path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
2-analysis-examples/5-osm-traces.ipynb
###Markdown OSM Traces (GPX files)[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/anitagraser/movingpandas-examples/main?filepath=2-analysis-examples/5-osm-traces.ipynb)This notebook illustrates the use of GPS traces shared publicly by OSM community members in GPX format. Source: https://www.openstreetmap.org/traces ###Code import pandas as pd import geopandas as gpd import movingpandas as mpd from os.path import exists from urllib.request import urlretrieve from shapely.geometry import Point, LineString, Polygon from datetime import datetime, timedelta import warnings warnings.simplefilter("ignore") mpd.__version__ ###Output _____no_output_____ ###Markdown Download OSM traces and generate a GeoDataFrame ###Code def get_osm_traces(page=0, bbox='16.18,48.09,16.61,48.32'): file = 'osm_traces.gpx' url = f'https://api.openstreetmap.org/api/0.6/trackpoints?bbox={bbox}&page={page}' if not exists(file): urlretrieve(url, file) gdf = gpd.read_file(file, layer='track_points') # dropping empty columns gdf.drop(columns=['ele', 'course', 'speed', 'magvar', 'geoidheight', 'name', 'cmt', 'desc', 'src', 'url', 'urlname', 'sym', 'type', 'fix', 'sat', 'hdop', 'vdop', 'pdop', 'ageofdgpsdata', 'dgpsid'], inplace=True) gdf['t'] = pd.to_datetime(gdf['time']) gdf.set_index('t', inplace=True) return gdf ###Output _____no_output_____ ###Markdown TrajectoryCollection from OSM traces GeoDataFrame ###Code gdf = get_osm_traces() osm_traces = mpd.TrajectoryCollection(gdf, 'track_fid') print(f'The OSM traces download contains {len(osm_traces)} tracks') for track in osm_traces: print(f'Track {track.id}: length={track.get_length():.0f}m') ###Output _____no_output_____ ###Markdown Genearlizing and visualizingGeneralization is optional but speeds up rendering ###Code osm_traces = mpd.MinTimeDeltaGeneralizer(osm_traces).generalize(tolerance=timedelta(minutes=1)) osm_traces.hvplot(title='OSM Traces', line_width=7, width=700, height=500) osm_traces.get_trajectory(0).hvplot(title='Speed (m/s) along track', c='speed', cmap='RdYlBu', line_width=7, width=700, height=500, tiles='CartoLight', colorbar=True) ###Output _____no_output_____ ###Markdown OSM Traces (GPX files)[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/anitagraser/movingpandas-examples/main?filepath=2-analysis-examples/5-osm-traces.ipynb)This notebook illustrates the use of GPS traces shared publicly by OSM community members in GPX format. Source: https://www.openstreetmap.org/traces ###Code import pandas as pd import geopandas as gpd import movingpandas as mpd from os.path import exists from urllib.request import urlretrieve from shapely.geometry import Point, LineString, Polygon from datetime import datetime, timedelta import warnings warnings.simplefilter("ignore") mpd.__version__ ###Output _____no_output_____ ###Markdown Download OSM traces and generate a GeoDataFrame ###Code def get_osm_traces(page=0, bbox='16.18,48.09,16.61,48.32'): file = 'osm_traces.gpx' url = f'https://api.openstreetmap.org/api/0.6/trackpoints?bbox={bbox}&page={page}' if not exists(file): urlretrieve(url, file) gdf = gpd.read_file(file, layer='track_points') # dropping empty columns gdf.drop(columns=['ele', 'course', 'speed', 'magvar', 'geoidheight', 'name', 'cmt', 'desc', 'src', 'url', 'urlname', 'sym', 'type', 'fix', 'sat', 'hdop', 'vdop', 'pdop', 'ageofdgpsdata', 'dgpsid'], inplace=True) gdf['t'] = pd.to_datetime(gdf['time']) gdf.set_index('t', inplace=True) return gdf ###Output _____no_output_____ ###Markdown TrajectoryCollection from OSM traces GeoDataFrame ###Code gdf = get_osm_traces() osm_traces = mpd.TrajectoryCollection(gdf, 'track_fid') print(f'The OSM traces download contains {len(osm_traces)} tracks') for track in osm_traces: print(f'Track {track.id}: length={track.get_length():.0f}m') ###Output _____no_output_____ ###Markdown Generalizing and visualizingGeneralization is optional but speeds up rendering ###Code osm_traces = mpd.MinTimeDeltaGeneralizer(osm_traces).generalize(tolerance=timedelta(minutes=1)) osm_traces.hvplot(title='OSM Traces', line_width=7, width=700, height=500) osm_traces.get_trajectory(0).hvplot(title='Speed (m/s) along track', c='speed', cmap='RdYlBu', line_width=7, width=700, height=500, tiles='CartoLight', colorbar=True) ###Output _____no_output_____
nbs/73_callback.captum.ipynb
###Markdown CaptumCaptum is the Model Interpretation Library from PyTorch as available [here](https://captum.ai)To use this we need to install the package using `conda install captum -c pytorch`or `pip install captum`This is a Call back to use Captum. ###Code #export from captum.attr import IntegratedGradients from captum.attr import visualization as viz from matplotlib.colors import LinearSegmentedColormap #export class CaptumCallback(Callback): "Captum Callback for Resnet Interpretation" def __init__(self): pass def after_fit(self): self.integrated_gradients = IntegratedGradients(self.model) def visualize(self,inp_data,n_steps=200,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],outlier_perc=1): dl = self.dls.test_dl([inp_data],with_labels=True, bs=1) self.enc_inp,self.enc_preds= dl.one_batch() dec_data=dl.decode((self.enc_inp,self.enc_preds)) self.dec_img,self.dec_pred=dec_data[0][0],dec_data[1][0] self.colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if colors is None else colors self.attributions_ig = self.integrated_gradients.attribute(self.enc_inp.to(self.dl.device), target=self.enc_preds, n_steps=200) default_cmap = LinearSegmentedColormap.from_list(cmap_name, self.colors, N=N) _ = viz.visualize_image_attr_multiple(np.transpose(self.attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(self.dec_img.numpy(), (1,2,0)), methods=methods, cmap=default_cmap, show_colorbar=True, signs=signs, outlier_perc=outlier_perc, titles=[f'Original Image - ({self.dec_pred})', 'IG']) from fastai2.vision.all import * path = untar_data(URLs.PETS)/'images' def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, get_image_files(path), valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(128)) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=CaptumCallback()) learn.fine_tune(1) paths=list(path.iterdir()) index=random.randint(0,len(paths)) image_path=paths[index] learn.captum.visualize(image_path,n_steps=1000) ###Output _____no_output_____ ###Markdown CaptumCaptum is the Model Interpretation Library from PyTorch as available [here](https://captum.ai)To use this we need to install the package using `conda install captum -c pytorch`or `pip install captum`This is a Call back to use Captum. ###Code # export # Dirty hack as json_clean doesn't support CategoryMap type from ipykernel import jsonutil _json_clean=jsonutil.json_clean def json_clean(o): o = list(o.items) if isinstance(o,CategoryMap) else o return _json_clean(o) jsonutil.json_clean = json_clean #export from captum.attr import IntegratedGradients from captum.attr import visualization as viz from matplotlib.colors import LinearSegmentedColormap from captum.insights import AttributionVisualizer, Batch from captum.insights.features import ImageFeature #export class IntegradedGradientsCallback(Callback): "Captum Callback for Resnet Interpretation" def __init__(self): pass def after_fit(self): self.integrated_gradients = IntegratedGradients(self.model) def visualize(self, inp_data, n_steps=200, cmap_name='custom blue', colors=None, N=256, methods=None, signs=None, outlier_perc=1): if methods is None: methods=['original_image','heat_map'] if signs is None: signs=["all", "positive"] dl = self.dls.test_dl(L(inp_data),with_labels=True, bs=1) self.enc_inp,self.enc_preds= dl.one_batch() dec_data=dl.decode((self.enc_inp,self.enc_preds)) self.dec_img,self.dec_pred=dec_data[0][0],dec_data[1][0] self.colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if colors is None else colors self.attributions_ig = self.integrated_gradients.attribute(self.enc_inp.to(self.dl.device), target=self.enc_preds, n_steps=200) default_cmap = LinearSegmentedColormap.from_list(cmap_name, self.colors, N=N) _ = viz.visualize_image_attr_multiple(np.transpose(self.attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(self.dec_img.numpy(), (1,2,0)), methods=methods, cmap=default_cmap, show_colorbar=True, signs=signs, outlier_perc=outlier_perc, titles=[f'Original Image - ({self.dec_pred})', 'IG']) from fastai2.vision.all import * path = untar_data(URLs.PETS)/'images' def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, get_image_files(path), valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(128)) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=IntegradedGradientsCallback()) learn.fine_tune(1) paths=list(path.iterdir()) learn.integraded_gradients.visualize(paths,n_steps=1000) #export class CaptumInsightsCallback(Callback): "Captum Insights Callback for Image Interpretation" def __init__(self): pass def _formatted_data_iter(self, dl, normalize_func): dl_iter=iter(dl) while True: images,labels=next(dl_iter) images=normalize_func.decode(images).to(dl.device) yield Batch(inputs=images, labels=labels) def visualize(self, inp_data, debug=True): _baseline_func= lambda o: o*0 _get_vocab = lambda vocab: list(map(str,vocab)) if isinstance(vocab[0],bool) else vocab dl = self.dls.test_dl(L(inp_data),with_labels=True, bs=4) normalize_func= next((func for func in dl.after_batch if type(func)==Normalize),noop) visualizer = AttributionVisualizer( models=[self.model], score_func=lambda o: torch.nn.functional.softmax(o, 1), classes=_get_vocab(dl.vocab), features=[ ImageFeature( "Image", baseline_transforms=[_baseline_func], input_transforms=[normalize_func], ) ], dataset=self._formatted_data_iter(dl,normalize_func) ) visualizer.render(debug=debug) from fastai2.vision.all import * path = untar_data(URLs.PETS)/'images' def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, get_image_files(path), valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(128)) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=CaptumInsightsCallback()) learn.fine_tune(1) paths=list(path.iterdir()) learn.captum_insights.visualize(paths) ###Output _____no_output_____ ###Markdown CaptumCaptum is the Model Interpretation Library from PyTorch as available [here](https://captum.ai)To use this we need to install the package using `conda install captum -c pytorch`or `pip install captum`This is a Call back to use Captum. ###Code # export # Dirty hack as json_clean doesn't support CategoryMap type from ipykernel import jsonutil _json_clean=jsonutil.json_clean def json_clean(o): o = list(o.items) if isinstance(o,CategoryMap) else o return _json_clean(o) jsonutil.json_clean = json_clean #export from captum.attr import IntegratedGradients,NoiseTunnel,GradientShap,Occlusion from captum.attr import visualization as viz from matplotlib.colors import LinearSegmentedColormap from captum.insights import AttributionVisualizer, Batch from captum.insights.features import ImageFeature ###Output _____no_output_____ ###Markdown In all this notebook, we will use the following data: ###Code from fastai2.vision.all import * path = untar_data(URLs.PETS)/'images' fnames = get_image_files(path) def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, fnames, valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(128)) from random import randint ###Output _____no_output_____ ###Markdown Gradient Based Attribution Integrated Gradients Callback The Distill Article [here](https://distill.pub/2020/attribution-baselines/) provides a good overview of what baseline image to choose. We can try them one by one. ###Code #export class IntegratedGradientsCallback(Callback): "Integrated Gradient Captum Callback for Resnet Interpretation" def __init__(self): pass def visualize(self,inp, baseline_type='zeros',n_steps=1000 ,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],outlier_perc=1): tls = L([TfmdLists(inp, t) for t in L(ifnone(self.dl.tfms,[None]))]) inp_data=list(zip(*(tls[0],tls[1])))[0] return self._visualize(inp_data,n_steps,cmap_name,colors,N,methods,signs,outlier_perc,baseline_type) def get_baseline_img(self, img_tensor,baseline_type): if baseline_type=='zeros': return img_tensor*0 if baseline_type=='uniform': return torch.rand(img_tensor.shape) def _visualize(self,inp_data,n_steps=200,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],outlier_perc=1,baseline_type='zeros'): self._integrated_gradients = self._integrated_gradients if hasattr(self,'_integrated_gradients') else IntegratedGradients(self.model) dl = self.dls dec_data=dl.after_item(inp_data) dec_pred=inp_data[1] dec_img=dec_data[0] enc_inp,enc_preds=dl.after_batch(to_device(dl.before_batch(dec_data),dl.device)) baseline=self.get_baseline_img(enc_inp,baseline_type).to(dl.device) colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if colors is None else colors attributions_ig = self._integrated_gradients.attribute(enc_inp,baseline, target=enc_preds, n_steps=200) default_cmap = LinearSegmentedColormap.from_list(cmap_name,colors, N=N) _ = viz.visualize_image_attr_multiple(np.transpose(attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(dec_img.numpy(), (1,2,0)), methods=methods, cmap=default_cmap, show_colorbar=True, signs=signs, outlier_perc=outlier_perc, titles=[f'Original Image - ({dec_pred})', 'IG']) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=IntegratedGradientsCallback()) learn.fine_tune(1) idx=randint(0,len(fnames)) learn.integrated_gradients.visualize(fnames[idx],baseline_type='uniform') ###Output _____no_output_____ ###Markdown Noise Tunnel ###Code #export class NoiseTunnelCallback(Callback): "Captum Callback for Resnet Interpretation" def __init__(self): pass def after_fit(self): self.integrated_gradients = IntegratedGradients(self.model) self._noise_tunnel= NoiseTunnel(self.integrated_gradients) def visualize(self,inp_data,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],nt_type='smoothgrad'): dl = self.dls.test_dl(L(inp_data),with_labels=True, bs=1) self.enc_inp,self.enc_preds= dl.one_batch() dec_data=dl.decode((self.enc_inp,self.enc_preds)) self.dec_img,self.dec_pred=dec_data[0][0],dec_data[1][0] self.colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if colors is None else colors attributions_ig_nt = self._noise_tunnel.attribute(self.enc_inp.to(self.dl.device), n_samples=1, nt_type=nt_type, target=self.enc_preds) default_cmap = LinearSegmentedColormap.from_list(cmap_name, self.colors, N=N) _ = viz.visualize_image_attr_multiple(np.transpose(attributions_ig_nt.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(self.dec_img.numpy(), (1,2,0)), methods,signs, cmap=default_cmap, show_colorbar=True,titles=[f'Original Image - ({self.dec_pred})', 'Noise Tunnel']) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=NoiseTunnelCallback()) learn.fine_tune(1) idx=randint(0,len(fnames)) learn.noise_tunnel.visualize(fnames[idx], nt_type='smoothgrad') ###Output _____no_output_____ ###Markdown Occlusion ###Code #export class OcclusionCallback(Callback): "Captum Callback for Resnet Interpretation" def __init__(self): pass def after_fit(self): self._occlusion = Occlusion(self.model) def _formatted_data_iter(self,dl): normalize_func= next((func for func in dl.after_batch if type(func)==Normalize),noop) dl_iter=iter(dl) while True: images,labels=next(dl_iter) images=normalize_func.decode(images).to(dl.device) return images,labels def visualize(self,inp_data,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],strides = (3, 4, 4), sliding_window_shapes=(3,15, 15), outlier_perc=2): dl = self.dls.test_dl(L(inp_data),with_labels=True, bs=1) self.dec_img,self.dec_pred=self._formatted_data_iter(dl) attributions_occ = self._occlusion.attribute(self.dec_img, strides = strides, target=self.dec_pred, sliding_window_shapes=sliding_window_shapes, baselines=0) self.colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if colors is None else colors default_cmap = LinearSegmentedColormap.from_list(cmap_name, self.colors, N=N) _ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(self.dec_img.squeeze().cpu().numpy(), (1,2,0)),methods,signs, cmap=default_cmap, show_colorbar=True, outlier_perc=outlier_perc,titles=[f'Original Image - ({self.dec_pred.cpu().item()})', 'Occlusion'] ) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=OcclusionCallback()) learn.fine_tune(1) idx=randint(0,len(fnames)) learn.occlusion.visualize(fnames[idx]) ###Output _____no_output_____ ###Markdown Captum Insights Callback ###Code #export class CaptumInsightsCallback(Callback): "Captum Insights Callback for Image Interpretation" def __init__(self): pass def _formatted_data_iter(self,dl,normalize_func): dl_iter=iter(dl) while True: images,labels=next(dl_iter) images=normalize_func.decode(images).to(dl.device) yield Batch(inputs=images, labels=labels) def visualize(self,inp_data,debug=True): _baseline_func= lambda o: o*0 _get_vocab = lambda vocab: list(map(str,vocab)) if isinstance(vocab[0],bool) else vocab dl = self.dls.test_dl(L(inp_data),with_labels=True, bs=4) normalize_func= next((func for func in dl.after_batch if type(func)==Normalize),noop) visualizer = AttributionVisualizer( models=[self.model], score_func=lambda o: torch.nn.functional.softmax(o, 1), classes=_get_vocab(dl.vocab), features=[ ImageFeature( "Image", baseline_transforms=[_baseline_func], input_transforms=[normalize_func], ) ], dataset=self._formatted_data_iter(dl,normalize_func) ) visualizer.render(debug=debug) learn = cnn_learner(dls, resnet34, metrics=error_rate,cbs=CaptumInsightsCallback()) learn.fine_tune(1) learn.captum_insights.visualize(fnames) ###Output _____no_output_____
assets/posts/2020-02-10-python-barplot/.ipynb_checkpoints/Untitled-checkpoint.ipynb
###Markdown ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ (Bar Chart) ๊ทธ๋ฆฌ๋Š” ๋ฐฉ๋ฒ• - pandas, matplotlib, seaborn ์‹œ๊ฐํ™”ํ•  ๋•Œ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š”๋ฐ, ๊ฒ€์ƒ‰ํ•  ๋•Œ ๋งˆ๋‹ค ๋ฐฉ๋ฒ•์ด ๋„ˆ๋ฌด ๋‹ค์–‘ํ•˜๋‹ค... ์ •๋ฆฌํ•ด๋ณด์ž. ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.style.use('ggplot') import random np.random.seed(seed=1) group_list = ['A','B','C','D'] n_size = 20 group = [random.choice(group_list) for i in range(n_size)] xval = np.random.poisson(lam=10,size=n_size) label = np.random.binomial(n=1, p=0.5, size=n_size) label = list(map(str, label)) df = pd.DataFrame({'xval':xval, 'group':group, 'label':label}) df.head() df_by_group = df.groupby(['group'])['xval'].sum() df_by_group_label = df.groupby(['group','label'])['xval'].sum() df_by_group df_by_group_label ###Output _____no_output_____ ###Markdown 1. pandas > __DataFrame.plot.bar(self, x=None, y=None, **kwargs)__ > x: xlabel or position, optional > y: ylabel or position, optional ํ•œ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ ###Code df_by_group = df_by_group.reset_index() df_by_group.plot.bar(x='group',y='xval',rot=0) df_by_group.plot.barh(x='group',y='xval',rot=0) ###Output _____no_output_____ ###Markdown ๋‘ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ- ๊ทธ๋ฃนํ™”๋œ ์š”์•ฝ ํ…Œ์ด๋ธ”์„ ํ”ผ๋ด‡ํ…Œ์ด๋ธ”๋กœ ๋งŒ๋“ ๋‹ค ###Code df_by_group_label = df_by_group_label.reset_index() df_pivot = df_by_group_label.pivot(index='group',columns='label',values='xval') df_pivot df_pivot.plot.bar(rot=0) df_pivot.plot.bar(stacked=True, rot=0) ###Output _____no_output_____ ###Markdown 2. matplotlib > __matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)__ > x : sequence of scalars > height : scalar or sequence of scalars > width : scalar or array-like, optional > bottom : scalar or array-like, optional ํ•œ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ ###Code df_by_group = df.groupby(['group'])['xval'].sum() df_by_group label = df_by_group.index index = np.arange(len(label)) # 0,1,2,3 plt.bar(index, df_by_group) plt.xticks(index, label, fontsize=15) # label ์ด๋ฆ„ ๋„ฃ๊ธฐ plt.barh(index, df_by_group) plt.yticks(index, label, fontsize=15) ###Output _____no_output_____ ###Markdown ๋‘ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ- plt.bar์˜ 'bottom' ๋˜๋Š” 'width' ์˜ต์…˜ ์„ ํ™œ์šฉํ•˜์ž- 2๋ฒˆ์งธ์ธต ๊ทธ๋ฃน์˜ ๋ผ๋ฒจ์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ๋”ฐ๋กœ ์ •์˜ํ•ด์•ผํ•œ๋‹ค ###Code df_by_group_by0 = df[df['label']=='0'].groupby(['group'])['xval'].sum() df_by_group_by1 = df[df['label']=='1'].groupby(['group'])['xval'].sum() label = df.group.unique() label = sorted(label) index = np.arange(len(label)) p1 = plt.bar(index,df_by_group_by0, color='red', alpha=0.5) p2 = plt.bar(index,df_by_group_by1, color='blue', alpha=0.5, bottom=df_by_group_by0) plt.xticks(index,label) plt.legend((p1[0], p2[0]), ('0', '1'), fontsize=15) p1 = plt.bar(index,df_by_group_by0, color='red', alpha=0.5, width=0.4) p2 = plt.bar(index+0.4,df_by_group_by1, color='blue', alpha=0.5, width=0.4) plt.xticks(index,label) plt.legend((p1[0], p2[0]), ('0', '1'), fontsize=15) ###Output _____no_output_____ ###Markdown * ๋ฌธ์ž์—ด ๋ฆฌ์ŠคํŠธ ์ •๋ ฌํ•˜๊ธฐ[์ฐธ์กฐ](https://hashcode.co.kr/questions/1058/%EB%A6%AC%EC%8A%A4%ED%8A%B8%EB%A5%BC-%EC%82%AC%EC%A0%84%EC%88%9C%EC%9C%BC%EB%A1%9C-%EC%A0%95%EB%A0%AC%ED%95%98%EB%A0%A4%EA%B3%A0-%ED%95%A9%EB%8B%88%EB%8B%A4) ###Code import locale import functools mylist = ["์‚ฌ๊ณผ", "๋ฐ”๋‚˜๋‚˜", "๋”ธ๊ธฐ", "ํฌ๋„"] locale.setlocale(locale.LC_ALL, '') #ํ•œ๊ตญ ๊ธฐ์ค€์œผ๋กœ set sortedByLocale = sorted(mylist, key=functools.cmp_to_key(locale.strcoll)) sortedByLocale ###Output _____no_output_____ ###Markdown 3. seaborn > __seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=, ci=95, n_boot=1000, units=None, seed=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)__ > x, y, hue: x, y, huenames of variables in data or vector data, optional > data: dataDataFrame, array, or list of arrays, optional > dodge: dodgebool, optional (When hue nesting is used, whether elements should be shifted along the categorical axis.) ํ•œ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ ###Code df_by_group = df.groupby(['group'])['xval'].sum().reset_index() sns.barplot(x='group', y='xval', data=df_by_group) ###Output _____no_output_____ ###Markdown ๋‘ ๊ฐœ์˜ ๊ทธ๋ฃน์ด ์žˆ์„ ๊ฒฝ์šฐ ###Code df_by_group_label = df.groupby(['group','label'])['xval'].sum().reset_index() sns.barplot(x='group', y='xval', hue='label',data=df_by_group_label ) df_by_group_by0 = df[df['label']=='0'].groupby(['group'])['xval'].sum().reset_index() df_by_group_by1 = df[df['label']=='1'].groupby(['group'])['xval'].sum().reset_index() sns.barplot(x='group', y='xval', data=df_by_group,color="red",alpha=0.5) sns.barplot(x='group', y='xval', data=df_by_group_by0 ,color="blue",alpha=0.5) ###Output _____no_output_____ ###Markdown 4. ํŒŒ์ด์ฌ์—์„œ R์˜ 'ggplot2' ์‚ฌ์šฉํ•˜๊ธฐ ###Code %matplotlib inline import plotnine as p9 p9.ggplot(data=df,mapping=p9.aes(x='group',y='xval'))+p9.geom_bar(stat='identity') p9.ggplot(data=df,mapping=p9.aes(x='group',y='xval',fill='label'))+p9.geom_bar(stat='identity') p9.ggplot(data=df,mapping=p9.aes(x='group',y='xval',fill='label'))+p9.geom_bar(stat='identity')+p9.coord_flip() p9.ggplot(data=df,mapping=p9.aes(x='group',y='xval',fill='label'))+p9.geom_bar(stat='identity',position='dodge') ###Output _____no_output_____
scripts/watershed/Watershed Transform 3D Sample Based.ipynb
###Markdown Watershed Distance Transform for 3D Data---Implementation of papers:[Deep Watershed Transform for Instance Segmentation](http://openaccess.thecvf.com/content_cvpr_2017/papers/Bai_Deep_Watershed_Transform_CVPR_2017_paper.pdf)[Learn to segment single cells with deep distance estimator and deep cell detector](https://arxiv.org/abs/1803.10829) ###Code import os import errno import numpy as np import deepcell ###Output Using TensorFlow backend. ###Markdown Load the Training Data ###Code # Download the data (saves to ~/.keras/datasets) filename = 'mousebrain.npz' (X_train, y_train), (X_test, y_test) = deepcell.datasets.mousebrain.load_data(filename) print('X.shape: {}\ny.shape: {}'.format(X_train.shape, y_train.shape)) ###Output Downloading data from https://deepcell-data.s3.amazonaws.com/nuclei/mousebrain.npz 1730158592/1730150850 [==============================] - 75s 0us/step X.shape: (176, 15, 256, 256, 1) y.shape: (176, 15, 256, 256, 1) ###Markdown Set up filepath constants ###Code # the path to the data file is currently required for `train_model_()` functions # change DATA_DIR if you are not using `deepcell.datasets` DATA_DIR = os.path.expanduser(os.path.join('~', '.keras', 'datasets')) # DATA_FILE should be a npz file, preferably from `make_training_data` DATA_FILE = os.path.join(DATA_DIR, filename) # confirm the data file is available assert os.path.isfile(DATA_FILE) # Set up other required filepaths # If the data file is in a subdirectory, mirror it in MODEL_DIR and LOG_DIR PREFIX = os.path.relpath(os.path.dirname(DATA_FILE), DATA_DIR) ROOT_DIR = '/data' # TODO: Change this! Usually a mounted volume MODEL_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'models', PREFIX)) LOG_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'logs', PREFIX)) # create directories if they do not exist for d in (MODEL_DIR, LOG_DIR): try: os.makedirs(d) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise ###Output _____no_output_____ ###Markdown Set up training parameters ###Code from tensorflow.keras.optimizers import SGD from deepcell.utils.train_utils import rate_scheduler fgbg_model_name = 'sample_fgbg_3d_model' sample_model_name = 'sample_watershed_3d_model' n_epoch = 1 # Number of training epochs test_size = .10 # % of data saved as test norm_method = 'std' # data normalization receptive_field = 61 # should be adjusted for the scale of the data optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) lr_sched = rate_scheduler(lr=0.01, decay=0.99) # Transformation settings transform = 'watershed' distance_bins = 4 # number of distance classes erosion_width = 0 # erode edges # 3D Settings frames_per_batch = 3 norm_method = 'whole_image' # data normalization - `whole_image` for 3d conv # Sample mode settings batch_size = 64 # number of images per batch (should be 2 ^ n) win = (receptive_field - 1) // 2 # sample window size win_z = (frames_per_batch - 1) // 2 # z window size balance_classes = True # sample each class equally max_class_samples = 1e7 # max number of samples per class. ###Output _____no_output_____ ###Markdown First, create a foreground/background separation model Instantiate the fgbg model ###Code from deepcell import model_zoo fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=2, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the model fgbg model ###Code from deepcell.training import train_model_sample fgbg_model = train_model_sample( model=fgbg_model, dataset=DATA_FILE, # full path to npz file model_name=fgbg_model_name, window_size=(win, win, win_z), optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, transform='fgbg', n_epoch=n_epoch, model_dir=MODEL_DIR, lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 2) Number of Classes: 2 Training on 1 GPUs Epoch 1/1 265793/265794 [============================>.] - ETA: 0s - loss: 0.1711 - acc: 0.9354 Epoch 00001: val_loss improved from inf to 0.26627, saving model to /data/models/sample_fgbg_3d_model.h5 265794/265794 [==============================] - 23715s 89ms/step - loss: 0.1711 - acc: 0.9354 - val_loss: 0.2663 - val_acc: 0.9266 ###Markdown Next, Create a model for the watershed energy transform Instantiate the deepcell transform model ###Code from deepcell import model_zoo watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=distance_bins, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the watershed transform model ###Code from deepcell.training import train_model_sample watershed_model = train_model_sample( model=watershed_model, dataset=DATA_FILE, # full path to npz file model_name=sample_model_name, window_size=(win, win, win_z), transform='watershed', distance_bins=distance_bins, erosion_width=erosion_width, optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, n_epoch=n_epoch, model_dir=MODEL_DIR, expt='sample_watershed', lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 4) Number of Classes: 4 Training on 1 GPUs Epoch 1/1 23577/23578 [============================>.] - ETA: 0s - loss: 0.6835 - acc: 0.6812 Epoch 00001: val_loss improved from inf to 0.39299, saving model to /data/models/sample_watershed_3d_model.h5 23578/23578 [==============================] - 5415s 230ms/step - loss: 0.6835 - acc: 0.6812 - val_loss: 0.3930 - val_acc: 0.9062 ###Markdown Run the modelThe model was trained on small samples of data of shape `(receptive_field, receptive_field)`.in order to process full-sized images, the trained weights will be saved and loaded into a new model with `dilated=True` and proper `input_shape`. Save weights of trained models ###Code fgbg_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(fgbg_model_name)) fgbg_model.save_weights(fgbg_weights_file) watershed_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(sample_model_name)) watershed_model.save_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Initialize dilated models and load the weights ###Code from deepcell import model_zoo run_fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=2, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_fgbg_model.load_weights(fgbg_weights_file) run_watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=distance_bins, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_watershed_model.load_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Make predictions on test data ###Code test_images = run_watershed_model.predict(X_test[:4]) test_images_fgbg = run_fgbg_model.predict(X_test[:4]) print('watershed transform shape:', test_images.shape) print('segmentation mask shape:', test_images_fgbg.shape) ###Output watershed transform shape: (4, 15, 256, 256, 4) segmentation mask shape: (4, 15, 256, 256, 2) ###Markdown Watershed post-processing ###Code argmax_images = [] for i in range(test_images.shape[0]): max_image = np.argmax(test_images[i], axis=-1) argmax_images.append(max_image) argmax_images = np.array(argmax_images) argmax_images = np.expand_dims(argmax_images, axis=-1) print('watershed argmax shape:', argmax_images.shape) # threshold the foreground/background # and remove back ground from watershed transform threshold = 0.8 fg_thresh = test_images_fgbg[..., 1] > threshold fg_thresh = np.expand_dims(fg_thresh, axis=-1) argmax_images_post_fgbg = argmax_images * fg_thresh # Apply watershed method with the distance transform as seed from skimage.measure import label from skimage.morphology import watershed from skimage.feature import peak_local_max watershed_images = [] for i in range(argmax_images_post_fgbg.shape[0]): image = fg_thresh[i, ..., 0] distance = argmax_images_post_fgbg[i, ..., 0] local_maxi = peak_local_max(test_images[i, ..., -1], min_distance=15, exclude_border=False, indices=False, labels=image) markers = label(local_maxi) segments = watershed(-distance, markers, mask=image) watershed_images.append(segments) watershed_images = np.array(watershed_images) watershed_images = np.expand_dims(watershed_images, axis=-1) # Plot the results import matplotlib.pyplot as plt index = np.random.randint(low=0, high=watershed_images.shape[0]) frame = np.random.randint(low=0, high=watershed_images.shape[1]) print('Image:', index) print('Frame:', frame) fig, axes = plt.subplots(ncols=3, nrows=2, figsize=(15, 15), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(X_test[index, frame, ..., 0]) ax[0].set_title('Source Image') ax[1].imshow(test_images_fgbg[index, frame, ..., 1]) ax[1].set_title('Segmentation Prediction') ax[2].imshow(fg_thresh[index, frame, ..., 0], cmap='jet') ax[2].set_title('Thresholded Segmentation') ax[3].imshow(argmax_images[index, frame, ..., 0], cmap='jet') ax[3].set_title('Watershed Transform') ax[4].imshow(argmax_images_post_fgbg[index, frame, ..., 0], cmap='jet') ax[4].set_title('Watershed Transform w/o Background') ax[5].imshow(watershed_images[index, frame, ..., 0], cmap='jet') ax[5].set_title('Watershed Segmentation') fig.tight_layout() plt.show() from deepcell.utils.plot_utils import get_js_video from IPython.display import HTML HTML(get_js_video(watershed_images, batch=0, channel=0)) ###Output _____no_output_____ ###Markdown Watershed Distance Transform for 3D Data---Implementation of papers:[Deep Watershed Transform for Instance Segmentation](http://openaccess.thecvf.com/content_cvpr_2017/papers/Bai_Deep_Watershed_Transform_CVPR_2017_paper.pdf)[Learn to segment single cells with deep distance estimator and deep cell detector](https://arxiv.org/abs/1803.10829) ###Code import os import errno import numpy as np import deepcell ###Output Using TensorFlow backend. ###Markdown Load the Training Data ###Code # Download the data (saves to ~/.keras/datasets) filename = 'mousebrain.npz' (X_train, y_train), (X_test, y_test) = deepcell.datasets.mousebrain.load_data(filename) print('X.shape: {}\ny.shape: {}'.format(X_train.shape, y_train.shape)) ###Output Downloading data from https://deepcell-data.s3.amazonaws.com/nuclei/mousebrain.npz 1730158592/1730150850 [==============================] - 75s 0us/step X.shape: (176, 15, 256, 256, 1) y.shape: (176, 15, 256, 256, 1) ###Markdown Set up filepath constants ###Code # the path to the data file is currently required for `train_model_()` functions # change DATA_DIR if you are not using `deepcell.datasets` DATA_DIR = os.path.expanduser(os.path.join('~', '.keras', 'datasets')) # DATA_FILE should be a npz file, preferably from `make_training_data` DATA_FILE = os.path.join(DATA_DIR, filename) # confirm the data file is available assert os.path.isfile(DATA_FILE) # Set up other required filepaths # If the data file is in a subdirectory, mirror it in MODEL_DIR and LOG_DIR PREFIX = os.path.relpath(os.path.dirname(DATA_FILE), DATA_DIR) ROOT_DIR = '/data' # TODO: Change this! Usually a mounted volume MODEL_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'models', PREFIX)) LOG_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'logs', PREFIX)) # create directories if they do not exist for d in (MODEL_DIR, LOG_DIR): try: os.makedirs(d) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise ###Output _____no_output_____ ###Markdown Set up training parameters ###Code from tensorflow.keras.optimizers import SGD from deepcell.utils.train_utils import rate_scheduler fgbg_model_name = 'sample_fgbg_3d_model' sample_model_name = 'sample_watershed_3d_model' n_epoch = 1 # Number of training epochs test_size = .10 # % of data saved as test norm_method = 'std' # data normalization receptive_field = 61 # should be adjusted for the scale of the data optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) lr_sched = rate_scheduler(lr=0.01, decay=0.99) # Transformation settings transform = 'watershed' distance_bins = 4 # number of distance classes erosion_width = 0 # erode edges # 3D Settings frames_per_batch = 3 norm_method = 'whole_image' # data normalization - `whole_image` for 3d conv # Sample mode settings batch_size = 64 # number of images per batch (should be 2 ^ n) win = (receptive_field - 1) // 2 # sample window size win_z = (frames_per_batch - 1) // 2 # z window size balance_classes = True # sample each class equally max_class_samples = 1e7 # max number of samples per class. ###Output _____no_output_____ ###Markdown First, create a foreground/background separation model Instantiate the fgbg model ###Code from deepcell import model_zoo fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=2, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the model fgbg model ###Code from deepcell.training import train_model_sample fgbg_model = train_model_sample( model=fgbg_model, dataset=DATA_FILE, # full path to npz file model_name=fgbg_model_name, test_size=test_size, window_size=(win, win, win_z), optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, transform='fgbg', n_epoch=n_epoch, model_dir=MODEL_DIR, lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 2) Number of Classes: 2 Training on 1 GPUs Epoch 1/1 265793/265794 [============================>.] - ETA: 0s - loss: 0.1711 - acc: 0.9354 Epoch 00001: val_loss improved from inf to 0.26627, saving model to /data/models/sample_fgbg_3d_model.h5 265794/265794 [==============================] - 23715s 89ms/step - loss: 0.1711 - acc: 0.9354 - val_loss: 0.2663 - val_acc: 0.9266 ###Markdown Next, Create a model for the watershed energy transform Instantiate the deepcell transform model ###Code from deepcell import model_zoo watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=distance_bins, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the watershed transform model ###Code from deepcell.training import train_model_sample watershed_model = train_model_sample( model=watershed_model, dataset=DATA_FILE, # full path to npz file model_name=sample_model_name, test_size=test_size, window_size=(win, win, win_z), transform='watershed', distance_bins=distance_bins, erosion_width=erosion_width, optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, n_epoch=n_epoch, model_dir=MODEL_DIR, expt='sample_watershed', lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 4) Number of Classes: 4 Training on 1 GPUs Epoch 1/1 23577/23578 [============================>.] - ETA: 0s - loss: 0.6835 - acc: 0.6812 Epoch 00001: val_loss improved from inf to 0.39299, saving model to /data/models/sample_watershed_3d_model.h5 23578/23578 [==============================] - 5415s 230ms/step - loss: 0.6835 - acc: 0.6812 - val_loss: 0.3930 - val_acc: 0.9062 ###Markdown Run the modelThe model was trained on small samples of data of shape `(receptive_field, receptive_field)`.in order to process full-sized images, the trained weights will be saved and loaded into a new model with `dilated=True` and proper `input_shape`. Save weights of trained models ###Code fgbg_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(fgbg_model_name)) fgbg_model.save_weights(fgbg_weights_file) watershed_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(sample_model_name)) watershed_model.save_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Initialize dilated models and load the weights ###Code from deepcell import model_zoo run_fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=2, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_fgbg_model.load_weights(fgbg_weights_file) run_watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=distance_bins, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_watershed_model.load_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Make predictions on test data ###Code test_images = run_watershed_model.predict(X_test[:4]) test_images_fgbg = run_fgbg_model.predict(X_test[:4]) print('watershed transform shape:', test_images.shape) print('segmentation mask shape:', test_images_fgbg.shape) ###Output watershed transform shape: (4, 15, 256, 256, 4) segmentation mask shape: (4, 15, 256, 256, 2) ###Markdown Watershed post-processing ###Code argmax_images = [] for i in range(test_images.shape[0]): max_image = np.argmax(test_images[i], axis=-1) argmax_images.append(max_image) argmax_images = np.array(argmax_images) argmax_images = np.expand_dims(argmax_images, axis=-1) print('watershed argmax shape:', argmax_images.shape) # threshold the foreground/background # and remove back ground from watershed transform threshold = 0.8 fg_thresh = test_images_fgbg[..., 1] > threshold fg_thresh = np.expand_dims(fg_thresh, axis=-1) argmax_images_post_fgbg = argmax_images * fg_thresh # Apply watershed method with the distance transform as seed from skimage.measure import label from skimage.morphology import watershed from skimage.feature import peak_local_max watershed_images = [] for i in range(argmax_images_post_fgbg.shape[0]): image = fg_thresh[i, ..., 0] distance = argmax_images_post_fgbg[i, ..., 0] local_maxi = peak_local_max(test_images[i, ..., -1], min_distance=15, exclude_border=False, indices=False, labels=image) markers = label(local_maxi) segments = watershed(-distance, markers, mask=image) watershed_images.append(segments) watershed_images = np.array(watershed_images) watershed_images = np.expand_dims(watershed_images, axis=-1) # Plot the results import matplotlib.pyplot as plt index = np.random.randint(low=0, high=watershed_images.shape[0]) frame = np.random.randint(low=0, high=watershed_images.shape[1]) print('Image:', index) print('Frame:', frame) fig, axes = plt.subplots(ncols=3, nrows=2, figsize=(15, 15), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(X_test[index, frame, ..., 0]) ax[0].set_title('Source Image') ax[1].imshow(test_images_fgbg[index, frame, ..., 1]) ax[1].set_title('Segmentation Prediction') ax[2].imshow(fg_thresh[index, frame, ..., 0], cmap='jet') ax[2].set_title('Thresholded Segmentation') ax[3].imshow(argmax_images[index, frame, ..., 0], cmap='jet') ax[3].set_title('Watershed Transform') ax[4].imshow(argmax_images_post_fgbg[index, frame, ..., 0], cmap='jet') ax[4].set_title('Watershed Transform w/o Background') ax[5].imshow(watershed_images[index, frame, ..., 0], cmap='jet') ax[5].set_title('Watershed Segmentation') fig.tight_layout() plt.show() from deepcell.utils.plot_utils import get_js_video from IPython.display import HTML HTML(get_js_video(watershed_images, batch=0, channel=0)) ###Output _____no_output_____ ###Markdown Watershed Distance Transform for 3D Data---Implementation of papers:[Deep Watershed Transform for Instance Segmentation](http://openaccess.thecvf.com/content_cvpr_2017/papers/Bai_Deep_Watershed_Transform_CVPR_2017_paper.pdf)[Learn to segment single cells with deep distance estimator and deep cell detector](https://arxiv.org/abs/1803.10829) ###Code import os import errno import numpy as np import deepcell ###Output Using TensorFlow backend. ###Markdown Load the Training Data ###Code # Download the data (saves to ~/.keras/datasets) filename = 'mousebrain.npz' test_size = 0.1 # % of data saved as test seed = 0 # seed for random train-test split (X_train, y_train), (X_test, y_test) = deepcell.datasets.mousebrain.load_data(filename, test_size=test_size, seed=seed) print('X.shape: {}\ny.shape: {}'.format(X_train.shape, y_train.shape)) ###Output Downloading data from https://deepcell-data.s3.amazonaws.com/nuclei/mousebrain.npz 1730158592/1730150850 [==============================] - 75s 0us/step X.shape: (176, 15, 256, 256, 1) y.shape: (176, 15, 256, 256, 1) ###Markdown Set up filepath constants ###Code # the path to the data file is currently required for `train_model_()` functions # change DATA_DIR if you are not using `deepcell.datasets` DATA_DIR = os.path.expanduser(os.path.join('~', '.keras', 'datasets')) # DATA_FILE should be a npz file, preferably from `make_training_data` DATA_FILE = os.path.join(DATA_DIR, filename) # confirm the data file is available assert os.path.isfile(DATA_FILE) # Set up other required filepaths # If the data file is in a subdirectory, mirror it in MODEL_DIR and LOG_DIR PREFIX = os.path.relpath(os.path.dirname(DATA_FILE), DATA_DIR) ROOT_DIR = '/data' # TODO: Change this! Usually a mounted volume MODEL_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'models', PREFIX)) LOG_DIR = os.path.abspath(os.path.join(ROOT_DIR, 'logs', PREFIX)) # create directories if they do not exist for d in (MODEL_DIR, LOG_DIR): try: os.makedirs(d) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise ###Output _____no_output_____ ###Markdown Set up training parameters ###Code from tensorflow.keras.optimizers import SGD from deepcell.utils.train_utils import rate_scheduler fgbg_model_name = 'sample_fgbg_3d_model' sample_model_name = 'sample_watershed_3d_model' n_epoch = 1 # Number of training epochs norm_method = 'std' # data normalization receptive_field = 61 # should be adjusted for the scale of the data optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) lr_sched = rate_scheduler(lr=0.01, decay=0.99) # Transformation settings transform = 'watershed' distance_bins = 4 # number of distance classes erosion_width = 1 # erode edges, improves segmentation when cells are close # 3D Settings frames_per_batch = 3 norm_method = 'whole_image' # data normalization - `whole_image` for 3d conv # Sample mode settings batch_size = 64 # number of images per batch (should be 2 ^ n) win = (receptive_field - 1) // 2 # sample window size win_z = (frames_per_batch - 1) // 2 # z window size balance_classes = True # sample each class equally max_class_samples = 1e7 # max number of samples per class. ###Output _____no_output_____ ###Markdown First, create a foreground/background separation model Instantiate the fgbg model ###Code from deepcell import model_zoo fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=2, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the model fgbg model ###Code from deepcell.training import train_model_sample fgbg_model = train_model_sample( model=fgbg_model, dataset=DATA_FILE, # full path to npz file model_name=fgbg_model_name, test_size=test_size, seed=seed, window_size=(win, win, win_z), optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, transform='fgbg', n_epoch=n_epoch, model_dir=MODEL_DIR, lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 2) Number of Classes: 2 Training on 1 GPUs Epoch 1/1 265793/265794 [============================>.] - ETA: 0s - loss: 0.1711 - acc: 0.9354 Epoch 00001: val_loss improved from inf to 0.26627, saving model to /data/models/sample_fgbg_3d_model.h5 265794/265794 [==============================] - 23715s 89ms/step - loss: 0.1711 - acc: 0.9354 - val_loss: 0.2663 - val_acc: 0.9266 ###Markdown Next, Create a model for the watershed energy transform Instantiate the deepcell transform model ###Code from deepcell import model_zoo watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, n_features=distance_bins, norm_method=norm_method, n_frames=frames_per_batch, n_channels=X_train.shape[-1]) ###Output _____no_output_____ ###Markdown Train the watershed transform model ###Code from deepcell.training import train_model_sample watershed_model = train_model_sample( model=watershed_model, dataset=DATA_FILE, # full path to npz file model_name=sample_model_name, test_size=test_size, seed=seed, window_size=(win, win, win_z), transform='watershed', distance_bins=distance_bins, erosion_width=erosion_width, optimizer=optimizer, batch_size=batch_size, balance_classes=balance_classes, max_class_samples=max_class_samples, n_epoch=n_epoch, model_dir=MODEL_DIR, expt='sample_watershed', lr_sched=lr_sched, rotation_range=180, flip=True, shear=False, zoom_range=(0.8, 1.2)) ###Output X_train shape: (198, 15, 256, 256, 1) y_train shape: (198, 15, 256, 256, 1) X_test shape: (22, 15, 256, 256, 1) y_test shape: (22, 15, 256, 256, 1) Output Shape: (None, 4) Number of Classes: 4 Training on 1 GPUs Epoch 1/1 23577/23578 [============================>.] - ETA: 0s - loss: 0.6835 - acc: 0.6812 Epoch 00001: val_loss improved from inf to 0.39299, saving model to /data/models/sample_watershed_3d_model.h5 23578/23578 [==============================] - 5415s 230ms/step - loss: 0.6835 - acc: 0.6812 - val_loss: 0.3930 - val_acc: 0.9062 ###Markdown Run the modelThe model was trained on small samples of data of shape `(receptive_field, receptive_field)`.in order to process full-sized images, the trained weights will be saved and loaded into a new model with `dilated=True` and proper `input_shape`. Save weights of trained models ###Code fgbg_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(fgbg_model_name)) fgbg_model.save_weights(fgbg_weights_file) watershed_weights_file = os.path.join(MODEL_DIR, '{}.h5'.format(sample_model_name)) watershed_model.save_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Initialize dilated models and load the weights ###Code from deepcell import model_zoo run_fgbg_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=2, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_fgbg_model.load_weights(fgbg_weights_file) run_watershed_model = model_zoo.bn_feature_net_3D( receptive_field=receptive_field, dilated=True, n_features=distance_bins, n_frames=frames_per_batch, input_shape=tuple(X_test.shape[1:])) run_watershed_model.load_weights(watershed_weights_file) ###Output _____no_output_____ ###Markdown Make predictions on test data ###Code test_images = run_watershed_model.predict(X_test[:4]) test_images_fgbg = run_fgbg_model.predict(X_test[:4]) print('watershed transform shape:', test_images.shape) print('segmentation mask shape:', test_images_fgbg.shape) ###Output watershed transform shape: (4, 15, 256, 256, 4) segmentation mask shape: (4, 15, 256, 256, 2) ###Markdown Watershed post-processing ###Code argmax_images = [] for i in range(test_images.shape[0]): max_image = np.argmax(test_images[i], axis=-1) argmax_images.append(max_image) argmax_images = np.array(argmax_images) argmax_images = np.expand_dims(argmax_images, axis=-1) print('watershed argmax shape:', argmax_images.shape) # threshold the foreground/background # and remove back ground from watershed transform threshold = 0.8 fg_thresh = test_images_fgbg[..., 1] > threshold fg_thresh = np.expand_dims(fg_thresh, axis=-1) argmax_images_post_fgbg = argmax_images * fg_thresh # Apply watershed method with the distance transform as seed from skimage.measure import label from skimage.morphology import watershed from skimage.feature import peak_local_max watershed_images = [] for i in range(argmax_images_post_fgbg.shape[0]): image = fg_thresh[i, ..., 0] distance = argmax_images_post_fgbg[i, ..., 0] local_maxi = peak_local_max(test_images[i, ..., -1], min_distance=15, exclude_border=False, indices=False, labels=image) markers = label(local_maxi) segments = watershed(-distance, markers, mask=image) watershed_images.append(segments) watershed_images = np.array(watershed_images) watershed_images = np.expand_dims(watershed_images, axis=-1) # Plot the results import matplotlib.pyplot as plt index = np.random.randint(low=0, high=watershed_images.shape[0]) frame = np.random.randint(low=0, high=watershed_images.shape[1]) print('Image:', index) print('Frame:', frame) fig, axes = plt.subplots(ncols=3, nrows=2, figsize=(15, 15), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(X_test[index, frame, ..., 0]) ax[0].set_title('Source Image') ax[1].imshow(test_images_fgbg[index, frame, ..., 1]) ax[1].set_title('Segmentation Prediction') ax[2].imshow(fg_thresh[index, frame, ..., 0], cmap='jet') ax[2].set_title('Thresholded Segmentation') ax[3].imshow(argmax_images[index, frame, ..., 0], cmap='jet') ax[3].set_title('Watershed Transform') ax[4].imshow(argmax_images_post_fgbg[index, frame, ..., 0], cmap='jet') ax[4].set_title('Watershed Transform w/o Background') ax[5].imshow(watershed_images[index, frame, ..., 0], cmap='jet') ax[5].set_title('Watershed Segmentation') fig.tight_layout() plt.show() from deepcell.utils.plot_utils import get_js_video from IPython.display import HTML HTML(get_js_video(watershed_images, batch=0, channel=0)) ###Output _____no_output_____
day-3/day-3.ipynb
###Markdown --- Day 3: Crossed Wires ---Specifically, two wires are connected to a central port and extend outward on a grid. You trace the path each wire takes as it leaves the central port, one wire per line of text (your puzzle input).The wires twist and turn, but the two wires occasionally cross paths. To fix the circuit, you need to find the intersection point closest to the central port. Because the wires are on a grid, use the Manhattan distance for this measurement. While the wires do technically cross right at the central port where they both start, this point does not count, nor does a wire count as crossing with itself. ###Code from pathlib import Path def travel(points, instruction): direction = instruction[0] distance = int(instruction[1:]) x = points[-1][0] y = points[-1][1] if direction == "R": new_points = [(x + t, y) for t in range(1, distance + 1)] if direction == "L": new_points = [(x - t, y) for t in range(1, distance + 1)] if direction == "U": new_points = [(x, y + t) for t in range(1, distance + 1)] if direction == "D": new_points = [(x, y - t) for t in range(1, distance + 1)] points += new_points return points def get_points(start, instructions): points = start for instruction in instructions: points = travel(points, instruction) return points def manhattan(p1, p2): return sum([abs(a - b) for a, b in zip(p1, p2)]) def get_shortest_distance(paths): line_one_instructions = paths[0].split(",") line_two_instructions = paths[1].split(",") line_one_points = get_points([(0, 0)], line_one_instructions) line_two_points = get_points([(0, 0)], line_two_instructions) intersections = list(set(line_one_points).intersection(set(line_two_points))) distances = [manhattan((0, 0), point) for point in intersections] distances_greater_than_zero = [distance for distance in distances if distance != 0] return min(distances_greater_than_zero) test_paths_one = [ "R75,D30,R83,U83,L12,D49,R71,U7,L72", "U62,R66,U55,R34,D71,R55,D58,R83", ] test_paths_two = [ "R98,U47,R26,D63,R33,U87,L62,D20,R33,U53,R51", "U98,R91,D20,R16,D67,R40,U7,R15,U6,R7", ] paths = Path("input").read_text().splitlines() # Should be 159 get_shortest_distance(test_paths_one) # Should be 135 get_shortest_distance(test_paths_two) get_shortest_distance(paths) ###Output _____no_output_____ ###Markdown --- Part Two ---It turns out that this circuit is very timing-sensitive; you actually need to minimize the signal delay.To do this, calculate the number of steps each wire takes to reach each intersection; choose the intersection where the sum of both wires' steps is lowest. If a wire visits a position on the grid multiple times, use the steps value from the first time it visits that position when calculating the total value of a specific intersection.The number of steps a wire takes is the total number of grid squares the wire has entered to get to that location, including the intersection being considered. ###Code def get_fewest_steps(paths): line_one_instructions = paths[0].split(",") line_two_instructions = paths[1].split(",") line_one_points = get_points([(0, 0)], line_one_instructions) line_two_points = get_points([(0, 0)], line_two_instructions) intersections = list(set(line_one_points).intersection(set(line_two_points))) steps_dict = { line_one_points.index(intersection) + (line_two_points).index(intersection): intersection for intersection in intersections if intersection != (0, 0) } return min(steps_dict.keys()) # Should be 610 get_fewest_steps(test_paths_one) # Should be 410 get_fewest_steps(test_paths_two) get_fewest_steps(paths) ###Output _____no_output_____
Projects/Project2/Project2_Prashant.ipynb
###Markdown ```Project: Project 2: LutherDate: 02/03/2017Name: Prashant Tatineni``` Project OverviewFor Project Luther, I gathered the set of all films listed under movie franchises on boxofficemojo.com. My goal was to predict the success of a movie sequel (i.e., domestic gross in USD) based on the performance of other sequels, and especially based on previous films in that particular franchise. I saw some linear correlation between certain variables, like number of theaters, and the total domestic gross, but the predictions from my final model were not entirely reasonable. More time could be spent on better addressing the various outliers in the dataset. Summary of Solution Steps1. Retrieve data from boxofficemojo.com.2. Clean up data and reduce to a set of predictor variables, with "Adjusted Gross" as the target for prediction.3. Run Linear Regression model.4. Review model performance. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.display import Image import requests from bs4 import BeautifulSoup import dateutil.parser import statsmodels.api as sm import patsy from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import sys, sklearn from sklearn import linear_model, preprocessing from sklearn import metrics %matplotlib inline ###Output _____no_output_____ ###Markdown Step 1I started with the "Franchises" list on Boxofficemojo.com. Within each franchise page, I scraped each movie's information and enter it into a Python dictionary. If it's already in the dictionary, the entry will be overwritten, except with a different Franchise name. But note below that the url for "Franchises" list was sorted Ascending, so this conveniently rolls "subfranchises" into their "parent" franchise.E.g., "Fantastic Beasts" and the "Harry Potter" movies have their own separate Franchises, but they will all be tagged as the "JKRowling" franchise, i.e. "./chart/?id=jkrowling.htm"Also, because I was comparing sequels to their predecessors, I focused on Domestic Gross, adjusted for ticket price inflation. ###Code url = 'http://www.boxofficemojo.com/franchises/?view=Franchise&sort=nummovies&order=ASC&p=.htm' response = requests.get(url) page = response.text soup = BeautifulSoup(page,"lxml") tables = soup.find_all("table") rows = [row for row in tables[3].find_all('tr')] rows = rows[1:] # Initialize empty dictionary of movies movies = {} for row in rows: items = row.find_all('td') franchise = items[0].find('a')['href'] franchiseurl = 'http://www.boxofficemojo.com/franchises/' + franchise[2:] response = requests.get(franchiseurl) franchise_page = response.text franchise_soup = BeautifulSoup(franchise_page,"lxml") franchise_tables = franchise_soup.find_all("table") franchise_gross = [row for row in franchise_tables[4].find_all('tr')] franchise_gross = franchise_gross[1:len(franchise_gross)-2] franchise_adjgross = [row for row in franchise_tables[5].find_all('tr')] franchise_adjgross = franchise_adjgross[1:len(franchise_adjgross)-2] # Assign movieurl as key # Add title, franchise, inflation-adjusted gross, release date. for row in franchise_adjgross: movie_info = row.find_all('td') movieurl = movie_info[1].find('a')['href'] title = movie_info[1] adjgross = movie_info[3] release = movie_info[5] movies[movieurl] = [title.text] movies[movieurl].append(franchise) movies[movieurl].append(adjgross.text) movies[movieurl].append(release.text) # Add number of theaters for the above movies for row in franchise_gross: movie_info = row.find_all('td') movieurl = movie_info[1].find('a')['href'] theaters = movie_info[4] if movieurl in movies.keys(): movies[movieurl].append(theaters.text) df = pd.DataFrame(movies.values()) df.columns = ['Title','Franchise', 'AdjGross', 'Release', 'Theaters'] df.head() df.shape ###Output _____no_output_____ ###Markdown Step 2Clean up data. ###Code # Remove movies that were re-issues, special editions, or separate 3D or IMAX versions. df['Ignore'] = df['Title'].apply(lambda x: 're-issue' in x.lower() or 're-release' in x.lower() or 'special edition' in x.lower() or '3d)' in x.lower() or 'imax' in x.lower()) df = df[(df.Ignore == False)] del df['Ignore'] df.shape # Convert Adjusted Gross to a number df['AdjGross'] = df['AdjGross'].apply(lambda x: int(x.replace('$','').replace(',',''))) # Convert Date string to dateobject. Need to prepend '19' for dates > 17 because Python treats '/60' as year '2060' df['Release'] = df['Release'].apply(lambda x: (x[:-2] + '19' + x[-2:]) if int(x[-2:]) > 17 else x) df['Release'] = df['Release'].apply(lambda x: dateutil.parser.parse(x)) ###Output _____no_output_____ ###Markdown The films need to be grouped by franchise so that franchise-related data can be included as featured for each observation.- The Average Adjusted Gross of all previous films in the franchise- The Adjusted Gross of the very first film in the franchise- The Release Date of the previous film in the franchise- The Release Date of the very first film in the franchise- The Series Number of the film in that franchise -- I considered using the film's number in the franchise as a rank value that could be split into indicator variables, but it's useful as a linear value because the total accrued sum of $ earned by the franchise is a linear combination of "SeriesNum" and "PrevAvgGross" ###Code df = df.sort_values(['Franchise','Release']) df['CumGross'] = df.groupby(['Franchise'])['AdjGross'].apply(lambda x: x.cumsum()) df['SeriesNum'] = df.groupby(['Franchise'])['Release'].apply(lambda x: x.rank()) df['PrevAvgGross'] = (df['CumGross'] - df['AdjGross'])/(df['SeriesNum'] - 1) ###Output _____no_output_____ ###Markdown - Number of Theaters in which the film showed -- Where this number was unavailable, replaced '-' with 0; the 0 will later be replaced with the mean number of theaters for the other films in the same franchise. I chose the average as a reasonable estimate. ###Code df.Theaters = df.Theaters.replace('-','0') df['Theaters'] = df['Theaters'].apply(lambda x: int(x.replace(',',''))) df['PrevRelease'] = df['Release'].shift() # Create a second dataframe with franchise group-related information. df_group = pd.DataFrame(df.groupby(['Franchise'])['Title'].apply(lambda x: x.count())) df_group['FirstGross'] = df.groupby(['Franchise'])['AdjGross'].first() df_group['FirstRelease'] = df.groupby(['Franchise'])['Release'].first() df_group['SumTheaters'] = df.groupby(['Franchise'])['Theaters'].apply(lambda x: x.sum()) df_group.columns = ['NumOfFilms','FirstGross','FirstRelease','SumTheaters'] df_group['AvgTheaters'] = df_group['SumTheaters']/df_group['NumOfFilms'] df_group['Franchise'] = df.groupby(['Franchise'])['Franchise'].first() df = df.merge(df_group, on='Franchise') df.head() df['Theaters'] = df.Theaters.replace(0,df.AvgTheaters) # Drop rows with NaN. Drops all first films, but I've already stored first film information within other features. df = df.dropna() df.shape df['DaysSinceFirstFilm'] = df.Release - df.FirstRelease df['DaysSinceFirstFilm'] = df['DaysSinceFirstFilm'].apply(lambda x: x.days) df['DaysSincePrevFilm'] = df.Release - df.PrevRelease df['DaysSincePrevFilm'] = df['DaysSincePrevFilm'].apply(lambda x: x.days) df.sort_values('Release',ascending=False).head() ###Output _____no_output_____ ###Markdown For the regression model, I decided to keep data for films released through 2016, but drop the 3 films released this year; because of their recent release date, their gross earnings will not yet be representative. ###Code films17 = df.loc[[530,712,676]] # Grabbing columns for regression model and dropping 2017 films dfreg = df[['AdjGross','Theaters','SeriesNum','PrevAvgGross','FirstGross','DaysSinceFirstFilm','DaysSincePrevFilm']] dfreg = dfreg.drop([530,712,676]) dfreg.shape ###Output _____no_output_____ ###Markdown Step 3Apply Linear Regression. ###Code dfreg.corr() sns.pairplot(dfreg); sns.regplot((dfreg.PrevAvgGross), (dfreg.AdjGross)); sns.regplot(np.log(dfreg.Theaters), np.log(dfreg.AdjGross)); ###Output _____no_output_____ ###Markdown In the pairplot we can see that 'AdjGross' may have some correlation with the variables, particularly 'Theaters' and 'PrevAvgGross'. However, it looks like a polynomial model, or natural log / some other transformation will be required before fitting a linear model. ###Code y, X = patsy.dmatrices('AdjGross ~ Theaters + SeriesNum + PrevAvgGross + FirstGross + DaysSinceFirstFilm + DaysSincePrevFilm', data=dfreg, return_type="dataframe") ###Output _____no_output_____ ###Markdown First try: Initial linear regression model with statsmodels ###Code model = sm.OLS(y, X) fit = model.fit() fit.summary() fit.resid.plot(style='o'); ###Output _____no_output_____ ###Markdown Try Polynomial Regression ###Code polyX=PolynomialFeatures(2).fit_transform(X) polymodel = sm.OLS(y, polyX) polyfit = polymodel.fit() polyfit.rsquared polyfit.resid.plot(style='o'); polyfit.rsquared_adj ###Output _____no_output_____ ###Markdown HeteroskedasticityThe polynomial regression improved the Adjusted Rsquared and the residual plot, but there's still issues with other statistics including skew. It's worth running the Breusch-Pagan test: ###Code hetnames = ['Lagrange multiplier statistic', 'p-val', 'f-val', 'f p-val'] hettest = sm.stats.diagnostic.het_breushpagan(fit.resid, fit.model.exog) zip(hetnames,hettest) hetnames = ['Lagrange multiplier statistic', 'p-val', 'f-val', 'f p-val'] hettest = sm.stats.diagnostic.het_breushpagan(polyfit.resid, fit.model.exog) zip(hetnames,hettest) ###Output _____no_output_____ ###Markdown Apply Box-Cox TransformationAs seen above the p-values were very low, suggesting the data is indeed tending towards heteroskedasticity. To improve the data we can apply boxcox. ###Code dfPolyX = pd.DataFrame(polyX) bcPolyX = pd.DataFrame() for i in range(dfPolyX.shape[1]): bcPolyX[i] = scipy.stats.boxcox(dfPolyX[i])[0] # Transformed data with Box-Cox: bcPolyX.head() # Introduce log(y) for target variable: y = y.reset_index(drop=True) logy = np.log(y) ###Output _____no_output_____ ###Markdown Try Polynomial Regression again with Log Y and Box-Cox transformed X ###Code logPolyModel = sm.OLS(logy, bcPolyX) logPolyFit = logPolyModel.fit() logPolyFit.rsquared_adj ###Output _____no_output_____ ###Markdown Apply Regularization using Elastic Net to optimize this model. ###Code X_scaled = preprocessing.scale(bcPolyX) en_cv = linear_model.ElasticNetCV(cv=10, normalize=False) en_cv.fit(X_scaled, logy) en_cv.coef_ logy_en = en_cv.predict(X_scaled) mse = metrics.mean_squared_error(logy, logy_en) # The mean square error for this model mse plt.scatter([x for x in range(540)],(pd.DataFrame(logy_en)[0] - logy['AdjGross'])); ###Output _____no_output_____ ###Markdown Step 4As seen above, Polynomial Regression with Elastic Net produces a model with several nonzero coefficients for the given features. I decided to try testing this model on the three new sequels for 2017. ###Code films17 df17 = films17[['AdjGross','Theaters','SeriesNum','PrevAvgGross','FirstGross','DaysSinceFirstFilm','DaysSincePrevFilm']] y17, X17 = patsy.dmatrices('AdjGross ~ Theaters + SeriesNum + PrevAvgGross + FirstGross + DaysSinceFirstFilm + DaysSincePrevFilm', data=df17, return_type="dataframe") polyX17 = PolynomialFeatures(2).fit_transform(X17) dfPolyX17 = pd.DataFrame(polyX17) bcPolyX17 = pd.DataFrame() for i in range(dfPolyX17.shape[1]): bcPolyX17[i] = scipy.stats.boxcox(dfPolyX17[i])[0] X17_scaled = preprocessing.scale(bcPolyX17) # Run the "en_cv" model from above on the 2017 data: logy_en_2017 = en_cv.predict(X17_scaled) # Predicted Adjusted Gross: pd.DataFrame(np.exp(logy_en_2017)) # Adjusted Gross as of 2/1: y17 ###Output _____no_output_____
python-workshop/file-entrada-salida.ipynb
