____no_output_____ ###Markdown Create DataBunch ###Code data = CollabDataBunch.from_df(movies_ratings, valid_pct=0.1, user_name='userID', item_name='title', rating_name='rating') data.show_batch() ratings_range = [0,5.5] ###Output _____no_output_____ ###Markdown Train Collaborative Filtering Learner ###Code learner = collab_learner(data, n_factors=50, y_range=ratings_range, metrics=accuracy_thresh) learner.model learner.lr_find() learner.recorder.plot(skip_end=15) lr =1e-2 learner.fit_one_cycle(3, lr) learner.fit_one_cycle(3, lr) learner.save('dotprod') ###Output _____no_output_____ ###Markdown Interpretation ###Code learner = collab_learner(data, n_factors=50, y_range=ratings_range, metrics=accuracy_thresh) learner.load('dotprod'); learner.model ###Output _____no_output_____ ###Markdown For Most Rated Movies ###Code movies_ratings.head() g = movies_ratings.groupby('title')['rating'].count() top_movies = g.sort_values(ascending=False)[:1000] top_movies[:10] top_movies[-10:] ###Output _____no_output_____ ###Markdown Movie Bias ###Code bias = learner.bias(top_movies.index) bias.shape mean_ratings = movies_ratings.groupby('title')['rating'].mean() mean_ratings.head() movie_bias = [(i,b, mean_ratings[i]) for i,b in zip(top_movies.index, bias)] movie_bias[:5] mean_ratings['Star Wars (1977)'], bias[0] sorted(movie_bias, key=lambda x:x[1], reverse=True)[:10] sorted(movie_bias, key=lambda x:x[1], reverse=False)[:10] ###Output _____no_output_____ ###Markdown Movie Weights ###Code weights = learner.weight(top_movies.index) weights.shape (fac1, fac2) = weights.pca(k=2).t() movie_weigts = [(i, f1, f2, mean_ratings[i]) for i,f1,f2 in zip(top_movies.index, fac1, fac2)] ###Output _____no_output_____ ###Markdown **Factor 1 representation** ###Code print(*sorted(movie_weigts, key=lambda x:x[1], reverse=True)[:10], sep='\n') print(*sorted(movie_weigts, key=lambda x:x[1], reverse=False)[:10], sep='\n') ###Output ('Shadow Conspiracy (1997)', tensor(-1.3907), tensor(0.3918), 2.8636363636363638) ('Beverly Hills Cop III (1994)', tensor(-1.3629), tensor(0.6043), 2.392857142857143) ('Beverly Hillbillies, The (1993)', tensor(-1.3618), tensor(0.2698), 2.25) ('Turbulence (1997)', tensor(-1.3186), tensor(-0.2513), 2.5652173913043477) ('Batman & Robin (1997)', tensor(-1.2267), tensor(0.2347), 2.4516129032258065) ('Bio-Dome (1996)', tensor(-1.2169), tensor(0.7667), 1.903225806451613) ('Batman Forever (1995)', tensor(-1.1698), tensor(0.5102), 2.6666666666666665) ('Net, The (1995)', tensor(-1.1253), tensor(0.0352), 3.0083333333333333) ('D3: The Mighty Ducks (1996)', tensor(-1.1148), tensor(0.0227), 2.5789473684210527) ('Tales from the Hood (1995)', tensor(-1.0973), tensor(0.4494), 2.037037037037037) ###Markdown **Factor 2 representation** ###Code print(*sorted(movie_weigts, key=lambda x:x[2], reverse=True)[:10], sep='\n') print(*sorted(movie_weigts, key=lambda x:x[2], reverse=False)[:10], sep='\n') ###Output ('Braveheart (1995)', tensor(-0.1758), tensor(-1.2507), 4.151515151515151) ("It's a Wonderful Life (1946)", tensor(0.1448), tensor(-1.0530), 4.121212121212121) ('Sleepless in Seattle (1993)', tensor(-0.1769), tensor(-1.0450), 3.539906103286385) ('Miracle on 34th Street (1994)', tensor(0.0406), tensor(-0.9652), 3.722772277227723) ('Amateur (1994)', tensor(0.5791), tensor(-0.9586), 3.1666666666666665) ('American President, The (1995)', tensor(-0.6015), tensor(-0.9311), 3.6280487804878048) ('Dave (1993)', tensor(-0.2710), tensor(-0.9055), 3.65) ('Dirty Dancing (1987)', tensor(-0.6857), tensor(-0.9039), 3.1020408163265305) ('Meet John Doe (1941)', tensor(0.8002), tensor(-0.8891), 3.92) ('Now and Then (1995)', tensor(-0.4483), tensor(-0.8846), 3.4583333333333335) ###Markdown **PCA Visualization** ###Code idxs = np.random.choice(len(top_movies), size=50, replace=False) x = fac1[idxs] y = fac2[idxs] movie_titles = top_movies[idxs] fig, ax = plt.subplots(figsize=(15,15)) ax.scatter(x, y) for title, x_i, y_i in zip(movie_titles.index, x, y): ax.text(x_i,y_i,title) ###Output _____no_output_____ ###Markdown Imports ###Code from fastai import * from fastai.collab import * from fastai.tabular import * import seaborn as sns sns.set() %matplotlib inline ###Output _____no_output_____ ###Markdown Sample of movies data `collab` models use data in a `DataFrame` of user, items, and ratings. ###Code user, item, title = 'userId', 'movieId', 'title' path = untar_data(URLs.ML_SAMPLE) path ratings = pd.read_csv(path / 'ratings.csv') ratings.head() ###Output _____no_output_____ ###Markdown That's all we need to create and train a model: `CollabDataBunch` assumes the first column is user, the second is movie, and the third is rating. ###Code data = CollabDataBunch.from_df(ratings, seed=42) # Since we are using sigmoid to restrict values to be between 0 & 5, sigmoid # saturates at the lower and upper intervals and may not actually get a prediction # that is 0 or 5 even though we have a lot of movies that have been rated at 5. # Therefore, we would subtract small number for minumum and add the same number to # the maximum. In our case, the minumum was 0.5 and maximum was 5 --> subtract # 0.5 form min and add 0.5 to the max --> new y_range = [0.5 - 0.05, 5 + 0.5] = [0, 5.5] y_range = [0, 5.5] # n_factors is the width of the embedding matrix learn = collab_learner(data, n_factors=50, y_range=y_range) learn.fit_one_cycle(3, 5e-3) ###Output Total time: 00:02 epoch train_loss valid_loss 1 1.585587 0.937921 (00:00) 2 0.836838 0.679799 (00:00) 3 0.661621 0.675431 (00:00) ###Markdown Movielens 100k Let's try with the full Movielens 100k data dataset, available from http://files.grouplens.org/datasets/movielens/ml-100k.zip ###Code path = Path('../data/ml-100k/') path path.ls() !head -10 ../data/ml-100k/u.data ratings = pd.read_csv(path / 'u.data', delimiter='\t', header=None, names=[user, item, 'rating', 'timestamp']) ratings.head() !head -10 ../data/ml-100k/u.item movies = pd.read_csv(path / 'u.item', delimiter='|', encoding='latin-1', header=None, names=[item, 'title', 'date', 'N', 'url', *[f'g{i}' for i in range(19)]]) movies.head() len(ratings) rating_movie = ratings.merge(movies[[item, title]]) rating_movie.head() data = CollabDataBunch.from_df(rating_movie, seed=42, pct_val=0.1, item_name=title) len(data.train_ds), len(data.valid_ds) data.show_batch() y_range = [0, 5.5] learn = collab_learner(data, n_factors=40, y_range=y_range, wd=1e-1) learn.lr_find() learn.recorder.plot(skip_end=15) learn.fit_one_cycle(5, 5e-3) np.sqrt(0.812) learn.save('dotprod') ###Output _____no_output_____ ###Markdown Here's [some benchmarks](https://www.librec.net/release/v1.3/example.html) on the same dataset for the popular Librec system for collaborative filtering. They show best results based on RMSE of 0.91, which corresponds to an MSE of `0.91**2 = 0.83`. Interpretation Setup ###Code learn.load('dotprod'); learn.model rating_movie.userId.nunique(), rating_movie.title.nunique() # Get the top 1000 movies by number of ratings. g = rating_movie.groupby(title)['rating'].count() top_movies = g.sort_values(ascending=False).index.values[:1000] top_movies[:10] ###Output _____no_output_____ ###Markdown Movie bias ###Code # In collaborative filtering setting, we use the terms user and item # Even if the task has not item per se. For example, item here is movie movie_bias = learn.bias(top_movies, is_item=True) movie_bias.shape # Get the average rating per movie and then zip it with the bias # and the title of the movie mean_ratings = np.round(rating_movie.groupby(title)['rating'].mean(), 2) movie_ratings = [(bias, movie, mean_ratings.loc[movie]) for movie, bias in zip(top_movies, movie_bias)] movie_ratings[:5] # Sort by bias sorted(movie_ratings, key=lambda x:x[0])[:15] sorted(movie_ratings, key=lambda x:x[0], reverse=True)[:15] ###Output _____no_output_____ ###Markdown Movie weights We'll be looking at the same top 1000 movies used above. ###Code movie_w = learn.weight(top_movies, is_item=True) movie_w.shape ###Output _____no_output_____ ###Markdown The width of the embedding is 40 which is the latent space it tries to learn for each movie. ###Code # We will use PCA for dimensionally reduction to project each movie # from space of dimension 40 to 3-D so that it is easier to explore movie_pca = movie_w.pca(3) movie_pca.shape # We're getting the three factors (principal components) fac0, fac1, fac2 = movie_pca.t() fac0.shape, fac1.shape, fac2.shape, ###Output _____no_output_____ ###Markdown Factor 1 ###Code movie_comp = [(fac, movie) for fac, movie in zip(fac0, top_movies)] movie_comp[:5] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] ###Output _____no_output_____ ###Markdown Factor 2 ###Code movie_comp = [(fac, movie) for fac, movie in zip(fac1, top_movies)] movie_comp[:5] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] ###Output _____no_output_____ ###Markdown Plot learned weights ###Code idxs = list(range(50)) X = fac0[idxs] Y = fac2[idxs] plt.figure(figsize=(15,15)) plt.scatter(X, Y) for i, x, y in zip(top_movies[idxs], X, Y): plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11) plt.show() dl = iter(data.train_dl) o = dl.__next__() o[0][0].size() ###Output _____no_output_____ ###Markdown ```pythonclass EmbeddingDotBias(nn.Module): "Base model for callaborative filtering." def __init__(self, n_factors:int, n_users:int, n_items:int, y_range:Tuple[float,float]=None): super().__init__() self.y_range = y_range Each user will have a bias and each movie will also have a bias. (self.u_weight, self.i_weight, self.u_bias, self.i_bias) = \ [embedding(*o) for o in [(n_users, n_factors), (n_items, n_factors), (n_users,1), (n_items,1) ]] def forward(self, users:LongTensor, items:LongTensor) -> Tensor: users and items will tensors that hold the indices that will be used look up their values from the embedding matrics. dot is element-wise product of the embeddings of users and items dot = self.u_weight(users)* self.i_weight(items) Then sum the dot which will be dot product of the user values and item values from embedding matrics We also add the bias for each user and item res = dot.sum(1) + self.u_bias(users).squeeze() + self.i_bias(items).squeeze() if self.y_range is None: return res return torch.sigmoid(res) * (self.y_range[1]-self.y_range[0]) + self.y_range[0]``` ```pythondef collab_learner(data, n_factors:int=None, use_nn:bool=False, metrics=None, emb_szs:Dict[str,int]=None, wd:float=0.01, **kwargs)->Learner: "Create a Learner for collaborative filtering." emb_szs = data.get_emb_szs(ifnone(emb_szs, {})) u, m = data.classes.values() if use_nn: model = EmbeddingNN(emb_szs=emb_szs, **kwargs) else: model = EmbeddingDotBias(n_factors, len(u), len(m), **kwargs) return CollabLearner(data, model, metrics=metrics, wd=wd)``` ###Code u, m, = data.classes.values() u, len(u) m, len(m) rating_movie.userId.nunique(), rating_movie.title.nunique() ###Output _____no_output_____ ###Markdown Collaborative filtering example `collab` models use data in a `DataFrame` of user, items, and ratings. ###Code user,item,title = 'userId','movieId','title' path = untar_data(URLs.ML_SAMPLE) path ratings = pd.read_csv(path/'ratings.csv') ratings.head() %dipush ratings %autodip on ###Output Pushing parameters to DDP namespace: ['ratings'] Auto Execution on DDP group: on, will run cell as %%dip ###Markdown That's all we need to create and train a model: ###Code data = CollabDataBunch.from_df(ratings, seed=42) y_range = [0,5.5] learn = collab_learner(data, n_factors=50, y_range=y_range) learn.fit_one_cycle(3, 5e-3) %autodip off ###Output Auto Execution on DDP group: Off ###Markdown Movielens 100k Let's try with the full Movielens 100k data dataset, available from http://files.grouplens.org/datasets/movielens/ml-100k.zip ###Code path=Config.data_path()/'ml-100k' ratings = pd.read_csv(path/'u.data', delimiter='\t', header=None, names=[user,item,'rating','timestamp']) ratings.head() movies = pd.read_csv(path/'u.item', delimiter='|', encoding='latin-1', header=None, names=[item, 'title', 'date', 'N', 'url', *[f'g{i}' for i in range(19)]]) movies.head() len(ratings) rating_movie = ratings.merge(movies[[item, title]]) rating_movie.head() %dipush rating_movie title %autodip on data = CollabDataBunch.from_df(rating_movie, seed=42, valid_pct=0.1, item_name=title) data.show_batch() y_range = [0,5.5] learn = collab_learner(data, n_factors=40, y_range=y_range, wd=1e-1) learn.lr_find() learn.recorder.plot(skip_end=15) learn.fit_one_cycle(5, 5e-3) learn.save('dotprod') ###Output %%dip : Running cell in remote DDP namespace (GPUs: [0, 1, 2]). ###Markdown Here's [some benchmarks](https://www.librec.net/release/v1.3/example.html) on the same dataset for the popular Librec system for collaborative filtering. They show best results based on RMSE of 0.91, which corresponds to an MSE of `0.91**2 = 0.83`. Interpretation Setup ###Code learn.load('dotprod'); learn.model g = rating_movie.groupby(title)['rating'].count() top_movies = g.sort_values(ascending=False).index.values[:1000] top_movies[:10] ###Output %%dip : Running cell in remote DDP namespace (GPUs: [0, 1, 2]). ###Markdown Movie bias ###Code movie_bias = learn.bias(top_movies, is_item=True) movie_bias.shape mean_ratings = rating_movie.groupby(title)['rating'].mean() movie_ratings = [(b, i, mean_ratings.loc[i]) for i,b in zip(top_movies,movie_bias)] item0 = lambda o:o[0] sorted(movie_ratings, key=item0)[:15] sorted(movie_ratings, key=lambda o: o[0], reverse=True)[:15] ###Output %%dip : Running cell in remote DDP namespace (GPUs: [0, 1, 2]). ###Markdown Movie weights ###Code movie_w = learn.weight(top_movies, is_item=True) movie_w.shape movie_pca = movie_w.pca(3) movie_pca.shape fac0,fac1,fac2 = movie_pca.t() movie_comp = [(f, i) for f,i in zip(fac0, top_movies)] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] movie_comp = [(f, i) for f,i in zip(fac1, top_movies)] sorted(movie_comp, key=itemgetter(0), reverse=True)[:10] sorted(movie_comp, key=itemgetter(0))[:10] idxs = np.random.choice(len(top_movies), 50, replace=False) idxs = list(range(50)) X = fac0[idxs] Y = fac2[idxs] plt.figure(figsize=(15,15)) plt.scatter(X, Y) for i, x, y in zip(top_movies[idxs], X, Y): plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11) plt.show() ###Output %%dip : Running cell in remote DDP namespace (GPUs: [0, 1, 2]).
misc/projections_to_the_line_and_observed_distributions.ipynb
###Markdown Short Bursts DistributionsWe look at short bursts on PA and AR senate. ###Code import matplotlib.pyplot as plt from gerrychain import (GeographicPartition, Partition, Graph, MarkovChain, proposals, updaters, constraints, accept, Election) from gerrychain.proposals import recom, propose_random_flip from gerrychain.tree import recursive_tree_part from gerrychain.metrics import mean_median, efficiency_gap, polsby_popper, partisan_gini from functools import (partial, reduce) import pandas import geopandas as gp import numpy as np import networkx as nx import pickle import seaborn as sns import pprint import operator import scipy from sklearn.decomposition import PCA from sklearn.preprocessing import scale, normalize import random from nltk.util import bigrams from nltk.probability import FreqDist from gingleator import Gingleator from numpy.random import randn from scipy.stats import norm, probplot ## This function takes a name of a shapefile and returns a tuple of the graph ## and its associated dataframe def build_graph(filename): print("Pulling in Graph from Shapefile: " + filename) graph = Graph.from_file(filename) df = gp.read_file(filename) return(graph, df) # graph, df = build_graph("AR_shape/AR.shp") # pickle.dump(graph, open("graph_AR.p", "wb")) # pickle.dump(df, open("df_AR.p", "wb")) ## Set up PA enacted graph_PA = pickle.load(open("PA_graph.p", "rb")) df_PA = pickle.load(open("PA_df.p", "rb")) PA_updaters = {"population": updaters.Tally("TOT_POP", alias="population"), "bvap": updaters.Tally("BLACK_POP", alias="bvap"), "vap": updaters.Tally("VAP", alias="vap"), "bvap_prec": lambda part: {k: part["bvap"][k] / part["population"][k] for k in part["bvap"]}} PA_enacted_senate = GeographicPartition(graph_PA, assignment="SSD", updaters=PA_updaters) total_population_PA = sum(df_PA.TOT_POP.values) ideal_population_PA = total_population_PA / 50 seed_part_senate = recursive_tree_part(graph_PA, range(50), pop_col="TOT_POP", pop_target=ideal_population_PA, epsilon=0.01, node_repeats=1) PA_seed_seante = GeographicPartition(graph_PA, assignment=seed_part_senate,updaters=PA_updaters) ## Set up AR graph_AR = pickle.load(open("graph_AR.p", "rb")) df_AR = pickle.load(open("df_AR.p", "rb")) AR_updaters = {"population": updaters.Tally("TOTPOP", alias="population"), "bvap": updaters.Tally("BVAP", alias="bvap"), "vap": updaters.Tally("VAP", alias="vap"), "bvap_prec": lambda part: {k: part["bvap"][k] / part["vap"][k] for k in part["bvap"]}} AR_enacted_senate = GeographicPartition(graph_AR, assignment="SSD", updaters=AR_updaters) AR_enacted_house = GeographicPartition(graph_AR, assignment="SHD", updaters=AR_updaters) total_population_AR = sum(df_AR.TOTPOP.values) ideal_population_AR = total_population_AR / 35 senate_seed = recursive_tree_part(graph_AR, range(35), pop_col="TOTPOP", pop_target=ideal_population_AR, epsilon=0.01, node_repeats=1) AR_seed_senate = GeographicPartition(graph_AR, assignment=senate_seed,updaters=AR_updaters) house_seed = recursive_tree_part(graph_AR, range(100), pop_col="TOTPOP", pop_target=total_population_AR / 100, epsilon=0.05, node_repeats=1) AR_seed_house = GeographicPartition(graph_AR, assignment=house_seed, updaters=AR_updaters) H_enact = Gingleator.num_opportunity_dists(AR_enacted_house, "bvap_prec", 0.4) H_seed = Gingleator.num_opportunity_dists(AR_seed_house, "bvap_prec", 0.4) Gingleator.num_opportunity_dists(AR_seed_senate, "bvap_prec", 0.4) Gingleator.num_opportunity_dists(AR_enacted_senate, "bvap_prec", 0.4) ###Output _____no_output_____ ###Markdown Reprojections onto the line ###Code def transition_frequencies(observations): observations = observations.astype(int) dim = observations.max() seen_bigrams = [] for row in observations: seen_bigrams.extend(bigrams(row)) fdist = FreqDist(seen_bigrams) probs = np.zeros((dim, dim)) for k, v in fdist.items(): probs[k[0]-1][k[1]-1] = v probs = normalize(probs, norm="l1") return probs def rand_walk_graph(transition_frequencies): G = nx.from_numpy_array(transition_frequencies, create_using=nx.DiGraph) mapping = {n: n+1 for n in G.nodes} G = nx.relabel_nodes(G, mapping) return G def edge_weights(G, prec=None): if not prec: return dict([((u,v,), d['weight']) for u,v,d in G.edges(data=True)]) else: return dict([((u,v,), round(d['weight'],prec)) for u,v,d in G.edges(data=True)]) PA_gingles = Gingleator(PA_seed_seante, pop_col="TOT_POP", minority_prec_col="bvap_prec", epsilon=0.1) AR_gingles = Gingleator(AR_seed_senate, pop_col="TOTPOP", minority_prec_col="bvap_prec", epsilon=0.1) ###Output _____no_output_____ ###Markdown PA random walk graph ###Code _, PA_observations = PA_gingles.short_burst_run(num_bursts=200, num_steps=25) PA_trans = transition_frequencies(PA_observations) PA_rand_walk = rand_walk_graph(PA_trans) edge_weights(PA_rand_walk) ###Output _____no_output_____ ###Markdown AR random walk graph ###Code _, AR_observations = AR_gingles.short_burst_run(num_bursts=200, num_steps=25) AR_trans = transition_frequencies(AR_observations) AR_rand_walk = rand_walk_graph(AR_trans) edge_weights(AR_rand_walk) ###Output _____no_output_____ ###Markdown Distribution of Observations ###Code def stationary_distribution(graph, nodes=None): probs = edge_weights(graph) if not nodes: observed_nodes = reduce(lambda s, k: s | set(k), probs.keys(), set()) observed_nodes.remove(min(observed_nodes)) else: observed_nodes = nodes stationary = reduce(lambda pis, i: pis + [pis[-1]*probs[i-1, i] / probs[i, i-1]], observed_nodes, [1]) stationary = normalize([stationary], norm="l1") return stationary[0] ###Output _____no_output_____ ###Markdown Distribution of Observations of various methods on AR state houseWe look at the distribution of times we see plans with some number of opportunity districts when we use an unbiased run, the short burst method to maximized and to minimize, and a tilted method with p=0.25 of accepting a worse plan. AR house with just count as score and 5000 iterations.Bursts are 25 steps each ###Code AR_house_gingles = Gingleator(AR_seed_house, pop_col="TOTPOP", minority_prec_col="bvap_prec", epsilon=0.1) _, AR_observations_hub = AR_house_gingles.short_burst_run(num_bursts=1, num_steps=5000) _, AR_observations_hsb_max = AR_house_gingles.short_burst_run(num_bursts=200, num_steps=25) _, AR_observations_hsb_min = AR_house_gingles.short_burst_run(num_bursts=200, num_steps=25, maximize=False) _, AR_observations_htilt = AR_house_gingles.biased_run(num_iters=5000) _, AR_observations_htilt_8 = AR_house_gingles.biased_run(num_iters=5000, p=0.125) _, AR_observations_htilt_16 = AR_house_gingles.biased_run(num_iters=5000, p=0.0625) _, AR_observations_hsbtilt = AR_house_gingles.biased_short_burst_run(num_bursts=200, num_steps=25) _, AR_observations_hsbtilt_8 = AR_house_gingles.biased_short_burst_run(num_bursts=200, num_steps=25, p=0.125) _, AR_observations_hsb_max_5 = AR_house_gingles.short_burst_run(num_bursts=1000, num_steps=5) _, AR_observations_hsb_max_10 = AR_house_gingles.short_burst_run(num_bursts=500, num_steps=10) _, AR_observations_hsb_max_50 = AR_house_gingles.short_burst_run(num_bursts=100, num_steps=50) AR_observations_hsb_tails = np.concatenate((AR_observations_hsb_max, AR_observations_hsb_min)) AR_trans_house = transition_frequencies(AR_observations_hsb_tails) AR_house_rwgraph = rand_walk_graph(AR_trans_house) edge_weights(AR_house_rwgraph) AR_house_stat = stationary_distribution(AR_house_rwgraph) AR_house_stat AR_house_scale_stat = np.random.choice(range(6,16), 5000, p=AR_house_stat) plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased", bins=30) # sns.distplot(AR_observations_hsb1.flatten(), kde=False, label="Short Bursts", color="purple") # sns.distplot(AR_observations_hsb_min.flatten(), kde=False, label="Short Bursts Min", color="cyan") sns.distplot(AR_house_scale_stat, kde=False, label="RW Stationary", color="g", bins=30) plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_unbiased_stationary_distribution.png") plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased") # sns.distplot(AR_observations_htilt, kde=False, label="Tilted Run (p=0.25)", color="g") sns.distplot(AR_observations_hsb_max.flatten(), kde=False, label="Short Bursts Max", color="purple") sns.distplot(AR_observations_hsb_min.flatten(), kde=False, label="Short Bursts Min", color="cyan") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_distribution_of_short_bursts.png") plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased", color="green") sns.distplot(AR_observations_htilt, kde=False, label="Tilted Run (p=0.25)", color="cyan") sns.distplot(AR_observations_htilt_8.flatten(), kde=False, label="Tilted Run (p=0.125)") # sns.distplot(AR_observations_htilt_16.flatten(), kde=False, label="Tilted Run (p=0.0625)", # color="purple") sns.distplot(AR_observations_hsb_max.flatten(), kde=False, label="Short Bursts", color="purple") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_short_bursts_vs_tilted_run.png") plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased", color="green") sns.distplot(AR_observations_htilt, kde=False, label="Tilted Run (p=0.25)", color="cyan") sns.distplot(AR_observations_htilt_8.flatten(), kde=False, label="Tilted Run (p=0.125)") sns.distplot(AR_observations_htilt_16.flatten(), kde=False, label="Tilted Run (p=0.0625)", color="purple") # sns.distplot(AR_observations_hsb_max.flatten(), kde=False, label="Short Bursts", color="purple") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_tilted_runs.png") plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased", color="green", bins=50) sns.distplot(AR_observations_hsb_max.flatten(), kde=False, label="Short Bursts Max", color="cyan", bins=50) sns.distplot(AR_observations_hsbtilt.flatten(), kde=False, label="Tilted Short Bursts (p=0.25)", bins=50) sns.distplot(AR_observations_hsbtilt_8.flatten(), kde=False, label="Tilted Short Bursts (p=0.125)", color="purple", bins=50) plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_distribuition_of_tilted_short_bursts_runs.png") plt.figure(figsize=(8,6)) plt.title("AR State House (100 seats)") plt.xlabel("Number of Opportunity Districts") plt.ylabel("Frequency") # sns.distplot(AR_observations_hub.flatten(), kde=False, label="Unbiased", color="green", # bins=50) sns.distplot(AR_observations_hsb_max_5.flatten(), kde=False, label="len 5", bins=50) sns.distplot(AR_observations_hsb_max_10.flatten(), kde=False, label="len 10", bins=50, color="green") sns.distplot(AR_observations_hsb_max.flatten(), kde=False, label="len 25", color="cyan", bins=50) sns.distplot(AR_observations_hsb_max_50.flatten(), kde=False, label="len 50", color="purple", bins=50) plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() plt.figure(figsize=(8,10)) plt.title("AR State House: Short Bursts Walks (200, 25)") plt.xlim(7, 17) plt.xlabel("Number of opportunity districts") plt.ylabel("Steps") for i in range(200): plt.plot(AR_observations_hsb_max[i], range(25*i, 25*(i+1))) plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_short_burst_over_time.png") plt.figure(figsize=(8,10)) plt.title("AR State House: Tilted Runs") plt.xlim(4, 19) plt.xlabel("Number of opportunity districts") plt.ylabel("Steps") plt.plot(AR_observations_hub.flatten(), range(5000), label="Unbiased") plt.plot(AR_observations_htilt, range(5000), label="Tilted