###Markdown Archivo Entrada y Salida Los programas requieren datos, y a veces muchos datos. Hay diferentes maneras de guardar y acceder a ello, pero una de las mas comunes es a traves del sistema de archivos de una computadora. Por tanto, trabajar con archivos es una herramienta sumamente util para cualquier programador. Operacions comunes involucran: guardando el dato de salida de un programa a un archivo de texto, limpiar un documento tabulado a fin que cada columna este en el formato correcto, o eliminar archivos grandes de un directorio en el disco duro.En esta seccion aprenderemos a:1. Leer y escribir archivos2. Trabajar con rutas de archivos3. Trabajar con archivos CSV Leer y escribir archivos Hasta ahora hemos visto programas que toman dato de entrada del mismo programa o del usuario. Si han trabajado con muchos datos, estos metodos son problematicos. En muchas aplicaciones, el dato de entrada es leido de algun(os) archivo(s). Python tiene herramientas que nos permiten realizar estas operaciones. Escribir a un archivo Para escribir un archivo de texto sin formato, podemos utilizar la funcion general incorporada `open()`. Cuando abrimos un archivo con `open()`, lo primero que debemos determinar es si realizamos una operacion de lectura o de escritura. ###Code # abrir y escribir a un archivo archivo_salida = open('hola.txt', 'w') # abrimos en modo "w" de escritura # escribimos una linea de texto con writelines() archivo_salida.writelines('Este es mi primer archivo') archivo_salida.close() ###Output _____no_output_____ ###Markdown Cuando solo proporcionamos el nombre del archivo, este se crearรก en el mismo directorio que tiene el script, toda vez que no proporcionamos la ruta del archivo.Cuando abrimos un archivo con `open()`, siempre debemos cerrar el archivo con `close()`. Python cierra automaticamente los archivos que uno abre, pero si no los cerramos, puede ocasionar problemas no esperados. Despues de ejecutar el script, observamos un archivo nuevo en el directorio denominado `hola.txt`, con la linea escrita `Este es mi primer archivo`. ###Code # writelines() tambien toma una lista de lineas archivo_salida = open('hola.txt', 'w') # si abrimos un archivo existente, el contenido viejo se borra lineas = [ 'Este archivo es nuevo', 'Contiene esta linea', 'Esta otra linea tambien' ] archivo_salida.writelines(lineas) # las lineas son escritas seguidamente sin espacio archivo_salida.close() # para escribir en una linea nueva, insertemos el caracter de nueva linea "\n" archivo_salida = open('hola.txt', 'w') lineas = [ 'Este archivo es nuevo', '\nContiene esta linea', # \n en linea nueva '\nEsta otra linea tambien' # \n en linea nueva ] archivo_salida.writelines(lineas) # las lineas son escritas seguidamente sin espacio archivo_salida.close() ###Output _____no_output_____ ###Markdown Si abrimos el archivo, observamos cada linea en una linea nueva:```Este archivo es nuevoContiene esta lineaEsta otra linea tambien``` ###Code # podemos abrir el archivo en modo "a" que permita "adjuntar" archivo_salida = open('hola.txt', 'a') # abrimos el archivo pero no borra el contenido archivo_salida.writelines('\nEsta linea se adjunta') # linea nueva archivo_salida.close() ###Output _____no_output_____ ###Markdown Si abrimos el archivo, observamos cada linea en una linea nueva:```Este archivo es nuevoContiene esta lineaEsta otra linea tambienEsta linea se adjunta``` Leer un archivo ###Code # abrimos el archivo en modo lectura "r" archivo_entrada = open('hola.txt', 'r') print(archivo_entrada.readlines()) # utilizamos el metodo readlines() que retorna una lista de lineas archivo_entrada.close() # ya que el archivo retorna una lista, podemos ciclar sobre la misma archivo_entrada = open('hola.txt', 'r') for linea in archivo_entrada.readlines(): print(linea) archivo_entrada.close() # observamos que hay una nueva linea vacia entre cada linea, podemos anular este comportamiento archivo_entrada = open('hola.txt', 'r') for linea in archivo_entrada.readlines(): print(linea, end='') # print incluye nueva linea automaticamente, especificamos comportamiento deseado end='' archivo_entrada.close() # podemos leer linea por linea con readline() en singular archivo_entrada = open('hola.txt', 'r') linea = archivo_entrada.readline() # lee la primera linea while linea != '': # si no hemos llegao al fin print(linea, end='') # imprime la linea linea = archivo_entrada.readline() # lee la proxima linea archivo_entrada.close() ###Output Este archivo es nuevo Contiene esta linea Esta otra linea tambien Esta linea se adjunta ###Markdown Cuando Python lee un archivo, gestiona un tipo de marcador que recuerda su ubicacion en el documento. Es asi como el metodo `readline()` funciona, ya que lee la primera linea, y cuando el metodo se ejecuta nuevamente, Python lee el documento a partir de donde dejรณ el marcador la รบltima vez, por tanto lee la prรณxima linea del documento, y asi sucesivamente hasta llegar al final del archivo. Cuando se cierra el archivo con `close()`, el marcador vuelve a reiniciarse, a fin de que la proxima vez pueda empezar desde el principio del archivo. El metodo `readlines()` tambien se comporta de la misma manera. Esto lo podemos comprobar si leemos el archivo, ejecutamos readlines, y sin cerrar el archivo, ejecutamos nuevamente el metodo `readlines()`. Ya que el marcador sigue al final del documento, `readlines()` no retorna linea alguna, porque no hay nada que leer. ###Code archivo_entrada = open('hola.txt', 'r') print('Primera vez:') for linea in archivo_entrada.readlines(): print(linea, end='') print('\n\nSegunda vez:') for linea in archivo_entrada.readlines(): print(linea, end='') archivo_entrada.close() # si queremos acceder al contenido del archivo nuevamente, es mejor guardarlo en una lista archivo_entrada = open('hola.txt', 'r') lineas = archivo_entrada.readlines() print('Primera vez:') for linea in lineas: print(linea, end='') print('\n\nSegunda vez:') for linea in lineas: print(linea, end='') archivo_entrada.close() # para no tener que cerrar el archivo, Python lo hace automaticamente con la palabra with # with establece un contexto with open('hola.txt', 'r') as archivo: for line in archivo.readlines(): print(line) # podemos abrir mutiples archivos en la misma operacion with open('hola.txt', 'r') as fuente, open('salida.txt', 'w') as salida: for line in fuente.readlines(): salida.write(line) # todo el contenido del primer archivo se copio a este with open('salida.txt', 'r') as archivo: for line in archivo.readlines(): print(line) ###Output Este archivo es nuevo Contiene esta linea Esta otra linea tambien Esta linea se adjunta ###Markdown Ejercicios1. Abra y escriba un archivo que contenga varias lineas utilizando writelines()2. Abra el archivo que escribio y lea sus contenidos con readlines() y readline()3. Abra y lea el archivo que escribio utilizando with() 4. Abra y lear al archivo que escribio utilizando with() y copie los contenidos del mismo a otro archivo Trabajando con Rutas en Python Lo mas probable es que vamos a necesitar abrir archivos ubicados en otros directorios, y no solamente los archivos ubicados en el directorio actual donde reside el script. Para acceder a distintos directorions, podemos ingresar la ruta completa directamente como argumento a la funcion incorporada `open(ruta_absoluta_del_archivo)`.```archivo = open('C:/home/adriaanbd/documentos/hola.txt', 'r')``` Observemos el uso del `/`. Las rutas de Windows contienen un `\` en vez de un `/`, pero en Python podemos substituir el `\` por el `/`, toda vez que el `\` tiene un significado especial en Python por ser utilizado como un caracter de escape, lo que quiere decir que el caracter que le sigue inmediatamente, e.g. `\n` es tratado como caracter especial. Python entiende que el uso del `\` con el caracter a continuacion es un caracter especial. Por ejemplo, `\n` significa una nueva linea, `\t` significa un caracter `tab` que representa 2 o 4 caracteres de espacios en la misma linea.``` podemos utilizar el \ de la siguiente manerapath = r'C:\home\adriaanbd\documentos\hola.txt'``` El modulo `os` Si deseamos hacer algo mas avanzado con estructuras de archivos, vamos a tener que hacer uso del modulo `os`, que expone varias funciones del sistema operativo. Lo primero que tenemos que hacer es importar el modulo. ###Code # esto importa el modulo al programa import os # para crear un directorio nuevo en el directorio donde reside este programa os.mkdir('mi-directorio') # para crear el directorio en una ruta especifica ruta = 'mi-directorio' os.mkdir(os.path.join(ruta, 'subdirectorio')) # utilizemos os.path.join para concatenar dos strings # pudimos haber concatenado asi tambien: ruta = 'C:/home/adriaanbd/documentos' directorio = ruta + '/' + 'mi-directorio' print(directorio) ruta = 'mi-directorio' directorio = os.path.join(ruta, 'subdirectorio') directorio # para eliminar un directorio usemos rmdir() os.rmdir(directorio) ruta = 'mi-directorio' os.rmdir(ruta) # para obtener una lista de los archivos en un directorio usemos os.listdir() os.listdir() # su dato de salida podrรก ser distinto # una lista de los archivos con terminacion txt usando endswith() for archivo in os.listdir(): if archivo.lower().endswith('txt'): print(archivo) ###Output hola.txt salida.txt ###Markdown el modulo `glob` ###Code # este modulo nos ayuda a encontrar patrones con caracteres comodin import glob glob.glob('*.txt') # el asterisco * es un comodin que representa todo, por tanto todo archivo con extension .txt ###Output _____no_output_____ ###Markdown Verificando la existencia de archivos y directorios ###Code for archivo in os.listdir(): print(f'Archivo: "{archivo}", \nes un directorio: {os.path.isdir(archivo)}\n\n') # es un directorio? for archivo in os.listdir(): print(f'Archivo: "{archivo}" \nes un archivo: {os.path.isfile(archivo)}\n\n') # es un archivo? for archivo in os.listdir(): print(f'Archivo: "{archivo}" \nexiste: {os.path.exists(archivo)}\n\n') # el archivo existe? ###Output Archivo: "contenido.ipynb" existe: True Archivo: ".vscode" existe: True Archivo: "intro.ipynb" existe: True Archivo: "errores.ipynb" existe: True Archivo: "contenido.md" existe: True Archivo: "funciones-y-ciclos.ipynb" existe: True Archivo: "salida" existe: True Archivo: "file-entrada-salida.ipynb" existe: True Archivo: ".ipynb_checkpoints" existe: True Archivo: "otros-temas" existe: True Archivo: "oop.ipynb" existe: True Archivo: ".gitignore" existe: True Archivo: "numeros-y-matematica.ipynb" existe: True Archivo: "tips.ipynb" existe: True Archivo: "encontrando-resolviendo-errores.ipynb" existe: True Archivo: ".git" existe: True Archivo: "datos" existe: True Archivo: "logica-condicional-control-de-flujo.ipynb" existe: True Archivo: "variables.ipynb" existe: True Archivo: "strings.ipynb" existe: True Archivo: "textos-llamadas.ipynb" existe: True Archivo: "hola.txt" existe: True Archivo: "juego-de-aventura.ipynb" existe: True Archivo: "tuplas-listas-diccionarios.ipynb" existe: True Archivo: ".python-version" existe: True Archivo: "salida.txt" existe: True ###Markdown Ejercicios1. Imprime la ruta absoluta de todos los archivos y directorios en el directorio de `Documentos/` en su computador2. Imprima la ruta absoluta de todos los archivos .txt en el directorio actual Lea y Escriba Data CSV Los archivos del dia a dia son un poco mas complicados que archivos simples de texto. Para modificar el contenido de estos archivo, necesitamos un poco mas de herramientas. Una manera comun para guardar datos de texto es en archivos CSV, que por sus siglas en ingles significa Valores Separados por Comma, toda vez que cada entrada en una fila de datos es usualmente separada de otras entrada con una coma. Por ejemplo:```Nombre, Apellido, EdadJuan, Perez, 40Juana, Perez, 45```Cada linea representa una fila de datos, incluyendo la primera fila que representa el encabezamiento de la informacion. Cada entrada aparece en el mismo orden para cada fila, con cada entrada separada de otras con comas. Python tiene un modulo `csv` que nos permite realizar operacions necesarias para la gestion de archivos CSV. Leer un archivo CSV ###Code # leemos un archivo con csv.reader(archivo) import csv import os archivo = 'datos/llamadas.csv' with open(archivo, 'r') as datos: lector = csv.reader(datos) for registro in lector: print(registro) ###Output ['numero_saliente', 'numero_entrante', 'fecha_tiempo', 'tiempo_segundos'] ['(473) 5373591', '(221) 3829872', '2019-08-23 07:13:28', '779'] ['(712) 6079829', '(521) 9979466', '2019-06-02 19:01:04', '150'] ['(170) 7207064', '(667) 9707152', '2019-02-18 11:22:21', '1425'] ['(267) 6838416', '(704) 6053438', '2019-12-26 22:29:30', '3278'] ['(202) 7159564', '(848) 5356715', '2019-11-11 14:06:47', '2823'] ['(971) 4270187', '(312) 3476941', '2019-07-21 22:30:45', '2824'] ['(688) 1872860', '(580) 6692170', '2019-01-05 20:40:15', '363'] ['(527) 3643293', '(700) 6013130', '2019-03-21 10:25:15', '1090'] ['(824) 3120489', '(736) 5219693', '2019-06-15 19:31:29', '2383'] ['(135) 5879807', '(210) 4726824', '2019-12-11 06:37:28', '3289'] ['(946) 9885969', '(967) 6260487', '2019-04-30 18:12:15', '266'] ['(822) 1999029', '(394) 2159591', '2019-07-20 13:24:02', '3171'] ['(214) 1831354', '(407) 4594421', '2019-10-22 18:27:53', '2987'] ['(301) 9038508', '(117) 3599538', '2019-08-11 14:34:08', '472'] ['(975) 2050968', '(225) 7340340', '2019-05-24 17:07:56', '1297'] ['(532) 4461437', '(159) 6755397', '2019-07-27 09:02:02', '2548'] ['(854) 2632368', '(865) 1092554', '2019-11-12 18:27:12', '256'] ['(302) 7956136', '(427) 4230223', '2019-04-17 13:49:54', '360'] ['(694) 4605593', '(423) 9644633', '2019-10-12 10:25:53', '3476'] ['(361) 6243068', '(817) 9801242', '2019-01-13 16:55:39', '740'] ['(832) 2674004', '(134) 4315303', '2019-10-07 07:16:17', '3135'] ['(833) 8445033', '(191) 5366913', '2019-03-18 09:42:11', '2112'] ['(823) 4146625', '(263) 8920846', '2019-03-17 16:10:28', '1635'] ['(901) 2728567', '(997) 8431267', '2019-06-05 11:45:06', '2793'] ['(695) 8465544', '(486) 6125527', '2019-08-19 14:22:47', '1563'] ['(715) 6420894', '(828) 6640394', '2019-03-16 00:36:28', '1891'] ['(600) 8596964', '(762) 7724562', '2019-12-19 15:44:12', '3157'] ['(454) 4219619', '(432) 1223026', '2019-02-05 02:43:10', '1050'] ['(699) 8211331', '(123) 8577076', '2019-01-26 02:35:52', '2547'] ['(502) 2393708', '(748) 6208057', '2019-04-28 12:23:38', '3047'] ['(319) 7353522', '(588) 9583209', '2019-01-02 05:17:31', '3584'] ['(519) 2780596', '(359) 2449867', '2019-02-05 23:35:17', '1436'] ['(439) 1787485', '(802) 8632114', '2019-01-03 02:05:09', '2878'] ['(611) 2732835', '(605) 7128788', '2019-05-06 22:24:59', '636'] ['(481) 4216326', '(288) 7103116', '2019-05-06 01:35:05', '2339'] ['(819) 2841562', '(651) 9421311', '2019-12-05 16:05:32', '3449'] ['(561) 7890310', '(487) 1704598', '2019-08-09 16:54:44', '1187'] ['(205) 8012873', '(348) 6088588', '2019-04-09 18:36:15', '3194'] ['(656) 2596247', '(645) 3744183', '2019-12-18 21:38:31', '2428'] ['(784) 1502772', '(732) 5122798', '2019-08-06 05:30:25', '983'] ['(187) 7805812', '(831) 1984447', '2019-10-09 02:03:01', '3577'] ['(404) 9897959', '(810) 9464280', '2019-03-31 01:10:37', '1188'] ['(320) 9017964', '(105) 7031191', '2019-03-19 16:47:31', '2009'] ['(441) 9421898', '(352) 2239520', '2019-10-09 07:19:24', '3024'] ['(289) 3939816', '(897) 5873250', '2019-06-24 08:18:43', '2230'] ['(268) 8129614', '(109) 5020811', '2019-10-18 20:45:40', '1559'] ['(530) 2679399', '(929) 7641354', '2019-05-03 08:45:23', '128'] ['(655) 5001076', '(216) 9767752', '2019-11-13 19:03:39', '171'] ['(883) 8587195', '(449) 7773819', '2019-06-29 14:01:03', '1818'] ['(815) 4795720', '(312) 1327386', '2019-02-11 06:32:37', '3119'] ['(197) 3603866', '(412) 8148714', '2019-06-13 18:10:46', '595'] ['(911) 1379852', '(804) 6251709', '2019-03-06 21:18:13', '2234'] ['(795) 2762776', '(661) 8174095', '2019-02-18 06:09:36', '2300'] ['(501) 1466641', '(602) 3090356', '2019-08-01 05:07:26', '734'] ['(154) 9559400', '(632) 8185869', '2019-05-16 08:59:38', '3506'] ['(639) 8951743', '(742) 1588632', '2019-09-25 00:11:59', '73'] ['(792) 8079631', '(598) 3917497', '2019-06-14 15:26:01', '1908'] ['(755) 2227215', '(235) 5321774', '2019-06-19 23:02:17', '1065'] ['(712) 6065475', '(794) 3858022', '2019-10-22 20:49:53', '3485'] ['(680) 3236045', '(804) 9903489', '2019-09-10 16:34:14', '2922'] ['(148) 6443267', '(169) 8934639', '2019-05-22 10:47:23', '129'] ['(790) 6530469', '(814) 3215137', '2019-10-25 13:33:34', '2664'] ['(202) 1610658', '(607) 3944087', '2019-04-28 23:54:28', '1569'] ['(262) 4164407', '(399) 5230169', '2019-02-19 03:10:29', '450'] ['(262) 6287235', '(522) 8488463', '2019-06-01 19:05:29', '3383'] ['(304) 7491008', '(244) 5322157', '2019-08-10 13:52:18', '3064'] ['(615) 3509514', '(708) 4135633', '2019-05-25 05:54:32', '147'] ['(459) 3930189', '(149) 4330839', '2019-01-08 10:47:42', '3140'] ['(855) 2282632', '(666) 2793624', '2019-11-24 23:08:45', '1022'] ['(476) 5233902', '(820) 5595528', '2019-01-31 21:41:20', '1837'] ['(537) 6546615', '(612) 2202646', '2019-04-04 19:51:31', '2036'] ['(541) 4800549', '(138) 3724141', '2019-02-04 06:45:02', '2469'] ['(384) 8739072', '(941) 6726850', '2019-04-19 02:27:44', '3105'] ['(147) 7291940', '(326) 5393948', '2019-03-05 17:08:14', '2586'] ['(270) 2354861', '(273) 7690535', '2019-09-02 16:24:08', '3249'] ['(636) 1133234', '(462) 1957853', '2019-09-13 12:22:37', '1939'] ['(570) 6207945', '(581) 2812391', '2019-04-04 03:03:56', '1225'] ['(291) 5185327', '(531) 9281928', '2019-10-22 11:18:33', '2989'] ['(243) 3167219', '(570) 5034926', '2019-04-13 11:54:36', '789'] ['(542) 4546760', '(567) 2828533', '2019-05-03 20:25:18', '1865'] ['(249) 7029277', '(295) 8985580', '2019-09-23 06:24:47', '319'] ['(916) 5096404', '(376) 2884045', '2019-04-24 08:30:37', '246'] ['(996) 9736898', '(969) 2964664', '2019-09-02 15:31:42', '2342'] ['(207) 4248725', '(456) 8645080', '2019-11-15 20:30:18', '630'] ['(729) 4815293', '(763) 9893406', '2019-08-22 07:42:54', '2279'] ['(188) 3501714', '(464) 3997111', '2019-01-14 04:57:34', '121'] ['(534) 4568556', '(792) 9326352', '2019-06-09 05:23:38', '1046'] ['(892) 1686376', '(249) 7615536', '2019-03-02 22:11:17', '2444'] ['(310) 6945801', '(164) 9416529', '2019-04-20 07:44:28', '1683'] ['(741) 8134173', '(712) 6154466', '2019-01-12 02:12:28', '210'] ['(780) 2506688', '(246) 9160852', '2019-08-10 12:18:32', '512'] ['(677) 3634048', '(650) 1143542', '2019-03-09 14:08:49', '2166'] ['(770) 5974145', '(270) 5953021', '2019-01-20 09:19:34', '608'] ['(251) 5430038', '(570) 1985179', '2019-03-20 13:05:08', '3447'] ['(823) 1821952', '(835) 1658609', '2019-08-10 07:35:24', '2504'] ['(302) 9131957', '(738) 3350982', '2019-09-30 18:05:45', '1176'] ['(787) 2744903', '(435) 1451178', '2019-07-27 09:08:10', '989'] ['(723) 1155427', '(810) 5853913', '2019-04-09 19:24:35', '2467'] ['(368) 3851791', '(631) 8084245', '2019-07-31 18:03:27', '556'] ['(285) 1009067', '(219) 1745803', '2019-11-25 18:22:30', '3054'] ###Markdown Escribir a un archivo ###Code # escribimos un archivo con csv.writer(archivo) import csv import os archivo = 'salida/ejemplo.csv' # os.mkdir('salida') nombres = [ ['Nombre', 'Apellido'], ['Juan', 'Perez'], ['Juana', 'Perez'] ] with open(archivo, 'w') as salida: escritor = csv.writer(salida) escritor.writerows(nombres) with open(archivo, 'r') as entrada: lector = csv.reader(entrada) print(list(lector)) ###Output [['Nombre', 'Apellido'], ['Juan', 'Perez'], ['Juana', 'Perez']] ###Markdown Ejercicios1. Escriba un script que escriba un archivo csv con informacion inventada, puede ser cualquier cosa, pero que tenga columnas, e.g. Nombre, Apellido, Edad, etc.2. Escriba un script que lea el archivo escrito e imprima cada fila del archivo Reto: Puntos de Acceso de la Red Nacional de Internet por ProvinciaEscriba un script que lea el archivo csv `datos/rni-puntos-de-acceso.csv` (se le entregarรก) que contiene informacion de todos los puntos de acceso de la red nacional de internet de Panama, y escriba un archivo csv nuevo `datos/rni-pda-por-provincia.csv`, que contiene lo siguiente:1. Provincia y Puntos de Acceso como encabezado2. El nombre de la provincia, y el numero total de Puntos de Acceso como fila ###Code # un ejemplo practico import csv import os archivo = 'datos/rni-puntos-de-acceso.csv' with open(archivo, 'r', encoding='latin-1') as entrada, open('salida/rni-pda-chiriqui.csv', 'w') as salida: lector = csv.reader(entrada) # para leer escritor = csv.writer(salida) # para escribir for registro in lector: provincia = registro[3] if provincia.startswith('Chi'): escritor.writerow(registro) with open(archivo, 'r', encoding='latin-1') as entrada: lector = csv.reader(entrada) for registro in list(lector)[:5]: print(registro) ###Output ['Regiยขn', 'PA', 'Nombre', 'Provincia', 'Distrito', 'Corregimiento', 'Tipo UM', 'Latitude', 'Longitude', 'Fecha de Activaciยขn'] ['1', '1', 'Colegio Rogelio Josu\x82 Ibarra', 'Bocas del Toro', 'Bocas del Toro', 'Bocas del Toro', 'FO', '9.340654', '-82.242499', '12/07/17'] ['1', '3', 'Escuela Repยฃblica de Nicaragua', 'Bocas del Toro', 'Bocas del Toro', 'Bocas del Toro', 'FO', '9.338938', '-82.242668', '12/07/17'] ['1', '4', 'Gobernaciยขn', 'Bocas del Toro', 'Bocas del Toro', 'Bocas del Toro', 'FO', '9.297858', '-82.41136', '23/11/17'] ['1', '5', 'Parque Simยขn Bolยกvar', 'Bocas del Toro', 'Bocas del Toro', 'Bocas del Toro', 'FO', '9.340183', '-82.240631', '12/07/17']
blockboard/taxCalculations.ipynb
###Markdown Calculating gas for a single transaction gasUsed - Total GAS units to compute this txn gasPrice - Cost of one unit of GAS in GWEISooo..... GAS ($USD) = gasUsed * (gasPrice / 10^9) * ethPrice ($USD) To get price data from CoinGecko, need a wide timestamp range Rounding to the ten-thousands will guarantee at least one spot price is captured ###Code print(taxTools.get_yearly_gas_costs_in_USD(2021)) ###Output 2459.283222340261 ###Markdown Need to filter for token conversions & nft purchases Bought on exchange (cost basis) - have to manually map to CoinBase purchases Transferred to wallet Made trade (taxable event) - Compute price differenece of eth from cost basis to now Sold for eth (taxable event) - Compute gain as amount of eth to USD compared to previous ###Code last_txn = etherscanTools.get_normal_txns_for_year(2021)[-1] last_txn import web3 from web3 import Web3, EthereumTesterProvider w3 = Web3(EthereumTesterProvider()) w3.isConnected() # txn_hash = int(last_txn['hash'][2:],16) # receipt = w3.eth.getTransactionByBlock(last_txn['blockNumber'], 0) w3.eth.get_transaction_by_block(46147, 0) ###Output _____no_output_____
MS/Python/python_5.ipynb
###Markdown ะšะฐั„ะตะดั€ะฐ ะดะธัะบั€ะตั‚ะฝะพะน ะผะฐั‚ะตะผะฐั‚ะธะบะธ ะœะคะขะ˜ ะšัƒั€ั ะผะฐั‚ะตะผะฐั‚ะธั‡ะตัะบะพะน ัั‚ะฐั‚ะธัั‚ะธะบะธะะธะบะธั‚ะฐ ะ’ะพะปะบะพะฒ ะะฐ ะพัะฝะพะฒะต http://www.inp.nsk.su/~grozin/python/ ะ‘ะธะฑะปะธะพั‚ะตะบะฐ numpyะŸะฐะบะตั‚ `numpy` ะฟั€ะตะดะพัั‚ะฐะฒะปัะตั‚ $n$-ะผะตั€ะฝั‹ะต ะพะดะฝะพั€ะพะดะฝั‹ะต ะผะฐััะธะฒั‹ (ะฒัะต ัะปะตะผะตะฝั‚ั‹ ะพะดะฝะพะณะพ ั‚ะธะฟะฐ); ะฒ ะฝะธั… ะฝะตะปัŒะทั ะฒัั‚ะฐะฒะธั‚ัŒ ะธะปะธ ัƒะดะฐะปะธั‚ัŒ ัะปะตะผะตะฝั‚ ะฒ ะฟั€ะพะธะทะฒะพะปัŒะฝะพะผ ะผะตัั‚ะต. ะ’ `numpy` ั€ะตะฐะปะธะทะพะฒะฐะฝะพ ะผะฝะพะณะพ ะพะฟะตั€ะฐั†ะธะน ะฝะฐะด ะผะฐััะธะฒะฐะผะธ ะฒ ั†ะตะปะพะผ. ะ•ัะปะธ ะทะฐะดะฐั‡ัƒ ะผะพะถะฝะพ ั€ะตัˆะธั‚ัŒ, ะฟั€ะพะธะทะฒะตะดั ะฝะตะบะพั‚ะพั€ัƒัŽ ะฟะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ัŒ ะพะฟะตั€ะฐั†ะธะน ะฝะฐะด ะผะฐััะธะฒะฐะผะธ, ั‚ะพ ัั‚ะพ ะฑัƒะดะตั‚ ัั‚ะพะปัŒ ะถะต ัั„ั„ะตะบั‚ะธะฒะฝะพ, ะบะฐะบ ะฒ `C` ะธะปะธ `matlab` - ะปัŒะฒะธะฝะฐั ะดะพะปั ะฒั€ะตะผะตะฝะธ ั‚ั€ะฐั‚ะธั‚ัั ะฒ ะฑะธะฑะปะธะพั‚ะตั‡ะฝั‹ั… ั„ัƒะฝะบั†ะธัั…, ะฝะฐะฟะธัะฐะฝะฝั‹ั… ะฝะฐ `C`. ะžะดะฝะพะผะตั€ะฝั‹ะต ะผะฐััะธะฒั‹ ###Code import numpy as np ###Output _____no_output_____ ###Markdown ะœะพะถะฝะพ ะฟั€ะตะพะฑั€ะฐะทะพะฒะฐั‚ัŒ ัะฟะธัะพะบ ะฒ ะผะฐััะธะฒ. ###Code a = np.array([0, 2, 1]) a, type(a) ###Output _____no_output_____ ###Markdown `print` ะฟะตั‡ะฐั‚ะฐะตั‚ ะผะฐััะธะฒั‹ ะฒ ัƒะดะพะฑะฝะพะน ั„ะพั€ะผะต. ###Code print(a) ###Output [0 2 1] ###Markdown ะšะปะฐัั `ndarray` ะธะผะตะตั‚ ะผะฝะพะณะพ ะผะตั‚ะพะดะพะฒ. ###Code set(dir(a)) - set(dir(object)) ###Output _____no_output_____ ###Markdown ะะฐัˆ ะผะฐััะธะฒ ะพะดะฝะพะผะตั€ะฝั‹ะน. ###Code a.ndim ###Output _____no_output_____ ###Markdown ะ’ $n$-ะผะตั€ะฝะพะผ ัะปัƒั‡ะฐะต ะฒะพะทะฒั€ะฐั‰ะฐะตั‚ัั ะบะพั€ั‚ะตะถ ั€ะฐะทะผะตั€ะพะฒ ะฟะพ ะบะฐะถะดะพะน ะบะพะพั€ะดะธะฝะฐั‚ะต. ###Code a.shape ###Output _____no_output_____ ###Markdown `size` - ัั‚ะพ ะฟะพะปะฝะพะต ั‡ะธัะปะพ ัะปะตะผะตะฝั‚ะพะฒ ะฒ ะผะฐััะธะฒะต; `len` - ั€ะฐะทะผะตั€ ะฟะพ ะฟะตั€ะฒะพะน ะบะพะพั€ะดะธะฝะฐั‚ะต (ะฒ 1-ะผะตั€ะฝะพะผ ัะปัƒั‡ะฐะต ัั‚ะพ ั‚ะพ ะถะต ัะฐะผะพะต). ###Code len(a), a.size ###Output _____no_output_____ ###Markdown `numpy` ะฟั€ะตะดะพัั‚ะฐะฒะปัะตั‚ ะฝะตัะบะพะปัŒะบะพ ั‚ะธะฟะพะฒ ะดะปั ั†ะตะปั‹ั… (`int16`, `int32`, `int64`) ะธ ั‡ะธัะตะป ั ะฟะปะฐะฒะฐัŽั‰ะตะน ั‚ะพั‡ะบะพะน (`float32`, `float64`). ###Code a.dtype, a.dtype.name, a.itemsize ###Output _____no_output_____ ###Markdown ะ˜ะฝะดะตะบัะธั€ะพะฒะฐั‚ัŒ ะผะฐััะธะฒ ะผะพะถะฝะพ ะพะฑั‹ั‡ะฝั‹ะผ ะพะฑั€ะฐะทะพะผ. ###Code a[1] ###Output _____no_output_____ ###Markdown ะœะฐััะธะฒั‹ - ะธะทะผะตะฝัะตะผั‹ะต ะพะฑัŠะตะบั‚ั‹. ###Code a[1] = 3 print(a) ###Output [0 3 1] ###Markdown ะœะฐััะธะฒั‹, ั€ะฐะทัƒะผะตะตั‚ัั, ะผะพะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะฒ `for` ั†ะธะบะปะฐั…. ะะพ ะฟั€ะธ ัั‚ะพะผ ั‚ะตั€ัะตั‚ัั ะณะปะฐะฒะฝะพะต ะฟั€ะตะธะผัƒั‰ะตัั‚ะฒะพ `numpy` - ะฑั‹ัั‚ั€ะพะดะตะนัั‚ะฒะธะต. ะ’ัะตะณะดะฐ, ะบะพะณะดะฐ ัั‚ะพ ะฒะพะทะผะพะถะฝะพ, ะปัƒั‡ัˆะต ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะพะฟะตั€ะฐั†ะธะธ ะฝะฐะด ะผะฐััะธะฒะฐะผะธ ะบะฐะบ ะตะดะธะฝั‹ะผะธ ั†ะตะปั‹ะผะธ. ###Code for i in a: print(i) ###Output 0 3 1 ###Markdown ะœะฐััะธะฒ ั‡ะธัะตะป ั ะฟะปะฐะฒะฐัŽั‰ะตะน ั‚ะพั‡ะบะพะน. ###Code b = np.array([0., 2, 1]) b.dtype ###Output _____no_output_____ ###Markdown ะขะพั‡ะฝะพ ั‚ะฐะบะพะน ะถะต ะผะฐััะธะฒ. ###Code c = np.array([0, 2, 1], dtype=np.float64) print(c) ###Output [ 0. 2. 1.] ###Markdown ะŸั€ะตะพะฑั€ะฐะทะพะฒะฐะฝะธะต ะดะฐะฝะฝั‹ั… ###Code print(c.dtype) print(c.astype(int)) print(c.astype(str)) ###Output float64 [0 2 1] ['0.0' '2.0' '1.0'] ###Markdown ะœะฐััะธะฒ, ะทะฝะฐั‡ะตะฝะธั ะบะพั‚ะพั€ะพะณะพ ะฒั‹ั‡ะธัะปััŽั‚ัั ั„ัƒะฝะบั†ะธะตะน. ะคัƒะฝะบั†ะธะธ ะฟะตั€ะตะดะฐั‘ั‚ัั ะผะฐััะธะฒ. ะขะฐะบ ั‡ั‚ะพ ะฒ ะฝะตะน ะผะพะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ั‚ะพะปัŒะบะพ ั‚ะฐะบะธะต ะพะฟะตั€ะฐั†ะธะธ, ะบะพั‚ะพั€ั‹ะต ะฟั€ะธะผะตะฝะธะผั‹ ะบ ะผะฐััะธะฒะฐะผ. ###Code def f(i): print(i) return i ** 2 a = np.fromfunction(f, (5,), dtype=np.int64) print(a) a = np.fromfunction(f, (5,), dtype=np.float64) print(a) ###Output [ 0. 1. 2. 3. 4.] [ 0. 1. 4. 9. 16.] ###Markdown ะœะฐััะธะฒั‹, ะทะฐะฟะพะปะฝะตะฝะฝั‹ะต ะฝัƒะปัะผะธ ะธะปะธ ะตะดะธะฝะธั†ะฐะผะธ. ะงะฐัั‚ะพ ะปัƒั‡ัˆะต ัะฝะฐั‡ะฐะปะฐ ัะพะทะดะฐั‚ัŒ ั‚ะฐะบะพะน ะผะฐััะธะฒ, ะฐ ะฟะพั‚ะพะผ ะฟั€ะธัะฒะฐะธะฒะฐั‚ัŒ ะทะฝะฐั‡ะตะฝะธั ะตะณะพ ัะปะตะผะตะฝั‚ะฐะผ. ###Code a = np.zeros(3) print(a) b = np.ones(3, dtype=np.int64) print(b) ###Output [1 1 1] ###Markdown ะ•ัะปะธ ะฝัƒะถะฝะพ ัะพะทะดะฐั‚ัŒ ะผะฐััะธะฒ, ะทะฐะฟะพะปะฝะตะฝะฝั‹ะน ะฝัƒะปัะผะธ, ะดะปะธะฝั‹ ะดั€ัƒะณะพะณะพ ะผะฐััะธะฒะฐ, ั‚ะพ ะผะพะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะบะพะฝัั‚ั€ัƒะบั†ะธัŽ ###Code np.zeros_like(b) ###Output _____no_output_____ ###Markdown ะคัƒะฝะบั†ะธั `arange` ะฟะพะดะพะฑะฝะฐ `range`. ะั€ะณัƒะผะตะฝั‚ั‹ ะผะพะณัƒั‚ ะฑั‹ั‚ัŒ ั ะฟะปะฐะฒะฐัŽั‰ะตะน ั‚ะพั‡ะบะพะน. ะกะปะตะดัƒะตั‚ ะธะทะฑะตะณะฐั‚ัŒ ัะธั‚ัƒะฐั†ะธะน, ะบะพะณะดะฐ $(ะบะพะฝะตั†-ะฝะฐั‡ะฐะปะพ)/ัˆะฐะณ$ - ั†ะตะปะพะต ั‡ะธัะปะพ, ะฟะพั‚ะพะผัƒ ั‡ั‚ะพ ะฒ ัั‚ะพะผ ัะปัƒั‡ะฐะต ะฒะบะปัŽั‡ะตะฝะธะต ะฟะพัะปะตะดะฝะตะณะพ ัะปะตะผะตะฝั‚ะฐ ะทะฐะฒะธัะธั‚ ะพั‚ ะพัˆะธะฑะพะบ ะพะบั€ัƒะณะปะตะฝะธั. ะ›ัƒั‡ัˆะต, ั‡ั‚ะพะฑั‹ ะบะพะฝะตั† ะดะธะฐะฟะฐะทะพะฝะฐ ะฑั‹ะป ะณะดะต-ั‚ะพ ะฟะพัั€ะตะดะธะฝะต ัˆะฐะณะฐ. ###Code a = np.arange(0, 9, 2) print(a) b = np.arange(0., 9, 2) print(b) ###Output [ 0. 2. 4. 6. 8.] ###Markdown ะŸะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ะธ ั‡ะธัะตะป ั ะฟะพัั‚ะพัะฝะฝั‹ะผ ัˆะฐะณะพะผ ะผะพะถะฝะพ ั‚ะฐะบะถะต ัะพะทะดะฐะฒะฐั‚ัŒ ั„ัƒะฝะบั†ะธะตะน `linspace`. ะะฐั‡ะฐะปะพ ะธ ะบะพะฝะตั† ะดะธะฐะฟะฐะทะพะฝะฐ ะฒะบะปัŽั‡ะฐัŽั‚ัั; ะฟะพัะปะตะดะฝะธะน ะฐั€ะณัƒะผะตะฝั‚ - ั‡ะธัะปะพ ั‚ะพั‡ะตะบ. ###Code a = np.linspace(0, 8, 5) print(a) ###Output [ 0. 2. 4. 6. 8.] ###Markdown ะŸะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ัŒ ั‡ะธัะตะป ั ะฟะพัั‚ะพัะฝะฝั‹ะผ ัˆะฐะณะพะผ ะฟะพ ะปะพะณะฐั€ะธั„ะผะธั‡ะตัะบะพะน ัˆะบะฐะปะต ะพั‚ $10^0$ ะดะพ $10^1$. ###Code b = np.logspace(0, 1, 5) print(b) ###Output [ 1. 1.77827941 3.16227766 5.62341325 10. ] ###Markdown ะœะฐััะธะฒ ัะปัƒั‡ะฐะนะฝั‹ั… ั‡ะธัะตะป. ###Code print(np.random.random(5)) ###Output [ 0.17754706 0.13481988 0.85711884 0.18696899 0.55900193] ###Markdown ะกะปัƒั‡ะฐะนะฝั‹ะต ั‡ะธัะปะฐ ั ะฝะพั€ะผะฐะปัŒะฝั‹ะผ (ะณะฐัƒััะพะฒั‹ะผ) ั€ะฐัะฟั€ะตะดะตะปะตะฝะธะตะผ (ัั€ะตะดะฝะตะต `0`, ัั€ะตะดะฝะตะบะฒะฐะดั€ะฐั‚ะธั‡ะฝะพะต ะพั‚ะบะปะพะฝะตะฝะธะต `1`). ###Code print(np.random.normal(size=5)) ###Output [-1.51473227 1.0408142 3.07774644 -0.67956312 0.20781344] ###Markdown ะžะฟะตั€ะฐั†ะธะธ ะฝะฐะด ะพะดะฝะพะผะตั€ะฝั‹ะผะธ ะผะฐััะธะฒะฐะผะธะั€ะธั„ะผะตั‚ะธั‡ะตัะบะธะต ะพะฟะตั€ะฐั†ะธะธ ะฟั€ะพะฒะพะดัั‚ัั ะฟะพัะปะตะผะตะฝั‚ะฝะพ. ###Code print(a + b) print(a - b) print(a * b) print(a / b) print(a ** 2) ###Output [ 0. 4. 16. 36. 64.] ###Markdown ะšะพะณะดะฐ ะพะฟะตั€ะฐะฝะดั‹ ั€ะฐะทะฝั‹ั… ั‚ะธะฟะพะฒ, ะพะฝะธ ะฟะธะฒะพะดัั‚ัั ะบ ะฑะพะปัŒัˆะตะผัƒ ั‚ะธะฟัƒ. ###Code i = np.ones(5, dtype=np.int64) print(a + i) ###Output [ 1. 3. 5. 7. 9.] ###Markdown `numpy` ัะพะดะตั€ะถะธั‚ ัะปะตะผะตะฝั‚ะฐั€ะฝั‹ะต ั„ัƒะฝะบั†ะธะธ, ะบะพั‚ะพั€ั‹ะต ั‚ะพะถะต ะฟั€ะธะผะตะฝััŽั‚ัั ะบ ะผะฐััะธะฒะฐะผ ะฟะพัะปะตะผะตะฝั‚ะฝะพ. ะžะฝะธ ะฝะฐะทั‹ะฒะฐัŽั‚ัั ัƒะฝะธะฒะตั€ัะฐะปัŒะฝั‹ะผะธ ั„ัƒะฝะบั†ะธัะผะธ (`ufunc`). ###Code np.sin, type(np.sin) print(np.sin(a)) ###Output [ 0. 0.90929743 -0.7568025 -0.2794155 0.98935825] ###Markdown ะžะดะธะฝ ะธะท ะพะฟะตั€ะฐะฝะดะพะฒ ะผะพะถะตั‚ ะฑั‹ั‚ัŒ ัะบะฐะปัั€ะพะผ, ะฐ ะฝะต ะผะฐััะธะฒะพะผ. ###Code print(a + 1) print(2 * a) ###Output [ 0. 4. 8. 12. 16.] ###Markdown ะกั€ะฐะฒะฝะตะฝะธั ะดะฐัŽั‚ ะฑัƒะปะตะฒั‹ ะผะฐััะธะฒั‹. ###Code print(a > b) print(a == b) c = a > 5 print(c) ###Output [False False False True True] ###Markdown ะšะฒะฐะฝั‚ะพั€ั‹ "ััƒั‰ะตัั‚ะฒัƒะตั‚" ะธ "ะดะปั ะฒัะตั…". ###Code np.any(c), np.all(c) ###Output _____no_output_____ ###Markdown ะœะพะดะธั„ะธะบะฐั†ะธั ะฝะฐ ะผะตัั‚ะต. ###Code a += 1 print(a) b *= 2 print(b) b /= a print(b) ###Output [ 2. 1.18551961 1.26491106 1.6066895 2.22222222] ###Markdown ะŸั€ะธ ะฒั‹ะฟะพะปะฝะตะฝะธะธ ะพะฟะตั€ะฐั†ะธะน ะฝะฐะด ะผะฐััะธะฒะฐะผะธ ะดะตะปะตะฝะธะต ะฝะฐ 0 ะฝะต ะฒะพะทะฑัƒะถะดะฐะตั‚ ะธัะบะปัŽั‡ะตะฝะธั, ะฐ ะดะฐั‘ั‚ ะทะฝะฐั‡ะตะฝะธั `np.nan` ะธะปะธ `np.inf`. ###Code print(np.array([0.0, 0.0, 1.0, -1.0]) / np.array([1.0, 0.0, 0.0, 0.0])) np.nan + 1, np.inf + 1, np.inf * 0, 1. / np.inf ###Output _____no_output_____ ###Markdown ะกัƒะผะผะฐ ะธ ะฟั€ะพะธะทะฒะตะดะตะฝะธะต ะฒัะตั… ัะปะตะผะตะฝั‚ะพะฒ ะผะฐััะธะฒะฐ; ะผะฐะบัะธะผะฐะปัŒะฝั‹ะน ะธ ะผะธะฝะธะผะฐะปัŒะฝั‹ะน ัะปะตะผะตะฝั‚; ัั€ะตะดะฝะตะต ะธ ัั€ะตะดะฝะตะบะฒะฐะดั€ะฐั‚ะธั‡ะฝะพะต ะพั‚ะบะปะพะฝะตะฝะธะต. ###Code b.sum(), b.prod(), b.max(), b.min(), b.mean(), b.std() x = np.random.normal(size=1000) x.mean(), x.std() ###Output _____no_output_____ ###Markdown ะ˜ะผะตัŽั‚ัั ะฒัั‚ั€ะพะตะฝะฝั‹ะต ั„ัƒะฝะบั†ะธะธ ###Code print(np.sqrt(b)) print(np.exp(b)) print(np.log(b)) print(np.sin(b)) print(np.e, np.pi) ###Output [ 1.41421356 1.08881569 1.12468265 1.26755256 1.49071198] [ 7.3890561 3.27238673 3.54277764 4.98627681 9.22781435] [ 0.69314718 0.17018117 0.23500181 0.47417585 0.7985077 ] [ 0.90929743 0.92669447 0.95358074 0.99935591 0.79522006] 2.718281828459045 3.141592653589793 ###Markdown ะ˜ะฝะพะณะดะฐ ะฑั‹ะฒะฐะตั‚ ะฝัƒะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ั‡ะฐัั‚ะธั‡ะฝั‹ะต (ะบัƒะผัƒะปัั‚ะธะฒะฝั‹ะต) ััƒะผะผั‹. ะ’ ะฝะฐัˆะตะผ ะบัƒั€ัะต ั‚ะฐะบะพะต ะฟั€ะธะณะพะดะธั‚ัั. ###Code print(b.cumsum()) ###Output [ 2. 3.18551961 4.45043067 6.05712017 8.27934239] ###Markdown ะคัƒะฝะบั†ะธั `sort` ะฒะพะทะฒั€ะฐั‰ะฐะตั‚ ะพั‚ัะพั€ั‚ะธั€ะพะฒะฐะฝะฝัƒัŽ ะบะพะฟะธัŽ, ะผะตั‚ะพะด `sort` ัะพั€ั‚ะธั€ัƒะตั‚ ะฝะฐ ะผะตัั‚ะต. ###Code print(np.sort(b)) print(b) b.sort() print(b) ###Output [ 1.18551961 1.26491106 1.6066895 2. 2.22222222] ###Markdown ะžะฑัŠะตะดะธะฝะตะฝะธะต ะผะฐััะธะฒะพะฒ. ###Code a = np.hstack((a, b)) print(a) ###Output [ 1. 3. 5. 7. 9. 1.18551961 1.26491106 1.6066895 2. 2.22222222] ###Markdown ะ ะฐัั‰ะตะฟะปะตะฝะธะต ะผะฐััะธะฒะฐ ะฒ ะฟะพะทะธั†ะธัั… 3 ะธ 6. ###Code np.hsplit(a, [3, 6]) ###Output _____no_output_____ ###Markdown ะคัƒะฝะบั†ะธะธ `delete`, `insert` ะธ `append` ะฝะต ะผะตะฝััŽั‚ ะผะฐััะธะฒ ะฝะฐ ะผะตัั‚ะต, ะฐ ะฒะพะทะฒั€ะฐั‰ะฐัŽั‚ ะฝะพะฒั‹ะน ะผะฐััะธะฒ, ะฒ ะบะพั‚ะพั€ะพะผ ัƒะดะฐะปะตะฝั‹, ะฒัั‚ะฐะฒะปะตะฝั‹ ะฒ ัะตั€ะตะดะธะฝัƒ ะธะปะธ ะดะพะฑะฐะฒะปะตะฝั‹ ะฒ ะบะพะฝะตั† ะบะฐะบะธะต-ั‚ะพ ัะปะตะผะตะฝั‚ั‹. ###Code a = np.delete(a, [5, 7]) print(a) a = np.insert(a, 2, [0, 0]) print(a) a = np.append(a, [1, 2, 3]) print(a) ###Output [ 1. 3. 0. 0. 5. 7. 9. 1.26491106 2. 2.22222222 1. 2. 3. ] ###Markdown ะ•ัั‚ัŒ ะฝะตัะบะพะปัŒะบะพ ัะฟะพัะพะฑะพะฒ ะธะฝะดะตะบัะฐั†ะธะธ ะผะฐััะธะฒะฐ. ะ’ะพั‚ ะพะฑั‹ั‡ะฝั‹ะน ะธะฝะดะตะบั. ###Code a = np.linspace(0, 1, 11) print(a) b = a[2] print(b) ###Output 0.2 ###Markdown ะ”ะธะฐะฟะฐะทะพะฝ ะธะฝะดะตะบัะพะฒ. ะกะพะทะดะฐั‘ั‚ัั ะฝะพะฒั‹ะน ะทะฐะณะพะปะพะฒะพะบ ะผะฐััะธะฒะฐ, ัƒะบะฐะทั‹ะฒะฐัŽั‰ะธะน ะฝะฐ ั‚ะต ะถะต ะดะฐะฝะฝั‹ะต. ะ˜ะทะผะตะฝะตะฝะธั, ัะดะตะปะฐะฝะฝั‹ะต ั‡ะตั€ะตะท ั‚ะฐะบะพะน ะผะฐััะธะฒ, ะฒะธะดะฝั‹ ะธ ะฒ ะธัั…ะพะดะฝะพะผ ะผะฐััะธะฒะต. ###Code b = a[2:6] print(b) b[0] = -0.2 print(b) print(a) ###Output [ 0. 0.1 -0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ] ###Markdown ะ”ะธะฐะฟะฐะทะพะฝ ั ัˆะฐะณะพะผ 2. ###Code b = a[1:10:2] print(b) b[0] = -0.1 print(a) ###Output [ 0. -0.1 -0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ] ###Markdown ะœะฐััะธะฒ ะฒ ะพะฑั€ะฐั‚ะฝะพะผ ะฟะพั€ัะดะบะต. ###Code b = a[len(a):0:-1] print(b) ###Output [ 1. 0.9 0.8 0.7 0.6 0.5 0.4 0.3 -0.2 -0.1] ###Markdown ะŸะพะดะผะฐััะธะฒัƒ ะผะพะถะฝะพ ะฟั€ะธัะฒะพะธั‚ัŒ ะทะฝะฐั‡ะตะฝะธะต - ะผะฐััะธะฒ ะฟั€ะฐะฒะธะปัŒะฝะพะณะพ ั€ะฐะทะผะตั€ะฐ ะธะปะธ ัะบะฐะปัั€. ###Code a[1:10:3] = 0 print(a) ###Output [ 0. 0. -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ] ###Markdown ะขัƒั‚ ะพะฟัั‚ัŒ ัะพะทะดะฐั‘ั‚ัั ั‚ะพะปัŒะบะพ ะฝะพะฒั‹ะน ะทะฐะณะพะปะพะฒะพะบ, ัƒะบะฐะทั‹ะฒะฐัŽั‰ะธะน ะฝะฐ ั‚ะต ะถะต ะดะฐะฝะฝั‹ะต. ###Code b = a[:] b[1] = 0.1 print(a) ###Output [ 0. 0.1 -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ] ###Markdown ะงั‚ะพะฑั‹ ัะบะพะฟะธั€ะพะฒะฐั‚ัŒ ะธ ะดะฐะฝะฝั‹ะต ะผะฐััะธะฒะฐ, ะฝัƒะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะผะตั‚ะพะด `copy`. ###Code b = a.copy() b[2] = 0 print(b) print(a) ###Output [ 0. 0.1 0. 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ] [ 0. 0.1 -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ] ###Markdown ะœะพะถะฝะพ ะทะฐะดะฐั‚ัŒ ัะฟะธัะพะบ ะธะฝะดะตะบัะพะฒ. ###Code print(a[[2, 3, 5]]) ###Output [-0.2 0.3 0.5] ###Markdown ะœะพะถะฝะพ ะทะฐะดะฐั‚ัŒ ะฑัƒะปะตะฒ ะผะฐััะธะฒ ั‚ะพะน ะถะต ะฒะตะปะธั‡ะธะฝั‹. ###Code b = a > 0 print(b) print(a[b]) ###Output [ 0.1 0.3 0.5 0.6 0.8 0.9 1. ] ###Markdown 2-ะผะตั€ะฝั‹ะต ะผะฐััะธะฒั‹ ###Code a = np.array([[0.0, 1.0], [-1.0, 0.0]]) print(a) a.ndim a.shape len(a), a.size a[1, 0] ###Output _____no_output_____ ###Markdown ะั‚ั€ะธะฑัƒั‚ัƒ `shape` ะผะพะถะฝะพ ะฟั€ะธัะฒะพะธั‚ัŒ ะฝะพะฒะพะต ะทะฝะฐั‡ะตะฝะธะต - ะบะพั€ั‚ะตะถ ั€ะฐะทะผะตั€ะพะฒ ะฟะพ ะฒัะตะผ ะบะพะพั€ะดะธะฝะฐั‚ะฐะผ. ะŸะพะปัƒั‡ะธั‚ัั ะฝะพะฒั‹ะน ะทะฐะณะพะปะพะฒะพะบ ะผะฐััะธะฒะฐ; ะตะณะพ ะดะฐะฝะฝั‹ะต ะฝะต ะธะทะผะตะฝัั‚ัั. ###Code b = np.linspace(0, 3, 4) print(b) b.shape b.shape = 2, 2 print(b) ###Output [[ 0. 1.] [ 2. 3.]] ###Markdown ะœะพะถะฝะพ ั€ะฐัั‚ัะฝัƒั‚ัŒ ะฒ ะพะดะฝะพะผะตั€ะฝั‹ะน ะผะฐััะธะฒ ###Code print(b.ravel()) ###Output [ 0. 1. 2. 3.] ###Markdown ะั€ะธั„ะผะตั‚ะธั‡ะตัะบะธะต ะพะฟะตั€ะฐั†ะธะธ ะฟะพัะปะตะผะตะฝั‚ะฝั‹ะต ###Code print(a + 1) print(a * 2) print(a + [0, 1]) # ะฒั‚ะพั€ะพะต ัะปะฐะณะฐะตะผะพะต ะดะพะฟะพะปะฝัะตั‚ัั ะดะพ ะผะฐั‚ั€ะธั†ั‹ ะบะพะฟะธั€ะพะฒะฐะฝะธะตะผ ัั‚ั€ะพะบ print(a + np.array([[0, 2]]).T) # .T - ั‚ั€ะฐะฝัะฟะพะฝะธั€ะพะฒะฐะฝะธะต print(a + b) ###Output [[ 1. 2.] [ 0. 1.]] [[ 0. 2.] [-2. 0.]] [[ 0. 2.] [-1. 1.]] [[ 0. 1.] [ 1. 2.]] [[ 0. 2.] [ 1. 3.]] ###Markdown ะŸะพัะปะตะผะตะฝั‚ะฝะพะต ะธ ะผะฐั‚ั€ะธั‡ะฝะพะต (ั‚ะพะปัŒะบะพ ะฒ Python 3.5) ัƒะผะฝะพะถะตะฝะธะต. ###Code print(a * b) print(a @ b) print(b @ a) ###Output [[-1. 0.] [-3. 2.]] ###Markdown ะฃะผะฝะพะถะตะฝะธะต ะผะฐั‚ั€ะธั†ั‹ ะฝะฐ ะฒะตะบั‚ะพั€. ###Code v = np.array([1, -1], dtype=np.float64) print(b @ v) print(v @ b) ###Output [-2. -2.] ###Markdown ะ•ัะปะธ ัƒ ะฒะฐั ะŸะธั‚ะพะฝ ะฑะพะปะตะต ั€ะฐะฝะฝะตะน ะฒะตั€ัะธะธ, ั‚ะพ ะดะปั ั€ะฐะฑะพั‚ั‹ ั ะผะฐั‚ั€ะธั†ะฐะผะธ ะผะพะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะบะปะฐัั `np.matrix`, ะฒ ะบะพั‚ะพั€ะพะผ ะพะฟะตั€ะฐั†ะธั ัƒะผะฝะพะถะตะฝะธั ั€ะตะฐะปะธะทัƒะตั‚ัั ะบะฐะบ ะผะฐั‚ั€ะธั‡ะฝะพะต ัƒะผะฝะพะถะตะฝะธะต. ###Code np.matrix(a) * np.matrix(b) ###Output _____no_output_____ ###Markdown ะ’ะฝะตัˆะฝะตะต ะฟั€ะพะธะทะฒะตะดะตะฝะธะต $a_{ij}=u_i v_j$ ###Code u = np.linspace(1, 2, 2) v = np.linspace(2, 4, 3) print(u) print(v) a = np.outer(u, v) print(a) ###Output [[ 2. 3. 4.] [ 4. 6. 8.]] ###Markdown ะ”ะฒัƒะผะตั€ะฝั‹ะต ะผะฐััะธะฒั‹, ะทะฐะฒะธััั‰ะธะต ั‚ะพะปัŒะบะพ ะพั‚ ะพะดะฝะพะณะพ ะธะฝะดะตะบัะฐ: $x_{ij}=u_j$, $y_{ij}=v_i$ ###Code x, y = np.meshgrid(u, v) print(x) print(y) ###Output [[ 1. 2.] [ 1. 2.] [ 1. 2.]] [[ 2. 2.] [ 3. 3.] [ 4. 4.]] ###Markdown ะ•ะดะธะฝะธั‡ะฝะฐั ะผะฐั‚ั€ะธั†ะฐ. ###Code I = np.eye(4) print(I) ###Output [[ 1. 0. 0. 0.] [ 0. 1. 0. 0.] [ 0. 0. 1. 0.] [ 0. 0. 0. 1.]] ###Markdown ะœะตั‚ะพะด `reshape` ะดะตะปะฐะตั‚ ั‚ะพ ะถะต ัะฐะผะพะต, ั‡ั‚ะพ ะฟั€ะธัะฒะฐะธะฒะฐะฝะธะต ะฐั‚ั€ะธะฑัƒั‚ัƒ `shape`. ###Code print(I.reshape(16)) print(I.reshape(2, 8)) ###Output [[ 1. 0. 0. 0. 0. 1. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 1.]] ###Markdown ะกั‚ั€ะพะบะฐ. ###Code print(I[1]) ###Output [ 0. 1. 0. 0.] ###Markdown ะฆะธะบะป ะฟะพ ัั‚ั€ะพะบะฐะผ. ###Code for row in I: print(row) ###Output [ 1. 0. 0. 0.] [ 0. 1. 0. 0.] [ 0. 0. 1. 0.] [ 0. 0. 0. 1.] ###Markdown ะกั‚ะพะปะฑะตั†. ###Code print(I[:, 2]) ###Output [ 0. 0. 1. 0.] ###Markdown ะŸะพะดะผะฐั‚ั€ะธั†ะฐ. ###Code print(I[0:2, 1:3]) ###Output [[ 0. 0.] [ 1. 0.]] ###Markdown ะœะพะถะฝะพ ะฟะพัั‚ั€ะพะธั‚ัŒ ะดะฒัƒะผะตั€ะฝั‹ะน ะผะฐััะธะฒ ะธะท ั„ัƒะฝะบั†ะธะธ. ###Code def f(i, j): print(i) print(j) return 10 * i + j print(np.fromfunction(f, (4, 4), dtype=np.int64)) ###Output [[0 0 0 0] [1 1 1 1] [2 2 2 2] [3 3 3 3]] [[0 1 2 3] [0 1 2 3] [0 1 2 3] [0 1 2 3]] [[ 0 1 2 3] [10 11 12 13] [20 21 22 23] [30 31 32 33]] ###Markdown ะขั€ะฐะฝัะฟะพะฝะธั€ะพะฒะฐะฝะฝะฐั ะผะฐั‚ั€ะธั†ะฐ. ###Code print(b.T) ###Output [[ 0. 2.] [ 1. 3.]] ###Markdown ะกะพะตะดะธะฝะตะฝะธะต ะผะฐั‚ั€ะธั† ะฟะพ ะณะพั€ะธะทะพะฝั‚ะฐะปะธ ะธ ะฟะพ ะฒะตั€ั‚ะธะบะฐะปะธ. ###Code a = np.array([[0, 1], [2, 3]]) b = np.array([[4, 5, 6], [7, 8, 9]]) c = np.array([[4, 5], [6, 7], [8, 9]]) print(a) print(b) print(c) print(np.hstack((a, b))) print(np.vstack((a, c))) ###Output [[0 1] [2 3] [4 5] [6 7] [8 9]] ###Markdown ะกัƒะผะผะฐ ะฒัะตั… ัะปะตะผะตะฝั‚ะพะฒ; ััƒะผะผั‹ ัั‚ะพะปะฑั†ะพะฒ; ััƒะผะผั‹ ัั‚ั€ะพะบ. ###Code print(b.sum()) print(b.sum(axis=0)) print(b.sum(axis=1)) ###Output 39 [11 13 15] [15 24] ###Markdown ะะฝะฐะปะพะณะธั‡ะฝะพ ั€ะฐะฑะพั‚ะฐัŽั‚ `prod`, `max`, `min` ะธ ั‚.ะด. ###Code print(b.max()) print(b.max(axis=0)) print(b.min(axis=1)) ###Output 9 [7 8 9] [4 7] ###Markdown ะกะปะตะด - ััƒะผะผะฐ ะดะธะฐะณะพะฝะฐะปัŒะฝั‹ั… ัะปะตะผะตะฝั‚ะพะฒ. ###Code np.trace(a) ###Output _____no_output_____ ###Markdown ะœะฝะพะณะพะผะตั€ะฝั‹ะต ะผะฐััะธะฒั‹ ###Code X = np.arange(24).reshape(2, 3, 4) print(X) ###Output [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] ###Markdown ะกัƒะผะผะธั€ะพะฒะฐะฝะธะต (ะฐะฝะฐะปะพะณะธั‡ะฝะพ ะพัั‚ะฐะปัŒะฝั‹ะต ะพะฟะตั€ะฐั†ะธะธ) ###Code # ััƒะผะผะธั€ัƒะตะผ ั‚ะพะปัŒะบะพ ะฟะพ ะฝัƒะปะตะฒะพะน ะพัะธ, ั‚ะพ ะตัั‚ัŒ ะดะปั ั„ะธะบัะธั€ะพะฒะฐะฝะฝั‹ั… j ะธ k ััƒะผะผะธั€ัƒะตะผ ั‚ะพะปัŒะบะพ ัะปะตะผะตะฝั‚ั‹ ั ะธะฝะดะตะบัะฐะผะธ (*, j, k) print(X.sum(axis=0)) # ััƒะผะผะธั€ัƒะตะผ ัั€ะฐะทัƒ ะฟะพ ะดะฒัƒะผ ะพััะผ, ั‚ะพ ะตัั‚ัŒ ะดะปั ั„ะธะบัะธั€ะพะฒะฐะฝะฝะพะน i ััƒะผะผะธั€ัƒะตะผ ั‚ะพะปัŒะบะพ ัะปะตะผะตะฝั‚ั‹ ั ะธะฝะดะตะบัะฐะผะธ (i, *, *) print(X.sum(axis=(1, 2))) ###Output [[12 14 16 18] [20 22 24 26] [28 30 32 34]] [ 66 210] ###Markdown ะ›ะธะฝะตะนะฝะฐั ะฐะปะณะตะฑั€ะฐ ###Code np.linalg.det(a) ###Output _____no_output_____ ###Markdown ะžะฑั€ะฐั‚ะฝะฐั ะผะฐั‚ั€ะธั†ะฐ. ###Code a1 = np.linalg.inv(a) print(a1) print(a @ a1) print(a1 @ a) ###Output [[ 1. 0.] [ 0. 1.]] [[ 1. 0.] [ 0. 1.]] ###Markdown ะ ะตัˆะตะฝะธะต ะปะธะฝะตะนะฝะพะน ัะธัั‚ะตะผั‹ $au=v$. ###Code v = np.array([0, 1], dtype=np.float64) print(a1 @ v) u = np.linalg.solve(a, v) print(u) ###Output [ 0.5 0. ] ###Markdown ะŸั€ะพะฒะตั€ะธะผ. ###Code print(a @ u - v) ###Output [ 0. 0.] ###Markdown ะกะพะฑัั‚ะฒะตะฝะฝั‹ะต ะทะฝะฐั‡ะตะฝะธั ะธ ัะพะฑัั‚ะฒะตะฝะฝั‹ะต ะฒะตะบั‚ะพั€ั‹: $a u_i = \lambda_i u_i$. `l` - ะพะดะฝะพะผะตั€ะฝั‹ะน ะผะฐััะธะฒ ัะพะฑัั‚ะฒะตะฝะฝั‹ั… ะทะฝะฐั‡ะตะฝะธะน $\lambda_i$, ัั‚ะพะปะฑั†ั‹ ะผะฐั‚ั€ะธั†ั‹ $u$ - ัะพะฑัั‚ะฒะตะฝะฝั‹ะต ะฒะตะบั‚ะพั€ั‹ $u_i$. ###Code l, u = np.linalg.eig(a) print(l) print(u) ###Output [[-0.87192821 -0.27032301] [ 0.48963374 -0.96276969]] ###Markdown ะŸั€ะพะฒะตั€ะธะผ. ###Code for i in range(2): print(a @ u[:, i] - l[i] * u[:, i]) ###Output [ 0.00000000e+00 1.66533454e-16] [ 0.00000000e+00 -4.44089210e-16] ###Markdown ะคัƒะฝะบั†ะธั `diag` ะพั‚ ะพะดะฝะพะผะตั€ะฝะพะณะพ ะผะฐััะธะฒะฐ ัั‚ั€ะพะธั‚ ะดะธะฐะณะพะฝะฐะปัŒะฝัƒัŽ ะผะฐั‚ั€ะธั†ัƒ; ะพั‚ ะบะฒะฐะดั€ะฐั‚ะฝะพะน ะผะฐั‚ั€ะธั†ั‹ - ะฒะพะทะฒั€ะฐั‰ะฐะตั‚ ะพะดะฝะพะผะตั€ะฝั‹ะน ะผะฐััะธะฒ ะตั‘ ะดะธะฐะณะพะฝะฐะปัŒะฝั‹ั… ัะปะตะผะตะฝั‚ะพะฒ. ###Code L = np.diag(l) print(L) print(np.diag(L)) ###Output [[-0.56155281 0. ] [ 0. 3.56155281]] [-0.56155281 3.56155281] ###Markdown ะ’ัะต ัƒั€ะฐะฒะฝะตะฝะธั $a u_i = \lambda_i u_i$ ะผะพะถะฝะพ ัะพะฑั€ะฐั‚ัŒ ะฒ ะพะดะฝะพ ะผะฐั‚ั€ะธั‡ะฝะพะต ัƒั€ะฐะฒะฝะตะฝะธะต $a u = u \Lambda$, ะณะดะต $\Lambda$ - ะดะธะฐะณะพะฝะฐะปัŒะฝะฐั ะผะฐั‚ั€ะธั†ะฐ ั ัะพะฑัั‚ะฒะตะฝะฝั‹ะผะธ ะทะฝะฐั‡ะตะฝะธัะผะธ $\lambda_i$ ะฟะพ ะดะธะฐะณะพะฝะฐะปะธ. ###Code print(a @ u - u @ L) ###Output [[ 0.00000000e+00 0.00000000e+00] [ 1.66533454e-16 -4.44089210e-16]] ###Markdown ะŸะพัั‚ะพะผัƒ $u^{-1} a u = \Lambda$. ###Code print(np.linalg.inv(u) @ a @ u) ###Output [[ -5.61552813e-01 2.77555756e-17] [ -2.22044605e-16 3.56155281e+00]] ###Markdown ะะฐะนะดั‘ะผ ั‚ะตะฟะตั€ัŒ ะปะตะฒั‹ะต ัะพะฑัั‚ะฒะตะฝะฝั‹ะต ะฒะตะบั‚ะพั€ั‹ $v_i a = \lambda_i v_i$ (ัะพะฑัั‚ะฒะตะฝะฝั‹ะต ะทะฝะฐั‡ะตะฝะธั $\lambda_i$ ั‚ะต ะถะต ัะฐะผั‹ะต). ###Code l, v = np.linalg.eig(a.T) print(l) print(v) ###Output [-0.56155281 3.56155281] [[-0.96276969 -0.48963374] [ 0.27032301 -0.87192821]] ###Markdown ะกะพะฑัั‚ะฒะตะฝะฝั‹ะต ะฒะตะบั‚ะพั€ั‹ ะฝะพั€ะผะธั€ะพะฒะฐะฝั‹ ะฝะฐ 1. ###Code print(u.T @ u) print(v.T @ v) ###Output [[ 1. -0.23570226] [-0.23570226 1. ]] [[ 1. 0.23570226] [ 0.23570226 1. ]] ###Markdown ะ›ะตะฒั‹ะต ะธ ะฟั€ะฐะฒั‹ะต ัะพะฑัั‚ะฒะตะฝะฝั‹ะต ะฒะตะบั‚ะพั€ั‹, ัะพะพั‚ะฒะตั‚ัั‚ะฒัƒัŽั‰ะธะต ั€ะฐะทะฝั‹ะผ ัะพะฑัั‚ะฒะตะฝะฝั‹ะผ ะทะฝะฐั‡ะตะฝะธัะผ, ะพั€ั‚ะพะณะพะฝะฐะปัŒะฝั‹, ะฟะพั‚ะพะผัƒ ั‡ั‚ะพ $v_i a u_j = \lambda_i v_i u_j = \lambda_j v_i u_j$. ###Code print(v.T @ u) ###Output [[ 9.71825316e-01 0.00000000e+00] [ -5.55111512e-17 9.71825316e-01]] ###Markdown ะ˜ะฝั‚ะตะณั€ะธั€ะพะฒะฐะฝะธะต ###Code from scipy.integrate import quad, odeint from scipy.special import erf def f(x): return np.exp(-x ** 2) ###Output _____no_output_____ ###Markdown ะะดะฐะฟั‚ะธะฒะฝะพะต ั‡ะธัะปะตะฝะฝะพะต ะธะฝั‚ะตะณั€ะธั€ะพะฒะฐะฝะธะต (ะผะพะถะตั‚ ะฑั‹ั‚ัŒ ะดะพ ะฑะตัะบะพะฝะตั‡ะฝะพัั‚ะธ). `err` - ะพั†ะตะฝะบะฐ ะพัˆะธะฑะบะธ. ###Code res, err = quad(f, 0, np.inf) print(np.sqrt(np.pi) / 2, res, err) res, err = quad(f, 0, 1) print(np.sqrt(np.pi) / 2 * erf(1), res, err) ###Output 0.746824132812 0.7468241328124271 8.291413475940725e-15 ###Markdown ะกะพั…ั€ะฐะฝะตะฝะธะต ะฒ ั„ะฐะนะป ะธ ั‡ั‚ะตะฝะธะต ะธะท ั„ะฐะนะปะฐ ###Code x = np.arange(0, 25, 0.5).reshape((5, 10)) # ะกะพั…ั€ะฐะฝัะตะผ ะฒ ั„ะฐะนะป example.txt ะดะฐะฝะฝั‹ะต x ะฒ ั„ะพั€ะผะฐั‚ะต ั ะดะฒัƒะผั ั‚ะพั‡ะบะฐะผะธ ะฟะพัะปะต ะทะฐะฟัั‚ะพะน ะธ ั€ะฐะทะดะตะปะธั‚ะตะปะตะผ ';' np.savetxt('example.txt', x, fmt='%.2f', delimiter=';') ###Output _____no_output_____ ###Markdown ะŸะพะปัƒั‡ะธั‚ัั ั‚ะฐะบะพะน ั„ะฐะนะป ###Code ! cat example.txt ###Output 0.00;0.50;1.00;1.50;2.00;2.50;3.00;3.50;4.00;4.50 5.00;5.50;6.00;6.50;7.00;7.50;8.00;8.50;9.00;9.50 10.00;10.50;11.00;11.50;12.00;12.50;13.00;13.50;14.00;14.50 15.00;15.50;16.00;16.50;17.00;17.50;18.00;18.50;19.00;19.50 20.00;20.50;21.00;21.50;22.00;22.50;23.00;23.50;24.00;24.50 ###Markdown ะขะตะฟะตั€ัŒ ะตะณะพ ะผะพะถะฝะพ ะฟั€ะพั‡ะธั‚ะฐั‚ัŒ ###Code x = np.loadtxt('example.txt', delimiter=';') print(x) ###Output [[ 0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5] [ 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5] [ 10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5] [ 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5] [ 20. 20.5 21. 21.5 22. 22.5 23. 23.5 24. 24.5]] ###Markdown ะ‘ะธะฑะปะธะพั‚ะตะบะฐ scipy (ะผะพะดัƒะปัŒ scipy.stats)ะะฐะผ ะฟั€ะธะณะพะดะธั‚ัั ั‚ะพะปัŒะบะพ ะผะพะดัƒะปัŒ `scipy.stats`.ะŸะพะปะฝะพะต ะพะฟะธัะฐะฝะธะต http://docs.scipy.org/doc/scipy/reference/stats.html ###Code import scipy.stats as sps ###Output _____no_output_____ ###Markdown ะžะฑั‰ะธะน ะฟั€ะธะฝั†ะธะฟ:$X$ โ€” ะฝะตะบะพั‚ะพั€ะพะต ั€ะฐัะฟั€ะตะดะตะปะตะฝะธะต ั ะฟะฐั€ะฐะผะตั‚ั€ะฐะผะธ `params` `X.rvs(size=N, params)` โ€” ะณะตะฝะตั€ะฐั†ะธั ะฒั‹ะฑะพั€ะบะธ ั€ะฐะทะผะตั€ะฐ $N$ (Random VariateS). ะ’ะพะทะฒั€ะฐั‰ะฐะตั‚ `numpy.array` `X.cdf(x, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ั„ัƒะฝะบั†ะธะธ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั ะฒ ั‚ะพั‡ะบะต $x$ (Cumulative Distribution Function) `X.logcdf(x, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ะปะพะณะฐั€ะธั„ะผะฐ ั„ัƒะฝะบั†ะธะธ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั ะฒ ั‚ะพั‡ะบะต $x$ `X.ppf(q, params)` โ€” $q$-ะบะฒะฐะฝั‚ะธะปัŒ (Percent Point Function) `X.mean(params)` โ€” ะผะฐั‚ะตะผะฐั‚ะธั‡ะตัะบะพะต ะพะถะธะดะฐะฝะธะต `X.median(params)` โ€” ะผะตะดะธะฐะฝะฐ `X.var(params)` โ€” ะดะธัะฟะตั€ัะธั (Variance) `X.std(params)` โ€” ัั‚ะฐะฝะดะฐั€ั‚ะฝะพะต ะพั‚ะบะปะพะฝะตะฝะธะต = ะบะพั€ะตะฝัŒ ะธะท ะดะธัะฟะตั€ัะธะธ (Standard Deviation)ะšั€ะพะผะต ั‚ะพะณะพ ะดะปั ะฝะตะฟั€ะตั€ั‹ะฒะฝั‹ั… ั€ะฐัะฟั€ะตะดะตะปะตะฝะธะน ะพะฟั€ะตะดะตะปะตะฝั‹ ั„ัƒะฝะบั†ะธะธ `X.pdf(x, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ะฟะปะพั‚ะฝะพัั‚ะธ ะฒ ั‚ะพั‡ะบะต $x$ (Probability Density Function) `X.logpdf(x, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ะปะพะณะฐั€ะธั„ะผะฐ ะฟะปะพั‚ะฝะพัั‚ะธ ะฒ ั‚ะพั‡ะบะต $x$ะ ะดะปั ะดะธัะบั€ะตั‚ะฝั‹ั… `X.pmf(k, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ะดะธัะบั€ะตั‚ะฝะพะน ะฟะปะพั‚ะฝะพัั‚ะธ ะฒ ั‚ะพั‡ะบะต $k$ (Probability Mass Function) `X.logpdf(k, params)` โ€” ะทะฝะฐั‡ะตะฝะธะต ะปะพะณะฐั€ะธั„ะผะฐ ะดะธัะบั€ะตั‚ะฝะพะน ะฟะปะพั‚ะฝะพัั‚ะธ ะฒ ั‚ะพั‡ะบะต $k$ะŸะฐั€ะฐะผะตั‚ั€ั‹ ะผะพะณัƒั‚ ะฑั‹ั‚ัŒ ัะปะตะดัƒัŽั‰ะธะผะธ: `loc` โ€” ะฟะฐั€ะฐะผะตั‚ั€ ัะดะฒะธะณะฐ `scale` โ€” ะฟะฐั€ะฐะผะตั‚ั€ ะผะฐััˆั‚ะฐะฑะฐ ะธ ะดั€ัƒะณะธะต ะฟะฐั€ะฐะผะตั‚ั€ั‹ (ะฝะฐะฟั€ะธะผะตั€, $n$ ะธ $p$ ะดะปั ะฑะธะฝะพะผะธะฐะปัŒะฝะพะณะพ) ะ”ะปั ะฟั€ะธะผะตั€ะฐ ัะณะตะฝะตั€ะธั€ัƒะตะผ ะฒั‹ะฑะพั€ะบัƒ ั€ะฐะทะผะตั€ะฐ $N = 200$ ะธะท ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั $\mathscr{N}(1, 9)$ ะธ ะฟะพัั‡ะธั‚ะฐะตะผ ะฝะตะบะพั‚ะพั€ั‹ะต ัั‚ะฐั‚ะธัั‚ะธะบะธ.ะ’ ั‚ะตั€ะผะธะฝะฐั… ะฒั‹ัˆะต ะพะฟะธัะฐะฝะฝั‹ั… ั„ัƒะฝะบั†ะธะน ัƒ ะฝะฐั $X$ = `sps.norm`, ะฐ `params` = (`loc=1, scale=3`). ###Code sample = sps.norm.rvs(size=200, loc=1, scale=3) print('ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ:\n', sample[:10]) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: %.3f' % sample.mean()) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะดะธัะฟะตั€ัะธั: %.3f' % sample.var()) print('ะŸะปะพั‚ะฝะพัั‚ัŒ:\t\t', sps.norm.pdf([-1, 0, 1, 2, 3], loc=1, scale=3)) print('ะคัƒะฝะบั†ะธั ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั:\t', sps.norm.cdf([-1, 0, 1, 2, 3], loc=1, scale=3)) print('ะšะฒะฐะฝั‚ะธะปะธ:', sps.norm.ppf([0.05, 0.1, 0.5, 0.9, 0.95], loc=1, scale=3)) ###Output ะšะฒะฐะฝั‚ะธะปะธ: [-3.93456088 -2.8446547 1. 4.8446547 5.93456088] ###Markdown Cะณะตะฝะตั€ะธั€ัƒะตะผ ะฒั‹ะฑะพั€ะบัƒ ั€ะฐะทะผะตั€ะฐ $N = 200$ ะธะท ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั $Bin(10, 0.6)$ ะธ ะฟะพัั‡ะธั‚ะฐะตะผ ะฝะตะบะพั‚ะพั€ั‹ะต ัั‚ะฐั‚ะธัั‚ะธะบะธ.ะ’ ั‚ะตั€ะผะธะฝะฐั… ะฒั‹ัˆะต ะพะฟะธัะฐะฝะฝั‹ั… ั„ัƒะฝะบั†ะธะน ัƒ ะฝะฐั $X$ = `sps.binom`, ะฐ `params` = (`n=10, p=0.6`). ###Code sample = sps.binom.rvs(size=200, n=10, p=0.6) print('ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ:\n', sample[:10]) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: %.3f' % sample.mean()) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะดะธัะฟะตั€ัะธั: %.3f' % sample.var()) print('ะ”ะธัะบั€ะตั‚ะฝะฐั ะฟะปะพั‚ะฝะพัั‚ัŒ:\t', sps.binom.pmf([-1, 0, 5, 5.5, 10], n=10, p=0.6)) print('ะคัƒะฝะบั†ะธั ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั:\t', sps.binom.cdf([-1, 0, 5, 5.5, 10], n=10, p=0.6)) print('ะšะฒะฐะฝั‚ะธะปะธ:', sps.binom.ppf([0.05, 0.1, 0.5, 0.9, 0.95], n=10, p=0.6)) ###Output ะšะฒะฐะฝั‚ะธะปะธ: [ 3. 4. 6. 8. 8.] ###Markdown ะžั‚ะดะตะปัŒะฝะพ ะตัั‚ัŒ ะบะปะฐัั ะดะปั ะผะฝะพะณะพะผะตั€ะฝะพะณะพ ะฝะพั€ะผะฐะปัŒะฝะพะณะพ ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั.ะ”ะปั ะฟั€ะธะผะตั€ะฐ ัะณะตะฝะตั€ะธั€ัƒะตะผ ะฒั‹ะฑะพั€ะบัƒ ั€ะฐะทะผะตั€ะฐ $N=200$ ะธะท ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั $\mathscr{N} \left( \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \right)$. ###Code sample = sps.multivariate_normal.rvs(mean=[1, 1], cov=[[2, 1], [1, 2]], size=200) print('ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ:\n', sample[:10]) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต:', sample.mean(axis=0)) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะผะฐั‚ั€ะธั†ะฐ ะบะพะฒะฐั€ะธะฐั†ะธะน:\n', np.cov(sample.T)) ###Output ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ: [[-1.9861816 -0.94358461] [ 1.93376109 0.34449948] [ 1.76689 3.25707287] [ 1.14967263 -0.71283847] [ 1.44368489 1.27636574] [ 1.48994732 2.03350446] [ 2.02426618 1.21057156] [ 1.67851671 2.30199687] [ 1.90705893 2.1001483 ] [ 2.96734234 2.58021913]] ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: [ 1.14018367 0.98307564] ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะผะฐั‚ั€ะธั†ะฐ ะบะพะฒะฐั€ะธะฐั†ะธะน: [[ 2.10650447 0.94076559] [ 0.94076559 1.87049463]] ###Markdown ะะตะบะพั‚ะพั€ะฐั ั…ะธั‚ั€ะพัั‚ัŒ :) ###Code sample = sps.norm.rvs(size=10, loc=np.arange(10), scale=0.1) print(sample) ###Output [-0.25874425 0.97813837 2.04639019 3.0187115 4.05480661 4.94792113 6.01970204 7.00142419 7.9675934 8.88900013] ###Markdown ะ‘ั‹ะฒะฐะตั‚ ั‚ะฐะบ, ั‡ั‚ะพ ะฝะฐะดะพ ัะณะตะฝะตั€ะธั€ะพะฒะฐั‚ัŒ ะฒั‹ะฑะพั€ะบัƒ ะธะท ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั, ะบะพั‚ะพั€ะพะณะพ ะฝะตั‚ ะฒ `scipy.stats`.ะ”ะปั ัั‚ะพะณะพ ะฝะฐะดะพ ัะพะทะดะฐั‚ัŒ ะบะปะฐัั, ะบะพั‚ะพั€ั‹ะน ะฑัƒะดะตั‚ ะฝะฐัะปะตะดะพะฒะฐั‚ัŒัั ะพั‚ ะบะปะฐััะฐ `rv_continuous` ะดะปั ะฝะตะฟั€ะตั€ั‹ะฒะฝั‹ั… ัะปัƒั‡ะฐะนะฝั‹ั… ะฒะตะปะธั‡ะธะฝ ะธ ะพั‚ ะบะปะฐััะฐ `rv_discrete` ะดะปั ะดะธัะบั€ะตั‚ะฝั‹ั… ัะปัƒั‡ะฐะนะฝั‹ั… ะฒะตะปะธั‡ะธะฝ.ะŸั€ะธะผะตั€ ะตัั‚ัŒ ะฝะฐ ัั‚ั€ะฐะฝะธั†ะต http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.htmlscipy.stats.rv_continuous ะ”ะปั ะฟั€ะธะผะตั€ะฐ ัะณะตะฝะตั€ะธั€ัƒะตะผ ะฒั‹ะฑะพั€ะบัƒ ะธะท ั€ะฐัะฟั€ะตะดะตะปะตะฝะธั ั ะฟะปะพั‚ะฝะพัั‚ัŒัŽ $f(x) = \frac{4}{15} x^3 I\{x \in [1, 2] = [a, b]\}$. ###Code class cubic_gen(sps.rv_continuous): def _pdf(self, x): return 4 * x ** 3 / 15 cubic = cubic_gen(a=1, b=2, name='cubic') sample = cubic.rvs(size=200) print('ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ:\n', sample[:10]) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: %.3f' % sample.mean()) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะดะธัะฟะตั€ัะธั: %.3f' % sample.var()) ###Output ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ: [ 1.8838009 1.80617825 1.09789444 1.65771829 1.72582776 1.57311372 1.7174875 1.99153808 1.90110246 1.69306301] ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: 1.652 ะ’ั‹ะฑะพั€ะพั‡ะฝะฐั ะดะธัะฟะตั€ัะธั: 0.064 ###Markdown ะ•ัะปะธ ะดะธัะบั€ะตั‚ะฝะฐั ัะปัƒั‡ะฐะนะฝะฐั ะฒะตะปะธั‡ะธะฝะฐ ะผะพะถะตั‚ ะฟั€ะธะฝะธะผะฐั‚ัŒ ะฝะตะฑะพะปัŒัˆะพะต ั‡ะธัะปะพ ะทะฝะฐั‡ะตะฝะธะน, ั‚ะพ ะผะพะถะฝะพ ะฝะต ัะพะทะดะฐะฒะฐั‚ัŒ ะฝะพะฒั‹ะน ะบะปะฐัั, ะบะฐะบ ะฟะพะบะฐะทะฐะฝะพ ะฒั‹ัˆะต, ะฐ ัะฒะฝะพ ัƒะบะฐะทะฐั‚ัŒ ัั‚ะธ ะทะฝะฐั‡ะตะฝะธั ะธ ะธะท ะฒะตั€ะพัั‚ะฝะพัั‚ะธ. ###Code some_distribution = sps.rv_discrete(name='some_distribution', values=([1, 2, 3], [0.6, 0.1, 0.3])) sample = some_distribution.rvs(size=200) print('ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ:\n', sample[:10]) print('ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: %.3f' % sample.mean()) print('ะงะฐัั‚ะพั‚ะฐ ะทะฝะฐั‡ะตะฝะธะน ะฟะพ ะฒั‹ะฑะพั€ะบะต:', (sample == 1).mean(), (sample == 2).mean(), (sample == 3).mean()) ###Output ะŸะตั€ะฒั‹ะต 10 ะทะฝะฐั‡ะตะฝะธะน ะฒั‹ะฑะพั€ะบะธ: [3 1 1 3 3 1 3 1 1 1] ะ’ั‹ะฑะพั€ะพั‡ะฝะพะต ัั€ะตะดะตะฝะตะต: 1.725 ะงะฐัั‚ะพั‚ะฐ ะทะฝะฐั‡ะตะฝะธะน ะฟะพ ะฒั‹ะฑะพั€ะบะต: 0.575 0.125 0.3
MySolutions/MIT_6S191_Part1_MNIST.ipynb
###Markdown Visit MIT Deep Learning Run in Google Colab View Source on GitHub Copyright Information ###Code # Copyright 2020 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved. # # Licensed under the MIT License. You may not use this file except in compliance # with the License. Use and/or modification of this code outside of 6.S191 must # reference: # # ยฉ MIT 6.S191: Introduction to Deep Learning # http://introtodeeplearning.com # ###Output _____no_output_____ ###Markdown Laboratory 2: Computer Vision Part 1: MNIST Digit ClassificationIn the first portion of this lab, we will build and train a convolutional neural network (CNN) for classification of handwritten digits from the famous [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. The MNIST dataset consists of 60,000 training images and 10,000 test images. Our classes are the digits 0-9.First, let's download the course repository, install dependencies, and import the relevant packages we'll need for this lab. ###Code # Import Tensorflow 2.0 %tensorflow_version 2.x import tensorflow as tf !pip install mitdeeplearning import mitdeeplearning as mdl import matplotlib.pyplot as plt import numpy as np import random from tqdm import tqdm # Check that we are using a GPU, if not switch runtimes # using Runtime > Change Runtime Type > GPU assert len(tf.config.list_physical_devices('GPU')) > 0 ###Output Collecting mitdeeplearning [?25l Downloading https://files.pythonhosted.org/packages/8b/3b/b9174b68dc10832356d02a2d83a64b43a24f1762c172754407d22fc8f960/mitdeeplearning-0.1.2.tar.gz (2.1MB)  |โ– | 10kB 26.8MB/s eta 0:00:01  |โ–Ž | 20kB 1.7MB/s eta 0:00:02  |โ–Œ | 30kB 2.3MB/s eta 0:00:01  |โ–‹ | 40kB 2.5MB/s eta 0:00:01  |โ–‰ | 51kB 2.0MB/s eta 0:00:02  |โ–ˆ | 61kB 2.3MB/s eta 0:00:01  |โ–ˆ | 71kB 2.5MB/s eta 0:00:01  |โ–ˆโ–Ž | 81kB 2.7MB/s eta 0:00:01  |โ–ˆโ– | 92kB 2.9MB/s eta 0:00:01  |โ–ˆโ–‹ | 102kB 2.8MB/s eta 0:00:01  |โ–ˆโ–Š | 112kB 2.8MB/s eta 0:00:01  |โ–ˆโ–‰ | 122kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆ | 133kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ– | 143kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ– | 153kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–Œ | 163kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–Š | 174kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–‰ | 184kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆ | 194kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ– | 204kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–Ž | 215kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–Œ | 225kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–‹ | 235kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–Š | 245kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆ | 256kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆ | 266kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 276kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ– | 286kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 296kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 307kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 317kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 327kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 337kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 348kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 358kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 368kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 378kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 389kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 399kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 409kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 419kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 430kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 440kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 450kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 460kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 471kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 481kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 491kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 501kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 512kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 522kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 532kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 542kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 552kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 563kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 573kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 583kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 593kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 604kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 614kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 624kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 634kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 645kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 655kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 665kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 675kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 686kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 696kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 706kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 716kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 727kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 737kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 747kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 757kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 768kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 778kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 788kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 798kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 808kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 819kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 829kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 839kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 849kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 860kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 870kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 880kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 890kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 901kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 911kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 921kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 931kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 942kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 952kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 962kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 972kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 983kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 993kB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.2MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.3MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.4MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.5MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.6MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.7MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.8MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 1.9MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–| 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž| 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ| 2.0MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‹| 2.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š| 2.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2.1MB 2.8MB/s eta 0:00:01  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2.1MB 5.1MB/s [?25hRequirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from mitdeeplearning) (1.18.4) Requirement already satisfied: regex in /usr/local/lib/python3.6/dist-packages (from mitdeeplearning) (2019.12.20) Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from mitdeeplearning) (4.41.1) Requirement already satisfied: gym in /usr/local/lib/python3.6/dist-packages (from mitdeeplearning) (0.17.1) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from gym->mitdeeplearning) (1.12.0) Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from gym->mitdeeplearning) (1.4.1) Requirement already satisfied: cloudpickle<1.4.0,>=1.2.0 in /usr/local/lib/python3.6/dist-packages (from gym->mitdeeplearning) (1.3.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.6/dist-packages (from gym->mitdeeplearning) (1.5.0) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym->mitdeeplearning) (0.16.0) Building wheels for collected packages: mitdeeplearning Building wheel for mitdeeplearning (setup.py) ... [?25l[?25hdone Created wheel for mitdeeplearning: filename=mitdeeplearning-0.1.2-cp36-none-any.whl size=2114586 sha256=49eacd1f3644c9179d4fad50653e30d09c2bc79c1a16676218c4671a9614df16 Stored in directory: /root/.cache/pip/wheels/27/e1/73/5f01c787621d8a3c857f59876c79e304b9b64db9ff5bd61b74 Successfully built mitdeeplearning Installing collected packages: mitdeeplearning Successfully installed mitdeeplearning-0.1.2 ###Markdown 1.1 MNIST dataset Let's download and load the dataset and display a few random samples from it: ###Code mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = (np.expand_dims(train_images, axis=-1)/255.).astype(np.float32) train_labels = (train_labels).astype(np.int64) test_images = (np.expand_dims(test_images, axis=-1)/255.).astype(np.float32) test_labels = (test_labels).astype(np.int64) ###Output Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step ###Markdown Our training set is made up of 28x28 grayscale images of handwritten digits. Let's visualize what some of these images and their corresponding training labels look like. ###Code plt.figure(figsize=(10,10)) random_inds = np.random.choice(60000,36) for i in range(36): plt.subplot(6,6,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) image_ind = random_inds[i] plt.imshow(np.squeeze(train_images[image_ind]), cmap=plt.cm.binary) plt.xlabel(train_labels[image_ind]) ###Output _____no_output_____ ###Markdown 1.2 Neural Network for Handwritten Digit ClassificationWe'll first build a simple neural network consisting of two fully connected layers and apply this to the digit classification task. Our network will ultimately output a probability distribution over the 10 digit classes (0-9). This first architecture we will be building is depicted below:![alt_text](https://raw.githubusercontent.com/aamini/introtodeeplearning/master/lab2/img/mnist_2layers_arch.png "CNN Architecture for MNIST Classification") Fully connected neural network architectureTo define the architecture of this first fully connected neural network, we'll once again use the Keras API and define the model using the [`Sequential`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequential) class. Note how we first use a [`Flatten`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten) layer, which flattens the input so that it can be fed into the model. In this next block, you'll define the fully connected layers of this simple work. ###Code def build_fc_model(): fc_model = tf.keras.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation = tf.keras.activations.relu), tf.keras.layers.Dense(10, activation = tf.keras.activations.softmax) ]) return fc_model model = build_fc_model() ###Output _____no_output_____ ###Markdown As we progress through this next portion, you may find that you'll want to make changes to the architecture defined above. **Note that in order to update the model later on, you'll need to re-run the above cell to re-initialize the model. ** Let's take a step back and think about the network we've just created. The first layer in this network, `tf.keras.layers.Flatten`, transforms the format of the images from a 2d-array (28 x 28 pixels), to a 1d-array of 28 * 28 = 784 pixels. You can think of this layer as unstacking rows of pixels in the image and lining them up. There are no learned parameters in this layer; it only reformats the data.After the pixels are flattened, the network consists of a sequence of two `tf.keras.layers.Dense` layers. These are fully-connected neural layers. The first `Dense` layer has 128 nodes (or neurons). The second (and last) layer (which you've defined!) should return an array of probability scores that sum to 1. Each node contains a score that indicates the probability that the current image belongs to one of the handwritten digit classes.That defines our fully connected model! Compile the modelBefore training the model, we need to define a few more settings. These are added during the model's [`compile`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialcompile) step:* *Loss function* โ€” This defines how we measure how accurate the model is during training. As was covered in lecture, during training we want to minimize this function, which will "steer" the model in the right direction.* *Optimizer* โ€” This defines how the model is updated based on the data it sees and its loss function.* *Metrics* โ€” Here we can define metrics used to monitor the training and testing steps. In this example, we'll look at the *accuracy*, the fraction of the images that are correctly classified.We'll start out by using a stochastic gradient descent (SGD) optimizer initialized with a learning rate of 0.1. Since we are performing a categorical classification task, we'll want to use the [cross entropy loss](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_categorical_crossentropy).You'll want to experiment with both the choice of optimizer and learning rate and evaluate how these affect the accuracy of the trained model. ###Code '''TODO: Experiment with different optimizers and learning rates. How do these affect the accuracy of the trained model? Which optimizers and/or learning rates yield the best performance?''' model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-1), loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the modelWe're now ready to train our model, which will involve feeding the training data (`train_images` and `train_labels`) into the model, and then asking it to learn the associations between images and labels. We'll also need to define the batch size and the number of epochs, or iterations over the MNIST dataset, to use during training. In Lab 1, we saw how we can use `GradientTape` to optimize losses and train models with stochastic gradient descent. After defining the model settings in the `compile` step, we can also accomplish training by calling the [`fit`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialfit) method on an instance of the `Model` class. We will use this to train our fully connected model ###Code # Define the batch size and the number of epochs to use during training BATCH_SIZE = 64 EPOCHS = 15 model.fit(train_images, train_labels, batch_size=BATCH_SIZE, epochs=EPOCHS) ###Output Epoch 1/15 938/938 [==============================] - 2s 2ms/step - loss: 0.3099 - accuracy: 0.9228 Epoch 2/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2956 - accuracy: 0.9235 Epoch 3/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2879 - accuracy: 0.9250 Epoch 4/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2825 - accuracy: 0.9261 Epoch 5/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2801 - accuracy: 0.9266 Epoch 6/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2783 - accuracy: 0.9275 Epoch 7/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2785 - accuracy: 0.9277 Epoch 8/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2785 - accuracy: 0.9278 Epoch 9/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2747 - accuracy: 0.9282 Epoch 10/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2751 - accuracy: 0.9284 Epoch 11/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2739 - accuracy: 0.9284 Epoch 12/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2835 - accuracy: 0.9278 Epoch 13/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2773 - accuracy: 0.9285 Epoch 14/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2772 - accuracy: 0.9284 Epoch 15/15 938/938 [==============================] - 2s 2ms/step - loss: 0.2718 - accuracy: 0.9290 ###Markdown As the model trains, the loss and accuracy metrics are displayed. With five epochs and a learning rate of 0.01, this fully connected model should achieve an accuracy of approximatley 0.97 (or 97%) on the training data. Evaluate accuracy on the test datasetNow that we've trained the model, we can ask it to make predictions about a test set that it hasn't seen before. In this example, the `test_images` array comprises our test dataset. To evaluate accuracy, we can check to see if the model's predictions match the labels from the `test_labels` array. Use the [`evaluate`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialevaluate) method to evaluate the model on the test dataset! ###Code '''TODO: Use the evaluate method to test the model!''' test_loss, test_acc = model.evaluate(test_images, test_labels)# TODO print('Test accuracy:', test_acc) ###Output 313/313 [==============================] - 1s 2ms/step - loss: 0.5552 - accuracy: 0.9159 Test accuracy: 0.9158999919891357 ###Markdown You may observe that the accuracy on the test dataset is a little lower than the accuracy on the training dataset. This gap between training accuracy and test accuracy is an example of *overfitting*, when a machine learning model performs worse on new data than on its training data. What is the highest accuracy you can achieve with this first fully connected model? Since the handwritten digit classification task is pretty straightforward, you may be wondering how we can do better...![Deeper...](https://i.kym-cdn.com/photos/images/newsfeed/000/534/153/f87.jpg) 1.3 Convolutional Neural Network (CNN) for handwritten digit classification As we saw in lecture, convolutional neural networks (CNNs) are particularly well-suited for a variety of tasks in computer vision, and have achieved near-perfect accuracies on the MNIST dataset. We will now build a CNN composed of two convolutional layers and pooling layers, followed by two fully connected layers, and ultimately output a probability distribution over the 10 digit classes (0-9). The CNN we will be building is depicted below:![alt_text](https://raw.githubusercontent.com/aamini/introtodeeplearning/master/lab2/img/convnet_fig.png "CNN Architecture for MNIST Classification") Define the CNN modelWe'll use the same training and test datasets as before, and proceed similarly as our fully connected network to define and train our new CNN model. To do this we will explore two layers we have not encountered before: you can use [`keras.layers.Conv2D` ](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D) to define convolutional layers and [`keras.layers.MaxPool2D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D) to define the pooling layers. Use the parameters shown in the network architecture above to define these layers and build the CNN model. ###Code def build_cnn_model(): cnn_model = tf.keras.Sequential([tf.keras.layers.Conv2D(24, kernel_size = (3,3), activation=tf.keras.activations.relu), tf.keras.layers.MaxPool2D(pool_size = (2,2)), tf.keras.layers.Conv2D(36, kernel_size=(3,3), activation=tf.keras.activations.relu), tf.keras.layers.MaxPool2D(pool_size=(2,2)),tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation = tf.keras.activations.softmax)]) return cnn_model cnn_model = build_cnn_model() # Initialize the model by passing some data through cnn_model.predict(train_images[[0]]) # Print the summary of the layers in the model. print(cnn_model.summary()) ###Output Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_2 (Conv2D) multiple 240 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 multiple 0 _________________________________________________________________ conv2d_3 (Conv2D) multiple 7812 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 multiple 0 _________________________________________________________________ flatten_2 (Flatten) multiple 0 _________________________________________________________________ dense_4 (Dense) multiple 115328 _________________________________________________________________ dense_5 (Dense) multiple 1290 ================================================================= Total params: 124,670 Trainable params: 124,670 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Train and test the CNN modelNow, as before, we can define the loss function, optimizer, and metrics through the `compile` method. Compile the CNN model with an optimizer and learning rate of choice: ###Code '''TODO: Define the compile operation with your optimizer and learning rate of choice''' cnn_model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=1e-1), loss= 'sparse_categorical_crossentropy', metrics=['accuracy']) # TODO ###Output _____no_output_____ ###Markdown As was the case with the fully connected model, we can train our CNN using the `fit` method via the Keras API. ###Code '''TODO: Use model.fit to train the CNN model, with the same batch_size and number of epochs previously used.''' cnn_model.fit(train_images, train_labels, batch_size=64, epochs=5) ###Output Epoch 1/5 938/938 [==============================] - 2s 3ms/step - loss: 0.0259 - accuracy: 0.9917 Epoch 2/5 938/938 [==============================] - 2s 3ms/step - loss: 0.0215 - accuracy: 0.9934 Epoch 3/5 938/938 [==============================] - 2s 3ms/step - loss: 0.0179 - accuracy: 0.9945 Epoch 4/5 938/938 [==============================] - 2s 3ms/step - loss: 0.0154 - accuracy: 0.9955 Epoch 5/5 938/938 [==============================] - 2s 3ms/step - loss: 0.0130 - accuracy: 0.9959 ###Markdown Great! Now that we've trained the model, let's evaluate it on the test dataset using the [`evaluate`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialevaluate) method: ###Code '''TODO: Use the evaluate method to test the model!''' test_loss, test_acc = cnn_model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ###Output 313/313 [==============================] - 1s 2ms/step - loss: 0.0268 - accuracy: 0.9909 Test accuracy: 0.9908999800682068 ###Markdown What is the highest accuracy you're able to achieve using the CNN model, and how does the accuracy of the CNN model compare to the accuracy of the simple fully connected network? What optimizers and learning rates seem to be optimal for training the CNN model? Make predictions with the CNN modelWith the model trained, we can use it to make predictions about some images. The [`predict`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialpredict) function call generates the output predictions given a set of input samples. ###Code predictions = cnn_model.predict(test_images) ###Output _____no_output_____ ###Markdown With this function call, the model has predicted the label for each image in the testing set. Let's take a look at the prediction for the first image in the test dataset: ###Code predictions[0] ###Output _____no_output_____ ###Markdown As you can see, a prediction is an array of 10 numbers. Recall that the output of our model is a probability distribution over the 10 digit classes. Thus, these numbers describe the model's "confidence" that the image corresponds to each of the 10 different digits. Let's look at the digit that has the highest confidence for the first image in the test dataset: ###Code '''TODO: identify the digit with the highest confidence prediction for the first image in the test dataset. ''' prediction = test_labels[0] print(prediction) ###Output 7 ###Markdown So, the model is most confident that this image is a "???". We can check the test label (remember, this is the true identity of the digit) to see if this prediction is correct: ###Code print("Label of this digit is:", test_labels[0]) plt.imshow(test_images[0,:,:,0], cmap=plt.cm.binary) ###Output Label of this digit is: 7 ###Markdown It is! Let's visualize the classification results on the MNIST dataset. We will plot images from the test dataset along with their predicted label, as well as a histogram that provides the prediction probabilities for each of the digits: ###Code #@title Change the slider to look at the model's predictions! { run: "auto" } image_index = 96 #@param {type:"slider", min:0, max:100, step:1} plt.subplot(1,2,1) mdl.lab2.plot_image_prediction(image_index, predictions, test_labels, test_images) plt.subplot(1,2,2) mdl.lab2.plot_value_prediction(image_index, predictions, test_labels) ###Output _____no_output_____ ###Markdown We can also plot several images along with their predictions, where correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent confidence (out of 100) for the predicted label. Note the model can be very confident in an incorrect prediction! ###Code # Plots the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 4 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) mdl.lab2.plot_image_prediction(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) mdl.lab2.plot_value_prediction(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown 1.4 Training the model 2.0Earlier in the lab, we used the [`fit`](https://www.tensorflow.org/api_docs/python/tf/keras/models/Sequentialfit) function call to train the model. This function is quite high-level and intuitive, which is really useful for simpler models. As you may be able to tell, this function abstracts away many details in the training call, and we have less control over training model, which could be useful in other contexts. As an alternative to this, we can use the [`tf.GradientTape`](https://www.tensorflow.org/api_docs/python/tf/GradientTape) class to record differentiation operations during training, and then call the [`tf.GradientTape.gradient`](https://www.tensorflow.org/api_docs/python/tf/GradientTapegradient) function to actually compute the gradients. You may recall seeing this in Lab 1 Part 1, but let's take another look at this here.We'll use this framework to train our `cnn_model` using stochastic gradient descent. ###Code # Rebuild the CNN model cnn_model = build_cnn_model() batch_size = 12 loss_history = mdl.util.LossHistory(smoothing_factor=0.95) # to record the evolution of the loss plotter = mdl.util.PeriodicPlotter(sec=2, xlabel='Iterations', ylabel='Loss', scale='semilogy') optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2) # define our optimizer if hasattr(tqdm, '_instances'): tqdm._instances.clear() # clear if it exists for idx in tqdm(range(0, train_images.shape[0], batch_size)): # First grab a batch of training data and convert the input images to tensors (images, labels) = (train_images[idx:idx+batch_size], train_labels[idx:idx+batch_size]) images = tf.convert_to_tensor(images, dtype=tf.float32) # GradientTape to record differentiation operations with tf.GradientTape() as tape: #'''TODO: feed the images into the model and obtain the predictions''' logits = cnn_model(images) #'''TODO: compute the categorical cross entropy loss loss_value = tf.keras.backend.sparse_categorical_crossentropy(labels, logits) # TODO loss_history.append(loss_value.numpy().mean()) # append the loss to the loss_history record plotter.plot(loss_history.get()) # Backpropagation '''TODO: Use the tape to compute the gradient against all parameters in the CNN model. Use cnn_model.trainable_variables to access these parameters.''' grads = tape.gradient(loss_value, cnn_model.trainable_variables) optimizer.apply_gradients(zip(grads, cnn_model.trainable_variables)) ###Output _____no_output_____
SIC_AI_Coding_Exercises/SIC_AI_Chapter_09_Coding_Exercises/ex_0801.ipynb