p=0.25") plt.plot(AR_observations_htilt_8, range(5000), label="Tilted p=0.125") plt.plot(AR_observations_htilt_16, range(5000), label="Tilted p=0.0625") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_tilted_runs_over_time.png") plt.figure(figsize=(8,10)) plt.title("AR State House: Tilted Short Burst Runs") plt.xlim(4, 18) plt.xlabel("Number of opportunity districts") plt.ylabel("Steps") plt.plot(AR_observations_hub.flatten(), range(5000), label="Unbiased") plt.plot(AR_observations_hsb_max.flatten(), range(5000), label="Short Burst Max") plt.plot(AR_observations_hsbtilt.flatten(), range(5000), label="Tilted Short Burst (p=0.25)") plt.plot(AR_observations_hsbtilt_8.flatten(), range(5000), label="Tilted Short Burst (p=0.125)") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() # plt.savefig("plots/AR_state_house_tilted_short_burst_runs_over_time.png") plt.figure(figsize=(8,10)) plt.title("AR State House: Short Burst Runs") plt.xlim(4, 17) plt.xlabel("Number of opportunity districts") plt.ylabel("Steps") plt.plot(AR_observations_hub.flatten(), range(5000), label="Unbiased") plt.plot(AR_observations_hsb_max.flatten(), range(5000), label="Short Burst Max") plt.plot(AR_observations_hsb_min.flatten(), range(5000), label="Short Burst Min") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() plt.figure(figsize=(8,10)) plt.title("AR State House: Short Burst Runs") plt.xlim(4, 17) plt.xlabel("Number of opportunity districts") plt.ylabel("Steps") plt.plot(AR_observations_hsb_max_5.flatten(), range(5000), label="len 5") plt.plot(AR_observations_hsb_max_10.flatten(), range(5000), label="len 10") plt.plot(AR_observations_hsb_max.flatten(), range(5000), label="len 25") plt.plot(AR_observations_hsb_max_50.flatten(), range(5000), label="len 50") plt.axvline(x=H_enact, color="k", linestyle="--", label="enacted") plt.axvline(x=H_seed, color="grey", linestyle="--", label="seed") plt.legend() plt.show() plt.figure(figsize=(8,6)) plt.title("AR State House") plt.hist([AR_observations_hub.flatten(), AR_observations_hsb.flatten(), AR_observations_hsb_min], label=["Unbiased","Short Bursts Max","Short Bursts Min" ,"Stationary RW"]) plt.legend() plt.show() _, PA_unbiased_run = PA_gingles.short_burst_run(num_bursts=1, num_steps=5000) # _, PA_burst_run = PA_gingles.short_burst_run(num_bursts=100, num_steps=10) stationary = stationary_distribution(PA_rand_walk) stat = np.random.choice([3,4,5], 5000, p=stationary) mu, std = norm.fit(PA_unbiased_run.flatten()) plt.figure(figsize=(10,8)) plt.title("Distributions on PA") plt.hist([PA_unbiased_run.flatten(), PA_observations.flatten(),stat], label=["Unbiased","Short Burst","Random Walk"]) p = norm.pdf(x, mu, std) plt.plot(x, p*5000, 'k', linewidth=2) plt.legend() plt.show() _, AR_unbiased_run = AR_gingles.short_burst_run(num_bursts=1, num_steps=5000) AR_stationary = stationary_distribution(AR_rand_walk) AR_stat = np.random.choice([1,2,3,4,5], 5000, p=AR_stationary) mu, std = norm.fit(AR_unbiased_run.flatten()) plt.figure(figsize=(10,8)) plt.title("Distributions on AR") plt.hist([AR_unbiased_run.flatten(), AR_observations.flatten(), AR_stat], label=["Unbiased","Short Burst","Random Walk"]) p = norm.pdf(x, mu, std) plt.plot(x, p*5000, 'k', linewidth=2) plt.legend() plt.show() plt.figure(figsize=(10,8)) plt.title("Distributions on PA") sns.distplot(PA_unbiased_run.flatten(), kde=False, label="Unbiased") sns.distplot(PA_observations.flatten(), kde=False, label="Short Burst") sns.distplot(stat, kde=False, label="Random Walk") plt.legend() plt.show() plt.figure(figsize=(10,8)) plt.title("Distributions on AR") sns.distplot(AR_unbiased_run.flatten(), kde=False, label="Unbiased Run") sns.distplot(AR_observations.flatten(), kde=False, label="Short Burst") sns.distplot(AR_stat, kde=False, label="Random Walk") plt.legend() plt.show() plt.figure() probplot(PA_unbiased_run.flatten(), plot=plt) plt.show() mu, std = norm.fit(PA_unbiased_run.flatten()) plt.hist(PA_unbiased_run.flatten(), bins=3, density=True, alpha=0.6, color='g') xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mu, std) plt.plot(x, p, 'k', linewidth=2) title = "Fit results: mu = %.2f, std = %.2f" % (mu, std) plt.title(title) plt.show() PA_observations[100] dist_precs = enacted_senate["bvap_prec"].values() sum(list(map(lambda v: v >= 0.4, dist_precs))) max(i for i in dist_precs if i < 0.4) ###Output _____no_output_____
05 - Cross-validation.ipynb
###Markdown Cross-Validation---------------------------------------- ###Code from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target from sklearn.cross_validation import cross_val_score from sklearn.svm import LinearSVC cross_val_score(LinearSVC(), X, y, cv=5) cross_val_score(LinearSVC(), X, y, cv=5, scoring="f1_macro") ###Output _____no_output_____ ###Markdown Let's go to a binary task for a moment ###Code y % 2 cross_val_score(LinearSVC(), X, y % 2) cross_val_score(LinearSVC(), X, y % 2, scoring="average_precision") cross_val_score(LinearSVC(), X, y % 2, scoring="roc_auc") from sklearn.metrics.scorer import SCORERS print(SCORERS.keys()) ###Output _____no_output_____ ###Markdown Implementing your own scoring metric: ###Code def my_accuracy_scoring(est, X, y): return np.mean(est.predict(X) == y) cross_val_score(LinearSVC(), X, y, scoring=my_accuracy_scoring) def my_super_scoring(est, X, y): return np.mean(est.predict(X) == y) - np.mean(est.coef_ != 0) from sklearn.grid_search import GridSearchCV y = iris.target grid = GridSearchCV(LinearSVC(C=.01, dual=False), param_grid={'penalty' : ['l1', 'l2']}, scoring=my_super_scoring) grid.fit(X, y) print(grid.best_params_) ###Output _____no_output_____ ###Markdown There are other ways to do cross-valiation ###Code from sklearn.cross_validation import ShuffleSplit shuffle_split = ShuffleSplit(len(X), 10, test_size=.4) cross_val_score(LinearSVC(), X, y, cv=shuffle_split) from sklearn.cross_validation import StratifiedKFold, KFold, ShuffleSplit def plot_cv(cv, n_samples): masks = [] for train, test in cv: mask = np.zeros(n_samples, dtype=bool) mask[test] = 1 masks.append(mask) plt.matshow(masks) plot_cv(StratifiedKFold(y, n_folds=5), len(y)) plot_cv(KFold(len(iris.target), n_folds=5), len(iris.target)) plot_cv(ShuffleSplit(len(iris.target), n_iter=20, test_size=.2), len(iris.target)) ###Output _____no_output_____ ###Markdown ExercisesUse KFold cross validation and StratifiedKFold cross validation (3 or 5 folds) for LinearSVC on the iris dataset.Why are the results so different? How could you get more similar results? ###Code # %load solutions/cross_validation_iris.py ###Output _____no_output_____
notebooks/8_pytorch.ipynb
###Markdown IntroductionThis notebook predicts the `beer_style` using a neural network on the PyTorchframework. It is a modification of the 5_pytorch.ipynb notebook. After 20epochs, there seems to be still some room for improvement.The same model is trained again for 60 more epochs. SummaryThe increase of neurons has **not** improved the model performance. The[classification report](Classification-report) shows that the validationaccuracy increased to as high as 31.2%, and the test accuracy remains at 32%. ###Code artefact_prefix = '8_pytorch' target = 'beer_style' %load_ext autoreload %autoreload 2 from dotenv import find_dotenv from datetime import datetime import pandas as pd from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from category_encoders.binary import BinaryEncoder from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder from joblib import dump, load from src.data.sets import merge_categories from src.data.sets import save_sets from src.data.sets import load_sets from src.data.sets import split_sets_random from src.data.sets import test_class_exclusion from src.models.performance import convert_cr_to_dataframe from src.models.pytorch import PytorchClassification_8 from src.models.pytorch import get_device from src.models.pytorch import train_classification from src.models.pytorch import test_classification from src.models.pytorch import PytorchDataset from src.models.pipes import create_preprocessing_pipe from src.visualization.visualize import plot_confusion_matrix ###Output _____no_output_____ ###Markdown Set up directories ###Code project_dir = Path(find_dotenv()).parent data_dir = project_dir / 'data' raw_data_dir = data_dir / 'raw' interim_data_dir = data_dir / 'interim' processed_data_dir = data_dir / 'processed' reports_dir = project_dir / 'reports' models_dir = project_dir / 'models' ###Output _____no_output_____ ###Markdown Load data ###Code X_train, X_test, X_val, y_train, y_test, y_val = load_sets() ###Output _____no_output_____ ###Markdown Preprocess data1. The `brewery_name` is a feature with a very high cardinality, ~5700. One hot encoding is not feasible as it will introduce 5700 very sparse columns. Another option is to use binary encoding, which would result in 14 new columns.1. Standard scaling is used to ensure that the binary columns ([0, 1])and thereview columns ([1, 5]) are on the same scale. ###Code pipe = Pipeline([ ('bin_encoder', BinaryEncoder(cols=['brewery_name'])), ('scaler', StandardScaler()) ]) X_train_trans = pipe.fit_transform(X_train) X_val_trans = pipe.transform(X_val) X_test_trans = pipe.transform(X_test) X_train_trans.shape n_features = X_train_trans.shape[1] n_features n_classes = y_train.nunique() n_classes ###Output _____no_output_____ ###Markdown EncodingPyTorch accepts only numerical labels. ###Code le = LabelEncoder() y_train_trans = le.fit_transform(y_train.to_frame()) y_val_trans = le.fit_transform(y_val.to_frame()) y_test_trans = le.transform(y_test.to_frame()) y_test_trans ###Output _____no_output_____ ###Markdown Convert to Pytorch tensors ###Code device = get_device() device train_dataset = PytorchDataset(X=X_train_trans, y=y_train_trans) val_dataset = PytorchDataset(X=X_val_trans, y=y_val_trans) test_dataset = PytorchDataset(X=X_test_trans, y=y_test_trans) ###Output _____no_output_____ ###Markdown Classification model ###Code model = PytorchClassification_8(n_features=n_features, n_classes=n_classes) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) ###Output _____no_output_____ ###Markdown Train the model ###Code N_EPOCHS = 60 BATCH_SIZE = 4096 scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9) start_time = datetime.now() print(f'Started: {start_time}') for epoch in range(N_EPOCHS): train_loss, train_acc = train_classification(train_dataset, model=model, criterion=criterion, optimizer=optimizer, batch_size=BATCH_SIZE, device=device, scheduler=scheduler) valid_loss, valid_acc = test_classification(val_dataset, model=model, criterion=criterion, batch_size=BATCH_SIZE, device=device) print(f'Epoch: {epoch}') print(f'\t(train)\tLoss: {train_loss:.4f}\t|\tAcc: {train_acc * 100:.1f}%') print(f'\t(valid)\tLoss: {valid_loss:.4f}\t|\tAcc: {valid_acc * 100:.1f}%') end_time = datetime.now() runtime = end_time - start_time print(f'Ended: {end_time}') print(f'Runtime: {runtime}') N_EPOCHS = 20 BATCH_SIZE = 4096 scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9) start_time = datetime.now() print(f'Started: {start_time}') for epoch in range(N_EPOCHS): train_loss, train_acc = train_classification(train_dataset, model=model, criterion=criterion, optimizer=optimizer, batch_size=BATCH_SIZE, device=device, scheduler=scheduler) valid_loss, valid_acc = test_classification(val_dataset, model=model, criterion=criterion, batch_size=BATCH_SIZE, device=device) print(f'Epoch: {epoch}') print(f'\t(train)\tLoss: {train_loss:.4f}\t|\tAcc: {train_acc * 100:.1f}%') print(f'\t(valid)\tLoss: {valid_loss:.4f}\t|\tAcc: {valid_acc * 100:.1f}%') end_time = datetime.now() runtime = end_time - start_time print(f'Ended: {end_time}') print(f'Runtime: {runtime}') ###Output Started: 2021-03-14 14:45:36.016408 Epoch: 0 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 1 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 2 (train) Loss: 0.0006 | Acc: 28.5% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 3 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 4 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 5 (train) Loss: 0.0006 | Acc: 28.5% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 6 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 7 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 8 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 9 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 10 (train) Loss: 0.0006 | Acc: 28.5% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 11 (train) Loss: 0.0006 | Acc: 28.5% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 12 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 13 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 14 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 15 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 16 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 17 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 18 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Epoch: 19 (train) Loss: 0.0006 | Acc: 28.4% (valid) Loss: 0.0006 | Acc: 30.0% Ended: 2021-03-14 14:49:46.324103 Runtime: 0:04:10.307695 ###Markdown Prediction ###Code # Use the CPU version if the GPU runs out of memory. # preds = model(test_dataset.X_tensor.to(device)).argmax(1) model.to('cpu') preds = model(test_dataset.X_tensor).argmax(1) preds model.to(device) ###Output _____no_output_____ ###Markdown Evaluation Classification report ###Code report = classification_report(y_test, le.inverse_transform(preds.cpu())) print(report) ###Output C:\Users\Roger\.conda\envs\adsi_ass_2\lib\site-packages\sklearn\metrics\_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) ###Markdown Save objects for production Save model ###Code path = models_dir / f'{artefact_prefix}_model' torch.save(model, path.with_suffix('.torch')) ###Output _____no_output_____ ###Markdown Create pipe objectThis is for transforming the input prior to prediction. ###Code X = pd.concat([X_train, X_val, X_test]) prod_pipe = create_preprocessing_pipe(X) path = models_dir / f'{artefact_prefix}_pipe' dump(prod_pipe, path.with_suffix('.sav')) ###Output _____no_output_____ ###Markdown Save `LabelEncoder`This is required to get back the name of the name of the `beer_style`. ###Code path = models_dir / f'{artefact_prefix}_label_encoder' dump(le, path.with_suffix('.sav')) ###Output _____no_output_____
ai-platform-unified/notebooks/unofficial/sdk/sdk_automl_image_object_detection_batch.ipynb
###Markdown Vertex SDK: AutoML training image object detection model for batch prediction Run in Colab View on GitHub OverviewThis tutorial demonstrates how to use the Vertex SDK to create image object detection models and do batch prediction using Google Cloud's [AutoML](https://cloud.google.com/vertex-ai/docs/start/automl-users). DatasetThe dataset used for this tutorial is the Salads category of the [OpenImages dataset](https://www.tensorflow.org/datasets/catalog/open_images_v4) from [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/overview). This dataset does not require any feature engineering. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. The trained model predicts the bounding box locations and corresponding type of salad items in an image from a class of five items: salad, seafood, tomato, baked goods, or cheese. ObjectiveIn this tutorial, you create an AutoML image object detection model from a Python script, and then do a batch prediction using the Vertex SDK. You can alternatively create and deploy models using the `gcloud` command-line tool or online using the Google Cloud Console.The steps performed include:- Create a Vertex `Dataset` resource.- Train the model.- View the model evaluation.- Make a batch prediction.There is one key difference between using batch prediction and using online prediction:* Prediction Service: Does an on-demand prediction for the entire set of instances (i.e., one or more data items) and returns the results in real-time.* Batch Prediction Service: Does a queued (batch) prediction for the entire set of instances in the background and stores the results in a Cloud Storage bucket when ready. CostsThis tutorial uses billable components of Google Cloud (GCP):* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. InstallationInstall the latest version of Vertex SDK. ###Code import sys import os # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = '--user' else: USER_FLAG = '' ! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG ###Output _____no_output_____ ###Markdown Install the latest GA version of *google-cloud-storage* library as well. ###Code ! pip3 install -U google-cloud-storage $USER_FLAG ###Output _____no_output_____ ###Markdown Restart the kernelOnce you've installed the Vertex SDK and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages. ###Code if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin GPU runtime*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.5. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. ###Code PROJECT_ID = "[your-project-id]" #@param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for Vertex. We recommend that you choose the region closest to you.- Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You may not use a multi-regional bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see the [Vertex locations documentation](https://cloud.google.com/ai-platform-unified/docs/general/locations) ###Code REGION = 'us-central1' #@param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.**Click Create service account**.In the **Service account name** field, enter a name, and click **Create**.In the **Grant this service account access to project** section, click the Role drop-down list. Type "Vertex" into the filter box, and select **Vertex Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.Click Create. A JSON file that contains your key downloads to your local environment.Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell. ###Code # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**When you initialize the Vertex SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions.Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization. ###Code BUCKET_NAME = "gs://[your-bucket-name]" #@param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output _____no_output_____ ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Set up variablesNext, set up some variables used throughout the tutorial. Import libraries and define constants ###Code import google.cloud.aiplatform as aip ###Output _____no_output_____ ###Markdown Initialize Vertex SDKInitialize the Vertex SDK for your project and corresponding bucket. ###Code aip.init(project=PROJECT_ID, staging_bucket=BUCKET_NAME) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to start creating your own AutoML image object detection model. Create a Dataset ResourceFirst, you create an image Dataset resource for the Salads dataset. Data preparationThe Vertex `Dataset` resource for images has some requirements for your data:- Images must be stored in a Cloud Storage bucket.- Each image file must be in an image format (PNG, JPEG, BMP, ...).- There must be an index file stored in your Cloud Storage bucket that contains the path and label for each image.- The index file must be either CSV or JSONL. CSVFor image object detection, the CSV index file has the requirements:- No heading.- First column is the Cloud Storage path to the image.- Second column is the label.- Third/Fourth columns are the upper left corner of bounding box. Coordinates are normalized, between 0 and 1.- Fifth/Sixth/Seventh columns are not used and should be 0.- Eighth/Ninth columns are the lower right corner of the bounding box. Location of Cloud Storage training data.Now set the variable `IMPORT_FILE` to the location of the CSV index file in Cloud Storage. ###Code IMPORT_FILE = 'gs://cloud-samples-data/vision/salads.csv' ###Output _____no_output_____ ###Markdown Quick peek at your dataYou will use a version of the Salads dataset that is stored in a public Cloud Storage bucket, using a CSV index file.Start by doing a quick peek at the data. You count the number of examples by counting the number of rows in the CSV index file (`wc -l`) and then peek at the first few rows. ###Code if 'IMPORT_FILES' in globals(): FILE = IMPORT_FILES[0] else: FILE = IMPORT_FILE count = ! gsutil cat $FILE | wc -l print("Number of Examples", int(count[0])) print("First 10 rows") ! gsutil cat $FILE | head ###Output _____no_output_____ ###Markdown Create the DatasetNext, create the `Dataset` resource using the `create()` method for the `ImageDataset` class, which takes the following parameters:- `display_name`: The human readable name for the `Dataset` resource.- `gcs_source`: A list of one or more dataset index file to import the data items into the `Dataset` resource.- `import_schema_uri`: The data labeling schema for the data items.This operation may take several minutes. ###Code dataset = aip.ImageDataset.create( display_name="Salads" + "_" + TIMESTAMP, gcs_source=[IMPORT_FILE], import_schema_uri=aip.schema.dataset.ioformat.image.bounding_box, ) print(dataset.resource_name) ###Output _____no_output_____ ###Markdown Train the modelNow train an AutoML image object detection model using your Vertex `Dataset` resource. To train the model, do the following steps:1. Create an Vertex training pipeline for the `Dataset` resource.2. Execute the pipeline to start the training. Create and run training pipelineTo train an AutoML image object detection model, you perform two steps: 1) create a training pipeline, and 2) run the pipeline. Create training pipelineAn AutoML training pipeline is created with the `AutoMLImageTrainingJob` class, with the following parameters:- `display_name`: The human readable name for the `TrainingJob` resource.- `prediction_type`: The type task to train the model for. - `classification`: An image classification model. - `object_detection`: An image object detection model.- `multi_label`: If a classification task, whether single (`False`) or multi-labeled (`True`).- `model_type`: The type of model for deployment. - `CLOUD`: Deployment on Google Cloud - `CLOUD_HIGH_ACCURACY_1`: Optimized for accuracy over latency for deployment on Google Cloud. - `CLOUD_LOW_LATENCY_`: Optimized for latency over accuracy for deployment on Google Cloud. - `MOBILE_TF_VERSATILE_1`: Deployment on an edge device. - `MOBILE_TF_HIGH_ACCURACY_1`:Optimized for accuracy over latency for deployment on an edge device. - `MOBILE_TF_LOW_LATENCY_1`: Optimized for latency over accuracy for deployment on an edge device.- `base_model`: (optional) Transfer learning from existing `Model` resource -- supported for image classification only.The instantiated object is the DAG for the training job. ###Code dag = aip.AutoMLImageTrainingJob( display_name="salads_" + TIMESTAMP, prediction_type="object_detection", model_type="CLOUD", base_model=None, ) ###Output _____no_output_____ ###Markdown Run the training pipelineNext, you run the DAG to start the training job by invoking the method `run()`, with the following parameters:- `dataset`: The `Dataset` resource to train the model.- `model_display_name`: The human readable name for the trained model.- `training_fraction_split`: The percentage of the dataset to use for training.- `validation_fraction_split`: The percentage of the dataset to use for validation.- `test_fraction_split`: The percentage of the dataset to use for test (holdout data).- `budget_milli_node_hours`: (optional) Maximum training time specified in unit of millihours (1000 = hour).- `disable_early_stopping`: If `True`, training maybe completed before using the entire budget if the service believes it cannot further improve on the model objective measurements.The `run` method when completed returns the `Model` resource.The execution of the training pipeline will take upto 20 minutes. ###Code model = dag.run( dataset=dataset, model_display_name="salads_" + TIMESTAMP, training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, budget_milli_node_hours=20000, disable_early_stopping=False ) ###Output _____no_output_____ ###Markdown Model deployment for batch predictionNow deploy the trained Vertex `Model` resource you created for batch prediction. This differs from deploying a `Model` resource for online prediction.For online prediction, you:1. Create an `Endpoint` resource for deploying the `Model` resource to.2. Deploy the `Model` resource to the `Endpoint` resource.3. Make online prediction requests to the `Endpoint` resource.For batch-prediction, you:1. Create a batch prediction job.2. The job service will provision resources for the batch prediction request.3. The results of the batch prediction request are returned to the caller.4. The job service will unprovision the resoures for the batch prediction request. Make a batch prediction requestNow do a batch prediction to your deployed model. Get test item(s)Now do a batch prediction to your Vertex model. You will use arbitrary examples out of the dataset as a test items. Don't be concerned that the examples were likely used in training the model -- we just want to demonstrate how to make a prediction. ###Code test_items = !gsutil cat $IMPORT_FILE | head -n2 cols_1 = str(test_items[0]).split(',') cols_2 = str(test_items[1]).split(',') if len(cols_1) == 11: test_item_1 = str(cols_1[1]) test_label_1 = str(cols_1[2]) test_item_2 = str(cols_2[1]) test_label_2 = str(cols_2[2]) else: test_item_1 = str(cols_1[0]) test_label_1 = str(cols_1[1]) test_item_2 = str(cols_2[0]) test_label_2 = str(cols_2[1]) print(test_item_1, test_label_1) print(test_item_2, test_label_2) ###Output _____no_output_____ ###Markdown Copy test item(s)For the batch prediction, you will copy the test items over to your Cloud Storage bucket. ###Code file_1 = test_item_1.split('/')[-1] file_2 = test_item_2.split('/')[-1] ! gsutil cp $test_item_1 $BUCKET_NAME/$file_1 ! gsutil cp $test_item_2 $BUCKET_NAME/$file_2 test_item_1 = BUCKET_NAME + "/" + file_1 test_item_2 = BUCKET_NAME + "/" + file_2 ###Output _____no_output_____ ###Markdown Make the batch input fileNow make a batch input file, which you will store in your local Cloud Storage bucket. The batch input file can be either CSV or JSONL. You will use JSONL in this tutorial. For JSONL file, you make one dictionary entry per line for each data item (instance). The dictionary contains the key/value pairs:- `content`: The Cloud Storage path to the image.