###Markdown Coding Exercise 0801 1. Keras Sequential API model: ###Code # Install if necessary. #!pip install keras import pandas as pd import numpy as np import os import warnings import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam, RMSprop, SGD warnings.filterwarnings('ignore') # Turn the warnings off. %matplotlib inline ###Output _____no_output_____ ###Markdown 1.1. Read in the data and explore: ###Code # Go to the directory where the data file is located. # os.chdir(r'~~') # Please, replace the path with your own. # Read. df = pd.read_csv('data_boston.csv', header='infer',encoding = 'latin1') X = df.drop(columns=['PRICE']) y = df['PRICE'] # View. df.head(5) # Scale the X data. scaler = MinMaxScaler() X = scaler.fit_transform(X) # Spit the data into training and testing. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123) n_vars = X_train.shape[1] ###Output _____no_output_____ ###Markdown 1.2. Define a Sequential API model: ###Code # Add layers on a Sequential object. my_model1 = Sequential() my_model1.add(Dense(input_dim = n_vars, units = 1, activation="linear")) # Add a output layer for linear regression. # Summary of the model. my_model1.summary() ###Output _____no_output_____ ###Markdown 1.3. Define the hyperparameters and optimizer: ###Code # Hyperparameters. n_epochs = 2000 batch_size = 10 learn_rate = 0.002 # Define the optimizer and then compile. my_optimizer=Adam(lr=learn_rate) my_model1.compile(loss = "mae", optimizer = my_optimizer, metrics=["mse"]) ###Output _____no_output_____ ###Markdown 1.4. Train the model and visualize the history: ###Code # Train the model. # verbose = 0 means no output. verbose = 1 to view the epochs. my_summary = my_model1.fit(X_train, y_train, epochs=n_epochs, batch_size = batch_size, validation_split = 0.2, verbose = 0) # View the keys. my_summary.history.keys() # Visualize the training history. n_skip = 100 # Skip the first few steps. plt.plot(my_summary.history['mse'][n_skip:], c="b") plt.plot(my_summary.history['val_mse'][n_skip:], c="g") plt.title('Training History') plt.ylabel('MSE') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper right') plt.show() ###Output _____no_output_____ ###Markdown 1.5. Testing: ###Code # Predict and test using a formula. y_pred = my_model1.predict(X_test)[:,0] RMSE = np.sqrt(np.mean((y_test-y_pred)**2)) np.round(RMSE,3) # Use the evaluate() method. MSE = my_model1.evaluate(X_test, y_test, verbose=0)[1] # Returns the 0 = loss value and 1 = metrics value. RMSE = np.sqrt(MSE) print("Test RMSE : {}".format(np.round(RMSE,3))) ###Output _____no_output_____ ###Markdown 2. Keras Functional API model: ###Code from keras.models import Model from keras.layers import Input, Dense ###Output _____no_output_____ ###Markdown 2.1. Define a Functional API model: ###Code my_input = Input(shape=(n_vars,)) # Input layer. my_output = Dense(units=1,activation='linear')(my_input) # Output layer. my_model2 = Model(inputs=my_input,outputs=my_output) # The model. # Summary of the model. my_model2.summary() # Define the optimizer and then compile. my_optimizer=Adam(lr=learn_rate) my_model2.compile(loss = "mae", optimizer = my_optimizer, metrics=["mse"]) # Loss = MAE (L1) and Metrics = MSE (L2). ###Output _____no_output_____ ###Markdown 2.2. Train the model and visualize the history: ###Code # Train the model. my_summary = my_model2.fit(X_train, y_train, epochs=n_epochs, batch_size = batch_size, validation_split = 0.2, verbose = 0) # Visualize the training history. n_skip = 100 # Skip the first few steps. plt.plot(my_summary.history['mse'][n_skip:], c="b") plt.plot(my_summary.history['val_mse'][n_skip:], c="g") plt.title('Training History') plt.ylabel('MSE') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper right') plt.show() # Use the evaluate() method. MSE = my_model2.evaluate(X_test, y_test, verbose=0)[1] # Returns the 0 = loss value and 1 = metrics value. RMSE = np.sqrt(MSE) print("Test RMSE : {}".format(np.round(RMSE,3))) ###Output _____no_output_____ ###Markdown Coding Exercise 0801 1. Keras Sequential API model: ###Code # Install if necessary. #!pip install keras import pandas as pd import numpy as np import os import warnings import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam, RMSprop, SGD warnings.filterwarnings('ignore') # Turn the warnings off. %matplotlib inline ###Output _____no_output_____ ###Markdown 1.1. Read in the data and explore: ###Code !wget --no-clobber https://raw.githubusercontent.com/stefannae/SIC-Artificial-Intelligence/main/SIC_AI_Coding_Exercises/SIC_AI_Chapter_09_Coding_Exercises/data_boston.csv # Read. df = pd.read_csv('data_boston.csv', header='infer',encoding = 'latin1') X = df.drop(columns=['PRICE']) y = df['PRICE'] # View. df.head(5) # Scale the X data. scaler = MinMaxScaler() X = scaler.fit_transform(X) # Spit the data into training and testing. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123) n_vars = X_train.shape[1] ###Output _____no_output_____ ###Markdown 1.2. Define a Sequential API model: ###Code # Add layers on a Sequential object. my_model1 = Sequential() my_model1.add(Dense(input_dim = n_vars, units = 1, activation="linear")) # Add a output layer for linear regression. # Summary of the model. my_model1.summary() ###Output _____no_output_____ ###Markdown 1.3. Define the hyperparameters and optimizer: ###Code # Hyperparameters. n_epochs = 2000 batch_size = 10 learn_rate = 0.002 # Define the optimizer and then compile. my_optimizer=Adam(lr=learn_rate) my_model1.compile(loss = "mae", optimizer = my_optimizer, metrics=["mse"]) ###Output _____no_output_____ ###Markdown 1.4. Train the model and visualize the history: ###Code # Train the model. # verbose = 0 means no output. verbose = 1 to view the epochs. my_summary = my_model1.fit(X_train, y_train, epochs=n_epochs, batch_size = batch_size, validation_split = 0.2, verbose = 0) # View the keys. my_summary.history.keys() # Visualize the training history. n_skip = 100 # Skip the first few steps. plt.plot(my_summary.history['mse'][n_skip:], c="b") plt.plot(my_summary.history['val_mse'][n_skip:], c="g") plt.title('Training History') plt.ylabel('MSE') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper right') plt.show() ###Output _____no_output_____ ###Markdown 1.5. Testing: ###Code # Predict and test using a formula. y_pred = my_model1.predict(X_test)[:,0] RMSE = np.sqrt(np.mean((y_test-y_pred)**2)) np.round(RMSE,3) # Use the evaluate() method. MSE = my_model1.evaluate(X_test, y_test, verbose=0)[1] # Returns the 0 = loss value and 1 = metrics value. RMSE = np.sqrt(MSE) print("Test RMSE : {}".format(np.round(RMSE,3))) ###Output _____no_output_____ ###Markdown 2. Keras Functional API model: ###Code from keras.models import Model from keras.layers import Input, Dense ###Output _____no_output_____ ###Markdown 2.1. Define a Functional API model: ###Code my_input = Input(shape=(n_vars,)) # Input layer. my_output = Dense(units=1,activation='linear')(my_input) # Output layer. my_model2 = Model(inputs=my_input,outputs=my_output) # The model. # Summary of the model. my_model2.summary() # Define the optimizer and then compile. my_optimizer=Adam(lr=learn_rate) my_model2.compile(loss = "mae", optimizer = my_optimizer, metrics=["mse"]) # Loss = MAE (L1) and Metrics = MSE (L2). ###Output _____no_output_____ ###Markdown 2.2. Train the model and visualize the history: ###Code # Train the model. my_summary = my_model2.fit(X_train, y_train, epochs=n_epochs, batch_size = batch_size, validation_split = 0.2, verbose = 0) # Visualize the training history. n_skip = 100 # Skip the first few steps. plt.plot(my_summary.history['mse'][n_skip:], c="b") plt.plot(my_summary.history['val_mse'][n_skip:], c="g") plt.title('Training History') plt.ylabel('MSE') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper right') plt.show() # Use the evaluate() method. MSE = my_model2.evaluate(X_test, y_test, verbose=0)[1] # Returns the 0 = loss value and 1 = metrics value. RMSE = np.sqrt(MSE) print("Test RMSE : {}".format(np.round(RMSE,3))) ###Output _____no_output_____
ecdsa_ethereum_playground.ipynb
###Markdown Ethereum ECDSA playground ###Code from eth_keys import keys eth_priv_key = keys.PrivateKey(b'\x01' * 32) eth_priv_key eth_pub_key = eth_priv_key.public_key eth_pub_key eth_pub_key.to_checksum_address() # Ethereum address signature = eth_priv_key.sign_msg(b'message') signature signature.verify_msg(b'message', eth_pub_key) ###Output _____no_output_____
macros_ffn/01_vis_save_knossos.ipynb
###Markdown Progress: finishedSpeed: 36.108 MB or MPix /s, time 0.11077737808227539Progress: 25.00%knossos_cuber_project_mag1_mag1x0y0z0.seg.szCube does not exist, cube with 0 only assignedProgress: 50.00%knossos_cuber_project_mag1_mag1x1y0z0.seg.szCube does not exist, cube with 0 only assignedProgress: 75.00%knossos_cuber_project_mag1_mag1x0y1z0.seg.szCube does not exist, cube with 0 only assignedProgress: 100.00%knossos_cuber_project_mag1_mag1x1y1z0.seg.szCube does not exist, cube with 0 only assignedapplying mergelist nowCorrect shape ###Code print(cube.shape, cube.dtype) print(anno.shape, anno.dtype) anno[anno<delete_anno_low] = 0 anno[anno>delete_anno_high] = 0 ids = np.unique(anno[...],return_counts=1) print (ids) viewer = neuroglancer.Viewer() with viewer.txn() as s: s.layers['image'] = neuroglancer.ImageLayer( source=neuroglancer.LocalVolume(data=cube, volume_type='image')) s.layers['labels'] = neuroglancer.SegmentationLayer( source=neuroglancer.LocalVolume(data=anno, volume_type='segmentation',mesh_options={'max_quadrics_error':100}),segments=ids[0]) print(viewer.get_viewer_url()) del viewer #this will create the training data for FFN from knossos files #change here for the training data filename #DONT TOUCH labels = anno.astype('int64') print ("Working Dir") print (os.getcwd()) print ('Cube Properties!') print (cube.dtype) print (cube.shape) print ('Mean : '+str(cube.mean())) print ('Std : '+str(cube.std())) print ('Labels Properties!') print (labels.dtype) print (labels.shape) print ('Ids Properties!') ids = np.unique(labels,return_counts=1) print (ids) h5file = h5py.File(training_data_file+'.h5', 'w') h5file.create_dataset('image',data=cube) h5file.create_dataset('labels',data=labels) h5file.close() print ("Finished!! Goodbye!!") #DONT TOUCH ###Output Working Dir /media/Trantor2/Public/ffn_test_goodpeople Cube Properties! uint8 (128, 128, 128) Mean : 126.22100448608398 Std : 41.172601119937475 Labels Properties! int64 (128, 128, 128) Ids Properties! (array([ 0, 114, 121, 136, 185, 213, 255, 347, 437, 451, 478, 592, 636, 640, 644, 660, 737]), array([2073568, 628, 2472, 1615, 895, 1060, 2155, 1294, 2806, 3381, 318, 1451, 141, 1009, 641, 781, 2937])) Finished!! Goodbye!!
ExportModel.ipynb
###Markdown Export Pegasus Model to pb Format Place this file inside pegasus [folder](https://github.com/google-research/pegasus) ###Code import itertools import os import time from absl import logging from pegasus.data import infeed from pegasus.params import all_params # pylint: disable=unused-import from pegasus.params import estimator_utils from pegasus.params import registry import tensorflow as tf from pegasus.eval import text_eval from pegasus.ops import public_parsing_ops import pandas as pd from random import choice from tensorflow.python.estimator.export import export tf.enable_eager_execution() # import tensorflow_transform as tft data_name = 'newsroom' import tensorflow_transform as tft master = "" model_dir = "./ckpt/pegasus_ckpt/%s"%data_name use_tpu = False iterations_per_loop = 1000 num_shards = 1 param_overrides = "vocab_filename=ckpt/pegasus_ckpt/c4.unigram.newline.10pct.96000.model,batch_size=1,beam_size=5,beam_alpha=0.6" eval_dir = os.path.dirname(model_dir) checkpoint_path = model_dir checkpoint_path = tf.train.latest_checkpoint(checkpoint_path ) params = registry.get_params('%s_transformer'%data_name)(param_overrides) pattern = params.dev_pattern input_fn = infeed.get_input_fn(params.parser, pattern, tf.estimator.ModeKeys.PREDICT) parser, shapes = params.parser(mode=tf.estimator.ModeKeys.PREDICT) RAW_DATA_FEATURE_SPEC = dict([("inputs", tf.io.FixedLenFeature(shapes['inputs'], tf.int64)), ('targets', tf.io.FixedLenFeature(shapes['targets'], tf.string))]) raw_feature_spec = RAW_DATA_FEATURE_SPEC.copy() raw_feature_spec.pop('targets') # raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn( # raw_feature_spec, default_batch_size=0) def serving_input_fn(): raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn( raw_feature_spec, default_batch_size=1) serving_input_receiver = raw_input_fn() raw_features = serving_input_receiver.features return tf.estimator.export.ServingInputReceiver( raw_features, serving_input_receiver.receiver_tensors) print(tf.executing_eagerly()) estimator = estimator_utils.create_estimator(master, model_dir, use_tpu, iterations_per_loop, num_shards, params, include_features_in_predictions=False) estimator.export_saved_model( "model/", serving_input_fn ) ###Output _____no_output_____
arize/examples/tutorials/Use_Cases/LTV_Use_case.ipynb
###Markdown Getting Started with the Arize Platform - Customer Lifetime Value in Telecommunication Industry**You are part of a team in a telecommunication company that monitors and maintains a customer lifetime value (LTV) regression model, which predicts the LTV for each customer.** The business objective of this regression model is to accurately predict customer lifetime value in order to improve customer segmentation and profiling to customize offers and target customers based on their potential value and recognize best customers.You understand that flaws in your model performance will have a huge negative impact on your company and with your LTV model in production you don't have any effective tool at your disposal to monitor the performance of your models, identify any issues and troubleshoot costly model degradations. Therefore, you turn to Arize to help you understand what went wrong in your model and how you can improve it. **In this walkthrough, we are going to investigate your production LTV model. We will validate degradation in model performance, take a deep dive to investigate the root causes of those inaccurate predictions, and set up proactive monitors to mitigate the impact of future degradations.**You will learn how to:1. Get training and production data into the Arize platform2. Setup performance dashboards and monitors to look at prediction performance3. Understand where the model is underperforming4. Discover the root cause of issues5. Set up pro-active monitoring to mitigate the impact of such degradations in the futureThe production data contains 1 month of data where 2 main issues exist. You will work on identifying these issues over the course of this exercise.1. A data source has introduced changes in the distribution of particular features2. The model is inacurate during some time period due to particular features Step 0. Setup and Getting the DataThe first step is to load our preexisting dataset which includes training and production environments for our LTV model. Using a preexisting dataset illustrates how simple it is to get started with the Arize platform. Install Dependencies and Import Libraries ๐Ÿ“š ###Code !pip install arize -q !pip install tables --upgrade -q !pip install -q arize shap import datetime, uuid, requests, tempfile from datetime import timedelta import numpy as np import pandas as pd from arize.utils.types import ModelTypes, Environments from arize.pandas.logger import Client, Schema ###Output  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 23.6 MB 121 kB/s  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 4.3 MB 28.4 MB/s  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 356 kB 26.7 MB/s [?25h Building wheel for shap (setup.py) ... [?25l[?25hdone ###Markdown **๐ŸŒ Download the Data**In this walkthrough, weโ€™ll be sending real historical data. Note, that while feature names and values are made explicit in this dataset, you can achieve the same level of ML Observability using obfuscated features. | Feature | Type | Description ||||:-|:-|:-|---|---|| `City`| `str`| city in California where the customer resides |||| `Gender`| `str`| customer's gender |||| `Partner`| `str`| flag indicating if the customer has a partner |||| `Dependents`| `str`| flag indicating if the customer has dependents |||| `Phone Service`| `str `| flag indicating if the customer has phone service |||| `Internet Service`| `str`| flag indicating if the customer has internet service |||| `Streaming TV`| `str`| flag indicating if the customer streams TV |||| `Streaming Movies`| `str`| flag indicating if the customer streams movies |||| `Churn Value`| `int (0 or 1)`| flag indicating if the customer churned ||| Inspect the Data The data represents a regression model trained to predict LTV for a customer. The dataset contains one month of data and the performance will be evaluated by comparing:* **`Predicted LTV`**: Predicted value of LTV for each customer* **`Actual LTV`**: Actual value of LTV for each customer ###Code # Preparing dataset for this tutorial train_df = pd.read_csv('https://storage.googleapis.com/arize-assets/fixtures/LTV%20Use-Case/LTV_train.csv') test_df = pd.read_csv('https://storage.googleapis.com/arize-assets/fixtures/LTV%20Use-Case/LTV_test.csv') print('โœ… Dependencies installed and data successfully downloaded!') ###Output โœ… Dependencies installed and data successfully downloaded! ###Markdown Inspect and Prepare the Data ###Code #Preparing Training Data train_df["prediction_id"] = [str(uuid.uuid4()) for _ in range(len(train_df))] train_df = train_df.drop(columns=['Unnamed: 0']) train_df #Preparing production data def prod_ID_time(df, start, end): max_d = df['day'].max() out_df = pd.DataFrame() dts = pd.date_range(start, end).to_pydatetime().tolist() for dt in dts: day_df = df.loc[df["day"] == (dt.day % max_d)].copy() day_df["prediction_ts"] = int(dt.strftime('%s')) out_df = pd.concat([out_df, day_df], ignore_index=True) out_df["prediction_id"] = [str(uuid.uuid4()) for _ in range(out_df.shape[0])] return out_df.drop(columns = "day") today= datetime.date.today() END_DATE = (today).strftime('%Y-%m-%d') START_DATE = (today - timedelta(31)).strftime('%Y-%m-%d') test_df = prod_ID_time(test_df, START_DATE, END_DATE) test_df = test_df.drop(columns=['Unnamed: 0']) test_df ###Output _____no_output_____ ###Markdown Step 1. Sending Data into Arize ๐Ÿ’ซNow that we have our dataset imported, we are ready to integrate into Arize. We do this by logging (sending) important data we want to analyze to the platform. There, the data will be easily visualized and troubleshooting workflows will help us find the source of our problem.For our model, we are going to log:* feature data* predictions* actuals Import and Setup Arize ClientThe first step is to setup our Arize client. After that we will log the data.First, copy the Arize `API_KEY` and `ORG_KEY` from your admin page linked below! Copy those over to the set-up section. We will also be setting up some metadata to use across all logging.[![Button_Open.png](https://storage.googleapis.com/arize-assets/fixtures/Button_Open.png)](https://app.arize.com/admin) ![apikey_access_annotate.jpg]() ###Code ORGANIZATION_KEY = "ORGANIZATION_KEY" API_KEY = "API_KEY" arize_client = Client(organization_key=ORGANIZATION_KEY, api_key=API_KEY) # Saving model metadata for passing in later model_id = "LTV-use-case-tutorial" model_version = "v1.0" print("Step 1 โœ…: Import and Setup Arize Client Done! Now we can start using Arize!") ###Output Step 1 โœ…: Import and Setup Arize Client Done! Now we can start using Arize! ###Markdown Log Training & Production Data to Arize Now that our Arize client is setup, let's go ahead and log all of our data to the platform. For more details on how **`arize.pandas.logger`** works, visit out documentations page below.[![Buttons_OpenOrange.png](https://storage.googleapis.com/arize-assets/fixtures/Buttons_OpenOrange.png)](https://docs.arize.com/arize/sdks-and-integrations/python-sdk/arize.pandas)Key parameters:* **prediction_label_column_name**: tells Arize which column contains the predictions* **actual_label_column_name**: tells Arize which column contains the actual results from field dataWe will use [ModelTypes.NUMERIC](https://docs.arize.com/arize/concepts-and-terminology/model-types) to perform this analysis. 3.1: Log the training data for your model to Arize! ###Code # Define a Schema() for Arize to pick up the data from the correct column for logging train_schema = Schema( prediction_id_column_name="prediction_id", prediction_label_column_name="Predicted LTV", actual_label_column_name="Actual LTV", feature_column_names=train_df.columns.drop( ["prediction_id", "Predicted LTV", "Actual LTV"] ), ) train_res = arize_client.log( dataframe=train_df, model_id=model_id, model_version=model_version, model_type=ModelTypes.NUMERIC, environment=Environments.TRAINING, schema=train_schema, ) if train_res.status_code != 200: print(f"future failed with response code {train_res.status_code}, {train_res.text}") else: print(f"future completed with response code {train_res.status_code}") ###Output future completed with response code 200 ###Markdown 3.3: Log the production dataNote: We will be sending our test data to emulate sending production data. ###Code # Logging production all_cols = test_df.columns feature_cols = all_cols.drop(["prediction_id", "prediction_ts", "Predicted LTV", "Actual LTV"] ) test_schema = Schema( prediction_id_column_name="prediction_id", timestamp_column_name="prediction_ts", prediction_label_column_name="Predicted LTV", actual_label_column_name="Actual LTV", feature_column_names=feature_cols) test_res = arize_client.log( dataframe=test_df, model_id=model_id, model_version=model_version, model_type=ModelTypes.NUMERIC, environment=Environments.PRODUCTION, schema=test_schema, ) if test_res.status_code != 200: print(f"future failed with response code {test_res.status_code}, {test_res.text}") else: print(f"future completed with response code {test_res.status_code}") ###Output future completed with response code 200
03_net.ipynb
###Markdown Net ###Code import tensorflow as tf %pylab inline (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train = x_train / 255 x_test = x_test / 255 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(28*28, activation='sigmoid'), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile( optimizer=tf.keras.optimizers.SGD(lr=0.01), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'] ) history = model.fit(x_train, y_train, epochs=10) ###Output Train on 60000 samples Epoch 1/10 60000/60000 [==============================] - 5s 76us/sample - loss: 1.2824 - accuracy: 0.7118 Epoch 2/10 60000/60000 [==============================] - 5s 81us/sample - loss: 0.6083 - accuracy: 0.8557 Epoch 3/10 60000/60000 [==============================] - 5s 81us/sample - loss: 0.4741 - accuracy: 0.8762 Epoch 4/10 60000/60000 [==============================] - 5s 81us/sample - loss: 0.4186 - accuracy: 0.8864 Epoch 5/10 60000/60000 [==============================] - 5s 81us/sample - loss: 0.3876 - accuracy: 0.8923 Epoch 6/10 60000/60000 [==============================] - 5s 82us/sample - loss: 0.3678 - accuracy: 0.8968 Epoch 7/10 60000/60000 [==============================] - 5s 82us/sample - loss: 0.3537 - accuracy: 0.8989 Epoch 8/10 60000/60000 [==============================] - 5s 82us/sample - loss: 0.3430 - accuracy: 0.9012 Epoch 9/10 60000/60000 [==============================] - 5s 85us/sample - loss: 0.3345 - accuracy: 0.9047 Epoch 10/10 60000/60000 [==============================] - 5s 81us/sample - loss: 0.3274 - accuracy: 0.9058
TextClassification/TextClassification.ipynb
###Markdown Text Classification(This notebook is created by [liyinnbw](https://github.com/liyinnbw/ML/tree/master/TextClassification) under the MIT license)Problem Definition:* Classify english news titles into one of the given topics.* Assuming each news is associated with one and only one of the topics. Import Training & Testing DataInstead of using provided dataset, you can also use your own dataset as long as the data contains a text column and a label column. ###Code import pandas as pd labelMeanings=['Ratings downgrade','Sanctions','Growth into new markets','New product coverage','Others'] col = ['title', 'category'] df_train = pd.read_csv('https://raw.githubusercontent.com/liyinnbw/ML/master/NewsClassification/Data/train.csv')[col] df_test = pd.read_csv('https://raw.githubusercontent.com/liyinnbw/ML/master/NewsClassification/Data/test.csv')[col] X_train = df_train.title y_train = df_train.category X_test = df_test.title y_test = df_test.category print('train shape:', X_train.shape) print('test shape:', X_test.shape) df_train.head() ###Output train shape: (6027,) test shape: (3826,) ###Markdown Data Preprocessing & Feature Extraction* Replace numbers by common token* Keep only letters* Stemming (remove word tense)* tf-idf feature extractionThe same preprocessing should be applied to test data.Wrap the preprocessing inside a custom transformer which can be used inside a training pipeline. ###Code from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import TfidfVectorizer from nltk.stem.snowball import SnowballStemmer class CustomPreprocessor(BaseEstimator,TransformerMixin): def __init__(self): self.tfidf = TfidfVectorizer( sublinear_tf=True, min_df=1, norm='l2', strip_accents='ascii', analyzer='word', ngram_range=(1, 2), stop_words= [ 'i', 'me', 'my', 'myself', 'we', 'our', 'our', 'ourselv', 'you', 'your', 'youv', 'youll', 'youd', 'your', 'your', 'yourself', 'yourselv', 'he', 'him', 'his', 'himself', 'she', 'shes', 'her', 'her', 'herself', 'it', 'it', 'it', 'itself', 'they', 'them', 'their', 'their', 'themselv', 'what', 'which', 'who', 'whom', 'this', 'that', 'thatll', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'be', 'have', 'has', 'had', 'have', 'do', 'doe', 'did', 'do', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'becaus', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'dure', 'befor', 'after', 'abov', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'onc', 'here', 'there', 'when', 'where', 'whi', 'how', 'all', 'ani', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'onli', 'own', 'same', 'so', 'than', 'too', 'veri', 's', 't', 'can', 'will', 'just', 'don', 'dont', 'should', 'shouldv', 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 'arent', 'couldn', 'couldnt', 'didn', 'didnt', 'doesn', 'doesnt', 'hadn', 'hadnt', 'hasn', 'hasnt', 'haven', 'havent', 'isn', 'isnt', 'ma', 'mightn', 'mightnt', 'mustn', 'mustnt', 'needn', 'neednt', 'shan', 'shant', 'shouldn', 'shouldnt', 'wasn', 'wasnt', 'weren', 'werent', 'won', 'wont', 'wouldn', 'wouldnt', 'numtoken', 'again' ] ) def clean(self, X): X_processed = X # replace numbers X_processed = X_processed.str.replace('\d*\.\d+|\d+', ' NUMTOKEN ', regex=True) # remove ' X_processed = X_processed.str.replace("'", '', regex=False) # keep only letters X_processed = X_processed.str.replace('[^A-Za-z]+', ' ', regex=True) # stemming st = SnowballStemmer("english") X_processed = X_processed.apply(lambda row: row.split(" ")) X_processed = X_processed.apply(lambda row: [st.stem(word) for word in row]) X_processed = X_processed.apply(lambda row: " ".join(row)) return X_processed def fit(self, X, y=None): # clean data X_processed = self.clean(X) # train tf-idf model self.tfidf.fit(X) return self def transform(self, X): # clean data X_processed = self.clean(X) # transform sentence to numerical vector using tf-idf X_processed = self.tfidf.transform(X_processed) return X_processed def fit_transform(self, X, y=None, **fit_params): self.fit(X,y) return self.transform(X) prep = CustomPreprocessor() x_train = prep.fit_transform(X_train) x_test = prep.transform(X_test) print('train shape:', x_train.shape) print('test shape:', x_test.shape) ###Output train shape: (6027, 22822) test shape: (3826, 22822) ###Markdown TrainingUsing training data only, cross-validated, compared across different model choices. ###Code from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.model_selection import cross_val_score models = [ MultinomialNB(alpha=1.0, fit_prior=True), DecisionTreeClassifier(criterion='gini', max_depth=3, min_samples_split=0.1, min_samples_leaf=1, min_impurity_decrease=0, class_weight=None, random_state=27), LinearSVC(random_state=27, max_iter=1000), SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, random_state=27, max_iter=1000), LogisticRegression(solver='lbfgs', multi_class='ovr', random_state=27, max_iter=1000), RandomForestClassifier(criterion='gini', max_depth=3, min_samples_split=0.1, min_samples_leaf=1, min_impurity_decrease=0, class_weight=None, n_estimators=100, random_state=27), GradientBoostingClassifier(criterion='friedman_mse', max_depth=3, min_samples_split=0.1, min_samples_leaf=1, min_impurity_decrease=0, n_estimators=100, random_state=27) ] models.append(BaggingClassifier(models[0], n_estimators=100, random_state=27)) models.append(AdaBoostClassifier(models[0], algorithm="SAMME.R", n_estimators=100, random_state=27)) CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, x_train, y_train, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) ###Output _____no_output_____ ###Markdown Visualize Model Performances ###Code import seaborn as sns chart = sns.boxplot(x='model_name', y='accuracy', data=cv_df) chart.set_xticklabels(chart.get_xticklabels(), rotation=45) chart = sns.stripplot(x='model_name', y='accuracy', data=cv_df, size=8, jitter=True, edgecolor="gray", linewidth=2) chart.set_xticklabels(chart.get_xticklabels(), rotation=45) ###Output _____no_output_____ ###Markdown Testing ###Code from sklearn.metrics import confusion_matrix from sklearn import metrics for model in models: model_name = model.__class__.__name__ model.fit(x_train, y_train) y_pred = model.predict(x_test) conf_mat = confusion_matrix(y_test, y_pred) print(model_name) print(conf_mat) # report = metrics.classification_report(y_test, y_pred) # print(report) print("accuracy: {:0.5f}".format(metrics.accuracy_score(y_test, y_pred))) print("f2: {:0.5f}".format(metrics.fbeta_score(y_pred, y_test, beta=2, average="macro"))) # import numpy as np # labls = np.arange(5).tolist() # fig = plt.figure() # ax = fig.add_subplot(111) # cax = ax.matshow(conf_mat, cmap=plt.cm.Blues, vmin=0) # fig.colorbar(cax) # ax.set_xticklabels([''] + labls) # ax.set_yticklabels([''] + labls) # plt.xlabel('Predicted') # plt.ylabel('Expected') # plt.show() ###Output MultinomialNB [[ 465 0 3 0 232] [ 0 48 0 0 203] [ 0 0 666 0 61] [ 0 0 26 175 72] [ 2 0 96 6 1771]] accuracy: 0.81678 f2: 0.79381 DecisionTreeClassifier [[ 198 0 0 0 502] [ 0 0 0 0 251] [ 0 0 323 0 404] [ 0 0 0 171 102] [ 0 0 3 0 1872]] accuracy: 0.67015 f2: 0.60044 LinearSVC [[ 627 0 12 0 61] [ 0 215 0 0 36] [ 2 0 678 6 41] [ 0 0 4 260 9] [ 85 48 210 45 1487]] accuracy: 0.85389 f2: 0.84562 SGDClassifier [[ 603 0 0 0 97] [ 0 194 0 0 57] [ 0 0 694 6 27] [ 0 0 5 258 10] [ 58 21 104 11 1681]] accuracy: 0.89650 f2: 0.89857 LogisticRegression [[ 602 0 6 0 92] [ 6 178 0 0 67] [ 0 0 704 0 23] [ 0 0 4 254 15] [ 56 12 132 12 1663]] accuracy: 0.88892 f2: 0.89520 RandomForestClassifier [[ 0 0 0 0 700] [ 0 0 0 0 251] [ 0 0 153 0 574] [ 0 0 0 0 273] [ 0 0 3 0 1872]] accuracy: 0.52927 f2: 0.22633 GradientBoostingClassifier [[ 570 6 0 0 124] [ 0 225 0 0 26] [ 0 0 710 0 17] [ 0 0 3 267 3] [ 58 34 74 13 1696]] accuracy: 0.90643 f2: 0.90559 BaggingClassifier [[ 465 0 3 0 232] [ 0 48 0 0 203] [ 0 0 678 0 49] [ 0 0 26 174 73] [ 2 0 100 6 1767]] accuracy: 0.81861 f2: 0.79426 AdaBoostClassifier [[ 0 0 0 0 700] [ 0 0 0 0 251] [ 0 0 240 0 487] [ 0 0 0 0 273] [ 0 0 3 0 1872]] accuracy: 0.55201 f2: 0.25677 ###Markdown Problem1: Class ImbalanceThere is an uneven distribution of labels in the training data known as the "Class Imbalance" problem. This problem can cause the trained model to sacrifice precision and recall on under-represented classes in favour of improving the precision and recall on over-represented classes (which is observed in the above testing results). This problem is common in real world where not all classes are observed evenly. You could:1. Over sample under-represented classes to match up with the class that occurred most frequently (many repeated samples adversely affect the network decision).2. Under sample the over-represented classes to match up with the class that occurred least frequently (waste of precious data).3. Synthesize under-represented classes to match up with the class that occurred most frequently (design of synthesize algorithm is difficult).4. Change the way you group classes (if allowed to). ###Code import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,6)) df_train.groupby('category').title.count().plot.bar(ylim=0) plt.show() ###Output _____no_output_____ ###Markdown Problem2: Wrong Training LabelsIt could happen that the training data obtained contains wrong labels. Usually these wrong labels are relatively few as compared to the correct ones. Hence we have a solution for it:* We can use a simple clustering method to find news that are very similar in text but are given different labels. We can correct these wrong labels with high confidence by majority vote. ###Code from sklearn.cluster import DBSCAN import numpy as np doc_lbls = DBSCAN(eps=0.03, min_samples=3, metric='cosine').fit_predict(x_train) clusters = np.unique(doc_lbls) print("# of clusters = ",len(clusters)-1) # only relabel if >0.5 fraction of the data have same label relable_percent_thresh = 0.5 # and only if majority label > 2 times the second majority label relable_second_thresh = 2.0 y_train_corrected = y_train.copy() for lbl in clusters: if lbl<0: # does not belong to any cluster continue X_cluster = X_train[doc_lbls==lbl] y_cluster = y_train_corrected[doc_lbls==lbl] binCounts = np.bincount(y_cluster) binMax = np.argmax(binCounts) binMaxCount = binCounts[binMax] binCounts[binMax] = 0 binSecondMax = np.argmax(binCounts) binSecondMaxCount = binCounts[binSecondMax] if (binSecondMaxCount == 0): # print('consistent') continue elif binMaxCount*1.0/binSecondMaxCount>=relable_second_thresh and binMaxCount*1.0/len(X_cluster) >= relable_percent_thresh: y_train_corrected[doc_lbls==lbl] = binMax print(X_cluster) print('relabel to:', binMax) else: # print('cant decide') continue ###Output _____no_output_____ ###Markdown We consider the problem of classifying text messages (such as costumer feedbacks) according to their sentiment. A data point is a one particular text snippet. The features of the data point are a numeric encoding of the text. The label is a number 1,..,5 which encodes a particular sentiment. In order to learn a classifier that takes the feature vector of a text and outputs a predicted label, we have some labeled data points in the file "train.tsv". Each line of this file contains one text snippet for which the sentiment is known. ###Code import csv with open('train.tsv') as f: reader = csv.reader(f) your_list = list(reader) print(your_list[:3]) ## import pandas as pd df=pd.read_csv('train.tsv', sep='\t') df.iloc[:,3] df.head() corpus = df['Phrase'] y = df['Sentiment'] # labal vector from sklearn.feature_extraction.text import CountVectorizer # compute numeric features for each text snippet vectorizer = CountVectorizer() X = vectorizer.fit_transform(corpus) print(X.toarray()) # the matrix X contains the feature vectors for each text snippet m = X.shape[0] n = X.shape[1] print("number of data points m=",m) print("\n number of features n=",n) from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from imblearn.over_sampling import RandomOverSampler X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42) #ros = RandomOverSampler(random_state=0) #X_resampled, y_resampled = ros.fit_resample(X_train, y_train) clf = LogisticRegression(random_state=0, solver='lbfgs').fit(X_train, y_train) print("test-set",clf.score(X_test,y_test)) print("train-set",clf.score(X_train,y_train)) ###Output /Users/alexanderjung/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning. "this warning.", FutureWarning) /Users/alexanderjung/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:947: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations. "of iterations.", ConvergenceWarning) /Users/alexanderjung/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:947: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations. "of iterations.", ConvergenceWarning) /Users/alexanderjung/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:947: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations. "of iterations.", ConvergenceWarning) /Users/alexanderjung/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:947: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations. "of iterations.", ConvergenceWarning)
Chapters/05.OptimalTransport/Chapter5.ipynb
###Markdown Optimal transport*Selected Topics in Mathematical Optimization: 2017-2018***Michiel Stock** ([email]([email protected]))![](Figures/logo.png) ###Code from optimal_transport import red, green, orange, yellow, blue, black import matplotlib.pyplot as plt import numpy as np from optimal_transport import pairwise_distances %matplotlib inline ###Output _____no_output_____ ###Markdown Cell trackingIn a microscopy imaging experiment we monitor ten moving cells at time $t_1$ and some time later at time $t_2$. Between these times, the cells have moved. An image processing algorithm determined the coordinates of every cell in the two images. We want to know which cell in the first corresponds to the second image. To this end, search the assignment that minimizes the sum of the squared Euclidian distances between cells from the first image versus the corresponding cell of the second image.1. `X1` and `X2` contain the $x,y$ coordinates of the cells for the two images. Compute the matrix $C$ containing the pairwise squared Euclidean distance. You can use the function `pairwise_distances` from `sklearn`.2. Complete the function `monge_brute_force` to use brute-force search for the best permutation.3. Make a plot connecting the cells. ###Code from cell_tracking import X1, X2, plot_cells # all permutations can easily be generated in python from itertools import permutations for perm in permutations([1, 2, 3]): print(perm) fig, ax = plot_cells(X1, X2) def monge_brute_force(C): """ Solves the Monge assignment problem using brute force. Inputs: - C: cost matrix (square, size n x n) Outputs: - best_perm: optimal assigments (list of n indices matching the rows to the columns) - best_cost: optimal cost corresponding to the best permutation DO NOT USE FOR PROBLEMS OF A SIZE LARGER THAN 12!!! """ n, m = C.shape assert n==m # C should be square best_perm = None best_cost = np.inf # loop over all permutations and to find the # matching with the lowest cost return best_perm, best_cost from optimal_transport import monge_brute_force # get the cost matrix (i.e. pairwise squared # Euclidean distances between the cells at the different times) C = ... # get matching best_perm, best_cost = monge_brute_force(C) # make a plot with the connections of the cells ###Output _____no_output_____ ###Markdown Cell differentiationThree types of cells are cultured together. At $t_1$ we know the expression of some cells of every type (two genes). After some time $t_2$, the cells have multiplied are have differentiated somewhat. A new gene expression analysis is done for a set of cells from the culture (without information about the type). How did the expression change for every type?1. Link the cells from the two time points using OT. Use Sinkhorn with $\lambda=10$ and squared Euclidean distance for cost.2. Plot the mapping (use the \texttt{alpha} argument to set the shade of a color).3. Compute the `drift' (difference in average gene expression) in gene expression for every cell type. ###Code # X1 and X2 are gene expressions for the cells at time 1 and 2 # y1 is the indicator of the type of cells, only known at t1 from cell_differentiation import X1, X2, y1, plot_cells fig, ax = plt.subplots() plot_cells(ax) def compute_optimal_transport(C, a, b, lam, epsilon=1e-8, verbose=False, return_iterations=False): """ Computes the optimal transport matrix and Slinkhorn distance using the Sinkhorn-Knopp algorithm Inputs: - C : cost matrix (n x m) - a : vector of marginals (n, ) - b : vector of marginals (m, ) - lam : strength of the entropic regularization - epsilon : convergence parameter - verbose : report number of steps while running - return_iterations : report number of iterations till convergence, default False Output: - P : optimal transport matrix (n x m) - dist : Sinkhorn distance - n_iterations : number of iterations, if `return_iterations` is set to True """ n, m = C.shape P = np.exp(- lam * C) iteration = 0 while True: iteration += 1 u = P.sum(1) # marginals of rows max_deviation = np.max(np.abs(u - a)) if verbose: print('Iteration {}: max deviation={}'.format( iteration, max_deviation )) if max_deviation < epsilon: break # scale rows ... # scale columns ... if return_iterations: return P, np.sum(P * C), iteration else: return P, np.sum(P * C) from optimal_transport import compute_optimal_transport # get the cost matrix (i.e. pairwise squared # Euclidean distances of the expression vectors # of the cells at the different times) C = ... # get matching P, _ = compute_optimal_transport(... # plot the cells with the mapping between the times # compute the drift (average change in gene expression # for different classes between the two time points) ###Output _____no_output_____ ###Markdown Optimal transport*Selected Topics in Mathematical Optimization***Michiel Stock** ([email]([email protected]))![](Figures/logo.png) ###Code from optimal_transport import red, green, orange, yellow, blue, black import matplotlib.pyplot as plt import numpy as np from optimal_transport import pairwise_distances %matplotlib inline ###Output _____no_output_____ ###Markdown Cell trackingIn a microscopy imaging experiment we monitor ten moving cells at time $t_1$ and some time later at time $t_2$. Between these times, the cells have moved. An image processing algorithm determined the coordinates of every cell in the two images. We want to know which cell in the first corresponds to the second image. To this end, search the assignment that minimizes the sum of the squared Euclidian distances between cells from the first image versus the corresponding cell of the second image.1. `X1` and `X2` contain the $x,y$ coordinates of the cells for the two images. Compute the matrix $C$ containing the pairwise squared Euclidean distance. You can use the function `pairwise_distances` from `sklearn`.2. Complete the function `monge_brute_force` to use brute-force search for the best permutation.3. Make a plot connecting the cells. ###Code from cell_tracking import X1, X2, plot_cells # all permutations can easily be generated in python from itertools import permutations for perm in permutations([1, 2, 3]): print(perm) fig, ax = plot_cells(X1, X2) def monge_brute_force(C): """ Solves the Monge assignment problem using brute force. Inputs: - C: cost matrix (square, size n x n) Outputs: - best_perm: optimal assigments (list of n indices matching the rows to the columns) - best_cost: optimal cost corresponding to the best permutation DO NOT USE FOR PROBLEMS OF A SIZE LARGER THAN 12!!! """ n, m = C.shape assert n==m # C should be square best_perm = None best_cost = np.inf # loop over all permutations and to find the # matching with the lowest cost return best_perm, best_cost from optimal_transport import monge_brute_force # get the cost matrix (i.e. pairwise squared # Euclidean distances between the cells at the different times) C = ... # get matching best_perm, best_cost = monge_brute_force(C) # make a plot with the connections of the cells ###Output _____no_output_____ ###Markdown Cell differentiationThree types of cells are cultured together. At $t_1$ we know the expression of some cells of every type (two genes). After some time $t_2$, the cells have multiplied are have differentiated somewhat. A new gene expression analysis is done for a set of cells from the culture (without information about the type). How did the expression change for every type?1. Link the cells from the two time points using OT. Use Sinkhorn with $\lambda=10$ and squared Euclidean distance for cost.2. Plot the mapping (use the \texttt{alpha} argument to set the shade of a color).3. Compute the `drift' (difference in average gene expression) in gene expression for every cell type. ###Code # X1 and X2 are gene expressions for the cells at time 1 and 2 # y1 is the indicator of the type of cells, only known at t1 from cell_differentiation import X1, X2, y1, plot_cells fig, ax = plt.subplots() plot_cells(ax) def compute_optimal_transport(C, a, b, lam, epsilon=1e-8, verbose=False, return_iterations=False): """ Computes the optimal transport matrix and Slinkhorn distance using the Sinkhorn-Knopp algorithm Inputs: - C : cost matrix (n x m) - a : vector of marginals (n, ) - b : vector of marginals (m, ) - lam : strength of the entropic regularization - epsilon : convergence parameter - verbose : report number of steps while running - return_iterations : report number of iterations till convergence, default False Output: - P : optimal transport matrix (n x m) - dist : Sinkhorn distance - n_iterations : number of iterations, if `return_iterations` is set to True """ n, m = C.shape P = np.exp(- lam * C) iteration = 0 while True: iteration += 1 u = P.sum(1) # marginals of rows max_deviation = np.max(np.abs(u - a)) if verbose: print('Iteration {}: max deviation={}'.format( iteration, max_deviation )) if max_deviation < epsilon: break # scale rows ... # scale columns ... if return_iterations: return P, np.sum(P * C), iteration else: return P, np.sum(P * C) from optimal_transport import compute_optimal_transport # get the cost matrix (i.e. pairwise squared # Euclidean distances of the expression vectors # of the cells at the different times) C = ... # get matching P, _ = compute_optimal_transport(... # plot the cells with the mapping between the times # compute the drift (average change in gene expression # for different classes between the two time points) ###Output _____no_output_____ ###Markdown Illustration: color transferThis is a demonstration of a simple color transfer using optimal transport. ###Code from optimal_transport import compute_optimal_transport from skimage import io from sklearn.cluster import MiniBatchKMeans as KMeans from sklearn.preprocessing import StandardScaler from collections import Counter from sklearn.metrics.pairwise import pairwise_distances import seaborn as sns sns.set_style('white') # change as you see fit! image_name1 = 'Figures/butterfly3.jpg' image_name2 = 'Figures/butterfly2.jpg' n_clusters = 400 def clip_image(im): """ Clips an image such that its values are between 0 and 255 """ return np.maximum(0, np.minimum(im, 255)) class Image(): """simple class to work with an image""" def __init__(self, image_name, n_clusters=100, use_location=True): super(Image, self).__init__() self.image = io.imread(image_name) + 0.0 self.shape = self.image.shape n, m, _ = self.shape X = self.image.reshape(-1, 3) if use_location: col_indices = np.repeat(np.arange(n), m).reshape(-1,1) row_indices = np.tile(np.arange(m), n).reshape(-1,1) #self.standardizer = StandardScaler() #self.standardizer.fit_transform( self.X = np.concatenate([X, row_indices, col_indices], axis=1) else: self.X = X self.kmeans = KMeans(n_clusters=n_clusters) self.kmeans.fit(self.X) def compute_clusted_image(self, center_colors=None): """ Returns the image with the pixels changes by their cluster center If center_colors is provided, uses these for the clusters, otherwise use centers computed by K-means. """ clusters = self.kmeans.predict(self.X) if center_colors is None: X_transformed = self.kmeans.cluster_centers_[clusters,:3] else: X_transformed = center_colors[clusters,:3] return clip_image(X_transformed).reshape(self.shape) def get_color_distribution(self): """ Returns the distribution of the colored pixels Returns: - counts : number of pixels in each cluster - centers : colors of every cluster center """ clusters = self.kmeans.predict(self.X) count_dict = Counter(clusters) counts = np.array([count_dict[i] for i in range(len(count_dict))], dtype=float) centers = self.kmeans.cluster_centers_ return counts, clip_image(centers[:,:3]) print('loading and clustering images...') image1 = Image(image_name1, n_clusters=n_clusters) image2 = Image(image_name2, n_clusters=n_clusters) r, X1 = image1.get_color_distribution() c, X2 = image2.get_color_distribution() print('loading and clustering images...') image1 = Image(image_name1, n_clusters=n_clusters) image2 = Image(image_name2, n_clusters=n_clusters) r, X1 = image1.get_color_distribution() c, X2 = image2.get_color_distribution() C = pairwise_distances(X1, X2, metric="sqeuclidean") print('performing optimal transport...') P, d = compute_optimal_transport(C, r/r.sum(), c/c.sum(), 1e-2) sns.clustermap(P, row_colors=X1/255, col_colors=X2/255, yticklabels=[], xticklabels=[]) plt.savefig('Figures/color_mapping.png') print('computing and plotting color distributions...') X1to2 = P.sum(1)**-1 * P @ X2 X2to1 = P.sum(0)**-1 * P.T @ X1 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10)) axes[0, 0].imshow(image1.image/255) axes[0, 1].imshow(image2.image/255) axes[1, 0].imshow(image1.compute_clusted_image(X1to2)/255) axes[1, 1].imshow(image2.compute_clusted_image(X2to1)/255) for ax in axes.flatten(): ax.set_xticks([]) ax.set_yticks([]) ###Output _____no_output_____
Week5-Lab-Visualizing-the-Translatlantic-Slave-Trade/Practicum-Visualize-Trans-Atlantic-Slave-Trade.ipynb
###Markdown Visualizing the Trans-Atlantic Slave Trade Table of Contents - Recap- About the Dataset - The Transatlantic Slave Trade - Facts about the dataset- Labs and Methodology- Goals- **Part 1 - Getting Our Basic Data Analysis Set-Up** - Import Libraries and unpack a file - Load file - Observing the Dataset using Pandas - Important Facts About the Dataset - Visualize Year of Arrival vs Number of Slaves arrived- **Part 2 - Getting Started with Data Wrangling** - Create a copy of the Original Dataset - Changing Column Names - Moving Column Positions - ```df.reindex()``` - Remove Voyage ID -```df.drop()``` - Using ```dropna()``` - Changing Column Type and Sorting - ```df.sort_values()``` - Finding Unique and similar strings - Working with Strings - ```df['column_name'].str.replace()```- **Part 3 - Micro Wrangling and Visualization** - Between 1500 - 1600 - Between 1601 - 1700 - Between 1701 - 1800 - Between 1801 - 1900- **Part 4 - Conclusion**- Resources- Appendix Recap - By this time, you should have an understanding of how to implement the following:- Loading a Dataset '.csv' as a dataframe using ```pd.read_csv```- Observing the properties of the loaded dataset using functions such as: - ```pd.head()``` - ```pd.describe()``` - ```pd.info()```- Modifying the dataset by removing ```NaN``` values.- A conceptual understanding of the term ```object``` in DataFrames. (really what it means is that the value is probably text/string)*- Re-indexing columns- Visualizing Data using ```matplotlib``` and ```pandas```: - Scatter plots - Barplots - Line plots - Histograms About the Dataset The Trans-Atlantic Slave Trade It is difficult to believe in the first decades of the twenty-first century that **just over two centuries ago**, for those Europeans who thought about the issue, the shipping of enslaved Africans across the Atlantic was morally indistinguishable from shipping textiles, wheat, or even sugar. Our reconstruction of a major part of this migration experience covers an era in which there was a massive technological change (*steamers were among the last slave ships*), as well as very dramatic shifts in perceptions of good and evil. Just as important perhaps were the relations between the Western and non-Western worlds that the trade both reflected and encapsulated. **Slaves constituted the most important reason for contact between Europeans and Africans for nearly two centuries**. The shipment of slaves from Africa was related to the demographic disaster consequent to the meeting of Europeans and Amerindians, which greatly reduced the numbers of Amerindian laborers and raised the demand for labor drawn from elsewhere, particularly Africa. As Europeans colonized the Americas, a steady stream of European peoples migrated to the Americas between 1492 and the early nineteenth century. But what is often overlooked is that, before 1820, perhaps three times as many enslaved Africans crossed the Atlantic as Europeans. This was the largest transoceanic migration of a people until that day, and it provided the Americas with a crucial labor force for their own economic development. The slave trade is thus a vital part of the history of some millions of Africans and their descendants who helped shape the modern Americas culturally as well as in the material sense.The details of the more than **36,000** voyages presented here greatly facilitate the study of cultural, demographic, and economic change in the Atlantic world from the late *sixteenth to the mid-nineteenth centuries*. Trends and cycles in the flow of African captives from specific coastal outlets should provide scholars with new, basic information useful in examining the relationships among slavery, warfare in both Africa and Europeโ€”political instability, and climatic and ecological change, among other forces. Facts about the dataset- The dataset approximately 36,110 trans-Atlantic voyages.- The estimates suggest around 12,520,000 captives departed Africa to the Americas. - Not all 36,000 voyages in the database carried slaves from Africa.- A total of 633 voyages (1.8%) never reached the African coast because they were lost at sea, captured, or affected by some other misfortune. - The database also contains records of 34,106 voyages that disembarked slaves, or could have done so (in other words, for some of these we do not know the outcome of the voyage).- The latter group comprised mainly of ships captured in the nineteenth century which were taken to Sierra Leone and St. Helena as part of the attempt to suppress the trade. This is a very insightful resource titled,'The Atlantic Slave Trade in Two Minutes. You can read it [here](http://www.slate.com/articles/life/the_history_of_american_slavery/2015/06/animated_interactive_of_the_history_of_the_atlantic_slave_trade.html). Practicum and Methodology Congratulations, you have made it to the first practicum of this course. The purpose of these practicums is to help you apply the Data Science pipeline in a project-based environment. You will be using the tools taught to you in the previous modules and adopt and Question and Answer based approach when you work with the dataset.For this project, we start by asking questions which you will answer in code and simple explanations.**example** - change the name of 'column_x' to 'column y' **answer**: ```df = df.rename(columns = {'column_x : 'column_y})```We have divided our approach into 4 parts:- The first part is the traditional set up. These are some things we should do before modifying the dataset.- The second part involves cleaning the dataset and choosing columns that fit our methodology.- The third part involves further splitting our cleaned dataframe into smaller dataframes and visualizing them.- Finally, the fourth part involves summarizing our conclusion. GradingThis exercise has a total of 27 questions. Every question has 1 point. Some questions might have multiple parts but the weight of the question is the same.In order to work on the questions in this Practicum and submit them for grading, you'll need to run the code block below. It will ask for your student ID number and then create a folder that will house your answers for each question. At the very end of the notebook, there is a code section that will download this folder as a zip file to your computer. This zip file will be your final submission. ###Code import os import shutil !rm -rf sample_data student_id = input('Please Enter your Student ID: ') # Enter Student ID. while len(student_id) != 9: student_id = int('Please Enter your Student ID: ') folder_location = f'{student_id}/Week_Six/Practicum' if not os.path.exists(folder_location): os.makedirs(folder_location) print('Successfully Created Directory, Lets get started') else: print('Directory Already Exists') ###Output _____no_output_____ ###Markdown Part 1 - Getting Our Basic Data Analysis Set-Up Import the libraries you will be using for this project. These libraries are the ones we have used in the previous labs. Q1 Load libraries and file ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/1.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. import _____ as pd # INSERT CODE HERE import __________ as plt # INSERT CODE HERE #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/1.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. url = 'https://rb.gy/cjfen3' trans_atlc_trade = __.read_csv(___) # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Observing the Dataset using Pandas Now, the dataset is loaded as a dataframe `trans_atlc_trade` ```head()```Let's check what columns this file has by calling 'head()' function.It returns first n rows, and it's useful to see the dataset at a quick glance.By default, the head() function returns the first 5 rows.You can specify the number of rows to display by calling `df.head(number)` ###Code # INSERT CODE HERE ###Output _____no_output_____ ###Markdown ```tail()```The ```tail()``` method prints the last 5 rows of our dataset. ###Code # INSERT CODE HERE ###Output _____no_output_____ ###Markdown ```info()```This will return all of the column names and its types. This function is useful to get the idea of what the dataframe is like. ###Code ## INSERT CODE HERE ###Output _____no_output_____ ###Markdown Observations: Questions:- List down the number of unique ```Dtype``` in this dataset- Is the dataset uneven? If so list down the column with the most missing rows? ```describe()```describe() is used to view summary statistics of numeric columns. This will help you to have general idea of the dataset. ###Code trans_atlc_trade._____() # Insert code here ###Output _____no_output_____ ###Markdown Observations: Question:- Why is ```describe``` showing only 3 columns?Is it because of their types e.g(int,float,object)?- What could be reason for the counts not being the same?- Are the mean, standard deviation,..., max. important for Voyage ID? ```shape```To see the size of the dataset, we can use shape function, which returns the number of rows and columns in a format of (rows, columns) ###Code trans_atlc_trade.shape ###Output _____no_output_____ ###Markdown Observations: Question:How many **rows** and **columns** are there? Answer: Q2. Important Facts About the Dataset The next thing we want to do is count the number of trips that have been unaccounted for. We'll know this by observing the ```Slaves arrived at 1st port``` This is simple, all we have to do is run two functions:- The first one will be to check if the column has null values, ```isna()```.- The second one will be sum the number of null rows in the column, ```sum()```. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/2.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. Unaccounted_trips = trans_atlc_trade['Slaves arrived at 1st port'].____()._____() # Insert Code Here print(f'The total number of unaccounted trips is: {Unaccounted_trips}') ###Output _____no_output_____ ###Markdown **What about the total of slaves accounted for?** In the following line of code, we will have to ```sum``` the the total number of slaves in every column. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/2.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. number_of_slaves_accounted = trans_atlc_trade['Slaves arrived at 1st port'].___() # Insert code here print(f'The total number of slaves accounted for are: {number_of_slaves_accounted}') ###Output _____no_output_____ ###Markdown Historical estimates suggest that the total number of slave traded are estimated to be ~12.5 Million. This means that according to this dataset: ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/2.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. possible_unaccounted_slaves = 12500000 - ________________ # INSERT CODE HERE possible_unaccounted_slaves ###Output _____no_output_____ ###Markdown Visualize Year of Arrival vs Number of Slaves arrived ###Code fig = plt.figure(figsize = (35,10)) ax1 = fig.add_subplot(1,2,1) ax2 = fig.add_subplot(1,2,2) trans_atlc_trade.plot(x = 'Year of arrival at port of disembarkation', y = 'Slaves arrived at 1st port', kind = 'scatter', c = 'Slaves arrived at 1st port', title = 'Year of arrival at port of disembarkation vs Slaves arrived at 1st port', alpha = 0.3, cmap = plt.get_cmap('ocean'), colorbar = True, ax = ax1, ) trans_atlc_trade.plot(x = 'Year of arrival at port of disembarkation', y = 'Slaves arrived at 1st port', kind = 'area', title = 'Year of arrival at port of disembarkation vs Slaves arrived at 1st port', ax = ax2, ) ###Output _____no_output_____ ###Markdown Questions/Observations- Are the plots above useful? - Can we get anything specific by observing them?- Is there a visible trend?- What are the possible issues with the plot above? - Lastly, which one is more practical, the ```scatter``` or ```area```? Part 2 - Getting Started with Data Wrangling Now that we have observed the basic features of our dataset raw, we will began cleaning it. This involves several steps that you will be working through. Create a copy of the Original Dataset ###Code df = trans_atlc_trade.copy(deep = True) # We have used deep = True to make sure the copy is not linked to the trans_atlc_trade dataframe. # If we did not add it, any changes made to the new df would be made on the tran_atlc_trade too. ###Output _____no_output_____ ###Markdown Q3. Column ListList down the names of all the columns in our dataframe ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/3.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df._______ # Insert Code Here ###Output _____no_output_____ ###Markdown Q4. Change column names For this exercise, you will change the names of the previously existing columns to something that is more readable. Using the columns above write down the name of the column in place of ```COLUMN_NAME_HERE```.The last column name will be tricky to change, this is because it has a ```'``` here. In order to change that right before the ```'``` add a ```\```. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/4.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df = df.rename( columns={'COLUMN_NAME_HERE':'voyage_id', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'vessel_name', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'voyage_started', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'voyage_pit_stop', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'end_port', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'year_of_arrival', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'slaves_onboard', # Insert Column Name you want to change 'COLUMN_NAME_HERE':'captain_names' # Insert Column Name you want to change }) df ###Output _____no_output_____ ###Markdown Q5 Moving Column Positions - ```df.reindex()``` When we're looking at the renamed database, for our purposes, we don't want to work with the ```captain_names```. Next, we will use ```df.reindex()``` to change the order of our columns.You can see below a list below which has the ```column_names``` in the order we want and is without ```captains_name```. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/5.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. column_names = ['voyage_id',"year_of_arrival","vessel_name", "voyage_started","voyage_pit_stop", "end_port","slaves_onboard"] df = df._____(columns=________) # Insert Code here df ###Output _____no_output_____ ###Markdown **Is Voyage ID a good index and do we need it as a column?**No, But we need an index.**Can 'year_of_arrival' be an Index?**No, because there are repeating dates in the charts, there for we need a simple log counter. Q6. Remove Voyage ID -```df.drop()``` Now that we have a new index from 0 to 15299.Do we need ```voyage_id```. I don't think so, because it doesn't help us find anything useful. Every Voyage ID is unique.Next, drop this columnn ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/6.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df = __.drop(columns='_____') # INSERT CODE HERE df ###Output _____no_output_____ ###Markdown Using ```dropna()``` For this data set, we will be working with trips that were completely accounted for in all of the remaining features.The ```dropna()``` method is designed top drop every value in our dataframe whos cell might have a null or undefined value. They are usually shown as ```NaN``` ###Code df = df.dropna() df df.info() ###Output _____no_output_____ ###Markdown Questions/ObservationsHow many rows are we left with? Q7. Sorting Column using ```year_of_arrival``` using - ```df.sort_values()``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/7.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df = df.sort_values(by='_______', ascending=_____) # INSERT CODE HERE df ###Output _____no_output_____ ###Markdown Q8. Reseting the Index Reseting Index using ```df.reset_index``` with respect 'year_of_arrival' in Ascending Order. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/8.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df.______(inplace=True, drop=True) # INSERT CODE HERE df ###Output _____no_output_____ ###Markdown Finding Unique and similar strings First, we will list down all the unique names in these columns. Next, we will sort these in alphabetical order in order to make it easier to observe.```df['column_name].unique()``` and ```df.sort()```for simplicity i have just declared the first line as a variable ```a``` in order to print it ###Code a = df['voyage_started'].unique() a.sort() a a = df['voyage_pit_stop'].unique() a.sort() a a = df['end_port'].unique() a.sort() a ###Output _____no_output_____ ###Markdown As we can see above our object columns, ```voytage_started```, ```voyage_pit_stop``` and ```end_port``` have phrases such as ```., port unspecified```, ```,unspecified```. We need to clean these out. Q9. Working with Strings - ```df['column_name'].str.replace()``` To replace unwanted parts of a string, we use the function ```df['columun_name'].str.replace('string to find','string to replace')```. This command looks for the string we have specified and replaces with what we want.For example:If have an entry in the 'voyage_started' column, 'Virginia, port unspecified'. By running the command:```df['voyage_started'].str.replace(', port unspecified', '')```The string will be changed from ''Virginia, port unspecified' to 'Virginia'. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/9.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. df['voyage_started'] = df['voyage_started'].str.replace('', '') df['voyage_started'] = df['voyage_started'].str.replace('', '') df['voyage_started'] = df['voyage_started'].str.replace('', '') df['voyage_pit_stop'] = df['voyage_pit_stop'].str.replace('', '') df['voyage_pit_stop'] = df['voyage_pit_stop'].str.replace('', '') df['voyage_pit_stop'] = df['voyage_pit_stop'].str.replace('.', '') df['end_port'] = df['end_port'].str.replace('', '') df['end_port'] = df['end_port'].str.replace('', '') df['end_port'] = df['end_port'].str.replace('.', '') df['end_port'] = df['end_port'].str.replace('', '') df['end_port'] = df['end_port'].str.replace('', '') df['end_port'] = df['end_port'].str.replace('', '') df['end_port'] = df['end_port'].str.replace(', south coast', '') # Insert string to replace df['end_port'] = df['end_port'].str.replace(', west coast', '') df df.dtypes ###Output _____no_output_____ ###Markdown Creating a Copy of our modified Dataset ###Code modified_dataset = df.copy(deep = True) ###Output _____no_output_____ ###Markdown Part 3 - Micro Wrangling and Visualization We will Start this part by dividing our dataset into multiple smaller dataframes. The approach we will be taking is separating dataframes based on the ```year_of_arrival``` dataset.For example, in the blocks below you will see code for 4 intervals:- ```1500 to 1600```- ```1601 to 1700```- ```1701 to 1800```- ```1801 to 1900```To help you understand the procedure we have worked through ```1500 to 1600``` . You will be required to do the same for the next 2 periods. The last one i.e. 1801 to 1900 is optional and we hope you will attempt it as a significant chunk of the voyages (specially the number of slaves transported) occured in the early 19th century. Between 1500 to 1600 Create a new dataframe for the given date range.Here we are creating a new dataframe from the copy of our dataset ```modified_dataset``` from step 2. we are using the range ```1500``` and ```1600``` from the dataset ###Code dataset_between15_16 = modified_dataset.where((modified_dataset['year_of_arrival'] >= 1500) & (modified_dataset['year_of_arrival'] <= 1600)) dataset_between15_16 ###Output _____no_output_____ ###Markdown Dropping the Null valuesIf you notice the column above, we can only see ```NaN``` values. This is because when we made a new dataframe. We haven't changed the shape of the dataset at all. Infact, we have only made the rows between our defined ranges ```True```. The rest of them have been converted into empty calls. Therefore the next step will be to drop them.You can simply do that by running the line below. Another way to simply do this is by ```dataset_between15_16.dropna(inplace = True)``` ###Code dataset_between15_16 = dataset_between15_16.dropna() dataset_between15_16 ###Output _____no_output_____ ###Markdown Total Number of Slaves Transported between 1501-1600 - Complete RecordsLets check the number of slaves transported between 1501-1600.*Please remember we are looking at rows that donot have any empty cells. Look back to this [part](https://colab.research.google.com/github/bitprj/DigitalHistory/blob/master/Week5-Lab-Visualizing-the-Translatlantic-Slave-Trade/Lab-Visualize-Trans-Atlantic-Slave-Trade.ipynbscrollTo=d_Ds03fRHleS). We dropped a significant amount of rows over there because we they had atleast 1 or more ```NaN``` values. ###Code dataset_between15_16.slaves_onboard.sum() ###Output _____no_output_____ ###Markdown Visualizing Trips During 1501-1601Lets quickly visuallize our data. We will plot 4 plots 2 bar and 2 scatter. All of them will use the columns ```year_of_arrrival``` or ```slaves_onboard```. The twist is that in two we will switch the x and y columns. ###Code fig = plt.figure(figsize = (20,10)) ax1 = fig.add_subplot(2,2,1) ax2 = fig.add_subplot(2,2,2) ax3 = fig.add_subplot(2,2,3) ax4 = fig.add_subplot(2,2,4) ax1.scatter(dataset_between15_16['year_of_arrival'], dataset_between15_16['slaves_onboard'], alpha = 0.4) ax2.scatter(dataset_between15_16['slaves_onboard'], dataset_between15_16['year_of_arrival'], alpha = 0.4) ax3.bar( dataset_between15_16['year_of_arrival'], dataset_between15_16['slaves_onboard'], alpha = 0.4) ax4.set_ylim(1500,1600) ax4.bar( dataset_between15_16['slaves_onboard'], dataset_between15_16['year_of_arrival'], alpha = 0.4) ###Output _____no_output_____ ###Markdown 3.1 Choosing Graphs Questions/Observations- Which of these graphs seem useful and which ones are unnecessary?**Write a 2 sentence explanation about why these two plots seem or might be useful.** **Did the visualization style influence your decision?**Select the two graphs you think are more useful and add the following:- Add ```title``` for both subplots.- Add ```xlabel``` and ```ylabel```.- Change the color for one of the plots Plot the ```vessel_name``` vs the ```slaves_onboard```.Next, we'll use the ```pandas``` ```plot``` function and use the columns ```vessel_name``` as ```x``` and ```slaves_onboard``` as ```y```.Remember, ```vessel_name``` is a categorical value so we're plotting a bar chart of categorical vs numerical here. ###Code dataset_between15_16.plot(x= 'vessel_name', y = 'slaves_onboard', kind = 'bar', rot = 90) ###Output _____no_output_____ ###Markdown Plotting voyages carrying Less than 100 slaves per tripThe plot above is crowded since there are alot of ships that were used throughout the 16th century. Our next step will be to simplify the plotting a little bit and to actually be able to visualize the plots properly.Below we create a new variable for our plot and we name it ```temp_df```.*You can name it anything you want.*We first make a dataframe that only contains rows where the number of slaves onboard were less than 100. ###Code temp_df = dataset_between15_16.where(dataset_between15_16['slaves_onboard'] < 100.0).dropna() temp_df temp_df.plot(x='vessel_name', y = 'slaves_onboard', kind = 'bar', rot = 90) ###Output _____no_output_____ ###Markdown Plotting voyages carrying greater than 100 slaves per tripNext we check for ships where the number of slaves carried was greater than 100.Notice we added a ```dropna``` at the end. This is the same as the step we take to drop the null values from our dataframes but instead of writing it as a new line we have simply attactched at to our ```dataset_between15_16.where``` ###Code temp_df = dataset_between15_16.where(dataset_between15_16['slaves_onboard'] > 100.0).dropna() temp_df.plot(x='vessel_name', y = 'slaves_onboard', kind = 'bar', rot = 90, grid = True, figsize = (20,10) ) ###Output _____no_output_____ ###Markdown As we can see above it is still a little congested. Therefore we'll narrow down our search a little more.As you can see plotting using random numbers might not give us the best results.One thing we can do is select our values based on the ```mean```,```standard deviation```,```25%```,```50%```,```75%```So lets check those values for our current dataframe which is ```dataset_between15_16``` ###Code dataset_between15_16.describe() ###Output _____no_output_____ ###Markdown We can see the values above, for this project we will be looking at the ```75%``` value for the ```slaves_onboard``` column.Therefore: ###Code num_of_slaves_3q = 202 # 3q means third quartile. The value is 201.5 but we are rounding up ###Output _____no_output_____ ###Markdown Plotting voyages with respect to ```num_of_slaves_3q``` ###Code temp_df = dataset_between15_16.where(dataset_between15_16['slaves_onboard'] >num_of_slaves_3q).dropna() print(f'There are {temp_df.shape[0]} trips that carries more than {num_of_slaves_3q} slaves.') ###Output _____no_output_____ ###Markdown The second line written above is simply an ```f-string```. These are not important but are still useful when printing statements and let us print variables inside a string. ###Code temp_df.plot(x= 'vessel_name', y = 'slaves_onboard', kind = 'bar', rot = 90, # Adjusted accordingly, you can do the same grid = True, # Adjusted accordingly, you can do the same figsize = (20,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Plotting the most used ```start_port``` ###Code temp_df['voyage_started'].hist(bins = 20, # Adjusted accordingly, you can do the same alpha = 0.5, # Adjusted accordingly, you can do the same xrot = 45, # Adjusted accordingly, you can do the same figsize = (10,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Histogram - Check the most used ```voyage_pit_stop``` ###Code temp_df['voyage_pit_stop'].hist(bins=10, # Adjusted accordingly, you can do the same alpha=0.7, # Adjusted accordingly, you can do the same xrot = 0, # Adjusted accordingly, you can do the same figsize = (10,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Histogram - Check the most used ```End_Port``` ###Code temp_df['end_port'].hist(bins=10, # Adjusted accordingly, you can do the same alpha=0.7, # Adjusted accordingly, you can do the same xrot = 0, # Adjusted accordingly, you can do the same figsize = (10,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Questions/Observations- Where were most of the trips made? - Where did they start from.- Any other important observations? Between 1601 - 1700 Q10. Create a new dataframe for the given date range. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/10.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. dataset_between16_17 = modified_dataset.____ #INSERT CODE HERE dataset_between16_17 ###Output _____no_output_____ ###Markdown Q11. Drop null values ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/11.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. dataset_between16_17 = dataset_between16_17._____() # Insert Code here (drop nul values) dataset_between16_17 ###Output _____no_output_____ ###Markdown Q12. Total Number of Slaves Transported between 1601-1700 - Complete Records ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/12.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. dataset_between16_17.slaves_onboard.___() # Insert Code Here - Sum of slaves ###Output _____no_output_____ ###Markdown Q13. Visualizing Trips During 1601-1701 ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/13.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. fig = # INSERT CODE HERE ax1 = # INSERT CODE HERE ax2 = # INSERT CODE HERE ax1.scatter(# INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE ) ax2.bar( # INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE ) ###Output _____no_output_____ ###Markdown Q14. Plot the ```vessel_name``` vs the ```slaves_onboard```.Next, we'll use the ```pandas``` ```plot``` function and use the columns ```vessel_name``` as ```x``` and ```slaves_onboard``` as ```y```.Remember, ```vessel_name``` is a categorical value so we're plotting a bar chart of categorical vs numerical here. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/14.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. fig = plt.figure(figsize = (50,20)) ax1 = fig.add_subplot(2,2,1) dataset_between16_17.plot(# INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE ) ###Output _____no_output_____ ###Markdown Note: The graph above will be more congested compared to the ```1500-1601``` plot. This is because the number of trips are more As you can see plotting using random numbers might not give us the best results.One thing we can do is select our values based on the ```mean```,```standard deviation```,```25%```,```50%```,```75%```So lets check those values for our current dataframe which is ```dataset_between16_17``` ###Code dataset_between16_17.describe() ###Output _____no_output_____ ###Markdown Q15. Plotting voyages with respect to ```num_of_slaves_3q``` We can see the values above, for this project we will be looking at the ```75%``` value for the ```slaves_onboard``` column.Therefore: ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/15.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. slaves_onboard_3q = ### INSERT VALUE #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/15.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. temp_df = ## print(f'There are {temp_df.shape[0]} trips that carries more than {slaves_onboard_3q} slaves.') #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/15.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. temp_df.plot(# INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE rot = 90, # Adjusted accordingly, you can do the same grid = True, # Adjusted accordingly, you can do the same figsize = (20,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Q16. Plotting the most used ```start_port``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/16.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q17. Plotting the most used ```voyage_pit_stop``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/17.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q18. Plotting the most used ```End_Port``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/18.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Between 1701 - 1800 Q19. Create a new dataframe for the given date range. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/19.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. dataset_between17_18 = # INSERT CODE HERE # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q20. Drop null values ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/20.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q21. Total Number of Slaves Transported between 1701-1800 - Complete Records. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/21.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q22. Visualizing Trips During 1701-1800 ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/22.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. fig = # INSERT CODE HERE ax1 = # INSERT CODE HERE ax2 = f# INSERT CODE HERE ax1.scatter(# INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE ) ax2.bar( # INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE ) ###Output _____no_output_____ ###Markdown Q23. Plot the ```vessel_name``` vs the ```slaves_onboard```. ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/23.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. ###Output _____no_output_____ ###Markdown Note: The graph above will also be more congested compared to the ```1500-1600``` and ```1601-1700``` plot. This is because the number of trips are more the previous century.As you can see plotting using random numbers might not give us the best results.One thing we can do is select our values based on the ```mean```,```standard deviation```,```25%```,```50%```,```75%```So lets check those values for our current dataframe which is ```dataset_between17_18``` ###Code dataset_between17_18.describe() ###Output _____no_output_____ ###Markdown Q24. Plotting voyages with respect to ```num_of_slaves_3q``` We can see the values above, for this project we will be looking at the ```75%``` value for the ```slaves_onboard``` column.Therefore: ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/24.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. slaves_onboard_3q = ### INSERT VALUE #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/24.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. temp_df = ## print(f'There are {temp_df.shape[0]} trips that carries more than {slaves_onboard_3q} slaves.') #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/24.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. temp_df.plot(# INSERT CODE HERE # INSERT CODE HERE # INSERT CODE HERE rot = 90, # Adjusted accordingly, you can do the same grid = True, # Adjusted accordingly, you can do the same figsize = (20,10) # Adjusted accordingly, you can do the same ) ###Output _____no_output_____ ###Markdown Q25. Plotting the most used ```start_port``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/25.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q26. Plotting the most used ```voyage_pit_stop``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/26.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Q27. Plotting the most used ```End_Port``` ###Code #Once your have verified your answer please uncomment the line below and run it, this will save your code #%%writefile -a {folder_location}/27.py #Please note that if you uncomment and run multiple times, the program will keep appending to the file. # INSERT CODE HERE ###Output _____no_output_____ ###Markdown Extra Between 1801 - 1900 ConclusionFor this you will write a summary of what steps you followed throughout this notebook, why they were important and your findings.For example:- The findings you observed when working through the 4 centuries of slave trade voyages.- Are our findings reliable or do we need further research?- Was ```vessel_name``` useful?- What could we have found if we kept the captains name column?- What else could we find with this dataset?- What are our limitations?You can also add your answers to the questions posted throughout the notebook here. SubmissionRun this code block to download your answers. ###Code from google.colab import files !zip -r "{student_id}.zip" "{student_id}" files.download(f"{student_id}.zip") ###Output _____no_output_____ ###Markdown Appendix Connecting to Your Google Drive ###Code # Start by connecting google drive into google colab from google.colab import drive drive.mount('/content/gdrive') !ls "/content/gdrive/My Drive/DigitalHistory" cd "/content/gdrive/My Drive/DigitalHistory/tmp/trans-atlantic-slave-trade" ls ### Extracting ZipFiles import zipfile file_location = 'data/trans-atlantic-slave-trade.csv.zip' zip_ref = zipfile.ZipFile(file_location,'r') zip_ref.extractall('data/tmp/trans-atlantic-slave-trade') zip_ref.close() ###Output _____no_output_____ ###Markdown Checking and Changing Column Types ```df.dtypes``` and ```df.astype()``` ###Code df.dtypes df.year_of_arrival.astype(int) df.dtypes df.year_of_arrival = df.year_of_arrival.astype(int) df.dtypes ###Output _____no_output_____ ###Markdown **Extra**:```df.slaves_onboard = df.slaves_onboard.astype(int)``` ###Code df.slaves_onboard = df.slaves_onboard.astype(int) df.dtypes df ###Output _____no_output_____ ###Markdown GeoTagging Locations ###Code !pip install geopandas !pip install googlemaps from googlemaps import Client as GoogleMaps import pandas as pd gmaps = GoogleMaps('')# ENTER KEY df addresses = df.filter(['Voyage itinerary imputed port where began (ptdepimp) place'], axis=1) addresses.head() addresses['long'] = "" addresses['lat'] = "" addresses ###Output _____no_output_____