- `mime_type`: The content type. In our example, it is an `jpeg` file.For example: {'content': '[your-bucket]/file1.jpg', 'mime_type': 'jpeg'} ###Code import tensorflow as tf import json gcs_input_uri = BUCKET_NAME + '/test.jsonl' with tf.io.gfile.GFile(gcs_input_uri, 'w') as f: data = {"content": test_item_1, "mime_type": "image/jpeg"} f.write(json.dumps(data) + '\n') data = {"content": test_item_2, "mime_type": "image/jpeg"} f.write(json.dumps(data) + '\n') print(gcs_input_uri) ! gsutil cat $gcs_input_uri ###Output _____no_output_____ ###Markdown Make the batch prediction requestNow that your `Model` resource is trained, you can make a batch prediction by invoking the `batch_request()` method, with the following parameters:- `job_display_name`: The human readable name for the batch prediction job.- `gcs_source`: A list of one or more batch request input files.- `gcs_destination_prefix`: The Cloud Storage location for storing the batch prediction resuls.- `sync`: If set to `True`, the call will block while waiting for the asynchronous batch job to complete. ###Code batch_predict_job = model.batch_predict( job_display_name="$(DATASET_ALIAS)_" + TIMESTAMP, gcs_source=gcs_input_uri, gcs_destination_prefix=BUCKET_NAME, sync=False ) print(batch_predict_job) ###Output _____no_output_____ ###Markdown Wait for completion of batch prediction jobNext, wait for the batch job to complete. ###Code batch_predict_job.wait() ###Output _____no_output_____ ###Markdown Get the predictionsNext, get the results from the completed batch prediction job.The results are written to the Cloud Storage output bucket you specified in the batch prediction request. You call the method `iter_outputs()` to get a list of each Cloud Storage file generated with the results. Each file contains one or more prediction requests in a JSON format:- `content`: The prediction request.- `prediction`: The prediction response. - `ids`: The internal assigned unique identifiers for each prediction request. - `displayNames`: The class names for each class label. - `confidences`: The predicted confidence of each object, between 0 and 1, per class label. - `bboxes`: The bounding box for each object ###Code bp_iter_outputs = batch_predict_job.iter_outputs() prediction_results = list() for blob in bp_iter_outputs: if blob.name.split("/")[-1].startswith("prediction"): prediction_results.append(blob.name) tags = list() for prediction_result in prediction_results: gfile_name = f"gs://{bp_iter_outputs.bucket.name}/{prediction_result}" with tf.io.gfile.GFile(name=gfile_name, mode="r") as gfile: for line in gfile.readlines(): line = json.loads(line) print(line) break ###Output _____no_output_____ ###Markdown Cleaning upTo clean up all GCP resources used in this project, you can [delete the GCPproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Dataset- Pipeline- Model- Endpoint- Batch Job- Custom Job- Hyperparameter Tuning Job- Cloud Storage Bucket ###Code delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True # Delete the dataset using the Vertex dataset object try: if delete_dataset and 'dataset' in globals(): dataset.delete() except Exception as e: print(e) # Delete the model using the Vertex model object try: if delete_model and 'model' in globals(): model.delete() except Exception as e: print(e) # Delete the endpoint using the Vertex endpoint object try: if delete_endpoint and 'model' in globals(): endpoint.delete() except Exception as e: print(e) # Delete the batch prediction job using the Vertex batch prediction object try: if delete_batchjob and 'model' in globals(): batch_predict_job.delete() except Exception as e: print(e) if delete_bucket and 'BUCKET_NAME' in globals(): ! gsutil rm -r $BUCKET_NAME ###Output _____no_output_____
fastai_scratch_with_tpu_mnist_4_experiment4.ipynb
###Markdown ###Code import os assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator' !curl https://course.fast.ai/setup/colab | bash VERSION = "20200325" #@param ["1.5" , "20200325", "nightly"] !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py !python pytorch-xla-env-setup.py --version $VERSION !pip freeze | grep torchvision !pip freeze | grep torch-xla !pip install fastcore --upgrade !pip install fastai2 --upgrade pip install fastai --upgrade from google.colab import drive drive.mount('/content/drive') %cd /content/drive/My\ Drive/course-v4/ !pwd !pip install -r requirements.txt %cd nbs !pwd ###Output /content/drive/My Drive/course-v4/nbs ###Markdown Start of import libraries ###Code from fastai2.vision.all import * from utils import * path = untar_data(URLs.MNIST_SAMPLE) Path.BASE_PATH = path path.ls() ###Output _____no_output_____ ###Markdown Import torch xla libraries ###Code import torch import torch_xla import torch_xla.core.xla_model as xm OptimWrapper? class WrapperOpt: def __init__(self, f): self.f = f def __call__(self, *args, **kwargs): opt = self.f(*args, **kwargs) optim_wrapper = OptimWrapper(opt) def my_step(): xm.optimizer_step(opt,barrier=True) optim_wrapper.step = my_step return optim_wrapper def wrap_xla_optim(opt): w = WrapperOpt(opt) return w ###Output _____no_output_____ ###Markdown Get TPU Device ###Code tpu_dev = xm.xla_device() tpu_dev datablock = DataBlock( blocks=(ImageBlock(cls=PILImageBW),CategoryBlock), get_items=get_image_files, splitter=GrandparentSplitter(), get_y=parent_label, item_tfms=Resize(28), batch_tfms=[]) dls = datablock.dataloaders(path,device=tpu_dev) adam_xla_opt = wrap_xla_optim(Adam) sgd_xla_opt = wrap_xla_optim(SGD) learner = cnn_learner(dls, resnet18, metrics=accuracy, loss_func=F.cross_entropy, opt_func=adam_xla_opt) from fastai2.callback.tensorboard import * learner.fit_one_cycle(3) !pip freeze | grep tensorboard ###Output _____no_output_____
Anita Mburu-WT-21-022-Week -4-Assessment/8.ipynb
###Markdown Exercise Notebook (DS) ` Make sure to finish DAY-4 of WEEK-1 before continuing here!!!` ###Code # this code conceals irrelevant warning messages import warnings warnings.simplefilter('ignore', FutureWarning) ###Output _____no_output_____ ###Markdown Exercise 1: Numpy NumpyNumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed. Operations using NumPy (IMPORTANCE)Using NumPy, a developer can perform the following operations:1. Mathematical and logical operations on arrays. 2. Fourier transforms (In mathematics, a Fourier series (/ˈfʊrieɪ, -iər/) is a periodic function composed of harmonically related sinusoids, combined by a weighted summation. ... The process of deriving the weights that describe a given function is a form of Fourier analysis.) and routines for shape manipulation.3. Operations related to linear algebra. NumPy has in-built functions for linear algebra and random number generation. The most important object defined in NumPy is an N-dimensional array type called ndarray. It describes the collection of items of the same type. Items in the collection can be accessed using a zero-based index. `An instance of ndarray class can be constructed by different array creation routines described later in the tutorial. The basic ndarray is created using an array function in NumPy as follows` ###Code import numpy numpy.array ###Output _____no_output_____ ###Markdown It creates an ndarray from any object exposing array interface, or from any method that returns an array. ###Code numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) ###Output _____no_output_____ ###Markdown The above constructor takes the following parameters Sr.No. Parameter & Description:1. objectAny object exposing the array interface method returns an array, or any (nested) sequence.2. dtypeDesired data type of array, optional3. copyOptional. By default (true), the object is copied4. orderC (row major) or F (column major) or A (any) (default)5. subokBy default, returned array forced to be a base class array. If true, sub-classes passed through6. ndminSpecifies minimum dimensions of resultant array Note: All arithmetic operations can be perform on a numpy array ###Code import numpy as np ###Output _____no_output_____ ###Markdown `Examples` Operations on Numpy Array ###Code # Base Ball Player's Heights AS a in 2D a = np.array([[1,2,3], [4,1,5]]) print (a) # Addition a+3 # Multiplication a*2 # Subtraction a-2 # Division a/3 ###Output _____no_output_____ ###Markdown Task1. Write a NumPy program to test whether none of the elements of a given array is zero. ###Code a = np.array([2,3,1,0,6,7]) a for index,item in enumerate(a): if item==0: print('Zero value found at Index',index) else: print(item," is not zero") ###Output 2 is not zero 3 is not zero 1 is not zero Zero value found at Index 3 6 is not zero 7 is not zero ###Markdown 2. Write a NumPy program to test whether any of the elements of a given array is non-zero. ###Code import numpy as np a = np.array([10,33,56,89,0,3,8,9,0,6]) a a = np.array([10,33,56,89,0,3,8,9,0,6]) print("Original array") print(a) print("Test whether any of the elements of a given array is non-zero") print(np.any(a)) a = np.array([10,33,56,89,0,3,8,9,0,6]) print("Original array:") print(a) print("Test whether any of the elements of a give array is non-zero") print(np.any(a)) for index,item in enumerate(a): if item==0: print('Zero value found at Index',index) else: print(item," is not zero") ###Output 10 is not zero 33 is not zero 56 is not zero 89 is not zero Zero value found at Index 4 3 is not zero 8 is not zero 9 is not zero Zero value found at Index 8 6 is not zero
docs/1_qpu_db.ipynb
###Markdown Tutorial: QPU Database**This tutorial requires version >=0.0.5 of the QPU DB** Using the QPU DBThe QPU database is a permanent store built for storing calibration data for Quantum Processing Units (QPU).It provides the following features and benefits:* Persistent storage of any python object related to QPU calibration info* Metadata on parameter calibration state and last modified time* Convenient addressing of quantum elements* Easy revert to previously stored parametersIn this short tutorial we will learn how to use the QPU DB by looking at a simplified example of a QPU with two superconductingqubits, two readout resonators and a parametric coupling element. Creating the databaseBelow we can see a simple usage example. The DB is created by calling the `create_new_database` method.This method is similar to initializing a git repo in the sense that we only do it once. Here we initialize itwith an initial dictionary which contains some basic attributes of our QPU. We'll be able to add more attributes,and also elements, later on. Once we call `create_new_qpu_database`, a set of database files will be created for us atthe working directory of the python script.These files are the persistent storage of our DB. They can be saved to a different location by specifyingthe `path` argument to the function. ###Code # %load_ext autoreload # %autoreload 2 from entropylab_qpudb import create_new_qpu_database, CalState, QpuDatabaseConnection initial_dict = { 'q1': { 'f01': 5.65e9 # an initial guess for our transition frequency }, 'q2': { 'f01': 5.25e9 }, 'res1': { 'f_r': 7.1e9 }, 'res2': { 'f_r': 7.3e9 }, 'c1_2': { 'f_r': 0.4e9 } } create_new_qpu_database('db1', initial_dict, force_create=True) ###Output _____no_output_____ ###Markdown Notes:1. here we allow for the possibility of overwriting an existing databaseby passing the `force_create=True` flag. This option is useful when experimenting with the database creation, however incommon usage it is recommended to remove this flag, since when it's false (by default), it will prevent overwriting an existingdatabase and deleting all the data stored in it.2. (For experts): if you need to create a DB server, rather than create a filesystem storage, please let us know.The DB backend is currentlythe [ZODB](https://zodb.org/en/latest/) database, with plans to be replaced by[gitdb](https://github.com/gitpython-developers/gitdb).The keys of `initial_dict` are called the *elements* (and are similar in nature to QUA's quantum elements), and thevalues of these elements are subdictionaries of *attributes*. The values of the attributes can be anything you like,or more accurately, any python object that can be pickled. The different elements need not have the same attributes. Connecting to the database and basic usageNow create a connection to our DB. The connection to the DB is our main "workhorse" - we create the DB once, andwhenever we want to connect to it in order to retrieve or store data, we open a connection object. Note that currentlyonly a single connection object per DB is allowed. ###Code db1 = QpuDatabaseConnection('db1') ###Output opening qpu database db1 from commit <timestamp: 05/30/2021 06:24:19, message: initial commit> at index 0 ###Markdown and let's view the contents of our DB by calling `print`: ###Code db1.print() ###Output q1 ---- f01: QpuParameter(value=5400000000.0, last updated: 05/30/2021 09:24:45, calibration state: COARSE) q2 ---- f01: QpuParameter(value=5250000000.0, last updated: 05/30/2021 09:24:19, calibration state: UNCAL) res1 ---- f_r: QpuParameter(value=7100000000.0, last updated: 05/30/2021 09:24:19, calibration state: UNCAL) res2 ---- f_r: QpuParameter(value=7300000000.0, last updated: 05/30/2021 09:24:19, calibration state: UNCAL) c1_2 ---- f_r: QpuParameter(value=400000000.0, last updated: 05/30/2021 09:24:19, calibration state: UNCAL) ###Markdown Congratulations! You've just created your first QPU DB. As you can see when calling `print` the values we enteredin `initial_dict` are now objects of type `QpuParameter`. These objects have 3 attributes:* `value`: the value you created initially and can be any python object* `last_updated`: the time when this parameter was last updated (see *committing* section to understand how toupdate). This parameter is handled by the DB itself.* `cal_state`: an enumerated metadata that can take the values `UNCAL`, `COARSE`, `MED` and `FINE`. Thiscan be used by the user to communicate what is the calibration level of these parameters. They can be set and queriedduring the script execution, but are not used by the DB itself. Modifying and using QPU parametersWe can use and modify values and calibration states of QPU parameters in two different ways: Using `get` and `set`let's modify the value of `f01` and then get the actual value: ###Code db1.set('q1', 'f01', 5.33e9) db1.get('q1', 'f01').value ###Output _____no_output_____ ###Markdown We can also modify the calibration state when setting: ###Code db1.set('q1', 'f01', 5.36e9, CalState.COARSE) ###Output _____no_output_____ ###Markdown To get the full `QpuParameter` object we can omit `.value`. We can see that the cal state and modification date were updated. ###Code db1.get('q1', 'f01') #db1.get('q1', 'f01').cal_state ###Output _____no_output_____ ###Markdown Note that we can't modify the value by assigning to value directly - this will raise an exception. Using resolved namesThe names we chose for the elements, namely `'q1'`, `'res1'` and `'c1_2'` have a special significance. If we follow thisconvention of naming qubit elements with the format 'q'+number, resonators with the format 'res'+numberand couplers with the format 'c'+number1+'_'+number2, as shown above, this allows us to get and set values in a moreconvenient way: ###Code print(db1.q(1).f01.value) print(db1.res(1).f_r.value) print(db1.coupler(1, 2).f_r.value) print(db1.coupler(2, 1).f_r.value) ###Output 5360000000.0 7100000000.0 400000000.0 400000000.0 ###Markdown while this method basically syntactic sugar, it allows us to conveniently address elements by indices, which is useful whenworking with multiple qubit systems, and especially with couplers. We can also set values using this resolved addressing method: ###Code db1.update_q(1, 'f01', 5.4e9) db1.q(1).f01 ###Output _____no_output_____ ###Markdown Note: This default mapping between integer indices and strings can be modified by subclassing the`Resolver` class found under `entropylab_qpudb._resolver.py`. Committing (saving to persistent storage) and viewing historyEverything we've done so far did not modify the persistent storage. In order to do this, we need to *commit* the changes we made.This allows us to control at which stages we want to make aggregated changes to the database.Let's see how this is done. We need to call `commit`, and specify an optional commit message: ###Code db1.update_q(1, 'f01', 6.e9) db1.commit('a test commit') ###Output commiting qpu database db1 with commit <timestamp: 05/30/2021 06:26:20, message: a test commit> at index 1 ###Markdown Now the actual file was changed. To see this, we need to close the db. We can then delete db1,and when re-opening the DB we'll see f01 of q1 has the modified value. ###Code db1.close() del db1 db1 = QpuDatabaseConnection('db1') db1.q(1).f01 ###Output closing qpu database db1 closing qpu database db1 opening qpu database db1 from commit <timestamp: 05/27/2021 06:44:34, message: a test commit> at index 1 ###Markdown Note that the commit was saved with an index. This index can be later used to revert to a [previous state](reverting-to-a-previous-state).To view a history of all the commits, we call `get_history`.Note that the timestamps of the commits are in UTC time. ###Code db1.get_history() ###Output _____no_output_____ ###Markdown Adding attributes and elementsIn many cases you realize while calibrating your system that you want to add attributes that did not exist in the initialdictionary, or even new elements. This is easy using the `add_element` and `add_attribute` methods.Let's see an example for `add_attribute`: ###Code db1.add_attribute('q1', 'anharmonicity') print(db1.q(1).anharmonicity) db1.update_q(1, 'anharmonicity', -300e6, new_cal_state=CalState.COARSE) print(db1.q(1).anharmonicity) ###Output QpuParameter(None) QpuParameter(value=-300000000.0, last updated: 05/30/2021 09:26:25, calibration state: COARSE) ###Markdown Reverting to a previous stateMany times when we work on bringing up a QPU, we reach a point where everything is calibrated properly and our measurementsand calibrations give good results. We want to be able to make additional changes, but to possibly revert to the good stateif things go wrong. We can do this using `restore_from_history`. We simply need to provide it with the historyindex to which we want to return: ###Code db1.restore_from_history(0) print(db1.q(1).f01) assert db1.q(1).f01.value == initial_dict['q1']['f01'] ###Output opening qpu database db1 from commit <timestamp: 05/30/2021 06:24:19, message: initial commit> at index 0 QpuParameter(value=5650000000.0, last updated: 05/30/2021 09:24:19, calibration state: UNCAL) ###Markdown Calling this method will replace the current working DB with the DB that was stored in the commit with the indexsupplied to `restore_from_history`. The new values will not be committed. It is possible to modify the values andcommit them as usual. Next stepsWhile the QPU DB is a standalone tool, it is designed with QUA calibration node framework in mind.In the notebook called `2_qubit_graph_calibration.ipynb` we explore how the QUA calibration nodes framework can be usedto generate calibration graphs. Remove DB filesTo remove the DB files created in your workspace for the purpose of this demonstration, first close the db connection: ###Code db1.close() ###Output closing qpu database db1 ###Markdown then run this cell: ###Code from glob import glob import os for fl in glob("db1*"): os.remove(fl) ###Output _____no_output_____
Damarad_Viktor/thermodynamics_practice.ipynb
###Markdown Термодинамические параметры. Газовые законы* [Микро- и макропараметры состояния газа](Микро--и-макропараметры-состояния-газа)* [Основное уравнение МКТ](Основное-уравнение-МКТ)* [Температура. Абсолютная температура](Температура.-Абсолютная-температура)* [Модель идеального газа](Модель-идеального-газа)* [Уравнение Менделеева-Клапейрона](Уравнение-Менделеева-–-Клапейрона-(уравнение-состояния-идеального-газа))* [Связь температуры со средней кинетической энергией молекул вещества](Связь-температуры-со-средней-кинетической-энергией-молекул-вещества)* [Определение первого закона термодинамики](Определение-первого-закона-термодинамики)* [Первый закон термодинамики в процессах](Первый-закон-термодинамики-в-процессах)* [Применение](Применение)* [Функции распределения](Функции-распределения)* [Распределение Максвелла](Распределение-Максвелла)* [Распределение Больцмана](Распределение-Больцмана)* [Распределение Максвелла-Больцмана](Распределение-Максвелла-Больцмана)**Термодинамика** — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях. Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика. Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно. Микро- и макропараметры состояния газаСистема, состоящая из большого числа молекул, называется макросистемой. Макросистема, отделенная от внешних тел стенками с постоянными свойствами, после длительного промежутка времени приходит в равновесное состояние. Это состояние можно описать рядом параметров, называемых *параметрами состояния*. Различают *микропараметры* и *макропараметры* состояния.К микропараметрам состояния можно отнести следующие физические величины: массу $m_0$ молекул, их скорость, среднюю квадратичную скорость молекул, среднюю кинетическую энергию молекул, среднее время между соударениями молекул, длину их свободного пробега и др. Это такие параметры, которые можно отнести и к одной молекуле макросистемы.Макропараметры состояния характеризуют только равновесную систему в целом. К ним относятся объем $V$, давление $P$, температура $T$, плотность $\rho$, концентрация $n$, внутренняя энергия $U$, электрические, магнитные и оптические параметры. Значения этих параметров могут быть установлены с помощью измерительных приборов.Молекулярно-кинетическая теория идеального газа устанавливает соответствие между микропараметрами и макропараметрами газа.**Таблица. Mикропараметры состояния**|Параметр | Обозначение | Единицы в СИ ||:----------------------------------------------------|:----------------:|:--------------:||Масса молекулы | $m_0$ | $кг$ ||Скорость молекулы | $v$ | $м/c$ ||Cредняя квадратичная скорость движения молекул |$\overline v_{кв}$| $м/c$ ||Средняя кинетическая энергия поступательного движения|$\overline E_{к}$ | $Дж$ |**Таблица. Макропараметры состояния**|Параметр |Обозначение| Единицы в СИ |Способ измерения (косвенный способ)||:-----------|:-------------:|:---------------:|:-------------------------------:||Масса газа |$M$ |$кг$|Весы||Объем сосуда| $V$ |$м^3$|Мерный цилиндр с водой\\измерение размеров и расчет по формулам геометрии||Давление |$P$ |$Па$|Манометр||Температура| $T$ |$К$|Термометр||Плотность | $\rho$|$кг/м^3$|Измерение массы, объема и расчет||Концентрация| $n$ |$1/м^3 = м^{-3}$ |Измерение плотности и расчет с учетом молярной массы||Cостав (молярная масса и соотношение количеств)|$М_1$, $М_2$, $\frac{n_1}{n_2}$ |$\frac{кг}{моль}$, $безразмерная$|Приготовление газа смешением заданных масс или объемов| Основное уравнение молекулярно-кинетической теории идеального газаЭто уравнение связывает макропараметры системы – давление $P$ и концентрацию молекул $n=\frac{N}{V}$ с ее микропараметрами – массой молекул, их средним квадратом скорости или средней кинетической энергией:$$p=\frac{1}{3}nm_0\overline{v^2} = \frac{2}{3}n\overline{E_k}$$Вывод этого уравнения основан на представлениях о том, что молекулы идеального газа подчиняются законам классической механики, а давление – это отношение усредненной по времени силы, с которой молекулы бьют по стенке, к площади стенки.Пропорциональность силы, с которой молекулы воздействуют на стенку, их концентрации, массе и скорости каждой молекулы качественно понятны. Квадратичный рост давления со скоростью связан с тем, что от скорости зависит не только сила отдельного удара, но и частота соударений молекул со стенкой.Учитывая связь между концентрацией молекул в газе и его плотностью $(\rho = nm_0)$, можно получить еще одну форму основного уравнения МКТ идеального газа:$$p=\frac{1}{3}\rho\overline{v^2}$$ Температура. Абсолютная температура**Рис. 2. Жидкостные термометры**При контакте двух макросистем, каждая из которых находится в равновесии, например, при открывании крана между двумя теплоизолированными сосудами с газом или контакте их через теплопроводящую стенку, равновесие нарушается. Через большой промежуток времени в частях объединенной системы устанавливаются новые значения параметров системы. Если говорить только о макропараметрах, то выравниваются температуры тел.Понятие «температура» было введено в физику в качестве физической величины, характеризующей степень нагретости тела не по субъективным ощущениям экспериментатора, а на основании объективных показаний физических приборов.*Термометр* – прибор для измерения температуры, действие которого основано на взаимно-однозначной связи наблюдаемого параметра системы (давления, объема, электропроводности, яркости свечения и т. д.) с температурой (рис. 2).Считается, что если этот вторичный параметр (например, объем ртути в ртутном термометре) при длительном контакте с одним телом и при длительном контакте с другим телом одинаков, то это значит, что равны температуры этих двух тел. В экспериментах по установлению распределения молекул по скоростям было показано, что это распределение зависит только от степени нагретости тела, измеряемой термометром. В современной статистической физике характер распределения частиц системы по энергиям характеризует ее температуру.Для калибровки термометра необходимы тела, температура которых считается неизменной и воспроизводимой. Обычно это температура равновесной системы лед – вода при нормальном давлении $(0 °С)$ и температура кипения воды при нормальном давлении $(100 °С)$.В СИ температура выражается в кельвинах $(К)$. По этой шкале $0 °С = 273,15 К$ и $100 °С = 373,15 К$. В обиходе используются и другие температурные шкалы. Модель идеального газаИдеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания. На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную. В идеальном газе взаимодействием молекул вообще пренебрегают.Теория создана немецким физиком Р. Клаузисом в 1857 году для модели реального газа, которая называется идеальный газ. Основные признаки модели:* расстояния между молекулами велики по сравнению с их размерами;* взаимодействие между молекулами на расстоянии отсутствует;* при столкновениях молекул действуют большие силы отталкивания;* время столкновения много меньше времени свободного движения между столкновениями;* движения подчиняются законам Ньютона;* молекулы - упругие шары;* силы взаимодействия возникают при столкновении.Границы применимости модели идеального газа зависят от рассматриваемой задачи. Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер. Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.Пусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (см. рис. 1). Рассмотрим, например, удары этой молекулы о правую стенку сосуда, перпендикулярную оси $x$. Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось $y$ не изменяется, а проекция скорости на ось $x$ меняет знак. Таким образом, проекция импульса изменяется при ударе на величину, равную $-2mv_x$, знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси $x$ равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости $v_x$. От удара до следующего удара об эту же стенку молекула пролетает вдоль оси $x$ расстояние, равное удвоенной длине сосуда $2L$. Поэтому число ударов молекулы о выбранную стенку равно $\frac{v_x}{2L}$. Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени. Если при каждом ударе о стенку частица изменяет импульс на величину $2mv_x$, а число ударов за единицу времени равно $\frac{v_x}{2L}$, то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна $f=\frac{2mv_x^2}{L}$, а среднее давление молекулы на стенку равно $p=\frac{f}{S}=\frac{mv_x^2}{LS}=\frac{mv_x^2}{V}$, где $V$ – объем сосуда.Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц $N$, т.е. $p=\frac{Nmv_x^2}{V}$. Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: $p=\frac{Nm}{V}$.Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: $=++$. Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к. нет преимущественного движения молекул в каком-либо направлении. Поэтому $=3$, и тогда формула для давления газа примет вид: $p=\frac{Nmv^2}{3V}$. Если ввести кинетическую энергию молекулы $E_k=\frac{mv^2}{2}$, то получим $p=\frac{2N}{3V}$, где $$ - средняя кинетическая энергия молекулы. Уравнение Менделеева – Клапейрона (уравнение состояния идеального газа)В результате экспериментальных исследований многих ученых было установлено, что макропараметры реальных газов не могут изменяться независимо. Они связаны уравнением состояния:$$PV = \nu RT$$Где $R = 8,31 Дж/(K·моль)$ – универсальная газовая постоянная, $\nu = \frac{m}{M}$, где $m$ – масса газа и $M$ – молярная масса газа. Уравнение Менделеева – Клапейрона называют *уравнением состояния*, поскольку оно связывает функциональной зависимостью *параметры состояния*. Его записывают и в других видах:$$pV = \frac{m}{M}RT$$$$p=\frac{\rho}{M}RT$$Пользуясь уравнением состояния, можно выразить один параметр через другой и построить график первого из них, как функции второго.Графики зависимости одного параметра от другого, построенные при фиксированных температуре, объеме и давлении, называют соответственно *изотермой*, *изохорой* и *изобарой*. Например, зависимость давления $P$ от температуры $T$ при постоянном объеме $V$ и постоянной массе $m$ газа – это функция $p(T)=\frac{mR}{MV}T = kT$, где $K$ – постоянный числовой множитель. Графиком такой функции в координатах $P$, $Т$ будет прямая, идущая от начала координат, как и графиком функции $y(x)=kx$ в координатах $y, x$ (рис. 3).Зависимость давления $P$ от объема $V$ при постоянной массе $m$ газа и температуре $T$ выражается так:$$p(V)=\frac{mRT}{M}\cdot{\frac{1}{V}}=\frac{k_1}{V},$$Где $k_1$ – постоянный числовой множитель. График функции $y(x)=\frac{k_1}{x}$ в координатах $y$, $x$ представляет собой гиперболу, так же как и график функции $p(V)=\frac{k_1}{V}$ в координатах $P$, $V$.Рассмотрим частные газовые законы. При постоянной температуре и массе следует, что $pV=const$, т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется *законом Бойля-Мариотта*, а процесс, при котором температура постоянна, называется изотермическим.Для изобарного процесса, происходящего при постоянном давлении, следует, что $V=(\frac{m}{pM}R)T$, т.е. объем пропорционален абсолютной температуре. Этот закон называют *законом Гей-Люссака*.Для изохорного процесса, происходящего при постоянном объеме, следует, что $p=(\frac{m}{VM}R)T$, т.е. давление пропорционально абсолютной температуре. Этот закон называют *законом Шарля*.Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений. Связь температуры со средней кинетической энергией молекул веществаКоличественное соотношение между температурой $T$ (макропараметром) системы и средней кинетической энергией описание: $\overline{E_k}$ (микропараметром) молекулы идеального газа может быть выведено из сопоставления основного уравнения МКТ идеального газа описание: $p=\frac{2}{3}n\overline{E_k}$ и уравнения состояния $p=\frac{\nu RT}{V} = nkT$, где описание: $k=\frac{R}{N_A}=1.38*10^{-23}\ Дж/К$ – постоянная Больцмана. Сопоставляя два выражения для давления, получим$$\overline{E_k}=\frac{3}{2}kT$$Средняя кинетическая энергия молекул идеального газа пропорциональна температуре газа. Если молекулы газа образованы двумя, тремя и т. д. атомами, то доказывается, что это выражение связывает только энергию поступательного движения молекулы в целом и температуру.С учетом этого соотношения на уровне микро — и макропараметров макросистемы можно утверждать, что в *cостоянии теплового равновесия* двух систем выравниваются температуры и в случае идеального газа средние кинетические энергии молекул Определение первого закона термодинамики Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией. **Внутренняя энергия тела** — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела. А изменять температуру тела можно двумя способами:1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы); 2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы. Нам, также известно, что работа, совершаемая газом, обозначается $А_r$, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается $Q$. Внутреннюю энергию газа или любого тела принято обозначать буквой $U$, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком $Δ$, то есть $ΔU$.Сформулируем **первый закон термодинамики** для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид: $$ΔU = Q — A_r$$Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде: $$ΔU = Q + A_{внеш}.$$Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты. Первый закон термодинамики в процессах Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них. 1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть $U = const$, а значит $ΔU = 0$, тогда первый закон термодинамики будет иметь вид: $Q = A_r$. 2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда $А_r = 0$ и первый закон термодинамики приобретает вид: $ΔU = Q$. 3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: $ΔU = Q — А_r$. 4. Адиабатический процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и $Q = 0$. Тогда первый закон термодинамики будет иметь вид: $ΔU = -А_r$. Применение Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень. Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия. Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии. Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта. Во-первых, внутренняя энергия идеального одноатомного газа равна: $U=\frac{3}{2}\nu RT$, а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах $p-V$. Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят. Функции распределенияВ качестве основной функции, применяемой при статистическом методе описания, выступает функция распределения, которая определяет статистические характеристики рассматриваемой системы. Знание её изменения с течением времени позволяет описывать поведение системы со временем. Функция распределения дает возможность рассчитывать все наблюдаемые термодинамические параметры системы.Для введения понятия функции распределения сначала рассмотрим какую-либо макроскопическую систему, состояние которой описывается некоторым параметром $x$, принимающим $K$ дискретных значений: $x_1,x_2,x_3,...,x_K$. Пусть при проведении над системой $N$ измерений были получены следующие результаты: значение $x_1$ наблюдалось при $N_1$ измерениях, значение $x_2$ наблюдалось соответственно при $N_2$ измерениях и т.д. При этом, очевидно, что общее число измерений $N$ равняется сумме всех измерений $N_i$ , в которых были получены значения $x_i$:$$N=\sum_{i=1}^K N_i$$Увеличение числа проведенных экспериментов до бесконечности приводит к стремлению отношения $\frac{N_i}{N}$ к пределу$$\tag{10.1} P(x_i)=\lim_{N\to\infty}\frac{N_i}{N}$$Величина $P(x_i)$ называется вероятностью измерения значения $x_i$.Вероятность $P(x_i)$ представляет собой величину, которая может принимать значения в интервале $0\le P(x_i)\le1$. Значение $P(x_i)=0$ соответствует случаю, когда ни при одном измерении не наблюдается значение $x_i$ и, следовательно, система не может иметь состояние, характеризующееся параметром $x_i$. Соответственно вероятность $P(x_i)=1$ возможна только, если при всех измерениях наблюдалось только значение $x_i$. В этом случае, система находится в детерминированном состоянии с параметром $x_i$.Сумма вероятностей $P(x_i)$ нахождения системы во всех состояниях с параметрами $x_i$ равна единице:$$\tag{10.2} \sum_{i=1}^{K}P(x_i)=\frac{\sum_{i=1}^{K}N_i}{N} = \frac{N}{N}=1$$Условие $(10.2)$ указывает на достаточно очевидный факт, что если набор возможных дискретных значений $x_i$, $i=1,2,...K$, является полным (то есть включает все возможные значения параметра $x$ в соответствии с условиями физической задачи), то при любых измерениях параметра $x$ должны наблюдаться значения этого параметра только из указанного набора $x_i$.Рассмотренный нами случай, когда параметр, характеризующий систему, принимает набор дискретных значений не является типичным при описании макроскопических термодинамических систем. Действительно, такие параметры как температура, давление, внутренняя энергия и т.д., обычно принимают непрерывный ряд значений. Аналогично и переменные, характеризующие движение микрочастиц (координата и скорость), изменяются для систем, описываемых классической механикой, непрерывным образом.Поэтому рассмотрим статистическое описание, применимое для случая, когда измеренный параметр $x_i$ может иметь любые значения в некотором интервале $a\le x\le b$. Причем, указанный интервал может быть и не ограниченным какими либо конечными значениями $a$ и $b$. В частности параметр $x$ в принципе может изменяться от $-\infty$ до $+\infty$, как, например, координаты молекулы газа для случая неограниченной среды.Пусть в результате измерений было установлено, что величина $x$ с вероятностью $dP(x)$ попадает в интервал значений от $x$ до $x+dx$. Тогда можно ввести функцию $f(x)$, характеризующую плотность распределения вероятностей:$$\tag{10.3} f(x)=\frac{dP(x)}{dx}$$Эта функция в физике обычно называется функцией распределения.Функция распределения $f(x)$ должна удовлетворять условию: $f(x) \ge 0$, так как вероятность попадания измеренного значения в интервал от $x$ до $x+dx$ не может быть отрицательной величиной. Вероятность того, что измеренное значение попадет в интервал $x_1\le x\le x_2$ равна$$\tag{10.4} P(x_1\le x\le x_2)=\int_{x_1}^{x_2}f(x)dx$$Соответственно, вероятность попадания измеренного значения в весь интервал возможных значений $a\le x\le b$ равна единице:$$\tag{10.5} \int_{a}^{b}f(x)dx=1$$Выражение $(10.5)$ называется условием нормировки функции распределения.Функция распределения $f(x)$ позволяет определить среднее значение любой функции $\phi(x)$:$$\tag{10.6} =\int_{a}^{b}\phi(x)f(x)dx$$В частности по формуле $(10.6)$ может быть найдено среднее значение параметра $x$:$$\tag{10.7} =\int_{a}^{b}xf(x)dx$$Если состояние системы характеризуется двумя параметрами $x$ и $y$, то вероятность её нахождения в состоянии со значениями этих параметров в интервалах $x_1\le x\le x_2$ и $y_1\le x\le y_2$ соответственно равна$$\tag{10.8} P(x_1\le x\le x_2, y_1\le x\le y_2)=\int_{x_1}^{x_2}\int_{y_1}^{y_2}f(x,y)dxdy$$где $f(x, y)$ - двумерная функция распределения. Примером такой функции может служить совместное распределение для координат и скоростей молекул газа.Соответственно для бесконечно малых интервалов $dx$ и $dy$ вероятность $dP(x, y)$ можно представить в виде$$\tag{10.9}dP(x, y) = f(x, y)dxdy$$В случае статистической независимости значений параметров $x$ и $y$ друг от друга двумерная функция распределений $f(x, y)$ равна произведению функций распределения $f(x)$ и $f(y)$:$$\tag{10.10} f(x, y)=f(x)f(y)$$Это свойство функций распределения будет нами использовано при рассмотрении распределения Максвелла-Больцмана. Распределение Максвелла Функция распределения МаксвеллаПусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 г. с помощью методов теории вероятностей.**Функция распределения Максвелла характеризует распределение молекул по скоростям** и определяется отношением кинетической энергии молекулы $\frac{mv^2}{2}$ к средней энергии её теплового движения $kT$:$$f(v)=\frac{dn}{ndv}=\frac{4}{\sqrt\pi}(\frac{m}{2kT})^{\frac{3}{2}}\exp(-\frac{mv^2}{2kT})v^2$$Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в интервале скоростей от $v$ до $v + Δv$, включающем данную скорость.Обозначим множитель перед экспонентой через $А$, тогда из уравнения получим окончательное выражение **функции распределения Максвелла**:$$f(v)=Aexp(-\frac{mv^2}{2kT})v^2$$График этой функции показан на рисунке 3.2.1: Средние скорости распределения МаксвеллаИз графика функции распределения Максвелла, приведенного на рисунке 3.2.1, видно, что **наиболее вероятная скорость** - *скорость, на которую приходится максимум зависимости*.* *Наиболее вероятная скорость молекулы*$v_{вер}=\sqrt{\frac{2kT}{m}}$, для одного моля газа $v_{вер}=\sqrt{\frac{2RT}{M}}$* *Среднеарифметическая скорость молекул*$=\sqrt{\frac{8kT}{\pi m}}$, для одного моля газа $=\sqrt{\frac{8RT}{\pi M}}$* *Среднеквадратичная скорость молекулы*$_{кв}=\sqrt{\frac{3kT}{m}}$, для одного моля газа $_{кв}=\sqrt{\frac{3RT}{M}}$ Зависимость функции распределения Максвелла от массы молекул и температуры газаНа рисунке 3.2.2 показано, что при увеличении массы молекул $(m_1 > m_2 > m_3)$ и при уменьшении температуры $(T_1 < T_2 < T_3)$ максимум функции распределения Максвелла смещается вправо, в сторону увеличения скоростей.*Площадь под кривой* - *величина постоянная*, равная единице, поэтому важно знать, как будет изменяться положение максимума кривой:$f(v)\approx\sqrt{\frac{m}{T}}$, кроме того, $v\approx\sqrt{\frac{T}{m}}$.Выводы:• Вид распределения молекул газа по скоростям **зависит от рода газа и от температуры**. Давление $P$ и объём газа $V$ на распределение молекул не влияют.• В показателе степени $f(v)$ стоит отношение кинетической энергии, соответствующей данной скорости, к средней энергии теплового движения молекул; значит, **распределение Максвелла характеризует распределение молекул по значениям кинетической энергии**.• **Максвелловский закон - статистический**, и выполняется тем лучше, чем больше число молекул. Формула Максвелла для относительных скоростейОтносительную скорость обозначим через $u=\frac{v}{v_{вер}}$. Тогда получим **закон распределения Максвелла** в приведенном виде:$$f(u)=\frac{dn}{ndu}=\frac{4}{\sqrt\pi}\exp(-u^2)u^2$$Это уравнение универсальное. В таком виде *функция распределения не зависит ни от рода газа, ни от температуры*. Барометрическая формулаАтмосферное давление на какой-либо высоте $h$ обусловлено весом слоёв газа, лежащих выше. Пусть $P$ - давление на высоте $h$, а $P + dP$ - на высоте $h + dh$ (рис. 3.2.3).Разность давления $P - (P + dP)$ равна весу газа, заключённого в объёме цилиндра с площадью основания, равной единице, и высотой $dh$.Так как $P = ρgh$, где $ρ = PM/RT$ - плотность газа на высоте $h$, медленно убывающая с высотой, то можно записать: $P - (P + dP) = ρgdh$ .Отсюда можно получить **барометрическую формулу**, показывающую зависимость атмосферного давления от высоты:$$P=P_0\exp(-\frac{Mgh}{RT})$$Из барометрической формулы следует, что давление убывает с высотой тем быстрее, чем тяжелее газ (чем больше $M$)и чем ниже температура. Например, на больших высотах концентрация легких газов Не и Н2 гораздо больше, чем у поверхности Земли (рис. 3.2.4). Распределение БольцманаИсходя из основного уравнения молекулярно-кинетической теории $P = nkT$, заменим $P$ и $P_0$ в барометрической формуле на $n$ и $n_0$ и получим *распределение молекул во внешнем потенциальном поле* - **распределение Больцмана**:$n=n_0\exp(-\frac{Mgh}{RT})$, или $n=n_0\exp(-\frac{mgh}{kT}$, где $n_0$ и $n$ - число молекул в единичном объёме на высоте $h = 0$ и $h$.С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При $Т = 0$ тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как $mgh$ - это потенциальная энергия $Е_п$, то на разных высотах $E_п = mgh$ - различна. Следовательно, уравнение характеризует распределение частиц по значениям потенциальной энергии: $$n =n_0\exp(-{E_п}{kT})$$-**это закон распределения частиц по потенциальным энергиям - распределение Больцмана**. Распределение Максвелла-БольцманаИтак, закон Максвелла даёт распределение частиц по значениям кинетической энергии, а закон Больцмана - распределение частиц по значениям потенциальной энергии. Учитывая, что полная энергия $E = Е_п + Е_к$, оба распределения можно объединить в единый **закон Максвелла-Больцмана**:$$dn=n_0A\exp(-\frac{E}{kT})$$ Задание: Реализовать модель поведения идеального газа в замкнутом пространстве, при заданных температуре, массе, количестве частиц. ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib import animation from scipy.stats import maxwell # %matplotlib tk # %matplotlib notebook # from IPython.display import HTML # plt.rcParams["animation.html"] = "jshtml" %matplotlib widget mw = maxwell() k = 1.38e-23 R = 8.31 N = 10 T = 5000 m = 6.645e-27 dt = 10e-5 v = np.sqrt(mw.rvs(size=N) * 2 * k * T / m) alpha = np.random.uniform(0, 2 * np.pi, N) vx = v * np.cos(alpha) vy = v * np.sin(alpha) x = np.random.uniform(0, 10, N) y = np.random.uniform(0, 10, N) def ani_func(i): global x, y, vx, vy, dt eps = 0.01 plt.clf() x += vx * dt y += vy * dt vx[x + eps >= 10] = -vx[x + eps >= 10] vx[x - eps <= 0] = -vx[x - eps <= 0] vy[y + eps >= 10] = -vy[y + eps >= 10] vy[y - eps <= 0] = -vy[y - eps <= 0] plt.scatter(x, y) plt.xlim(0, 10) plt.ylim(0, 10) plt.show() fig = plt.figure(figsize=(5, 5)) skip = 1 ani = animation.FuncAnimation(fig, ani_func, frames=1000, repeat=False, interval=1) ani.event_source.stop() ###Output _____no_output_____ ###Markdown Задание: Реализовать модель смеси двух идеальных газов в замкнутом пространстве, при заданных температуре, массах, количествах частиц. ###Code k = 1.38e-23 R = 8.31 N1 = 10 N2 = 10 T1 = 1000 T2 = 300 m1 = 6.645e-27 m2 = 14.325e-27 dt = 10e-5 v1 = np.sqrt(mw.rvs(size=N1) * 2 * k * T1 / m1) alpha = np.random.uniform(0, 2 * np.pi, N1) vx1 = v1 * np.cos(alpha) vy1 = v1 * np.sin(alpha) v2 = np.sqrt(mw.rvs(size=N2) * 2 * k * T2 / m2) alpha = np.random.uniform(0, 2 * np.pi, N2) vx2 = v2 * np.cos(alpha) vy2 = v2 * np.sin(alpha) x1 = np.random.uniform(0, 5, N1) y1 = np.random.uniform(0, 10, N1) x2 = np.random.uniform(5, 10, N2) y2 = np.random.uniform(0, 10, N2) def ani_func_2(i): global x1, y1, x2, y2, vx1, vy1, vx2, vy2, dt eps = 0.01 plt.clf() x1 += vx1 * dt y1 += vy1 * dt x2 += vx2 * dt y2 += vy2 * dt vx1[x1 + eps >= 10] = -vx1[x1 + eps >= 10] vx1[x1 - eps <= 0] = -vx1[x1 - eps <= 0] vy1[y1 + eps >= 10] = -vy1[y1 + eps >= 10] vy1[y1 - eps <= 0] = -vy1[y1 - eps <= 0] vx2[x2 + eps >= 10] = -vx2[x2 + eps >= 10] vx2[x2 - eps <= 0] = -vx2[x2 - eps <= 0] vy2[y2 + eps >= 10] = -vy2[y2 + eps >= 10] vy2[y2 - eps <= 0] = -vy2[y2 - eps <= 0] plt.scatter(x1, y1) plt.scatter(x2, y2) plt.xlim(0, 10) plt.ylim(0, 10) plt.show() fig = plt.figure(figsize=(5, 5)) skip = 1 ani = animation.FuncAnimation(fig, ani_func_2, frames=1000, repeat=False, interval=1) ani.event_source.stop() # ani.save("figure_2.gif") ###Output _____no_output_____
DevelopmentNotebooks/win_pyvisa-Copy2.ipynb
###Markdown Windows 10, py-visaTesting on more platforms. ###Code import mhs5200 signal_gen = mhs5200.MHS5200("COM4") import pyvisa rm = pyvisa.ResourceManager() rm.list_resources() scope = rm.open_resource('USB0::0x1AB1::0x0588::DS1EU152500705::INSTR') for channel in [1, 2]: for setting in ["BWLIMIT", "COUPLING", "DISPLAY", "INVERT", "OFFSET", "PROBE", "SCALE", "FILTER", "MEMORYDEPTH", "VERNIER"]: try: result = scope.query(f":CHANNEL{channel}:{setting}?") print(f"{channel}:{setting}:{result}") except: print(f"FAILED: {channel}:{setting}") import time def test_frequency_amplitude(frequency, amplitude, signal_gen, scope): for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.phase=0 period = 1/float(frequency) timescale="{:.20f}".format(float(period/5)) # Configure scope scope.write(f":MEASURE:TOTAL ON") scope.write(f":TIMebase:SCALE {timescale}") for scope_channel in [1, 2]: scope.write(f":CHANNEL{scope_channel}:probe 1") scope.write(f":CHANNEL{scope_channel}:scale {amplitude/5}") scope.write(f":CHANNEL{scope_channel}:offset 0") # Configure signal generator for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.offset = 0 chan.phase=0 for source in ["CHAN1", "CHAN2"]: scope.write(f":MEASURE:SOURCE {source}") time.sleep(1) for param in ["FREQUENCY", "VPP", "VMIN", "VMAX", "VAMPLITUDE"]: measured = scope.query_ascii_values(f":MEASURE:{param}?")[0] print(f"{source}:{param}:{measured}") test_frequency_amplitude(100, 10, signal_gen=signal_gen, scope=scope) import numpy as np np.log10(50e6) for frequency in np.logspace(np.log10(100), np.log10(1000000), 2): for amplitude in [20]: test_frequency_amplitude(frequency, amplitude, signal_gen=signal_gen, scope=scope) import pandas as pd df = pandas.DataFrame() import uuid def test_frequency_amplitude2(frequency, amplitude, signal_gen, scope): for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.phase=0 period = 1/float(frequency) timescale="{:.20f}".format(float(period/5)) # Configure scope scope.write(f":MEASURE:TOTAL ON") scope.write(f":TIMebase:SCALE {timescale}") for scope_channel in [1, 2]: scope.write(f":CHANNEL{scope_channel}:probe 1") scope.write(f":CHANNEL{scope_channel}:scale {amplitude/5}") scope.write(f":CHANNEL{scope_channel}:offset 0") # Configure signal generator for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.offset = 0 chan.phase=0 df = dict() df["uuid"] = str(uuid.uuid4()) df["frequency"] = frequency df["amplitude"] = amplitude for source in ["CHAN1", "CHAN2"]: scope.write(f":MEASURE:SOURCE {source}") time.sleep(1) for param in ["FREQUENCY", "VPP", "VMIN", "VMAX", "VAMPLITUDE"]: measured = scope.query_ascii_values(f":MEASURE:{param}?")[0] df[f"{source}_{param}"] = measured return pandas.DataFrame(df, index=[0]) df = df.append(test_frequency_amplitude2(100, 10, signal_gen, scope)) df = pd.DataFrame() for frequency in np.logspace(np.log10(100), np.log10(1000000), 10): for amplitude in [1, 5, 10, 20]: result_df = test_frequency_amplitude2(frequency, amplitude, signal_gen=signal_gen, scope=scope) df = df.append(result_df) df.hist("frequency", bins=10) def test_frequency_amplitude3(frequency, amplitude, signal_gen, scope): for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.phase=0 period = 1/float(frequency) timescale="{:.20f}".format(float(period/5)) # Configure scope scope.write(f":MEASURE:TOTAL ON") scope.write(f":TIMebase:SCALE {timescale}") for scope_channel in [1, 2]: scope.write(f":CHANNEL{scope_channel}:probe 1") scope.write(f":CHANNEL{scope_channel}:scale {amplitude/5}") scope.write(f":CHANNEL{scope_channel}:offset 0") # Configure signal generator for chan in signal_gen.channels: chan.frequency=frequency chan.amplitude=amplitude chan.offset = 0 chan.phase=0 df = dict() df["uuid"] = str(uuid.uuid4()) df["frequency"] = frequency df["amplitude"] = amplitude for source in ["CHAN1", "CHAN2"]: scope.write(f":MEASURE:SOURCE {source}") time.sleep(1) for param in ['VPP', 'VMAX', 'VMIN', 'VAMPlitude', 'VTOP', 'VBASe', 'VAVerage', 'VRMS', 'OVERshoot', 'PREShoot', 'FREQuency', 'RISetime', 'FALLtime', 'PERiod', 'PWIDth', 'NWIDth', 'PDUTycycle', 'NDUTycycle', 'PDELay', 'NDELay', 'TOTal', 'SOURce',]: try: measured = scope.query_ascii_values(f":MEASURE:{param}?")[0] except: measured = scope.query(f":MEASURE:{param}?")[0] df[f"{source}_{param}"] = measured return pandas.DataFrame(df, index=[0]) df = pd.DataFrame() for frequency in np.logspace(np.log10(100), np.log10(100000000), 20): for amplitude in [1, 5, 10, 20]: result_df = test_frequency_amplitude2(frequency, amplitude, signal_gen=signal_gen, scope=scope) df = df.append(result_df) import seaborn as sns sns.set( rc={ "figure.figsize": (11, 8.5), "figure.dpi": 300, "figure.facecolor": "w", "figure.edgecolor": "k", } ) palette = (sns.color_palette("Paired")) sns.palplot(palette) sns.set_palette(palette) df.groupby(["frequency", "amplitude"]).agg() data = scope.query_binary_values(":WAVEFORM:DATA? CHAN1") plt.plot(data) data = scope.query_binary_values(":WAVEFORM:DATA? CHAN2") plt.plot(data) scope.query(":ACQ:SAMP? CHANnel2") scope.query(":ACQ:MEMD?") scope.write(":ACQ:MEMD LONG") for depth in ["NORMAL", "LONG"]: scope.write(f":ACQ:MEMD {depth}") time.sleep(0.5) assert depth == scope.query(":ACQ:MEMD?") import matplotlib.pyplot as plt data = scope.query_binary_values(":WAVEFORM:DATA? CHAN1", "B") plt.plot(data) data = scope.query_binary_values(":WAVEFORM:DATA? CHAN2", "B") plt.plot(data) scope.q ?scope.query_binary_values scope.query(":WAVEFORM:POINTS:MODE?") scope.write(":WAVEFORM:DATA? CHANNEL1") header = scope.read_raw()[:10] header scope.write(":WAVEFORM:DATA? CHANNEL1") data = scope.read_raw()[10:] data[0] data[0:1] data[0:2] import numpy as np np.array(56).tobytes() np.array(56).tobytes("C") np.array(56).tobytes("F") np.array(56.0).tobytes("F") np.frombuffer(np.array(56).tobytes("F")) dt = np.dtype(float) dt = dt.newbyteorder(">") plt.plot(np.frombuffer(data)) np.frombuffer(b'\x01\x02', dtype=np.uint8) np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3) dt = np.dtype(float) dt = dt.newbyteorder("<") plt.plot(np.frombuffer(data)) ###Output _____no_output_____