Lecture 5 - Differential equations/lecture_topic5_differential_eq_part2.ipynb
###Markdown Lecture topic 5: Ordinary and partial differential equations Part 2 ###Code from lecture_utils import * ###Output _____no_output_____ ###Markdown Topics of Part 21. Continuation with integrators - Leapfrog - Verlet 2. Partial differential equations Repetition: Leapfrog methodScheme comparing RK2 and leapfrog (Figure adapted from "Computational Physics" by Marc Newman)- RK2: $$ \begin {align} x\left(t+\frac{1}{2}h\right) &= x(t) + \frac{1}{2}hf(x(t),t)\\ x(t+h) &= x(t) + hf\left(x\left(t+\frac{1}{2}h\right),t+\frac{1}{2}h\right) \end{align}$$- Leapfrog\begin{align} x\left(t+h\right) &= x(t) + hf\left(x\left(t+\frac{1}{2}h\right),t+\frac{1}{2}h\right)\\ x\left(t+\frac{3}{2}h\right) &= x\left(t+\frac{1}{2}h\right) + hf(x(t+h),t+h)\\\end{align} When/why would one use Leapfrog instead of RK?- RK4 more accurate, but not time-reversal symmetric- time-reversal symmetric behavior important for energy conservation- energy conservation important for many problems in physics, for example: - nonlinear pendulum - planet orbiting a star - molecular dynamics (computer simulation of movement of atoms and molecules) Time reversal and energy conservation- forward and backward solution should be identical- forward means we have a positive interval $h$- backwards means we have a negative interval $-h$ Forward and backward calculation with LeapfrogEquations for backward calculation ($h \rightarrow -h$):$$\begin{align} x\left(t-h\right) &= x(t) - hf\left(x\left(t-\frac{1}{2}h\right),t-\frac{1}{2}h\right)\\ x\left(t-\frac{3}{2}h\right) &= x\left(t-\frac{1}{2}h\right) - hf(x(t-h),t-h)\end{align}$$Let's now start the backward calculation from $t+\frac{3}{2}h$, i.e., $t\rightarrow t+\frac{3}{2}h$$$\begin{align} x\left(t+\frac{1}{2}h\right) &= x\left(t + \frac{3}{2}h\right) - hf(x\left(t+h),t+h\right)\\ x(t) &= x(t+h) - hf\left(x\left(t+\frac{1}{2}h\right),t+\frac{1}{2}h\right)\end{align}$$ The Leapfrog method is time-reversal symmetric. Time reversal symmetry means that if start from a certain time and go backwards in time we can exactly retrace all steps of the forward solution. Let's start our backward calculation at $t + \frac{3}{2}h$ as shown in the figure. We perform the step between the midpoints from $t+\frac{3}{2}h$ to $t+\frac{1}{2}h$ and the step between the full integer points from $t+h$ to $t$. The same steps are performed in the forward algorithm, just reversed. The mathematical operations are the same, just reversed and the last two equations are identical to the forward equations on slide 3. Forward and backward calculation with RK2Equations for backward calculation ($h \rightarrow -h$):$$ \begin {align} x\left(t-\frac{1}{2}h\right) &= x(t) - \frac{1}{2}hf(x,t)\\ x(t-h) &= x(t) - hf\left(x\left(t-\frac{1}{2}h\right),t-\frac{1}{2}h\right) \end{align}$$Let's start the backward calculation from $t+h$, i.e., $t\rightarrow t+h$$$ \begin {align} x\left(t+\frac{1}{2}h\right) &= x(t+h) - \frac{1}{2}hf(x(t+h),t+h)\\ x(t) &= x(t+h)- hf\left(x\left(t+\frac{1}{2}h\right),t+\frac{1}{2}h\right) \end{align}$$ RK2 is not time-reversal. Let's start the backward calculation from $t+h$. We perform a midpoint step from $t+h$ to $t+\frac{1}{2}h$ and a full step form $t+h$ to $h$. However, in the forward algorithm we don't perform a midpoint step from $t+\frac{1}{2}h$ to $t+h$. It is easy to show that the last two equations are not identical to the RK2 forward equations on slide 3. Example: Nonlinear pendulum$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = - \frac{g}{l}\sin(\theta)$$Transformation into two first-order equations$$\begin{align} \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega, \qquad \frac{\mathrm{d}\omega}{\mathrm{d}t} = - \frac{g}{l}\sin(\theta)\end{align}$$The motion of the pendulum is time-reversal symmetric. The motion the pendulum makes in a single period, is exactly the same backwards as it is forwards. The length of the arm is 10 cm and m =1 kg. The potential energy of the pendulum is $V = mgl(1-\cos(\theta))$ and the kinetic energy is $T= 0.5ml^2(\mathrm{d}\theta/\mathrm{d}t)^2$. ###Code from numpy import sin, cos, pi, array, arange from matplotlib import pyplot as plt """"Definition of parameters and initial conditions""" g = 9.81 l = 0.1 # Lenght of arm is 10 cm a = 0.0 # start time b = 10.0 # end time h = 0.001 # time step start_theta_degree = 10 start_theta = pi*start_theta_degree/180 tpoints = arange(a,b,h) """Right-hand side of differential equations""" def f(r): theta = r[0] omega = r[1] ftheta = omega fomega = -(g/l)*sin(theta) return array([ftheta,fomega],float) """ Potential energy """ def V(theta): return g*l*(1-cos(theta)) """ Kinetic energy """ def T(omega): return 0.5*l*l*omega*omega """ RK2 integration for pendulum """ def rk2_integration(tpoints,start_theta): #Initial condition: r[0] = start_theta ; and r[1] = omega = 0 r = array([start_theta,0.0],float) thetapoints = [] Vpoints = [] Tpoints = [] Epoints =[] for t in tpoints: thetapoints.append(r[0]*180/pi) Vpoints.append(V(r[0])) Tpoints.append(T(r[1])) Epoints.append(V(r[0])+T(r[1])) k1 = h*f(r) k2 = h*f(r+0.5*k1) r += k2 return thetapoints, Epoints """ Leapfrog integration for pendulum """ def leapfrog_integration(tpoints,start_theta): thetapoints = [] Vpoints = [] Tpoints = [] Epoints =[] r1 = array([start_theta,0.0],float) # Initial value for point 1 r2 = r1 + 0.5*h*f(r1) # Initial value for point 2 = midpoint for t in tpoints: thetapoints.append(r1[0]*180/pi) Vpoints.append(V(r1[0])) Tpoints.append(T(r1[1])) Epoints.append(V(r1[0])+T(r1[1])) r1 += h*f(r2) r2 += h*f(r1) return thetapoints, Epoints """Solve problem with RK2""" thetapointsRK2,EpointsRK2 = rk2_integration(tpoints,start_theta) """Solve problem with Leapfrog""" thetapointsLF,EpointsLF = leapfrog_integration(tpoints,start_theta) """Plot theta with respect to time""" plt.rc('font', size=16) xstart = a xend = b plt.figure(1) plt.xlim(xstart,xend) plt.ylim(-start_theta_degree-10,start_theta_degree+10) #plt.ylim(-200,200) plt.ylabel('Angle displacement theta') plt.plot(tpoints,thetapointsRK2,label='RK2',linewidth=1.0) plt.legend() plt.figure(2) plt.xlim(xstart,xend) plt.ylim(-start_theta_degree-10,start_theta_degree+10) plt.ylabel('Angle displacement theta') plt.xlabel('Time') plt.plot(tpoints,thetapointsLF,label='Leapfrog',linewidth=1.0) plt.legend() plt.show() """Plot total energy with respect to time""" plt.rc('font', size=16) xstart = a xend = b plt.figure(1) plt.xlim(xstart,xend) plt.ylabel('Total energy') plt.plot(tpoints,EpointsRK2,label='RK2',linewidth=1.0) plt.legend() plt.figure(2) plt.xlim(xstart,xend) plt.ylabel('Total energy') plt.xlabel('Time') plt.plot(tpoints,EpointsLF,label='LF',linewidth=1.0) plt.plot(tpoints,EpointsRK2,label='RK2',linewidth=1.0) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Now the settings are $t_{end}=b =10$s and $h = 0.001$. Try the following things- decrease $h$ by an order of magnitude - set $h$ to 0.01 and $b$ to 4000s. Especially the last point gives some interesting insights. Watch the videos to get some more explanations. The solution with our numerical solvers is only approximate, which means the total energy of the system is only approximately constant. With RK2 we see clearly a drift in the energy. The leapfrog algorithm conserves energy at the end of a full swing of the pendulum, i.e., at the beginning and the end of the swing the energy will be the same.The energy fluctuates during the course of the swing though, i.e., it is not conserved during fractions of a period. However, at the end of the swing, it will return to the correct value. The leapfrog method is thus useful for solving the equations of motion of energy conserving physical systems. If we wait long enough with RK2, the energy will drift, also with RK4, i.e., the pendulum might stop swinging or the planet might fall out of orbit into the star. Verlet method- specialized method to solve ODEs of the form\begin{align} \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = f(x,t)\end{align}- most important example: Newton's equation of motion\begin{equation} \frac{\mathrm{d}^2\mathbf{r}_i}{\mathrm{d}t^2} = \frac{\mathbf{F}_i}{m_i}\end{equation}- Verlet is a variant of Leapfrog method In the case of molecular dynamics (MD), the force on atom $i$ will depend on the positions of all other atoms in the system. The interaction potentials are also in the case of classical MD non-linear functions of $\mathbf{r}$. In the case of ab initio MD the forces are obtained from quantum mechanics, i.e., the corresponding equations of motion must be always solved numerically. Derivation of Verlet methodWe transform\begin{align} \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = f(x,t)\end{align}to 2 first-order differential equations\begin{equation} \frac{\mathrm{d}x}{\mathrm{d}t} = v, \qquad \frac{\mathrm{d}v}{\mathrm{d}t} = f(x,t)\end{equation} Using Leapfrog we would define a vector $\mathbf{r} = (x,v)$ and combine the two equations to a single vector equation\begin{equation} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{f}(\mathbf{r},t)\end{equation}With Leapfrog, the explicit expression to solve for $\mathbf{r}$ are- Full step\begin{align} x(t+h) &= x(t) + hv\left(t+\frac{1}{2}h\right)\\ v(t+h) &= v(t) + h f\left(x\left(t+\frac{1}{2}h\right),t+\frac{1}{2}h\right)\end{align}- Midpoint step\begin{align} x\left(t+\frac{3}{2}h\right) &= x\left(t+\frac{1}{2}h\right) + hv(t+h)\\ v\left(t+\frac{3}{2}h\right) &= v\left(t+\frac{1}{2}h\right) + hf(x(t+h),t+h)\end{align} We can derive a full solution to the problem by only using\begin{align} x(t+h) &= x(t) + hv\left(t+\frac{1}{2}h\right)\\ v\left(t+\frac{3}{2}h\right) &= v\left(t+\frac{1}{2}h\right) + hf(x(t+h),t+h)\end{align}The initial value for $v\left(t+\frac{1}{2}h\right)$ can be obtained from Euler's method with a step size of $\frac{1}{2}h$\begin{equation} v\left(t + \frac{1}{2}h\right) = v(t) + \frac{1}{2}hf(x(t),t)\end{equation} We never need to calculate $v$ at any integer point or $x$ at half integers. This is an improvement over leapfrog where we would solve all four equations, i.e., we have to do only half the work compared to leapfrog. This simplification only works for differential equations that have the specific form $ \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = f(x,t)$. For these type of ODEs, the right-hand side of the first equation ($ \frac{\mathrm{d}x}{\mathrm{d}t} =v$) depends on $v$, but not on $x$. The right-hand side of the second equation ($\frac{\mathrm{d}v}{\mathrm{d}t} = f(x,t)$) depends on $x$, but not on $v$. However, solving the equations of motion are ODEs of this form and they are a pretty common problem in physics. There is a small problem so far: We know $v$ at half-integer points and $x$ at full integer points, i.e., we never know both quantities at the same time. This is problematic if we want to calculate the potential, kinetic and total energy of the system because then we have to know $x$ and $v$ at the same time. To make sure that we know also know $v$ at the integer points, we perform an additional half step. Let's assume we would know $v(t+h)$ then could perform a half-step with step size $-\frac{1}{2}h$ using Euler's method\begin{equation} v\left(t+\frac{1}{2}h\right) = v(t+h) - \frac{1}{2}hf(x(t+h),t+h)\end{equation}Rearranging yields:\begin{equation} v(t+h) = v\left(t+\frac{1}{2}h\right) + \frac{1}{2}hf(x(t+h),t+h)\end{equation}In combination with the equations on the previous slide, this give us the Verlet method. Working equations for the Verlet algorithmStart:\begin{equation} v\left(t + \frac{1}{2}h\right) = v(t) + \frac{1}{2}hf(x(t),t)\end{equation}Then iterate:\begin{align} x(t+h) &= x(t) + hv\left(t+\frac{1}{2}h\right)\\ k &= hf(x(t+h),t+h)\\ v(t+h) &= v\left(t+\frac{1}{2}h\right) + \frac{1}{2}k\\v\left(t+\frac{3}{2}h\right) &= v\left(t+\frac{1}{2}h\right) + k\end{align} We are given initial values of $x$ and $v$ at some time $t$. We start by calculating the $v$ at the $t+\frac{1}{2}h$. The subsequent values of $x$ and $v$ are then derived by applying the set of equations above. Verlet working equations for simultaneous differential equationsLet's assume we have an equation of the form\begin{align} \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \mathbf{f}(\mathbf{r},t)\end{align}wher $\mathbf{r}=(x,y,...)$ is a vector. The Verlet working equations then transform toStart:\begin{equation} \mathbf{v}\left(t + \frac{1}{2}h\right) = \mathbf{v}(t) + \frac{1}{2}h\mathbf{f}(\mathbf{r}(t),t)\end{equation}Iterate:\begin{align} \mathbf{r}(t+h) &= \mathbf{r}(t) + h\mathbf{v}\left(t+\frac{1}{2}h\right)\\ \mathbf{k} &= h\mathbf{f}(\mathbf{r}(t+h),t+h)\\ \mathbf{v}(t+h) &= \mathbf{v}\left(t+\frac{1}{2}h\right) + \frac{1}{2}\mathbf{k}\\ \mathbf{v}\left(t+\frac{3}{2}h\right) &= \mathbf{v}\left(t+\frac{1}{2}h\right) + \mathbf{k}\end{align} When solving equations of motion, we usually have simulateneous second-order differential equations with position vector $\mathbf{r}=(x,y,z)$, i.e., three simultaneous second-order differential equations, which can be transformed to 6 simulatenous first-order equations. If we want to solve the equation of motions for $n$ interacting particles, we have $6n$ simulatenous euqations to solve. There are different flavors of the Verlet method. What we have discussed here is often called the Velocity Verlet algorithm. Error propagation with the (Velocity) Verlet method - Verlet conserves, since it is a variant of leapfrog, also the energy- error for single step is $\mathcal{O}(n^3)$ - accumulated error is $\mathcal{O}(n^2)$ Error propagation with the Verlet method Example: Earth (blue) + moon (gray) orbiting around sun (yellow)- Equations of motion solved by the (Velocity) Verlet method- yields right behavior- Video by Miguel Caro (Advanced Statistical Physics course at Aalto), see also https://youtu.be/KQAP90SWtiQ ###Code play_VelocityVerlet() ###Output _____no_output_____ ###Markdown Summary: Methods for solving ODEs and error| method | single step error | accumulated error || --- | --- | --- || Euler | $\mathcal{O}(n^2)$ | $\mathcal{O}(n)$ || RK2 | $\mathcal{O}(n^3)$ | $\mathcal{O}(n^2)$ || RK4 | $\mathcal{O}(n^5)$ | $\mathcal{O}(n^4)$ || Leapfrog | $\mathcal{O}(n^3)$ | $\mathcal{O}(n^2)$ || (Velocity) Verlet | $\mathcal{O}(n^3)$ | $\mathcal{O}(n^2)$ |Leapfrog and Velocity Verlet are in addition time-reversal symmetric and conserve, e.g., energy.Lesson learned: it is important to choose a sensible integration scheme for the ODEs together with a proper step size Partial differential equations Many problems in physics are partial differential equations, e.g.,- Laplace and Poisson equations- Maxwell's equations- Schrรถdinger equation- wave equation- diffusion equation$\rightarrow$ solving them is usually computationally more demanding than the ODE case Types of problems1. boundary problems2. initial value problems- $\rightarrow$ initial value problems are typically harder to solve for partial differential equations- we will learn one method for each For ODEs we discussed only initial value problems, meaning that we are solving differential equations given the initial values of the variables. This is the most common from for differential equations in physics. However, there are also boundary value problems. For instance, let's consider the example of a ball thrown into the air. We could specify two initial conditions: the height of the ball at $t=0$ and its initial upward velocity. Another possibilty is to formulate this example as boundary value problem. We could specify our two conditions as initial and end condition instead. We could specify that the ball has the height $x(t=0)=0$ and $x(t_1)=0$, where $t_1$ is a later time, i.e., we specify the time when the ball is thrown and when it lands.Initial value problems are generally easier to solve for ODEs. For partial differential equations, the opposite is true. Relaxation method for boundary value problems(Figure from "Computational Physics" by Marc NewmanTo introduce the method we will look at a simple electrostatics problem: an empty box, which as conducting wall, all of which are grounded to 0 V except for the wall at the top, which is at some other voltage $V$. The (very) small gaps between the top wall and the others are intended to show that they are insulated from one another.Goal: determine value of the electrostatic potential at points within the box This also a boundary value problem: we want to describe the behavior of a variable in space and we are given some constraints on the variable around that space. We can find the electrostatic potential $\phi$ inside the box by solving the 2D Laplace equation\begin{equation} \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = 0\end{equation}with the boundary conditions that $\phi =V$ on the top wall and $\phi =0$ on the other walls.Procedure: - use method of finite difference to express the second derivatives of $\phi$ $\rightarrow$ see lecture topic 2 - use relaxation method to solve the obtained set of linear simultaneous equations $\rightarrow$ see lecture topic 3 Repetition: Finite differences for second derivativesWe calculate the first derivates first using the central difference method for derivatives at $x+h/2$ and $x-h/2$.\begin{equation} f'(x+h/2) \approx \frac{f(x+h)-f(x)}{h} \qquad f'(x-h/2) \approx \frac{f(x)-f(x-h)}{h}\end{equation}Now we applyt the central difference method again for the second derivative\begin{align} f'' &\approx \frac{f'(x+h/2)-f'(x-h/2)}{h}\\ & = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}\end{align} Apply the finite difference method to the Laplace equation(Figure from "Computational Physics" by Marc Newman- divide the space in the box into grid points with spacing $a$ as shown in the figure. - put points also on interior and boundaries of that spaceCalculate now 2nd derivatives:\begin{align} \frac{\partial^2\phi}{\partial x^2} &=\frac{\phi(x+a,y) + \phi(x-a,y) -2\phi(x,y)}{a^2}\\ \frac{\partial^2\phi}{\partial y^2} &=\frac{\phi(x,y+a) + \phi(x,y-a) -2\phi(x,y)}{a^2}\end{align}The Laplace equation in 2D is now:\begin{equation}\frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} = \frac{\phi(x+a,y) + \phi(x-a,y) +\phi(x,y+a) + \phi(x,y-a)-4\phi(x,y)}{a^2} = 0\end{equation} We basically add the values of $\phi$ at all the grid points adjacent to $(x,y)$ and subtract 4x the value at $(x,y)$ and then divide by $a^2$. We need to solve\begin{equation} \phi(x+a,y) + \phi(x-a,y) +\phi(x,y+a) + \phi(x,y-a)-4\phi(x,y) = 0\end{equation}- we have one equation like this for every grid point $(x,y)$- the solution to the entire set gives us $\phi(x,y)$ at every grid point$\rightarrow$ large set of linear simultaneous equations$\rightarrow$ method of choice is here the relaxation method (lecture topic 3) This linear set of equations could be solved, in principle, with Gaussian elimination or LU decomposition. In this case, using the relaxation method is a better choice because it is computationally cheaper. We introduced the relaxation method for non-linear equations, but they -of course- also be applied to linear equations. Application of the relaxation method to our electrostatics problemLet's first rearrange\begin{equation}\phi(x,y) =\frac{1}{4} (\phi(x+a,y) + \phi(x-a,y) +\phi(x,y+a) + \phi(x,y-a)) \end{equation}Procedure:- fix $\phi(x,y)$ at the boundaries of the system - guess some initial values for $\phi(x,y)$, can be bad, doesn't matter- calculate new values $\phi'$ we the guessed initial values- repeat until convergence reached$\rightarrow$ this is also known as Jacobi method Solution of the 2D Laplace equationLet's now solve our electrostatics problem with the Jacobi method assuming that the box is 1 m long each side, $V = 1$ volt and the grid spacing $a = 1cm$. We hve 100 grid points or 101 if we count the points at both beginning and end. ###Code from numpy import empty,zeros,max from matplotlib import pyplot as plt #Constants M = 100 # Grid squares on a side V = 1.0 # Voltage at top wall target = 1e-6 # Target accuracy # Create arrays to hold potential values phi = zeros([M+1,M+1],float) phi[0,:] = V phiprime = empty([M+1,M+1],float) # Main loop delta = 1.0 while delta>target: # Calculate new values of the potential for i in range(M+1): for j in range(M+1): if i==0 or i==M or j==0 or j==M: phiprime[i,j] = phi[i,j] else: phiprime[i,j] = (phi[i+1,j] + phi[i-1,j] \ + phi[i,j+1] + phi[i,j-1])/4 # Calculate maximum difference from old values delta = max(abs(phi-phiprime)) # Swap the two arrays around phi,phiprime = phiprime,phi # Alternative to swapping #phi = phiprime #phiprime = empty([M+1,M+1],float) # Make a plot plt.imshow(phi) ###Output _____no_output_____ ###Markdown The produced figure shows that there is a region of high electric potential around the top wall of the box, as expected, and low potential aroudn the other three walls. Note that the program will run for a while. A few notes about the program:- if point $i,j$ at boundary, then set to start values; the values at the boundaries never change- if points $i,j$ not at boundary, calculate $\phi'$ Things to note about the Jacobi methodAccuracy:- only approximate since we use finite differences for derivatives- small target accuracy won't fix this- higher-order derivative approximation necessary to improve accuracyAccessible points - the calculation give the value of $\phi$ only at the grid points and not elsewhere- in between values: interpolation schemes possible Division of space - boundaries around space may not always be square- can be difficult to divide space with square grid $\rightarrow$ grid points don't fall on boundaries Other, faster methods for boundary value problems- overrelaxation - Gauss-Seidel method Initial value problems- starting point of variable known- goal: prediction of future variation as function of timeExample: Diffusion equation\begin{equation} \frac{\partial \phi}{\partial t} = D\frac{\partial^2\phi}{\partial x^2}\end{equation}- use space-time grid? ๐Ÿค” - we have boundary conditions in the spatial dimension ($x$), but not in time dimension$\rightarrow$ relaxation method breaks down because we don't know what value to use for time-like end of the grid We have now (compared to the 2D Laplace equation), the independent variables $x$ and $t$, instead of $x$ and $y$ One might think that we can proceed as before and create a space-time grid, then write the derivatives in finite difference form and get a set of simultaneous equations that can be solved by the relaxation method. This doesn't work because we have only boundary conditions in the spatial direction $x$. For the time dimension we have an initial conditions. We know where the value starts, but not where it ends. The relaxation method breaks thus down because we don't know what value of $\phi$ to use for time-like end of the grid. FTCS method- short for forward-time centered-space method- method to solve initial value problems for partial differential equationsProcedure: - divide spatial dimension $x$ into a grid of points with spacing $a$ - calculate second derivative with respect to $x$ with finite differences $\rightarrow$ simultaneous ordinary differential equations are obtained - use the Euler method to solve them For the ODEs we arrived at the conclusion that we shouldn't use Euler's method due to the poor accuracy. Why do we use it here? Estimating the second derivative with finite differences is not very accurate. There is no point in using a very accurate solver. Euler's method gives errros which are comparable to the error introduced by the finite difference approach. Example: diffusion equation\begin{equation} \frac{\partial \phi}{\partial t} = D\frac{\partial^2\phi}{\partial x^2}\end{equation}Take second derivatives with finite differences\begin{align} \frac{\partial^2\phi}{\partial x^2} =\frac{\phi(x+a,y) + \phi(x-a,y) -2\phi(x,y)}{a^2}\end{align}and insert in diffusion equation\begin{equation} \frac{\partial \phi}{\partial t} = \frac{D}{a^2}\left[\phi(x+a,y) + \phi(x-a,y) -2\phi(x,y)\right]\end{equation}We can think of the value of $\phi$ at the different grid points as separate variables $\rightarrow$ we have a set of simultaneous ODEs now. We have the ODE\begin{equation} \frac{\mathrm{d}\phi}{\mathrm{d}t} = f(\phi,t)\end{equation}where $f(\phi,t)$ is the right-hand side of the last equation. Solving with Euler yields\begin{equation} \phi(x,t+h) = \phi(x,t) + h\frac{D}{a^2}\left[\phi(x+a,y) + \phi(x-a,y) -2\phi(x,y)\right]\end{equation}If we know $\phi$ at every grid pint $x$ hat some time $t$, then we get from this equation the value of each grid point at time $t+h$. Example: Solving the heat equation with FTCSWe have a steel container, which is 1 cm thick and is initially at a uniform temperature of 20 degree Celsius everywhere. The container is placed in a bath of cold water at 0 degree celsius and filled with hot water at 50 degree Celsius. Assumptions: container is arbitrarily wide. Neither cold not hot water change temperature. We have to solve the 1D diffusion equation for the temperature $T$\begin{equation} \frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}\end{equation}The $x$-axis is divided into 100 equal points (101 in total counting boundaries). The first and last point have fixes temperatures at 50 degree Celsius and 0 degree Celsius, respectively. Intermediate points are initially at 20 degree Celsius. The diffusion coefficient is $D = 4.25\times10^{-6}\text{m}^2\text{s}^{-1}$.Task: Plot of temperatures profile at times $t = 0.01, 0.1, 0.4, 1, 10$ s. ###Code from numpy import empty from matplotlib import pyplot as plt import time # Constants L = 0.01 # Thickness of steel in meters D = 4.25e-6 # Thermal diffusivity N = 100 # Number of divisions in grid a = L/N # Grid spacing h = 1e-4 # Time-step epsilon = h/1000 Tlo = 0.0 # Low temperature in Celcius Tmid = 20.0 # Intermediate temperature in Celcius Thi = 50.0 # Hi temperature in Celcius t1 = 0.01 t2 = 0.1 t3 = 0.4 t4 = 1.0 t5 = 10.0 tend = t5 + epsilon # Create arrays T = empty(N+1,float) T[0] = Thi T[N] = Tlo T[1:N] = Tmid Tp = empty(N+1,float) Tp[0] = Thi Tp[N] = Tlo # Main loop t = 0.0 c = h*D/(a*a) start = time.time() while t<tend: # Calculate the new values of T #for i in range(1,N): ## Loop is the slow alternative # Tp[i] = T[i] + c*(T[i+1]+T[i-1]-2*T[i]) Tp[1:N] = T[1:N] + c* (T[2:N+1]+T[0:N-1]-2*T[1:N]) T,Tp = Tp,T t += h # Make plots at the given times if abs(t-t1)<epsilon: plt.plot(T,label='t1') if abs(t-t2)<epsilon: plt.plot(T,label='t2') if abs(t-t3)<epsilon: plt.plot(T,label='t3') if abs(t-t4)<epsilon: plt.plot(T,label='t4') if abs(t-t5)<epsilon: plt.plot(T,label='t5') end = time.time() print(end - start) plt.xlabel("x") plt.ylabel("T in degree Celsius") plt.legend() ###Output 0.5903024673461914
Spam Email Classifier/Bayes Classifier - Training.ipynb
###Markdown Notebook Imports ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Constants ###Code TRAIN_DATA_FILE = 'SpamData/02_Training/train-data.txt' TEST_DATA_FILE = 'SpamData/02_Training/test-data.txt' TOKEN_SPAM_PROB_FILE = 'SpamData/03_Testing/prob-spam.txt' TOKEN_HAM_PROB_FILE = 'SpamData/03_Testing/prob-nonspam.txt' TOKEN_ALL_PROB_FILE = 'SpamData/03_Testing/prob-all-tokens.txt' TEST_FEATURE_MATRIX = 'SpamData/03_Testing/test-features.txt' TEST_TARGET_FILE = 'SpamData/03_Testing/test-target.txt' VOCAB_SIZE = 2500 ###Output _____no_output_____ ###Markdown Read and Load features from .txt Files into NumPy Array ###Code sparse_train_data = np.loadtxt(TRAIN_DATA_FILE, delimiter=' ', dtype=int) sparse_test_data = np.loadtxt(TEST_DATA_FILE, delimiter=' ', dtype=int) sparse_train_data[:5] sparse_test_data[-5:] print('Number of rows in training file:', sparse_train_data.shape[0]) print('Number of rows in test file:', sparse_test_data.shape[0]) print('Number of emails in training file:', np.unique(sparse_train_data[:, 0]).size) print('Number of emails in testing file:', np.unique(sparse_test_data[:, 0]).size) ###Output Number of emails in testing file: 1724 ###Markdown How to create an empty DataFrame ###Code column_names = ['DOC_ID'] + ['CATEGORY'] + list(range(0, VOCAB_SIZE)) column_names[:5] len(column_names) index_names = np.unique(sparse_train_data[:, 0]) index_names full_train_data = pd.DataFrame(index=index_names, columns=column_names) full_train_data.fillna(value=0, inplace=True) full_train_data.head() ###Output _____no_output_____ ###Markdown Create a Full Matrix from Sparse Matrix ###Code def make_full_matrix(sparse_matrix, nr_words, doc_idx=0, word_idx=1, cat_idx=2, freq_idx=3): """ Form a full matrix full matrix from a sparse matrix. Return a pandas DataFrame. Keywords arguments: sparse_matrix -- numpy array nr_words -- size of the vocabulary. Total number of tokens. doc_idx -- position of the document id in sparse matrix. Default: 1st column word_idx -- position of the word id in sparse matrix. Default: 2nd column cat_idx -- position of the label (spam is 1, nonspam is 0). Default 3rd column freq_idx -- position of occurrence of word in sparse matrix. Default 4th column """ column_names = ['DOC_ID'] + ['CATEGORY'] + list(range(0, nr_words)) doc_id_names = np.unique(sparse_matrix[:, 0]) full_matrix = pd.DataFrame(index=doc_id_names, columns=column_names) full_matrix.fillna(value=0, inplace=True) for i in range(sparse_matrix.shape[0]): doc_nr = sparse_matrix[i][doc_idx] word_id = sparse_matrix[i][word_idx] label = sparse_matrix[i][cat_idx] occurrence = sparse_matrix[i][freq_idx] full_matrix.at[doc_nr, 'DOC_ID'] = doc_nr full_matrix.at[doc_nr, 'CATEGORY'] = label full_matrix.at[doc_nr, word_id] = occurrence full_matrix.set_index('DOC_ID', inplace=True) return full_matrix %%time full_train_data = make_full_matrix(sparse_train_data, VOCAB_SIZE) full_train_data.head() full_train_data.tail() full_train_data.shape ###Output _____no_output_____ ###Markdown Training the Naive Bayes Model Calculating the Probability of Spam ###Code full_train_data.CATEGORY.size full_train_data.CATEGORY.sum() prob_spam = full_train_data.CATEGORY.sum() / full_train_data.CATEGORY.size print('Probability of Spam is:', prob_spam) ###Output Probability of Spam is: 0.310989284824321 ###Markdown Total Number of Words / Tokens ###Code full_train_features = full_train_data.loc[:, full_train_data.columns != 'CATEGORY'] full_train_features.head() email_lengths = full_train_features.sum(axis=1) email_lengths # Total Word Count total_wc = email_lengths.sum() total_wc ###Output _____no_output_____ ###Markdown Number of Tokens in Spam and Ham emails ###Code spam_lengths = email_lengths[full_train_data.CATEGORY == 1] spam_lengths spam_wc = spam_lengths.sum() spam_wc ham_lengths = email_lengths[full_train_data.CATEGORY == 0] ham_lengths nonspam_wc = ham_lengths.sum() nonspam_wc email_lengths.shape[0] - spam_lengths.shape[0] - ham_lengths.shape[0] total_wc - spam_wc - nonspam_wc print('Average number of words in spam emails: {:.0f}'.format(spam_wc/spam_lengths.shape[0])) print('Average number of words in ham emails: {:.0f}'.format(nonspam_wc/ham_lengths.shape[0])) full_train_features.shape ###Output _____no_output_____ ###Markdown Summing the tokens occurring in spam ###Code train_spam_tokens = full_train_features.loc[full_train_data.CATEGORY == 1] train_spam_tokens # We do not want zero in our calculations. So we add 1 to each! It is called Laplace Smoothing Technique summed_spam_tokens = train_spam_tokens.sum(axis=0) + 1 summed_spam_tokens ###Output _____no_output_____ ###Markdown Summing the tokens occurring in ham ###Code train_ham_tokens = full_train_features.loc[full_train_data.CATEGORY == 0] train_ham_tokens # We do not want zero in our calculations. So we add 1 to each! It is called Laplace Smoothing Technique summed_ham_tokens = train_ham_tokens.sum(axis=0) + 1 summed_ham_tokens ###Output _____no_output_____ ###Markdown P(Token | Spam) - Probability that a Token Occurs given the email is spam ###Code # Vocab Size added to deal with effect of Laplace Smoothing Technique which we used before to avoid zeroes! prob_tokens_spam = summed_spam_tokens / (spam_wc + VOCAB_SIZE) prob_tokens_spam prob_tokens_spam.sum() ###Output _____no_output_____ ###Markdown P(Token | Spam) - Probability that a Token Occurs given the email is spam ###Code # Vocab Size added to deal with effect of Laplace Smoothing Technique which we used before to avoid zeroes! prob_tokens_nonspam = summed_ham_tokens / (nonspam_wc + VOCAB_SIZE) prob_tokens_spam prob_tokens_spam.sum() ###Output _____no_output_____ ###Markdown P(Token) - Probability that Token Occurs ###Code prob_tokens_all = full_train_features.sum(axis=0) / total_wc prob_tokens_all prob_tokens_all.sum() ###Output _____no_output_____ ###Markdown Save Trained Model ###Code np.savetxt(TOKEN_SPAM_PROB_FILE, prob_tokens_spam) np.savetxt(TOKEN_HAM_PROB_FILE, prob_tokens_nonspam) np.savetxt(TOKEN_ALL_PROB_FILE, prob_tokens_all) ###Output _____no_output_____ ###Markdown Prepare Test Data ###Code sparse_test_data.shape %%time full_test_data = make_full_matrix(sparse_test_data, VOCAB_SIZE) X_test = full_test_data.loc[:, full_test_data.columns != 'CATEGORY'] y_test = full_test_data.CATEGORY np.savetxt(TEST_TARGET_FILE, y_test) np.savetxt(TEST_FEATURE_MATRIX, X_test) ###Output _____no_output_____
test-notebooks/sp-location-extraction-testing.ipynb
###Markdown This notebook explores methods for extracting locations related to mentions of taxa.Status: In Development Last Updated: 201904Summary: Using output from the eXtract Dark Data (xDD) (previously named GeoDeepDive) database we are exploring ways to extract information about species/taxa of interest from literature. These efforts are using a list of taxa being studied by the USGS Nonindigenous Aquatic Species Program, but should be applicable to any list of taxanomic names.Inputs: *Taxa Information (url='https://nas.er.usgs.gov/api/v1/species') *xDD processed data, output from https://github.com/dwief-usgs/app-template-nasContact: Daniel Wieferich ([email protected]) ###Code #Import needed packages import pandas as pd import requests #Import Functions def get_species_list(url='https://nas.er.usgs.gov/api/v1/species'): """return list of taxa information for NAS species of interest ---------- URL : API that returns JSON results of NAS specie taxonomy """ try: r = requests.get(url) if r.status_code == 200: return r.json() else: raise Exception('NAS API URL returning: {}'.format(r.status_code)) except Exception as e: raise Exception(e) #Keeps rows in pd from being truncated pd.set_option('display.max_colwidth', -1) ###Output _____no_output_____ ###Markdown Step 1--------------*Import source datasets including list of taxa names (from NAS API) and literature passages from xDD Progress---------------Currently using a set of passages from dam removal exercise for testing while taxa information is being processed by xDD staff-Need to rethink logic behind taxanomic names to process, based on conversations with NAS team. For example, species 3118 is returning a common name of "mussel". This is currently being processed but should not be. ###Code #Import example passage output from xDD #This will be updated with taxa mentions coming from xdd_export = 'dam_year_river_22h33m_06Nov2018_a4c1766/river-cand-df.csv' xdd_df = pd.read_csv(xdd_export, encoding='utf-8') #This is a big file, lets make it smaller (5,000 records) for testing purpose xdd_df.shape xdd_df_sub = xdd_df[:1000] #Run function to return NAS taxa information as JSON response taxa_r = get_species_list() taxa_list = [] for taxa in taxa_r['results']: #captures a hybrid based on x of species, only return common name if ' x ' in taxa['species']: taxa_list.append({'speciesID': taxa['speciesID'], 'common_name': taxa['common_name']}) #for taxa with species = sp., return genus and common name elif 'sp.' in taxa['species']: taxa_list.append({'speciesID': taxa['speciesID'], 'genus': taxa['genus'], 'common_name': taxa['common_name']}) #for everything else return scientific name (including subspecies and variety as available) and common name else: sci_name = (taxa['genus']+' '+taxa['species'] + ' '+ taxa['subspecies'] + ' ' + taxa['variety']).strip() taxa_list.append({'speciesID': taxa['speciesID'], 'sci_name': sci_name, 'common_name': taxa['common_name']}) taxa_df = pd.DataFrame(taxa_list) ###Output _____no_output_____ ###Markdown Step 2--------------*For each passage identify mentions of species and explore ways to extract location information Progress---------------starting with basic use of NER tags within close proximity-we have efforts in progress to create NER tags specific to rivers (using SpaCy), to better understand and extract river mentions-first pass on running this with full 2 million records and full taxa list did not complete in a full 8 hr work day... need to incorporate a mode of doing batches ###Code import ast mention = [] for row_xdd in xdd_df_sub.itertuples(): for row_taxa in taxa_df.itertuples(): speciesID = row_taxa.speciesID if str(row_taxa.sci_name)!= 'nan' and str(row_taxa.sci_name) in ast.literal_eval(row_xdd.passage): #print (str(speciesID)+': '+str(row_river.passage)) #record speciesID, passageID, passage mention.append({'species_id': speciesID, 'taxa':row_taxa.sci_name, 'passage': row_river.passage, 'docid':row_xdd.docid, 'ner': row_xdd.ner, 'sentid':row_xdd.sentid}) #if str(row_taxa.genus)!= 'nan' and str(row_taxa.genus) in ast.literal_eval(row_river.passage): # mention.append({'species_id': speciesID, 'taxa':row_taxa.genus, 'passage': row_xdd.passage, 'docid':row_xdd.docid, 'ner': row_xdd.ner, 'sentid':row_xdd.sentid}) #print (row_taxa.genus) #print (str(speciesID)+': '+str(row_river.passage)) #if str(row_taxa.common_name)!= 'nan' and str(row_taxa.common_name)!='' and str(row_taxa.common_name) in ast.literal_eval(row_river.passage): # mention.append({'species_id': speciesID, 'taxa':row_taxa.common_name, 'passage': row_xdd.passage, 'docid':row_xdd.docid, 'ner': row_xdd.ner, 'sentid':row_xdd.sentid}) #print (row_taxa.common_name) #print (str(speciesID)+': '+str(row_xdd.passage)) mention_df = pd.DataFrame(mention) mention_df.to_csv("./mention_df_sciname.csv", sep=',', index=False) mention_df.tail() #List Pairs of Species / Locations using NER tags import itertools def intervals_extract(iterable): iterable = sorted(set(iterable)) for key, group in itertools.groupby(enumerate(iterable), lambda t: t[1] - t[0]): group = list(group) yield [group[0][1], group[-1][1]] import ast for row_xdd in xdd_df_sub.itertuples(): passage = list(ast.literal_eval(row_xdd.passage)) passage_str = ' '.join(word for word in passage) ner = list(ast.literal_eval(row_xdd.ner)) docid = row_xdd.docid sentid = row_xdd.sentid if 'Anguilla' in passage_str: print (passage_str) index_locations = list([i for i,s in enumerate(ner) if 'LOCATION' in s]) location_intervals = list(intervals_extract(index_locations)) #index_taxa = list([i for i,s in enumerate(passage) if 'Anguilla' in s]) print (location_intervals) #for i in index_locations: # p = passage[i] # n = ner[i] # print (sentid + ': ' + str(i)+ ': '+ p) # print (i) ###Output Generally , there is no gradient in salinity between the lower lakes and the Coorong ; instead , there is an abrupt transition between fresh and brackish/marine salinities . The impact that changes in such physiochemical signals have on the upstream movements of these species is uncertain . In the Murray-Darling Basin , connectivity between the Southern Ocean , estuary and the freshwater environments of the lower lakes and Murray River is imperative for at least ๏ฌve species of diadromous ๏ฌshes , namely anadromous Short-headed and Pouched Lamprey -LRB- Mordacia mordax and Geotria australis -RRB- and catadromous Common Galaxias -LRB- Galaxias maculatus -RRB- , Congolli and Short-๏ฌnned Eel -LRB- Anguilla australis -RRB- . [[14, 14], [50, 51], [56, 57], [69, 70], [92, 92], [109, 109]] The impact that changes in such physiochemical signals have on the upstream movements of these species is uncertain . In the Murray-Darling Basin , connectivity between the Southern Ocean , estuary and the freshwater environments of the lower lakes and Murray River is imperative for at least ๏ฌve species of diadromous ๏ฌshes , namely anadromous Short-headed and Pouched Lamprey -LRB- Mordacia mordax and Geotria australis -RRB- and catadromous Common Galaxias -LRB- Galaxias maculatus -RRB- , Congolli and Short-๏ฌnned Eel -LRB- Anguilla australis -RRB- . The original intent of the Sea to Hume Dam Fish Passage programme was to construct a number of experimen - tal ๏ฌshways at the Murray barrages use assessment results to inform additional ๏ฌshways in the region . [[21, 22], [27, 28], [40, 41], [63, 63], [80, 80]] In the Murray-Darling Basin , connectivity between the Southern Ocean , estuary and the freshwater environments of the lower lakes and Murray River is imperative for at least ๏ฌve species of diadromous ๏ฌshes , namely anadromous Short-headed and Pouched Lamprey -LRB- Mordacia mordax and Geotria australis -RRB- and catadromous Common Galaxias -LRB- Galaxias maculatus -RRB- , Congolli and Short-๏ฌnned Eel -LRB- Anguilla australis -RRB- . The original intent of the Sea to Hume Dam Fish Passage programme was to construct a number of experimen - tal ๏ฌshways at the Murray barrages use assessment results to inform additional ๏ฌshways in the region . The need for several additional ๏ฌshways at the Murray barrages was seen as a priority in South Australian Government 's Coorong , Lower Lakes and Murray Mouth Long Term Plan . [[2, 3], [8, 9], [21, 22], [44, 44], [61, 61]]
GAN/WGAN_DIV.ipynb
###Markdown Pytorch ImageFolder ๊ฐ์ฒด์— ๋งž๋„๋ก datafolder ๊ตฌ์„ฑ (๋ ˆ์ด๋ธ” ํ•„์š”ํ•œ ๊ฒฝ์šฐ) ###Code # filename ์— class ๊ฐ€ ๋ฐ”๋กœ ๋Œ€์‘๋œ dictionary ํŒŒ์ผ ์ฝ์–ด์˜ด import pickle # dataset์—์„œ file๋“ค ๊ฐ€์ ธ์˜ด import os import shutil with open('/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/pFileNameToClass.pickle','rb') as fw: pFileNameToClass = pickle.load(fw) # O(1) ๋กœ ๋ฐ”๋กœ class ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. # ์ธ์‡„์ฒด ๋ฐ์ดํ„ฐ ๋ชจ์€ ํด๋”์˜ ์ด๋ฏธ์ง€๋“ค file list ๋ฐ›์Œ path = "/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/printed" file_list = os.listdir(path) # 35765 -> augmentation ํ•„์š” # imageFolder ๊ฐ์ฒด์— ๋งž๋„๋ก datafolder ๊ตฌ์„ฑ pretrain_dir_path = "/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/pretrainDataset" os.makedirs(pretrain_dir_path, exist_ok=True) for filename in file_list: label = pFileNameToClass[filename] folder_path = "/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/pretrainDataset/" + str(label) os.makedirs(folder_path, exist_ok=True) shutil.move(path + '/' + filename, folder_path + '/' + filename) ###Output _____no_output_____ ###Markdown Pretrain_DataLoader OSError: errno 5 input/output error ํ•ด๊ฒฐํ•˜๊ธฐ ![image.png]() ###Code import os import shutil # colab VM disc ์‚ฌ์šฉ dir_path = "/content/data/printed" os.makedirs(dir_path, exist_ok=True) # ๊ณต์œ  ๋“œ๋ผ์ด๋ธŒ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณต์‚ฌํ•ด ์ƒ์„ฑํ•˜๊ธฐ driveFolder = '/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/printed' newFolder = '/content/data/printed' shutil.copytree(driveFolder, newFolder) path = "/content/data/printed" file_list = os.listdir(path) # 35765 -> augmentation ํ•„์š” len(file_list) ###Output _____no_output_____ ###Markdown DataLoader ###Code !unzip '/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/cropped_printed.zip' -d . from PIL import Image import os from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms class SyllablePrintedDataset(Dataset): def __init__(self, path, transform): file_list = [] for filename in os.listdir(path): fileName = path + '/' + filename file_list.append(fileName) self.transform = transform self.dataset = [] for img_path in file_list[:2500]: image = Image.open(img_path) img_transformed = self.transform(image) self.dataset.append(img_transformed) def __len__(self): return len(self.dataset) def __getitem__(self, index): return self.dataset[index] # # dataloader test # transform = transforms.Compose([ # transforms.Resize((64,64)), # transforms.RandomAffine(30), # transforms.ColorJitter(brightness=(0.2, 1.5), # contrast=(0.2, 3), # saturation=(0.2, 1.5)), # transforms.ToTensor(), # ]) # folderpath = '/content/cropped_printed' # dataset = SyllablePrintedDataset(folderpath, transform) # print("ํ•™์Šต์— ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜ : ", dataset.__len__()) # dataloader = DataLoader(dataset, batch_size=64, shuffle=True) # # dataloader test # for imgs in dataloader: # ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ iter # print(".") ###Output . . ###Markdown WGAN_div Model ###Code import math import sys import numpy as np import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd import torch output_path = '/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/outputs/wgan_div' os.makedirs(output_path, exist_ok=True) g_lossL = [] d_lossL = [] class Opt: def __init__(self, epoch=100, batch_size=64, lr=0.0002, b1=0.5, b2=0.999, n_cpu=2, latent_dim=100, img_size=64, channels=3, n_critic=5, clip_value=0.01, sample_interval=400): self.n_epochs = epoch # number of epochs of training self.batch_size = batch_size # size of the batches self.lr = lr # adam: learning rate self.b1 = b1 # adam: decay of first order momentum of gradient self.b2 = b2 # adam: decay of first order momentum of gradient self.n_cpu = n_cpu # number of cpu threads to use during batch generation self.latent_dim = latent_dim # dimensionality of the latent space self.img_size = img_size # size of each image dimension self.channels = channels # number of image channels self.n_critic = n_critic # number of training steps for discriminator per iter self.clip_value = clip_value # lower and upper clip value for disc. weights self.sample_interval = sample_interval # interval between image sampling opt = Opt() img_shape = (opt.channels, opt.img_size, opt.img_size) cuda = True if torch.cuda.is_available() else False class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(opt.latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), # *block(512, 1024), # ์ˆ˜์ • nn.Linear(512, int(np.prod(img_shape))), nn.Tanh() ) def forward(self, z): img = self.model(z) img = img.view(img.shape[0], *img_shape) # img_shape : 1, 64, 64 return img class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), ) def forward(self, img): img_flat = img.view(img.shape[0], -1) validity = self.model(img_flat) return validity k = 2 p = 6 if not cuda: print("GPU ์จ๋ผ") # Initialize generator and discriminator generator = Generator().cuda() discriminator = Discriminator().cuda() # ์ˆ˜์ • transform = transforms.Compose([ transforms.Resize((64,64)), transforms.RandomAffine(30), transforms.ColorJitter(brightness=(0.2, 1.5), contrast=(0.2, 1.5), saturation=(0.2, 1.5)), transforms.ToTensor(), ]) folderpath = '/content/cropped_printed' dataset = SyllablePrintedDataset(folderpath, transform) print("ํ•™์Šต์— ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜ : ", dataset.__len__()) dataloader = DataLoader(dataset, batch_size=64, shuffle=True) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # ---------- # Training # ---------- batches_done = 0 for epoch in range(opt.n_epochs): for i, imgs in enumerate(dataloader): # Configure input real_imgs = Variable(imgs.type(Tensor), requires_grad=True) print(np.shape(real_imgs)) # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Sample noise as generator input z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim)))) # Generate a batch of images fake_imgs = generator(z) # Real images real_validity = discriminator(real_imgs) # Fake images fake_validity = discriminator(fake_imgs) # Compute W-div gradient penalty real_grad_out = Variable(Tensor(real_imgs.size(0), 1).fill_(1.0), requires_grad=False) real_grad = autograd.grad( real_validity, real_imgs, real_grad_out, create_graph=True, retain_graph=True, only_inputs=True )[0] real_grad_norm = real_grad.view(real_grad.size(0), -1).pow(2).sum(1) ** (p / 2) fake_grad_out = Variable(Tensor(fake_imgs.size(0), 1).fill_(1.0), requires_grad=False) fake_grad = autograd.grad( fake_validity, fake_imgs, fake_grad_out, create_graph=True, retain_graph=True, only_inputs=True )[0] fake_grad_norm = fake_grad.view(fake_grad.size(0), -1).pow(2).sum(1) ** (p / 2) div_gp = torch.mean(real_grad_norm + fake_grad_norm) * k / 2 # Adversarial loss d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + div_gp d_lossL.append(d_loss) d_loss.backward() optimizer_D.step() optimizer_G.zero_grad() # Train the generator every n_critic steps if i % opt.n_critic == 0: # ----------------- # Train Generator # ----------------- # Generate a batch of images fake_imgs = generator(z) # Loss measures generator's ability to fool the discriminator # Train on fake images fake_validity = discriminator(fake_imgs) g_loss = -torch.mean(fake_validity) g_lossL.append(g_loss) g_loss.backward() optimizer_G.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch+1, opt.n_epochs, i+1, len(dataloader), d_loss.item(), g_loss.item()) ) if batches_done % opt.sample_interval == 0: save_image(fake_imgs.data[:25], "/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/outputs/wgan_div/images/%d.png" % batches_done, nrow=5, normalize=True) batches_done += opt.n_critic # ํ•™์Šต๋œ ๋ชจ๋ธ ์ €์žฅ generator_out_path = '/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/model/wgan_div/generator.pth' torch.save(generator.state_dict(), generator_out_path) discriminator_out_path = '/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/model/wgan_div/discriminator.pth' torch.save(discriminator.state_dict(), discriminator_out_path) import csv # csvํŒŒ์ผ๋กœ ์ ๊ธฐ # newline ์„ค์ •์„ ์•ˆํ•˜๋ฉด ํ•œ์ค„๋งˆ๋‹ค ๊ณต๋ฐฑ์žˆ๋Š” ์ค„์ด ์ƒ๊ธด๋‹ค. with open('/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital/GAN/data/lossFile.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(g_lossL) writer.writerow(d_lossL) ###Output _____no_output_____ ###Markdown github ์ปค๋ฐ‹ ###Code MY_GOOGLE_DRIVE_PATH = "/content/drive/Shareddrives/machine_learning_in_practice/Analog-PILGI-to-DIgital" %cd "{MY_GOOGLE_DRIVE_PATH}" !git config --global user.email [email protected] # ์ด๋ฉ”์ผ ์ž…๋ ฅ ex) [email protected] !git config --global user.name hyeneung #๊นƒํ—™ ์•„์ด๋”” ์ž…๋ ฅ ex)luckydipper !git pull !git status !git add GAN/WGAN_DIV.ipynb !git commit -m"[FIX] Dataloader using zipFile" !git push ###Output _____no_output_____
Clustering/Spectral Clustering/SpectralClustering_StandardScaler.ipynb
###Markdown Spectral Clustering with Standard Scaler This Code template is for the Cluster analysis using a Spectral Clustering algorithm with the StandardScaler feature rescaling technique and includes 2D and 3D cluster visualization of the Clusters. Required Packages ###Code !pip install plotly import operator import warnings import itertools import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import plotly.graph_objects as go from sklearn.cluster import SpectralClustering from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import pdist, squareform import scipy from scipy.sparse import csgraph from numpy import linalg as LA warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X . ###Code X=df[features] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) X.head() ###Output _____no_output_____ ###Markdown Rescaling techniqueStandardize features by removing the mean and scaling to unit varianceThe standard score of a sample x is calculated as:z = (x - u) / swhere u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False. ###Code X_Standard=StandardScaler().fit_transform(X) X_Standard=pd.DataFrame(data = X_Standard,columns = X.columns) X_Standard.head() ###Output _____no_output_____ ###Markdown How to select optimal number of cluster in Spectral Clustering:- In spectral clustering, one way to identify the number of clusters is to plot the eigenvalue spectrum. If the clusters are clearly defined, there should be a โ€œgapโ€ in the smallest eigenvalues at the โ€œoptimalโ€ k. This is called eigengap heuristic.Eigengap heuristic suggests the number of clusters k is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues). The larger this eigengap is, the closer the eigenvectors of the ideal case and hence the better spectral clustering works. This method performs the eigen decomposition on a affinity matrix. Steps are:- 1. Construct the normalized affinity matrix: L = Dโˆ’1/2ADห† โˆ’1/2. 2. Find the eigenvalues and their associated eigen vectors 3. Identify the maximum gap which corresponds to the number of clusters by eigengap heuristic Affinity matrixCalculate affinity matrix based on input coordinates matrix and the number of nearest neighbours. ###Code def getAffinityMatrix(coordinates, k = 7): dists = squareform(pdist(coordinates)) knn_distances = np.sort(dists, axis=0)[k] knn_distances = knn_distances[np.newaxis].T local_scale = knn_distances.dot(knn_distances.T) affinity_matrix = -pow(dists,2)/ local_scale affinity_matrix[np.where(np.isnan(affinity_matrix))] = 0.0 affinity_matrix = np.exp(affinity_matrix) np.fill_diagonal(affinity_matrix, 0) return affinity_matrix def eigenDecomposition(A, plot = True, topK = 10): #A: Affinity matrix L = csgraph.laplacian(A, normed=True) n_components = A.shape[0] eigenvalues, eigenvectors = LA.eig(L) if plot: plt.figure(1,figsize=(20,8)) plt.title('Largest eigen values of input matrix') plt.scatter(np.arange(len(eigenvalues)), eigenvalues) plt.grid() index_largest_gap = np.argsort(np.diff(eigenvalues))[::-1][:topK] nb_clusters = index_largest_gap + 1 return nb_clusters affinity_matrix = getAffinityMatrix(X_Standard, k = 10) k = eigenDecomposition(affinity_matrix) k.sort() print(f'Top 10 Optimal number of clusters {k}') ###Output Top 10 Optimal number of clusters [ 2 4 6 8 9 20 34 48 63 79] ###Markdown ModelSpectral Clustering is very useful when the structure of the individual clusters is highly non-convex, or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster, such as when clusters are nested circles on the 2D plane. Model Tuning Parameters > - n_clusters -> The dimension of the projection subspace. > - eigen_solver -> The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then 'arpack' is used. > - n_components -> Number of eigenvectors to use for the spectral embedding. > - gamma -> Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for affinity='nearest_neighbors'.[More information](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html) ###Code model = SpectralClustering(n_clusters=4, affinity='nearest_neighbors' ,random_state=101) ClusterDF = X_Standard.copy() ClusterDF['ClusterID'] = model.fit_predict(X_Standard) ClusterDF.head() ###Output _____no_output_____ ###Markdown Cluster RecordsThe below bar graphs show the number of data points in each available cluster. ###Code ClusterDF['ClusterID'].value_counts().plot(kind='bar') ###Output _____no_output_____ ###Markdown Cluster PlotsBelow written functions get utilized to plot 2-Dimensional and 3-Dimensional cluster plots on the available set of features in the dataset. Plots include different available clusters along with cluster centroid. ###Code def Plot2DCluster(X_Cols,df): for i in list(itertools.combinations(X_Cols, 2)): plt.rcParams["figure.figsize"] = (8,6) xi,yi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]) for j in df['ClusterID'].unique(): DFC=df[df.ClusterID==j] plt.scatter(DFC[i[0]],DFC[i[1]],cmap=plt.cm.Accent,label=j) plt.xlabel(i[0]) plt.ylabel(i[1]) plt.legend() plt.show() def Plot3DCluster(X_Cols,df): for i in list(itertools.combinations(X_Cols, 3)): xi,yi,zi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]),df.columns.get_loc(i[2]) fig,ax = plt.figure(figsize = (16, 10)),plt.axes(projection ="3d") ax.grid(b = True, color ='grey',linestyle ='-.',linewidth = 0.3,alpha = 0.2) for j in df['ClusterID'].unique(): DFC=df[df.ClusterID==j] ax.scatter3D(DFC[i[0]],DFC[i[1]],DFC[i[2]],alpha = 0.8,cmap=plt.cm.Accent,label=j) ax.set_xlabel(i[0]) ax.set_ylabel(i[1]) ax.set_zlabel(i[2]) plt.legend() plt.show() def Plotly3D(X_Cols,df): for i in list(itertools.combinations(X_Cols,3)): xi,yi,zi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]),df.columns.get_loc(i[2]) fig2=px.scatter_3d(df, x=i[0], y=i[1],z=i[2],color=df['ClusterID']) fig2.show() Plot2DCluster(X.columns,ClusterDF) Plot3DCluster(X.columns,ClusterDF) Plotly3D(X.columns,ClusterDF) ###Output _____no_output_____ ###Markdown Spectral Clustering with Standard Scaler This Code template is for the Cluster analysis using a Spectral Clustering algorithm with the StandardScaler feature rescaling technique and includes 2D and 3D cluster visualization of the Clusters. Required Packages ###Code !pip install plotly import operator import warnings import itertools import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import plotly.graph_objects as go from sklearn.cluster import SpectralClustering from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import pdist, squareform import scipy from scipy.sparse import csgraph from numpy import linalg as LA warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X . ###Code X=df[features] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) X.head() ###Output _____no_output_____ ###Markdown Rescaling techniqueStandardize features by removing the mean and scaling to unit varianceThe standard score of a sample x is calculated as:z = (x - u) / swhere u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False. ###Code X_Standard=StandardScaler().fit_transform(X) X_Standard=pd.DataFrame(data = X_Standard,columns = X.columns) X_Standard.head() ###Output _____no_output_____ ###Markdown How to select optimal number of cluster in Spectral Clustering:- In spectral clustering, one way to identify the number of clusters is to plot the eigenvalue spectrum. If the clusters are clearly defined, there should be a โ€œgapโ€ in the smallest eigenvalues at the โ€œoptimalโ€ k. This is called eigengap heuristic.Eigengap heuristic suggests the number of clusters k is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues). The larger this eigengap is, the closer the eigenvectors of the ideal case and hence the better spectral clustering works. This method performs the eigen decomposition on a affinity matrix. Steps are:- 1. Construct the normalized affinity matrix: L = Dโˆ’1/2ADห† โˆ’1/2. 2. Find the eigenvalues and their associated eigen vectors 3. Identify the maximum gap which corresponds to the number of clusters by eigengap heuristic Affinity matrixCalculate affinity matrix based on input coordinates matrix and the number of nearest neighbours. ###Code def getAffinityMatrix(coordinates, k = 7): dists = squareform(pdist(coordinates)) knn_distances = np.sort(dists, axis=0)[k] knn_distances = knn_distances[np.newaxis].T local_scale = knn_distances.dot(knn_distances.T) affinity_matrix = -pow(dists,2)/ local_scale affinity_matrix[np.where(np.isnan(affinity_matrix))] = 0.0 affinity_matrix = np.exp(affinity_matrix) np.fill_diagonal(affinity_matrix, 0) return affinity_matrix def eigenDecomposition(A, plot = True, topK = 10): #A: Affinity matrix L = csgraph.laplacian(A, normed=True) n_components = A.shape[0] eigenvalues, eigenvectors = LA.eig(L) if plot: plt.figure(1,figsize=(20,8)) plt.title('Largest eigen values of input matrix') plt.scatter(np.arange(len(eigenvalues)), eigenvalues) plt.grid() index_largest_gap = np.argsort(np.diff(eigenvalues))[::-1][:topK] nb_clusters = index_largest_gap + 1 return nb_clusters affinity_matrix = getAffinityMatrix(X_Standard, k = 10) k = eigenDecomposition(affinity_matrix) k.sort() print(f'Top 10 Optimal number of clusters {k}') ###Output Top 10 Optimal number of clusters [ 2 4 6 8 9 20 34 48 63 79] ###Markdown ModelSpectral Clustering is very useful when the structure of the individual clusters is highly non-convex, or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster, such as when clusters are nested circles on the 2D plane. Model Tuning Parameters > - n_clusters -> The dimension of the projection subspace. > - eigen_solver -> The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then 'arpack' is used. > - n_components -> Number of eigenvectors to use for the spectral embedding. > - gamma -> Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for affinity='nearest_neighbors'.[More information](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html) ###Code model = SpectralClustering(n_clusters=4, affinity='nearest_neighbors' ,random_state=101) ClusterDF = X_Standard.copy() ClusterDF['ClusterID'] = model.fit_predict(X_Standard) ClusterDF.head() ###Output _____no_output_____ ###Markdown Cluster RecordsThe below bar graphs show the number of data points in each available cluster. ###Code ClusterDF['ClusterID'].value_counts().plot(kind='bar') ###Output _____no_output_____ ###Markdown Cluster PlotsBelow written functions get utilized to plot 2-Dimensional and 3-Dimensional cluster plots on the available set of features in the dataset. Plots include different available clusters along with cluster centroid. ###Code def Plot2DCluster(X_Cols,df): for i in list(itertools.combinations(X_Cols, 2)): plt.rcParams["figure.figsize"] = (8,6) xi,yi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]) for j in df['ClusterID'].unique(): DFC=df[df.ClusterID==j] plt.scatter(DFC[i[0]],DFC[i[1]],cmap=plt.cm.Accent,label=j) plt.xlabel(i[0]) plt.ylabel(i[1]) plt.legend() plt.show() def Plot3DCluster(X_Cols,df): for i in list(itertools.combinations(X_Cols, 3)): xi,yi,zi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]),df.columns.get_loc(i[2]) fig,ax = plt.figure(figsize = (16, 10)),plt.axes(projection ="3d") ax.grid(b = True, color ='grey',linestyle ='-.',linewidth = 0.3,alpha = 0.2) for j in df['ClusterID'].unique(): DFC=df[df.ClusterID==j] ax.scatter3D(DFC[i[0]],DFC[i[1]],DFC[i[2]],alpha = 0.8,cmap=plt.cm.Accent,label=j) ax.set_xlabel(i[0]) ax.set_ylabel(i[1]) ax.set_zlabel(i[2]) plt.legend() plt.show() def Plotly3D(X_Cols,df): for i in list(itertools.combinations(X_Cols,3)): xi,yi,zi=df.columns.get_loc(i[0]),df.columns.get_loc(i[1]),df.columns.get_loc(i[2]) fig2=px.scatter_3d(df, x=i[0], y=i[1],z=i[2],color=df['ClusterID']) fig2.show() Plot2DCluster(X.columns,ClusterDF) Plot3DCluster(X.columns,ClusterDF) Plotly3D(X.columns,ClusterDF) ###Output _____no_output_____
Task-2.md/Linear Regression Task-2.ipynb
###Markdown TASK-2 Supervised Machine Learning Model Problem statement In this regression task we will predict the percentage of marks that a student is expected to score based upon the number of hours they studied. This is a simple linear regression task as it involves just two variables. Data Preprocessing 1. Importing Libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns ###Output _____no_output_____ ###Markdown 2. Import Dataset Data can be found at url http://bit.ly/w-data ###Code dataset =pd.read_csv("student_scores.csv") type(dataset) ###Output _____no_output_____ ###Markdown This will provide us our whole datase. ###Code dataset ###Output _____no_output_____ ###Markdown Now, Using the Head function gives the First five rows of our dataset ###Code dataset.head() ###Output _____no_output_____ ###Markdown To check the Overview of our dataset, We use Info function. ###Code dataset.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 25 entries, 0 to 24 Data columns (total 2 columns): Hours 25 non-null float64 Scores 25 non-null int64 dtypes: float64(1), int64(1) memory usage: 480.0 bytes ###Markdown To check how many rows and columns our dataset have, we will use shape. ###Code dataset.shape #It shows that our dataset have 25 rows and 2 column ###Output _____no_output_____ ###Markdown Let's Check unique values in Both hours and scores column ###Code dataset['Hours'].unique() #Below are the unique values in Hours column dataset['Scores'].unique() #Below are the uniique values in Scores column ###Output _____no_output_____ ###Markdown Now, To get the datatype of our particuar column, we will use dtypes as shown ###Code dataset.dtypes ###Output _____no_output_____ ###Markdown Now, We will check if our dataset contains any null values or not in both the column ###Code dataset['Hours'].isnull().sum() # No null values is present dataset['Scores'].isnull().sum() #No null value is present ###Output _____no_output_____ ###Markdown 3. Statistical Information related to our data. ###Code dataset.describe() dataset.rename(columns={'Hours':'Study_hours'},inplace=True) dataset.head() ###Output _____no_output_____ ###Markdown 4. Split Dependent and Independent variables and Visualize the data: ###Code dataset.isnull().sum() x= dataset.iloc[:,:1] print(x) type(x) x= dataset.iloc[:,:-1].values print(x) x.ndim type(x) y= dataset.iloc[:,1:] print(y) type(y) y= dataset.iloc[:,1:].values #convert from dataframe to numpy array print(y) ###Output [[21] [47] [27] [75] [30] [20] [88] [60] [81] [25] [85] [62] [41] [42] [17] [95] [30] [24] [67] [69] [30] [54] [35] [76] [86]] ###Markdown 5. Countplot: ###Code sns.countplot(x='Study_hours',data=dataset) sns.countplot('Scores',data=dataset) ###Output _____no_output_____ ###Markdown 6. Plotting the distribution of scores Let's plot our data points on 2-D graph to eyeball our dataset and see if we can manually find any relationship between the data. We can create the plot with the following script: ###Code dataset.plot(x='Study_hours', y='Scores', style='o') plt.title('Hours vs Percentage ') plt.xlabel('Hours Studied') plt.ylabel('Percentage Score') plt.show() sns.heatmap(dataset.corr()) ###Output _____no_output_____ ###Markdown From the graph above, we can clearly see that there is a positive linear relation between the number of hours studied and percentage of score. 7. BOX PLOT Box plots plays an important role as it provide us a visual summary of data all the statistical values in terms of graph. ###Code plt.figure(figsize=(5,8)) sns.boxplot(y='Study_hours',data=dataset,color='yellow') plt.figure(figsize=(5,8)) sns.boxplot(y='Scores',data=dataset,color='blue') ###Output _____no_output_____ ###Markdown 8. Prepare the data The next step is to divide the data into "attributes" (inputs) and "labels" (outputs). ###Code x=dataset.iloc[:,:-1].values y=dataset.iloc[:,1].values ###Output _____no_output_____ ###Markdown Split Test and train data ###Code from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown It splits 80% of the data to training set while 20% of the data to test set. The test_size variable is where we actually specify the proportion of test set. 9. Training the Algorithm ###Code from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train, y_train) print("End of Training") ###Output End of Training ###Markdown To retrieve the intercept: ###Code print(regressor.intercept_) ###Output 2.018160041434683 ###Markdown For retrieving the slope (coefficient of x): ###Code print(regressor.coef_) line = regressor.coef_*x+regressor.intercept_ line plt.scatter(x, y,color='r') plt.plot(x, line); plt.show() ###Output _____no_output_____ ###Markdown 10. Predicting the Values: As our model is already trained now it's time to make some prediction. ###Code print(x_test) # Testing data - In Hours y_pred = regressor.predict(x_test) # Predicting the scores data = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) data from sklearn.linear_model import LinearRegression lr=LinearRegression() lr.fit(x_train,y_train) y_predict=lr.predict(x_test) y_predict y_test lr.predict(np.array([[5]])) #visualization of trained data plt.scatter(x_train,y_train,color = 'Red') plt.plot(x_train,lr.predict(x_train),color = 'blue') plt.xlabel("Hours Studied") plt.ylabel("Percentage Score") plt.title("Hours vs scores(train)") plt.show() #visualization of Predicted data plt.scatter(x_test,y_test,color = 'Red') plt.plot(x_test,lr.predict(x_test),color = 'blue') plt.xlabel("Hours Studied") plt.ylabel("Percentage Score") plt.title("Hours vs scores(train)") plt.show() ###Output _____no_output_____ ###Markdown You can also test your own data as given below. ###Code Study_hours=9.25 own_prediction=regressor.predict([[Study_hours]]).round(2) print("No of Hours = {}".format(Study_hours)) print("Predicted Score = {}".format(own_prediction[0])) ###Output No of Hours = 9.25 Predicted Score = 93.69 ###Markdown Evaluating the model: The final step is to evaluate the performance of algorithm. This step is particularly important to compare how well different algorithms perform on a particular dataset. For simplicity here, we have chosen the mean square error. There are many such metrics. ###Code from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Root Of Mean Squared Error:',np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('Mean Squared Error:',metrics.mean_squared_error(y_test,y_pred)) ###Output Mean Squared Error: 21.5987693072174
kaggle/getting_started/titanic/notebooks/externals/titanic-data-science-solutions.ipynb
###Markdown Titanic Data Science Solutions This notebook is a companion to the book [Data Science Solutions](https://www.amazon.com/Data-Science-Solutions-Startup-Workflow/dp/1520545312). The notebook walks us through a typical workflow for solving data science competitions at sites like Kaggle.There are several excellent notebooks to study data science competition entries. However many will skip some of the explanation on how the solution is developed as these notebooks are developed by experts for experts. The objective of this notebook is to follow a step-by-step workflow, explaining each step and rationale for every decision we take during solution development. Workflow stagesThe competition solution workflow goes through seven stages described in the Data Science Solutions book.1. Question or problem definition.2. Acquire training and testing data.3. Wrangle, prepare, cleanse the data.4. Analyze, identify patterns, and explore the data.5. Model, predict and solve the problem.6. Visualize, report, and present the problem solving steps and final solution.7. Supply or submit the results.The workflow indicates general sequence of how each stage may follow the other. However there are use cases with exceptions.- We may combine mulitple workflow stages. We may analyze by visualizing data.- Perform a stage earlier than indicated. We may analyze data before and after wrangling.- Perform a stage multiple times in our workflow. Visualize stage may be used multiple times.- Drop a stage altogether. We may not need supply stage to productize or service enable our dataset for a competition. Question and problem definitionCompetition sites like Kaggle define the problem to solve or questions to ask while providing the datasets for training your data science model and testing the model results against a test dataset. The question or problem definition for Titanic Survival competition is [described here at Kaggle](https://www.kaggle.com/c/titanic).> Knowing from a training set of samples listing passengers who survived or did not survive the Titanic disaster, can our model determine based on a given test dataset not containing the survival information, if these passengers in the test dataset survived or not.We may also want to develop some early understanding about the domain of our problem. This is described on the [Kaggle competition description page here](https://www.kaggle.com/c/titanic). Here are the highlights to note.- On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. Translated 32% survival rate.- One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew.- Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class. Workflow goalsThe data science solutions workflow solves for seven major goals.**Classifying.** We may want to classify or categorize our samples. We may also want to understand the implications or correlation of different classes with our solution goal.**Correlating.** One can approach the problem based on available features within the training dataset. Which features within the dataset contribute significantly to our solution goal? Statistically speaking is there a [correlation](https://en.wikiversity.org/wiki/Correlation) among a feature and solution goal? As the feature values change does the solution state change as well, and visa-versa? This can be tested both for numerical and categorical features in the given dataset. We may also want to determine correlation among features other than survival for subsequent goals and workflow stages. Correlating certain features may help in creating, completing, or correcting features.**Converting.** For modeling stage, one needs to prepare the data. Depending on the choice of model algorithm one may require all features to be converted to numerical equivalent values. So for instance converting text categorical values to numeric values.**Completing.** Data preparation may also require us to estimate any missing values within a feature. Model algorithms may work best when there are no missing values.**Correcting.** We may also analyze the given training dataset for errors or possibly innacurate values within features and try to corrent these values or exclude the samples containing the errors. One way to do this is to detect any outliers among our samples or features. We may also completely discard a feature if it is not contribting to the analysis or may significantly skew the results.**Creating.** Can we create new features based on an existing feature or a set of features, such that the new feature follows the correlation, conversion, completeness goals.**Charting.** How to select the right visualization plots and charts depending on nature of the data and the solution goals. Refactor Release 2017-Jan-29We are significantly refactoring the notebook based on (a) comments received by readers, (b) issues in porting notebook from Jupyter kernel (2.7) to Kaggle kernel (3.5), and (c) review of few more best practice kernels. User comments- Combine training and test data for certain operations like converting titles across dataset to numerical values. (thanks @Sharan Naribole)- Correct observation - nearly 30% of the passengers had siblings and/or spouses aboard. (thanks @Reinhard)- Correctly interpreting logistic regresssion coefficients. (thanks @Reinhard) Porting issues- Specify plot dimensions, bring legend into plot. Best practices- Performing feature correlation analysis early in the project.- Using multiple plots instead of overlays for readability. ###Code # data analysis and wrangling import pandas as pd import numpy as np import random as rnd # visualization import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # machine learning from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier ###Output _____no_output_____ ###Markdown Acquire dataThe Python Pandas packages helps us work with our datasets. We start by acquiring the training and testing datasets into Pandas DataFrames. We also combine these datasets to run certain operations on both datasets together. ###Code train_df = pd.read_csv('../../data/raw/train.csv') test_df = pd.read_csv('../../data/raw/test.csv') combine = [train_df, test_df] ###Output _____no_output_____ ###Markdown Analyze by describing dataPandas also helps describe the datasets answering following questions early in our project.**Which features are available in the dataset?**Noting the feature names for directly manipulating or analyzing these. These feature names are described on the [Kaggle data page here](https://www.kaggle.com/c/titanic/data). ###Code print(train_df.columns.values) ###Output ['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch' 'Ticket' 'Fare' 'Cabin' 'Embarked'] ###Markdown **Which features are categorical?**These values classify the samples into sets of similar samples. Within categorical features are the values nominal, ordinal, ratio, or interval based? Among other things this helps us select the appropriate plots for visualization.- Categorical: Survived, Sex, and Embarked. Ordinal: Pclass.**Which features are numerical?**Which features are numerical? These values change from sample to sample. Within numerical features are the values discrete, continuous, or timeseries based? Among other things this helps us select the appropriate plots for visualization.- Continous: Age, Fare. Discrete: SibSp, Parch. ###Code # preview the data train_df.head() ###Output _____no_output_____ ###Markdown **Which features are mixed data types?**Numerical, alphanumeric data within same feature. These are candidates for correcting goal.- Ticket is a mix of numeric and alphanumeric data types. Cabin is alphanumeric.**Which features may contain errors or typos?**This is harder to review for a large dataset, however reviewing a few samples from a smaller dataset may just tell us outright, which features may require correcting.- Name feature may contain errors or typos as there are several ways used to describe a name including titles, round brackets, and quotes used for alternative or short names. ###Code train_df.tail() ###Output _____no_output_____ ###Markdown **Which features contain blank, null or empty values?**These will require correcting.- Cabin > Age > Embarked features contain a number of null values in that order for the training dataset.- Cabin > Age are incomplete in case of test dataset.**What are the data types for various features?**Helping us during converting goal.- Seven features are integer or floats. Six in case of test dataset.- Five features are strings (object). ###Code train_df.info() print('_'*40) test_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB ________________________________________ <class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 PassengerId 418 non-null int64 1 Pclass 418 non-null int64 2 Name 418 non-null object 3 Sex 418 non-null object 4 Age 332 non-null float64 5 SibSp 418 non-null int64 6 Parch 418 non-null int64 7 Ticket 418 non-null object 8 Fare 417 non-null float64 9 Cabin 91 non-null object 10 Embarked 418 non-null object dtypes: float64(2), int64(4), object(5) memory usage: 36.0+ KB ###Markdown **What is the distribution of numerical feature values across the samples?**This helps us determine, among other early insights, how representative is the training dataset of the actual problem domain.- Total samples are 891 or 40% of the actual number of passengers on board the Titanic (2,224).- Survived is a categorical feature with 0 or 1 values.- Around 38% samples survived representative of the actual survival rate at 32%.- Most passengers (> 75%) did not travel with parents or children.- Nearly 30% of the passengers had siblings and/or spouse aboard.- Fares varied significantly with few passengers (<1%) paying as high as $512.- Few elderly passengers (<1%) within age range 65-80. ###Code train_df.describe() # Review survived rate using `percentiles=[.61, .62]` knowing our problem description mentions 38% survival rate. # Review Parch distribution using `percentiles=[.75, .8]` # SibSp distribution `[.68, .69]` # Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]` ###Output _____no_output_____ ###Markdown **What is the distribution of categorical features?**- Names are unique across the dataset (count=unique=891)- Sex variable as two possible values with 65% male (top=male, freq=577/count=891).- Cabin values have several dupicates across samples. Alternatively several passengers shared a cabin.- Embarked takes three possible values. S port used by most passengers (top=S)- Ticket feature has high ratio (22%) of duplicate values (unique=681). ###Code train_df.describe(include=['O']) ###Output _____no_output_____ ###Markdown Assumtions based on data analysisWe arrive at following assumptions based on data analysis done so far. We may validate these assumptions further before taking appropriate actions.**Correlating.**We want to know how well does each feature correlate with Survival. We want to do this early in our project and match these quick correlations with modelled correlations later in the project.**Completing.**1. We may want to complete Age feature as it is definitely correlated to survival.2. We may want to complete the Embarked feature as it may also correlate with survival or another important feature.**Correcting.**1. Ticket feature may be dropped from our analysis as it contains high ratio of duplicates (22%) and there may not be a correlation between Ticket and survival.2. Cabin feature may be dropped as it is highly incomplete or contains many null values both in training and test dataset.3. PassengerId may be dropped from training dataset as it does not contribute to survival.4. Name feature is relatively non-standard, may not contribute directly to survival, so maybe dropped.**Creating.**1. We may want to create a new feature called Family based on Parch and SibSp to get total count of family members on board.2. We may want to engineer the Name feature to extract Title as a new feature.3. We may want to create new feature for Age bands. This turns a continous numerical feature into an ordinal categorical feature.4. We may also want to create a Fare range feature if it helps our analysis.**Classifying.**We may also add to our assumptions based on the problem description noted earlier.1. Women (Sex=female) were more likely to have survived.2. Children (Age<?) were more likely to have survived. 3. The upper-class passengers (Pclass=1) were more likely to have survived. Analyze by pivoting featuresTo confirm some of our observations and assumptions, we can quickly analyze our feature correlations by pivoting features against each other. We can only do so at this stage for features which do not have any empty values. It also makes sense doing so only for features which are categorical (Sex), ordinal (Pclass) or discrete (SibSp, Parch) type.- **Pclass** We observe significant correlation (>0.5) among Pclass=1 and Survived (classifying 3). We decide to include this feature in our model.- **Sex** We confirm the observation during problem definition that Sex=female had very high survival rate at 74% (classifying 1).- **SibSp and Parch** These features have zero correlation for certain values. It may be best to derive a feature or a set of features from these individual features (creating 1). ###Code train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False) train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False) train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False) train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False) ###Output _____no_output_____ ###Markdown Analyze by visualizing dataNow we can continue confirming some of our assumptions using visualizations for analyzing the data. Correlating numerical featuresLet us start by understanding correlations between numerical features and our solution goal (Survived).A histogram chart is useful for analyzing continous numerical variables like Age where banding or ranges will help identify useful patterns. The histogram can indicate distribution of samples using automatically defined bins or equally ranged bands. This helps us answer questions relating to specific bands (Did infants have better survival rate?)Note that x-axis in historgram visualizations represents the count of samples or passengers.**Observations.**- Infants (Age <=4) had high survival rate.- Oldest passengers (Age = 80) survived.- Large number of 15-25 year olds did not survive.- Most passengers are in 15-35 age range.**Decisions.**This simple analysis confirms our assumptions as decisions for subsequent workflow stages.- We should consider Age (our assumption classifying 2) in our model training.- Complete the Age feature for null values (completing 1).- We should band age groups (creating 3). ###Code g = sns.FacetGrid(train_df, col='Survived') g.map(plt.hist, 'Age', bins=20) ###Output _____no_output_____ ###Markdown Correlating numerical and ordinal featuresWe can combine multiple features for identifying correlations using a single plot. This can be done with numerical and categorical features which have numeric values.**Observations.**- Pclass=3 had most passengers, however most did not survive. Confirms our classifying assumption 2.- Infant passengers in Pclass=2 and Pclass=3 mostly survived. Further qualifies our classifying assumption 2.- Most passengers in Pclass=1 survived. Confirms our classifying assumption 3.- Pclass varies in terms of Age distribution of passengers.**Decisions.**- Consider Pclass for model training. ###Code # grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived') grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6) grid.map(plt.hist, 'Age', alpha=.5, bins=20) grid.add_legend(); ###Output /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) ###Markdown Correlating categorical featuresNow we can correlate categorical features with our solution goal.**Observations.**- Female passengers had much better survival rate than males. Confirms classifying (1).- Exception in Embarked=C where males had higher survival rate. This could be a correlation between Pclass and Embarked and in turn Pclass and Survived, not necessarily direct correlation between Embarked and Survived.- Males had better survival rate in Pclass=3 when compared with Pclass=2 for C and Q ports. Completing (2).- Ports of embarkation have varying survival rates for Pclass=3 and among male passengers. Correlating (1).**Decisions.**- Add Sex feature to model training.- Complete and add Embarked feature to model training. ###Code # grid = sns.FacetGrid(train_df, col='Embarked') grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6) grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep') grid.add_legend() ###Output /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:670: UserWarning: Using the pointplot function without specifying `order` is likely to produce an incorrect plot. warnings.warn(warning) /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:675: UserWarning: Using the pointplot function without specifying `hue_order` is likely to produce an incorrect plot. warnings.warn(warning) ###Markdown Correlating categorical and numerical featuresWe may also want to correlate categorical features (with non-numeric values) and numeric features. We can consider correlating Embarked (Categorical non-numeric), Sex (Categorical non-numeric), Fare (Numeric continuous), with Survived (Categorical numeric).**Observations.**- Higher fare paying passengers had better survival. Confirms our assumption for creating (4) fare ranges.- Port of embarkation correlates with survival rates. Confirms correlating (1) and completing (2).**Decisions.**- Consider banding Fare feature. ###Code # grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'}) grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None) grid.add_legend() ###Output /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) /Users/gkesler/Documents/GitHub/kaggle-competitions/.venv/lib/python3.8/site-packages/seaborn/axisgrid.py:670: UserWarning: Using the barplot function without specifying `order` is likely to produce an incorrect plot. warnings.warn(warning) ###Markdown Wrangle dataWe have collected several assumptions and decisions regarding our datasets and solution requirements. So far we did not have to change a single feature or value to arrive at these. Let us now execute our decisions and assumptions for correcting, creating, and completing goals. Correcting by dropping featuresThis is a good starting goal to execute. By dropping features we are dealing with fewer data points. Speeds up our notebook and eases the analysis.Based on our assumptions and decisions we want to drop the Cabin (correcting 2) and Ticket (correcting 1) features.Note that where applicable we perform operations on both training and testing datasets together to stay consistent. ###Code print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape) train_df = train_df.drop(['Ticket', 'Cabin'], axis=1) test_df = test_df.drop(['Ticket', 'Cabin'], axis=1) combine = [train_df, test_df] "After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape ###Output Before (891, 12) (418, 11) (891, 12) (418, 11) ###Markdown Creating new feature extracting from existingWe want to analyze if Name feature can be engineered to extract titles and test correlation between titles and survival, before dropping Name and PassengerId features.In the following code we extract Title feature using regular expressions. The RegEx pattern `(\w+\.)` matches the first word which ends with a dot character within Name feature. The `expand=False` flag returns a DataFrame.**Observations.**When we plot Title, Age, and Survived, we note the following observations.- Most titles band Age groups accurately. For example: Master title has Age mean of 5 years.- Survival among Title Age bands varies slightly.- Certain titles mostly survived (Mme, Lady, Sir) or did not (Don, Rev, Jonkheer).**Decision.**- We decide to retain the new Title feature for model training. ###Code for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False) pd.crosstab(train_df['Title'], train_df['Sex']) ###Output _____no_output_____ ###Markdown We can replace many titles with a more common name or classify them as `Rare`. ###Code for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\ 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean() ###Output _____no_output_____ ###Markdown We can convert the categorical titles to ordinal. ###Code title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train_df.head() ###Output _____no_output_____ ###Markdown Now we can safely drop the Name feature from training and testing datasets. We also do not need the PassengerId feature in the training dataset. ###Code train_df = train_df.drop(['Name', 'PassengerId'], axis=1) test_df = test_df.drop(['Name'], axis=1) combine = [train_df, test_df] train_df.shape, test_df.shape ###Output _____no_output_____ ###Markdown Converting a categorical featureNow we can convert features which contain strings to numerical values. This is required by most model algorithms. Doing so will also help us in achieving the feature completing goal.Let us start by converting Sex feature to a new feature called Gender where female=1 and male=0. ###Code for dataset in combine: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int) train_df.head() ###Output _____no_output_____ ###Markdown Completing a numerical continuous featureNow we should start estimating and completing features with missing or null values. We will first do this for the Age feature.We can consider three methods to complete a numerical continuous feature.1. A simple way is to generate random numbers between mean and [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation).2. More accurate way of guessing missing values is to use other correlated features. In our case we note correlation among Age, Gender, and Pclass. Guess Age values using [median](https://en.wikipedia.org/wiki/Median) values for Age across sets of Pclass and Gender feature combinations. So, median Age for Pclass=1 and Gender=0, Pclass=1 and Gender=1, and so on...3. Combine methods 1 and 2. So instead of guessing age values based on median, use random numbers between mean and standard deviation, based on sets of Pclass and Gender combinations.Method 1 and 3 will introduce random noise into our models. The results from multiple executions might vary. We will prefer method 2. ###Code # grid = sns.FacetGrid(train_df, col='Pclass', hue='Gender') grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6) grid.map(plt.hist, 'Age', alpha=.5, bins=20) grid.add_legend() ###Output /opt/conda/lib/python3.6/site-packages/seaborn/axisgrid.py:230: UserWarning: The `size` paramter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning) ###Markdown Let us start by preparing an empty array to contain guessed Age values based on Pclass x Gender combinations. ###Code guess_ages = np.zeros((2,3)) guess_ages ###Output _____no_output_____ ###Markdown Now we iterate over Sex (0 or 1) and Pclass (1, 2, 3) to calculate guessed values of Age for the six combinations. ###Code for dataset in combine: for i in range(0, 2): for j in range(0, 3): guess_df = dataset[(dataset['Sex'] == i) & \ (dataset['Pclass'] == j+1)]['Age'].dropna() # age_mean = guess_df.mean() # age_std = guess_df.std() # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std) age_guess = guess_df.median() # Convert random age float to nearest .5 age guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5 for i in range(0, 2): for j in range(0, 3): dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\ 'Age'] = guess_ages[i,j] dataset['Age'] = dataset['Age'].astype(int) train_df.head() ###Output _____no_output_____ ###Markdown Let us create Age bands and determine correlations with Survived. ###Code train_df['AgeBand'] = pd.cut(train_df['Age'], 5) train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True) ###Output _____no_output_____ ###Markdown Let us replace Age with ordinals based on these bands. ###Code for dataset in combine: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] train_df.head() ###Output _____no_output_____ ###Markdown We can not remove the AgeBand feature. ###Code train_df = train_df.drop(['AgeBand'], axis=1) combine = [train_df, test_df] train_df.head() ###Output _____no_output_____ ###Markdown Create new feature combining existing featuresWe can create a new feature for FamilySize which combines Parch and SibSp. This will enable us to drop Parch and SibSp from our datasets. ###Code for dataset in combine: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False) ###Output _____no_output_____ ###Markdown We can create another feature called IsAlone. ###Code for dataset in combine: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean() ###Output _____no_output_____ ###Markdown Let us drop Parch, SibSp, and FamilySize features in favor of IsAlone. ###Code train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) combine = [train_df, test_df] train_df.head() ###Output _____no_output_____ ###Markdown We can also create an artificial feature combining Pclass and Age. ###Code for dataset in combine: dataset['Age*Class'] = dataset.Age * dataset.Pclass train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10) ###Output _____no_output_____ ###Markdown Completing a categorical featureEmbarked feature takes S, Q, C values based on port of embarkation. Our training dataset has two missing values. We simply fill these with the most common occurance. ###Code freq_port = train_df.Embarked.dropna().mode()[0] freq_port for dataset in combine: dataset['Embarked'] = dataset['Embarked'].fillna(freq_port) train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False) ###Output _____no_output_____ ###Markdown Converting categorical feature to numericWe can now convert the EmbarkedFill feature by creating a new numeric Port feature. ###Code for dataset in combine: dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) train_df.head() ###Output _____no_output_____ ###Markdown Quick completing and converting a numeric featureWe can now complete the Fare feature for single missing value in test dataset using mode to get the value that occurs most frequently for this feature. We do this in a single line of code.Note that we are not creating an intermediate new feature or doing any further analysis for correlation to guess missing feature as we are replacing only a single value. The completion goal achieves desired requirement for model algorithm to operate on non-null values.We may also want round off the fare to two decimals as it represents currency. ###Code test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True) test_df.head() ###Output _____no_output_____ ###Markdown We can not create FareBand. ###Code train_df['FareBand'] = pd.qcut(train_df['Fare'], 4) train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True) ###Output _____no_output_____ ###Markdown Convert the Fare feature to ordinal values based on the FareBand. ###Code for dataset in combine: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) train_df = train_df.drop(['FareBand'], axis=1) combine = [train_df, test_df] train_df.head(10) ###Output _____no_output_____ ###Markdown And the test dataset. ###Code test_df.head(10) ###Output _____no_output_____ ###Markdown Model, predict and solveNow we are ready to train a model and predict the required solution. There are 60+ predictive modelling algorithms to choose from. We must understand the type of problem and solution requirement to narrow down to a select few models which we can evaluate. Our problem is a classification and regression problem. We want to identify relationship between output (Survived or not) with other variables or features (Gender, Age, Port...). We are also perfoming a category of machine learning which is called supervised learning as we are training our model with a given dataset. With these two criteria - Supervised Learning plus Classification and Regression, we can narrow down our choice of models to a few. These include:- Logistic Regression- KNN or k-Nearest Neighbors- Support Vector Machines- Naive Bayes classifier- Decision Tree- Random Forrest- Perceptron- Artificial neural network- RVM or Relevance Vector Machine ###Code X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() X_train.shape, Y_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Logistic Regression is a useful model to run early in the workflow. Logistic regression measures the relationship between the categorical dependent variable (feature) and one or more independent variables (features) by estimating probabilities using a logistic function, which is the cumulative logistic distribution. Reference [Wikipedia](https://en.wikipedia.org/wiki/Logistic_regression).Note the confidence score generated by the model based on our training dataset. ###Code # Logistic Regression logreg = LogisticRegression() logreg.fit(X_train, Y_train) Y_pred = logreg.predict(X_test) acc_log = round(logreg.score(X_train, Y_train) * 100, 2) acc_log ###Output /opt/conda/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) ###Markdown We can use Logistic Regression to validate our assumptions and decisions for feature creating and completing goals. This can be done by calculating the coefficient of the features in the decision function.Positive coefficients increase the log-odds of the response (and thus increase the probability), and negative coefficients decrease the log-odds of the response (and thus decrease the probability).- Sex is highest positivie coefficient, implying as the Sex value increases (male: 0 to female: 1), the probability of Survived=1 increases the most.- Inversely as Pclass increases, probability of Survived=1 decreases the most.- This way Age*Class is a good artificial feature to model as it has second highest negative correlation with Survived.- So is Title as second highest positive correlation. ###Code coeff_df = pd.DataFrame(train_df.columns.delete(0)) coeff_df.columns = ['Feature'] coeff_df["Correlation"] = pd.Series(logreg.coef_[0]) coeff_df.sort_values(by='Correlation', ascending=False) ###Output _____no_output_____ ###Markdown Next we model using Support Vector Machines which are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training samples, each marked as belonging to one or the other of **two categories**, an SVM training algorithm builds a model that assigns new test samples to one category or the other, making it a non-probabilistic binary linear classifier. Reference [Wikipedia](https://en.wikipedia.org/wiki/Support_vector_machine).Note that the model generates a confidence score which is higher than Logistics Regression model. ###Code # Support Vector Machines svc = SVC() svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) acc_svc = round(svc.score(X_train, Y_train) * 100, 2) acc_svc ###Output /opt/conda/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning. "avoid this warning.", FutureWarning) ###Markdown In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is a non-parametric method used for classification and regression. A sample is classified by a majority vote of its neighbors, with the sample being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. Reference [Wikipedia](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm).KNN confidence score is better than Logistics Regression but worse than SVM. ###Code knn = KNeighborsClassifier(n_neighbors = 3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) acc_knn = round(knn.score(X_train, Y_train) * 100, 2) acc_knn ###Output _____no_output_____ ###Markdown In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features) in a learning problem. Reference [Wikipedia](https://en.wikipedia.org/wiki/Naive_Bayes_classifier).The model generated confidence score is the lowest among the models evaluated so far. ###Code # Gaussian Naive Bayes gaussian = GaussianNB() gaussian.fit(X_train, Y_train) Y_pred = gaussian.predict(X_test) acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2) acc_gaussian ###Output _____no_output_____ ###Markdown The perceptron is an algorithm for supervised learning of binary classifiers (functions that can decide whether an input, represented by a vector of numbers, belongs to some specific class or not). It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that it processes elements in the training set one at a time. Reference [Wikipedia](https://en.wikipedia.org/wiki/Perceptron). ###Code # Perceptron perceptron = Perceptron() perceptron.fit(X_train, Y_train) Y_pred = perceptron.predict(X_test) acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2) acc_perceptron # Linear SVC linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2) acc_linear_svc # Stochastic Gradient Descent sgd = SGDClassifier() sgd.fit(X_train, Y_train) Y_pred = sgd.predict(X_test) acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2) acc_sgd ###Output /opt/conda/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:166: FutureWarning: max_iter and tol parameters have been added in SGDClassifier in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3. FutureWarning) ###Markdown This model uses a decision tree as a predictive model which maps features (tree branches) to conclusions about the target value (tree leaves). Tree models where the target variable can take a finite set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. Reference [Wikipedia](https://en.wikipedia.org/wiki/Decision_tree_learning).The model confidence score is the highest among models evaluated so far. ###Code # Decision Tree decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) Y_pred = decision_tree.predict(X_test) acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2) acc_decision_tree ###Output _____no_output_____ ###Markdown The next model Random Forests is one of the most popular. Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees (n_estimators=100) at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Reference [Wikipedia](https://en.wikipedia.org/wiki/Random_forest).The model confidence score is the highest among models evaluated so far. We decide to use this model's output (Y_pred) for creating our competition submission of results. ###Code # Random Forest random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) acc_random_forest ###Output _____no_output_____ ###Markdown Model evaluationWe can now rank our evaluation of all the models to choose the best one for our problem. While both Decision Tree and Random Forest score the same, we choose to use Random Forest as they correct for decision trees' habit of overfitting to their training set. ###Code models = pd.DataFrame({ 'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree'], 'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_sgd, acc_linear_svc, acc_decision_tree]}) models.sort_values(by='Score', ascending=False) submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": Y_pred }) # submission.to_csv('../output/submission.csv', index=False) ###Output _____no_output_____
notebooks/community/gapic/automl/showcase_automl_image_segmentation_batch.ipynb
###Markdown Vertex client library: AutoML image segmentation model for batch prediction Run in Colab View on GitHub OverviewThis tutorial demonstrates how to use the Vertex client library for Python to create image segmentation models and do batch prediction using Google Cloud's [AutoML](https://cloud.google.com/vertex-ai/docs/start/automl-users). DatasetThe dataset used for this tutorial is the [TODO](https://). This dataset does not require any feature engineering. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. ObjectiveIn this tutorial, you create an AutoML image segmentation model from a Python script, and then do a batch prediction using the Vertex client library. You can alternatively create and deploy models using the `gcloud` command-line tool or online using the Google Cloud Console.The steps performed include:- Create a Vertex `Dataset` resource.- Train the model.- View the model evaluation.- Make a batch prediction.There is one key difference between using batch prediction and using online prediction:* Prediction Service: Does an on-demand prediction for the entire set of instances (i.e., one or more data items) and returns the results in real-time.* Batch Prediction Service: Does a queued (batch) prediction for the entire set of instances in the background and stores the results in a Cloud Storage bucket when ready. CostsThis tutorial uses billable components of Google Cloud (GCP):* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. InstallationInstall the latest version of Vertex client library. ###Code import os import sys # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = "--user" else: USER_FLAG = "" ! pip3 install -U google-cloud-aiplatform $USER_FLAG ###Output _____no_output_____ ###Markdown Install the latest GA version of *google-cloud-storage* library as well. ###Code ! pip3 install -U google-cloud-storage $USER_FLAG ###Output _____no_output_____ ###Markdown Restart the kernelOnce you've installed the Vertex client library and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages. ###Code if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin GPU runtime*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.5. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. ###Code PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for Vertex. We recommend that you choose the region closest to you.- Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You may not use a multi-regional bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see the [Vertex locations documentation](https://cloud.google.com/vertex-ai/docs/general/locations) ###Code REGION = "us-central1" # @param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.**Click Create service account**.In the **Service account name** field, enter a name, and click **Create**.In the **Grant this service account access to project** section, click the Role drop-down list. Type "Vertex" into the filter box, and select **Vertex Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.Click Create. A JSON file that contains your key downloads to your local environment.Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell. ###Code # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output _____no_output_____ ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Set up variablesNext, set up some variables used throughout the tutorial. Import libraries and define constants Import Vertex client libraryImport the Vertex client library into our Python environment. ###Code import time from google.cloud.aiplatform import gapic as aip from google.protobuf import json_format from google.protobuf.json_format import MessageToJson, ParseDict from google.protobuf.struct_pb2 import Struct, Value ###Output _____no_output_____ ###Markdown Vertex constantsSetup up the following constants for Vertex:- `API_ENDPOINT`: The Vertex API service endpoint for dataset, model, job, pipeline and endpoint services.- `PARENT`: The Vertex location root path for dataset, model, job, pipeline and endpoint resources. ###Code # API service endpoint API_ENDPOINT = "{}-aiplatform.googleapis.com".format(REGION) # Vertex location root path for your dataset, model and endpoint resources PARENT = "projects/" + PROJECT_ID + "/locations/" + REGION ###Output _____no_output_____ ###Markdown AutoML constantsSet constants unique to AutoML datasets and training:- Dataset Schemas: Tells the `Dataset` resource service which type of dataset it is.- Data Labeling (Annotations) Schemas: Tells the `Dataset` resource service how the data is labeled (annotated).- Dataset Training Schemas: Tells the `Pipeline` resource service the task (e.g., classification) to train the model for. ###Code # Image Dataset type DATA_SCHEMA = "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml" # Image Labeling type LABEL_SCHEMA = "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_segmentation_io_format_1.0.0.yaml" # Image Training task TRAINING_SCHEMA = "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_segmentation_1.0.0.yaml" ###Output _____no_output_____ ###Markdown Hardware AcceleratorsSet the hardware accelerators (e.g., GPU), if any, for prediction.Set the variable `DEPLOY_GPU/DEPLOY_NGPU` to use a container image supporting a GPU and the number of GPUs allocated to the virtual machine (VM) instance. For example, to use a GPU container image with 4 Nvidia Telsa K80 GPUs allocated to each VM, you would specify: (aip.AcceleratorType.NVIDIA_TESLA_K80, 4)For GPU, available accelerators include: - aip.AcceleratorType.NVIDIA_TESLA_K80 - aip.AcceleratorType.NVIDIA_TESLA_P100 - aip.AcceleratorType.NVIDIA_TESLA_P4 - aip.AcceleratorType.NVIDIA_TESLA_T4 - aip.AcceleratorType.NVIDIA_TESLA_V100Otherwise specify `(None, None)` to use a container image to run on a CPU. ###Code if os.getenv("IS_TESTING_DEPOLY_GPU"): DEPLOY_GPU, DEPLOY_NGPU = ( aip.AcceleratorType.NVIDIA_TESLA_K80, int(os.getenv("IS_TESTING_DEPOLY_GPU")), ) else: DEPLOY_GPU, DEPLOY_NGPU = (aip.AcceleratorType.NVIDIA_TESLA_K80, 1) ###Output _____no_output_____ ###Markdown Container (Docker) imageFor AutoML batch prediction, the container image for the serving binary is pre-determined by the Vertex prediction service. More specifically, the service will pick the appropriate container for the model depending on the hardware accelerator you selected. Machine TypeNext, set the machine type to use for prediction.- Set the variable `DEPLOY_COMPUTE` to configure the compute resources for the VM you will use for prediction. - `machine type` - `n1-standard`: 3.75GB of memory per vCPU. - `n1-highmem`: 6.5GB of memory per vCPU - `n1-highcpu`: 0.9 GB of memory per vCPU - `vCPUs`: number of \[2, 4, 8, 16, 32, 64, 96 \]*Note: You may also use n2 and e2 machine types for training and deployment, but they do not support GPUs* ###Code if os.getenv("IS_TESTING_DEPLOY_MACHINE"): MACHINE_TYPE = os.getenv("IS_TESTING_DEPLOY_MACHINE") else: MACHINE_TYPE = "n1-standard" VCPU = "4" DEPLOY_COMPUTE = MACHINE_TYPE + "-" + VCPU print("Deploy machine type", DEPLOY_COMPUTE) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to start creating your own AutoML image segmentation model. Set up clientsThe Vertex client library works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the Vertex server.You will use different clients in this tutorial for different steps in the workflow. So set them all up upfront.- Dataset Service for `Dataset` resources.- Model Service for `Model` resources.- Pipeline Service for training.- Job Service for batch prediction and custom training. ###Code # client options same for all services client_options = {"api_endpoint": API_ENDPOINT} def create_dataset_client(): client = aip.DatasetServiceClient(client_options=client_options) return client def create_model_client(): client = aip.ModelServiceClient(client_options=client_options) return client def create_pipeline_client(): client = aip.PipelineServiceClient(client_options=client_options) return client def create_job_client(): client = aip.JobServiceClient(client_options=client_options) return client clients = {} clients["dataset"] = create_dataset_client() clients["model"] = create_model_client() clients["pipeline"] = create_pipeline_client() clients["job"] = create_job_client() for client in clients.items(): print(client) ###Output _____no_output_____ ###Markdown DatasetNow that your clients are ready, your first step in training a model is to create a managed dataset instance, and then upload your labeled data to it. Create `Dataset` resource instanceUse the helper function `create_dataset` to create the instance of a `Dataset` resource. This function does the following:1. Uses the dataset client service.2. Creates an Vertex `Dataset` resource (`aip.Dataset`), with the following parameters: - `display_name`: The human-readable name you choose to give it. - `metadata_schema_uri`: The schema for the dataset type.3. Calls the client dataset service method `create_dataset`, with the following parameters: - `parent`: The Vertex location root path for your `Database`, `Model` and `Endpoint` resources. - `dataset`: The Vertex dataset object instance you created.4. The method returns an `operation` object.An `operation` object is how Vertex handles asynchronous calls for long running operations. While this step usually goes fast, when you first use it in your project, there is a longer delay due to provisioning.You can use the `operation` object to get status on the operation (e.g., create `Dataset` resource) or to cancel the operation, by invoking an operation method:| Method | Description || ----------- | ----------- || result() | Waits for the operation to complete and returns a result object in JSON format. || running() | Returns True/False on whether the operation is still running. || done() | Returns True/False on whether the operation is completed. || canceled() | Returns True/False on whether the operation was canceled. || cancel() | Cancels the operation (this may take up to 30 seconds). | ###Code TIMEOUT = 90 def create_dataset(name, schema, labels=None, timeout=TIMEOUT): start_time = time.time() try: dataset = aip.Dataset( display_name=name, metadata_schema_uri=schema, labels=labels ) operation = clients["dataset"].create_dataset(parent=PARENT, dataset=dataset) print("Long running operation:", operation.operation.name) result = operation.result(timeout=TIMEOUT) print("time:", time.time() - start_time) print("response") print(" name:", result.name) print(" display_name:", result.display_name) print(" metadata_schema_uri:", result.metadata_schema_uri) print(" metadata:", dict(result.metadata)) print(" create_time:", result.create_time) print(" update_time:", result.update_time) print(" etag:", result.etag) print(" labels:", dict(result.labels)) return result except Exception as e: print("exception:", e) return None result = create_dataset("unknown-" + TIMESTAMP, DATA_SCHEMA) ###Output _____no_output_____ ###Markdown Now save the unique dataset identifier for the `Dataset` resource instance you created. ###Code # The full unique ID for the dataset dataset_id = result.name # The short numeric ID for the dataset dataset_short_id = dataset_id.split("/")[-1] print(dataset_id) ###Output _____no_output_____ ###Markdown Data preparationThe Vertex `Dataset` resource for images has some requirements for your data:- Images must be stored in a Cloud Storage bucket.- Each image file must be in an image format (PNG, JPEG, BMP, ...).- There must be an index file stored in your Cloud Storage bucket that contains the path and label for each image.- The index file must be either CSV or JSONL. JSONLFor image segmentation, the JSONL index file has the requirements:- Each data item is a separate JSON object, on a separate line.- The key/value pair `image_gcs_uri` is the Cloud Storage path to the image.- The key/value pair `category_mask_uri` is the Cloud Storage path to the mask image in PNG format.- The key/value pair `'annotation_spec_colors'` is a list mapping mask colors to a label. - The key/value pair pair `display_name` is the label for the pixel color mask. - The key/value pair pair `color` are the RGB normalized pixel values (between 0 and 1) of the mask for the corresponding label. { 'image_gcs_uri': image, 'segmentation_annotations': { 'category_mask_uri': mask_image, 'annotation_spec_colors' : [ { 'display_name': label, 'color': {"red": value, "blue", value, "green": value} }, ...] }*Note*: The dictionary key fields may alternatively be in camelCase. For example, 'image_gcs_uri' can also be 'imageGcsUri'. Location of Cloud Storage training data.Now set the variable `IMPORT_FILE` to the location of the JSONL index file in Cloud Storage. ###Code IMPORT_FILE = "gs://ucaip-test-us-central1/dataset/isg_data.jsonl" ###Output _____no_output_____ ###Markdown Quick peek at your dataYou will use a version of the Unknown dataset that is stored in a public Cloud Storage bucket, using a JSONL index file.Start by doing a quick peek at the data. You count the number of examples by counting the number of objects in a JSONL index file (`wc -l`) and then peek at the first few rows. ###Code if "IMPORT_FILES" in globals(): FILE = IMPORT_FILES[0] else: FILE = IMPORT_FILE count = ! gsutil cat $FILE | wc -l print("Number of Examples", int(count[0])) print("First 10 rows") ! gsutil cat $FILE | head ###Output _____no_output_____ ###Markdown Import dataNow, import the data into your Vertex Dataset resource. Use this helper function `import_data` to import the data. The function does the following:- Uses the `Dataset` client.- Calls the client method `import_data`, with the following parameters: - `name`: The human readable name you give to the `Dataset` resource (e.g., unknown). - `import_configs`: The import configuration.- `import_configs`: A Python list containing a dictionary, with the key/value entries: - `gcs_sources`: A list of URIs to the paths of the one or more index files. - `import_schema_uri`: The schema identifying the labeling type.The `import_data()` method returns a long running `operation` object. This will take a few minutes to complete. If you are in a live tutorial, this would be a good time to ask questions, or take a personal break. ###Code def import_data(dataset, gcs_sources, schema): config = [{"gcs_source": {"uris": gcs_sources}, "import_schema_uri": schema}] print("dataset:", dataset_id) start_time = time.time() try: operation = clients["dataset"].import_data( name=dataset_id, import_configs=config ) print("Long running operation:", operation.operation.name) result = operation.result() print("result:", result) print("time:", int(time.time() - start_time), "secs") print("error:", operation.exception()) print("meta :", operation.metadata) print( "after: running:", operation.running(), "done:", operation.done(), "cancelled:", operation.cancelled(), ) return operation except Exception as e: print("exception:", e) return None import_data(dataset_id, [IMPORT_FILE], LABEL_SCHEMA) ###Output _____no_output_____ ###Markdown Train the modelNow train an AutoML image segmentation model using your Vertex `Dataset` resource. To train the model, do the following steps:1. Create an Vertex training pipeline for the `Dataset` resource.2. Execute the pipeline to start the training. Create a training pipelineYou may ask, what do we use a pipeline for? You typically use pipelines when the job (such as training) has multiple steps, generally in sequential order: do step A, do step B, etc. By putting the steps into a pipeline, we gain the benefits of:1. Being reusable for subsequent training jobs.2. Can be containerized and ran as a batch job.3. Can be distributed.4. All the steps are associated with the same pipeline job for tracking progress.Use this helper function `create_pipeline`, which takes the following parameters:- `pipeline_name`: A human readable name for the pipeline job.- `model_name`: A human readable name for the model.- `dataset`: The Vertex fully qualified dataset identifier.- `schema`: The dataset labeling (annotation) training schema.- `task`: A dictionary describing the requirements for the training job.The helper function calls the `Pipeline` client service'smethod `create_pipeline`, which takes the following parameters:- `parent`: The Vertex location root path for your `Dataset`, `Model` and `Endpoint` resources.- `training_pipeline`: the full specification for the pipeline training job.Let's look now deeper into the *minimal* requirements for constructing a `training_pipeline` specification:- `display_name`: A human readable name for the pipeline job.- `training_task_definition`: The dataset labeling (annotation) training schema.- `training_task_inputs`: A dictionary describing the requirements for the training job.- `model_to_upload`: A human readable name for the model.- `input_data_config`: The dataset specification. - `dataset_id`: The Vertex dataset identifier only (non-fully qualified) -- this is the last part of the fully-qualified identifier. - `fraction_split`: If specified, the percentages of the dataset to use for training, test and validation. Otherwise, the percentages are automatically selected by AutoML. ###Code def create_pipeline(pipeline_name, model_name, dataset, schema, task): dataset_id = dataset.split("/")[-1] input_config = { "dataset_id": dataset_id, "fraction_split": { "training_fraction": 0.8, "validation_fraction": 0.1, "test_fraction": 0.1, }, } training_pipeline = { "display_name": pipeline_name, "training_task_definition": schema, "training_task_inputs": task, "input_data_config": input_config, "model_to_upload": {"display_name": model_name}, } try: pipeline = clients["pipeline"].create_training_pipeline( parent=PARENT, training_pipeline=training_pipeline ) print(pipeline) except Exception as e: print("exception:", e) return None return pipeline ###Output _____no_output_____ ###Markdown Construct the task requirementsNext, construct the task requirements. Unlike other parameters which take a Python (JSON-like) dictionary, the `task` field takes a Google protobuf Struct, which is very similar to a Python dictionary. Use the `json_format.ParseDict` method for the conversion.The minimal fields you need to specify are:- `budget_milli_node_hours`: The maximum time to budget (billed) for training the model, where 1000 = 1 hour.- `model_type`: The type of deployed model: - `CLOUD_HIGH_ACCURACY_1`: For deploying to Google Cloud and optimizing for accuracy. - `CLOUD_LOW_LATENCY_1`: For deploying to Google Cloud and optimizing for latency (response time),Finally, create the pipeline by calling the helper function `create_pipeline`, which returns an instance of a training pipeline object. ###Code PIPE_NAME = "unknown_pipe-" + TIMESTAMP MODEL_NAME = "unknown_model-" + TIMESTAMP task = json_format.ParseDict( {"budget_milli_node_hours": 2000, "model_type": "CLOUD_LOW_ACCURACY_1"}, Value() ) response = create_pipeline(PIPE_NAME, MODEL_NAME, dataset_id, TRAINING_SCHEMA, task) ###Output _____no_output_____ ###Markdown Now save the unique identifier of the training pipeline you created. ###Code # The full unique ID for the pipeline pipeline_id = response.name # The short numeric ID for the pipeline pipeline_short_id = pipeline_id.split("/")[-1] print(pipeline_id) ###Output _____no_output_____ ###Markdown Get information on a training pipelineNow get pipeline information for just this training pipeline instance. The helper function gets the job information for just this job by calling the the job client service's `get_training_pipeline` method, with the following parameter:- `name`: The Vertex fully qualified pipeline identifier.When the model is done training, the pipeline state will be `PIPELINE_STATE_SUCCEEDED`. ###Code def get_training_pipeline(name, silent=False): response = clients["pipeline"].get_training_pipeline(name=name) if silent: return response print("pipeline") print(" name:", response.name) print(" display_name:", response.display_name) print(" state:", response.state) print(" training_task_definition:", response.training_task_definition) print(" training_task_inputs:", dict(response.training_task_inputs)) print(" create_time:", response.create_time) print(" start_time:", response.start_time) print(" end_time:", response.end_time) print(" update_time:", response.update_time) print(" labels:", dict(response.labels)) return response response = get_training_pipeline(pipeline_id) ###Output _____no_output_____ ###Markdown DeploymentTraining the above model may take upwards of 30 minutes time.Once your model is done training, you can calculate the actual time it took to train the model by subtracting `end_time` from `start_time`. For your model, you will need to know the fully qualified Vertex Model resource identifier, which the pipeline service assigned to it. You can get this from the returned pipeline instance as the field `model_to_deploy.name`. ###Code while True: response = get_training_pipeline(pipeline_id, True) if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED: print("Training job has not completed:", response.state) model_to_deploy_id = None if response.state == aip.PipelineState.PIPELINE_STATE_FAILED: raise Exception("Training Job Failed") else: model_to_deploy = response.model_to_upload model_to_deploy_id = model_to_deploy.name print("Training Time:", response.end_time - response.start_time) break time.sleep(60) print("model to deploy:", model_to_deploy_id) ###Output _____no_output_____ ###Markdown Model informationNow that your model is trained, you can get some information on your model. Evaluate the Model resourceNow find out how good the model service believes your model is. As part of training, some portion of the dataset was set aside as the test (holdout) data, which is used by the pipeline service to evaluate the model. List evaluations for all slicesUse this helper function `list_model_evaluations`, which takes the following parameter:- `name`: The Vertex fully qualified model identifier for the `Model` resource.This helper function uses the model client service's `list_model_evaluations` method, which takes the same parameter. The response object from the call is a list, where each element is an evaluation metric.For each evaluation -- you probably only have one, we then print all the key names for each metric in the evaluation, and for a small set (`confidenceMetricsEntries`) you will print the result. ###Code def list_model_evaluations(name): response = clients["model"].list_model_evaluations(parent=name) for evaluation in response: print("model_evaluation") print(" name:", evaluation.name) print(" metrics_schema_uri:", evaluation.metrics_schema_uri) metrics = json_format.MessageToDict(evaluation._pb.metrics) for metric in metrics.keys(): print(metric) print("confidenceMetricsEntries", metrics["confidenceMetricsEntries"]) return evaluation.name last_evaluation = list_model_evaluations(model_to_deploy_id) ###Output _____no_output_____ ###Markdown Model deployment for batch predictionNow deploy the trained Vertex `Model` resource you created for batch prediction. This differs from deploying a `Model` resource for on-demand prediction.For online prediction, you:1. Create an `Endpoint` resource for deploying the `Model` resource to.2. Deploy the `Model` resource to the `Endpoint` resource.3. Make online prediction requests to the `Endpoint` resource.For batch-prediction, you:1. Create a batch prediction job.2. The job service will provision resources for the batch prediction request.3. The results of the batch prediction request are returned to the caller.4. The job service will unprovision the resoures for the batch prediction request. Make a batch prediction requestNow do a batch prediction to your deployed model. Get test item(s)Now do a batch prediction to your Vertex model. You will use arbitrary examples out of the dataset as a test items. Don't be concerned that the examples were likely used in training the model -- we just want to demonstrate how to make a prediction. ###Code import json test_items = !gsutil cat $IMPORT_FILE | head -n2 test_data_1 = test_items[0].replace("'", '"') test_data_1 = json.loads(test_data_1) test_data_2 = test_items[0].replace("'", '"') test_data_2 = json.loads(test_data_2) try: test_item_1 = test_data_1["image_gcs_uri"] test_label_1 = test_data_1["segmentation_annotation"]["annotation_spec_colors"] test_item_2 = test_data_2["image_gcs_uri"] test_label_2 = test_data_2["segmentation_annotation"]["annotation_spec_colors"] except: test_item_1 = test_data_1["imageGcsUri"] test_label_1 = test_data_1["segmentationAnnotation"]["annotationSpecColors"] test_item_2 = test_data_2["imageGcsUri"] test_label_2 = test_data_2["segmentationAnnotation"]["annotationSpecColors"] print(test_item_1, test_label_1) print(test_item_2, test_label_2) ###Output _____no_output_____ ###Markdown Copy test item(s)For the batch prediction, you will copy the test items over to your Cloud Storage bucket. ###Code file_1 = test_item_1.split("/")[-1] file_2 = test_item_2.split("/")[-1] ! gsutil cp $test_item_1 $BUCKET_NAME/$file_1 ! gsutil cp $test_item_2 $BUCKET_NAME/$file_2 test_item_1 = BUCKET_NAME + "/" + file_1 test_item_2 = BUCKET_NAME + "/" + file_2 ###Output _____no_output_____ ###Markdown Make the batch input fileNow make a batch input file, which you will store in your local Cloud Storage bucket. The batch input file can be either CSV or JSONL. You will use JSONL in this tutorial. For JSONL file, you make one dictionary entry per line for each data item (instance). The dictionary contains the key/value pairs:- `content`: The Cloud Storage path to the image.- `mime_type`: The content type. In our example, it is an `jpeg` file.For example: {'content': '[your-bucket]/file1.jpg', 'mime_type': 'jpeg'} ###Code import json import tensorflow as tf gcs_input_uri = BUCKET_NAME + "/test.jsonl" with tf.io.gfile.GFile(gcs_input_uri, "w") as f: data = {"content": test_item_1, "mime_type": "image/jpeg"} f.write(json.dumps(data) + "\n") data = {"content": test_item_2, "mime_type": "image/jpeg"} f.write(json.dumps(data) + "\n") print(gcs_input_uri) ! gsutil cat $gcs_input_uri ###Output _____no_output_____ ###Markdown Compute instance scalingYou have several choices on scaling the compute instances for handling your batch prediction requests:- Single Instance: The batch prediction requests are processed on a single compute instance. - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to one.- Manual Scaling: The batch prediction requests are split across a fixed number of compute instances that you manually specified. - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to the same number of nodes. When a model is first deployed to the instance, the fixed number of compute instances are provisioned and batch prediction requests are evenly distributed across them.- Auto Scaling: The batch prediction requests are split across a scaleable number of compute instances. - Set the minimum (`MIN_NODES`) number of compute instances to provision when a model is first deployed and to de-provision, and set the maximum (`MAX_NODES) number of compute instances to provision, depending on load conditions.The minimum number of compute instances corresponds to the field `min_replica_count` and the maximum number of compute instances corresponds to the field `max_replica_count`, in your subsequent deployment request. ###Code MIN_NODES = 1 MAX_NODES = 1 ###Output _____no_output_____ ###Markdown Make batch prediction requestNow that your batch of two test items is ready, let's do the batch request. Use this helper function `create_batch_prediction_job`, with the following parameters:- `display_name`: The human readable name for the prediction job.- `model_name`: The Vertex fully qualified identifier for the `Model` resource.- `gcs_source_uri`: The Cloud Storage path to the input file -- which you created above.- `gcs_destination_output_uri_prefix`: The Cloud Storage path that the service will write the predictions to.- `parameters`: Additional filtering parameters for serving prediction results.The helper function calls the job client service's `create_batch_prediction_job` metho, with the following parameters:- `parent`: The Vertex location root path for Dataset, Model and Pipeline resources.- `batch_prediction_job`: The specification for the batch prediction job.Let's now dive into the specification for the `batch_prediction_job`:- `display_name`: The human readable name for the prediction batch job.- `model`: The Vertex fully qualified identifier for the `Model` resource.- `dedicated_resources`: The compute resources to provision for the batch prediction job. - `machine_spec`: The compute instance to provision. Use the variable you set earlier `DEPLOY_GPU != None` to use a GPU; otherwise only a CPU is allocated. - `starting_replica_count`: The number of compute instances to initially provision, which you set earlier as the variable `MIN_NODES`. - `max_replica_count`: The maximum number of compute instances to scale to, which you set earlier as the variable `MAX_NODES`.- `model_parameters`: Additional filtering parameters for serving prediction results. *Note*, image segmentation models do not support additional parameters.- `input_config`: The input source and format type for the instances to predict. - `instances_format`: The format of the batch prediction request file: `jsonl` only supported. - `gcs_source`: A list of one or more Cloud Storage paths to your batch prediction requests.- `output_config`: The output destination and format for the predictions. - `prediction_format`: The format of the batch prediction response file: `jsonl` only supported. - `gcs_destination`: The output destination for the predictions.This call is an asychronous operation. You will print from the response object a few select fields, including:- `name`: The Vertex fully qualified identifier assigned to the batch prediction job.- `display_name`: The human readable name for the prediction batch job.- `model`: The Vertex fully qualified identifier for the Model resource.- `generate_explanations`: Whether True/False explanations were provided with the predictions (explainability).- `state`: The state of the prediction job (pending, running, etc).Since this call will take a few moments to execute, you will likely get `JobState.JOB_STATE_PENDING` for `state`. ###Code BATCH_MODEL = "unknown_batch-" + TIMESTAMP def create_batch_prediction_job( display_name, model_name, gcs_source_uri, gcs_destination_output_uri_prefix, parameters=None, ): if DEPLOY_GPU: machine_spec = { "machine_type": DEPLOY_COMPUTE, "accelerator_type": DEPLOY_GPU, "accelerator_count": DEPLOY_NGPU, } else: machine_spec = { "machine_type": DEPLOY_COMPUTE, "accelerator_count": 0, } batch_prediction_job = { "display_name": display_name, # Format: 'projects/{project}/locations/{location}/models/{model_id}' "model": model_name, "model_parameters": json_format.ParseDict(parameters, Value()), "input_config": { "instances_format": IN_FORMAT, "gcs_source": {"uris": [gcs_source_uri]}, }, "output_config": { "predictions_format": OUT_FORMAT, "gcs_destination": {"output_uri_prefix": gcs_destination_output_uri_prefix}, }, "dedicated_resources": { "machine_spec": machine_spec, "starting_replica_count": MIN_NODES, "max_replica_count": MAX_NODES, }, } response = clients["job"].create_batch_prediction_job( parent=PARENT, batch_prediction_job=batch_prediction_job ) print("response") print(" name:", response.name) print(" display_name:", response.display_name) print(" model:", response.model) try: print(" generate_explanation:", response.generate_explanation) except: pass print(" state:", response.state) print(" create_time:", response.create_time) print(" start_time:", response.start_time) print(" end_time:", response.end_time) print(" update_time:", response.update_time) print(" labels:", response.labels) return response IN_FORMAT = "jsonl" OUT_FORMAT = "jsonl" # [jsonl] response = create_batch_prediction_job( BATCH_MODEL, model_to_deploy_id, gcs_input_uri, BUCKET_NAME, None ) ###Output _____no_output_____ ###Markdown Now get the unique identifier for the batch prediction job you created. ###Code # The full unique ID for the batch job batch_job_id = response.name # The short numeric ID for the batch job batch_job_short_id = batch_job_id.split("/")[-1] print(batch_job_id) ###Output _____no_output_____ ###Markdown Get information on a batch prediction jobUse this helper function `get_batch_prediction_job`, with the following paramter:- `job_name`: The Vertex fully qualified identifier for the batch prediction job.The helper function calls the job client service's `get_batch_prediction_job` method, with the following paramter:- `name`: The Vertex fully qualified identifier for the batch prediction job. In this tutorial, you will pass it the Vertex fully qualified identifier for your batch prediction job -- `batch_job_id`The helper function will return the Cloud Storage path to where the predictions are stored -- `gcs_destination`. ###Code def get_batch_prediction_job(job_name, silent=False): response = clients["job"].get_batch_prediction_job(name=job_name) if silent: return response.output_config.gcs_destination.output_uri_prefix, response.state print("response") print(" name:", response.name) print(" display_name:", response.display_name) print(" model:", response.model) try: # not all data types support explanations print(" generate_explanation:", response.generate_explanation) except: pass print(" state:", response.state) print(" error:", response.error) gcs_destination = response.output_config.gcs_destination print(" gcs_destination") print(" output_uri_prefix:", gcs_destination.output_uri_prefix) return gcs_destination.output_uri_prefix, response.state predictions, state = get_batch_prediction_job(batch_job_id) ###Output _____no_output_____ ###Markdown Get the predictionsWhen the batch prediction is done processing, the job state will be `JOB_STATE_SUCCEEDED`.Finally you view the predictions stored at the Cloud Storage path you set as output. The predictions will be in a JSONL format, which you indicated at the time you made the batch prediction job, under a subfolder starting with the name `prediction`, and under that folder will be a file called `predictions*.jsonl`.Now display (cat) the contents. You will see multiple JSON objects, one for each prediction.The first field `ID` is the image file you did the prediction on, and the second field `annotations` is the prediction, which is further broken down into:- `confidenceMask`: PNG pixel mask indicating confidence in prediction per pixel.