docs/source/user_guide/utilities.ipynb
###Markdown Utilities Configuring LoggingEvalML uses [the standard python logging package](https://docs.python.org/3/library/logging.html). By default, EvalML will log `INFO`-level logs and higher (warnings, errors and critical) to stdout, and will log everything to `evalml_debug.log` in the current working directory.If you want to change the location of the logfile, before import, set the `EVALML_LOG_FILE` environment variable to specify a filename within an existing directory in which you have write permission. If you want to disable logging to the logfile, set `EVALML_LOG_FILE` to be empty. If the environment variable is set to an invalid location, EvalML will print a warning message to stdout and will not create a log file. System InformationEvalML provides a command-line interface (CLI) tool prints the version of EvalML and core dependencies installed, as well as some basic system information. To use this tool, just run `evalml info` in your shell or terminal. This could be useful for debugging purposes or tracking down any version-related issues. ###Code !evalml info ###Output _____no_output_____ ###Markdown Utilities Configuring LoggingEvalML uses [the standard Python logging package](https://docs.python.org/3/library/logging.html). Default logging behavior prints WARNING level logs and above (ERROR and CRITICAL) to stdout. To configure different behavior, please refer to the Python logging documentation.To see up-to-date feedback as `AutoMLSearch` runs, use the argument `verbose=True` when instantiating the object. This will temporarily set up a logging object to print INFO level logs and above to stdout, as well as display a graph of the best score over pipeline iterations. System InformationEvalML provides a command-line interface (CLI) tool prints the version of EvalML and core dependencies installed, as well as some basic system information. To use this tool, just run `evalml info` in your shell or terminal. This could be useful for debugging purposes or tracking down any version-related issues. ###Code !evalml info ###Output _____no_output_____ ###Markdown Utilities Configuring Loggingrayml uses [the standard Python logging package](https://docs.python.org/3/library/logging.html). Default logging behavior prints WARNING level logs and above (ERROR and CRITICAL) to stdout. To configure different behavior, please refer to the Python logging documentation.To see up-to-date feedback as `AutoMLSearch` runs, use the argument `verbose=True` when instantiating the object. This will temporarily set up a logging object to print INFO level logs and above to stdout, as well as display a graph of the best score over pipeline iterations. System Informationrayml provides a command-line interface (CLI) tool prints the version of rayml and core dependencies installed, as well as some basic system information. To use this tool, just run `rayml info` in your shell or terminal. This could be useful for debugging purposes or tracking down any version-related issues. ###Code !rayml info ###Output _____no_output_____
courses/machine_learning/deepdive/supplemental_gradient_boosting/labs/b_boosted_trees_estimator.ipynb
###Markdown Introduction In this notebook, we will - Learn how to use BoostedTrees Classifier for training and evaluating- Explore how training can be speeded up for small datasets- Will develop intuition for how some of the hyperparameters affect the performance of boosted trees. ###Code # We will use some np and pandas for dealing with input data. import numpy as np import pandas as pd # And of course, we need tensorflow. import tensorflow as tf from distutils.version import StrictVersion tf.__version__ ###Output _____no_output_____ ###Markdown Load datasetWe will be using the titanic dataset, where the goal is to predict passenger survival given characteristiscs such as gender, age, class, etc. ###Code tf.logging.set_verbosity(tf.logging.INFO) tf.set_random_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') fcol = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return fcol.indicator_column( fcol.categorical_column_with_vocabulary_list(feature_name, vocab)) fc = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() fc.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: fc.append(fcol.numeric_column(feature_name, dtype=tf.float32)) # Prepare the input fn. Use the entire dataset for a batch since this is such a small dataset. def make_input_fn(X, y, n_epochs=None, do_batching=True): def input_fn(): BATCH_SIZE = len(y) # Use entire dataset. dataset = tf.data.Dataset.from_tensor_slices((X.to_dict(orient='list'), y)) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) if do_batching: dataset = dataset.batch(BATCH_SIZE) return dataset return input_fn ###Output _____no_output_____ ###Markdown Training and Evaluating Classifiers ###Code TRAIN_SIZE = len(dftrain) params = { 'n_trees':10, 'center_bias':False, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } ###Output _____no_output_____ ###Markdown Exercise: Train a Boosted Trees model using tf.estimator. What are the best results you can get? Train and evaluate the model. We will look at accuracy first. ###Code # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = # TODO est.train(train_input_fn) # Eval. pd.Series(est.evaluate(eval_input_fn)) ###Output _____no_output_____ ###Markdown Exercise 2: Can you get better performance out of the classifier? How do the results compare to using a DNN? Accuracy and AUC? Results Let's understand how our model is performing. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown **???** Why are the probabilities right skewed? Let's plot an ROC curve to understand model performance for various predicition probabilities. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Introduction In this notebook, we will - Learn how to use BoostedTrees Classifier for training and evaluating- Explore how training can be speeded up for small datasets- Will develop intuition for how some of the hyperparameters affect the performance of boosted trees. ###Code # We will use some np and pandas for dealing with input data. import numpy as np import pandas as pd # And of course, we need tensorflow import tensorflow as tf from distutils.version import StrictVersion tf.__version__ ###Output _____no_output_____ ###Markdown Load datasetWe will be using the titanic dataset, where the goal is to predict passenger survival given characteristiscs such as gender, age, class, etc. ###Code tf.logging.set_verbosity(tf.logging.INFO) tf.set_random_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') dftrain.head() dftrain['age'].hist() dftrain['embark_town'].value_counts() fcol = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return fcol.indicator_column( fcol.categorical_column_with_vocabulary_list(feature_name, vocab)) fc = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() fc.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: fc.append(fcol.numeric_column(feature_name, dtype=tf.float32)) # Prepare the input fn. Use the entire dataset for a batch since this is such a small dataset. def make_input_fn(X, y, n_epochs=None, do_batching=True): def input_fn(): BATCH_SIZE = len(y) # Use entire dataset. dataset = tf.data.Dataset.from_tensor_slices((X.to_dict(orient='list'), y)) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) if do_batching: dataset = dataset.batch(BATCH_SIZE) return dataset return input_fn ###Output _____no_output_____ ###Markdown Training and Evaluating Classifiers Exercise: Train a Boosted Trees model using tf.estimator. What are the best results you can get? Train and evaluate the model. We will look at accuracy first. ###Code TRAIN_SIZE = len(dftrain) params = { 'n_trees':10, 'center_bias':False, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. pd.Series(est.evaluate(eval_input_fn)) ###Output WARNING: Logging before flag parsing goes to stderr. I0722 14:31:35.565665 139996009612736 estimator.py:1790] Using default config. W0722 14:31:35.569427 139996009612736 estimator.py:1811] Using temporary folder as model directory: /tmp/tmpp04B2v I0722 14:31:35.573219 139996009612736 estimator.py:209] Using config: {'_save_checkpoints_secs': 600, '_num_ps_replicas': 0, '_keep_checkpoint_max': 5, '_task_type': 'worker', '_global_id_in_cluster': 0, '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f5300ba1f90>, '_model_dir': '/tmp/tmpp04B2v', '_protocol': None, '_save_checkpoints_steps': None, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_tf_random_seed': None, '_save_summary_steps': 100, '_device_fn': None, '_experimental_distribute': None, '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 100, '_experimental_max_worker_delay_secs': None, '_evaluation_master': '', '_eval_distribute': None, '_train_distribute': None, '_master': ''} W0722 14:31:35.575416 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow_estimator/python/estimator/canned/boosted_trees.py:297: _num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.735229 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/training/training_util.py:236: initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. I0722 14:31:35.799928 139996009612736 estimator.py:1145] Calling model_fn. W0722 14:31:35.815185 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column.py:2115: _transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.819067 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column.py:2115: _transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.820725 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column_v2.py:4236: _get_sparse_tensors (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.822936 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column.py:2115: _transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.827809 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column_v2.py:2655: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where W0722 14:31:35.839543 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/feature_column/feature_column_v2.py:4207: _variable_shape (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. W0722 14:31:35.951092 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow_estimator/python/estimator/canned/boosted_trees.py:157: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. W0722 14:31:35.994098 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow_estimator/python/estimator/canned/head.py:437: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.cast` instead. I0722 14:31:36.278825 139996009612736 estimator.py:1147] Done calling model_fn. I0722 14:31:36.280870 139996009612736 basic_session_run_hooks.py:541] Create CheckpointSaverHook. W0722 14:31:36.372642 139996009612736 meta_graph.py:449] Issue encountered when serializing resources. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. '_Resource' object has no attribute 'name' I0722 14:31:36.515558 139996009612736 monitored_session.py:240] Graph was finalized. I0722 14:31:36.617985 139996009612736 session_manager.py:500] Running local_init_op. I0722 14:31:36.649574 139996009612736 session_manager.py:502] Done running local_init_op. W0722 14:31:37.024797 139996009612736 meta_graph.py:449] Issue encountered when serializing resources. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. '_Resource' object has no attribute 'name' I0722 14:31:37.106653 139996009612736 basic_session_run_hooks.py:606] Saving checkpoints for 0 into /tmp/tmpp04B2v/model.ckpt. W0722 14:31:37.207247 139996009612736 meta_graph.py:449] Issue encountered when serializing resources. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. '_Resource' object has no attribute 'name' I0722 14:31:38.080131 139996009612736 basic_session_run_hooks.py:262] loss = 0.6931468, step = 0 W0722 14:31:38.771338 139996009612736 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 0 vs previous value: 0. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. I0722 14:31:39.974495 139996009612736 basic_session_run_hooks.py:606] Saving checkpoints for 60 into /tmp/tmpp04B2v/model.ckpt. W0722 14:31:40.059488 139996009612736 meta_graph.py:449] Issue encountered when serializing resources. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. '_Resource' object has no attribute 'name' I0722 14:31:40.125475 139996009612736 estimator.py:368] Loss for final step: 0.30194622. I0722 14:31:40.183000 139996009612736 estimator.py:1145] Calling model_fn. W0722 14:31:40.707596 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/metrics_impl.py:2027: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. W0722 14:31:41.083235 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. W0722 14:31:41.105353 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. I0722 14:31:41.127335 139996009612736 estimator.py:1147] Done calling model_fn. I0722 14:31:41.148010 139996009612736 evaluation.py:255] Starting evaluation at 2019-07-22T14:31:41Z I0722 14:31:41.260328 139996009612736 monitored_session.py:240] Graph was finalized. W0722 14:31:41.262229 139996009612736 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py:1276: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. I0722 14:31:41.264652 139996009612736 saver.py:1280] Restoring parameters from /tmp/tmpp04B2v/model.ckpt-60 I0722 14:31:41.362113 139996009612736 session_manager.py:500] Running local_init_op. I0722 14:31:41.446366 139996009612736 session_manager.py:502] Done running local_init_op. I0722 14:31:42.565407 139996009612736 evaluation.py:275] Finished evaluation at 2019-07-22-14:31:42 I0722 14:31:42.567086 139996009612736 estimator.py:2039] Saving dict for global step 60: accuracy = 0.8068182, accuracy_baseline = 0.625, auc = 0.8663299, auc_precision_recall = 0.85031575, average_loss = 0.41991314, global_step = 60, label/mean = 0.375, loss = 0.41991314, precision = 0.75, prediction/mean = 0.3852217, recall = 0.72727275 W0722 14:31:42.734955 139996009612736 meta_graph.py:449] Issue encountered when serializing resources. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. '_Resource' object has no attribute 'name' I0722 14:31:42.781467 139996009612736 estimator.py:2099] Saving 'checkpoint_path' summary for global step 60: /tmp/tmpp04B2v/model.ckpt-60 ###Markdown Base model test data:accuracy 0.806818accuracy_baseline 0.625000auc 0.866330auc_precision_recall 0.850316average_loss 0.419913global_step 60.000000label/mean 0.375000loss 0.419913precision 0.750000prediction/mean 0.385222recall 0.727273 Base model train data: accuracy 0.886762accuracy_baseline 0.612440auc 0.946545auc_precision_recall 0.934759average_loss 0.300738global_step 60.000000label/mean 0.387560loss 0.300738precision 0.887387prediction/mean 0.387528recall 0.810700dtype: float64 ###Code pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) ###Output I0722 14:31:42.856827 139996009612736 estimator.py:1145] Calling model_fn. W0722 14:31:43.761646 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. W0722 14:31:43.783691 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. I0722 14:31:43.805263 139996009612736 estimator.py:1147] Done calling model_fn. I0722 14:31:43.825486 139996009612736 evaluation.py:255] Starting evaluation at 2019-07-22T14:31:43Z I0722 14:31:43.935919 139996009612736 monitored_session.py:240] Graph was finalized. I0722 14:31:43.938720 139996009612736 saver.py:1280] Restoring parameters from /tmp/tmpp04B2v/model.ckpt-60 I0722 14:31:44.034354 139996009612736 session_manager.py:500] Running local_init_op. I0722 14:31:44.123128 139996009612736 session_manager.py:502] Done running local_init_op. I0722 14:31:45.216234 139996009612736 evaluation.py:275] Finished evaluation at 2019-07-22-14:31:45 I0722 14:31:45.218225 139996009612736 estimator.py:2039] Saving dict for global step 60: accuracy = 0.8867624, accuracy_baseline = 0.6124402, auc = 0.94654495, auc_precision_recall = 0.9347591, average_loss = 0.30073795, global_step = 60, label/mean = 0.3875598, loss = 0.30073795, precision = 0.8873874, prediction/mean = 0.38752845, recall = 0.8106996 I0722 14:31:45.225095 139996009612736 estimator.py:2099] Saving 'checkpoint_path' summary for global step 60: /tmp/tmpp04B2v/model.ckpt-60 ###Markdown Exercise 2: Can you get better performance out of the classifier? How do the results compare to using a DNN? Accuracy and AUC? Results Let's understand how our model is performing. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) y_preds = pd.Series([pred['class_ids'][0] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output I0722 14:31:45.312201 139996009612736 estimator.py:1145] Calling model_fn. I0722 14:31:45.696373 139996009612736 estimator.py:1147] Done calling model_fn. I0722 14:31:45.792782 139996009612736 monitored_session.py:240] Graph was finalized. I0722 14:31:45.796041 139996009612736 saver.py:1280] Restoring parameters from /tmp/tmpp04B2v/model.ckpt-60 I0722 14:31:45.849188 139996009612736 session_manager.py:500] Running local_init_op. I0722 14:31:45.868169 139996009612736 session_manager.py:502] Done running local_init_op. ###Markdown **???** Why are the probabilities right skewed? ###Code y_train.value_counts() ###Output _____no_output_____ ###Markdown Let's plot an ROC curve to understand model performance for various predicition probabilities. ###Code from sklearn.metrics import confusion_matrix, roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown **???** What does true positive rate and false positive rate refer to for this dataset? ###Code confusion_matrix(y_eval, y_preds) ###Output _____no_output_____ ###Markdown Copyright 2019 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License ###Code TRAIN_SIZE = len(dftrain) params = { 'n_trees':20, 'center_bias':False, 'max_depth' : 2, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. pd.Series(est.evaluate(eval_input_fn)) TRAIN_SIZE = len(dftrain) params = { 'n_trees':100, 'center_bias':False, 'max_depth' : 2, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. eval_results = pd.Series(est.evaluate(eval_input_fn)) train_results = pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) pd.DataFrame({'Train': train_results, 'Eval': eval_results}) pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) y_preds = pd.Series([pred['class_ids'][0] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); TRAIN_SIZE = len(dftrain) params = { 'n_trees':100, 'max_depth' : 4, 'l2_regularization':1./TRAIN_SIZE, # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer 'center_bias':False } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. eval_results = pd.Series(est.evaluate(eval_input_fn)) train_results = pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) pd.DataFrame({'Train': train_results, 'Eval': eval_results}) est.experimental_feature_importances(normalize=True) merged = pd.concat([dftrain, y_train], axis=1) merged.groupby('sex').survived.mean().plot(kind='barh') merged['fare'].corr(merged['survived']) merged['age'].corr(merged['survived']) df_survived = merged[merged['survived'] == 1] df_died = merged[merged['survived'] == 0] bins = [0,10,20,30,40,50,60,70,80] df_survived['age'].hist(alpha=0.5, color='green', bins=bins, normed=True) df_died['age'].hist(alpha=0.5, color='red', bins=bins, normed=True) plt.show() df_survived['fare'].hist(alpha=0.5, color='green', normed=True) df_died['fare'].hist(alpha=0.5, color='red', normed=True) plt.show() pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) ###Output I0722 14:41:29.885025 139996009612736 estimator.py:1145] Calling model_fn. W0722 14:41:30.820516 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. W0722 14:41:30.841654 139996009612736 metrics_impl.py:804] Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. I0722 14:41:30.864413 139996009612736 estimator.py:1147] Done calling model_fn. I0722 14:41:30.885152 139996009612736 evaluation.py:255] Starting evaluation at 2019-07-22T14:41:30Z I0722 14:41:30.994900 139996009612736 monitored_session.py:240] Graph was finalized. I0722 14:41:30.998346 139996009612736 saver.py:1280] Restoring parameters from /tmp/tmpi7fyO5/model.ckpt-400 I0722 14:41:31.093931 139996009612736 session_manager.py:500] Running local_init_op. I0722 14:41:31.177222 139996009612736 session_manager.py:502] Done running local_init_op. I0722 14:41:32.410644 139996009612736 evaluation.py:275] Finished evaluation at 2019-07-22-14:41:32 I0722 14:41:32.412698 139996009612736 estimator.py:2039] Saving dict for global step 400: accuracy = 0.9298246, accuracy_baseline = 0.6124402, auc = 0.9778217, auc_precision_recall = 0.9711784, average_loss = 0.21227255, global_step = 400, label/mean = 0.3875598, loss = 0.21227255, precision = 0.93449783, prediction/mean = 0.3870696, recall = 0.88065845 I0722 14:41:32.421211 139996009612736 estimator.py:2099] Saving 'checkpoint_path' summary for global step 400: /tmp/tmpi7fyO5/model.ckpt-400 ###Markdown Compare performance to a DNN ###Code TRAIN_SIZE = len(dftrain) # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.DNNClassifier(feature_columns = fc, hidden_units = [10, 10]) est.train(train_input_fn, max_steps=1000) # Eval. pd.Series(est.evaluate(eval_input_fn)) TRAIN_SIZE = len(dftrain) params = { 'n_trees':20, 'center_bias':False, 'max_depth' : 6, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. eval_results = pd.Series(est.evaluate(eval_input_fn)) train_results = pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) pd.DataFrame({'Train': train_results, 'Eval': eval_results}) TRAIN_SIZE = len(dftrain) params = { 'n_trees':50, 'center_bias':False, 'max_depth' : 6, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = tf.estimator.BoostedTreesClassifier(fc, n_batches_per_layer, **params) est.train(train_input_fn) # Eval. eval_results = pd.Series(est.evaluate(eval_input_fn)) train_results = pd.Series(est.evaluate(make_input_fn(dftrain, y_train, n_epochs=1, do_batching=DO_BATCHING))) pd.DataFrame({'Train': train_results, 'Eval': eval_results}) import pandas_profiling pandas_profiling.ProfileReport(dftrain) pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) y_preds = pd.Series([pred['class_ids'][0] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Introduction In this notebook, we will - Learn how to use BoostedTrees Classifier for training and evaluating- Explore how training can be speeded up for small datasets- Will develop intuition for how some of the hyperparameters affect the performance of boosted trees. ###Code # We will use some np and pandas for dealing with input data. import numpy as np import pandas as pd # And of course, we need tensorflow. import tensorflow as tf from distutils.version import StrictVersion tf.__version__ ###Output _____no_output_____ ###Markdown Load datasetWe will be using the titanic dataset, where the goal is to predict passenger survival given characteristiscs such as gender, age, class, etc. ###Code tf.logging.set_verbosity(tf.logging.INFO) tf.set_random_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') fcol = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return fcol.indicator_column( fcol.categorical_column_with_vocabulary_list(feature_name, vocab)) fc = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() fc.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: fc.append(fcol.numeric_column(feature_name, dtype=tf.float32)) # Prepare the input fn. Use the entire dataset for a batch since this is such a small dataset. def make_input_fn(X, y, n_epochs=None, do_batching=True): def input_fn(): BATCH_SIZE = len(y) # Use entire dataset. dataset = tf.data.Dataset.from_tensor_slices((X.to_dict(orient='list'), y)) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) if do_batching: dataset = dataset.batch(BATCH_SIZE) return dataset return input_fn ###Output _____no_output_____ ###Markdown Training and Evaluating Classifiers ###Code TRAIN_SIZE = len(dftrain) params = { 'n_trees':10, 'center_bias':False, 'l2_regularization':1./TRAIN_SIZE # regularization is per instance, so if you are familiar with XGBoost, you need to divide these values by the num of examples per layer } ###Output _____no_output_____ ###Markdown Exercise: Train a Boosted Trees model using tf.estimator. What are the best results you can get? Train and evaluate the model. We will look at accuracy first. ###Code # Training and evaluation input functions. n_batches_per_layer = 1 # Use one batch, consisting of the entire dataset to build each layer in the tree. DO_BATCHING = True train_input_fn = make_input_fn(dftrain, y_train, n_epochs=None, do_batching=DO_BATCHING) eval_input_fn = make_input_fn(dfeval, y_eval, n_epochs=1, do_batching=DO_BATCHING) est = # TODO est.train(train_input_fn) # Eval. pd.Series(est.evaluate(eval_input_fn)) ###Output _____no_output_____ ###Markdown Exercise 2: Can you get better performance out of the classifier? How do the results compare to using a DNN? Accuracy and AUC? Results Let's understand how our model is performing. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown **???** Why are the probabilities right skewed? Let's plot an ROC curve to understand model performance for various predicition probabilities. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____