- `categoryMask`: PNG pixel mask indicating prediction per pixel. ###Code def get_latest_predictions(gcs_out_dir): """ Get the latest prediction subfolder using the timestamp in the subfolder name""" folders = !gsutil ls $gcs_out_dir latest = "" for folder in folders: subfolder = folder.split("/")[-2] if subfolder.startswith("prediction-"): if subfolder > latest: latest = folder[:-1] return latest while True: predictions, state = get_batch_prediction_job(batch_job_id, True) if state != aip.JobState.JOB_STATE_SUCCEEDED: print("The job has not completed:", state) if state == aip.JobState.JOB_STATE_FAILED: raise Exception("Batch Job Failed") else: folder = get_latest_predictions(predictions) ! gsutil ls $folder/prediction*.jsonl ! gsutil cat $folder/prediction*.jsonl break time.sleep(60) ###Output _____no_output_____ ###Markdown Cleaning upTo clean up all GCP resources used in this project, you can [delete the GCPproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Dataset- Pipeline- Model- Endpoint- Batch Job- Custom Job- Hyperparameter Tuning Job- Cloud Storage Bucket ###Code delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True # Delete the dataset using the Vertex fully qualified identifier for the dataset try: if delete_dataset and "dataset_id" in globals(): clients["dataset"].delete_dataset(name=dataset_id) except Exception as e: print(e) # Delete the training pipeline using the Vertex fully qualified identifier for the pipeline try: if delete_pipeline and "pipeline_id" in globals(): clients["pipeline"].delete_training_pipeline(name=pipeline_id) except Exception as e: print(e) # Delete the model using the Vertex fully qualified identifier for the model try: if delete_model and "model_to_deploy_id" in globals(): clients["model"].delete_model(name=model_to_deploy_id) except Exception as e: print(e) # Delete the endpoint using the Vertex fully qualified identifier for the endpoint try: if delete_endpoint and "endpoint_id" in globals(): clients["endpoint"].delete_endpoint(name=endpoint_id) except Exception as e: print(e) # Delete the batch job using the Vertex fully qualified identifier for the batch job try: if delete_batchjob and "batch_job_id" in globals(): clients["job"].delete_batch_prediction_job(name=batch_job_id) except Exception as e: print(e) # Delete the custom job using the Vertex fully qualified identifier for the custom job try: if delete_customjob and "job_id" in globals(): clients["job"].delete_custom_job(name=job_id) except Exception as e: print(e) # Delete the hyperparameter tuning job using the Vertex fully qualified identifier for the hyperparameter tuning job try: if delete_hptjob and "hpt_job_id" in globals(): clients["job"].delete_hyperparameter_tuning_job(name=hpt_job_id) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r $BUCKET_NAME ###Output _____no_output_____ ###Markdown Vertex client library: AutoML image segmentation model for batch prediction Run in Colab View on GitHub OverviewThis tutorial demonstrates how to use the Vertex client library for Python to create image segmentation models and do batch prediction using Google Cloud's [AutoML](https://cloud.google.com/vertex-ai/docs/start/automl-users). DatasetThe dataset used for this tutorial is the [TODO](https://). This dataset does not require any feature engineering. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. ObjectiveIn this tutorial, you create an AutoML image segmentation model from a Python script, and then do a batch prediction using the Vertex client library. You can alternatively create and deploy models using the `gcloud` command-line tool or online using the Google Cloud Console.The steps performed include:- Create a Vertex `Dataset` resource.- Train the model.- View the model evaluation.- Make a batch prediction.There is one key difference between using batch prediction and using online prediction:* Prediction Service: Does an on-demand prediction for the entire set of instances (i.e., one or more data items) and returns the results in real-time.* Batch Prediction Service: Does a queued (batch) prediction for the entire set of instances in the background and stores the results in a Cloud Storage bucket when ready. CostsThis tutorial uses billable components of Google Cloud (GCP):* Vertex AI* Cloud StorageLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. InstallationInstall the latest version of Vertex client library. ###Code import os import sys # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = "--user" else: USER_FLAG = "" ! pip3 install -U google-cloud-aiplatform $USER_FLAG ###Output _____no_output_____ ###Markdown Install the latest GA version of *google-cloud-storage* library as well. ###Code ! pip3 install -U google-cloud-storage $USER_FLAG ###Output _____no_output_____ ###Markdown Restart the kernelOnce you've installed the Vertex client library and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages. ###Code if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin GPU runtime*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.5. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. ###Code PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for Vertex. We recommend that you choose the region closest to you.- Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You may not use a multi-regional bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see the [Vertex locations documentation](https://cloud.google.com/vertex-ai/docs/general/locations) ###Code REGION = "us-central1" # @param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.**Click Create service account**.In the **Service account name** field, enter a name, and click **Create**.In the **Grant this service account access to project** section, click the Role drop-down list. Type "Vertex" into the filter box, and select **Vertex Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.Click Create. A JSON file that contains your key downloads to your local environment.Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell. ###Code # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output _____no_output_____ ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Set up variablesNext, set up some variables used throughout the tutorial. Import libraries and define constants Import Vertex client libraryImport the Vertex client library into our Python environment. ###Code import time from google.cloud.aiplatform import gapic as aip from google.protobuf import json_format from google.protobuf.json_format import MessageToJson, ParseDict from google.protobuf.struct_pb2 import Struct, Value ###Output _____no_output_____ ###Markdown Vertex constantsSetup up the following constants for Vertex:- `API_ENDPOINT`: The Vertex API service endpoint for dataset, model, job, pipeline and endpoint services.- `PARENT`: The Vertex location root path for dataset, model, job, pipeline and endpoint resources. ###Code # API service endpoint API_ENDPOINT = "{}-aiplatform.googleapis.com".format(REGION) # Vertex location root path for your dataset, model and endpoint resources PARENT = "projects/" + PROJECT_ID + "/locations/" + REGION ###Output _____no_output_____ ###Markdown AutoML constantsSet constants unique to AutoML datasets and training:- Dataset Schemas: Tells the `Dataset` resource service which type of dataset it is.- Data Labeling (Annotations) Schemas: Tells the `Dataset` resource service how the data is labeled (annotated).- Dataset Training Schemas: Tells the `Pipeline` resource service the task (e.g., classification) to train the model for. ###Code # Image Dataset type DATA_SCHEMA = "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml" # Image Labeling type LABEL_SCHEMA = "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_segmentation_io_format_1.0.0.yaml" # Image Training task TRAINING_SCHEMA = "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_segmentation_1.0.0.yaml" ###Output _____no_output_____ ###Markdown Hardware AcceleratorsSet the hardware accelerators (e.g., GPU), if any, for prediction.Set the variable `DEPLOY_GPU/DEPLOY_NGPU` to use a container image supporting a GPU and the number of GPUs allocated to the virtual machine (VM) instance. For example, to use a GPU container image with 4 Nvidia Telsa K80 GPUs allocated to each VM, you would specify: (aip.AcceleratorType.NVIDIA_TESLA_K80, 4)For GPU, available accelerators include: - aip.AcceleratorType.NVIDIA_TESLA_K80 - aip.AcceleratorType.NVIDIA_TESLA_P100 - aip.AcceleratorType.NVIDIA_TESLA_P4 - aip.AcceleratorType.NVIDIA_TESLA_T4 - aip.AcceleratorType.NVIDIA_TESLA_V100Otherwise specify `(None, None)` to use a container image to run on a CPU. ###Code if os.getenv("IS_TESTING_DEPOLY_GPU"): DEPLOY_GPU, DEPLOY_NGPU = ( aip.AcceleratorType.NVIDIA_TESLA_K80, int(os.getenv("IS_TESTING_DEPOLY_GPU")), ) else: DEPLOY_GPU, DEPLOY_NGPU = (aip.AcceleratorType.NVIDIA_TESLA_K80, 1) ###Output _____no_output_____ ###Markdown Container (Docker) imageFor AutoML batch prediction, the container image for the serving binary is pre-determined by the Vertex prediction service. More specifically, the service will pick the appropriate container for the model depending on the hardware accelerator you selected. Machine TypeNext, set the machine type to use for prediction.- Set the variable `DEPLOY_COMPUTE` to configure the compute resources for the VM you will use for prediction. - `machine type` - `n1-standard`: 3.75GB of memory per vCPU. - `n1-highmem`: 6.5GB of memory per vCPU - `n1-highcpu`: 0.9 GB of memory per vCPU - `vCPUs`: number of \[2, 4, 8, 16, 32, 64, 96 \]*Note: You may also use n2 and e2 machine types for training and deployment, but they do not support GPUs* ###Code if os.getenv("IS_TESTING_DEPLOY_MACHINE"): MACHINE_TYPE = os.getenv("IS_TESTING_DEPLOY_MACHINE") else: MACHINE_TYPE = "n1-standard" VCPU = "4" DEPLOY_COMPUTE = MACHINE_TYPE + "-" + VCPU print("Deploy machine type", DEPLOY_COMPUTE) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to start creating your own AutoML image segmentation model. Set up clientsThe Vertex client library works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the Vertex server.You will use different clients in this tutorial for different steps in the workflow. So set them all up upfront.- Dataset Service for `Dataset` resources.- Model Service for `Model` resources.- Pipeline Service for training.- Job Service for batch prediction and custom training. ###Code # client options same for all services client_options = {"api_endpoint": API_ENDPOINT} def create_dataset_client(): client = aip.DatasetServiceClient(client_options=client_options) return client def create_model_client(): client = aip.ModelServiceClient(client_options=client_options) return client def create_pipeline_client(): client = aip.PipelineServiceClient(client_options=client_options) return client def create_job_client(): client = aip.JobServiceClient(client_options=client_options) return client clients = {} clients["dataset"] = create_dataset_client() clients["model"] = create_model_client() clients["pipeline"] = create_pipeline_client() clients["job"] = create_job_client() for client in clients.items(): print(client) ###Output _____no_output_____ ###Markdown DatasetNow that your clients are ready, your first step in training a model is to create a managed dataset instance, and then upload your labeled data to it. Create `Dataset` resource instanceUse the helper function `create_dataset` to create the instance of a `Dataset` resource. This function does the following:1. Uses the dataset client service.2. Creates an Vertex `Dataset` resource (`aip.Dataset`), with the following parameters: - `display_name`: The human-readable name you choose to give it. - `metadata_schema_uri`: The schema for the dataset type.3. Calls the client dataset service method `create_dataset`, with the following parameters: - `parent`: The Vertex location root path for your `Database`, `Model` and `Endpoint` resources. - `dataset`: The Vertex dataset object instance you created.4. The method returns an `operation` object.An `operation` object is how Vertex handles asynchronous calls for long running operations. While this step usually goes fast, when you first use it in your project, there is a longer delay due to provisioning.You can use the `operation` object to get status on the operation (e.g., create `Dataset` resource) or to cancel the operation, by invoking an operation method:| Method | Description || ----------- | ----------- || result() | Waits for the operation to complete and returns a result object in JSON format. || running() | Returns True/False on whether the operation is still running. || done() | Returns True/False on whether the operation is completed. || canceled() | Returns True/False on whether the operation was canceled. || cancel() | Cancels the operation (this may take up to 30 seconds). | ###Code TIMEOUT = 90 def create_dataset(name, schema, labels=None, timeout=TIMEOUT): start_time = time.time() try: dataset = aip.Dataset( display_name=name, metadata_schema_uri=schema, labels=labels ) operation = clients["dataset"].create_dataset(parent=PARENT, dataset=dataset) print("Long running operation:", operation.operation.name) result = operation.result(timeout=TIMEOUT) print("time:", time.time() - start_time) print("response") print(" name:", result.name) print(" display_name:", result.display_name) print(" metadata_schema_uri:", result.metadata_schema_uri) print(" metadata:", dict(result.metadata)) print(" create_time:", result.create_time) print(" update_time:", result.update_time) print(" etag:", result.etag) print(" labels:", dict(result.labels)) return result except Exception as e: print("exception:", e) return None result = create_dataset("unknown-" + TIMESTAMP, DATA_SCHEMA) ###Output _____no_output_____ ###Markdown Now save the unique dataset identifier for the `Dataset` resource instance you created. ###Code # The full unique ID for the dataset dataset_id = result.name # The short numeric ID for the dataset dataset_short_id = dataset_id.split("/")[-1] print(dataset_id) ###Output _____no_output_____ ###Markdown Data preparationThe Vertex `Dataset` resource for images has some requirements for your data:- Images must be stored in a Cloud Storage bucket.- Each image file must be in an image format (PNG, JPEG, BMP, ...).- There must be an index file stored in your Cloud Storage bucket that contains the path and label for each image.- The index file must be either CSV or JSONL. JSONLFor image segmentation, the JSONL index file has the requirements:- Each data item is a separate JSON object, on a separate line.- The key/value pair `image_gcs_uri` is the Cloud Storage path to the image.- The key/value pair `category_mask_uri` is the Cloud Storage path to the mask image in PNG format.- The key/value pair `'annotation_spec_colors'` is a list mapping mask colors to a label. - The key/value pair pair `display_name` is the label for the pixel color mask. - The key/value pair pair `color` are the RGB normalized pixel values (between 0 and 1) of the mask for the corresponding label. { 'image_gcs_uri': image, 'segmentation_annotations': { 'category_mask_uri': mask_image, 'annotation_spec_colors' : [ { 'display_name': label, 'color': {"red": value, "blue", value, "green": value} }, ...] }*Note*: The dictionary key fields may alternatively be in camelCase. For example, 'image_gcs_uri' can also be 'imageGcsUri'. Location of Cloud Storage training data.Now set the variable `IMPORT_FILE` to the location of the JSONL index file in Cloud Storage. ###Code IMPORT_FILE = "gs://ucaip-test-us-central1/dataset/isg_data.jsonl" ###Output _____no_output_____ ###Markdown Quick peek at your dataYou will use a version of the Unknown dataset that is stored in a public Cloud Storage bucket, using a JSONL index file.Start by doing a quick peek at the data. You count the number of examples by counting the number of objects in a JSONL index file (`wc -l`) and then peek at the first few rows. ###Code if "IMPORT_FILES" in globals(): FILE = IMPORT_FILES[0] else: FILE = IMPORT_FILE count = ! gsutil cat $FILE | wc -l print("Number of Examples", int(count[0])) print("First 10 rows") ! gsutil cat $FILE | head ###Output _____no_output_____ ###Markdown Import dataNow, import the data into your Vertex Dataset resource. Use this helper function `import_data` to import the data. The function does the following:- Uses the `Dataset` client.- Calls the client method `import_data`, with the following parameters: - `name`: The human readable name you give to the `Dataset` resource (e.g., unknown). - `import_configs`: The import configuration.- `import_configs`: A Python list containing a dictionary, with the key/value entries: - `gcs_sources`: A list of URIs to the paths of the one or more index files. - `import_schema_uri`: The schema identifying the labeling type.The `import_data()` method returns a long running `operation` object. This will take a few minutes to complete. If you are in a live tutorial, this would be a good time to ask questions, or take a personal break. ###Code def import_data(dataset, gcs_sources, schema): config = [{"gcs_source": {"uris": gcs_sources}, "import_schema_uri": schema}] print("dataset:", dataset_id) start_time = time.time() try: operation = clients["dataset"].import_data( name=dataset_id, import_configs=config ) print("Long running operation:", operation.operation.name) result = operation.result() print("result:", result) print("time:", int(time.time() - start_time), "secs") print("error:", operation.exception()) print("meta :", operation.metadata) print( "after: running:", operation.running(), "done:", operation.done(), "cancelled:", operation.cancelled(), ) return operation except Exception as e: print("exception:", e) return None import_data(dataset_id, [IMPORT_FILE], LABEL_SCHEMA) ###Output _____no_output_____ ###Markdown Train the modelNow train an AutoML image segmentation model using your Vertex `Dataset` resource. To train the model, do the following steps:1. Create an Vertex training pipeline for the `Dataset` resource.2. Execute the pipeline to start the training. Create a training pipelineYou may ask, what do we use a pipeline for? You typically use pipelines when the job (such as training) has multiple steps, generally in sequential order: do step A, do step B, etc. By putting the steps into a pipeline, we gain the benefits of:1. Being reusable for subsequent training jobs.2. Can be containerized and ran as a batch job.3. Can be distributed.4. All the steps are associated with the same pipeline job for tracking progress.Use this helper function `create_pipeline`, which takes the following parameters:- `pipeline_name`: A human readable name for the pipeline job.- `model_name`: A human readable name for the model.- `dataset`: The Vertex fully qualified dataset identifier.- `schema`: The dataset labeling (annotation) training schema.- `task`: A dictionary describing the requirements for the training job.The helper function calls the `Pipeline` client service'smethod `create_pipeline`, which takes the following parameters:- `parent`: The Vertex location root path for your `Dataset`, `Model` and `Endpoint` resources.- `training_pipeline`: the full specification for the pipeline training job.Let's look now deeper into the *minimal* requirements for constructing a `training_pipeline` specification:- `display_name`: A human readable name for the pipeline job.- `training_task_definition`: The dataset labeling (annotation) training schema.- `training_task_inputs`: A dictionary describing the requirements for the training job.- `model_to_upload`: A human readable name for the model.- `input_data_config`: The dataset specification. - `dataset_id`: The Vertex dataset identifier only (non-fully qualified) -- this is the last part of the fully-qualified identifier. - `fraction_split`: If specified, the percentages of the dataset to use for training, test and validation. Otherwise, the percentages are automatically selected by AutoML. ###Code def create_pipeline(pipeline_name, model_name, dataset, schema, task): dataset_id = dataset.split("/")[-1] input_config = { "dataset_id": dataset_id, "fraction_split": { "training_fraction": 0.8, "validation_fraction": 0.1, "test_fraction": 0.1, }, } training_pipeline = { "display_name": pipeline_name, "training_task_definition": schema, "training_task_inputs": task, "input_data_config": input_config, "model_to_upload": {"display_name": model_name}, } try: pipeline = clients["pipeline"].create_training_pipeline( parent=PARENT, training_pipeline=training_pipeline ) print(pipeline) except Exception as e: print("exception:", e) return None return pipeline ###Output _____no_output_____ ###Markdown Construct the task requirementsNext, construct the task requirements. Unlike other parameters which take a Python (JSON-like) dictionary, the `task` field takes a Google protobuf Struct, which is very similar to a Python dictionary. Use the `json_format.ParseDict` method for the conversion.The minimal fields you need to specify are:- `budget_milli_node_hours`: The maximum time to budget (billed) for training the model, where 1000 = 1 hour.- `model_type`: The type of deployed model: - `CLOUD_HIGH_ACCURACY_1`: For deploying to Google Cloud and optimizing for accuracy. - `CLOUD_LOW_LATENCY_1`: For deploying to Google Cloud and optimizing for latency (response time),Finally, create the pipeline by calling the helper function `create_pipeline`, which returns an instance of a training pipeline object. ###Code PIPE_NAME = "unknown_pipe-" + TIMESTAMP MODEL_NAME = "unknown_model-" + TIMESTAMP task = json_format.ParseDict( {"budget_milli_node_hours": 2000, "model_type": "CLOUD_LOW_ACCURACY_1"}, Value() ) response = create_pipeline(PIPE_NAME, MODEL_NAME, dataset_id, TRAINING_SCHEMA, task) ###Output _____no_output_____ ###Markdown Now save the unique identifier of the training pipeline you created. ###Code # The full unique ID for the pipeline pipeline_id = response.name # The short numeric ID for the pipeline pipeline_short_id = pipeline_id.split("/")[-1] print(pipeline_id) ###Output _____no_output_____ ###Markdown Get information on a training pipelineNow get pipeline information for just this training pipeline instance. The helper function gets the job information for just this job by calling the the job client service's `get_training_pipeline` method, with the following parameter:- `name`: The Vertex fully qualified pipeline identifier.When the model is done training, the pipeline state will be `PIPELINE_STATE_SUCCEEDED`. ###Code def get_training_pipeline(name, silent=False): response = clients["pipeline"].get_training_pipeline(name=name) if silent: return response print("pipeline") print(" name:", response.name) print(" display_name:", response.display_name) print(" state:", response.state) print(" training_task_definition:", response.training_task_definition) print(" training_task_inputs:", dict(response.training_task_inputs)) print(" create_time:", response.create_time) print(" start_time:", response.start_time) print(" end_time:", response.end_time) print(" update_time:", response.update_time) print(" labels:", dict(response.labels)) return response response = get_training_pipeline(pipeline_id) ###Output _____no_output_____ ###Markdown DeploymentTraining the above model may take upwards of 30 minutes time.Once your model is done training, you can calculate the actual time it took to train the model by subtracting `end_time` from `start_time`. For your model, you will need to know the fully qualified Vertex Model resource identifier, which the pipeline service assigned to it. You can get this from the returned pipeline instance as the field `model_to_deploy.name`. ###Code while True: response = get_training_pipeline(pipeline_id, True) if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED: print("Training job has not completed:", response.state) model_to_deploy_id = None if response.state == aip.PipelineState.PIPELINE_STATE_FAILED: raise Exception("Training Job Failed") else: model_to_deploy = response.model_to_upload model_to_deploy_id = model_to_deploy.name print("Training Time:", response.end_time - response.start_time) break time.sleep(60) print("model to deploy:", model_to_deploy_id) ###Output _____no_output_____ ###Markdown Model informationNow that your model is trained, you can get some information on your model. Evaluate the Model resourceNow find out how good the model service believes your model is. As part of training, some portion of the dataset was set aside as the test (holdout) data, which is used by the pipeline service to evaluate the model. List evaluations for all slicesUse this helper function `list_model_evaluations`, which takes the following parameter:- `name`: The Vertex fully qualified model identifier for the `Model` resource.This helper function uses the model client service's `list_model_evaluations` method, which takes the same parameter. The response object from the call is a list, where each element is an evaluation metric.For each evaluation -- you probably only have one, we then print all the key names for each metric in the evaluation, and for a small set (`confidenceMetricsEntries`) you will print the result. ###Code def list_model_evaluations(name): response = clients["model"].list_model_evaluations(parent=name) for evaluation in response: print("model_evaluation") print(" name:", evaluation.name) print(" metrics_schema_uri:", evaluation.metrics_schema_uri) metrics = json_format.MessageToDict(evaluation._pb.metrics) for metric in metrics.keys(): print(metric) print("confidenceMetricsEntries", metrics["confidenceMetricsEntries"]) return evaluation.name last_evaluation = list_model_evaluations(model_to_deploy_id) ###Output _____no_output_____ ###Markdown Model deployment for batch predictionNow deploy the trained Vertex `Model` resource you created for batch prediction. This differs from deploying a `Model` resource for on-demand prediction.For online prediction, you:1. Create an `Endpoint` resource for deploying the `Model` resource to.2. Deploy the `Model` resource to the `Endpoint` resource.3. Make online prediction requests to the `Endpoint` resource.For batch-prediction, you:1. Create a batch prediction job.2. The job service will provision resources for the batch prediction request.3. The results of the batch prediction request are returned to the caller.4. The job service will unprovision the resoures for the batch prediction request. Make a batch prediction requestNow do a batch prediction to your deployed model. Get test item(s)Now do a batch prediction to your Vertex model. You will use arbitrary examples out of the dataset as a test items. Don't be concerned that the examples were likely used in training the model -- we just want to demonstrate how to make a prediction. ###Code import json test_items = !gsutil cat $IMPORT_FILE | head -n2 test_data_1 = test_items[0].replace("'", '"') test_data_1 = json.loads(test_data_1) test_data_2 = test_items[0].replace("'", '"') test_data_2 = json.loads(test_data_2) try: test_item_1 = test_data_1["image_gcs_uri"] test_label_1 = test_data_1["segmentation_annotation"]["annotation_spec_colors"] test_item_2 = test_data_2["image_gcs_uri"] test_label_2 = test_data_2["segmentation_annotation"]["annotation_spec_colors"] except: test_item_1 = test_data_1["imageGcsUri"] test_label_1 = test_data_1["segmentationAnnotation"]["annotationSpecColors"] test_item_2 = test_data_2["imageGcsUri"] test_label_2 = test_data_2["segmentationAnnotation"]["annotationSpecColors"] print(test_item_1, test_label_1) print(test_item_2, test_label_2) ###Output _____no_output_____ ###Markdown Copy test item(s)For the batch prediction, you will copy the test items over to your Cloud Storage bucket. ###Code file_1 = test_item_1.split("/")[-1] file_2 = test_item_2.split("/")[-1] ! gsutil cp $test_item_1 $BUCKET_NAME/$file_1 ! gsutil cp $test_item_2 $BUCKET_NAME/$file_2 test_item_1 = BUCKET_NAME + "/" + file_1 test_item_2 = BUCKET_NAME + "/" + file_2 ###Output _____no_output_____ ###Markdown Make the batch input fileNow make a batch input file, which you will store in your local Cloud Storage bucket. The batch input file can be either CSV or JSONL. You will use JSONL in this tutorial. For JSONL file, you make one dictionary entry per line for each data item (instance). The dictionary contains the key/value pairs:- `content`: The Cloud Storage path to the image.- `mime_type`: The content type. In our example, it is an `jpeg` file.For example: {'content': '[your-bucket]/file1.jpg', 'mime_type': 'jpeg'} ###Code import json import tensorflow as tf gcs_input_uri = BUCKET_NAME + "/test.jsonl" with tf.io.gfile.GFile(gcs_input_uri, "w") as f: data = {"content": test_item_1, "mime_type": "image/jpeg"} f.write(json.dumps(data) + "\n") data = {"content": test_item_2, "mime_type": "image/jpeg"} f.write(json.dumps(data) + "\n") print(gcs_input_uri) ! gsutil cat $gcs_input_uri ###Output _____no_output_____ ###Markdown Compute instance scalingYou have several choices on scaling the compute instances for handling your batch prediction requests:- Single Instance: The batch prediction requests are processed on a single compute instance. - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to one.- Manual Scaling: The batch prediction requests are split across a fixed number of compute instances that you manually specified. - Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to the same number of nodes. When a model is first deployed to the instance, the fixed number of compute instances are provisioned and batch prediction requests are evenly distributed across them.- Auto Scaling: The batch prediction requests are split across a scaleable number of compute instances. - Set the minimum (`MIN_NODES`) number of compute instances to provision when a model is first deployed and to de-provision, and set the maximum (`MAX_NODES) number of compute instances to provision, depending on load conditions.The minimum number of compute instances corresponds to the field `min_replica_count` and the maximum number of compute instances corresponds to the field `max_replica_count`, in your subsequent deployment request. ###Code MIN_NODES = 1 MAX_NODES = 1 ###Output _____no_output_____ ###Markdown Make batch prediction requestNow that your batch of two test items is ready, let's do the batch request. Use this helper function `create_batch_prediction_job`, with the following parameters:- `display_name`: The human readable name for the prediction job.- `model_name`: The Vertex fully qualified identifier for the `Model` resource.- `gcs_source_uri`: The Cloud Storage path to the input file -- which you created above.- `gcs_destination_output_uri_prefix`: The Cloud Storage path that the service will write the predictions to.- `parameters`: Additional filtering parameters for serving prediction results.The helper function calls the job client service's `create_batch_prediction_job` metho, with the following parameters:- `parent`: The Vertex location root path for Dataset, Model and Pipeline resources.- `batch_prediction_job`: The specification for the batch prediction job.Let's now dive into the specification for the `batch_prediction_job`:- `display_name`: The human readable name for the prediction batch job.- `model`: The Vertex fully qualified identifier for the `Model` resource.- `dedicated_resources`: The compute resources to provision for the batch prediction job. - `machine_spec`: The compute instance to provision. Use the variable you set earlier `DEPLOY_GPU != None` to use a GPU; otherwise only a CPU is allocated. - `starting_replica_count`: The number of compute instances to initially provision, which you set earlier as the variable `MIN_NODES`. - `max_replica_count`: The maximum number of compute instances to scale to, which you set earlier as the variable `MAX_NODES`.- `model_parameters`: Additional filtering parameters for serving prediction results. *Note*, image segmentation models do not support additional parameters.- `input_config`: The input source and format type for the instances to predict. - `instances_format`: The format of the batch prediction request file: `jsonl` only supported. - `gcs_source`: A list of one or more Cloud Storage paths to your batch prediction requests.- `output_config`: The output destination and format for the predictions. - `prediction_format`: The format of the batch prediction response file: `jsonl` only supported. - `gcs_destination`: The output destination for the predictions.This call is an asychronous operation. You will print from the response object a few select fields, including:- `name`: The Vertex fully qualified identifier assigned to the batch prediction job.- `display_name`: The human readable name for the prediction batch job.- `model`: The Vertex fully qualified identifier for the Model resource.- `generate_explanations`: Whether True/False explanations were provided with the predictions (explainability).- `state`: The state of the prediction job (pending, running, etc).Since this call will take a few moments to execute, you will likely get `JobState.JOB_STATE_PENDING` for `state`. ###Code BATCH_MODEL = "unknown_batch-" + TIMESTAMP def create_batch_prediction_job( display_name, model_name, gcs_source_uri, gcs_destination_output_uri_prefix, parameters=None, ): if DEPLOY_GPU: machine_spec = { "machine_type": DEPLOY_COMPUTE, "accelerator_type": DEPLOY_GPU, "accelerator_count": DEPLOY_NGPU, } else: machine_spec = { "machine_type": DEPLOY_COMPUTE, "accelerator_count": 0, } batch_prediction_job = { "display_name": display_name, # Format: 'projects/{project}/locations/{location}/models/{model_id}' "model": model_name, "model_parameters": json_format.ParseDict(parameters, Value()), "input_config": { "instances_format": IN_FORMAT, "gcs_source": {"uris": [gcs_source_uri]}, }, "output_config": { "predictions_format": OUT_FORMAT, "gcs_destination": {"output_uri_prefix": gcs_destination_output_uri_prefix}, }, "dedicated_resources": { "machine_spec": machine_spec, "starting_replica_count": MIN_NODES, "max_replica_count": MAX_NODES, }, } response = clients["job"].create_batch_prediction_job( parent=PARENT, batch_prediction_job=batch_prediction_job ) print("response") print(" name:", response.name) print(" display_name:", response.display_name) print(" model:", response.model) try: print(" generate_explanation:", response.generate_explanation) except: pass print(" state:", response.state) print(" create_time:", response.create_time) print(" start_time:", response.start_time) print(" end_time:", response.end_time) print(" update_time:", response.update_time) print(" labels:", response.labels) return response IN_FORMAT = "jsonl" OUT_FORMAT = "jsonl" # [jsonl] response = create_batch_prediction_job( BATCH_MODEL, model_to_deploy_id, gcs_input_uri, BUCKET_NAME, None ) ###Output _____no_output_____ ###Markdown Now get the unique identifier for the batch prediction job you created. ###Code # The full unique ID for the batch job batch_job_id = response.name # The short numeric ID for the batch job batch_job_short_id = batch_job_id.split("/")[-1] print(batch_job_id) ###Output _____no_output_____ ###Markdown Get information on a batch prediction jobUse this helper function `get_batch_prediction_job`, with the following paramter:- `job_name`: The Vertex fully qualified identifier for the batch prediction job.The helper function calls the job client service's `get_batch_prediction_job` method, with the following paramter:- `name`: The Vertex fully qualified identifier for the batch prediction job. In this tutorial, you will pass it the Vertex fully qualified identifier for your batch prediction job -- `batch_job_id`The helper function will return the Cloud Storage path to where the predictions are stored -- `gcs_destination`. ###Code def get_batch_prediction_job(job_name, silent=False): response = clients["job"].get_batch_prediction_job(name=job_name) if silent: return response.output_config.gcs_destination.output_uri_prefix, response.state print("response") print(" name:", response.name) print(" display_name:", response.display_name) print(" model:", response.model) try: # not all data types support explanations print(" generate_explanation:", response.generate_explanation) except: pass print(" state:", response.state) print(" error:", response.error) gcs_destination = response.output_config.gcs_destination print(" gcs_destination") print(" output_uri_prefix:", gcs_destination.output_uri_prefix) return gcs_destination.output_uri_prefix, response.state predictions, state = get_batch_prediction_job(batch_job_id) ###Output _____no_output_____ ###Markdown Get the predictionsWhen the batch prediction is done processing, the job state will be `JOB_STATE_SUCCEEDED`.Finally you view the predictions stored at the Cloud Storage path you set as output. The predictions will be in a JSONL format, which you indicated at the time you made the batch prediction job, under a subfolder starting with the name `prediction`, and under that folder will be a file called `predictions*.jsonl`.Now display (cat) the contents. You will see multiple JSON objects, one for each prediction.The first field `ID` is the image file you did the prediction on, and the second field `annotations` is the prediction, which is further broken down into:- `confidenceMask`: PNG pixel mask indicating confidence in prediction per pixel.- `categoryMask`: PNG pixel mask indicating prediction per pixel. ###Code def get_latest_predictions(gcs_out_dir): """ Get the latest prediction subfolder using the timestamp in the subfolder name""" folders = !gsutil ls $gcs_out_dir latest = "" for folder in folders: subfolder = folder.split("/")[-2] if subfolder.startswith("prediction-"): if subfolder > latest: latest = folder[:-1] return latest while True: predictions, state = get_batch_prediction_job(batch_job_id, True) if state != aip.JobState.JOB_STATE_SUCCEEDED: print("The job has not completed:", state) if state == aip.JobState.JOB_STATE_FAILED: raise Exception("Batch Job Failed") else: folder = get_latest_predictions(predictions) ! gsutil ls $folder/prediction*.jsonl ! gsutil cat $folder/prediction*.jsonl break time.sleep(60) ###Output _____no_output_____ ###Markdown Cleaning upTo clean up all GCP resources used in this project, you can [delete the GCPproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Dataset- Pipeline- Model- Endpoint- Batch Job- Custom Job- Hyperparameter Tuning Job- Cloud Storage Bucket ###Code delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True # Delete the dataset using the Vertex fully qualified identifier for the dataset try: if delete_dataset and "dataset_id" in globals(): clients["dataset"].delete_dataset(name=dataset_id) except Exception as e: print(e) # Delete the training pipeline using the Vertex fully qualified identifier for the pipeline try: if delete_pipeline and "pipeline_id" in globals(): clients["pipeline"].delete_training_pipeline(name=pipeline_id) except Exception as e: print(e) # Delete the model using the Vertex fully qualified identifier for the model try: if delete_model and "model_to_deploy_id" in globals(): clients["model"].delete_model(name=model_to_deploy_id) except Exception as e: print(e) # Delete the endpoint using the Vertex fully qualified identifier for the endpoint try: if delete_endpoint and "endpoint_id" in globals(): clients["endpoint"].delete_endpoint(name=endpoint_id) except Exception as e: print(e) # Delete the batch job using the Vertex fully qualified identifier for the batch job try: if delete_batchjob and "batch_job_id" in globals(): clients["job"].delete_batch_prediction_job(name=batch_job_id) except Exception as e: print(e) # Delete the custom job using the Vertex fully qualified identifier for the custom job try: if delete_customjob and "job_id" in globals(): clients["job"].delete_custom_job(name=job_id) except Exception as e: print(e) # Delete the hyperparameter tuning job using the Vertex fully qualified identifier for the hyperparameter tuning job try: if delete_hptjob and "hpt_job_id" in globals(): clients["job"].delete_hyperparameter_tuning_job(name=hpt_job_id) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r $BUCKET_NAME ###Output _____no_output_____
Data/Code/rbc_data.ipynb
###Markdown US Production Data for RBC Modeling ###Code import pandas as pd import numpy as np import fredpy as fp import matplotlib.pyplot as plt plt.style.use('classic') %matplotlib inline pd.plotting.register_matplotlib_converters() # Load API key fp.api_key = fp.load_api_key('fred_api_key.txt') # Download nominal GDP, nominal personal consumption expenditures, nominal # gross private domestic investment, the GDP deflator, and an index of hours # worked in the nonfarm business sector produced by the BLS. All data are # from FRED and are quarterly. gdp = fp.series('GDP') cons = fp.series('PCEC') invest = fp.series('GPDI') hours = fp.series('HOANBS') defl = fp.series('GDPDEF') # Make sure that all of the downloaded series have the same data ranges gdp,cons,invest,hours,defl = fp.window_equalize([gdp,cons,invest,hours,defl]) # Compute real GDP, real consumption, real investment gdp.data = gdp.data/defl.data*100 cons.data = cons.data/defl.data*100 invest.data = invest.data/defl.data*100 # Print units print('Hours units: ',hours.units) print('Deflator units:',defl.units) ###Output Hours units: Index 2012=100 Deflator units: Index 2012=100 ###Markdown Next, compute the quarterly capital stock series for the US using the perpetual inventory method. The discrete-time Solow growth model is given by:\begin{align}Y_t & = A_tK_t^{\alpha}L_t^{1-\alpha} \tag{1}\\C_t & = (1-s)Y_t \tag{2}\\Y_t & = C_t + I_t \tag{3}\\K_{t+1} & = I_t + (1-\delta)K_t \tag{4}\\A_{t+1} & = (1+g)A_t \tag{5}\\L_{t+1} & = (1+n)L_t \tag{6}.\end{align}Here the model is assumed to be quarterly so $n$ is the *quarterly* growth rate of labor hours, $g$ is the *quarterly* growth rate of TFP, and $\delta$ is the *quarterly* rate of depreciation of the capital stock. Given a value of the quarterly depreciation rate $\delta$, an investment series $I_t$, and an initial capital stock $K_0$, the law of motion for the capital stock, Equation (4), can be used to compute an implied capital series. But we don't know $K_0$ or $\delta$ so we'll have to *calibrate* these values using statistics computed from the data that we've already obtained.Let lowercase letters denote a variable that's been divided by $A_t^{1/(1-\alpha)}L_t$. E.g.,\begin{align}y_t = \frac{Y_t}{A_t^{1/(1-\alpha)}L_t}\tag{7}\end{align}Then (after substituting consumption from the model), the scaled version of the model can be written as: \begin{align}y_t & = k_t^{\alpha} \tag{8}\\i_t & = sy_t \tag{9}\\k_{t+1} & = i_t + (1-\delta-n-g')k_t,\tag{10}\end{align}where $g' = g/(1-\alpha)$ is the growth rate of $A_t^{1/(1-\alpha)}$. In the steady state:\begin{align}k & = \left(\frac{s}{\delta+n+g'}\right)^{\frac{1}{1-\alpha}} \tag{11}\end{align}which means that the ratio of capital to output is constant:\begin{align}\frac{k}{y} & = \frac{s}{\delta+n+g'} \tag{12}\end{align}and therefore the steady state ratio of depreciation to output is:\begin{align}\overline{\delta K/ Y} & = \frac{\delta s}{\delta + n + g'} \tag{13}\end{align}where $\overline{\delta K/ Y}$ is the long-run average ratio of depreciation to output. We can use Equation (13) to calibrate $\delta$ given $\overline{\delta K/ Y}$, $s$, $n$, and $g'$.Furthermore, in the steady state, the growth rate of output is constant:\begin{align}\frac{\Delta Y}{Y} & = n + g' \tag{14}\end{align} 1. Assume $\alpha = 0.35$.2. Calibrate $s$ as the average of ratio of investment to GDP.3. Calibrate $n$ as the average quarterly growth rate of labor hours.4. Calibrate $g'$ as the average quarterly growth rate of real GDP minus n.5. Calculate the average ratio of depreciation to GDP $\overline{\delta K/ Y}$ and use the result to calibrate $\delta$. That is, find the average ratio of Current-Cost Depreciation of Fixed Assets (FRED series ID: M1TTOTL1ES000) to GDP (FRED series ID: GDPA). Then calibrate $\delta$ from the following steady state relationship:\begin{align}\delta & = \frac{\left( \overline{\delta K/ Y} \right)\left(n + g' \right)}{s - \left( \overline{\delta K/ Y} \right)} \tag{15}\end{align}6. Calibrate $K_0$ by asusming that the capital stock is initially equal to its steady state value:\begin{align}K_0 & = \left(\frac{s}{\delta + n + g'}\right) Y_0 \tag{16}\end{align}Then, armed with calibrated values for $K_0$ and $\delta$, compute $K_1, K_2, \ldots$ recursively. See Timothy Kehoe's notes for more information on the perpetual inventory method:http://users.econ.umn.edu/~tkehoe/classes/GrowthAccountingNotes.pdf ###Code # Set the capital share of income alpha = 0.35 # Average saving rate s = np.mean(invest.data/gdp.data) # Average quarterly labor hours growth rate n = (hours.data[-1]/hours.data[0])**(1/(len(hours.data)-1)) - 1 # Average quarterly real GDP growth rate g = ((gdp.data[-1]/gdp.data[0])**(1/(len(gdp.data)-1)) - 1) - n # Compute annual depreciation rate depA = fp.series('M1TTOTL1ES000') gdpA = fp.series('gdpa') gdpA = gdpA.window([gdp.data.index[0],gdp.data.index[-1]]) gdpA,depA = fp.window_equalize([gdpA,depA]) deltaKY = np.mean(depA.data/gdpA.data) delta = (n+g)*deltaKY/(s-deltaKY) # print calibrated values: print('Avg saving rate: ',round(s,5)) print('Avg annual labor growth:',round(4*n,5)) print('Avg annual gdp growth: ',round(4*g,5)) print('Avg annual dep rate: ',round(4*delta,5)) # Construct the capital series. Note that the GPD and investment data are reported on an annualized basis # so divide by 4 to get quarterly data. capital = np.zeros(len(gdp.data)) capital[0] = gdp.data[0]/4*s/(n+g+delta) for t in range(len(gdp.data)-1): capital[t+1] = invest.data[t]/4 + (1-delta)*capital[t] # Save in a fredpy series capital = fp.to_fred_series(data = capital,dates =gdp.data.index,units = gdp.units,title='Capital stock of the US',frequency='Quarterly') # plot the computed capital series plt.plot(capital.data.index,capital.data,'-',lw=3,alpha = 0.7) plt.ylabel(capital.units) plt.title(capital.title) plt.grid() # Compute TFP tfp = gdp.data/capital.data**alpha/hours.data**(1-alpha) tfp = fp.to_fred_series(data = tfp,dates =gdp.data.index,units = gdp.units,title='TFP of the US',frequency='Quarterly') # Plot the computed capital series plt.plot(tfp.data.index,tfp.data,'-',lw=3,alpha = 0.7) plt.ylabel(tfp.units) plt.title(tfp.title) plt.grid() # Convert each series into per capita using civilian pop 16 and over gdp = gdp.per_capita(civ_pop=True) cons = cons.per_capita(civ_pop=True) invest = invest.per_capita(civ_pop=True) hours = hours.per_capita(civ_pop=True) capital = capital.per_capita(civ_pop=True) # Put GDP, consumption, and investment in units of thousands of dollars per person gdp.data = gdp.data*1000 cons.data = cons.data*1000 invest.data = invest.data*1000 capital.data = capital.data*1000 # Scale hours per person to equal 100 on October (Quarter III) of 2012 hours.data = hours.data/hours.data.loc['2012-10-01']*100 # Make sure TFP series has same length as the rest (since the .per_capita() function may affect the date range. tfp,gdp = fp.window_equalize([tfp,gdp]) # Compute and plot log real GDP, log consumption, log investment, log hours gdp_log = gdp.log() cons_log = cons.log() invest_log = invest.log() hours_log = hours.log() capital_log = capital.log() tfp_log = tfp.log() # HP filter to isolate trend and cyclical components gdp_log_cycle,gdp_log_trend = gdp_log.hp_filter() cons_log_cycle,cons_log_trend = cons_log.hp_filter() invest_log_cycle,invest_log_trend = invest_log.hp_filter() hours_log_cycle,hours_log_trend = hours_log.hp_filter() capital_log_cycle,capital_log_trend = capital_log.hp_filter() tfp_log_cycle,tfp_log_trend = tfp_log.hp_filter() # Create a DataFrame with actual and trend data data = pd.DataFrame({ 'gdp':gdp.data, 'gdp_trend':np.exp(gdp_log_trend.data), 'gdp_cycle':gdp_log_cycle.data, 'consumption':cons.data, 'consumption_trend':np.exp(cons_log_trend.data), 'consumption_cycle':cons_log_cycle.data, 'investment':invest.data, 'investment_trend':np.exp(invest_log_trend.data), 'investment_cycle':invest_log_cycle.data, 'hours':hours.data, 'hours_trend':np.exp(hours_log_trend.data), 'hours_cycle':hours_log_cycle.data, 'capital':capital.data, 'capital_trend':np.exp(capital_log_trend.data), 'capital_cycle':capital_log_cycle.data, 'tfp':tfp.data, 'tfp_trend':np.exp(tfp_log_trend.data), 'tfp_cycle':tfp_log_cycle.data, },index = gdp.data.index) columns_ordered =[] names = ['gdp','consumption','investment','hours','capital','tfp'] for name in names: columns_ordered.append(name) columns_ordered.append(name+'_trend') data[columns_ordered].to_csv('../Csv/rbc_data_actual_trend.csv') # Create a DataFrame with actual, trend, and cycle data columns_ordered =[] names = ['gdp','consumption','investment','hours','capital','tfp'] for name in names: columns_ordered.append(name) columns_ordered.append(name+'_trend') columns_ordered.append(name+'_cycle') data[columns_ordered].to_csv('../Csv/rbc_data_actual_trend_cycle.csv') ###Output _____no_output_____ ###Markdown US Production Data for RBC Modeling ###Code import pandas as pd import numpy as np import fredpy as fp import matplotlib.pyplot as plt plt.style.use('classic') %matplotlib inline pd.plotting.register_matplotlib_converters() # Load API key fp.api_key = fp.load_api_key('fred_api_key.txt') # Download nominal GDP, nominal personal consumption expenditures, nominal # gross private domestic investment, the GDP deflator, and an index of hours # worked in the nonfarm business sector produced by the BLS. All data are # from FRED and are quarterly. gdp = fp.series('GDP') cons = fp.series('PCEC') invest = fp.series('GPDI') hours = fp.series('HOANBS') defl = fp.series('GDPDEF') # Make sure that all of the downloaded series have the same data ranges gdp,cons,invest,hours,defl = fp.window_equalize([gdp,cons,invest,hours,defl]) # Compute real GDP, real consumption, real investment gdp.data = gdp.data/defl.data*100 cons.data = cons.data/defl.data*100 invest.data = invest.data/defl.data*100 # Print units print('Hours units: ',hours.units) print('Deflator units:',defl.units) ###Output Hours units: Index 2012=100 Deflator units: Index 2012=100 ###Markdown Next, compute the quarterly capital stock series for the US using the perpetual inventory method. The discrete-time Solow growth model is given by:\begin{align}Y_t & = A_tK_t^{\alpha}L_t^{1-\alpha} \tag{1}\\C_t & = (1-s)Y_t \tag{2}\\Y_t & = C_t + I_t \tag{3}\\K_{t+1} & = I_t + (1-\delta)K_t \tag{4}\\A_{t+1} & = (1+g)A_t \tag{5}\\L_{t+1} & = (1+n)L_t \tag{6}.\end{align}Here the model is assumed to be quarterly so $n$ is the *quarterly* growth rate of labor hours, $g$ is the *quarterly* growth rate of TFP, and $\delta$ is the *quarterly* rate of depreciation of the capital stock. Given a value of the quarterly depreciation rate $\delta$, an investment series $I_t$, and an initial capital stock $K_0$, the law of motion for the capital stock, Equation (4), can be used to compute an implied capital series. But we don't know $K_0$ or $\delta$ so we'll have to *calibrate* these values using statistics computed from the data that we've already obtained.Let lowercase letters denote a variable that's been divided by $A_t^{1/(1-\alpha)}L_t$. E.g.,\begin{align}y_t = \frac{Y_t}{A_t^{1/(1-\alpha)}L_t}\tag{7}\end{align}Then (after substituting consumption from the model), the scaled version of the model can be written as: \begin{align}y_t & = k_t^{\alpha} \tag{8}\\i_t & = sy_t \tag{9}\\k_{t+1} & = i_t + (1-\delta-n-g')k_t,\tag{10}\end{align}where $g' = g/(1-\alpha)$ is the growth rate of $A_t^{1/(1-\alpha)}$. In the steady state:\begin{align}k & = \left(\frac{s}{\delta+n+g'}\right)^{\frac{1}{1-\alpha}} \tag{11}\end{align}which means that the ratio of capital to output is constant:\begin{align}\frac{k}{y} & = \frac{s}{\delta+n+g'} \tag{12}\end{align}and therefore the steady state ratio of depreciation to output is:\begin{align}\overline{\delta K/ Y} & = \frac{\delta s}{\delta + n + g'} \tag{13}\end{align}where $\overline{\delta K/ Y}$ is the long-run average ratio of depreciation to output. We can use Equation (13) to calibrate $\delta$ given $\overline{\delta K/ Y}$, $s$, $n$, and $g'$.Furthermore, in the steady state, the growth rate of output is constant:\begin{align}\frac{\Delta Y}{Y} & = n + g' \tag{14}\end{align} 1. Assume $\alpha = 0.35$.2. Calibrate $s$ as the average of ratio of investment to GDP.3. Calibrate $n$ as the average quarterly growth rate of labor hours.4. Calibrate $g'$ as the average quarterly growth rate of real GDP minus n.5. Calculate the average ratio of depreciation to GDP $\overline{\delta K/ Y}$ and use the result to calibrate $\delta$. That is, find the average ratio of Current-Cost Depreciation of Fixed Assets (FRED series ID: M1TTOTL1ES000) to GDP (FRED series ID: GDPA). Then calibrate $\delta$ from the following steady state relationship:\begin{align}\delta & = \frac{\left( \overline{\delta K/ Y} \right)\left(n + g' \right)}{s - \left( \overline{\delta K/ Y} \right)} \tag{15}\end{align}6. Calibrate $K_0$ by asusming that the capital stock is initially equal to its steady state value:\begin{align}K_0 & = \left(\frac{s}{\delta + n + g'}\right) Y_0 \tag{16}\end{align}Then, armed with calibrated values for $K_0$ and $\delta$, compute $K_1, K_2, \ldots$ recursively. See Timothy Kehoe's notes for more information on the perpetual inventory method:http://users.econ.umn.edu/~tkehoe/classes/GrowthAccountingNotes.pdf ###Code # Set the capital share of income alpha = 0.35 # Average saving rate s = np.mean(invest.data/gdp.data) # Average quarterly labor hours growth rate n = (hours.data[-1]/hours.data[0])**(1/(len(hours.data)-1)) - 1 # Average quarterly real GDP growth rate g = ((gdp.data[-1]/gdp.data[0])**(1/(len(gdp.data)-1)) - 1) - n # Compute annual depreciation rate depA = fp.series('M1TTOTL1ES000') gdpA = fp.series('gdpa') gdpA = gdpA.window([gdp.data.index[0],gdp.data.index[-1]]) gdpA,depA = fp.window_equalize([gdpA,depA]) deltaKY = np.mean(depA.data/gdpA.data) delta = (n+g)*deltaKY/(s-deltaKY) # print calibrated values: print('Avg saving rate: ',round(s,5)) print('Avg annual labor growth:',round(4*n,5)) print('Avg annual gdp growth: ',round(4*g,5)) print('Avg annual dep rate: ',round(4*delta,5)) # Construct the capital series. Note that the GPD and investment data are reported on an annualized basis # so divide by 4 to get quarterly data. capital = np.zeros(len(gdp.data)) capital[0] = gdp.data[0]/4*s/(n+g+delta) for t in range(len(gdp.data)-1): capital[t+1] = invest.data[t]/4 + (1-delta)*capital[t] # Save in a fredpy series capital = fp.to_fred_series(data = capital,dates =gdp.data.index,units = gdp.units,title='Capital stock of the US',frequency='Quarterly') # plot the computed capital series plt.plot(capital.data.index,capital.data,'-',lw=3,alpha = 0.7) plt.ylabel(capital.units) plt.title(capital.title) plt.grid() # Compute TFP tfp = gdp.data/capital.data**alpha/hours.data**(1-alpha) tfp = fp.to_fred_series(data = tfp,dates =gdp.data.index,units = gdp.units,title='TFP of the US',frequency='Quarterly') # Plot the computed capital series plt.plot(tfp.data.index,tfp.data,'-',lw=3,alpha = 0.7) plt.ylabel(tfp.units) plt.title(tfp.title) plt.grid() # Convert each series into per capita using civilian pop 16 and over gdp = gdp.per_capita(civ_pop=True) cons = cons.per_capita(civ_pop=True) invest = invest.per_capita(civ_pop=True) hours = hours.per_capita(civ_pop=True) capital = capital.per_capita(civ_pop=True) # Put GDP, consumption, and investment in units of thousands of dollars per person gdp.data = gdp.data*1000 cons.data = cons.data*1000 invest.data = invest.data*1000 capital.data = capital.data*1000 # Scale hours per person to equal 100 on October (Quarter III) of 2012 hours.data = hours.data/hours.data.loc['2012-10-01']*100 # Make sure TFP series has same length as the rest (since the .per_capita() function may affect the date range. tfp,gdp = fp.window_equalize([tfp,gdp]) # Compute and plot log real GDP, log consumption, log investment, log hours gdp_log = gdp.log() cons_log = cons.log() invest_log = invest.log() hours_log = hours.log() capital_log = capital.log() tfp_log = tfp.log() # HP filter to isolate trend and cyclical components gdp_log_cycle,gdp_log_trend = gdp_log.hp_filter() cons_log_cycle,cons_log_trend = cons_log.hp_filter() invest_log_cycle,invest_log_trend = invest_log.hp_filter() hours_log_cycle,hours_log_trend = hours_log.hp_filter() capital_log_cycle,capital_log_trend = capital_log.hp_filter() tfp_log_cycle,tfp_log_trend = tfp_log.hp_filter() # Create a DataFrame with actual and trend data data = pd.DataFrame({ 'gdp':gdp.data, 'gdp_trend':np.exp(gdp_log_trend.data), 'gdp_cycle':gdp_log_cycle.data, 'consumption':cons.data, 'consumption_trend':np.exp(cons_log_trend.data), 'consumption_cycle':cons_log_cycle.data, 'investment':invest.data, 'investment_trend':np.exp(invest_log_trend.data), 'investment_cycle':invest_log_cycle.data, 'hours':hours.data, 'hours_trend':np.exp(hours_log_trend.data), 'hours_cycle':hours_log_cycle.data, 'capital':capital.data, 'capital_trend':np.exp(capital_log_trend.data), 'capital_cycle':capital_log_cycle.data, 'tfp':tfp.data, 'tfp_trend':np.exp(tfp_log_trend.data), 'tfp_cycle':tfp_log_cycle.data, },index = gdp.data.index) columns_ordered =[] names = ['gdp','consumption','investment','hours','capital','tfp'] for name in names: columns_ordered.append(name) columns_ordered.append(name+'_trend') data[columns_ordered].to_csv('../Csv/rbc_data_actual_trend.csv') # Create a DataFrame with actual, trend, and cycle data columns_ordered =[] names = ['gdp','consumption','investment','hours','capital','tfp'] for name in names: columns_ordered.append(name) columns_ordered.append(name+'_trend') columns_ordered.append(name+'_cycle') data[columns_ordered].to_csv('../Csv/rbc_data_actual_trend_cycle.csv') ###Output _____no_output_____
Lesson4/Activity7.ipynb
###Markdown Activity 2: Extracting data from Packt's websiteExtract the following from Packt website 1) faqs and their answers from https://www.packtpub.com/books/info/packt/faq 2) Phone numbers and emails from https://www.packtpub.com/books/info/packt/terms-and-conditions ###Code import urllib3 import requests from bs4 import BeautifulSoup r = requests.get('https://www.packtpub.com/books/info/packt/faq') r.status_code r.text #403 means forbidden http = urllib3.PoolManager() rr = http.request('GET', 'https://www.packtpub.com/books/info/packt/faq') rr.status rr.data[:1000] soup = BeautifulSoup(rr.data, 'html.parser') questions = [question.text.strip() for question in soup.find_all('div',attrs={"class":"faq-item-question-text float-left"})] questions answers = [answer.text.strip() for answer in soup.find_all('div',attrs={"class":"faq-item-answer"})] answers import pandas as pd pd.DataFrame({'questions':questions, 'answers':answers}).head() ###Output _____no_output_____ ###Markdown Extrcat phone/fax numbers and email address from terms and conditions page of Packt ###Code rr_tc = http.request('GET', 'https://www.packtpub.com/books/info/packt/terms-and-conditions') rr_tc.status soup2 = BeautifulSoup(rr_tc.data, 'html.parser') import re set(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",soup2.text)) re.findall(r"\+\d{2}\s{1}\(0\)\s\d{3}\s\d{3}\s\d{3}",soup2.text) ###Output _____no_output_____ ###Markdown Activity 2: Extracting data from Packt's websiteExtract the following from Packt website 1) faqs and their answers from https://www.packtpub.com/books/info/packt/faq 2) Phone numbers and emails from https://www.packtpub.com/books/info/packt/terms-and-conditions ###Code import urllib3 import requests from bs4 import BeautifulSoup r = requests.get('https://www.packtpub.com/books/info/packt/faq') r.status_code r.text #403 means forbidden http = urllib3.PoolManager() rr = http.request('GET', 'https://www.packtpub.com/books/info/packt/faq') rr.status rr.data[:1000] soup = BeautifulSoup(rr.data, 'html.parser') questions = [question.text.strip() for question in soup.find_all('div',attrs={"class":"faq-item-question-text float-left"})] questions answers = [answer.text.strip() for answer in soup.find_all('div',attrs={"class":"faq-item-answer"})] answers import pandas as pd pd.DataFrame({'questions':questions, 'answers':answers}).head() ###Output _____no_output_____ ###Markdown Extrcat phone/fax numbers and email address from terms and conditions page of Packt ###Code rr_tc = http.request('GET', 'https://www.packtpub.com/books/info/packt/terms-and-conditions') rr_tc.status soup2 = BeautifulSoup(rr_tc.data, 'html.parser') import re set(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",soup2.text)) re.findall(r"\+\d{2}\s{1}\(0\)\s\d{3}\s\d{3}\s\d{3}",soup2.text) ###Output _____no_output_____
studies/2 - Computer Vision 1/Atividade2.ipynb
###Markdown Atividade 2 - Visรฃo Computacional ###Code import sys import cv2 import matplotlib.pyplot as plt import fotogrametria if (sys.version_info > (3, 0)): # Modo Python 3 import importlib importlib.reload(fotogrametria) # Para garantir que o Jupyter sempre relรช seu trabalho else: # Modo Python 2 reload(fotogrametria) ###Output _____no_output_____ ###Markdown **Deadline: 02/09** O entregรกvel de toda esta atividade vai ser um cรณdigo-fonte em *Python*. Vocรชs *devem* fazer vรญdeos demonstrando o resultado e a postar (pode ser privadamente) no YouTube. Para quem usar Linux o atalho para gravar รฉ Ctrl + Alt + Shift + RVocรช pode entregar enviando o cรณdigo para o Github e postando o vรญdeo *ou* mostrando ao vivo aos professores**Nรฃo programe no Jupyter** - use um programa Python**Link para o vรญdeo**: Vocรช deve ter uma folha com o padrรฃo anexo. *Dica:* Se nรฃo tiver, รฉ possรญvel fazer tambรฉm com um tablet ou *smartphone* Parte 1 - calibraรงรฃo Ouรงa a explicaรงรฃo do professor sobre o modelo de cรขmera *pinhole* e desenhe a medida $f$ que separa o plano focal da pupila da cรขmera Modifique a funรงรฃo `encontrar_foco` do arquivo [fotogrametria.py](fotogrametria.py) para calcular o foco, teste sua funรงรฃo com a celula abaixo ###Code f = fotogrametria.encontrar_foco(80,12.70,100) print(f) # Saida Esperada: # 629.9212598425197 ###Output 629.9212598425197 ###Markdown Parte 2 Segmentar os CirculosModifique a funรงรฃo `segmenta_circulo_ciano` e `segmenta_circulo_magenta` do arquivo [fotogrametria.py](fotogrametria.py) para segmentar os circulos cianos e magenta ###Code img = cv2.imread("img/calib01.jpg") hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) segmentado_ciano = fotogrametria.segmenta_circulo_ciano(hsv) segmentado_magenta = fotogrametria.segmenta_circulo_magenta(hsv) f, ax = plt.subplots(1, 3, figsize=(16,6)) ax[0].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) ax[1].imshow(segmentado_ciano, cmap="gray") ax[2].imshow(segmentado_magenta, cmap="gray") ax[0].set_title('original') ax[1].set_title('segmentado_ciano') ax[2].set_title('segmentado_magenta') ax[0].axis('off') ax[1].axis('off') ax[2].axis('off') plt.show() # Saida Esperada: # Uma imagem com o circulo ciano em branco e outro com o magenta ###Output _____no_output_____ ###Markdown Parte 3 Encontrar os maior contorno para cada um dos CirculosModifique a funรงรฃo `encontrar_maior_contorno` do arquivo [fotogrametria.py](fotogrametria.py) para calcular apenas o maior contorno do circulo ciano e o maior contorno do circulo magenta. ###Code # Desenhar os Contornos # Ciano ccontorno_ciano = fotogrametria.encontrar_maior_contorno(segmentado_ciano) contornos_img = img.copy() if ccontorno_ciano is not None: cv2.drawContours(contornos_img, [ccontorno_ciano], -1, [0, 0, 255], 3) # Magenta contorno_magenta = fotogrametria.encontrar_maior_contorno(segmentado_magenta) if contorno_magenta is not None: cv2.drawContours(contornos_img, [contorno_magenta], -1, [255, 0, 0], 3) plt.axis('off') plt.imshow(cv2.cvtColor(contornos_img, cv2.COLOR_BGR2RGB)) # Saida Esperada: # Uma imagem com o um contorno desenhado em ambos os circulos (Circulo vemermelho no ciano e azul no magenta) ###Output _____no_output_____ ###Markdown Parte 4 Com os contornos, calcular o centro dos circulosModifique a funรงรฃo `encontrar_centro_contorno` do arquivo [fotogrametria.py](fotogrametria.py) para calcular a posiรงรฃo, em pixel, do centro de cada circulo. ###Code # Encontrar Centro dos contornos if ccontorno_ciano is not None and contorno_magenta is not None: centro_ciano = fotogrametria.encontrar_centro_contorno(ccontorno_ciano) centro_magenta = fotogrametria.encontrar_centro_contorno(contorno_magenta) cv2.line(contornos_img, centro_ciano, centro_magenta, (0, 255, 0), thickness=3, lineType=8) plt.axis('off') plt.imshow(cv2.cvtColor(contornos_img, cv2.COLOR_BGR2RGB)) # Saida Esperada: # Uma imagem uma linha no conectando o centros dos circulos ###Output _____no_output_____ ###Markdown Parte 5 Calcular a distancia entre os circulosModifique a funรงรฃo `calcular_h` do arquivo [fotogrametria.py](fotogrametria.py) para calcular o valor da distancia vertical entre os circulos e com isso, calcular o foco da camera. ###Code try: h = fotogrametria.calcular_h(centro_ciano, centro_magenta) print('Distancia entre os circulos = %s'%h) f = fotogrametria.encontrar_foco(80,12.70,h) print('Distancia focal = %s'%f) except: pass # Saida Esperada: # Distancia entre os circulos = 161 # Distancia focal = 1014.1732283464568 ###Output Distancia entre os circulos = 161.0 Distancia focal = 1014.1732283464568 ###Markdown Parte 6 Calcular atรฉ a imagemAgora, utilizando o foco encontrado e as funรงรตes para calcular a distancia dos circulos, modifique as funรงรตes `calcular_distancia_entre_circulos` e `encontrar_distancia` do arquivo [fotogrametria.py](fotogrametria.py) para calcular a distancia entre os circulos, e com o foco, a distancia, em cm, atรฉ a imagem. ###Code img_test = cv2.imread("img/test01.jpg") h, centro_ciano, centro_magenta, contornos_img = fotogrametria.calcular_distancia_entre_circulos(img_test) d = fotogrametria.encontrar_distancia(f,12.70,h) print('Distancia ate a imagem = %s'%d) # Saida Esperada: # Distancia ate a imagem = 40.124610591900314 ###Output Distancia ate a imagem = 40.124415891157206 ###Markdown Parte 7 Calcular anguloModifique a funรงรฃo `calcular_angulo_com_horizontal_da_imagem` do arquivo [fotogrametria.py](fotogrametria.py) para calcular o angulo dos circulos com relaรงรฃo a horizontal da imagem ###Code img_test = cv2.imread("img/angulo04.jpg") h, centro_ciano, centro_magenta, contornos_img = fotogrametria.calcular_distancia_entre_circulos(img_test) d = fotogrametria.encontrar_distancia(f,12.70,h) angulo = fotogrametria.calcular_angulo_com_horizontal_da_imagem(centro_ciano, centro_magenta) print('Angulo deu %s graus'%angulo) # Saida Esperada: # angulo01.jpg: Angulo de 90.0 graos # angulo02.jpg: Angulo de 141.9836231u755637 graus # angulo03.jpg: Angulo de 178.929175u4521327 graus # angulo04.jpg: Angulo de 28.7246296098617 graus ###Output Angulo deu 28.56758430890487 graus
src/test/datascience/uiTests/notebooks/ipyvolume_widgets.ipynb
###Markdown Install ipyvolumepip install ipyvolume ###Code import ipyvolume as ipv import numpy as np x, y, z, u, v, w = np.random.random((6, 1000))*2-1 selected = np.random.randint(0, 1000, 100) ipv.figure() quiver = ipv.quiver(x, y, z, u, v, w, size=5, size_selected=8, selected=selected) from ipywidgets import FloatSlider, ColorPicker, VBox, jslink size = FloatSlider(min=0, max=30, step=0.1) size_selected = FloatSlider(min=0, max=30, step=0.1) color = ColorPicker() color_selected = ColorPicker() jslink((quiver, 'size'), (size, 'value')) jslink((quiver, 'size_selected'), (size_selected, 'value')) jslink((quiver, 'color'), (color, 'value')) jslink((quiver, 'color_selected'), (color_selected, 'value')) VBox([ipv.gcc(), size, size_selected, color, color_selected]) import ipyvolume as ipv import numpy as np s = 1/2**0.5 # 4 vertices for the tetrahedron x = np.array([1., -1, 0, 0]) y = np.array([0, 0, 1., -1]) z = np.array([-s, -s, s, s]) # and 4 surfaces (triangles), where the number refer to the vertex index triangles = [(0, 1, 2), (0, 1, 3), (0, 2, 3), (1,3,2)] ipv.figure() # we draw the tetrahedron mesh = ipv.plot_trisurf(x, y, z, triangles=triangles, color='orange') # and also mark the vertices ipv.scatter(x, y, z, marker='sphere', color='blue') ipv.xyzlim(-2, 2) ipv.show() ###Output _____no_output_____ ###Markdown Install ipyvolumepip install ipyvolume ###Code import ipyvolume as ipv import numpy as np x, y, z, u, v, w = np.random.random((6, 1000))*2-1 selected = np.random.randint(0, 1000, 100) ipv.figure() quiver = ipv.quiver(x, y, z, u, v, w, size=5, size_selected=8, selected=selected) from ipywidgets import FloatSlider, ColorPicker, VBox, jslink size = FloatSlider(min=0, max=30, step=0.1) size_selected = FloatSlider(min=0, max=30, step=0.1) color = ColorPicker() color_selected = ColorPicker() jslink((quiver, 'size'), (size, 'value')) jslink((quiver, 'size_selected'), (size_selected, 'value')) jslink((quiver, 'color'), (color, 'value')) jslink((quiver, 'color_selected'), (color_selected, 'value')) VBox([ipv.gcc(), size, size_selected, color, color_selected]) import ipyvolume as ipv import numpy as np s = 1/2**0.5 # 4 vertices for the tetrahedron x = np.array([1., -1, 0, 0]) y = np.array([0, 0, 1., -1]) z = np.array([-s, -s, s, s]) # and 4 surfaces (triangles), where the number refer to the vertex index triangles = [(0, 1, 2), (0, 1, 3), (0, 2, 3), (1,3,2)] ipv.figure() # we draw the tetrahedron mesh = ipv.plot_trisurf(x, y, z, triangles=triangles, color='orange') # and also mark the vertices ipv.scatter(x, y, z, marker='sphere', color='blue') ipv.xyzlim(-2, 2) ipv.show() ###Output _____no_output_____
s5/sheet05.ipynb
###Markdown Osnabrรผck University - Computer Vision (Winter Term 2020/21) - Prof. Dr.-Ing. G. Heidemann, Ulf Krumnack, Axel Schaffland Exercise Sheet 05: Segmentation 2 IntroductionThis week's sheet should be solved and handed in before the end of **Saturday, December 5, 2020**. If you need help (and Google and other resources were not enough), feel free to contact your groups' designated tutor or whomever of us you run into first. Please upload your results to your group's Stud.IP folder. Assignment 0: Math recap (Periodic functions) [0 Points]This exercise is supposed to be very easy, does not give any points, and is voluntary. There will be a similar exercise on every sheet. It is intended to revise some basic mathematical notions that are assumed throughout this class and to allow you to check if you are comfortable with them. Usually you should have no problem to answer these questions offhand, but if you feel unsure, this is a good time to look them up again. You are always welcome to discuss questions with the tutors or in the practice session. Also, if you have a (math) topic you would like to recap, please let us know. **a)** What are periodic functions? Can you provide a definition? YOUR ANSWER HERE **b)** What are *amplitude*, *frequency*, *wave length*, and *phase* of a sine function? How can you change these properties? YOUR ANSWER HERE **c)** How are sine and cosine defined for complex arguments? In what sense does this generalize the real case? YOUR ANSWER HERE Assignment 1: Edge-based segmentation [5 Points] a) GradientsWhat is the gradient of a pixel? How do we calculate the first, how the second derivative of an image? The gradient of a pixel is given by the difference in contrast to its neighboring pixels (4- or 8-neighborhood). The gradient points into the direction with highest divergence. We can imagine an image as a function consisting of two variables (x- and y-axes) and its color shading in each pixel as the outcome. The whole image presents a landscape of valleys and hills in respect to its shading and coloring. A sobel-filtered image presents the first derivative of each pixel while the laplace-filter creates the second derivative. b) Edge linkingDescribe in your own words the idea of edge linking. What is the goal? Why does it not necessarily yield closededge contours? Edge linking is a variant of **edge-based segmentation** that uses gradient magnitude to link edges. The stronger the gradient value at position $(x, y)$, the higher the probability that it is a real edge and not noise. If $(x, y)$ belongs to an edge, the idea is that there should be more edge pixels orthogonal to the gradient direction.**Goal:** Find segments by a search for boundaries between regions of different features.**TODO: Why not closed edge contours?** c) Zero crossingsExplain what zero crossings are. Why does the detection of zero crossings always lead to closed contours? A zero-crossing in general is a point where the sign of a function changes, represented by an intercept of the axis in the graph of the function. In our context, zero crossings of the second derivative correspond to edges.**TODO:** why lead to closed contours? c) Zero crossings (implementation)Provide an implementation of the zero crossing procedure described in (CV-07 slide 71). To get sensible results you should smooth the image before applying the Laplacian filter, e.g. using the Laplacian of a Gaussian (you may use buildin functions for the filterings steps). ###Code from skimage import filters from imageio import imread import matplotlib.pyplot as plt from scipy.ndimage import shift import numpy as np %matplotlib inline img = imread('images/swampflower.png').astype(float) img /= img.max() # Now compute edges and then zero crossings using the 4-neighborhood and the 8-neighborhood # YOUR CODE HERE def four_shift(edges): x_shift = shift(edges, (1, 0)) y_shift = shift(edges, (0, 1)) return (edges * x_shift <= 0) + (edges * y_shift <= 0) def eight_shift(edges): tmp = four_shift(edges) xy_shift_one = shift(edges, (1, -1)) xy_shift_two = shift(edges, (1, 1)) return tmp + (edges * xy_shift_one <= 0) + (edges * xy_shift_two <= 0) smooth_img = filters.gaussian(img, sigma=5) edges = filters.laplace(smooth_img) zero_crossings_n4 = four_shift(edges) zero_crossings_n8 = eight_shift(edges) plt.figure(figsize=(12, 12)) plt.gray() plt.subplot(2,2,1); plt.axis('off'); plt.imshow(img); plt.title('original') plt.subplot(2,2,2); plt.axis('off'); plt.imshow(edges); plt.title('edges') plt.subplot(2,2,3); plt.axis('off'); plt.imshow(zero_crossings_n4); plt.title('zero crossings (N4)') plt.subplot(2,2,4); plt.axis('off'); plt.imshow(zero_crossings_n8); plt.title('zero crossings (N8)' ) plt.show() ###Output _____no_output_____ ###Markdown Assignment 2: Watershed transform [5 Points] a) Watershed transformExplain in your own words the idea of watershed transform. How do the two different approaches from the lecture work? Why does watershed transform always give a closed contour? Watershed transform finds segments included by edges. The gradient magnitude image represents the heights of the watershed as segment boundaries. The water flows downhill to a local minimum and the result are segments enclosed by edges, but ignoring the differing strength of edges (noise).Two methods:- **rain**: compute for each pixel the local minimum (where the water gathers)- **flood**: starting at local minima, the groundwater floats the relief**TODO:** Why does watershed transform always give a closed contour? b) ImplementationNow implement the watershed transform using the flooding approach (CV-07 slide 76, but note, that the algorithm presented there is somewhat simplified!). Obviously, buildin functions for computing watershed transform are not allowed, but all other functions may be used. In this example we appply the watershed transform to a distance transformed image, so you **do not** have to take the gradient image, but can apply the watershed transform directly. ###Code import numpy as np import imageio import matplotlib.pyplot as plt %matplotlib inline def watershed(img, step=1): """ Perform watershed transform on a grayscale image. Args: img (ndarray): The grayscale image. step (int): The rise of the waterlevel at each step. Default 1. Returns: edges (ndarray): A binary image containing the watersheds. """ NO_LABEL = 0 WATERSHED = 1 new_label = 2 # initialize labels label = np.zeros(img.shape, np.uint16) # YOUR CODE HERE for h in range(int(img.max())): for x in range(img.shape[0] - 1): for y in range(img.shape[1] - 1): if h >= img[x][y] and label[x][y] == 0: # flooded - 3 cases nl = get_neighbor_labels(label, x, y) # isolated if np.sum(nl) == 0: label[x][y] = new_label # segment elif np.sum(nl) == np.all(nl == nl[0]): label[x][y] = nl[0] # watershed else: label[x][y] = WATERSHED for x in range(label.shape[0]): for y in range(label.shape[1]): if label[x][y] == WATERSHED: label[x][y] = 0 else: label[x][y] = 1 return label def get_neighbor_labels(label, x, y): return [ label[x - 1][y - 1], label[x][y - 1], label[x + 1][y - 1], label[x - 1][y], label[x + 1][y], label[x - 1][y + 1], label[x][y + 1], label[x + 1][y + 1] ] img = imageio.imread('images/dist_circles.png', pilmode='L') plt.gray() plt.subplot(1,2,1) plt.axis('off') plt.imshow(img) plt.subplot(1,2,2) plt.axis('off') plt.imshow(watershed(img)) plt.show() ###Output _____no_output_____ ###Markdown c) Application: mazeYou can use watershed transform to find your way through a maze. To do so, first apply a distance transform to the maze and then flood the result. The watershed will show you the way through the maze. Explain why this works.You can use build-in functions instead of your own watershed function. ###Code import numpy as np import imageio import matplotlib.pyplot as plt from scipy.ndimage.morphology import distance_transform_edt from skimage.segmentation import watershed %matplotlib inline img = imageio.imread('images/maze2.png', pilmode = 'L') # 'maze1.png' or 'maze2.png' result = img[:, :, np.newaxis].repeat(3, 2) # YOUR CODE HERE dt = distance_transform_edt(img) water = watershed(dt) result[water == 1] = (255, 0, 0) plt.figure(figsize=(10, 10)) plt.title('Solution') plt.axis('off') plt.gray() plt.imshow(result) plt.show() ###Output _____no_output_____ ###Markdown The solution path is the watershed between the catchment basins. Assignment 3: $k$-means segmentation [5 Points] **a)** Explain the idea of $k$-means clustering and how it can be used for segmentation. Color segmentation in general is used to find segments of constant color. $k-$Means in general is used to separate data into $k$ clusters of similar properties represented by a cluster center.$k-$Means for color segmentation starts with with $k$ random RGB values as cluster centers and assigns each RGB value in the image to its closestcluster center based on the RGB difference. Afterwards, a new center is computed for each cluster based on its average RGB value. It's an iterative procedure of the two steps 'center computation' and 'cluster assignment update' until convergence up to a certain threshold is reached. **b)** Implement k-means clustering for color segmentation of an RGB image (no use of `scipy.cluster.vq.kmeans` or similar functions allowed here, but you may use functions like `numpy.mean`, `scipy.spatial.distance.pdist` and similar utility functions). Stop calculation when center vectors do not change more than a predefined threshold. Avoid empty clusters by re-initializing the corresponding center vector. (Empirically) determine a good value for $k$ for clustering the image 'peppers.png'.**Bonus** If you want you can visualize the intermediate steps of the clustering process. First lets take a look at how our image looks in RGB colorspace. ###Code from mpl_toolkits.mplot3d import Axes3D from imageio import imread import matplotlib.pyplot as plt %matplotlib inline img = imread('images/peppers.png') vec = img.reshape((-1, img.shape[2])) vec_scaled = vec / 255 fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111, projection='3d') ret = ax.scatter(vec[:, 0], vec[:, 1], vec[:, 2], c=vec_scaled, marker='.') import numpy as np from scipy.spatial import distance from IPython import display from imageio import imread import time import matplotlib.pyplot as plt %matplotlib inline def kmeans_rgb(img, k, threshold=0, do_display=None): """ k-means clustering in RGB space. Args: img (numpy.ndarray): an RGB image k (int): the number of clusters threshold (float): Maximal change for convergence criterion. do_display (bool): Whether or not to plot, intermediate steps. Results: cluster (numpy.ndarray): an array of the same size as `img`, containing for each pixel the cluster it belongs to centers (numpy.ndarray): 'number of clusters' x 3 array. RGB color for each cluster center. """ # YOUR CODE HERE # initialize random cluster centers (k random rgb tuples) centers = np.array([np.random.randint(255, size=3) for _ in range(k)]) # list of rgb values in img rgb_list = [[img[x][y][0], img[x][y][1], img[x][y][2]] for x in range(img.shape[0]) for y in range(img.shape[1])] change = np.inf while change > threshold: change = 0 # compute distance between each pair of the two collections of inputs rgb_dist_to_centers = distance.cdist(rgb_list, centers) # assign closest cluster center to each rgb value cluster_for_each_rgb = np.array([np.argmin(distances) for distances in rgb_dist_to_centers]) for i in range(k): if i in cluster_for_each_rgb: # determine colors that are assigned to the currently considered cluster colors = [rgb_list[x] for x in range(len(rgb_list)) if cluster_for_each_rgb[x] == i] # update cluster center new_center = [] for channel in range(3): avg = 0 for x in colors: avg += x[channel] new_center.append(int(avg / len(colors))) else: # re-initialize center new_center = np.random.randint(255, size=3) change += distance.cdist([centers[i]], [new_center]) centers[i] = new_center return cluster_for_each_rgb.reshape((img.shape[0], img.shape[1])), centers img = imread('images/peppers.png') cluster, centers = kmeans_rgb(img, k=7, threshold=0, do_display=True) plt.imshow(centers[cluster]) plt.show() ###Output _____no_output_____ ###Markdown **c)** Now do the same in the HSV space (remember its special topological structure). Check if you can improve the results by ignoring some of the HSV channels. ###Code import numpy as np import matplotlib.pyplot as plt from scipy.spatial import distance from skimage import color from imageio import imread %matplotlib inline # from matplotlib.colors import rgb_to_hsv, hsv_to_rgb img = imread('images/peppers.png', pilmode = 'RGB') def kmeans_hsv(img, k, threshold = 0): """ k-means clustering in HSV space. Args: img (numpy.ndarray): an HSV image k (int): the number of clusters threshold (float): Results: cluster (numpy.ndarray): an array of the same size as `img`, containing for each pixel the cluster it belongs to centers (numpy.ndarray): an array """ # YOUR CODE HERE # initialize random cluster centers (k random hsv tuples) centers = np.array([np.random.uniform(0, 1, size=3) for _ in range(k)]) # list of rgb values in img hsv_list = [[img[x][y][0], img[x][y][1], img[x][y][2]] for x in range(img.shape[0]) for y in range(img.shape[1])] change = np.inf while change > threshold: change = 0 # compute distance between each pair of the two collections of inputs hsv_dist_to_centers = distance.cdist(hsv_list, centers) # assign closest cluster center to each hsv value cluster_for_each_hsv = np.array([np.argmin(distances) for distances in hsv_dist_to_centers]) for i in range(k): if i in cluster_for_each_hsv: # determine colors that are assigned to the currently considered cluster colors = [hsv_list[x] for x in range(len(hsv_list)) if cluster_for_each_hsv[x] == i] # update cluster center new_center = [] for channel in range(3): avg = 0 for x in colors: avg += x[channel] new_center.append(avg / len(colors)) else: # re-initialize center new_center = np.random.uniform(0, 1, size=3) change += distance.cdist([centers[i]], [new_center]) centers[i] = new_center return cluster_for_each_hsv.reshape((img.shape[0], img.shape[1])), centers img_hsv = color.rgb2hsv(img) k = 7 theta = 0.01 cluster, centers_hsv = kmeans_hsv(img_hsv[:,:,:], k, theta) if (centers_hsv.shape[1] == 3): plt.imshow(color.hsv2rgb(centers_hsv[cluster])) else: plt.gray() plt.imshow(np.squeeze(centers_hsv[cluster])) plt.show() ###Output _____no_output_____ ###Markdown Assignment 4: Interactive Region Growing [5 Points]Implement flood fill as described in (CV07 slides 123ff.).In a recursive implementation the floodfill function is called for the seed pixel. In the function a recursive call for the four neighbouring pixels is made, if the color of the pixel, the function is called with, is similar to the seed color. If this is the case the pixel is added to the region. [Other](https://en.wikipedia.org/wiki/Flood_fill) more elegant solutions exist aswell.The function `on_press` is called when a mouse button is pressed inside the canvas. From there call `floodfill`. Use the filtered hsv image `img_filtered` for your computation, and show the computed region around the seed point (the position where the mousebutton was pressed) in the original image. You may use a mask to save which pixels belong the the region (and to save which pixels you already visited). Hint: If you can not see the image, try restarting the kernel. ###Code %matplotlib widget import imageio import math import numpy as np from matplotlib import pyplot as plt from skimage import color import scipy.ndimage as ndimage from sys import setrecursionlimit from scipy.spatial import distance threshold = .08; setrecursionlimit(100000) def floodfill(img, mask, x, y, color): """Recursively grows region around seed point Args: img (ndarray): The image in which the region is grown mask (boolean ndarray): Visited pixels which belong to the region. x (uint): X coordinate of the pixel. Checks if this pixels belongs to the region y (uint): Y coordinate of the pixel. color (list): The color at the seed position Return: mask (boolean ndarray): mask containing region """ # YOUR CODE HERE if distance.cdist([img[x][y]], [color]) < threshold: mask[x,y] = True eight_neighbourhood = get_neighbors(x, y) for x, y in eight_neighbourhood: if not mask[x][y]: mask = floodfill(img, mask, x, y, color) return mask def get_neighbors(x, y): return [ (x - 1, y - 1), (x, y - 1), (x + 1, y - 1), (x - 1, y), (x + 1, y), (x - 1, y + 1), (x, y + 1), (x + 1, y + 1) ] def on_press(event): """Mouse button press event handler Args: event: The mouse event """ y = math.floor(event.xdata) x = math.floor(event.ydata) color = img_filtered[x, y, :] # YOUR CODE HERE mask = floodfill(img_filtered, np.zeros((img.shape[0], img.shape[1])), x, y, color) img[mask == True] = (255, 255, 255) plt.imshow(img) fig.canvas.draw() def fill_from_pixel(img, img_filtered, x,y): """ Calls floodfill from a pixel position Args: img (ndarray): IO image on which fill is drawn. img_filtered (ndarray): Processing image on which floodfill is computed. x (uint): Coordinates of pixel position. y (uint): Coordinates of pixel position. Returns: img (ndarray): Image with grown area in white """ mask = np.zeros((img.shape[0],img.shape[1])) color = img_filtered[x,y, :] mask = floodfill(img_filtered, mask, x, y, color) img[mask] = (255, 255, 255) return img img = imageio.imread('images/peppers.png') img_hsv = color.rgb2hsv(img) img_filtered = ndimage.median_filter(img_hsv, 5) #img = fill_from_pixel(img, img_filtered, 200, 300) # Comment in to deactivate simple testing at fixed position fig = plt.figure() ax = fig.add_subplot(111) plt.imshow(img) fig.canvas.mpl_connect('button_press_event', on_press) plt.show() ###Output _____no_output_____
00_ImageWang_Inpainting_baseline_ep80_192.ipynb
###Markdown Image็ฝ‘ Submission `192x192` This contains a submission for the Image็ฝ‘ leaderboard in the `128x128` category.In this notebook we:1. Train on 1 pretext task: - Train a network to do image inpatining on Image็ฝ‘'s `/train`, `/unsup` and `/val` images. 2. Train on 4 downstream tasks: - We load the pretext weights and train for `5` epochs. - We load the pretext weights and train for `20` epochs. - We load the pretext weights and train for `80` epochs. - We load the pretext weights and train for `200` epochs. Our leaderboard submissions are the accuracies we get on each of the downstream tasks. ###Code import json import torch import numpy as np from functools import partial from fastai2.layers import Mish, MaxPool, LabelSmoothingCrossEntropy from fastai2.learner import Learner from fastai2.metrics import accuracy, top_k_accuracy from fastai2.basics import DataBlock, RandomSplitter, GrandparentSplitter, CategoryBlock from fastai2.optimizer import ranger, Adam, SGD, RMSProp from fastai2.vision.all import * from fastai2.vision.core import * from fastai2.vision.augment import * from fastai2.vision.learner import unet_learner, unet_config from fastai2.vision.models.xresnet import xresnet50, xresnet34 from fastai2.data.transforms import Normalize, parent_label from fastai2.data.external import download_url, URLs, untar_data from fastcore.utils import num_cpus from torch.nn import MSELoss from torchvision.models import resnet34 ###Output _____no_output_____ ###Markdown Pretext Task: Image Inpainting ###Code # We create this dummy class in order to create a transform that ONLY operates on images of this type # We will use it to create all input images class PILImageInput(PILImage): pass class RandomCutout(RandTransform): "Picks a random scaled crop of an image and resize it to `size`" split_idx = None def __init__(self, min_n_holes=5, max_n_holes=10, min_length=5, max_length=50, **kwargs): super().__init__(**kwargs) self.min_n_holes=min_n_holes self.max_n_holes=max_n_holes self.min_length=min_length self.max_length=max_length def encodes(self, x:PILImageInput): """ Note that we're accepting our dummy PILImageInput class fastai2 will only pass images of this type to our encoder. This means that our transform will only be applied to input images and won't be run against output images. """ n_holes = np.random.randint(self.min_n_holes, self.max_n_holes) pixels = np.array(x) # Convert to mutable numpy array. FeelsBadMan h,w = pixels.shape[:2] for n in range(n_holes): h_length = np.random.randint(self.min_length, self.max_length) w_length = np.random.randint(self.min_length, self.max_length) h_y = np.random.randint(0, h) h_x = np.random.randint(0, w) y1 = int(np.clip(h_y - h_length / 2, 0, h)) y2 = int(np.clip(h_y + h_length / 2, 0, h)) x1 = int(np.clip(h_x - w_length / 2, 0, w)) x2 = int(np.clip(h_x + w_length / 2, 0, w)) pixels[y1:y2, x1:x2, :] = 0 return Image.fromarray(pixels, mode='RGB') torch.cuda.set_device(4) # Default parameters gpu=None lr=1e-2 size=128 sqrmom=0.99 mom=0.9 eps=1e-6 epochs=15 bs=64 mixup=0. opt='ranger', arch='xresnet50' sh=0. sa=0 sym=0 beta=0. act_fn='Mish' fp16=0 pool='AvgPool', dump=0 runs=1 meta='' # Chosen parameters lr=8e-3 sqrmom=0.99 mom=0.95 eps=1e-6 bs=64 opt='ranger' sa=1 fp16=1 #NOTE: My GPU cannot run fp16 :'( arch='xresnet50' pool='MaxPool' gpu=0 # NOTE: Normally loaded from their corresponding string m = xresnet34 act_fn = Mish pool = MaxPool def get_dbunch(size, bs, sh=0., workers=None): if size<=160: path = URLs.IMAGEWANG_160 else: path = URLs.IMAGEWANG source = untar_data(path) if workers is None: workers = min(8, num_cpus()) #CHANGE: Input is ImageBlock(cls=PILImageInput) #CHANGE: Output is ImageBlock #CHANGE: Splitter is RandomSplitter (instead of on /val folder) item_tfms=[RandomResizedCrop(size, min_scale=0.35), FlipItem(0.5), RandomCutout] # batch_tfms=RandomErasing(p=0.9, max_count=3, sh=sh) if sh else None batch_tfms = [Normalize.from_stats(*imagenet_stats)] dblock = DataBlock(blocks=(ImageBlock(cls=PILImageInput), ImageBlock), splitter=RandomSplitter(0.1), get_items=get_image_files, get_y=lambda o: o, item_tfms=item_tfms, batch_tfms=batch_tfms) return dblock.dataloaders(source, path=source, bs=bs, num_workers=workers) name = 'imagewang_inpainting_80_192.pth' # Use the Ranger optimizer opt_func = partial(ranger, mom=mom, sqr_mom=sqrmom, eps=eps, beta=beta) size = 192 bs = 64 dbunch = get_dbunch(size, bs, sh=sh) #CHANGE: We're predicting pixel values, so we're just going to predict an output for each RGB channel dbunch.vocab = ['R', 'G', 'B'] len(dbunch.train.dataset), len(dbunch.valid.dataset) dbunch.show_batch() learn = unet_learner(dbunch, partial(m, sa=sa), pretrained=False, opt_func=opt_func, metrics=[], loss_func=MSELoss()).to_fp16() cbs = MixUp(mixup) if mixup else [] learn.fit_flat_cos(80, lr, wd=1e-2, cbs=cbs) # I'm not using fastai2's .export() because I only want to save # the model's parameters. torch.save(learn.model[0].state_dict(), name) ###Output _____no_output_____ ###Markdown Downstream Task: Image Classification ###Code def get_dbunch(size, bs, sh=0., workers=None): if size<=224: path = URLs.IMAGEWANG_160 else: path = URLs.IMAGEWANG source = untar_data(path) if workers is None: workers = min(8, num_cpus()) item_tfms=[RandomResizedCrop(size, min_scale=0.35), FlipItem(0.5)] batch_tfms = [Normalize.from_stats(*imagenet_stats)] # batch_tfms=RandomErasing(p=0.9, max_count=3, sh=sh) if sh else None dblock = DataBlock(blocks=(ImageBlock, CategoryBlock), splitter=GrandparentSplitter(valid_name='val'), get_items=get_image_files, get_y=parent_label, item_tfms=item_tfms, batch_tfms=batch_tfms) return dblock.dataloaders(source, path=source, bs=bs, num_workers=workers, )#item_tfms=item_tfms, batch_tfms=batch_tfms) dbunch = get_dbunch(size, bs, sh=sh) m_part = partial(m, c_out=20, act_cls=torch.nn.ReLU, sa=sa, sym=sym, pool=pool) ###Output _____no_output_____ ###Markdown 5 Epochs ###Code epochs = 5 runs = 5 for run in range(runs): print(f'Run: {run}') ch = nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(512, 20)) learn = cnn_learner(dbunch, m_part, opt_func=opt_func, pretrained=False, metrics=[accuracy,top_k_accuracy], loss_func=LabelSmoothingCrossEntropy(), config={'custom_head':ch}) if dump: print(learn.model); exit() if fp16: learn = learn.to_fp16() cbs = MixUp(mixup) if mixup else [] # # Load weights generated from training on our pretext task state_dict = torch.load(name) learn.model[0].load_state_dict(state_dict) learn.unfreeze() learn.fit_flat_cos(epochs, lr, wd=1e-2, cbs=cbs) ###Output Run: 0 ###Markdown * Run 1: 0.362942* Run 2: 0.372868* Run 3: 0.342326* Run 4: 0.360143* Run 5: 0.357088Accuracy: **35.91%** 20 Epochs ###Code epochs = 20 runs = 3 for run in range(runs): print(f'Run: {run}') ch = nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(512, 20)) learn = cnn_learner(dbunch, m_part, opt_func=opt_func, pretrained=False, metrics=[accuracy,top_k_accuracy], loss_func=LabelSmoothingCrossEntropy(), config={'custom_head':ch}) if dump: print(learn.model); exit() if fp16: learn = learn.to_fp16() cbs = MixUp(mixup) if mixup else [] # # Load weights generated from training on our pretext task state_dict = torch.load(name) learn.model[0].load_state_dict(state_dict) learn.unfreeze() learn.fit_flat_cos(epochs, lr, wd=1e-2, cbs=cbs) ###Output Run: 0 ###Markdown * Run 1: 0.592263* Run 2: 0.588445* Run 3: 0.595571Accuracy: **59.21%** 80 epochs ###Code epochs = 80 runs = 1 for run in range(runs): print(f'Run: {run}') ch = nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(512, 20)) learn = cnn_learner(dbunch, m_part, opt_func=opt_func, pretrained=False, metrics=[accuracy,top_k_accuracy], loss_func=LabelSmoothingCrossEntropy(), config={'custom_head':ch}) if dump: print(learn.model); exit() if fp16: learn = learn.to_fp16() cbs = MixUp(mixup) if mixup else [] # # Load weights generated from training on our pretext task state_dict = torch.load(name) learn.model[0].load_state_dict(state_dict) learn.unfreeze() learn.fit_flat_cos(epochs, lr, wd=1e-2, cbs=cbs) ###Output Run: 0 ###Markdown Accuracy: **61.44%** 200 epochs ###Code epochs = 200 runs = 1 for run in range(runs): print(f'Run: {run}') ch = nn.Sequential(nn.AdaptiveAvgPool2d(1), Flatten(), nn.Linear(512, 20)) learn = cnn_learner(dbunch, m_part, opt_func=opt_func, pretrained=False, metrics=[accuracy,top_k_accuracy], loss_func=LabelSmoothingCrossEntropy(), config={'custom_head':ch}) if dump: print(learn.model); exit() if fp16: learn = learn.to_fp16() cbs = MixUp(mixup) if mixup else [] # # Load weights generated from training on our pretext task state_dict = torch.load('imagewang_inpainting_15_epochs_nopretrain.pth') learn.model[0].load_state_dict(state_dict) learn.unfreeze() learn.fit_flat_cos(epochs, lr, wd=1e-2, cbs=cbs) ###Output Run: 0
0_set_up.ipynb
###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install PyTorchThis year we will be using [PyTorch](https://pytorch.org/) as the library to build and train the deep learning models. The library is a little less abstract than other possibilities such as [Keras](https://www.tensorflow.org/guide/keras) but gives a little more control to the user which in turns allows more customisation.In order to install PyTorch we recommend following the [official documentation](https://pytorch.org/get-started/locally/). In your local machine, you will install the version that only has CPU support (i.e. no CUDA version), but in Nabucodonosor you need to install the version with GPU support. CPUInstall pytorch for CPU: (deeplearning) $ conda install pytorch torchvision cpuonly -c pytorch Then just check the version installed is >= 1.7.0 ###Code import torch torch.__version__ ###Output _____no_output_____ ###Markdown GPUThe GPU PyTorch depends on the CUDA version installed. Nabucodonosor has many installations of CUDA in the `/opt/cuda` directory. You need to add `nvcc` to the `$PATH`. For example, to setup for CUDA 10.2, do the following: (deeplearning) $ export PATH=/opt/cuda/10.2/bin:$PATHThat has to be done every time you enter nabucodonosor, to avoid that add it to your `.bashrc` file: (deeplearning) $ echo "export PATH=/opt/cuda/10.2/bin:$PATH" >> $HOME/.bashrcThen, install the PyTorch library: (deeplearning) $ conda install pytorch torchvision cudatoolkit=10.2 -c pytorchCheck if this is working by running the following cell: ###Code torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Google ColabIn case you want to install PyTorch on a Google Colab, is possible, but first you need to check what version of `nvcc` is running. For that run the following: ###Code !nvcc --version ###Output nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Thu_Jan_28_19:32:09_PST_2021 Cuda compilation tools, release 11.2, V11.2.142 Build cuda_11.2.r11.2/compiler.29558016_0 ###Markdown According to what the previous cell tells you, you'll need to install the proper drivers, with `pip` instead of conda. Please refer to the [getting started](https://pytorch.org/get-started/locally/) page and check what to do. Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Finally, `tqdm` is a handful progress bar to keep track of different processes. (deeplearning) $ conda install gensim mlflow tqdm -c conda-forgeIf you have problems importing `gensim` and get this error: ImportError: cannot import name 'open' from 'smart_open' (C:\ProgramData\Anaconda3\lib\site-packages\smart_open\__init__.py)Then try updating `smart_open`: (deeplearning) $ conda update smart_open Download embeddings and dataset CIFAR10The dataset we will use (CIFAR10) is part of the `torchvision` package, which makes it fairly easy to download. You can learn more details on it [here](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.htmlloading-and-normalizing-cifar10): ###Code import torchvision torchvision.datasets.CIFAR10(root='./data', download=True); ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz ###Markdown Glove Embeddings and IMDB reviews DatasetSome examples that we will run for text classification using Convolutional Neural Networks require the Glove Embeddings as well as the IMDB reviews dataset: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/glove.6B.50d.txt.gz -o ./data/glove.6B.50d.txt.gz curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/imdb_reviews.csv.gz -o ./data/imdb_reviews.csv.gz ###Output % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 6 65.9M 6 4224k 0 0 12.7M 0 0:00:05 --:--:-- 0:00:05 12.6M 58 65.9M 58 38.6M 0 0 29.1M 0 0:00:02 0:00:01 0:00:01 29.1M 100 65.9M 100 65.9M 0 0 31.5M 0 0:00:02 0:00:02 --:--:-- 31.5M % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 29 25.3M 29 7616k 0 0 33.2M 0 --:--:-- --:--:-- --:--:-- 33.0M 100 25.3M 100 25.3M 0 0 35.0M 0 --:--:-- --:--:-- --:--:-- 35.0M ###Markdown MeLi Challenge 2019 DatasetFor the course project, we will be using a dataset based on the 2019 MeLi Challenge dataset, for automatic classification of products categories: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/meli-challenge-2019.tar.bz2 -o ./data/meli-challenge-2019.tar.bz2 tar jxvf ./data/meli-challenge-2019.tar.bz2 -C ./data/ ###Output meli-challenge-2019/ meli-challenge-2019/spanish.test.jsonl.gz meli-challenge-2019/portuguese.validation.jsonl.gz meli-challenge-2019/portuguese.train.jsonl.gz meli-challenge-2019/spanish.train.jsonl.gz meli-challenge-2019/spanish_token_to_index.json.gz meli-challenge-2019/portuguese_token_to_index.json.gz meli-challenge-2019/spanish.validation.jsonl.gz meli-challenge-2019/portuguese.test.jsonl.gz ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install PyTorchThis year we will be using [PyTorch](https://pytorch.org/) as the library to build and train the deep learning models. The library is a little less abstract than other possibilities such as [Keras](https://www.tensorflow.org/guide/keras) but gives a little more control to the user which in turns allows more customisation.In order to install PyTorch we recommend following the [official documentation](https://pytorch.org/get-started/locally/). In your local machine, you will install the version that only has CPU support (i.e. no CUDA version), but in Nabucodonosor you need to install the version with GPU support. CPUInstall pytorch for CPU: (deeplearning) $ conda install pytorch torchvision cpuonly -c pytorch Then just check the version installed is >= 1.7.0 ###Code import torch torch.__version__ ###Output _____no_output_____ ###Markdown GPUThe GPU PyTorch depends on the CUDA version installed. Nabucodonosor has many installations of CUDA in the `/opt/cuda` directory. You need to add `nvcc` to the `$PATH`. For example, to setup for CUDA 10.2, do the following: (deeplearning) $ export PATH=/opt/cuda/10.2/bin:$PATHThat has to be done every time you enter nabucodonosor, to avoid that add it to your `.bashrc` file: (deeplearning) $ echo "export PATH=/opt/cuda/10.2/bin:$PATH" >> $HOME/.bashrcThen, install the PyTorch library: (deeplearning) $ conda install pytorch torchvision cudatoolkit=10.2 -c pytorchCheck if this is working by running the following cell: ###Code torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Google ColabIn case you want to install PyTorch on a Google Colab, is possible, but first you need to check what version of `nvcc` is running. For that run the following: ###Code !nvcc --version ###Output nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Wed_Oct_23_19:24:38_PDT_2019 Cuda compilation tools, release 10.2, V10.2.89 ###Markdown According to what the previous cell tells you, you'll need to install the proper drivers, with `pip` instead of conda. Please refer to the [getting started](https://pytorch.org/get-started/locally/) page and check what to do. Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Finally, `tqdm` is a handful progress bar to keep track of different processes. (deeplearning) $ conda install gensim mlflow tqdm -c conda-forgeIf you have problems importing `gensim` and get this error: ImportError: cannot import name 'open' from 'smart_open' (C:\ProgramData\Anaconda3\lib\site-packages\smart_open\__init__.py)Then try updating `smart_open`: (deeplearning) $ conda update smart_open Download embeddings and dataset CIFAR10The dataset we will use (CIFAR10) is part of the `torchvision` package, which makes it fairly easy to download. You can learn more details on it [here](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.htmlloading-and-normalizing-cifar10): ###Code import torchvision torchvision.datasets.CIFAR10(root='./data', download=True); ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz ###Markdown Glove Embeddings and IMDB reviews DatasetSome examples that we will run for text classification using Convolutional Neural Networks require the Glove Embeddings as well as the IMDB reviews dataset: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/glove.6B.50d.txt.gz -o ./data/glove.6B.50d.txt.gz curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/imdb_reviews.csv.gz -o ./data/imdb_reviews.csv.gz ###Output ###Markdown MeLi Challenge 2019 DatasetFor the course project, we will be using a dataset based on the 2019 MeLi Challenge dataset, for automatic classification of products categories: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/meli-challenge-2019.tar.bz2 -o ./data/meli-challenge-2019.tar.bz2 tar jxvf ./data/meli-challenge-2019.tar.bz2 -C ./data/ ###Output meli-challenge-2019/ meli-challenge-2019/spanish.train.csv.gz meli-challenge-2019/portuguese.train.csv.gz meli-challenge-2019/spanish.test.csv.gz meli-challenge-2019/portuguese.test.csv.gz ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install PyTorchThis year we will be using [PyTorch](https://pytorch.org/) as the library to build and train the deep learning models. The library is a little less abstract than other possibilities such as [Keras](https://www.tensorflow.org/guide/keras) but gives a little more control to the user which in turns allows more customisation.In order to install PyTorch we recommend following the [official documentation](https://pytorch.org/get-started/locally/). In your local machine, you will install the version that only has CPU support (i.e. no CUDA version), but in Nabucodonosor you need to install the version with GPU support. CPUInstall pytorch for CPU: (deeplearning) $ conda install pytorch torchvision cpuonly -c pytorch Then just check the version installed is >= 1.7.0 ###Code import torch torch.__version__ ###Output _____no_output_____ ###Markdown GPUThe GPU PyTorch depends on the CUDA version installed. Nabucodonosor has many installations of CUDA in the `/opt/cuda` directory. You need to add `nvcc` to the `$PATH`. For example, to setup for CUDA 10.2, do the following: (deeplearning) $ export PATH=/opt/cuda/10.2/bin:$PATHThat has to be done every time you enter nabucodonosor, to avoid that add it to your `.bashrc` file: (deeplearning) $ echo "export PATH=/opt/cuda/10.2/bin:$PATH" >> $HOME/.bashrcThen, install the PyTorch library: (deeplearning) $ conda install pytorch torchvision cudatoolkit=10.2 -c pytorchCheck if this is working by running the following cell: ###Code torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Google ColabIn case you want to install PyTorch on a Google Colab, is possible, but first you need to check what version of `nvcc` is running. For that run the following: ###Code !nvcc --version ###Output nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Wed_Oct_23_19:24:38_PDT_2019 Cuda compilation tools, release 10.2, V10.2.89 ###Markdown According to what the previous cell tells you, you'll need to install the proper drivers, with `pip` instead of conda. Please refer to the [getting started](https://pytorch.org/get-started/locally/) page and check what to do. Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Finally, `tqdm` is a handful progress bar to keep track of different processes. (deeplearning) $ conda install gensim mlflow tqdm -c conda-forgeIf you have problems importing `gensim` and get this error: ImportError: cannot import name 'open' from 'smart_open' (C:\ProgramData\Anaconda3\lib\site-packages\smart_open\__init__.py)Then try updating `smart_open`: (deeplearning) $ conda update smart_open Download embeddings and dataset CIFAR10The dataset we will use (CIFAR10) is part of the `torchvision` package, which makes it fairly easy to download. You can learn more details on it [here](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.htmlloading-and-normalizing-cifar10): ###Code import torchvision torchvision.datasets.CIFAR10(root='./data', download=True); ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz ###Markdown Glove Embeddings and IMDB reviews DatasetSome examples that we will run for text classification using Convolutional Neural Networks require the Glove Embeddings as well as the IMDB reviews dataset: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/glove.6B.50d.txt.gz -o ./data/glove.6B.50d.txt.gz curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/imdb_reviews.csv.gz -o ./data/imdb_reviews.csv.gz ###Output ###Markdown MeLi Challenge 2019 DatasetFor the course project, we will be using a dataset based on the 2019 MeLi Challenge dataset, for automatic classification of products categories: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/meli-challenge-2019.tar.bz2 -o ./data/meli-challenge-2019.tar.bz2 tar jxvf ./data/meli-challenge-2019.tar.bz2 -C ./data/ ###Output meli-challenge-2019/ meli-challenge-2019/spanish.train.csv.gz meli-challenge-2019/portuguese.train.csv.gz meli-challenge-2019/spanish.test.csv.gz meli-challenge-2019/portuguese.test.csv.gz ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install TensorFlowWe will use the [TensorFlow](https://www.tensorflow.org/) library to build and train models. In particular, we will use [Keras](https://www.tensorflow.org/guide/keras) module, which are simpler to implement and understand, at the cost of lossing flexibility when defining the architectures.In order to install tensorflow we recommend following the [official documentation](https://www.tensorflow.org/install). In your local machine, you will install the version that only has cpu support, but in Nabucodonosor you need to install the version with [GPU support](https://www.tensorflow.org/install/gpu). CPUUpgrade `pip` to the latest version: (deeplearning) $ pip install --upgrade pipInstall tensorflow: (deeplearning) $ pip install --upgrade tensorflow Then just check the version installed is 2.0. ###Code import tensorflow as tf tf.__version__ ###Output _____no_output_____ ###Markdown GPUThe supported version of Tensorlfow depends on the cuda drivers intalled on the machine. In the case of Nabucodonosor, cuda and cudnn libraries are located in the /opt directory. You can check the system has intalled cuda 10.X, and cuddnn >= 7.4.1, enough to intall tensorflow 2.0. (deeplearning) $ pip install tensorflow-gpu**WARNING**: changes between tensorflow and keras versions are not minor and your code will break if you don't migrate. For example: https://www.tensorflow.org/beta/guide/effective_tf2Now we need to tell tensorflow where cuda is installed by setting the environment variable LD_LIBRARY_PATH $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cuda/10.0/lib64:/opt/cudnn/v7.6-cu10.0/ $ export CUDA_HOME=/opt/cuda/10.0It is convenient to add this statement to your `~/.bashrc` file, so it is executed everytime you open a new console.To check if it works, execute the following cell ###Code import tensorflow as tf tf.test.is_gpu_available() ###Output _____no_output_____ ###Markdown Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Also, for seeing a graphical representation of the Keras models, you need `graphviz` and `pydot`.```(deeplearning) $ pip install gensim mlflow(deeplearning) $ conda install graphviz python-graphviz pydot``` Download embeddings and dataset MNISTThe dataset we will use (MNIST) will be downloaded by Keras automatically the first time you use it. To save time, you can download it now running the next cell. ###Code df = tf.keras.datasets.mnist.load_data() ###Output _____no_output_____ ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install PyTorchThis year we will be using [PyTorch](https://pytorch.org/) as the library to build and train the deep learning models. The library is a little less abstract than other possibilities such as [Keras](https://www.tensorflow.org/guide/keras) but gives a little more control to the user which in turns allows more customisation.In order to install PyTorch we recommend following the [official documentation](https://pytorch.org/get-started/locally/). In your local machine, you will install the version that only has CPU support (i.e. no CUDA version), but in Nabucodonosor you need to install the version with GPU support. CPUInstall pytorch for CPU: (deeplearning) $ conda install pytorch torchvision cpuonly -c pytorch Then just check the version installed is >= 1.7.0 ###Code import torch torch.__version__ ###Output _____no_output_____ ###Markdown GPUThe GPU PyTorch depends on the CUDA version installed. Nabucodonosor has many installations of CUDA in the `/opt/cuda` directory. You need to add `nvcc` to the `$PATH`. For example, to setup for CUDA 10.2, do the following: (deeplearning) $ export PATH=/opt/cuda/10.2/bin:$PATHThat has to be done every time you enter nabucodonosor, to avoid that add it to your `.bashrc` file: (deeplearning) $ echo "export PATH=/opt/cuda/10.2/bin:$PATH" >> $HOME/.bashrcThen, install the PyTorch library: (deeplearning) $ conda install pytorch torchvision cudatoolkit=10.2 -c pytorchCheck if this is working by running the following cell: ###Code torch.cuda.is_available() ###Output _____no_output_____ ###Markdown Google ColabIn case you want to install PyTorch on a Google Colab, is possible, but first you need to check what version of `nvcc` is running. For that run the following: ###Code !nvcc --version ###Output nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Wed_Oct_23_19:24:38_PDT_2019 Cuda compilation tools, release 10.2, V10.2.89 ###Markdown According to what the previous cell tells you, you'll need to install the proper drivers, with `pip` instead of conda. Please refer to the [getting started](https://pytorch.org/get-started/locally/) page and check what to do. Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Finally, `tqdm` is a handful progress bar to keep track of different processes. (deeplearning) $ conda install gensim mlflow tqdm -c conda-forgeIf you have problems importing `gensim` and get this error: ImportError: cannot import name 'open' from 'smart_open' (C:\ProgramData\Anaconda3\lib\site-packages\smart_open\__init__.py)Then try updating `smart_open`: (deeplearning) $ conda update smart_open Download embeddings and dataset CIFAR10The dataset we will use (CIFAR10) is part of the `torchvision` package, which makes it fairly easy to download. You can learn more details on it [here](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.htmlloading-and-normalizing-cifar10): ###Code import torchvision torchvision.datasets.CIFAR10(root='./data', download=True); ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz ###Markdown Glove Embeddings and IMDB reviews DatasetSome examples that we will run for text classification using Convolutional Neural Networks require the Glove Embeddings as well as the IMDB reviews dataset: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/glove.6B.50d.txt.gz -o ./data/glove.6B.50d.txt.gz curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/imdb_reviews.csv.gz -o ./data/imdb_reviews.csv.gz ###Output ###Markdown MeLi Challenge 2019 DatasetFor the course project, we will be using a dataset based on the 2019 MeLi Challenge dataset, for automatic classification of products categories: ###Code %%bash curl -L https://cs.famaf.unc.edu.ar/\~ccardellino/resources/diplodatos/meli-challenge-2019.tar.bz2 -o ./data/meli-challenge-2019.tar.bz2 tar jxvf ./data/meli-challenge-2019.tar.bz2 -C ./data/ ###Output meli-challenge-2019/ meli-challenge-2019/spanish.train.csv.gz meli-challenge-2019/portuguese.train.csv.gz meli-challenge-2019/spanish.test.csv.gz meli-challenge-2019/portuguese.test.csv.gz ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install TensorFlowWe will use the [TensorFlow](https://www.tensorflow.org/) library to build and train models. In particular, we will use [Keras](https://www.tensorflow.org/guide/keras) module, which are simpler to implement and understand, at the cost of lossing flexibility when defining the architectures.In order to install tensorflow we recommend following the [official documentation](https://www.tensorflow.org/install). In your local machine, you will install the version that only has cpu support, but in Nabucodonosor you need to install the version with [GPU support](https://www.tensorflow.org/install/gpu). CPUUpgrade `pip` to the latest version: (deeplearning) $ pip install --upgrade pipInstall tensorflow: (deeplearning) $ pip install --upgrade tensorflow Then just check the version installed is 2.0. ###Code import tensorflow as tf tf.__version__ ###Output _____no_output_____ ###Markdown GPUThe supported version of Tensorlfow depends on the cuda drivers intalled on the machine. In the case of Nabucodonosor, cuda and cudnn libraries are located in the /opt directory. You can check the system has intalled cuda 10.X, and cuddnn >= 7.4.1, enough to intall tensorflow 2.0. (deeplearning) $ pip install tensorflow-gpu**WARNING**: changes between tensorflow and keras versions are not minor and your code will break if you don't migrate. For example: https://www.tensorflow.org/beta/guide/effective_tf2Now we need to tell tensorflow where cuda is installed by setting the environment variable LD_LIBRARY_PATH $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cuda/10.0/lib64:/opt/cudnn/v7.6-cu10.0/ $ export CUDA_HOME=/opt/cuda/10.0It is convenient to add this statement to your `~/.bashrc` file, so it is executed everytime you open a new console.To check if it works, execute the following cell ###Code import tensorflow as tf tf.test.is_gpu_available() ###Output _____no_output_____ ###Markdown Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Also, for seeing a graphical representation of the Keras models, you need `graphviz` and `pydot`.```(deeplearning) $ pip install gensim mlflow(deeplearning) $ conda install graphviz python-graphviz pydot``` Download embeddings and dataset MNISTThe dataset we will use (MNIST) will be downloaded by Keras automatically the first time you use it. To save time, you can download it now running the next cell. ###Code df = tf.keras.datasets.mnist.load_data() ###Output Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step ###Markdown Deep Learning - Part 0This notebook explains how to install all the preriquistes and libraries that you will need to run the following tutorials. If you can execute all the following cells, you are good to go. Environment configuration Install condaThere are two major package managers in Python: pip and conda. For this tutorial we will be using conda which, besides being a package manager is also useful as a version manager. There are two main ways to install conda: Anaconda and Miniconda. Any will be useful for this course, just follow instructions here, according to your operative system:https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.htmlregular-installation Create an environment with all the Anaconda libraries $ conda create --name deeplearning python=3.7 anacondaDon't forget to activate the new env $ conda activate deeplearning Install TensorFlowWe will use the [TensorFlow](https://www.tensorflow.org/) library to build and train models. In particular, we will use [Keras](https://www.tensorflow.org/guide/keras) module, which are simpler to implement and understand, at the cost of lossing flexibility when defining the architectures.In order to install tensorflow we recommend following the [official documentation](https://www.tensorflow.org/install). In your local machine, you will install the version that only has cpu support, but in Nabucodonosor you need to install the version with [GPU support](https://www.tensorflow.org/install/gpu). CPUUpgrade `pip` to the latest version: (deeplearning) $ pip install --upgrade pipInstall tensorflow: (deeplearning) $ pip install --upgrade tensorflow Then just check the version installed is 2.0. ###Code !pwd import tensorflow as tf tf.__version__ ###Output _____no_output_____ ###Markdown GPUThe supported version of Tensorlfow depends on the cuda drivers intalled on the machine. In the case of Nabucodonosor, cuda and cudnn libraries are located in the /opt directory. You can check the system has intalled cuda 10.X, and cuddnn >= 7.4.1, enough to intall tensorflow 2.0. (deeplearning) $ pip install tensorflow-gpu**WARNING**: changes between tensorflow and keras versions are not minor and your code will break if you don't migrate. For example: https://www.tensorflow.org/beta/guide/effective_tf2Now we need to tell tensorflow where cuda is installed by setting the environment variable LD_LIBRARY_PATH $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cuda/10.0/lib64:/opt/cudnn/v7.6-cu10.0/ $ export CUDA_HOME=/opt/cuda/10.0It is convenient to add this statement to your `~/.bashrc` file, so it is executed everytime you open a new console.To check if it works, execute the following cell ###Code import tensorflow as tf tf.test.is_gpu_available() ###Output _____no_output_____ ###Markdown Install other librariesWe need the `gensim` library to deal with word embeddings, so you need to install it. Plus, the `mlflow` tool to keep track of experiments. Also, for seeing a graphical representation of the Keras models, you need `graphviz` and `pydot`.```(deeplearning) $ pip install gensim mlflow(deeplearning) $ conda install graphviz python-graphviz pydot``` ###Code %%bash pip install gensim mlflow graphviz pydot nltk ###Output Requirement already satisfied: gensim in /users/mramirez/venv/lib/python3.7/site-packages (3.8.1) Requirement already satisfied: mlflow in /users/mramirez/venv/lib/python3.7/site-packages (1.3.0) Requirement already satisfied: graphviz in /users/mramirez/venv/lib/python3.7/site-packages (0.13) Requirement already satisfied: pydot in /users/mramirez/venv/lib/python3.7/site-packages (1.4.1) Collecting nltk Downloading https://files.pythonhosted.org/packages/f6/1d/d925cfb4f324ede997f6d47bea4d9babba51b49e87a767c170b77005889d/nltk-3.4.5.zip (1.5MB) Requirement already satisfied: scipy>=0.18.1 in /users/mramirez/venv/lib/python3.7/site-packages (from gensim) (1.3.1) Requirement already satisfied: six>=1.5.0 in /users/mramirez/venv/lib/python3.7/site-packages (from gensim) (1.12.0) Requirement already satisfied: smart-open>=1.8.1 in /users/mramirez/venv/lib/python3.7/site-packages (from gensim) (1.8.4) Requirement already satisfied: numpy>=1.11.3 in /users/mramirez/venv/lib/python3.7/site-packages (from gensim) (1.17.2) Requirement already satisfied: gitpython>=2.1.0 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (3.0.3) Requirement already satisfied: python-dateutil in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (2.8.0) Requirement already satisfied: sqlparse in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (0.3.0) Requirement already satisfied: databricks-cli>=0.8.7 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (0.9.0) Requirement already satisfied: gorilla in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (0.3.0) Requirement already satisfied: querystring-parser in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (1.2.4) Requirement already satisfied: sqlalchemy in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (1.3.10) Requirement already satisfied: docker>=4.0.0 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (4.1.0) Requirement already satisfied: pyyaml in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (5.1.2) Requirement already satisfied: protobuf>=3.6.0 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (3.10.0) Requirement already satisfied: cloudpickle in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (1.2.2) Requirement already satisfied: Flask in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (1.1.1) Requirement already satisfied: simplejson in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (3.16.0) Requirement already satisfied: entrypoints in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (0.3) Requirement already satisfied: gunicorn; platform_system != "Windows" in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (19.9.0) Requirement already satisfied: click>=7.0 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (7.0) Requirement already satisfied: pandas in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (0.25.1) Requirement already satisfied: alembic in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (1.2.1) Requirement already satisfied: requests>=2.17.3 in /users/mramirez/venv/lib/python3.7/site-packages (from mlflow) (2.22.0) Requirement already satisfied: pyparsing>=2.1.4 in /users/mramirez/venv/lib/python3.7/site-packages (from pydot) (2.4.2) Requirement already satisfied: boto>=2.32 in /users/mramirez/venv/lib/python3.7/site-packages (from smart-open>=1.8.1->gensim) (2.49.0) Requirement already satisfied: boto3 in /users/mramirez/venv/lib/python3.7/site-packages (from smart-open>=1.8.1->gensim) (1.9.248) Requirement already satisfied: gitdb2>=2.0.0 in /users/mramirez/venv/lib/python3.7/site-packages (from gitpython>=2.1.0->mlflow) (2.0.6) Requirement already satisfied: configparser>=0.3.5 in /users/mramirez/venv/lib/python3.7/site-packages (from databricks-cli>=0.8.7->mlflow) (4.0.2) Requirement already satisfied: tabulate>=0.7.7 in /users/mramirez/venv/lib/python3.7/site-packages (from databricks-cli>=0.8.7->mlflow) (0.8.5) Requirement already satisfied: websocket-client>=0.32.0 in /users/mramirez/venv/lib/python3.7/site-packages (from docker>=4.0.0->mlflow) (0.56.0) Requirement already satisfied: setuptools in /users/mramirez/venv/lib/python3.7/site-packages (from protobuf>=3.6.0->mlflow) (41.4.0) Requirement already satisfied: itsdangerous>=0.24 in /users/mramirez/venv/lib/python3.7/site-packages (from Flask->mlflow) (1.1.0) Requirement already satisfied: Werkzeug>=0.15 in /users/mramirez/venv/lib/python3.7/site-packages (from Flask->mlflow) (0.16.0) Requirement already satisfied: Jinja2>=2.10.1 in /users/mramirez/venv/lib/python3.7/site-packages (from Flask->mlflow) (2.10.3) Requirement already satisfied: pytz>=2017.2 in /users/mramirez/venv/lib/python3.7/site-packages (from pandas->mlflow) (2019.3) Requirement already satisfied: python-editor>=0.3 in /users/mramirez/venv/lib/python3.7/site-packages (from alembic->mlflow) (1.0.4) Requirement already satisfied: Mako in /users/mramirez/venv/lib/python3.7/site-packages (from alembic->mlflow) (1.1.0) Requirement already satisfied: certifi>=2017.4.17 in /users/mramirez/venv/lib/python3.7/site-packages (from requests>=2.17.3->mlflow) (2019.9.11) Requirement already satisfied: idna<2.9,>=2.5 in /users/mramirez/venv/lib/python3.7/site-packages (from requests>=2.17.3->mlflow) (2.8) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /users/mramirez/venv/lib/python3.7/site-packages (from requests>=2.17.3->mlflow) (1.25.6) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /users/mramirez/venv/lib/python3.7/site-packages (from requests>=2.17.3->mlflow) (3.0.4) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /users/mramirez/venv/lib/python3.7/site-packages (from boto3->smart-open>=1.8.1->gensim) (0.9.4) Requirement already satisfied: botocore<1.13.0,>=1.12.248 in /users/mramirez/venv/lib/python3.7/site-packages (from boto3->smart-open>=1.8.1->gensim) (1.12.248) Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /users/mramirez/venv/lib/python3.7/site-packages (from boto3->smart-open>=1.8.1->gensim) (0.2.1) Requirement already satisfied: smmap2>=2.0.0 in /users/mramirez/venv/lib/python3.7/site-packages (from gitdb2>=2.0.0->gitpython>=2.1.0->mlflow) (2.0.5) Requirement already satisfied: MarkupSafe>=0.23 in /users/mramirez/venv/lib/python3.7/site-packages (from Jinja2>=2.10.1->Flask->mlflow) (1.1.1) Requirement already satisfied: docutils<0.16,>=0.10 in /users/mramirez/venv/lib/python3.7/site-packages (from botocore<1.13.0,>=1.12.248->boto3->smart-open>=1.8.1->gensim) (0.15.2) Building wheels for collected packages: nltk Building wheel for nltk (setup.py): started Building wheel for nltk (setup.py): finished with status 'done' Created wheel for nltk: filename=nltk-3.4.5-cp37-none-any.whl size=1449909 sha256=9fbe0ff2464b4c98a243f056b00650c710f731fb631466d35e13620d561a685b Stored in directory: /users/mramirez/.cache/pip/wheels/96/86/f6/68ab24c23f207c0077381a5e3904b2815136b879538a24b483 Successfully built nltk Installing collected packages: nltk Successfully installed nltk-3.4.5 ###Markdown Download embeddings and dataset MNISTThe dataset we will use (MNIST) will be downloaded by Keras automatically the first time you use it. To save time, you can download it now running the next cell. ###Code df = tf.keras.datasets.mnist.load_data() ###Output Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step
Data-Analytics-Projects-in-python-main/COVID19/notebooks/Exploratory_analysis_fancy_plot.ipynb
###Markdown Imports ###Code import sys import os import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt project_path = os.path.abspath(os.path.join('..')) if project_path not in sys.path: sys.path.append(f'{project_path}/src/visualizations/') from covid_data_viz import CovidDataViz ###Output _____no_output_____ ###Markdown Setup ###Code mpl.rcParams['figure.figsize'] = (9, 5) ###Output _____no_output_____ ###Markdown GoalMy goal is to visualize various aspect of the `COVID-19` pandemic. Data sourcesIn this project I use data from the following sources:- https://github.com/CSSEGISandData/COVID-19 - JHU CSSE COVID-19 Data.- https://datahub.io/JohnSnowLabs/country-and-continent-codes-list - country codes and continents. Data loading ###Code cdv = CovidDataViz() ###Output _____no_output_____ ###Markdown Fancy plotVisual for repo readme. ###Code countries = ['Germany', 'France', 'Italy', 'Spain', 'United Kingdom', 'Russia', 'India', 'Brazil', 'US', 'Poland', 'Mexico'] width = 1600 height = width / 2 dpi = 200 period = 7 step = 30 label_size = 12 n_clabels = 6 countries = sorted(countries) plot_df = cdv.data['Confirmed chg'][countries] plot_df = plot_df.rename(columns={'United Kingdom': 'UK'}) countries = plot_df.columns.to_list() plot_df = plot_df.rolling(period) plot_df = plot_df.mean() plot_df = plot_df.dropna() plot_df = plot_df.to_numpy() plot_df = plot_df.astype(float) plot_df = plot_df.transpose() plot_df = np.sqrt(plot_df) xticks = range(plot_df.shape[1])[::step] xlabels = list(cdv.data['Confirmed chg']['Date'])[period:] xlabels = [x.strftime(format='%Y-%m') for x in xlabels] # xlabels = [x.date() for x in xlabels] xlabels = xlabels[::step] yticks = range(len(countries)) ylabels = countries cticks = np.round(np.linspace(0, np.max(plot_df), 6), -1) cticks = cticks.astype(np.int) clabels = np.power(cticks, 2) cticks = sorted(set(cticks)) clabels = np.power(cticks, 2) clabels = [int((round(x, -3))/1000) for x in clabels] clabels = [str(x)+'k' for x in clabels] # clabels = list(map(str, clabels)) plt.figure(figsize=(width / dpi, height / dpi)) plt.imshow(plot_df, aspect='auto', interpolation='nearest') plt.set_cmap('hot') plt.yticks(ticks=yticks, labels=ylabels, fontsize=label_size, verticalalignment='center') plt.xticks(ticks=xticks, labels=xlabels, rotation=45, fontsize=label_size, horizontalalignment='center') cbar = plt.colorbar() cbar.set_ticks(cticks) cbar.set_ticklabels(clabels) cbar.ax.tick_params(labelsize=label_size) plt.title('New COVID-19 cases', fontsize=20) plt.tight_layout() plt.savefig('../img/covid_tiles.png') plt.show() ###Output _____no_output_____
Data Science and Machine Learning Bootcamp - JP/02.Python for Data Analysis - NumPy/02-Numpy Indexing and Selection.ipynb
###Markdown ___ ___ NumPy Indexing and SelectionIn this lecture we will discuss how to select elements or groups of elements from an array. ###Code import numpy as np #Creating sample array arr = np.arange(0,11) #Show arr ###Output _____no_output_____ ###Markdown Bracket Indexing and SelectionThe simplest way to pick one or some elements of an array looks very similar to python lists: ###Code #Get a value at an index arr[8] #Get values in a range arr[1:5] #Get values in a range arr[0:5] ###Output _____no_output_____ ###Markdown BroadcastingNumpy arrays differ from a normal Python list because of their ability to broadcast: ###Code #Setting a value with index range (Broadcasting) arr[0:5]=100 #Show arr # Reset array, we'll see why I had to reset in a moment arr = np.arange(0,11) #Show arr #Important notes on Slices slice_of_arr = arr[0:6] #Show slice slice_of_arr #Change Slice slice_of_arr[:]=99 #Show Slice again slice_of_arr ###Output _____no_output_____ ###Markdown Now note the changes also occur in our original array! ###Code arr ###Output _____no_output_____ ###Markdown Data is not copied, it's a view of the original array! This avoids memory problems! ###Code #To get a copy, need to be explicit arr_copy = arr.copy() arr_copy ###Output _____no_output_____ ###Markdown Indexing a 2D array (matrices)The general format is **arr_2d[row][col]** or **arr_2d[row,col]**. I recommend usually using the comma notation for clarity. ###Code arr_2d = np.array(([5,10,15],[20,25,30],[35,40,45])) #Show arr_2d #Indexing row arr_2d[1] # Format is arr_2d[row][col] or arr_2d[row,col] # Getting individual element value arr_2d[1][0] # Getting individual element value arr_2d[1,0] # 2D array slicing #Shape (2,2) from top right corner arr_2d[:2,1:] #Shape bottom row arr_2d[2] #Shape bottom row arr_2d[2,:] ###Output _____no_output_____ ###Markdown Fancy IndexingFancy indexing allows you to select entire rows or columns out of order,to show this, let's quickly build out a numpy array: ###Code #Set up matrix arr2d = np.zeros((10,10)) #Length of array arr_length = arr2d.shape[1] #Set up array for i in range(arr_length): arr2d[i] = i arr2d ###Output _____no_output_____ ###Markdown Fancy indexing allows the following ###Code arr2d[[2,4,6,8]] #Allows in any order arr2d[[6,4,2,7]] ###Output _____no_output_____ ###Markdown More Indexing HelpIndexing a 2d matrix can be a bit confusing at first, especially when you start to add in step size. Try google image searching NumPy indexing to fins useful images, like this one: SelectionLet's briefly go over how to use brackets for selection based off of comparison operators. ###Code arr = np.arange(1,11) arr arr > 4 bool_arr = arr>4 bool_arr arr[bool_arr] arr[arr>2] x = 2 arr[arr>x] ###Output _____no_output_____
scripts/d21-en/pytorch/chapter_deep-learning-computation/use-gpu.ipynb
###Markdown GPUs:label:`sec_use_gpu`In :numref:`tab_intro_decade`, we discussed the rapid growthof computation over the past two decades.In a nutshell, GPU performance has increasedby a factor of 1000 every decade since 2000.This offers great opportunities but it also suggestsa significant need to provide such performance.In this section, we begin to discuss how to harnessthis computational performance for your research.First by using single GPUs and at a later point,how to use multiple GPUs and multiple servers (with multiple GPUs).Specifically, we will discuss howto use a single NVIDIA GPU for calculations.First, make sure you have at least one NVIDIA GPU installed.Then, download the [NVIDIA driver and CUDA](https://developer.nvidia.com/cuda-downloads)and follow the prompts to set the appropriate path.Once these preparations are complete,the `nvidia-smi` command can be usedto (**view the graphics card information**). ###Code !nvidia-smi ###Output Fri Apr 23 07:57:29 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| ###Markdown In PyTorch, every array has a device, we often refer it as a context.So far, by default, all variablesand associated computationhave been assigned to the CPU.Typically, other contexts might be various GPUs.Things can get even hairier whenwe deploy jobs across multiple servers.By assigning arrays to contexts intelligently,we can minimize the time spenttransferring data between devices.For example, when training neural networks on a server with a GPU,we typically prefer for the model's parameters to live on the GPU.Next, we need to confirm thatthe GPU version of PyTorch is installed.If a CPU version of PyTorch is already installed,we need to uninstall it first.For example, use the `pip uninstall torch` command,then install the corresponding PyTorch versionaccording to your CUDA version.Assuming you have CUDA 10.0 installed,you can install the PyTorch versionthat supports CUDA 10.0 via `pip install torch-cu100`. To run the programs in this section,you need at least two GPUs.Note that this might be extravagant for most desktop computersbut it is easily available in the cloud, e.g.,by using the AWS EC2 multi-GPU instances.Almost all other sections do *not* require multiple GPUs.Instead, this is simply to illustratehow data flow between different devices. [**Computing Devices**]We can specify devices, such as CPUs and GPUs,for storage and calculation.By default, tensors are created in the main memoryand then use the CPU to calculate it. In PyTorch, the CPU and GPU can be indicated by `torch.device('cpu')` and `torch.cuda.device('cuda')`.It should be noted that the `cpu` devicemeans all physical CPUs and memory.This means that PyTorch's calculationswill try to use all CPU cores.However, a `gpu` device only represents one cardand the corresponding memory.If there are multiple GPUs, we use `torch.cuda.device(f'cuda:{i}')`to represent the $i^\mathrm{th}$ GPU ($i$ starts from 0).Also, `gpu:0` and `gpu` are equivalent. ###Code import torch from torch import nn torch.device('cpu'), torch.cuda.device('cuda'), torch.cuda.device('cuda:1') ###Output _____no_output_____ ###Markdown We can (**query the number of available GPUs.**) ###Code torch.cuda.device_count() ###Output _____no_output_____ ###Markdown Now we [**define two convenient functions that allow usto run code even if the requested GPUs do not exist.**] ###Code def try_gpu(i=0): #@save """Return gpu(i) if exists, otherwise return cpu().""" if torch.cuda.device_count() >= i + 1: return torch.device(f'cuda:{i}') return torch.device('cpu') def try_all_gpus(): #@save """Return all available GPUs, or [cpu(),] if no GPU exists.""" devices = [ torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())] return devices if devices else [torch.device('cpu')] try_gpu(), try_gpu(10), try_all_gpus() ###Output _____no_output_____ ###Markdown Tensors and GPUsBy default, tensors are created on the CPU.We can [**query the device where the tensor is located.**] ###Code x = torch.tensor([1, 2, 3]) x.device ###Output _____no_output_____ ###Markdown It is important to note that whenever we wantto operate on multiple terms,they need to be on the same device.For instance, if we sum two tensors,we need to make sure that both argumentslive on the same device---otherwise the frameworkwould not know where to store the resultor even how to decide where to perform the computation. Storage on the GPUThere are several ways to [**store a tensor on the GPU.**]For example, we can specify a storage device when creating a tensor.Next, we create the tensor variable `X` on the first `gpu`.The tensor created on a GPU only consumes the memory of this GPU.We can use the `nvidia-smi` command to view GPU memory usage.In general, we need to make sure that we do not create data that exceed the GPU memory limit. ###Code X = torch.ones(2, 3, device=try_gpu()) X ###Output _____no_output_____ ###Markdown Assuming that you have at least two GPUs, the following code will (**create a random tensor on the second GPU.**) ###Code Y = torch.rand(2, 3, device=try_gpu(1)) Y ###Output _____no_output_____ ###Markdown Copying[**If we want to compute `X + Y`,we need to decide where to perform this operation.**]For instance, as shown in :numref:`fig_copyto`,we can transfer `X` to the second GPUand perform the operation there.*Do not* simply add `X` and `Y`,since this will result in an exception.The runtime engine would not know what to do:it cannot find data on the same device and it fails.Since `Y` lives on the second GPU,we need to move `X` there before we can add the two.![Copy data to perform an operation on the same device.](../img/copyto.svg):label:`fig_copyto` ###Code Z = X.cuda(1) print(X) print(Z) ###Output tensor([[1., 1., 1.], [1., 1., 1.]], device='cuda:0') tensor([[1., 1., 1.], [1., 1., 1.]], device='cuda:1') ###Markdown Now that [**the data are on the same GPU(both `Z` and `Y` are),we can add them up.**] ###Code Y + Z ###Output _____no_output_____ ###Markdown Imagine that your variable `Z` already lives on your second GPU.What happens if we still call `Z.cuda(1)`?It will return `Z` instead of making a copy and allocating new memory. ###Code Z.cuda(1) is Z ###Output _____no_output_____ ###Markdown Side NotesPeople use GPUs to do machine learningbecause they expect them to be fast.But transferring variables between devices is slow.So we want you to be 100% certainthat you want to do something slow before we let you do it.If the deep learning framework just did the copy automaticallywithout crashing then you might not realizethat you had written some slow code.Also, transferring data between devices (CPU, GPUs, and other machines)is something that is much slower than computation.It also makes parallelization a lot more difficult,since we have to wait for data to be sent (or rather to be received)before we can proceed with more operations.This is why copy operations should be taken with great care.As a rule of thumb, many small operationsare much worse than one big operation.Moreover, several operations at a timeare much better than many single operations interspersed in the codeunless you know what you are doing.This is the case since such operations can block if one devicehas to wait for the other before it can do something else.It is a bit like ordering your coffee in a queuerather than pre-ordering it by phoneand finding out that it is ready when you are.Last, when we print tensors or convert tensors to the NumPy format,if the data is not in the main memory,the framework will copy it to the main memory first,resulting in additional transmission overhead.Even worse, it is now subject to the dreaded global interpreter lockthat makes everything wait for Python to complete. [**Neural Networks and GPUs**]Similarly, a neural network model can specify devices.The following code puts the model parameters on the GPU. ###Code net = nn.Sequential(nn.Linear(3, 1)) net = net.to(device=try_gpu()) ###Output _____no_output_____ ###Markdown We will see many more examples ofhow to run models on GPUs in the following chapters,simply since they will become somewhat more computationally intensive.When the input is a tensor on the GPU, the model will calculate the result on the same GPU. ###Code net(X) ###Output _____no_output_____ ###Markdown Let us (**confirm that the model parameters are stored on the same GPU.**) ###Code net[0].weight.data.device ###Output _____no_output_____
IsingHamitonian_GA.ipynb