notebooks/federated_learning/federated_learning_basic_concepts_random_seed.ipynb
###Markdown Federated learning: random seedThis notebook is a copy of the notebook [Federated learning basic concepts](./federated_learning_basic_concepts.ipynb). The difference is that, here, we set a seed using [Reproducibility](https://github.com/sherpaai/Sherpa.ai-Federated-Learning-Framework/blob/master/shfl/private/reproducibility.py) Singleton Class, in order to ensure the reproducibility of the experiment. If you execute this experiment many times, you should always obtain the same results. However, apart from that, the structure is identical so the text has been removed for clearness. Please refer to the original notebook for the detailed description of the experiment. ###Code from shfl.private.reproducibility import Reproducibility # Server Reproducibility(1234) # In case of client # Reproducibility.get_instance().set_seed(ID) ###Output _____no_output_____ ###Markdown The data ###Code import matplotlib.pyplot as plt import shfl database = shfl.data_base.Emnist() train_data, train_labels, test_data, test_labels = database.load_data() print(len(train_data)) print(len(test_data)) print(type(train_data[0])) train_data[0].shape plt.imshow(train_data[0]) iid_distribution = shfl.data_distribution.IidDataDistribution(database) federated_data, test_data, test_labels = iid_distribution.get_federated_data(num_nodes=20, percent=10) print(type(federated_data)) print(federated_data.num_nodes()) federated_data[0].private_data ###Output _____no_output_____ ###Markdown The model ###Code import tensorflow as tf def model_builder(): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu', strides=1, input_shape=(28, 28, 1))) model.add(tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')) model.add(tf.keras.layers.Dropout(0.4)) model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu', strides=1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dropout(0.1)) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(10, activation='softmax')) criterion = tf.keras.losses.CategoricalCrossentropy() optimizer = tf.keras.optimizers.RMSprop() metrics = [tf.keras.metrics.categorical_accuracy] return shfl.model.DeepLearningModel(model=model, criterion=criterion, optimizer=optimizer, metrics=metrics) aggregator = shfl.federated_aggregator.FedAvgAggregator() federated_government = shfl.federated_government.FederatedGovernment(model_builder, federated_data, aggregator) import numpy as np class Reshape(shfl.private.FederatedTransformation): def apply(self, labeled_data): labeled_data.data = np.reshape(labeled_data.data, (labeled_data.data.shape[0], labeled_data.data.shape[1], labeled_data.data.shape[2],1)) shfl.private.federated_operation.apply_federated_transformation(federated_data, Reshape()) import numpy as np class Normalize(shfl.private.FederatedTransformation): def __init__(self, mean, std): self.__mean = mean self.__std = std def apply(self, labeled_data): labeled_data.data = (labeled_data.data - self.__mean)/self.__std mean = np.mean(train_data.data) std = np.std(train_data.data) shfl.private.federated_operation.apply_federated_transformation(federated_data, Normalize(mean, std)) ###Output _____no_output_____ ###Markdown Run the federated learning experiment ###Code test_data = np.reshape(test_data, (test_data.shape[0], test_data.shape[1], test_data.shape[2],1)) federated_government.run_rounds(3, test_data, test_labels) ###Output _____no_output_____ ###Markdown Federated learning: Simple experiment with seedIn this notebook we provide a simple example of how to make an experiment of a federated environment with the help of this framework. We are going to use a popular dataset to start the experimentation in a federated environment. The framework provides some functions to load the [Emnist](https://www.nist.gov/itl/products-and-services/emnist-dataset) Digits dataset.This notebook is a copy of [Basic Concepts](./federated_learning_basic_concepts.ipynb) notebook. The difference is that here we set a seed using [Reproducibility](https://github.com/sherpaai/Sherpa.ai-Federated-Learning-Framework/blob/master/shfl/private/reproducibility.py) Singleton Class in order to ensure de reproducibility of the experiment. If you execute this experiment many times, you should obtain the same results. ###Code from shfl.private.reproducibility import Reproducibility # Server Reproducibility(1234) # In case of client # Reproducibility.get_instance().set_seed(ID) import matplotlib.pyplot as plt import shfl database = shfl.data_base.Emnist() train_data, train_labels, test_data, test_labels = database.load_data() ###Output _____no_output_____ ###Markdown Let's inspect some properties of the loaded data. ###Code print(len(train_data)) print(len(test_data)) print(type(train_data[0])) train_data[0].shape ###Output _____no_output_____ ###Markdown So, as we have seen, our dataset is composed of a set of matrices of 28 by 28. Before starting with the federated scenario, we can take a look to a sample in the training data. ###Code plt.imshow(train_data[0]) ###Output _____no_output_____ ###Markdown We are going to simulate a federated learning scenario with a set of client nodes containing private data, and a central server that will be responsible to coordinate the different clients. But, first of all, we have to simulate the data contained in every client. In order to do that, we are going to use the previously loaded dataset. The assumption in this example will be the data is distributed as a set of independent and identically distributed random variables, having every node approximately the same amount of data. There are a set of different possibilities in order to distribute the data. The distribution of the data is one of the factors that could impact more a federated algorithm. Therefore, the framework contains the implementation of some of the most common distributions that allow you to experiment different situations easily. In [Federated Sampling](./federated_learning_sampling.ipynb) you can dig into the options that the framework provides at the moment. ###Code iid_distribution = shfl.data_distribution.IidDataDistribution(database) federated_data, test_data, test_labels = iid_distribution.get_federated_data(num_nodes=20, percent=10) ###Output _____no_output_____ ###Markdown That's it! We have created federated data from the Emnist dataset using 20 nodes and 10 percent of the available data. This data is distributed to a set of data nodes in the form of private data. Let's learn a little more about the federated data. ###Code print(type(federated_data)) print(federated_data.num_nodes()) federated_data[0].private_data ###Output _____no_output_____ ###Markdown As we can see, private data in a node is not accesible directly but the framework provides mechanisms to use this data in a machine learning model. A federated learning algorithm is defined by a machine learning model locally deployed in each node that learns from the respective node’s private data and an aggregating mechanism to aggregate the different model parameters uploaded by the client nodes to a central node. In this example we will use a deep learning model using keras to build it. The framework provides classes to allow using Tensorflow (see [Basic Concepts Tensorflow](./federated_learning_basic_concepts_tensorflow.ipynb)) and Keras models into a federated learning scenario, your job is only to create a function acting as model builder. Moreover, the framework provides classes to allow using pretrained Tensorflow and Keras models (see [Basic Concepts Pretrained Models](./federated_learning_basic_concepts_pretrained_model.ipynb)). In this example build a Keras learning model. ###Code import tensorflow as tf def model_builder(): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu', strides=1, input_shape=(28, 28, 1))) model.add(tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')) model.add(tf.keras.layers.Dropout(0.4)) model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu', strides=1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dropout(0.1)) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(10, activation='softmax')) model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]) return shfl.model.DeepLearningModel(model) ###Output _____no_output_____ ###Markdown Now, the only piece missing is the aggregation operator. Nevertheless, the framework provides some aggregation operators that we can use. In the following piece of code we define the federated aggregation mechanism. Moreover, we define de federated goverment based on the keras learning model, the federated data and the aggregation mechanism. ###Code aggregator = shfl.federated_aggregator.FedAvgAggregator() federated_government = shfl.federated_government.FederatedGovernment(model_builder, federated_data, aggregator) ###Output _____no_output_____ ###Markdown If you want to see all the aggregation operators you can check the following notebook [Federated Aggregation Operators](./federated_learning_basic_concepts_aggregation_operators.ipynb). Before running the algorithm, we want to apply a transformation to the data. The good practise to do that is to define a federated operation that will ensure that the transformation is applied to the federated data in all the client nodes. We want to reshape the data, so we define the following FederatedTransformation. ###Code import numpy as np class Reshape(shfl.private.FederatedTransformation): def apply(self, labeled_data): labeled_data.data = np.reshape(labeled_data.data, (labeled_data.data.shape[0], labeled_data.data.shape[1], labeled_data.data.shape[2],1)) shfl.private.federated_operation.apply_federated_transformation(federated_data, Reshape()) ###Output _____no_output_____ ###Markdown In addition, we want to normalize the data. We define a federated transformation using mean and standard deviation (std) parameters. We use mean and std estimated from the training set in this example. Although the ideal parameters would be an aggregation of the mean and std of each client's training datasets, we use the mean and std of the global dataset as a simple approximation. ###Code import numpy as np class Normalize(shfl.private.FederatedTransformation): def __init__(self, mean, std): self.__mean = mean self.__std = std def apply(self, labeled_data): labeled_data.data = (labeled_data.data - self.__mean)/self.__std mean = np.mean(train_data.data) std = np.std(train_data.data) shfl.private.federated_operation.apply_federated_transformation(federated_data, Normalize(mean, std)) ###Output _____no_output_____ ###Markdown We are now ready to execute our federated learning algorithm. ###Code test_data = np.reshape(test_data, (test_data.shape[0], test_data.shape[1], test_data.shape[2],1)) federated_government.run_rounds(3, test_data, test_labels) ###Output _____no_output_____
notebooks/Digit Recognizer.ipynb
###Markdown Says One Neuron To Another Neural network architectures1. Set up a new git repository in your GitHub account2. Pick two datasets fromhttps://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research3. Choose a programming language (Python, C/C++, Java)4. Formulate ideas on how neural networks can be used to accomplish the task for the specific dataset5. Build a neural network to model the prediction process programmatically6. Document your process and results7. Commit your source code, documentation and other supporting files to the git repository in GitHub Dataset:`tf.keras.datasets.mnist.load_data(path="mnist.npz")`- This is a dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. - x_train, x_test: uint8 arrays of grayscale image data with shapes (num_samples, 28, 28).- y_train, y_test: uint8 arrays of digit labels (integers in range 0-9) with shapes (num_samples,).- License: Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset is made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license.- The data files train.csv and test.csv contain gray-scale images of hand-drawn digits, from zero through nine.- Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive. Step-1 Preparing Environment ###Code import numpy as np import matplotlib.pyplot as plt from keras.datasets import mnist ###Output _____no_output_____ ###Markdown Importing data ###Code (x_train,y_train),(x_test,y_test) = mnist.load_data() print(x_train.shape) print(x_test.shape) ###Output (60000, 28, 28) (10000, 28, 28) ###Markdown Normalizing data ###Code x_train = x_train.reshape(60000,784)/255 x_test = x_test.reshape(10000,784)/255 ###Output _____no_output_____ ###Markdown Step 2: Initializing Parameters Weights and Bias Structure of Neural Network- Input Layer has 784 neurons(28 x 28)- Hidden Layer has 15 neurons- Output Layer has 10 neurons(10 classes)- `bias0` and `bias1` are used for forward propagation- `re_bias0` and `re_bias1` are used for backward propagation- `weight0` and `weight1` are used for forward propagation- `re_weight0` and `re_weight1` are used for backward propagation ###Code bias0 = [0]*15 bias1 = [0]*10 re_bias0 = [0]*15 re_bias1 = [0]*10 weight0 = [[0 for i in range(784)]for i in range(15)] weight1 = [[0 for i in range(15)]for i in range(10)] re_weight0 = [[0 for i in range(784)]for i in range(15)] re_weight1 = [[0 for i in range(15)]for i in range(10)] for i in range(15): bias0[i] = np.random.rand()*0.1 for i in range(10): bias1[i] = np.random.rand()*0.1 for i in range(15): for j in range(784): weight0[i][j] = np.random.randn()*0.1 for i in range(10): for j in range(15): weight1[i][j] = np.random.randn()*0.1 ###Output _____no_output_____ ###Markdown Input and Output layers- `Input0` are the values that are given to hidden layer along with weight and bias- `Output0` are the output of hidden layer from our activation function sigmoid.- `Input1` are the values given to output layer- `Output1` is the prediction using softmax function. ###Code Input0 = [0]*15 Input1 = [0]*10 Output0 = [0]*15 Output1 = [0]*10 Input0_test = [0]*15 Input1_test = [0]*10 Output0_test = [0]*15 Output1_test = [0]*10 ###Output _____no_output_____ ###Markdown Step 3: Defining all Methods Sigmoid function![image.png](attachment:image.png) ###Code def sigmoid(x): return 1/(1+np.exp(-x)) ###Output _____no_output_____ ###Markdown Derivative of Sigmoid function- The derivative of the sigmoid function sigm at any x∈R is implemented as dsigm(x)dx:=sigm(x)(1−sigm(x))![image.png](attachment:image.png) ###Code def dsigm(x): return sigmoid(x)*(1-sigmoid(x)) ###Output _____no_output_____ ###Markdown Softmax function![image.png](attachment:image.png) ###Code def softmax(x_array): a = np.max(x_array) exp_x = np.exp(x_array-a) sum_exp_x = np.sum(exp_x) y_array = exp_x/sum_exp_x return y_array ###Output _____no_output_____ ###Markdown Delta Function, Sum of Squares Error and Back Propagation Function ###Code def delta(num,t_n,Op1,Ip1,we1): sum_1 = 0 for i in range(10): sum_1 += (Op1[i]-t_n[i])*we1[i][num]*dsigm(Ip1[i]) return sum_1 def sum_of_squares_error(y,t): return 0.5*np.sum((y-t)**2) def back_propagation(Out0,Out1,In0,In1,t_num,x_t,l_rate): global weight0 global weight1 global bias0 global bias1 for i in range(10): for j in range(15): re_weight1[i][j] = (Out1[i]-t_num[i])*dsigm(In1[i]) weight1[i][j] -= l_rate*re_weight1[i][j]*Out0[j] for i in range(15): for j in range(784): re_weight0[i][j] = delta(i,t_num,Out1,In1,weight1)*dsigm(In0[i]) weight0[i][j] -= l_rate*re_weight0[i][j]*x_t[j] for i in range(10): re_bias1[i] = (Out1[i]-t_num[i])*dsigm(In1[i]) bias1[i] -= l_rate*re_bias1[i] for i in range(15): re_bias0[i] = delta(i,t_num,Out1,In1,weight1)*dsigm(In0[i]) bias0[i] -= l_rate*re_bias0[i] ###Output _____no_output_____ ###Markdown Accuracy Function ###Code def accuracy(y_list,t_list,switch): max_y = np.argmax(y_list,axis=1) max_t = np.argmax(t_list,axis=1) if switch == "train": return np.sum(max_y == max_t)/100 elif switch == "test": return np.sum(max_y == max_t)/ 10000 ###Output _____no_output_____ ###Markdown Function to visualize ###Code def plot_figure(acc, loss, num, name): x = list(range(num)) y = acc z = loss plt.plot(x, y, label = "accuracy") plt.plot(x, z, label = "loss") plt.legend(loc = "lower right") plt.savefig("../reports/"+name+"_acc_loss.jpg") ###Output _____no_output_____ ###Markdown Step 4: Hyperparameters- After changing the values of these hypermaters, I found that these had a decent performance. ###Code learning_rate = 0.1 epochs = 12 input_words = 3 ###Output _____no_output_____ ###Markdown Step 5: Training the model ###Code all_train_accuracy = [] all_train_loss = [] for l in range(epochs): print("Epoch :"+str(l)) for k in range(input_words): train_prediction = [] train_answer = [] print("Iteration "+str(l*input_words+k)+": ", end="") for j in range(100): for i in range(15): Input0[i] = np.dot(x_train[k*100+j],weight0[i])+bias0[i] Output0[i] = sigmoid(Input0[i]) for i in range(10): Input1[i] = np.dot(Output0,weight1[i])+bias1[i] Output1 = softmax(Input1) train_num = [0]*10 train_num[y_train[k*100+j]] = train_num[y_train[k*100+j]]+1 train_prediction.append(Output1) train_answer.append(train_num) back_propagation(Output0,Output1,Input0,Input1,train_num,x_train[k*100+j],learning_rate) train_acc = accuracy(train_prediction,train_answer,"train") train_loss = sum_of_squares_error(Output1,train_num) print(" train_accuracy = "+str(train_acc), end="\t") print(" train_loss = "+str(train_loss)) all_train_accuracy.append(train_acc) all_train_loss.append(train_loss) number = epochs*input_words plot_figure(all_train_accuracy, all_train_loss,number,"train") ###Output Epoch :0 Iteration 0: train_accuracy = 0.08 train_loss = 0.44800527049156846 Iteration 1: train_accuracy = 0.17 train_loss = 0.41277282329473025 Iteration 2: train_accuracy = 0.19 train_loss = 0.4398694363653151 Epoch :1 Iteration 3: train_accuracy = 0.31 train_loss = 0.42196999227515947 Iteration 4: train_accuracy = 0.31 train_loss = 0.3939824183787834 Iteration 5: train_accuracy = 0.44 train_loss = 0.38579241278237525 Epoch :2 Iteration 6: train_accuracy = 0.55 train_loss = 0.3626184793003036 Iteration 7: train_accuracy = 0.56 train_loss = 0.3679904066667354 Iteration 8: train_accuracy = 0.65 train_loss = 0.3126803426901914 Epoch :3 Iteration 9: train_accuracy = 0.65 train_loss = 0.273897975609538 Iteration 10: train_accuracy = 0.67 train_loss = 0.324317224992224 Iteration 11: train_accuracy = 0.71 train_loss = 0.24326008880484337 Epoch :4 Iteration 12: train_accuracy = 0.73 train_loss = 0.20107053889390802 Iteration 13: train_accuracy = 0.74 train_loss = 0.2668678612495965 Iteration 14: train_accuracy = 0.77 train_loss = 0.18940932500858398 Epoch :5 Iteration 15: train_accuracy = 0.79 train_loss = 0.1504242369101271 Iteration 16: train_accuracy = 0.78 train_loss = 0.20602147570872104 Iteration 17: train_accuracy = 0.81 train_loss = 0.14843439529947305 Epoch :6 Iteration 18: train_accuracy = 0.83 train_loss = 0.11515809826063737 Iteration 19: train_accuracy = 0.85 train_loss = 0.152028481715012 Iteration 20: train_accuracy = 0.83 train_loss = 0.1174756246328594 Epoch :7 Iteration 21: train_accuracy = 0.87 train_loss = 0.08992709051429476 Iteration 22: train_accuracy = 0.87 train_loss = 0.1096669962000192 Iteration 23: train_accuracy = 0.84 train_loss = 0.09476447068570312 Epoch :8 Iteration 24: train_accuracy = 0.9 train_loss = 0.07148277106923524 Iteration 25: train_accuracy = 0.9 train_loss = 0.07882519171050721 Iteration 26: train_accuracy = 0.84 train_loss = 0.07820054773185757 Epoch :9 Iteration 27: train_accuracy = 0.92 train_loss = 0.05781075582816641 Iteration 28: train_accuracy = 0.94 train_loss = 0.05737041493036575 Iteration 29: train_accuracy = 0.85 train_loss = 0.06580322659625584 Epoch :10 Iteration 30: train_accuracy = 0.92 train_loss = 0.047511733441805815 Iteration 31: train_accuracy = 0.95 train_loss = 0.042773754260789415 Iteration 32: train_accuracy = 0.9 train_loss = 0.056185637752054665 Epoch :11 Iteration 33: train_accuracy = 0.93 train_loss = 0.03957564989504498 Iteration 34: train_accuracy = 0.97 train_loss = 0.032831649501395055 Iteration 35: train_accuracy = 0.93 train_loss = 0.04854949994935693 ###Markdown Step 6: Testing the model ###Code test_prediction = [] test_answer = [] for j in range(10000): for i in range(15): Input0_test[i] = np.dot(x_test[j],weight0[i])+bias0[i] Output0_test[i] = sigmoid(Input0_test[i]) for i in range(10): Input1_test[i] = np.dot(Output0_test,weight1[i])+bias1[i] Output1_test = softmax(Input1_test) test_num = [0]*10 test_num[y_test[j]] = test_num[y_test[j]]+1 test_prediction.append(Output1_test) test_answer.append(test_num) test_acc = accuracy(test_prediction,test_answer,"test") test_loss = sum_of_squares_error(Output1_test,test_num) print("test_accuracy = "+str(test_acc), end="\t") print("test_loss = "+str(test_loss)) ###Output test_accuracy = 0.7779 test_loss = 0.03969880784811204 ###Markdown Step 7: Visualizing the performance of our model ###Code X_train__ = x_test.reshape(x_test.shape[0], 28, 28) fig, axis = plt.subplots(4, 3, figsize=(15, 5)) for i, ax in enumerate(axis.flat): randomindex=int(np.random.rand()*1000) ax.imshow(X_train__[randomindex], cmap='binary') digit = y_test[randomindex] prediction=test_prediction[randomindex].argmax() ax.axis(False) ax.set(title = f"[Label: {digit}| Prediction: {prediction}]"); ###Output _____no_output_____
Jupyter/.ipynb_checkpoints/Python Data Structures - Lists-checkpoint.ipynb
###Markdown Lists ###Code example1 = [1,2,3,4,] example2 = ['a','b','c'] example3 = [1 , 'a', True] x = ['M', 'O','N','T','Y',' ','P','Y','T','H','O','N'] print(x) type(x) x[0] print(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11]) x = [12, 43, 4, 1, 6, 343, 10] x[0] x[1] x = [1.1, 3.5, 4.2, 9.4] x[0] x = ['himanshu', 'aggarwal', 'ironhack', 'data analysis'] x[0] x = [1 , 'himanshu', 2.0, True] x[0] x[1] x[3] x = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] x[:] x[:3] x[3:] x[3:5] x = [12, 43, 4, 1, 6, 343, 10] len(x) x[6] x[len(x)-1] x = [1, 1.1, 23, 5.3, 5, 8.3, 'hello', True] len(x) x = [1, 1.1, 23, 5.3, 5, 8.3, 'hello', True] x.index('hello') x.index(8.3) print(x) x.append('hello') print(x) x.append('there') print(x) print(x) x.pop() print(x) x.pop() print(x) ###Output [1, 1.1, 23, 5.3, 5, 8.3, 'hello', True] ###Markdown Exercises 1.1 ###Code lst = [1,2,34,5,3,12,9, 8, 67, 89, 98, 90, 39, 21, 45, 46, 23, 13] len(lst) lst[0] lst[17] lst.index(90) lst[0:8] ###Output _____no_output_____
examples/Non RGB Example.ipynb
###Markdown Example of DenseCRF with non-RGB data This notebook goes through an example of how to use DenseCRFs on non-RGB data.At the same time, it will explain basic concepts and walk through an example, so it could be useful even if you're dealing with RGB data, though do have a look at [PyDenseCRF's README](https://github.com/lucasb-eyer/pydensecrfpydensecrf) too! Basic setup It is highly recommended you install PyDenseCRF through pip, for example `pip install git+https://github.com/lucasb-eyer/pydensecrf.git`, but if for some reason you couldn't, you can always use it like so after compiling it: ###Code #import sys #sys.path.insert(0,'/path/to/pydensecrf/') import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax, create_pairwise_bilateral import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' ###Output _____no_output_____ ###Markdown Unary Potential The unary potential consists of per-pixel class-probabilities. This could come from any kind of model such as a random-forest or the softmax of a deep neural network. Create unary potential ###Code from scipy.stats import multivariate_normal H, W, NLABELS = 400, 512, 2 # This creates a gaussian blob... pos = np.stack(np.mgrid[0:H, 0:W], axis=2) rv = multivariate_normal([H//2, W//2], (H//4)*(W//4)) probs = rv.pdf(pos) # ...which we project into the range [0.4, 0.6] probs = (probs-probs.min()) / (probs.max()-probs.min()) probs = 0.5 + 0.2 * (probs-0.5) # The first dimension needs to be equal to the number of classes. # Let's have one "foreground" and one "background" class. # So replicate the gaussian blob but invert it to create the probability # of the "background" class to be the opposite of "foreground". probs = np.tile(probs[np.newaxis,:,:],(2,1,1)) probs[1,:,:] = 1 - probs[0,:,:] # Let's have a look: plt.figure(figsize=(15,5)) plt.subplot(1,2,1); plt.imshow(probs[0,:,:]); plt.title('Foreground probability'); plt.axis('off'); plt.colorbar(); plt.subplot(1,2,2); plt.imshow(probs[1,:,:]); plt.title('Background probability'); plt.axis('off'); plt.colorbar(); ###Output _____no_output_____ ###Markdown Run inference with unary potential We can already run a DenseCRF with only a unary potential.This doesn't account for neighborhoods at all, so it's not the greatest idea, but we can do it: ###Code # Inference without pair-wise terms U = unary_from_softmax(probs) # note: num classes is first dim d = dcrf.DenseCRF2D(W, H, NLABELS) d.setUnaryEnergy(U) # Run inference for 10 iterations Q_unary = d.inference(10) # The Q is now the approximate posterior, we can get a MAP estimate using argmax. map_soln_unary = np.argmax(Q_unary, axis=0) # Unfortunately, the DenseCRF flattens everything, so get it back into picture form. map_soln_unary = map_soln_unary.reshape((H,W)) # And let's have a look. plt.imshow(map_soln_unary); plt.axis('off'); plt.title('MAP Solution without pairwise terms'); ###Output _____no_output_____ ###Markdown Pairwise terms The whole point of DenseCRFs is to use some form of content to smooth out predictions. This is done via "pairwise" terms, which encode relationships between elements. Add (non-RGB) pairwise term For example, in image processing, a popular pairwise relationship is the "bilateral" one, which roughly says that pixels with either a similar color or a similar location are likely to belong to the same class. ###Code NCHAN=1 # Create simple image which will serve as bilateral. # Note that we put the channel dimension last here, # but we could also have it be the first dimension and # just change the `chdim` parameter to `0` further down. img = np.zeros((H,W,NCHAN), np.uint8) img[H//3:2*H//3,W//4:3*W//4,:] = 1 plt.imshow(img[:,:,0]); plt.title('Bilateral image'); plt.axis('off'); plt.colorbar(); # Create the pairwise bilateral term from the above image. # The two `s{dims,chan}` parameters are model hyper-parameters defining # the strength of the location and image content bilaterals, respectively. pairwise_energy = create_pairwise_bilateral(sdims=(10,10), schan=(0.01,), img=img, chdim=2) # pairwise_energy now contains as many dimensions as the DenseCRF has features, # which in this case is 3: (x,y,channel1) img_en = pairwise_energy.reshape((-1, H, W)) # Reshape just for plotting plt.figure(figsize=(15,5)) plt.subplot(1,3,1); plt.imshow(img_en[0]); plt.title('Pairwise bilateral [x]'); plt.axis('off'); plt.colorbar(); plt.subplot(1,3,2); plt.imshow(img_en[1]); plt.title('Pairwise bilateral [y]'); plt.axis('off'); plt.colorbar(); plt.subplot(1,3,3); plt.imshow(img_en[2]); plt.title('Pairwise bilateral [c]'); plt.axis('off'); plt.colorbar(); ###Output _____no_output_____ ###Markdown Run inference of complete DenseCRF Now we can create a dense CRF with both unary and pairwise potentials and run inference on it to get our final result. ###Code d = dcrf.DenseCRF2D(W, H, NLABELS) d.setUnaryEnergy(U) d.addPairwiseEnergy(pairwise_energy, compat=10) # `compat` is the "strength" of this potential. # This time, let's do inference in steps ourselves # so that we can look at intermediate solutions # as well as monitor KL-divergence, which indicates # how well we have converged. # PyDenseCRF also requires us to keep track of two # temporary buffers it needs for computations. Q, tmp1, tmp2 = d.startInference() for _ in range(5): d.stepInference(Q, tmp1, tmp2) kl1 = d.klDivergence(Q) / (H*W) map_soln1 = np.argmax(Q, axis=0).reshape((H,W)) for _ in range(20): d.stepInference(Q, tmp1, tmp2) kl2 = d.klDivergence(Q) / (H*W) map_soln2 = np.argmax(Q, axis=0).reshape((H,W)) for _ in range(50): d.stepInference(Q, tmp1, tmp2) kl3 = d.klDivergence(Q) / (H*W) map_soln3 = np.argmax(Q, axis=0).reshape((H,W)) img_en = pairwise_energy.reshape((-1, H, W)) # Reshape just for plotting plt.figure(figsize=(15,5)) plt.subplot(1,3,1); plt.imshow(map_soln1); plt.title('MAP Solution with DenseCRF\n(5 steps, KL={:.2f})'.format(kl1)); plt.axis('off'); plt.subplot(1,3,2); plt.imshow(map_soln2); plt.title('MAP Solution with DenseCRF\n(20 steps, KL={:.2f})'.format(kl2)); plt.axis('off'); plt.subplot(1,3,3); plt.imshow(map_soln3); plt.title('MAP Solution with DenseCRF\n(75 steps, KL={:.2f})'.format(kl3)); plt.axis('off'); ###Output _____no_output_____
module1-join-and-reshape-data/LS_DSPT3_121_Join_and_Reshape_Data.ipynb
###Markdown _Lambda School Data Science_ Join and Reshape datasetsObjectives- concatenate data with pandas- merge data with pandas- understand tidy data formatting- melt and pivot data with pandasLinks- [Pandas Cheat Sheet](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf)- [Tidy Data](https://en.wikipedia.org/wiki/Tidy_data) - Combine Data Sets: Standard Joins - Tidy Data - Reshaping Data- Python Data Science Handbook - [Chapter 3.6](https://jakevdp.github.io/PythonDataScienceHandbook/03.06-concat-and-append.html), Combining Datasets: Concat and Append - [Chapter 3.7](https://jakevdp.github.io/PythonDataScienceHandbook/03.07-merge-and-join.html), Combining Datasets: Merge and Join - [Chapter 3.8](https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html), Aggregation and Grouping - [Chapter 3.9](https://jakevdp.github.io/PythonDataScienceHandbook/03.09-pivot-tables.html), Pivot Tables Reference- Pandas Documentation: [Reshaping and Pivot Tables](https://pandas.pydata.org/pandas-docs/stable/reshaping.html)- Modern Pandas, Part 5: [Tidy Data](https://tomaugspurger.github.io/modern-5-tidy.html)- [Hadley Wickham's famous paper](http://vita.had.co.nz/papers/tidy-data.html) on Tidy Data Download dataWe’ll work with a dataset of [3 Million Instacart Orders, Open Sourced](https://tech.instacart.com/3-million-instacart-orders-open-sourced-d40d29ead6f2)! ###Code !wget https://s3.amazonaws.com/instacart-datasets/instacart_online_grocery_shopping_2017_05_01.tar.gz !tar --gunzip --extract --verbose --file=instacart_online_grocery_shopping_2017_05_01.tar.gz %cd /content/ !ls -lh *.csv %cd instacart_2017_05_01 !ls -lh *.csv %cd /content/ !rm -rf instacart_2017_05_01/ !rm instacart_online_grocery_shopping_2017_05_01.tar.gz ###Output _____no_output_____ ###Markdown Download with Python ###Code %cd /content/ import urllib.request url = 'https://s3.amazonaws.com/instacart-datasets/instacart_online_grocery_shopping_2017_05_01.tar.gz' file_name = 'instacart_online_grocery_shopping_2017_05_01.tar.gz' urllib.request.urlretrieve(url, file_name) import tarfile tar = tarfile.open(file_name, "r:gz") tar.extractall() tar.close() import os print(os.getcwd()) os.chdir('/content/instacart_2017_05_01/') print(os.getcwd()) import glob glob.glob("/content/instacart_2017_05_01/*.csv") ###Output _____no_output_____ ###Markdown Join Datasets Goal: Reproduce this exampleThe first two orders for user id 1: ###Code from IPython.display import display, Image url = 'https://cdn-images-1.medium.com/max/1600/1*vYGFQCafJtGBBX5mbl0xyw.png' example = Image(url=url, width=600) display(example) ###Output _____no_output_____ ###Markdown Load dataHere's a list of all six CSV filenames ###Code !ls -lh *.csv ###Output -rw-r--r-- 1 502 staff 2.6K May 2 2017 aisles.csv -rw-r--r-- 1 502 staff 270 May 2 2017 departments.csv -rw-r--r-- 1 502 staff 551M May 2 2017 order_products__prior.csv -rw-r--r-- 1 502 staff 24M May 2 2017 order_products__train.csv -rw-r--r-- 1 502 staff 104M May 2 2017 orders.csv -rw-r--r-- 1 502 staff 2.1M May 2 2017 products.csv ###Markdown For each CSV- Load it with pandas- Look at the dataframe's shape- Look at its head (first rows)- `display(example)`- Which columns does it have in common with the example we want to reproduce? ###Code import pandas as pd ###Output _____no_output_____ ###Markdown aisles ###Code aisles = pd.read_csv("aisles.csv") aisles.head() aisles.shape display(example) aisles.describe() aisles.describe(exclude='number') ###Output _____no_output_____ ###Markdown departments ###Code departments = pd.read_csv('departments.csv') departments.head() departments.shape display(example) ###Output _____no_output_____ ###Markdown order_products__prior ###Code order_products__prior = pd.read_csv('order_products__prior.csv') order_products__prior.head() order_products__prior.shape ###Output _____no_output_____ ###Markdown We need:- order_id- product_id- add_to_cart_order order_products__train ###Code order_products__train = pd.read_csv('order_products__train.csv') order_products__train.head() order_products__train.shape ###Output _____no_output_____ ###Markdown orders ###Code orders = pd.read_csv('orders.csv') orders.head() display(example) ###Output _____no_output_____ ###Markdown We need:- order_id- user_id- order_number- order_dow- order_hour_of_day products ###Code products = pd.read_csv('products.csv') products.head() products.shape ###Output _____no_output_____ ###Markdown Concatenate order_products__prior and order_products__train ###Code order_products = pd.concat([order_products__prior, order_products__train]) order_products.shape print(order_products__prior.shape, order_products__train.shape, order_products.shape) assert len(order_products__prior) + len(order_products__train) == len(order_products) display(example) ###Output _____no_output_____ ###Markdown Short `groupby` example ###Code order_products.groupby('order_id')['product_id'].count().mean() grouped_orders = order_products.groupby('order_id') grouped_orders.get_group(2539329) order_products[order_products['order_id'] == 2539329] grouped_orders['product_id'].count() grouped_orders['product_id'].count().hist() grouped_orders['product_id'].count().hist(bins=50) ###Output _____no_output_____ ###Markdown Get a subset of orders — the first two orders for user id 1 From `orders` dataframe:- user_id- order_id- order_number- order_dow- order_hour_of_day ###Code orders.head() orders.shape condition = (orders['user_id'] == 1) & (orders['order_number'] <= 2) columns = ['order_id','user_id', 'order_number', 'order_dow', 'order_hour_of_day'] subset = orders[condition][columns] subset.head() ###Output _____no_output_____ ###Markdown Merge dataframes Merge the subset from `orders` with columns from `order_products` ###Code columns = ['order_id','product_id','add_to_cart_order'] merged = pd.merge(subset, order_products[columns]) merged.head() display(example) ###Output _____no_output_____ ###Markdown Merge with columns from `products` ###Code final = pd.merge(merged, products[['product_id', 'product_name']]) final.head() columns = ['user_id', 'order_id', 'order_number','order_dow','order_hour_of_day','add_to_cart_order', 'product_id','product_name'] final = final[columns] final final = final.sort_values(by=['order_number', 'add_to_cart_order']) final columns = [col.replace('_', ' ') for col in final.columns] columns final.columns = columns final display(example) ###Output _____no_output_____ ###Markdown Reshape Datasets Why reshape data? Some libraries prefer data in different formatsFor example, the Seaborn data visualization library prefers data in "Tidy" format often (but not always).> "[Seaborn will be most powerful when your datasets have a particular organization.](https://seaborn.pydata.org/introduction.htmlorganizing-datasets) This format ia alternately called “long-form” or “tidy” data and is described in detail by Hadley Wickham. The rules can be simply stated:> - Each variable is a column- Each observation is a row> A helpful mindset for determining whether your data are tidy is to think backwards from the plot you want to draw. From this perspective, a “variable” is something that will be assigned a role in the plot." Data science is often about putting square pegs in round holesHere's an inspiring [video clip from _Apollo 13_](https://www.youtube.com/watch?v=ry55--J4_VQ): “Invent a way to put a square peg in a round hole.” It's a good metaphor for data wrangling! Hadley Wickham's ExamplesFrom his paper, [Tidy Data](http://vita.had.co.nz/papers/tidy-data.html) ###Code %matplotlib inline import pandas as pd import numpy as np import seaborn as sns table1 = pd.DataFrame( [[np.nan, 2], [16, 11], [3, 1]], index=['John Smith', 'Jane Doe', 'Mary Johnson'], columns=['treatmenta', 'treatmentb']) table2 = table1.T ###Output _____no_output_____ ###Markdown "Table 1 provides some data about an imaginary experiment in a format commonly seen in the wild. The table has two columns and three rows, and both rows and columns are labelled." ###Code table1 ###Output _____no_output_____ ###Markdown "There are many ways to structure the same underlying data. Table 2 shows the same data as Table 1, but the rows and columns have been transposed. The data is the same, but the layout is different." ###Code table2 ###Output _____no_output_____ ###Markdown "Table 3 reorganises Table 1 to make the values, variables and obserations more clear.Table 3 is the tidy version of Table 1. Each row represents an observation, the result of one treatment on one person, and each column is a variable."| name | trt | result ||--------------|-----|--------|| John Smith | a | - || Jane Doe | a | 16 || Mary Johnson | a | 3 || John Smith | b | 2 || Jane Doe | b | 11 || Mary Johnson | b | 1 | Table 1 --> TidyWe can use the pandas `melt` function to reshape Table 1 into Tidy format. ###Code table1 table1.index table1 = table1.reset_index() table1 tidy = table1.melt(id_vars='index') tidy tidy.columns = ['name', 'trt', 'result'] tidy ###Output _____no_output_____ ###Markdown Table 2 --> Tidy ###Code ##### LEAVE BLANK --an assignment exercise ##### ###Output _____no_output_____ ###Markdown Tidy --> Table 1The `pivot_table` function is the inverse of `melt`. ###Code table1 tidy.pivot_table(index='name', columns='trt', values='result') ###Output _____no_output_____ ###Markdown Tidy --> Table 2 ###Code ##### LEAVE BLANK --an assignment exercise ##### ###Output _____no_output_____ ###Markdown Seaborn exampleThe rules can be simply stated:- Each variable is a column- Each observation is a rowA helpful mindset for determining whether your data are tidy is to think backwards from the plot you want to draw. From this perspective, a “variable” is something that will be assigned a role in the plot." ###Code import seaborn as sns sns.catplot(x='trt', y='result', col='name', kind='bar', data=tidy, height=3); ###Output _____no_output_____ ###Markdown Now with Instacart data ###Code products = pd.read_csv('products.csv') order_products = pd.concat([pd.read_csv('order_products__prior.csv'), pd.read_csv('order_products__train.csv')]) orders = pd.read_csv('orders.csv') ###Output _____no_output_____ ###Markdown Goal: Reproduce part of this exampleInstead of a plot with 50 products, we'll just do two — the first products from each list- Half And Half Ultra Pasteurized- Half Baked Frozen Yogurt ###Code from IPython.display import display, Image url = 'https://cdn-images-1.medium.com/max/1600/1*wKfV6OV-_1Ipwrl7AjjSuw.png' example = Image(url=url, width=600) display(example) ###Output _____no_output_____ ###Markdown So, given a `product_name` we need to calculate its `order_hour_of_day` pattern. Subset and MergeOne challenge of performing a merge on this data is that the `products` and `orders` datasets do not have any common columns that we can merge on. Due to this we will have to use the `order_products` dataset to provide the columns that we will use to perform the merge. ###Code product_names = ['Half And Half Ultra Pasteurized', 'Half Baked Frozen Yogurt'] products.columns orders.columns order_products.columns merged = (products[['product_id', 'product_name']] .merge(order_products[['order_id', 'product_id']]) .merge(orders[['order_id', 'order_hour_of_day']])) merged.head() condition = merged['product_name'].isin(product_names) subset = merged[condition] subset.head() assert sorted(list(subset['product_name'].unique())) == sorted(product_names) ###Output _____no_output_____ ###Markdown 4 ways to reshape and plot 1. value_counts ###Code froyo = subset[subset['product_name'] == 'Half Baked Frozen Yogurt'] cream = subset[subset['product_name'] == 'Half And Half Ultra Pasteurized'] cream.head() cream['order_hour_of_day'].value_counts(normalize=True).sort_index().plot() froyo['order_hour_of_day'].value_counts(normalize=True).sort_index().plot(); ###Output _____no_output_____ ###Markdown 2. crosstab ###Code pd.crosstab(subset['order_hour_of_day'], subset['product_name'], normalize='columns').plot() ###Output _____no_output_____ ###Markdown 3. Pivot Table ###Code subset.pivot_table(index='order_hour_of_day', columns='product_name', values='order_id', aggfunc=len).plot() ###Output _____no_output_____ ###Markdown 4. melt ###Code table = pd.crosstab(subset['order_hour_of_day'], subset['product_name'], normalize=True) table.head() melted = (table .reset_index() .melt(id_vars='order_hour_of_day') .rename(columns={ 'order_hour_of_day': 'Hour of Day Ordered', 'product_name': 'Product', 'value': 'Percent of Orders by Product' })) melted import seaborn as sns sns.relplot(x='Hour of Day Ordered', y='Percent of Orders by Product', hue='Product', data=melted, kind='line'); ###Output _____no_output_____
notebooks/3_fe_on_large_data_dask.ipynb
###Markdown In this notebook, I will use the best of both the worlds:- Use `tsfresh` to extract features- Use `Dask` for parallelization and handling larger than memory dataset - Dask will distribute the jobs across multiple cores (single machine or distributed cluster) - Dask DataFrame utlizes out of core computing This notebook is divided into two sections- Dask Basics- Automated FE using `tsfresh` & `Dask` ###Code import glob import os import sys import pandas as pd import numpy as np import dask from dask.distributed import Client, LocalCluster import dask.dataframe as dd def get_segment_id_from_path(df, path): """ Returns the segment_id from the path of the file """ df.segment_id = df.segment_id.str.replace(path, "", regex=False) df.segment_id = df.segment_id.str.replace(".csv", "", regex=False) df.segment_id = df.segment_id.astype(np.int64) return df def append_time_column(df): df["time"] = range(0, len(df)) return df # Path for raw data DATA_DIR = "/datadrive/arnab/vssexclude/kaggle/volcano/data/train" # Path to save generated features FEATURE_PATH = "/datadrive/arnab/vssexclude/kaggle/volcano/data/features" # Define the datatypes for different sensor data data_types = {"sensor_1" : np.float32, "sensor_2" : np.float32, "sensor_3" : np.float32, "sensor_4" : np.float32, "sensor_5" : np.float32, "sensor_6" : np.float32, "sensor_7" : np.float32, "sensor_8" : np.float32, "sensor_9" : np.float32, "sensor_10" : np.float32} ###Output _____no_output_____ ###Markdown Dask Basics Dask ArchitechtureTechnically, Dask is a centrally managed distributed service with distributed storage and execution with the workers and peer to peer communication. What is a Client?The Client connects users to a Dask cluster. After a Dask cluster is setup, we initialize a Client by pointing it to the address of a Scheduler:```pythonfrom distributed import Clientclient = Client("1.2.3.4:8786")``` Here we are creating a Local Cluster and then connecting the Dask Client to the Local Cluster. By specifying `n_worker=10`, we have asked to dask to start `10` independent python processes. Based on the nature of the cluster, they may run in the same machine or different machines. ###Code cluster = LocalCluster(n_workers=8, threads_per_worker=1, scheduler_port=8786, memory_limit='2GB') client = Client(cluster) client ###Output _____no_output_____ ###Markdown Read Data ###Code !ls -lrt {DATA_DIR}/1408*.csv | wc -l %%time ddf = dd.read_csv( urlpath=f"{DATA_DIR}/1408*.csv", blocksize=None, dtype=data_types, include_path_column='segment_id') ###Output CPU times: user 95.7 ms, sys: 23.2 ms, total: 119 ms Wall time: 135 ms ###Markdown What just happened:- Dask just checked the input path and found that there are multiple CSV files matching the path description- It has not really loaded the content of the individual CSV files yet. - Nothing happens in the Dask UI, because these operations are just setting up a task graph which will be executed later- Dask is lazy by default. It will load all the CSV files into the memory **in parallel** only when we ask for any result- We can ask for result by invoking `compute()` methodNote:- None value for `blocksize` creates single partition for each CSV file ###Code ddf ###Output _____no_output_____ ###Markdown What is Dask DataFrame?- Dask DataFrame API extends Pandas to work on **larger than memory** datasets on laptops or distributed datasets across the clusters- It reuses lot of Pandas' code and extends the scale. How Dask DataFrame is constructed? Observations- This Dask DataFrame is composed of 4 Pandas DataFrame- It has the column names and data types- It has 4 tasks, i.e. 4 small Python functions which must be run to execute this entire Dask DataFrame. ###Code ddf.visualize() ###Output _____no_output_____ ###Markdown Let's compute the maximum value of the `sensor_1` feature ###Code ddf.sensor_1.max() ddf.sensor_1.max().visualize() ddf.sensor_1.max().compute() type(ddf.sensor_1.max().compute()) ###Output _____no_output_____ ###Markdown What just happened?- Dask checked the input path. Identified the matching files- A bunch of jobs were created. Here, one job per chunk/partition. - Each CSV file is read from the memory and loaded into a Pandas Dataframe- For each Pandas DataFrame, maximum value of `sensor_1` feature is computed- Results from multiple Pandas DataFrame are combined to get the final result, i.e., the maximum value of `sensor_1` across all the CSVs- Look at the Dask Dashboard before and after the compute()- Note: **The result of `compute()` must fit in-memory.** How to parallelize a custom function working on individual partitions? Problem Statement- I have a function which works well on one Pandas DataFrame. How can I parallelize it over multiple Pandas DataFrame?`map_partitions()` is the answer. It applies the function in an **embarrassingly parallel** way to multiple Pandas DataFrame Calculate the percentage of missing values across sensors for all the segments ###Code def get_missing_sensors(df): """ Returns a DataFrame consisting percentage of missing data per sensor """ df_missing_percentage = df.isna().mean().to_frame().transpose() df_missing_percentage = df_missing_percentage.astype(np.float16) return df_missing_percentage df_train_seg_missing = ddf.map_partitions(get_missing_sensors).compute() ddf.map_partitions(get_missing_sensors).visualize() client.close() cluster.close() ###Output _____no_output_____ ###Markdown Automated FE using `tsfresh` & `Dask` Here, input data starts from the hard drive & output (extracted features) will end on the hard drive. In between, Dask will read input data chunk by chunk, extract features and write to hard drive. Steps- Create a Dask Cluster and connect a Client to it.- Read data using Dask DataFrame from hard drive.- Extract features using `tsfresh.feature_extraction.extract_features`. Dask parallelizes execution of this function using `map_partitions`.- Write the extracted features to hard drive segment by segment. 1. Create a Dask Cluster and connect a Client to it ###Code cluster = LocalCluster(n_workers=8, threads_per_worker=1, scheduler_port=8786, memory_limit='3GB') client = Client(cluster) client ###Output _____no_output_____ ###Markdown 2. Read Data using Dask DataFrame ###Code ddf = dd.read_csv( urlpath=f"{DATA_DIR}/1*.csv", blocksize=None, usecols=["sensor_1", "sensor_4"], dtype=data_types, include_path_column='segment_id') # Use the first 1000 observations ddf = ddf.loc[0:999, :] # Insert a new column with segment_id along with the values from 10 sensors ddf = ddf.map_partitions(get_segment_id_from_path, f"{DATA_DIR}/") # Add a column named time with ascending values staring from 0 representing time ddf = ddf.map_partitions(append_time_column) ddf = ddf.fillna(0) ddf ###Output _____no_output_____ ###Markdown 3. Generate Features for individual partitions in parallel using DaskHere I am going to parallize the function `tsfresh.feature_extraction.extract_features()` using ###Code from tsfresh.feature_extraction import extract_features from tsfresh.feature_extraction.settings import MinimalFCParameters def custom_extract_features(df, column_id, column_sort, default_fc_parameters): """ Generate features using `extract_features` of `tsfresh` and then rename and reset axis. Setting `n_jobs` to 0 disable multiprocessing functionality """ feature_df = extract_features(df, column_id=column_id, column_sort=column_sort, n_jobs=0, default_fc_parameters=default_fc_parameters, disable_progressbar=True) feature_df = feature_df.rename_axis("segment_id").reset_index(drop=False) feature_df.segment_id = feature_df.segment_id.astype('category') return feature_df my_fc = { 'maximum': None, 'minimum': None } ddf_features = ddf.map_partitions(custom_extract_features, column_id='segment_id', column_sort='time', default_fc_parameters=my_fc) ddf_features ###Output _____no_output_____ ###Markdown 4. Write extracted features back to hard drive ###Code ddf_features.to_parquet( path=f"{FEATURE_PATH}", write_index=False, partition_on="segment_id", engine="pyarrow", append=False) ###Output _____no_output_____ ###Markdown 5. Read generated features for verification Read using Pandas ###Code SEGMENT_ID = "1999605295" df = pd.read_parquet(f"{FEATURE_PATH}/segment_id={SEGMENT_ID}") df.head() ###Output _____no_output_____ ###Markdown Read using Dask ###Code ddf_features_from_disk = dd.read_parquet(path=f"{FEATURE_PATH}/*/*.parquet") ddf_features_from_disk ddf_features_from_disk.partitions[3].compute() client.close() cluster.close() ###Output _____no_output_____
Modulo2/Code/2.3.-Aprendizaje No supervizado Kmeans.ipynb
###Markdown Módulo II: Aprendizaje No supervizado: Kmeans Introducción K-Means es un algoritmo no supervisado de Clustering. Se utiliza cuando tenemos un montón de datos sin etiquetar. El objetivo de este algoritmo es el de encontrar “K” grupos (clusters) entre los datos crudos. **¿Cómo funciona?** El algoritmo trabaja iterativamente para asignar a cada “muestra” uno de los “K” grupos basado en sus características. Son agrupados en base a la similitud de sus features (las columnas). Como resultado de ejecutar el algoritmo tendremos:> Los `“centroids”` de cada grupo que serán unas “coordenadas” de cada uno de los K conjuntos qu>e se utilizarán para poder etiquetar nuevas muestras.> `Etiquetas` para el conjunto de datos de entrenamiento. Cada etiqueta perteneciente a uno de los K grupos formados.Los grupos se van definiendo de manera “orgánica”, es decir que se va ajustando su posición en cada iteración del proceso, hasta que converge el algoritmo. Una vez hallados los centroids deberemos analizarlos para ver cuales son sus características únicas, frente a la de los otros grupos. Estos grupos son las etiquetas que genera el algoritmo. Casos de Uso de K-Means Algunos casos de uso son:> **Segmentación por Comportamiento:** relacionar el carrito de compras de un usuario, sus tiempos de acción e información del perfil.> **Categorización de Inventario:** agrupar productos por actividad en sus ventasDetectar anomalías o actividades sospechosas: según el comportamiento en una web reconocer un troll -o un bot- de un usuario normal Algoritmo K-means El algoritmo utiliza una proceso **iterativo** en el que se van ajustando los grupos para producir el resultado final. Para ejecutar el algoritmo deberemos pasar como entrada el `conjunto de datos` y un valor de `K`. El conjunto de datos serán las características o features para cada punto. Las posiciones iniciales de los K centroids serán asignadas de manera aleatoria de cualquier punto del conjunto de datos de entrada. Luego se itera en dos pasos:> 1.- **Paso de asignación** $argmin_{c_i \in C} dist(c_i, x)^2$> 2.- **Paso de actualización del Centroide** En este paso los centroides de cada grupo son recalculados. Esto se hace tomando una media de todos los puntos asignados en el paso anterior. $c_i = \frac{1}{|s_i|}\sum_{x_i \in s_i} x_i$El algoritmo itera entre estos pasos hasta cumplir un criterio de detención:* si no hay cambios en los puntos asignados a los grupos,* o si la suma de las distancias se minimiza,* o se alcanza un número máximo de iteraciones.El algoritmo converge a un resultado que puede ser el óptimo local, por lo que será conveniente volver a ejecutar más de una vez con puntos iniciales aleatorios para confirmar si hay una salida mejor. Criterios de Elección de Grupos> Criterio del codo> Criterio del gradiente Ejemplo 1 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn.datasets import make_blobs #%% Generar datos aleatorios #%% Aplicar el algoritmo Kmeans #%% Criterio de selección #%% Definiendo el número de grupos optimos #%% Aplicar el algoritmo Kmeans con 2 grupos ###Output _____no_output_____ ###Markdown Ejemplo 2 ###Code import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans import pandas as pd #%% Leer los datos #%% drop de columnas time y class #%% Estandarizar los datos #%% Aplicar el algoritmo de clustering # Aplicar el criterio de selección del codo # plot de las inercias #%% Ejecutar el algoritmo con k = 11 #%% Obtener los centroides # Eligiendo 3 variables para plotear # Creating figure # Creating plot ###Output _____no_output_____ ###Markdown Ejemplo 2Tiene un centro comercial de supermercado y, a través de las tarjetas de membresía, tiene algunos datos básicos sobre sus clientes, como ID de cliente, edad, sexo, ingresos anuales y puntaje de gastos.Usted es el propietario del centro comercial y desea comprender a sus clientes. Desea saber quienes clientes pueden ser clientes objetivos para que el equipo de marketing planifique una campaña.**¿Quiénes son sus clientes objetivo con los que puede iniciar la estrategia de marketing?**Para responder la pregunta anterior necesitamos realizar lo siguiente:>1.- data quality report dqr >2.- Limpieza de datos>3.- Analisis exploratorio de datos EDA>4.- Aplicar el criterio de selección de grupos -> el número opt de grupos>5.- Aplican kmeans con el num opt de grupos>6.- Conclusiones o comentarios acerca de los resultados ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from CDIN import CDIN as cd #%% Leer los datos #%% 1.- data quality report dqr #%% 2.- Limpieza de datos #%% 3.- EDA ## 1er insight ## 2do insight (rango de edades) #%% 4.- Aplicar el criterio de selección de grupos # Visualizando el criterio del codo, se observa que con 5 grupos # se puede obtener una buena clasificación #%% 5.- Aplican kmeans con el num opt de grupos #%% 6.- Conclusiones o comentarios acerca de los resultados # Visualizar todos los clusters ###Output _____no_output_____ ###Markdown Actividad 3Agrupar usuarios Twitter de acuerdo a su personalidad con K-means.>1.- data quality report dqr >2.- Limpieza de datos>3.- Analisis exploratorio de datos EDA (obtener al menos 3 insights)>4.- Aplicar el criterio de selección de grupos -> el número opt de grupos>5.- Aplican kmeans con el num opt de grupos>6.- Graficar, concluir y comentar acerca de los resultados. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sb from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin_min from mpl_toolkits.mplot3d import Axes3D #Leer datos ## tabla de información estadística que nos provee Pandas dataframe: # dqr del dataframe ###Output _____no_output_____ ###Markdown El archivo contiene diferenciadas 9 categorías -actividades laborales- que son:1-> Actor/actriz2->Cantante3->Modelo4->Tv, series5->Radio6->Tecnología7->Deportes8->Politica9->Escritor ###Code ## Histogramas ###Output _____no_output_____ ###Markdown Las variables que nos pueden servir para la agrupación pueden ser `["op","ex","ag"]` ###Code # Crear la figura # Plotear ###Output _____no_output_____ ###Markdown Elección de los grupos óptimosVamos a hallar el valor de K mediante el criterio del codo ###Code # Criterio del codo # plot de las inercias ###Output _____no_output_____ ###Markdown Realmente la curva es bastante “suave”. Considero a 5 como un buen número para K. Según vuestro criterio podría ser otro. ###Code #Aplicar kmeans con el num opt de grupos ###Output _____no_output_____ ###Markdown Clasificar nuevas muestras podemos agrupar y etiquetar nuevos usuarios twitter con sus características y clasificarlos. ###Code ## Obtener el grupo de una nueva muestra ###Output _____no_output_____ ###Markdown Ejemplo 4 ###Code ## Importatr digitos # Cluster por Kmeans ###Output _____no_output_____
NEU_ADS_Student_Project_Portfolio_Examples/Detection of Brain Illnesses using Machine Learning/Project/PortfolioBlog.ipynb
###Markdown PORTFOLIO BLOG INFO 7390 Vignesh MuraliNUID: 001886775 What is Alzheimer's Disease?Alzheimer's disease is the most common cause of dementia — a group of brain disorders that cause the loss of intellectual and social skills. In Alzheimer's disease, the brain cells degenerate and die, causing a steady decline in memory and mental function. ###Code from IPython.display import Image from IPython.core.display import HTML Image(url= "https://www.nia.nih.gov/sites/default/files/inline-images/brain_slices_alzheimers_0.jpg") ###Output _____no_output_____ ###Markdown What are we trying to do?In this blog, we are trying to explain how we can build Machine Learning classification models to detect the presence of Alzheimer's Disease using existing medical data.Before we proceed let's define some essential concepts which are to be known. Supervised Learning: Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.Y = f(X)The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data.It is called supervised learning because the process of an algorithm learning from the training dataset can be thought of as a teacher supervising the learning process. Classification: A classification model attempts to draw some conclusion from observed values. Given one or more inputs a classification model will try to predict the value of one or more outcomes. Outcomes are labels that can be applied to a dataset. For example, when filtering emails “spam” or “not spam”.There are various classification models in Machine Learning such as Random Forests Classifier and Naive Baye's Classifier. Neural Networks:Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains. Such systems "learn" (i.e. progressively improve performance on) tasks by considering examples, generally without task-specific programming.A deep neural network (DNN) is an artificial neural network (ANN) with multiple hidden layers between the input and output layers. Let's get started!We still start off by obtaining the dataset which we are going to use.The dataset has been obtained from https://www.oasis-brains.org/.- This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. - For each subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included. The subjects are all right-handed and include both men and women. - 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with mild to moderate Alzheimer’s disease. - Another 14 subjects were characterized as nondemented at the time of their initial visit and were subsequently characterized as demented at a later visit. The first step is to import all the required packages ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import tree from sklearn import datasets, linear_model, metrics from sklearn.metrics import confusion_matrix,accuracy_score from sklearn.model_selection import train_test_split, cross_val_score from sklearn.decomposition import PCA from sklearn.cross_validation import KFold from sklearn.preprocessing import normalize, StandardScaler from scipy.stats import multivariate_normal from collections import Counter from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder, LabelBinarizer from keras.wrappers.scikit_learn import KerasClassifier from keras.models import Sequential from keras.layers import Dense, Activation ###Output _____no_output_____ ###Markdown Next we clean the dataset of null values and unwanted columns ###Code df=pd.read_csv('oasis_longitudinal.csv') df2=df df.isnull().sum() df = df.fillna(method='ffill') df.isnull().sum() df = df.drop('Hand',1) ###Output _____no_output_____ ###Markdown Now our data is ready for preprocessing and analysis!It is important to remove irrelevant columns from our dataset because they could affect the performance of our model. PreprocessingWe map categorical values to integer values and we standardize our data using StandardScaler() because some classification models perform better with standardized data. ###Code X = df.drop('Group', axis=1) X = X.drop(['Subject ID','MRI ID','M/F','SES','Visit'], axis=1) y = df['Group'] size_mapping={'Demented':1,'Nondemented':2,'Converted':3,'M':4,'F':5} df2['Group'] = df2['Group'].map(size_mapping) from sklearn.preprocessing import normalize, StandardScaler sc_x = StandardScaler() X2 = sc_x.fit_transform(X) size_mapping={'Demented':1,'Nondemented':2,'Converted':3,'M':4,'F':5} df2['Group'] = df2['Group'].map(size_mapping) ###Output _____no_output_____ ###Markdown Split data into a Training Set and a Test SetThe training set contains a known output and the model learns on this data in order to be generalized to other data later on.We have the test dataset (or subset) in order to test our model’s prediction on this subset. ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y, random_state=1) ###Output _____no_output_____ ###Markdown Selecting best features for classificationAll kinds of tree methods calculate their splits by mathematically determining which split will most effectively help distinguish the classes. This is how the Random Forest method ranks it's features based on their importances depending on which feature allows the best split. ###Code from sklearn.ensemble import RandomForestClassifier random_forest = RandomForestClassifier(n_estimators=40, max_depth=5, random_state=1,max_features=5) random_forest.fit(X_train, y_train) importances=100*random_forest.feature_importances_ sorted_feature_importance = sorted(zip(importances, list(X_train)), reverse=True) features_pd = pd.DataFrame(sorted_feature_importance) print(features_pd) sns.barplot(x=0, y=1, data=features_pd,palette='Reds'); plt.show() ###Output 0 1 0 63.501291 CDR 1 12.377521 MMSE 2 8.972169 MR Delay 3 4.064768 nWBV 4 4.039277 Age 5 2.810986 ASF 6 2.342095 eTIV 7 1.891893 EDUC ###Markdown Clinical Dementia Rating (CDR) seems to be the most important feature.The Clinical Dementia Rating or CDR is a numeric scale used to quantify the severity of symptoms of dementia.CDR:- 0 No dementia- 0.5 Slightly Dementia- 1 Demented- 2 Severely DementedWe may eliminate the 3 lowest features to improve the accuracy of our model. Classification of dataNow as we have cleaned, pre-processed, split and selected features for our dataset, we may finally apply the classification models and view the results produced. **We start off with the Support Vector Classifier.**A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. First we create the model with desired parameters. ###Code Image(url= "http://38.media.tumblr.com/0e459c9df3dc85c301ae41db5e058cb8/tumblr_inline_n9xq5hiRsC1rmpjcz.jpg") from sklearn.svm import SVC supvc = SVC(kernel='linear',C=2) ###Output _____no_output_____ ###Markdown We attempt to fit our training data into the model we just created ###Code supvc.fit(X_train2,y_train2) ###Output _____no_output_____ ###Markdown Now that the model has sucessfully fit the data, we may predict new values using the test data.Then using the accuray_score module from Sci-Kit learn's metrics set, we may view how well the model performed ###Code y_predict = supvc.predict(X_test2) svcscore=accuracy_score(y_test2,y_predict)*100 print('Accuracy of Support vector classifier is ') print(100*accuracy_score(y_test2,y_predict)) ###Output Accuracy of Support vector classifier is 92.5531914893617 ###Markdown Let us construct the confusion matrix to view the exact number of accurate predictions ###Code from sklearn.metrics import confusion_matrix pd.DataFrame( confusion_matrix(y_test, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True Alzheimers','True converted'] ) ###Output _____no_output_____ ###Markdown Observations:- Extremely low accuracy of 56% when using the RBF kernel.- High computation time on poly kernel & 90% accuracy.- Highest accuracy obtained on the linear kernel with 92.55%.- Accuracy slightly increases when penalty parameter C is set to 2.We have sucessfully classified patients into "Demented" or "Nondemented" with Support Vector Classifier with an accuracy of 92.55%! Similarly, this process can be repeated with several other classification models provided by Sci-Kit Learn to perform classification.You can choose from the following classification models and discover the most accurate one for this cause.http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html **Using Random Forests Classifier**A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. ###Code Image(url= "http://www.globalsoftwaresupport.com/wp-content/uploads/2018/02/ggff5544hh.png") from sklearn.metrics import accuracy_score y_predict = random_forest.predict(X_test) rfscore = 100*accuracy_score(y_test, y_predict) print('Accuracy of Random Forests Classifier Accuracy is ') print(100*accuracy_score(y_test,y_predict)) from sklearn.metrics import confusion_matrix pd.DataFrame( confusion_matrix(y_test, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True Alzheimers','True converted'] ) ###Output Accuracy of Random Forests Classifier Accuracy is 92.5531914893617 ###Markdown Observations:- The highest accuracy was attained when max_features was set to 5.- When 5 features are considered for the best split, we obtain the greatest accuracy in this model (92.55%)- Standardization does not make a difference to the accuracy. **Using K Nearest Neighbors**K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions). ###Code Image(url= "http://adataanalyst.com/wp-content/uploads/2016/07/kNN-1.png") from sklearn.neighbors import KNeighborsClassifier nneighbor = KNeighborsClassifier(n_neighbors=8,metric='euclidean') nneighbor.fit(X_train2, y_train2) y_predict = nneighbor.predict(X_test2) knscore = 100*accuracy_score(y_test2, y_predict) print('Accuracy of K Nearest Neighbors Classifier is ') print(100*accuracy_score(y_test2,y_predict)) pd.DataFrame( confusion_matrix(y_test2, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True Alzheimers','True converted'] ) ###Output Accuracy of K Nearest Neighbors Classifier is 88.29787234042553 ###Markdown Observations:- Accuracy plateaus after using 8 neighbors.- Accuracy remains the same with all distance measures ( minkowski, manhattan, euclidean ). **Using Decision Tree Classifier**Decision tree learning uses a decision tree (as a predictive model) to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). ###Code Image(url= "http://dataaspirant.com/wp-content/uploads/2017/01/B03905_05_01-compressor.png") from sklearn.tree import DecisionTreeClassifier dectree = DecisionTreeClassifier(max_features=5) dectree.fit(X_train, y_train) y_predict = dectree.predict(X_test) decscore=100*accuracy_score(y_test, y_predict) print('Accuracy of Decision Tree Classifier is ') print(100*accuracy_score(y_test,y_predict)) pd.DataFrame( confusion_matrix(y_test, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True Alzheimers','True converted'] ) ###Output Accuracy of Decision Tree Classifier is 77.6595744680851 ###Markdown Observations:- Max_features is selected as 5, this means that when 5 features are selected for the best split, accuracy is the highest. **Using Naive Baye's Classifier**Naive Bayes is a kind of classifier which uses the Bayes Theorem. It predicts membership probabilities for each class such as the probability that given record or data point belongs to a particular class. The class with the highest probability is considered as the most likely class. ###Code Image(url= "http://www.saedsayad.com/images/Bayes_rule.png") from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(X_train,y_train) y_predict = gnb.predict(X_test) nbscore = 100*accuracy_score(y_test, y_predict) print('Accuracy of Naive Bayes Classifier is ') print(100*accuracy_score(y_test,y_predict)) pd.DataFrame( confusion_matrix(y_test, y_predict), columns=['Predicted Healthy', 'Predicted alzheimers','Predicted Converted'], index=['True Healthy', 'True alzheimers','True converted'] ) ###Output Accuracy of Naive Bayes Classifier is 90.42553191489363 ###Markdown Observations:- Parameters have not been tuned because the only parameter available for tuning is priors (Prior probabilities of the class).- It is best to leave priors at 'None' because the priors will be adjusted automatically based on the data. **Using Ada Boost Classifier**Ada-boost classifier combines weak classifier algorithm to form strong classifier. A single algorithm may classify the objects poorly. But if we combine multiple classifiers with selection of training set at every iteration and assigning right amount of weight in final voting, we can have good accuracy score for overall classifier. ###Code Image(url= "https://www.researchgate.net/profile/Brendan_Marsh3/publication/306054843/figure/fig3/AS:393884896120846@1470920885933/Training-of-an-AdaBoost-classifier-The-first-classifier-trains-on-unweighted-data-then.png") from sklearn.ensemble import AdaBoostClassifier abc = AdaBoostClassifier(algorithm='SAMME') abc.fit(X_train2,y_train2) y_predict = abc.predict(X_test2) abcscore=accuracy_score(y_test2,y_predict)*100 print('Accuracy of ADA Boost classifier is ') print(100*accuracy_score(y_test2,y_predict)) pd.DataFrame( confusion_matrix(y_test2, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True alzheimers','True converted'] ) ###Output Accuracy of ADA Boost classifier is 90.42553191489363 ###Markdown Observations:- Yields higher accuracy when the algorithm used is SAMME and not the default SAMME.R.- SAMME is a boosting algorithm which works better for multiclass classification, SAMME.R works is conventionally used for binary classification problems.- Accuracy greatly increases after using standardised data(From 50% to 90%). Using a Multilayered Perceptron ClassifierMultilayer perceptron classifier is a classifier based on the feedforward artificial neural network. MLPC consists of multiple layers of nodes. Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes map inputs to outputs by a linear combination of the inputs with the node’s weights w and bias b and applying an activation function.We are using 3 hidden layers of nodes. The solver is used for weight optimization. ###Code Image(url= "https://www.researchgate.net/profile/Mouhammd_Alkasassbeh/publication/309592737/figure/fig2/AS:423712664100865@1478032379613/MultiLayer-Perceptron-MLP-sturcture-334-MultiLayer-Perceptron-Classifier-MultiLayer.jpg") from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(max_iter=500,solver='lbfgs',hidden_layer_sizes=(10,30,20),activation='tanh') mlp.fit(X_train2,y_train2) y_predict = mlp.predict(X_test2) mlpscore = 100*accuracy_score(y_test2,y_predict) print(mlpscore) from sklearn.metrics import classification_report,confusion_matrix pd.DataFrame( confusion_matrix(y_test2, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True alzheimers','True converted'] ) ###Output 85.1063829787234 ###Markdown Observations:- Performance greatly increased from 50% to 81.23% after using scaled data.- Accuracy remains unaffected on changing activation functions.- According to scikit learn documentation, the solver 'lbfgs' is more appropriate for smaller datasets compared to other solvers such as 'adam'. Using a Feed Forward Deep Learning Neural Network[This Code was Adapted From: https://machinelearningmastery.com/multi-class-classification-tutorial-keras-deep-learning-library/ Author: Jason Brownlee]The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network. ###Code Image(url= "https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/images/feedforward.jpg") ###Output _____no_output_____ ###Markdown - Multi-class labels need to be converted to binary labels(belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. ###Code lb = LabelBinarizer() y_train3 =lb.fit_transform(y_train2) ###Output _____no_output_____ ###Markdown - The Keras library provides a convenient wrapper for deep learning models to be used as classification or regression estimators in scikit-learn. - The KerasClassifier class in Keras take an argument build_fn which is the name of the function to call to get your model. You must define a function that defines your model, compiles it and returns it. ###Code def baseline_model(): classifier = Sequential() # Adding the input layer and the first hidden layer classifier.add(Dense(activation = 'relu', input_dim = 8, units = 8, kernel_initializer = 'uniform')) # Adding the second hidden layer classifier.add(Dense( activation = 'relu', units = 15, kernel_initializer = 'uniform')) # Adding the third hidden layer # Adding the output layer classifier.add(Dense(activation = 'sigmoid', units = 3, kernel_initializer = 'uniform' )) # Compiling the ANN classifier.compile(optimizer = 'adamax', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Fitting the ANN to the Training set return classifier ###Output _____no_output_____ ###Markdown - In the example below, it is called "baseline_model". We pass this function name to the KerasClassifier. ###Code estimator = KerasClassifier(build_fn=baseline_model, epochs=150, batch_size=5, verbose=0) ###Output _____no_output_____ ###Markdown - The model is automatically bundled up and passed on to the fit() function which is called internally by the KerasClassifier class. ###Code estimator.fit(X_train2, y_train2) y_predict = estimator.predict(X_test2) ffdnscore = 100*accuracy_score(y_test2,y_predict) ffdnscore pd.DataFrame( confusion_matrix(y_test2, y_predict), columns=['Predicted Healthy', 'Predicted Alzheimers','Predicted Converted'], index=['True Healthy', 'True alzheimers','True converted'] ) ###Output _____no_output_____ ###Markdown Observations:- Using the Adamax optimizer we obtain the highest accuracy.- We start with the input layer, followed by two hidden layers with relu activation functions.- The output layer is added and the model is compiled. Comparing our classification modelsWe have run all five classifiers and obtained the accuracies for each, we will attempt to visaulize the acccuracies to determine the best possible classifier for predicting Alzheimer's disease. ###Code scorearray = [svcscore,nbscore,decscore,knscore,rfscore,abcscore,mlpscore,ffdnscore] score_arr = [{'Classifier':'SVC','Accuracy':svcscore}, {'Classifier':'NB','Accuracy':nbscore}, {'Classifier':'DEC','Accuracy':decscore}, {'Classifier':'KNN','Accuracy':knscore}, {'Classifier':'RF','Accuracy':rfscore} ,{'Classifier':'ABC','Accuracy':abcscore}, {'Classifier':'MLP','Accuracy':mlpscore}, {'Classifier':'FFDN','Accuracy':ffdnscore}] score_df = pd.DataFrame(score_arr) score_df = score_df.sort_values('Accuracy') print(score_df) sns.barplot(x="Classifier", y="Accuracy", data=score_df,palette='Reds'); plt.show() ###Output Accuracy Classifier 2 77.659574 DEC 6 79.787234 MLP 3 88.297872 KNN 1 90.425532 NB 5 90.425532 ABC 7 90.425532 FFDN 0 92.553191 SVC 4 92.553191 RF