###Markdown Ising model hamiltonian Step 1: Generating the weights (summation over the pseudo-spin along the stacking chain) for interaction coefficients J0, J1, J2, J3, K, K', L, where K' = 1/2(coefficient[2,3]+coefficient[1,3]).List the pseudo-spin for a polytype, 1 for face-sharing octahedra pair, -1 for corner sharing octahedra pair. ###Code spin2H = [1,1] spin3C = [-1,-1,-1] spin4H = [1,-1,1,-1] spin6H = [1,-1,-1,1,-1,-1] spin9R = [1,1,-1,1,1,-1,1,1,-1] spin12R = [1,1,-1,-1,1,1,-1,-1,1,1,-1,-1] spin12H = [1,-1,-1,-1,-1,-1, 1,-1,-1,-1,-1,-1] spin2C9H11 = [1,1,1,1,1,1,1,1,-1,-1,-1] spin2H9C11 = [1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1] spin2C9H18 = [1,1,1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1] spin2H9C18 = [1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1] def coefficients(spin,nnn): length = len(spin) temp = 0 for i in range(length): j = (i+nnn) % length temp += spin[i] * spin[j] print(temp) def generalCoefficients(spin,nnn): length = len(spin) temp = 0 for i in range(length): tempi = spin[i] for j in range(len(nnn)): if nnn == [0]: tempi = tempi else: k = (i+nnn[j]) % length tempi = tempi * spin[k] temp += tempi print(temp) def getAll(spin): generalCoefficients(spin,[0]) generalCoefficients(spin,[1]) generalCoefficients(spin,[2]) generalCoefficients(spin,[3]) generalCoefficients(spin,[1,2]) generalCoefficients(spin,[2,3]) generalCoefficients(spin,[1,3]) generalCoefficients(spin,[1,2,3]) getAll(spin2H) #getAll(spin3C) #getAll(spin4H) #getAll(spin6H) #getAll(spin9R) #getAll(spin12R) #getAll(spin12H) #getAll(spin2H9C11) #getAll(spin2C9H11) #getAll(spin2H9C18) #getAll(spin2C9H18) #the K' = 1/2([2,3]+[1,3]) ###Output 2 2 2 2 2 2 2 2 ###Markdown Step 2: with DFT calculated total energies for several polytypes, the values of the interaction coefficients are numerially fitted. ###Code import numpy as np MAT = np.array([[2,2,2,2,2,2,2,2], #2H [3,-3,3,3,3,-3,-3,3],#3C [4,0,-4,4,-4,0,0,4],#4H [6,-2,-2,-2,6,6,-2,-2],#6H [9,3,-3,-3,9,-9,3,-3],#9R [12,0,0,-12,0,0,0,12],#12R [12,-8,4,4,4,0,0,-4],#12H ]) ENG = [-24.651502, -36.707196, -49.048539, -73.554815, -110.63025, -147.36321, -146.929] #CsPbI3 #ENG = [-28.057165, -42.207545, -56.101650, -84.211709, -126.20073, -168.32148, -168.60493] #CsPbBr3 print(MAT) print(ENG) J, residuals, rank, s = np.linalg.lstsq(MAT,ENG,rcond=None) #J = np.linalg.solve(MAT,ENG) print(J) #print(residuals) ###Output [[ 2 2 2 2 2 2 2 2] [ 3 -3 3 3 3 -3 -3 3] [ 4 0 -4 4 -4 0 0 4] [ 6 -2 -2 -2 6 6 -2 -2] [ 9 3 -3 -3 9 -9 3 -3] [ 12 0 0 -12 0 0 0 12] [ 12 -8 4 4 4 0 0 -4]] [-24.651502, -36.707196, -49.048539, -73.554815, -110.63025, -147.36321, -146.929] [-1.12432698e+01 2.01506745e+00 1.02438188e+00 4.41468750e-03 -1.03368526e+00 1.16543750e-03 -2.06124239e+00 -1.03258301e+00] ###Markdown Genetic algorithm with the model hamiltonian as the optimisation function ###Code pip install func-timeout ###Output Collecting func-timeout Downloading func_timeout-4.3.5.tar.gz (44 kB)  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 44 kB 723 kB/s eta 0:00:01 [?25hBuilding wheels for collected packages: func-timeout Building wheel for func-timeout (setup.py) ... [?25ldone [?25h Created wheel for func-timeout: filename=func_timeout-4.3.5-py3-none-any.whl size=15077 sha256=ce395887227d0057a77867b8b14ab960cae5575e11abf6df6071fa30fa80d5a4 Stored in directory: /Users/zhenzhu/Library/Caches/pip/wheels/a8/92/ca/5bbab358275e310af23b73fc32ebf37d6a7a08c87c8d2cdbc1 Successfully built func-timeout Installing collected packages: func-timeout Successfully installed func-timeout-4.3.5 Note: you may need to restart the kernel to use updated packages. ###Markdown The following code contains two parts: the main genetic algorithm and the optimisation function. Important parameters: algorithm_param = {'max_num_iteration': 100,\ 'population_size':300,\ 'mutation_probability':0.6,\ 'elit_ratio': 0.2,\ 'crossover_probability': 0.1,\ 'parents_portion': 0.6,\ 'crossover_type':'uniform',\ 'max_iteration_without_improv':None} in the genetic algorithm function, tuning the performance of the genetic algorithm. layer = 12 in the optimisation function, defines the layer number, can be any integer of interestreturn toten in the optimisation function, finding the low energy structuresreturn -toten in the optimisation function, finding the symmetry forbidden sequences ###Code ############################################################################### ############################GA GA GA GA GA ############################# ############################################################################### import numpy as np import sys import time from func_timeout import func_timeout, FunctionTimedOut import matplotlib.pyplot as plt import timeit class geneticalgorithm(): ''' Genetic Algorithm (Elitist version) for Python An implementation of elitist genetic algorithm for solving problems with continuous, integers, or mixed variables. Implementation and output: methods: run(): implements the genetic algorithm outputs: output_dict: a dictionary including the best set of variables found and the value of the given function associated to it. {'variable': , 'function': } report: a list including the record of the progress of the algorithm over iterations ''' ############################################################# def __init__(self, function, dimension, variable_type='bool', \ variable_boundaries=None,\ variable_type_mixed=None, \ function_timeout=10,\ algorithm_parameters={'max_num_iteration': None,\ 'population_size':100,\ 'mutation_probability':0.1,\ 'elit_ratio': 0.01,\ 'crossover_probability': 0.5,\ 'parents_portion': 0.3,\ 'crossover_type':'uniform',\ 'max_iteration_without_improv':None}): ''' @param function <Callable> - the given objective function to be minimized NOTE: This implementation minimizes the given objective function. (For maximization multiply function by a negative sign: the absolute value of the output would be the actual objective function) @param dimension <integer> - the number of decision variables @param variable_type <string> - 'bool' if all variables are Boolean; 'int' if all variables are integer; and 'real' if all variables are real value or continuous (for mixed type see @param variable_type_mixed) @param variable_boundaries <numpy array/None> - Default None; leave it None if variable_type is 'bool'; otherwise provide an array of tuples of length two as boundaries for each variable; the length of the array must be equal dimension. For example, np.array([0,100],[0,200]) determines lower boundary 0 and upper boundary 100 for first and upper boundary 200 for second variable where dimension is 2. @param variable_type_mixed <numpy array/None> - Default None; leave it None if all variables have the same type; otherwise this can be used to specify the type of each variable separately. For example if the first variable is integer but the second one is real the input is: np.array(['int'],['real']). NOTE: it does not accept 'bool'. If variable type is Boolean use 'int' and provide a boundary as [0,1] in variable_boundaries. Also if variable_type_mixed is applied, variable_boundaries has to be defined. @param function_timeout <float> - if the given function does not provide output before function_timeout (unit is seconds) the algorithm raise error. For example, when there is an infinite loop in the given function. @param algorithm_parameters: @ max_num_iteration <int> - stoping criteria of the genetic algorithm (GA) @ population_size <int> @ mutation_probability <float in [0,1]> @ elit_ration <float in [0,1]> @ crossover_probability <float in [0,1]> @ parents_portion <float in [0,1]> @ crossover_type <string> - Default is 'uniform'; 'one_point' or 'two_point' are other options @ max_iteration_without_improv <int> - maximum number of successive iterations without improvement. If None it is ineffective for more details and examples of implementation please visit: https://github.com/rmsolgi/geneticalgorithm ''' self.__name__=geneticalgorithm ############################################################# # input function assert (callable(function)),"function must be callable" self.f=function ############################################################# #dimension self.dim=int(dimension) ############################################################# # input variable type assert(variable_type=='bool' or variable_type=='int' or\ variable_type=='real'), \ "\n variable_type must be 'bool', 'int', or 'real'" ############################################################# # input variables' type (MIXED) if variable_type_mixed is None: if variable_type=='real': self.var_type=np.array([['real']]*self.dim) else: self.var_type=np.array([['int']]*self.dim) else: assert (type(variable_type_mixed).__module__=='numpy'),\ "\n variable_type must be numpy array" assert (len(variable_type_mixed) == self.dim), \ "\n variable_type must have a length equal dimension." for i in variable_type_mixed: assert (i=='real' or i=='int'),\ "\n variable_type_mixed is either 'int' or 'real' "+\ "ex:['int','real','real']"+\ "\n for 'boolean' use 'int' and specify boundary as [0,1]" self.var_type=variable_type_mixed ############################################################# # input variables' boundaries if variable_type!='bool' or type(variable_type_mixed).__module__=='numpy': assert (type(variable_boundaries).__module__=='numpy'),\ "\n variable_boundaries must be numpy array" assert (len(variable_boundaries)==self.dim),\ "\n variable_boundaries must have a length equal dimension" for i in variable_boundaries: assert (len(i) == 2), \ "\n boundary for each variable must be a tuple of length two." assert(i[0]<=i[1]),\ "\n lower_boundaries must be smaller than upper_boundaries [lower,upper]" self.var_bound=variable_boundaries else: self.var_bound=np.array([[0,1]]*self.dim) ############################################################# #Timeout self.funtimeout=float(function_timeout) ############################################################# # input algorithm's parameters self.param=algorithm_parameters self.pop_s=int(self.param['population_size']) assert (self.param['parents_portion']<=1\ and self.param['parents_portion']>=0),\ "parents_portion must be in range [0,1]" self.par_s=int(self.param['parents_portion']*self.pop_s) trl=self.pop_s-self.par_s if trl % 2 != 0: self.par_s+=1 self.prob_mut=self.param['mutation_probability'] assert (self.prob_mut<=1 and self.prob_mut>=0), \ "mutation_probability must be in range [0,1]" self.prob_cross=self.param['crossover_probability'] assert (self.prob_cross<=1 and self.prob_cross>=0), \ "mutation_probability must be in range [0,1]" assert (self.param['elit_ratio']<=1 and self.param['elit_ratio']>=0),\ "elit_ratio must be in range [0,1]" trl=self.pop_s*self.param['elit_ratio'] if trl<1 and self.param['elit_ratio']>0: self.num_elit=1 else: self.num_elit=int(trl) assert(self.par_s>=self.num_elit), \ "\n number of parents must be greater than number of elits" if self.param['max_num_iteration']==None: self.iterate=0 for i in range (0,self.dim): if self.var_type[i]=='int': self.iterate+=(self.var_bound[i][1]-self.var_bound[i][0])*self.dim*(100/self.pop_s) else: self.iterate+=(self.var_bound[i][1]-self.var_bound[i][0])*50*(100/self.pop_s) self.iterate=int(self.iterate) if (self.iterate*self.pop_s)>10000000: self.iterate=10000000/self.pop_s else: self.iterate=int(self.param['max_num_iteration']) self.c_type=self.param['crossover_type'] assert (self.c_type=='uniform' or self.c_type=='one_point' or\ self.c_type=='two_point'),\ "\n crossover_type must 'uniform', 'one_point', or 'two_point' Enter string" self.stop_mniwi=False if self.param['max_iteration_without_improv']==None: self.mniwi=self.iterate+1 else: self.mniwi=int(self.param['max_iteration_without_improv']) ############################################################# def run(self): ############################################################# # Initial Population self.integers=np.where(self.var_type=='int') self.reals=np.where(self.var_type=='real') pop=np.array([np.ones(self.dim+1)]*self.pop_s) solo=np.ones(self.dim+1) var=np.ones(self.dim) for p in range(0,self.pop_s): for i in self.integers[0]: #var[i]=np.random.randint(self.var_bound[i][0],\ #self.var_bound[i][1]+1) s = [-1, 1] var[i]=np.random.choice(s) solo[i]=var[i].copy() for i in self.reals[0]: var[i]=self.var_bound[i][0]+np.random.random()*\ (self.var_bound[i][1]-self.var_bound[i][0]) solo[i]=var[i].copy() obj=self.sim(var) solo[self.dim]=obj pop[p]=solo.copy() #print(pop[p]) ############################################################# ############################################################# # Report self.report=[] self.test_obj=obj self.best_variable=var.copy() self.best_function=obj ############################################################## t=1 counter=0 while t<=self.iterate: self.progress(t,self.iterate,status="GA is running...") ############################################################# #Sort pop = pop[pop[:,self.dim].argsort()] if pop[0,self.dim]<self.best_function: counter=0 self.best_function=pop[0,self.dim].copy() self.best_variable=pop[0,: self.dim].copy() else: counter+=1 ############################################################# # Report self.report.append(pop[0,self.dim]) ############################################################## # Normalizing objective function normobj=np.ones(self.pop_s) minobj=pop[0,self.dim] if minobj<0: normobj=pop[:,self.dim]+abs(minobj) else: normobj=pop[:,self.dim].copy() maxnorm=np.amax(normobj) normobj=maxnorm-normobj+1 ############################################################# # Calculate probability sum_normobj=np.sum(normobj) prob=np.ones(self.pop_s) prob=normobj/sum_normobj cumprob=np.cumsum(prob) #print(cumprob) ############################################################# # Select parents par=np.array([np.ones(self.dim+1)]*self.par_s) for k in range(0,self.num_elit): par[k]=pop[k].copy() for k in range(self.num_elit,self.par_s): index=np.searchsorted(cumprob,np.random.random()) par[k]=pop[index].copy() ef_par_list=np.array([False]*self.par_s) par_count=0 while par_count==0: for k in range(0,self.par_s): if np.random.random()<=self.prob_cross: ef_par_list[k]=True par_count+=1 ef_par=par[ef_par_list].copy() ############################################################# #New generation pop=np.array([np.ones(self.dim+1)]*self.pop_s) for k in range(0,self.par_s): pop[k]=par[k].copy() for k in range(self.par_s, self.pop_s, 2): r1=np.random.randint(0, par_count) r2=np.random.randint(0, par_count) pvar1=ef_par[r1,: self.dim].copy() pvar2=ef_par[r2,: self.dim].copy() ch=self.cross(pvar1,pvar2,self.c_type) ch1=ch[0].copy() ch2=ch[1].copy() ch1=self.mut(ch1) ch2=self.mutmidle(ch2,pvar1,pvar2) solo[: self.dim]=ch1.copy() obj=self.sim(ch1) solo[self.dim]=obj pop[k]=solo.copy() solo[: self.dim]=ch2.copy() obj=self.sim(ch2) solo[self.dim]=obj pop[k+1]=solo.copy() ############################################################# t+=1 if counter > self.mniwi: pop = pop[pop[:,self.dim].argsort()] if pop[0,self.dim]>=self.best_function: t=self.iterate self.progress(t,self.iterate,status="GA is running...") time.sleep(2) t+=1 self.stop_mniwi=True ############################################################# #Sort pop = pop[pop[:,self.dim].argsort()] if pop[0,self.dim]<self.best_function: self.best_function=pop[0,self.dim].copy() self.best_variable=pop[0,: self.dim].copy() ############################################################# # Report self.report.append(pop[0,self.dim]) self.output_dict={'variable': self.best_variable, 'function':\ self.best_function} show=' '*100 sys.stdout.write('\r%s' % (show)) sys.stdout.write('\r The best solution found:\n %s' % (self.best_variable)) sys.stdout.write('\n\n Objective function:\n %s\n' % (self.best_function)) sys.stdout.flush() re=np.array(self.report) #plt.plot(re, color="crimson", linewidth=3, marker='*', linestyle='--', markersize = 4, markeredgecolor = 'none',alpha=1) #plt.plot(re, color="crimson", marker='o', markersize = 3, markeredgecolor = 'none',alpha=0.5) plt.plot(re, color="crimson", linewidth=3,alpha=1) plt.xlabel('Iteration', fontname ='Arial',fontsize=11) plt.ylabel('Objective function', fontname ='Arial',fontsize=11) #plt.ylim([-147.95,-147.2]) #plt.ylim([97,116]) #plt.ylim(self.best_function-1, self.best_function+1) plt.title('Genetic Algorithm', fontname ='Arial',fontsize=8) plt.xticks(fontname = 'Arial',fontsize=11) plt.yticks(fontname = 'Arial',fontsize=11) figure =plt.gcf() figure.set_size_inches(6,4) #plt.savefig('/Users/lizhenzhu/Downloads/'+'ga_h1.png', dpi = 600, transparent=True) plt.show() if self.stop_mniwi==True: sys.stdout.write('\nWarning: GA is terminated due to the'+\ ' maximum number of iterations without improvement was met!') ############################################################################## ############################################################################## def cross(self,x,y,c_type): ofs1=x.copy() ofs2=y.copy() if c_type=='one_point': ran=np.random.randint(0,self.dim) for i in range(0,ran): ofs1[i]=y[i].copy() ofs2[i]=x[i].copy() if c_type=='two_point': ran1=np.random.randint(0,self.dim) ran2=np.random.randint(ran1,self.dim) for i in range(ran1,ran2): ofs1[i]=y[i].copy() ofs2[i]=x[i].copy() if c_type=='uniform': for i in range(0, self.dim): ran=np.random.random() if ran <0.5: ofs1[i]=y[i].copy() ofs2[i]=x[i].copy() return np.array([ofs1,ofs2]) ############################################################################### def mut(self,x): for i in self.integers[0]: ran=np.random.random() if ran < self.prob_mut: s = [-1, 1] x[i]=np.random.choice(s) for i in self.reals[0]: ran=np.random.random() if ran < self.prob_mut: x[i]=self.var_bound[i][0]+np.random.random()*\ (self.var_bound[i][1]-self.var_bound[i][0]) return x ############################################################################### def mutmidle(self, x, p1, p2): for i in self.integers[0]: ran=np.random.random() if ran < self.prob_mut: if p1[i]<p2[i]: s = [-1, 1] x[i]=np.random.choice(s) elif p1[i]>p2[i]: s = [-1, 1] x[i]=np.random.choice(s) else: s = [-1, 1] x[i]=np.random.choice(s) for i in self.reals[0]: ran=np.random.random() if ran < self.prob_mut: if p1[i]<p2[i]: x[i]=p1[i]+np.random.random()*(p2[i]-p1[i]) elif p1[i]>p2[i]: x[i]=p2[i]+np.random.random()*(p1[i]-p2[i]) else: x[i]=self.var_bound[i][0]+np.random.random()*\ (self.var_bound[i][1]-self.var_bound[i][0]) return x ############################################################################### def sim(self,X): self.temp=X.copy() obj=self.f(self.temp) return obj ############################################################################### def progress(self, count, total, status=''): bar_len = 50 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '|' * filled_len + '_' * (bar_len - filled_len) sys.stdout.write('\r%s %s%s %s' % (bar, percents, '%', status)) sys.stdout.flush() ############################################################################### ############################################################################### ############################################################################### ############################Optimisation function ############################# ############################################################################### import numpy as np array_co =[] layer = 12 # define the layer number of interested, this can be changed to any integer def coefficients(spin,nnn): length = len(spin) temp = 0 for i in range(length): j = (i+nnn) % length temp += spin[i] * spin[j] #print(temp) def generalCoefficients(spin,nnn): length = len(spin) temp = 0 for i in range(length): tempi = spin[i] for j in range(len(nnn)): if nnn == [0]: tempi = tempi else: k = (i+nnn[j]) % length tempi = tempi * spin[k] temp += tempi #print(temp) array_co.append(str(temp)+' ') #print(array_co) def getAll(spin): generalCoefficients(spin,[0]) generalCoefficients(spin,[1]) generalCoefficients(spin,[2]) generalCoefficients(spin,[3]) generalCoefficients(spin,[1,2]) generalCoefficients(spin,[2,3]) generalCoefficients(spin,[1,3]) generalCoefficients(spin,[1,2,3]) def f(spin): #print (spin[0] == 0) #if (spin[0] != 0) & (spin[1] != 0) & (spin[2] != 0) & (spin[3] != 0) & (spin[4] != 0) & (spin[5] != 0) & (spin[6] != 0) & (spin[7] != 0) & (spin[8] != 0) & (spin[9] != 0) & (spin[10] != 0) & (spin[11] != 0): getAll(spin) #print(array_co) co1 = layer*(-11.2432698) co2 = float(array_co[0])* (2.01506745) co3 = float(array_co[1])* (1.02438188) co4 = float(array_co[2])* (0.004414688) co5 = float(array_co[3])* (-1.03368526) co6 = float(array_co[4]) * (0.001165438) co7 = (1/2)*(float(array_co[6])+float(array_co[5])) * (-2.06124239) co8 = float(array_co[7])* (-1.03258301) #toten = co1 + co2 + co3 + co4 + co5 + co6+co7+co8 del array_co[0] del array_co[0] del array_co[0] del array_co[0] del array_co[0] del array_co[0] del array_co[0] del array_co[0] #print(toten) toten = (co1 + co2 + co3 + co4 + co5 + co6+co7+co8) return toten #finding the low energy structures #return -toten #finding the symmetry forbidden sequences varbound=np.array([[-1,1]]*layer) algorithm_param = {'max_num_iteration': 100,\ 'population_size':300,\ 'mutation_probability':0.6,\ 'elit_ratio': 0.2,\ 'crossover_probability': 0.1,\ 'parents_portion': 0.6,\ 'crossover_type':'uniform',\ 'max_iteration_without_improv':None} model=geneticalgorithm(function=f,\ dimension=layer,\ variable_type='int',\ variable_boundaries=varbound,\ function_timeout=10,\ algorithm_parameters=algorithm_param) start = timeit.default_timer() model.run() stop = timeit.default_timer() print('Time: ', stop - start) ###Output The best solution found: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] Objective function: -147.90901204800002
02-fmri_data_manipulation_in_python/02-data_frames_manipulation_template.ipynb
###Markdown Data frames manipulation with pandas [pandas](https://pandas.pydata.org/) - fast, powerful, flexible and easy to use open source data analysis and manipulation tool,built on top of the Python programming language.---------------- ###Code ## Load libraries import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1. Load & plot confounds variables **Confounds** (or *nuisance regressors*) are variables representing fluctuations with a potential non-neuronal origin. Confounding variables calculated by [fMRIPrep](https://fmriprep.readthedocs.io/en/stable/outputs.htmlconfounds) are stored separately for each subject, session and run in TSV files - one column for each confound variable. ###Code # Load data confounds_path = "data/sub-01_ses-1_task-rest_bold_confounds.tsv" # Print first 5 rows of data # Print column names # Plot mean timeseries from cerebrospinal fluid (CSF) and white matter # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot (use seaborn joint plot) import seaborn as sns ###Output _____no_output_____ ###Markdown 2. Load and plot COVID-19 dataDownload data:[COVID-19](http://shinyapps.org/apps/corona/) (check out their GH) ###Code # Load some COVID-19 data # covid_path = # Print first 5 rows of data # Group by country & sum cases # Filter dataframe by cases in Poland # Plot cases in Poland # Plot cases in other country # Plot cases of multiple countries on a one plot ###Output _____no_output_____ ###Markdown Data frames manipulation with pandas [pandas](https://pandas.pydata.org/) - fast, powerful, flexible and easy to use open source data analysis and manipulation tool,built on top of the Python programming language.---------------- ###Code ## Load libraries import pandas as pd import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1. Load & plot confounds variables **Confounds** (or *nuisance regressors*) are variables representing fluctuations with a potential non-neuronal origin. Confounding variables calculated by [fMRIPrep](https://fmriprep.readthedocs.io/en/stable/outputs.htmlconfounds) are stored separately for each subject, session and run in TSV files - one column for each confound variable. ###Code # Load data confounds_path = "data/sub-01_ses-1_task-rest_bold_confounds.tsv" # Print first 5 rows of data # Print column names # Plot mean timeseries from cerebrospinal fluid (CSF) and white matter # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot (use seaborn joint plot) import seaborn as sns ###Output _____no_output_____ ###Markdown 2. Load and plot COVID-19 dataDownload data:[COVID-19](http://shinyapps.org/apps/corona/) (check out their GH) ###Code # Load some COVID-19 data # covid_path = # Print first 5 rows of data # Group by country & sum cases # Filter dataframe by cases in Poland # Plot cases in Poland # Plot cases in other country # Plot cases of multiple countries on a one plot ###Output _____no_output_____ ###Markdown Data frames manipulation with pandas __Packages__:- [Matplotlib](https://matplotlib.org/) - a comprehensive library for creating static, animated, and interactive visualizations in Python- [Pandas](https://pandas.pydata.org/) - fast, powerful, flexible and easy to use open source data analysis and manipulation tool,built on top of the Python programming language- [Seaborn](https://seaborn.pydata.org/) - data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.---------------- ###Code ## Load libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown 1. Load & plot confounds variables **Confounds** (or *nuisance regressors*) are variables representing fluctuations with a potential non-neuronal origin. Confounding variables calculated by [fMRIPrep](https://fmriprep.readthedocs.io/en/stable/outputs.htmlconfounds) are stored separately for each subject, session and run in TSV files - one column for each confound variable. ###Code # Load data confounds_path = "data/sub-01_ses-1_task-rest_bold_confounds.tsv" # Print first 5 rows of data # Print column names # Plot mean timeseries from cerebrospinal fluid (CSF) and white matter # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot # Plot cerebrospinal fluid (CSF) and white matter timeseries on a scatterplot (use seaborn joint plot) ###Output _____no_output_____ ###Markdown 2. Load and plot COVID-19 dataDownload data from [European Centre for Disease Prevention and Control](https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide). ###Code # Load some COVID-19 data covid_path = "data/covid-ecdpc.csv" # Print first 5 rows of data # Group by country, month & day and sum cases # covid_grouped = # Filter dataframe by cases in Poland # poland = # Plot cases in Poland # Plot cases in other country # Plot cases of multiple countries on a one plot ###Output _____no_output_____
module1-log-linear-regression/log_linear_regression_feature_engineering.ipynb
###Markdown _Lambda School Data Science โ€” Regression 2_ This sprint, your project is Caterpillar Tube Pricing: Predict the prices suppliers will quote for industrial tube assemblies. Log-Linear Regression, Feature Engineering Objectives- log-transform regression target with right-skewed distribution- use regression metric: RMSLE- do feature engineering with relational data Process Francois Chollet, [Deep Learning with Python](https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/README.md), Chapter 4: Fundamentals of machine learning, "A universal workflow of machine learning" > **1. Define the problem at hand and the data on which youโ€™ll train.** Collect this data, or annotate it with labels if need be.> **2. Choose how youโ€™ll measure success on your problem.** Which metrics will you monitor on your validation data?> **3. Determine your evaluation protocol:** hold-out validation? K-fold validation? Which portion of the data should you use for validation?> **4. Develop a first model that does better than a basic baseline:** a model with statistical power.> **5. Develop a model that overfits.** The universal tension in machine learning is between optimization and generalization; the ideal model is one that stands right at the border between underfitting and overfitting; between undercapacity and overcapacity. To figure out where this border lies, first you must cross it.> **6. Regularize your model and tune its hyperparameters, based on performance on the validation data.** Repeatedly modify your model, train it, evaluate on your validation data (not the test data, at this point), modify it again, and repeat, until the model is as good as it can get. > **Iterate on feature engineering: add new features, or remove features that donโ€™t seem to be informative.** Once youโ€™ve developed a satisfactory model configuration, you can train your final production model on all the available data (training and validation) and evaluate it one last time on the test set. Define the problem ๐Ÿšœ [Description](https://www.kaggle.com/c/caterpillar-tube-pricing/overview/description)> Like snowflakes, it's difficult to find two tubes in Caterpillar's diverse catalogue of machinery that are exactly alike. Tubes can vary across a number of dimensions, including base materials, number of bends, bend radius, bolt patterns, and end types.> Currently, Caterpillar relies on a variety of suppliers to manufacture these tube assemblies, each having their own unique pricing model. This competition provides detailed tube, component, and annual volume datasets, and challenges you to predict the price a supplier will quote for a given tube assembly. Define the data on which you'll train [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> The dataset is comprised of a large number of relational tables that describe the physical properties of tube assemblies. You are challenged to combine the characteristics of each tube assembly with supplier pricing dynamics in order to forecast a quote price for each tube. The quote price is labeled as cost in the data. Get data Option 1. Kaggle web UI Sign in to Kaggle and go to the [Caterpillar Tube Pricing](https://www.kaggle.com/c/caterpillar-tube-pricing) competition. Go to the Data page. After you have accepted the rules of the competition, use the download buttons to download the data. Option 2. Kaggle API1. [Follow these instructions](https://github.com/Kaggle/kaggle-apiapi-credentials) to create a Kaggle โ€œAPI Tokenโ€ and download your `kaggle.json` file.2. Put `kaggle.json` in the correct location. - If you're using Anaconda, put the file in the directory specified in the [instructions](https://github.com/Kaggle/kaggle-apiapi-credentials). - If you're using Google Colab, upload the file to your Google Drive, and run this cell: ``` from google.colab import drive drive.mount('/content/drive') %env KAGGLE_CONFIG_DIR=/content/drive/My Drive/ ```3. Install the Kaggle API package.```pip install kaggle```4. After you have accepted the rules of the competiton, use the Kaggle API package to get the data.```kaggle competitions download -c caterpillar-tube-pricing``` Option 3. Google DriveDownload [zip file](https://drive.google.com/uc?export=download&id=1oGky3xR6133pub7S4zIEFbF4x1I87jvC) from Google Drive. ###Code # from google.colab import files # files.upload() # !unzip caterpillar-tube-pricing.zip # !unzip data.zip ###Output _____no_output_____ ###Markdown Get filenames & shapes[Python Standard Library: glob](https://docs.python.org/3/library/glob.html)> The `glob` module finds all the pathnames matching a specified pattern ###Code from glob import glob import pandas as pd for path in glob('competition_data/*.csv'): df = pd.read_csv(path) print(path, df.shape) ###Output _____no_output_____ ###Markdown Choose how you'll measure success on your problem> Which metrics will you monitor on your validation data? [Evaluation](https://www.kaggle.com/c/caterpillar-tube-pricing/overview/evaluation)> Submissions are evaluated one the Root Mean Squared Logarithmic Error (RMSLE). The RMSLE is calculated as>> $\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\log \left(p_{i}+1\right)-\log \left(a_{i}+1\right)\right)^{2}}$>> Where:>> - $n$ is the number of price quotes in the test set> - $p_i$ is your predicted price> - $a_i$ is the actual price> - $log(x)$ is the natural logarithm [Scikit-Learn User Guide](https://scikit-learn.org/stable/modules/model_evaluation.htmlmean-squared-log-error)> The `mean_squared_log_error` function is best to use when targets have exponential growth, such as population counts, average sales of a commodity over a span of years etc. Note that this metric penalizes an under-predicted estimate greater than an over-predicted estimate. Determine your evaluation protocol> Which portion of the data should you use for validation? Rachel Thomas, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/)> You will want to create your own training and validation sets (by splitting the Kaggle โ€œtrainingโ€ data). You will just use your smaller training set (a subset of Kaggleโ€™s training data) for building your model, and you can evaluate it on your validation set (also a subset of Kaggleโ€™s training data) before you submit to Kaggle.> When is a random subset not good enough?> - Time series> - New people, new boats, newโ€ฆ Does the test set have different dates? Does the test set have different tube assemblies? Make the validation set like the test set Begin with baselines for regression Develop a first model that does better than a basic baseline Fit Random Forest with 1 feature: `quantity` Log-transform regression target with right-skewed distribution Plot right-skewed distribution Terence Parr & Jeremy Howard, [The Mechanics of Machine Learning, Chapter 5.5](https://mlbook.explained.ai/prep.htmllogtarget)> Transforming the target variable (using the mathematical log function) into a tighter, more uniform space makes life easier for any model.> The only problem is that, while easy to execute, understanding why taking the log of the target variable works and how it affects the training/testing process is intellectually challenging. You can skip this section for now, if you like, but just remember that this technique exists and check back here if needed in the future.> Optimally, the distribution of prices would be a narrow โ€œbell curveโ€ distribution without a tail. This would make predictions based upon average prices more accurate. We need a mathematical operation that transforms the widely-distributed target prices into a new space. The โ€œprice in dollars spaceโ€ has a long right tail because of outliers and we want to squeeze that space into a new space that is normally distributed (โ€œbell curvedโ€). More specifically, we need to shrink large values a lot and smaller values a little. That magic operation is called the logarithm or log for short. > To make actual predictions, we have to take the exp of model predictions to get prices in dollars instead of log dollars. Wikipedia, [Logarithm](https://en.wikipedia.org/wiki/Logarithm)> Addition, multiplication, and exponentiation are three fundamental arithmetic operations. Addition can be undone by subtraction. Multiplication can be undone by division. The idea and purpose of **logarithms** is also to **undo** a fundamental arithmetic operation, namely raising a number to a certain power, an operation also known as **exponentiation.** > For example, raising 2 to the third power yields 8.> The logarithm (with respect to base 2) of 8 is 3, reflecting the fact that 2 was raised to the third power to get 8. Use Numpy for exponents and logarithms functions- https://docs.scipy.org/doc/numpy/reference/routines.math.htmlexponents-and-logarithms Refit model with log-transformed target Interlude: Moore's Law dataset Background- https://en.wikipedia.org/wiki/Moore%27s_law- https://en.wikipedia.org/wiki/Transistor_count Scrape HTML tables with Pandas!- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_html.html- https://medium.com/@ageitgey/quick-tip-the-easiest-way-to-grab-data-out-of-a-web-page-in-python-7153cecfca58 More web scraping options- https://automatetheboringstuff.com/chapter11/ ###Code # Scrape data tables = pd.read_html('https://en.wikipedia.org/wiki/Transistor_count', header=0) moore = tables[0] moore = moore[['Date of introduction', 'Transistor count']].dropna() # Clean data for column in moore: moore[column] = (moore[column] .str.split('[').str[0] # Remove citations .str.replace(r'\D','') # Remove non-digit characters .astype(int)) moore = moore.sort_values(by='Date of introduction') # Plot distribution of transistor counts sns.distplot(moore['Transistor count']); # Plot relationship between date & transistors moore.plot(x='Date of introduction', y='Transistor count', kind='scatter', alpha=0.5); # Log-transform the target moore['log(Transistor count)'] = np.log1p(moore['Transistor count']) # Plot distribution of log-transformed target sns.distplot(moore['log(Transistor count)']); # Plot relationship between date & log-transformed target moore.plot(x='Date of introduction', y='log(Transistor count)', kind='scatter', alpha=0.5); # Fit Linear Regression with log-transformed target from sklearn.linear_model import LinearRegression model = LinearRegression() X = moore[['Date of introduction']] y_log = moore['log(Transistor count)'] model.fit(X, y_log) y_pred_log = model.predict(X) # Plot line of best fit, in units of log-transistors ax = moore.plot(x='Date of introduction', y='log(Transistor count)', kind='scatter', alpha=0.5) ax.plot(X, y_pred_log); # Convert log-transistors to transistors y_pred = np.expm1(y_pred_log) # Plot line of best fit, in units of transistors ax = moore.plot(x='Date of introduction', y='Transistor count', kind='scatter', alpha=0.5) ax.plot(X, y_pred); ###Output _____no_output_____ ###Markdown Back to Caterpillar ๐Ÿšœ Select more features [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> **train_set.csv and test_set.csv** > This file contains information on price quotes from our suppliers. Prices can be quoted in 2 ways: bracket and non-bracket pricing. Bracket pricing has multiple levels of purchase based on quantity (in other words, the cost is given assuming a purchase of quantity tubes). Non-bracket pricing has a minimum order amount (min_order) for which the price would apply. Each quote is issued with an annual_usage, an estimate of how many tube assemblies will be purchased in a given year. ###Code # !pip install category_encoders ###Output _____no_output_____ ###Markdown Do feature engineering with relational data [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> The dataset is comprised of a large number of relational tables that describe the physical properties of tube assemblies. You are challenged to combine the characteristics of each tube assembly with supplier pricing dynamics in order to forecast a quote price for each tube.> **tube.csv** > This file contains information on tube assemblies, which are the primary focus of the competition. Tube Assemblies are made of multiple parts. The main piece is the tube which has a specific diameter, wall thickness, length, number of bends and bend radius. Either end of the tube (End A or End X) typically has some form of end connection allowing the tube assembly to attach to other features. Special tooling is typically required for short end straight lengths (end_a_1x, end_a_2x refer to if the end length is less than 1 times or 2 times the tube diameter, respectively). Other components can be permanently attached to a tube such as bosses, brackets or other custom features. ###Code for path in glob('competition_data/*.csv'): df = pd.read_csv(path) shared_columns = set(df.columns) & set(train.columns) if shared_columns: print(path, df.shape) print(df.columns.tolist(), '\n') ###Output _____no_output_____ ###Markdown _Lambda School Data Science โ€” Regression 2_ This sprint, your project is Caterpillar Tube Pricing: Predict the prices suppliers will quote for industrial tube assemblies. Log-Linear Regression, Feature Engineering Objectives- log-transform regression target with right-skewed distribution- use regression metric: RMSLE- do feature engineering with relational data Process Francois Chollet, [Deep Learning with Python](https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/README.md), Chapter 4: Fundamentals of machine learning, "A universal workflow of machine learning" > **1. Define the problem at hand and the data on which youโ€™ll train.** Collect this data, or annotate it with labels if need be.> **2. Choose how youโ€™ll measure success on your problem.** Which metrics will you monitor on your validation data?> **3. Determine your evaluation protocol:** hold-out validation? K-fold validation? Which portion of the data should you use for validation?> **4. Develop a first model that does better than a basic baseline:** a model with statistical power.> **5. Develop a model that overfits.** The universal tension in machine learning is between optimization and generalization; the ideal model is one that stands right at the border between underfitting and overfitting; between undercapacity and overcapacity. To figure out where this border lies, first you must cross it.> **6. Regularize your model and tune its hyperparameters, based on performance on the validation data.** Repeatedly modify your model, train it, evaluate on your validation data (not the test data, at this point), modify it again, and repeat, until the model is as good as it can get. > **Iterate on feature engineering: add new features, or remove features that donโ€™t seem to be informative.** Once youโ€™ve developed a satisfactory model configuration, you can train your final production model on all the available data (training and validation) and evaluate it one last time on the test set. Define the problem ๐Ÿšœ [Description](https://www.kaggle.com/c/caterpillar-tube-pricing/overview/description)> Like snowflakes, it's difficult to find two tubes in Caterpillar's diverse catalogue of machinery that are exactly alike. Tubes can vary across a number of dimensions, including base materials, number of bends, bend radius, bolt patterns, and end types.> Currently, Caterpillar relies on a variety of suppliers to manufacture these tube assemblies, each having their own unique pricing model. This competition provides detailed tube, component, and annual volume datasets, and challenges you to predict the price a supplier will quote for a given tube assembly. Define the data on which you'll train [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> The dataset is comprised of a large number of relational tables that describe the physical properties of tube assemblies. You are challenged to combine the characteristics of each tube assembly with supplier pricing dynamics in order to forecast a quote price for each tube. The quote price is labeled as cost in the data. Get data Option 1. Kaggle web UI Sign in to Kaggle and go to the [Caterpillar Tube Pricing](https://www.kaggle.com/c/caterpillar-tube-pricing) competition. Go to the Data page. After you have accepted the rules of the competition, use the download buttons to download the data. Option 2. Kaggle API1. [Follow these instructions](https://github.com/Kaggle/kaggle-apiapi-credentials) to create a Kaggle โ€œAPI Tokenโ€ and download your `kaggle.json` file.2. Put `kaggle.json` in the correct location. - If you're using Anaconda, put the file in the directory specified in the [instructions](https://github.com/Kaggle/kaggle-apiapi-credentials). - If you're using Google Colab, upload the file to your Google Drive, and run this cell: ``` from google.colab import drive drive.mount('/content/drive') %env KAGGLE_CONFIG_DIR=/content/drive/My Drive/ ```3. Install the Kaggle API package.```pip install kaggle```4. After you have accepted the rules of the competiton, use the Kaggle API package to get the data.```kaggle competitions download -c caterpillar-tube-pricing``` Option 3. Google DriveDownload [zip file](https://drive.google.com/uc?export=download&id=1oGky3xR6133pub7S4zIEFbF4x1I87jvC) from Google Drive. ###Code # from google.colab import files # files.upload() # !unzip caterpillar-tube-pricing.zip # !unzip data.zip ###Output _____no_output_____ ###Markdown Get filenames & shapes[Python Standard Library: glob](https://docs.python.org/3/library/glob.html)> The `glob` module finds all the pathnames matching a specified pattern ###Code from glob import glob import pandas as pd for path in glob('competition_data/*.csv'): df = pd.read_csv(path) print(path, df.shape) ###Output _____no_output_____ ###Markdown Choose how you'll measure success on your problem> Which metrics will you monitor on your validation data? [Evaluation](https://www.kaggle.com/c/caterpillar-tube-pricing/overview/evaluation)> Submissions are evaluated one the Root Mean Squared Logarithmic Error (RMSLE). The RMSLE is calculated as>> $\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\log \left(p_{i}+1\right)-\log \left(a_{i}+1\right)\right)^{2}}$>> Where:>> - $n$ is the number of price quotes in the test set> - $p_i$ is your predicted price> - $a_i$ is the actual price> - $log(x)$ is the natural logarithm [Scikit-Learn User Guide](https://scikit-learn.org/stable/modules/model_evaluation.htmlmean-squared-log-error)> The `mean_squared_log_error` function is best to use when targets have exponential growth, such as population counts, average sales of a commodity over a span of years etc. Note that this metric penalizes an under-predicted estimate greater than an over-predicted estimate. Determine your evaluation protocol> Which portion of the data should you use for validation? Rachel Thomas, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/)> You will want to create your own training and validation sets (by splitting the Kaggle โ€œtrainingโ€ data). You will just use your smaller training set (a subset of Kaggleโ€™s training data) for building your model, and you can evaluate it on your validation set (also a subset of Kaggleโ€™s training data) before you submit to Kaggle.> When is a random subset not good enough?> - Time series> - New people, new boats, newโ€ฆ Does the test set have different dates? Does the test set have different tube assemblies? Make the validation set like the test set Begin with baselines for regression Develop a first model that does better than a basic baseline Fit Random Forest with 1 feature: `quantity` Log-transform regression target with right-skewed distribution Plot right-skewed distribution Terence Parr & Jeremy Howard, [The Mechanics of Machine Learning, Chapter 5.5](https://mlbook.explained.ai/prep.htmllogtarget)> Transforming the target variable (using the mathematical log function) into a tighter, more uniform space makes life easier for any model.> The only problem is that, while easy to execute, understanding why taking the log of the target variable works and how it affects the training/testing process is intellectually challenging. You can skip this section for now, if you like, but just remember that this technique exists and check back here if needed in the future.> Optimally, the distribution of prices would be a narrow โ€œbell curveโ€ distribution without a tail. This would make predictions based upon average prices more accurate. We need a mathematical operation that transforms the widely-distributed target prices into a new space. The โ€œprice in dollars spaceโ€ has a long right tail because of outliers and we want to squeeze that space into a new space that is normally distributed (โ€œbell curvedโ€). More specifically, we need to shrink large values a lot and smaller values a little. That magic operation is called the logarithm or log for short. > To make actual predictions, we have to take the exp of model predictions to get prices in dollars instead of log dollars. Wikipedia, [Logarithm](https://en.wikipedia.org/wiki/Logarithm)> Addition, multiplication, and exponentiation are three fundamental arithmetic operations. Addition can be undone by subtraction. Multiplication can be undone by division. The idea and purpose of **logarithms** is also to **undo** a fundamental arithmetic operation, namely raising a number to a certain power, an operation also known as **exponentiation.** > For example, raising 2 to the third power yields 8.> The logarithm (with respect to base 2) of 8 is 3, reflecting the fact that 2 was raised to the third power to get 8. Use Numpy for exponents and logarithms functions- https://docs.scipy.org/doc/numpy/reference/routines.math.htmlexponents-and-logarithms Refit model with log-transformed target Interlude: Moore's Law dataset Background- https://en.wikipedia.org/wiki/Moore%27s_law- https://en.wikipedia.org/wiki/Transistor_count Scrape HTML tables with Pandas!- https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_html.html- https://medium.com/@ageitgey/quick-tip-the-easiest-way-to-grab-data-out-of-a-web-page-in-python-7153cecfca58 More web scraping options- https://automatetheboringstuff.com/chapter11/ ###Code # Scrape data tables = pd.read_html('https://en.wikipedia.org/wiki/Transistor_count', header=0) moore = tables[0] moore = moore[['Date of introduction', 'Transistor count']].dropna() # Clean data for column in moore: moore[column] = (moore[column] .str.split('[').str[0] # Remove citations .str.replace(r'\D','') # Remove non-digit characters .astype(int)) moore = moore.sort_values(by='Date of introduction') # Plot distribution of transistor counts sns.distplot(moore['Transistor count']); # Plot relationship between date & transistors moore.plot(x='Date of introduction', y='Transistor count', kind='scatter', alpha=0.5); # Log-transform the target moore['log(Transistor count)'] = np.log1p(moore['Transistor count']) # Plot distribution of log-transformed target sns.distplot(moore['log(Transistor count)']); # Plot relationship between date & log-transformed target moore.plot(x='Date of introduction', y='log(Transistor count)', kind='scatter', alpha=0.5); # Fit Linear Regression with log-transformed target from sklearn.linear_model import LinearRegression model = LinearRegression() X = moore[['Date of introduction']] y_log = moore['log(Transistor count)'] model.fit(X, y_log) y_pred_log = model.predict(X) # Plot line of best fit, in units of log-transistors ax = moore.plot(x='Date of introduction', y='log(Transistor count)', kind='scatter', alpha=0.5) ax.plot(X, y_pred_log); # Convert log-transistors to transistors y_pred = np.expm1(y_pred_log) # Plot line of best fit, in units of transistors ax = moore.plot(x='Date of introduction', y='Transistor count', kind='scatter', alpha=0.5) ax.plot(X, y_pred); ###Output _____no_output_____ ###Markdown Back to Caterpillar ๐Ÿšœ Select more features [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> **train_set.csv and test_set.csv** > This file contains information on price quotes from our suppliers. Prices can be quoted in 2 ways: bracket and non-bracket pricing. Bracket pricing has multiple levels of purchase based on quantity (in other words, the cost is given assuming a purchase of quantity tubes). Non-bracket pricing has a minimum order amount (min_order) for which the price would apply. Each quote is issued with an annual_usage, an estimate of how many tube assemblies will be purchased in a given year. ###Code # !pip install category_encoders ###Output _____no_output_____ ###Markdown Do feature engineering with relational data [Data Description](https://www.kaggle.com/c/caterpillar-tube-pricing/data)> The dataset is comprised of a large number of relational tables that describe the physical properties of tube assemblies. You are challenged to combine the characteristics of each tube assembly with supplier pricing dynamics in order to forecast a quote price for each tube.> **tube.csv** > This file contains information on tube assemblies, which are the primary focus of the competition. Tube Assemblies are made of multiple parts. The main piece is the tube which has a specific diameter, wall thickness, length, number of bends and bend radius. Either end of the tube (End A or End X) typically has some form of end connection allowing the tube assembly to attach to other features. Special tooling is typically required for short end straight lengths (end_a_1x, end_a_2x refer to if the end length is less than 1 times or 2 times the tube diameter, respectively). Other components can be permanently attached to a tube such as bosses, brackets or other custom features. ###Code for path in glob('competition_data/*.csv'): df = pd.read_csv(path) shared_columns = set(df.columns) & set(train.columns) if shared_columns: print(path, df.shape) print(df.columns.tolist(), '\n') ###Output _____no_output_____
docs/tutorial/02_Basic_objects.ipynb
###Markdown Basic objects A `striplog` depends on a hierarchy of objects. This notebook shows the objects and their basic functionality.- [Lexicon](Lexicon): A dictionary containing the words and word categories to use for rock descriptions.- [Component](Component): A set of attributes. - [Interval](Interval): One element from a Striplog โ€”ย consists of a top, base, a description, one or more Components, and a source.Striplogs (a set of `Interval`s) are described in [a separate notebook](01_Basics.ipynb).Decors and Legends are also described in [another notebook](03_Display_objects.ipynb). ###Code import striplog striplog.__version__ # If you get a lot of warnings here, just run it again. ###Output _____no_output_____ ###Markdown Lexicon ###Code from striplog import Lexicon print(Lexicon.__doc__) help(Lexicon) lexicon = Lexicon.default() lexicon lexicon.synonyms ###Output _____no_output_____ ###Markdown Most of the lexicon works 'behind the scenes' when processing descriptions into `Rock` components. ###Code lexicon.find_synonym('Halite') s = "grysh gn ss w/ sp gy sh" lexicon.expand_abbreviations(s) ###Output _____no_output_____ ###Markdown Component A set of attributes. All are optional. ###Code from striplog import Component print(Component.__doc__) ###Output Initialize with a dictionary of properties. You can use any properties you want e.g.: - lithology: a simple one-word rock type - colour, e.g. 'grey' - grainsize or range, e.g. 'vf-f' - modifier, e.g. 'rippled' - quantity, e.g. '35%', or 'stringers' - description, e.g. from cuttings ###Markdown We define a new rock with a Python `dict` object: ###Code r = {'colour': 'grey', 'grainsize': 'vf-f', 'lithology': 'sand'} rock = Component(r) rock ###Output _____no_output_____ ###Markdown The Rock has a colour: ###Code rock['colour'] ###Output _____no_output_____ ###Markdown And it has a summary, which is generated from its attributes. ###Code rock.summary() ###Output _____no_output_____ ###Markdown We can format the summary if we wish: ###Code rock.summary(fmt="My rock: {lithology} ({colour}, {grainsize!u})") ###Output _____no_output_____ ###Markdown The formatting supports the usual `s`, `r`, and `a`: * `s`: `str`* `r`: `repr`* `a`: `ascii`Also some string functions:* `u`: `str.upper`* `l`: `str.lower`* `c`: `str.capitalize`* `t`: `str.title`And some numerical ones, for arrays of numbers:* `+` or `โˆ‘`: `np.sum`* `m` or `ยต`: `np.mean`* `v`: `np.var`* `d`: `np.std`* `x`: `np.product` ###Code x = {'colour': ['Grey', 'Brown'], 'bogosity': [0.45, 0.51, 0.66], 'porosity': [0.2003, 0.1998, 0.2112, 0.2013, 0.1990], 'grainsize': 'VF-F', 'lithology': 'Sand', } X = Component(x) # This is not working at the moment. #fmt = 'The {colour[0]!u} {lithology!u} has a total of {bogosity!โˆ‘:.2f} bogons' #fmt += 'and a mean porosity of {porosity!ยต:2.0%}.' fmt = 'The {lithology!u} is {colour[0]!u}.' X.summary(fmt) X.json() ###Output _____no_output_____ ###Markdown We can compare rocks with the usual `==` operator: ###Code rock2 = Component({'grainsize': 'VF-F', 'colour': 'Grey', 'lithology': 'Sand'}) rock == rock2 rock ###Output _____no_output_____ ###Markdown In order to create a Component object from text, we need a lexicon to compare the text against. The lexicon describes the language we want to extract, and what it means. ###Code rock3 = Component.from_text('Grey fine sandstone.', lexicon) rock3 ###Output _____no_output_____ ###Markdown Components support double-star-unpacking: ###Code "My rock: {lithology} ({colour}, {grainsize})".format(**rock3) ###Output _____no_output_____ ###Markdown PositionPositions define points in the earth, like a top, but with uncertainty. You can define:* `upper` โ€”ย the highest possible location* `middle` โ€”ย the most likely location* `lower` โ€”ย the lowest possible location* `units` โ€”ย the units of measurement* `x` and `y` โ€”ย the _x_ and _y_ location (these don't have uncertainty, sorry)* `meta` โ€” a Python dictionary containing anything you wantPositions don't have a 'way up'. ###Code from striplog import Position print(Position.__doc__) params = {'upper': 95, 'middle': 100, 'lower': 110, 'meta': {'kind': 'erosive', 'source': 'DOE'} } p = Position(**params) p ###Output _____no_output_____ ###Markdown Even if you don't give a `middle`, you can always get `z`: the central, most likely position: ###Code params = {'upper': 75, 'lower': 85} p = Position(**params) p p.z ###Output _____no_output_____ ###Markdown IntervalIntervals are where it gets interesting. An interval can have:* a top* a base* a description (in natural language)* a list of `Component`sIntervals don't have a 'way up', it's implied by the order of `top` and `base`. ###Code from striplog import Interval print(Interval.__doc__) ###Output Used to represent a lithologic or stratigraphic interval, or single point, such as a sample location. Initialize with a top (and optional base) and a description and/or an ordered list of components. Args: top (float): Required top depth. Required. base (float): Base depth. Optional. description (str): Textual description. lexicon (dict): A lexicon. See documentation. Optional unless you only provide descriptions, because it's needed to extract components. max_component (int): The number of components to extract. Default 1. abbreviations (bool): Whether to parse for abbreviations. TODO: Seems like I should be able to instantiate like this: Interval({'top': 0, 'components':[Component({'age': 'Neogene'}) I can get around it for now like this: Interval(**{'top': 0, 'components':[Component({'age': 'Neogene'}) Question: should Interval itself cope with only being handed 'top' and either fill in down to the next or optionally create a point? ###Markdown I might make an `Interval` explicitly from a Component... ###Code Interval(10, 20, components=[rock]) ###Output _____no_output_____ ###Markdown ... or I might pass a description and a `lexicon` and Striplog will parse the description and attempt to extract structured `Component` objects from it. ###Code Interval(20, 40, "Grey sandstone with shale flakes.", lexicon=lexicon).__repr__() ###Output _____no_output_____ ###Markdown Notice I only got one `Component`, even though the description contains a subordinate lithology. This is the default behaviour, we have to ask for more components: ###Code interval = Interval(20, 40, "Grey sandstone with black shale flakes.", lexicon=lexicon, max_component=2) print(interval) ###Output {'components': [Component({'colour': 'grey', 'lithology': 'sandstone'}), Component({'amount': 'flakes', 'colour': 'black', 'lithology': 'shale'})], 'top': Position({'middle': 20.0, 'units': 'm'}), 'data': {}, 'description': 'Grey sandstone with black shale flakes.', 'base': Position({'middle': 40.0, 'units': 'm'})} ###Markdown `Interval`s have a `primary` attribute, which holds the first component, no matter how many components there are. ###Code interval.primary ###Output _____no_output_____ ###Markdown Ask for the summary to see the thickness and a `Rock` summary of the primary component. Note that the format code only applies to the `Rock` part of the summary. ###Code interval.summary(fmt="{colour} {lithology}") ###Output _____no_output_____ ###Markdown We can change an interval's properties: ###Code interval.top = 18 interval interval.top ###Output _____no_output_____ ###Markdown Comparing and combining intervals ###Code # Depth ordered i1 = Interval(top=61, base=62.5, components=[Component({'lithology': 'limestone'})]) i2 = Interval(top=62, base=63, components=[Component({'lithology': 'sandstone'})]) i3 = Interval(top=62.5, base=63.5, components=[Component({'lithology': 'siltstone'})]) i4 = Interval(top=63, base=64, components=[Component({'lithology': 'shale'})]) i5 = Interval(top=63.1, base=63.4, components=[Component({'lithology': 'dolomite'})]) # Elevation ordered i8 = Interval(top=200, base=100, components=[Component({'lithology': 'sandstone'})]) i7 = Interval(top=150, base=50, components=[Component({'lithology': 'limestone'})]) i6 = Interval(top=100, base=0, components=[Component({'lithology': 'siltstone'})]) i2.order ###Output _____no_output_____ ###Markdown **Technical aside:** The `Interval` class is a `functools.total_ordering`, so providing `__eq__` and one other comparison (such as `__lt__`) in the class definition means that instances of the class have implicit order. So you can use `sorted` on a Striplog, for example.It wasn't clear to me whether this should compare tops (say), so that '>' might mean 'above', or if it should be keyed on thickness. I chose the former, and implemented other comparisons instead. ###Code print(i3 == i2) # False, they don't have the same top print(i1 > i4) # True, i1 is above i4 print(min(i1, i2, i5).summary()) # 0.3 m of dolomite i2 > i4 > i5 # True ###Output _____no_output_____ ###Markdown We can combine intervals with the `+` operator. (However, you cannot subtract intervals.) ###Code i2 + i3 ###Output _____no_output_____ ###Markdown Adding a rock adds a (minor) component and adds to the description. ###Code interval + rock3 i6.relationship(i7), i5.relationship(i4) print(i1.partially_overlaps(i2)) # True print(i2.partially_overlaps(i3)) # True print(i2.partially_overlaps(i4)) # False print() print(i6.partially_overlaps(i7)) # True print(i7.partially_overlaps(i6)) # True print(i6.partially_overlaps(i8)) # False print() print(i5.is_contained_by(i3)) # True print(i5.is_contained_by(i4)) # True print(i5.is_contained_by(i2)) # False x = i4.merge(i5) x[-1].base = 65 x i1.intersect(i2, blend=False) i1.intersect(i2) i1.union(i3) i3.difference(i5) ###Output _____no_output_____
D'wave tutorials/6.D-wave Quantum Solvers.ipynb
###Markdown Defining a sample QUBO \begin{equation}H_{1}^{QUBO}=-4.4x_{1}^2+0.6x_{2}^2-2x_{3}^2+2.8x_{1}x_{2}-0.8x_{2}x_{3}+2.4\end{equation} ###Code linear = {0: -4.4, 1: 0.6, 2: -2} quadratic = {(0,1): 2.8, (1,2):-0.8} offset = 2.4 bqm_qubo = dimod.BinaryQuadraticModel(linear,quadratic,offset,dimod.Vartype.BINARY) print(bqm_qubo) print('\n',bqm_qubo.to_numpy_matrix().astype(float)) from dwave.system import EmbeddingComposite, DWaveSampler sampler = EmbeddingComposite(DWaveSampler()) sampleset = sampler.sample(bqm_qubo, num_reads=100) print(sampleset) sampler.properties ###Output _____no_output_____
code/algorithms/course_udemy_1/Stacks, Queues and Deques/Interview/Questions - PRACTICE/.ipynb_checkpoints/Implement a Queue -Using Two Stacks -checkpoint.ipynb
###Markdown Implement a Queue - Using Two StacksGiven the Stack class below, implement a Queue class using **two** stacks! Note, this is a "classic" interview problem. Use a Python list data structure as your Stack. ###Code # Uses lists instead of your own Stack class. stack1 = [] stack2 = [] ###Output _____no_output_____ ###Markdown SolutionFill out your solution below: ###Code class Queue2Stacks(object): def __init__(self): # Two Stacks self.in_stack = [] self.out_stack = [] def enqueue(self, element): # FILL OUT CODE HERE self.in_stack.append(element) pass def dequeue(self): # FILL OUT CODE HERE if not self.out_stack: while self.in_stack: self.out_stack.append(self.in_stack.pop()) return self.out_stack.pop() pass ###Output _____no_output_____ ###Markdown Test Your SolutionYou should be able to tell with your current knowledge of Stacks and Queues if this is working as it should. For example, the following should print as such: ###Code """ RUN THIS CELL TO CHECK THAT YOUR SOLUTION OUTPUT MAKES SENSE AND BEHAVES AS A QUEUE """ q = Queue2Stacks() for i in range(5): q.enqueue(i) for i in range(5): print (q.dequeue()) ###Output 0 1 2 3 4
week3/python_for_data_analysis4.ipynb
###Markdown ใƒ‡ใƒผใ‚ฟใƒžใ‚คใƒ‹ใƒณใ‚ฐๆฆ‚่ซ– PythonๅŸบ็คŽ Matplotlibใƒฉใ‚คใƒ–ใƒฉใƒช**Matplotlib**ใƒฉใ‚คใƒ–ใƒฉใƒชใซใฏใ‚ฐใƒฉใƒ•ใ‚’ๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใŸใ‚ใฎใƒขใ‚ธใƒฅใƒผใƒซใŒๅซใพใ‚Œใฆใ„ใพใ™ใ€‚ไปฅไธ‹ใงใฏใ€Matplotlibใƒฉใ‚คใƒ–ใƒฉใƒชใฎใƒขใ‚ธใƒฅใƒผใƒซใ‚’ไฝฟใฃใŸใ€ใ‚ฐใƒฉใƒ•ใฎๅŸบๆœฌ็š„ใชๆ็”ปใซใคใ„ใฆ่ชฌๆ˜Žใ—ใพใ™ใ€‚ ็ทšใ‚ฐใƒฉใƒ•Matoplotlibใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ไฝฟ็”จใ™ใ‚‹ใซใฏใ€ใพใš`matplotlib`ใฎใƒขใ‚ธใƒฅใƒผใƒซใ‚’ใ‚คใƒณใƒใƒผใƒˆใ—ใพใ™ใ€‚ใ“ใ“ใงใฏใ€ๅŸบๆœฌ็š„ใชใ‚ฐใƒฉใƒ•ใ‚’ๆ็”ปใ™ใ‚‹ใŸใ‚ใฎ`matplotlib.pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใ‚’ใ‚คใƒณใƒใƒผใƒˆใ—ใพใ™ใ€‚ๆ…ฃไพ‹ใจใ—ใฆใ€ๅŒใƒขใ‚ธใƒฅใƒผใƒซใ‚’`plt`ใจๅˆฅๅใ‚’ใคใ‘ใฆใ‚ณใƒผใƒ‰ใฎไธญใงไฝฟ็”จใ—ใพใ™ใ€‚ใพใŸใ€ใ‚ฐใƒฉใƒ•ใงๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใƒ‡ใƒผใ‚ฟใฏใƒชใ‚นใƒˆใ‚„้…ๅˆ—ใ‚’็”จใ„ใ‚‹ใ“ใจใŒๅคšใ„ใŸใ‚ใ€`numpy`ใƒขใ‚ธใƒฅใƒผใƒซใ‚‚ไฝตใ›ใฆใ‚คใƒณใƒใƒผใƒˆใ—ใพใ™ใ€‚ใชใŠใ€`%matplotlib inline`ใฏjupyter notebookๅ†…ใงใ‚ฐใƒฉใƒ•ใ‚’่กจ็คบใ™ใ‚‹ใŸใ‚ใซๅฟ…่ฆใงใ™ใ€‚`matplotlib`ใงใฏใ€้€šๅธธ`show()`้–ขๆ•ฐใ‚’ๅ‘ผใถใจๆ็”ปใ‚’่กŒใ„ใพใ™ใŒใ€`inline`่กจ็คบๆŒ‡ๅฎšใฎๅ ดๅˆใ€`show()`้–ขๆ•ฐใ‚’็œ็•ฅใงใใพใ™ใ€‚ใ“ใฎๆ™‚ใ€ใ‚ปใƒซใฎๆœ€ๅพŒใซ่ฉ•ไพกใ•ใ‚ŒใŸใ‚ชใƒ–ใ‚ธใ‚งใ‚ฏใƒˆใฎๅ‡บๅŠ›่กจ็คบใ‚’ๆŠ‘ๅˆถใ™ใ‚‹ใŸใ‚ใซใ€ไปฅไธ‹ใงใฏใ‚ปใƒซใฎๆœ€ๅพŒใฎ่กŒใซใ‚ปใƒŸใ‚ณใƒญใƒณใ‚’ใคใ‘ใฆใ„ใพใ™ใ€‚ ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown ไปฅไธ‹ใงใฏใ€`pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใฎ**`plot`**`()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ€ใƒชใ‚นใƒˆใฎ่ฆ็ด ใฎๆ•ฐๅ€คใ‚’y่ปธใฎๅ€คใจใ—ใฆใ‚ฐใƒฉใƒ•ใ‚’ๆ็”ปใ—ใฆใ„ใพใ™ใ€‚y่ปธใฎๅ€คใซๅฏพๅฟœใ™ใ‚‹x่ปธใฎๅ€คใฏใ€ใƒชใ‚นใƒˆใฎๅ„่ฆ็ด ใฎใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใจใชใฃใฆใ„ใพใ™ใ€‚ ###Code # plotใ™ใ‚‹ใƒ‡ใƒผใ‚ฟ d =[0, 1, 4, 9, 16] # plot้–ขๆ•ฐใงๆ็”ป plt.plot(d); ###Output _____no_output_____ ###Markdown `plot()`้–ขๆ•ฐใงใฏใ€x, yใฎไธกๆ–นใฎ่ปธใฎๅ€คใ‚’ๅผ•ๆ•ฐใซๆธกใ™ใ“ใจใ‚‚ใงใใพใ™ใ€‚ ###Code # plotใ™ใ‚‹ใƒ‡ใƒผใ‚ฟ x =[0, 1, 2, 3, 4] y =[0, 1, 2, 3, 4] # plot้–ขๆ•ฐใงๆ็”ป plt.plot(x,y); ###Output _____no_output_____ ###Markdown ไปฅไธ‹ใฎใ‚ˆใ†ใซใ‚ฐใƒฉใƒ•ใ‚’่ค‡ๆ•ฐใพใจใ‚ใฆ่กจ็คบใ™ใ‚‹ใ“ใจใ‚‚ใงใใพใ™ใ€‚่ค‡ๆ•ฐใฎใ‚ฐใƒฉใƒ•ใ‚’่กจ็คบใ™ใ‚‹ใจใ€็ทšใ”ใจใซ็•ฐใชใ‚‹่‰ฒใŒ่‡ชๅ‹•ใงๅ‰ฒใ‚Šๅฝ“ใฆใ‚‰ใ‚Œใพใ™ใ€‚`plot()`้–ขๆ•ฐใงใฏใ‚ฐใƒฉใƒ•ใฎ็ทšใฎ่‰ฒใ€ๅฝข็Šถใ€ใƒ‡ใƒผใ‚ฟใƒใ‚คใƒณใƒˆใฎใƒžใƒผใ‚ซใฎ็จฎ้กžใ‚’ใ€ใใ‚Œใžใ‚Œไปฅไธ‹ใฎใ‚ˆใ†ใซ`linestyle`, `color`, `marker`ๅผ•ๆ•ฐใงๆŒ‡ๅฎšใ—ใฆๅค‰ๆ›ดใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใใ‚Œใžใ‚Œใฎๅผ•ๆ•ฐใงๆŒ‡ๅฎšๅฏ่ƒฝใชๅ€คใฏไปฅไธ‹ใ‚’ๅ‚็…งใ—ใฆใใ ใ•ใ„ใ€‚- [linestyle](https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.htmlmatplotlib.lines.Line2D.set_linestyle)- [color](https://matplotlib.org/api/colors_api.html?highlight=colormodule-matplotlib.colors)- [marker](https://matplotlib.org/api/markers_api.htmlmodule-matplotlib.markers)`plot()`้–ขๆ•ฐใฎ`label`ๅผ•ๆ•ฐใซใ‚ฐใƒฉใƒ•ใฎๅ„็ทšใฎๅ‡กไพ‹ใ‚’ๆ–‡ๅญ—ๅˆ—ใจใ—ใฆๆธกใ—ใ€**`legend`**`()`้–ขๆ•ฐใ‚’ๅ‘ผใถใ“ใจใงใ€ใ‚ฐใƒฉใƒ•ๅ†…ใซๅ‡กไพ‹ใ‚’่กจ็คบใงใใพใ™ใ€‚`legend()`้–ขๆ•ฐใฎ`loc`ๅผ•ๆ•ฐใงๅ‡กไพ‹ใ‚’่กจ็คบใ™ใ‚‹ไฝ็ฝฎใ‚’ๆŒ‡ๅฎšใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ๅผ•ๆ•ฐใงๆŒ‡ๅฎšๅฏ่ƒฝใชๅ€คใฏไปฅไธ‹ใ‚’ๅ‚็…งใ—ใฆใใ ใ•ใ„ใ€‚- [lengend()้–ขๆ•ฐ](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.htmlmatplotlib.pyplot.legend) ###Code # plotใ™ใ‚‹ใƒ‡ใƒผใ‚ฟ data =[0, 1, 4, 9, 16] x =[0, 1, 2, 3, 4] y =[0, 1, 2, 3, 4] # plot้–ขๆ•ฐใงๆ็”ปใ€‚็ทšใฎๅฝข็Šถใ€่‰ฒใ€ใƒ‡ใƒผใ‚ฟใƒใ‚คใƒณใƒˆใฎใƒžใƒผใ‚ซใ€ๅ‡กไพ‹ใ‚’ๆŒ‡ๅฎš plt.plot(x,y, linestyle='--', color='blue', marker='o', label="linear") plt.plot(data, linestyle=':', color='green', marker='*', label="quad") plt.legend(); ###Output _____no_output_____ ###Markdown `pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใงใฏใ€ไปฅไธ‹ใฎใ‚ˆใ†ใซใ‚ฐใƒฉใƒ•ใฎใ‚ฟใ‚คใƒˆใƒซใจๅ„่ปธใฎใƒฉใƒ™ใƒซใ‚’ๆŒ‡ๅฎšใ—ใฆ่กจ็คบใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใ‚ฟใ‚คใƒˆใƒซใ€x่ปธใฎใƒฉใƒ™ใƒซใ€y่ปธใฎใƒฉใƒ™ใƒซใ€ใฏใใ‚Œใžใ‚Œ**`title`**`()`้–ขๆ•ฐใ€**`xlabel`**`()`้–ขๆ•ฐใ€**`ylabel`**`()`้–ขๆ•ฐใซๆ–‡ๅญ—ๅˆ—ใ‚’ๆธกใ—ใฆๆŒ‡ๅฎšใ—ใพใ™ใ€‚ใพใŸใ€**`grid`**`()`้–ขๆ•ฐใ‚’็”จใ„ใ‚‹ใจใ‚ฐใƒชใƒƒใƒ‰ใ‚’ไฝตใ›ใฆ่กจ็คบใ™ใ‚‹ใ“ใจใ‚‚ใงใใพใ™ใ€‚ใ‚ฐใƒชใƒƒใƒ‰ใ‚’่กจ็คบใ•ใ›ใŸใ„ๅ ดๅˆใฏใ€`grid()`้–ขๆ•ฐใซ`True`ใ‚’ๆธกใ—ใฆใใ ใ•ใ„ใ€‚ ###Code # plotใ™ใ‚‹ใƒ‡ใƒผใ‚ฟ data =[0, 1, 4, 9, 16] x =[0, 1, 2, 3, 4] y =[0, 1, 2, 3, 4] # plot้–ขๆ•ฐใงๆ็”ปใ€‚็ทšใฎๅฝข็Šถใ€่‰ฒใ€ใƒ‡ใƒผใ‚ฟใƒใ‚คใƒณใƒˆใฎใƒžใƒผใ‚ซใ€ๅ‡กไพ‹ใ‚’ๆŒ‡ๅฎš plt.plot(x,y, linestyle='--', color='blue', marker='o', label="linear") plt.plot(data, linestyle=':', color='green', marker='*', label="quad") plt.legend() plt.title("My First Graph") # ใ‚ฐใƒฉใƒ•ใฎใ‚ฟใ‚คใƒˆใƒซ plt.xlabel("x") #x่ปธใฎใƒฉใƒ™ใƒซ plt.ylabel("y") #y่ปธใฎใƒฉใƒ™ใƒซ plt.grid(True); #ใ‚ฐใƒชใƒƒใƒ‰ใฎ่กจ็คบ ###Output _____no_output_____ ###Markdown ใ‚ฐใƒฉใƒ•ใ‚’ๆ็”ปใ™ใ‚‹ใจใใฎใƒ—ใƒญใƒƒใƒˆๆ•ฐใ‚’ๅข—ใ‚„ใ™ใ“ใจใงไปปๆ„ใฎๆ›ฒ็ทšใฎใ‚ฐใƒฉใƒ•ใ‚’ไฝœๆˆใ™ใ‚‹ใ“ใจใ‚‚ใงใใพใ™ใ€‚ไปฅไธ‹ใงใฏใ€`numpy`ใƒขใ‚ธใƒฅใƒผใƒซใฎ`arange()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ€$- \pi$ใ‹ใ‚‰$\pi$ใฎ็ฏ„ๅ›ฒใ‚’0.1ๅˆปใฟใงx่ปธใฎๅ€คใ‚’้…ๅˆ—ใจใ—ใฆๆบ–ๅ‚™ใ—ใฆใ„ใพใ™ใ€‚ใใฎx่ปธใฎๅ€คใซๅฏพใ—ใฆใ€`numpy`ใƒขใ‚ธใƒฅใƒผใƒซใฎ`cos()`้–ขๆ•ฐใจ`sin()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ€y่ปธใฎๅ€คใ‚’ใใ‚Œใžใ‚Œๆบ–ๅ‚™ใ—ใ€`cos`ใ‚ซใƒผใƒ–ใจ`sin`ใ‚ซใƒผใƒ–ใ‚’ๆ็”ปใ—ใฆใ„ใพใ™ใ€‚ ###Code #ใ€€ใ‚ฐใƒฉใƒ•ใฎx่ปธใฎๅ€คใจใชใ‚‹้…ๅˆ— x = np.arange(-np.pi, np.pi, 0.1) # ไธŠ่จ˜้…ๅˆ—ใ‚’cos, sin้–ขๆ•ฐใซๆธกใ—, y่ปธใฎๅ€คใจใ—ใฆๆ็”ป plt.plot(x,np.cos(x)) plt.plot(x,np.sin(x)) plt.title("cos ans sin Curves") # ใ‚ฐใƒฉใƒ•ใฎใ‚ฟใ‚คใƒˆใƒซ plt.xlabel("x") #x่ปธใฎใƒฉใƒ™ใƒซ plt.ylabel("y") #y่ปธใฎใƒฉใƒ™ใƒซ plt.grid(True); #ใ‚ฐใƒชใƒƒใƒ‰ใฎ่กจ็คบ ###Output _____no_output_____ ###Markdown ใƒ—ใƒญใƒƒใƒˆใฎๆ•ฐใ‚’ๅฐ‘ใชใใ™ใ‚‹ใจใ€ๆ›ฒ็ทšใฏ็›ด็ทšใ‚’ใคใชใŽๅˆใ‚ใ›ใ‚‹ใ“ใจใงๆ็”ปใ•ใ‚Œใ‚‹ใฆใ„ใ‚‹ใ“ใจใŒใ‚ใ‹ใ‚Šใพใ™ใ€‚ ###Code x = np.arange(-np.pi, np.pi, 0.5) plt.plot(x,np.cos(x), marker='o') plt.plot(x,np.sin(x), marker='o') plt.title("cos ans sin Curves") plt.xlabel("x") plt.ylabel("y") plt.grid(True); ###Output _____no_output_____ ###Markdown ๆ•ฃๅธƒๅ›ณๆ•ฃๅธƒๅ›ณใฏใ€`pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใฎ**`scatter`**`()`้–ขๆ•ฐใ‚’็”จใ„ใฆๆ็”ปใงใใพใ™ใ€‚ไปฅไธ‹ใงใฏใ€ใƒฉใƒณใƒ€ใƒ ใซ็”Ÿๆˆใ—ใŸ20ๅ€‹ใฎ่ฆ็ด ใ‹ใ‚‰ใชใ‚‹้…ๅˆ—x,yใฎๅ„่ฆ็ด ใฎๅ€คใฎ็ต„ใฟใ‚’็‚นใจใ—ใฆใƒ—ใƒญใƒƒใƒˆใ—ใŸๆ•ฃๅธƒๅ›ณใ‚’่กจ็คบใ—ใฆใ„ใพใ™ใ€‚ใƒ—ใƒญใƒƒใƒˆใ™ใ‚‹็‚นใฎใƒžใƒผใ‚ซใƒผใฎ่‰ฒใ‚„ๅฝข็Šถใฏใ€็ทšใ‚ฐใƒฉใƒ•ใฎๆ™‚ใจๅŒๆง˜ใซใ€ `color`, `marker`ๅผ•ๆ•ฐใงๆŒ‡ๅฎšใ—ใฆๅค‰ๆ›ดใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ๅŠ ใˆใฆใ€`s`, `alpha`ๅผ•ๆ•ฐใงใ€ใใ‚Œใžใ‚Œใƒžใƒผใ‚ซใƒผใฎๅคงใใ•ใจ้€ๆ˜Žๅบฆใ‚’ๆŒ‡ๅฎšใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ ###Code #ใ€€ใ‚ฐใƒฉใƒ•ใฎx่ปธใฎๅ€คใจใชใ‚‹้…ๅˆ— x = np.random.rand(20) #ใ€€ใ‚ฐใƒฉใƒ•ใฎy่ปธใฎๅ€คใจใชใ‚‹้…ๅˆ— y = np.random.rand(20) # scatter้–ขๆ•ฐใงๆ•ฃๅธƒๅ›ณใ‚’ๆ็”ป plt.scatter(x, y, s=100, alpha=0.5); ###Output _____no_output_____ ###Markdown ไปฅไธ‹ใฎใ‚ˆใ†ใซใ€`plot()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ‚‚ๅŒๆง˜ใฎๆ•ฃๅธƒๅ›ณใ‚’่กจ็คบใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใ“ใฎๆ™‚ใ€`plot()`้–ขๆ•ฐใงใฏใ€ใƒ—ใƒญใƒƒใƒˆใ™ใ‚‹็‚นใฎใƒžใƒผใ‚ซใƒผใฎๅฝข็Šถใ‚’ๅผ•ๆ•ฐใซๆŒ‡ๅฎšใ—ใฆใ„ใพใ™ใ€‚ ###Code x = np.random.rand(20) y = np.random.rand(20) plt.plot(x, y, 'o', color='blue'); ###Output _____no_output_____ ###Markdown ๆฃ’ใ‚ฐใƒฉใƒ•ๆฃ’ใ‚ฐใƒฉใƒ•ใฏใ€`pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใฎ**`bar`**`()`้–ขๆ•ฐใ‚’็”จใ„ใฆๆ็”ปใงใใพใ™ใ€‚ไปฅไธ‹ใงใฏใ€ใƒฉใƒณใƒ€ใƒ ใซ็”Ÿๆˆใ—ใŸ10ๅ€‹ใฎ่ฆ็ด ใ‹ใ‚‰ใชใ‚‹้…ๅˆ—`y`ใฎๅ„่ฆ็ด ใฎๅ€คใ‚’็ธฆใฎๆฃ’ใ‚ฐใƒฉใƒ•ใง่กจ็คบใ—ใฆใ„ใพใ™ใ€‚`x`ใฏใ€x่ปธไธŠใงๆฃ’ใ‚ฐใƒฉใƒ•ใฎใƒใƒผใฎไธฆใถไฝ็ฝฎใ‚’็คบใ—ใฆใ„ใพใ™ใ€‚ใ“ใ“ใงใฏใ€`numpy`ใƒขใ‚ธใƒฅใƒผใƒซใฎ`arange()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ€1ใ‹ใ‚‰10ใฎ็ฏ„ๅ›ฒใ‚’1ๅˆปใฟใงx่ปธไธŠใฎใƒใƒผใฎไธฆใถไฝ็ฝฎใจใ—ใฆ้…ๅˆ—ใ‚’ๆบ–ๅ‚™ใ—ใฆใ„ใพใ™ใ€‚ ###Code # x่ปธไธŠใงๆฃ’ใฎไธฆใถไฝ็ฝฎใจใชใ‚‹้…ๅˆ— x = np.arange(1, 11, 1) #ใ€€ใ‚ฐใƒฉใƒ•ใฎy่ปธใฎๅ€คใจใชใ‚‹้…ๅˆ— y = np.random.rand(10) # bar้–ขๆ•ฐใงๆฃ’ใ‚ฐใƒฉใƒ•ใ‚’ๆ็”ป plt.bar(x,y); ###Output _____no_output_____ ###Markdown ใƒ’ใ‚นใƒˆใ‚ฐใƒฉใƒ ใƒ’ใ‚นใƒˆใ‚ฐใƒฉใƒ ใฏใ€`pyplot`ใƒขใ‚ธใƒฅใƒผใƒซใฎ**`hist`**`()`้–ขๆ•ฐใ‚’็”จใ„ใฆๆ็”ปใงใใพใ™ใ€‚ไปฅไธ‹ใงใฏใ€`numpy`ใƒขใ‚ธใƒฅใƒผใƒซใฎ`random.randn()`้–ขๆ•ฐใ‚’็”จใ„ใฆใ€ๆญฃ่ฆๅˆ†ๅธƒใซๅŸบใฅใ1000ๅ€‹ใฎๆ•ฐๅ€คใฎ่ฆ็ด ใ‹ใ‚‰ใชใ‚‹้…ๅˆ—ใ‚’็”จๆ„ใ—ใ€ใƒ’ใ‚นใƒˆใ‚ฐใƒฉใƒ ใจใ—ใฆ่กจ็คบใ—ใฆใ„ใพใ™ใ€‚`hist()`้–ขๆ•ฐใฎ`bins`ๅผ•ๆ•ฐใงใƒ’ใ‚นใƒˆใ‚ฐใƒฉใƒ ใฎ็ฎฑ๏ผˆใƒ“ใƒณ๏ผ‰ใฎๆ•ฐใ‚’ๆŒ‡ๅฎšใ—ใพใ™ใ€‚ ###Code # ๆญฃ่ฆๅˆ†ๅธƒใซๅŸบใฅใ1000ๅ€‹ใฎๆ•ฐๅ€คใฎ่ฆ็ด ใ‹ใ‚‰ใชใ‚‹้…ๅˆ— d = np.random.randn(1000) # hist้–ขๆ•ฐใงใƒ’ใ‚นใƒˆใ‚ฐใƒฉใƒ ใ‚’ๆ็”ป plt.hist(d, bins=20); ###Output _____no_output_____ ###Markdown ใƒ’ใƒผใƒˆใƒžใƒƒใƒ—`impshow()`้–ขๆ•ฐใ‚’็”จใ„ใ‚‹ใจใ€ไปฅไธ‹ใฎใ‚ˆใ†ใซ่กŒๅˆ—ใฎ่ฆ็ด ใฎๅ€คใซๅฟœใ˜ใฆ่‰ฒใฎๆฟƒๆทกใ‚’ๅค‰ใˆใ‚‹ใ“ใจใงใ€่กŒๅˆ—ใ‚’ใƒ’ใƒผใƒˆใƒžใƒƒใƒ—ใจใ—ใฆๅฏ่ฆ–ๅŒ–ใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚`colorbar()`้–ขๆ•ฐใฏ่กŒๅˆ—ใฎๅ€คใจ่‰ฒใฎๆฟƒๆทกใฎๅฏพๅฟœใ‚’่กจ็คบใ—ใพใ™ใ€‚ ###Code # 10่กŒ10ๅˆ—ใฎใƒฉใƒณใƒ€ใƒ ่ฆ็ด ใ‹ใ‚‰ใชใ‚‹่กŒๅˆ— a = np.random.rand(100).reshape(10,10) # imshow้–ขๆ•ฐใงใƒ’ใƒผใƒˆใƒžใƒƒใƒ—ใ‚’ๆ็”ป im=plt.imshow(a) plt.colorbar(im); ###Output _____no_output_____ ###Markdown ใ‚ฐใƒฉใƒ•ใฎ็”ปๅƒใƒ•ใ‚กใ‚คใƒซๅ‡บๅŠ›**`savefig`**`()`้–ขๆ•ฐใ‚’็”จใ„ใ‚‹ใจใ€ไปฅไธ‹ใฎใ‚ˆใ†ใซไฝœๆˆใ—ใŸใ‚ฐใƒฉใƒ•ใ‚’็”ปๅƒใจใ—ใฆใƒ•ใ‚กใ‚คใƒซใซไฟๅญ˜ใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ ###Code x = np.arange(-np.pi, np.pi, 0.1) plt.plot(x,np.cos(x), label='cos') plt.plot(x,np.sin(x), label='sin') plt.legend() plt.title("cos ans sin Curves") plt.xlabel("x") plt.ylabel("y") plt.grid(True) # savefig้–ขๆ•ฐใงใ‚ฐใƒฉใƒ•ใ‚’็”ปๅƒไฟๅญ˜ plt.savefig('cos_sin.png'); ###Output _____no_output_____
Problem 2.9.ipynb
###Markdown Solution {-}A common autocorrelation function encountered in physical problems is:\begin{equation*} R(\tau)=\sigma^2 e^{-\beta |\tau|} \cos \omega_0 \tau\end{equation*}1. Find the corresponding spectral density function\begin{equation*} S(j\omega)=\frac{\sigma^2 \beta}{(\omega+\omega_0)^2+\beta^2} + \frac{\sigma^2 \beta}{(\omega-\omega_0)^2+\beta^2}\end{equation*}2. Plot the autocorrelation and the spectral density ###Code from numpy import linspace, exp, cos import matplotlib.pyplot as plt sigma = 1 beta = 2 omega0 = 10 tau = linspace(-2, 2, 100) R = sigma**2*exp(-beta*abs(tau))*cos(omega0*tau) omega = linspace(-20, 20, 100) S = sigma**2*beta/((omega + omega0)**2 + beta**2) + sigma**2*beta/((omega - omega0)**2 + beta**2) # Plot autocorrelation plt.plot(tau, R) plt.title("Autocorrelation") plt.xlabel("Lag") plt.ylabel("Correlation") plt.grid() plt.show() # Plot spectral density plt.plot(tau, S) plt.title("Spectral density") plt.xlabel("Frequency") plt.ylabel("Power") plt.grid() plt.show() ###Output _____no_output_____
notebooks/archived/Leg-to-leg network.ipynb
###Markdown Community detection ###Code graph = nx.Graph() graph.add_edges_from([(l[2], l[3], {'cnt': l[1]}) for l in leg_links.itertuples()]) # Also make a graph withouth the most common nodes nodes_to_remove = ["Wet op de rechterlijke organisatie, Artikel 81", "Wet op de rechterlijke organisatie, Artikel 80a", "Wetboek van Strafvordering", "Wetboek van Strafrecht", "Burgerlijk Wetboek Boek 1", "Burgerlijk Wetboek Boek 2", "Burgerlijk Wetboek Boek 3", "Burgerlijk Wetboek Boek 6", "Burgerlijk Wetboek Boek 7", "Algemene wet bestuursrecht", "Opiumwet", "Wetboek van Burgerlijke Rechtsvordering", "Faillissementswet"] graph2 = graph.copy() for n in nodes_to_remove: graph2.remove_node(n) commmunities_weighted = community.best_partition(graph, weight='cnt') commmunities_unweighted = community.best_partition(graph) commmunities_weighted_small = community.best_partition(graph, weight='cnt', resolution=0.5) commmunities_unweighted_small = community.best_partition(graph, resolution=0.5) communities_weighted2 = community.best_partition(graph2, weight='cnt') leg_nodes_df = pd.DataFrame() leg_nodes_df['louvain_weighted'] = pd.Series(commmunities_weighted) leg_nodes_df['louvain_unweighted'] = pd.Series(commmunities_unweighted) leg_nodes_df['louvain_weighted_small'] = pd.Series(commmunities_weighted_small) leg_nodes_df['louvain_unweighted_small'] = pd.Series(commmunities_unweighted_small) leg_nodes_df['louvain_weighted_sub'] = pd.Series(communities_weighted2) leg_nodes_df = leg_nodes_df.reset_index().rename(columns={"index": "name"}) leg_nodes_df[leg_nodes_df['name']=="Wetboek van Strafrecht"] ###Output _____no_output_____ ###Markdown meta info legislation ###Code leg_nodes_df = leg_nodes_df.set_index(['name']) leg_nodes_df['nr_references'] = nr_references leg_nodes_df = leg_nodes_df.reset_index() leg_nodes_df.head() leg_nodes_df.to_csv(os.path.join(inputpath, 'leg_to_leg_nodes_min10.tsv'), index=False, sep='\t') leg_nodes_df.to_csv(os.path.join(inputpath, 'leg_to_leg_nodes_min10.csv'), index=False) leg_nodes_df['book'] = leg_nodes_df['name'].str.split(',').map(lambda l: l[0]) leg_nodes_df['book'].value_counts() ###Output _____no_output_____ ###Markdown look into clusters ###Code case_to_leg_merged = case_leg.merge(leg_nodes_df, left_on='title', right_on='name') case_to_leg_merged.head() com_name = 'louvain_weighted_sub' grouped_by_com = leg_nodes_df.groupby(com_name) community_summary = pd.DataFrame() community_summary['nodes'] = grouped_by_com['name'].apply(lambda l: "|".join(list(sorted(l)))) community_summary['nr_leg_nodes'] = grouped_by_com['name'].nunique() community_summary['nr_cases'] = case_to_leg_merged.groupby(com_name)['source'].nunique() community_summary = community_summary.sort_values('nr_cases', ascending=False) community_summary.head(50) community_summary.to_csv(os.path.join(inputpath, 'leg_to_leg_communities.csv')) ###Output _____no_output_____
module_1/Deep Neural Network - Application.ipynb
###Markdown Deep Neural Network for Image Classification: ApplicationBy the time you complete this notebook, you will have finished the last programming assignment of Week 4, and also the last programming assignment of Course 1! Go you! To build your cat/not-a-cat classifier, you'll use the functions from the previous assignment to build a deep network. Hopefully, you'll see an improvement in accuracy over your previous logistic regression implementation. **After this assignment you will be able to:**- Build and train a deep L-layer neural network, and apply it to supervised learningLet's get started! Table of Contents- [1 - Packages](1)- [2 - Load and Process the Dataset](2)- [3 - Model Architecture](3) - [3.1 - 2-layer Neural Network](3-1) - [3.2 - L-layer Deep Neural Network](3-2) - [3.3 - General Methodology](3-3)- [4 - Two-layer Neural Network](4) - [Exercise 1 - two_layer_model](ex-1) - [4.1 - Train the model](4-1)- [5 - L-layer Neural Network](5) - [Exercise 2 - L_layer_model](ex-2) - [5.1 - Train the model](5-1)- [6 - Results Analysis](6)- [7 - Test with your own image (optional/ungraded exercise)](7) 1 - Packages Begin by importing all the packages you'll need during this assignment. - [numpy](https://www.numpy.org/) is the fundamental package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end.- `dnn_app_utils` provides the functions implemented in the "Building your Deep Neural Network: Step by Step" assignment to this notebook.- `np.random.seed(1)` is used to keep all the random function calls consistent. It helps grade your work - so please don't change it! ###Code import time import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage from dnn_app_utils_v3 import * from public_tests import * %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) ###Output _____no_output_____ ###Markdown 2 - Load and Process the DatasetYou'll be using the same "Cat vs non-Cat" dataset as in "Logistic Regression as a Neural Network" (Assignment 2). The model you built back then had 70% test accuracy on classifying cat vs non-cat images. Hopefully, your new model will perform even better!**Problem Statement**: You are given a dataset ("data.h5") containing: - a training set of `m_train` images labelled as cat (1) or non-cat (0) - a test set of `m_test` images labelled as cat and non-cat - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB).Let's get more familiar with the dataset. Load the data by running the cell below. ###Code train_x_orig, train_y, test_x_orig, test_y, classes = load_data() ###Output _____no_output_____ ###Markdown The following code will show you an image in the dataset. Feel free to change the index and re-run the cell multiple times to check out other images. ###Code # Example of a picture index = 10 plt.imshow(train_x_orig[index]) print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.") # Explore your dataset m_train = train_x_orig.shape[0] num_px = train_x_orig.shape[1] m_test = test_x_orig.shape[0] print ("Number of training examples: " + str(m_train)) print ("Number of testing examples: " + str(m_test)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_x_orig shape: " + str(train_x_orig.shape)) print ("train_y shape: " + str(train_y.shape)) print ("test_x_orig shape: " + str(test_x_orig.shape)) print ("test_y shape: " + str(test_y.shape)) ###Output Number of training examples: 209 Number of testing examples: 50 Each image is of size: (64, 64, 3) train_x_orig shape: (209, 64, 64, 3) train_y shape: (1, 209) test_x_orig shape: (50, 64, 64, 3) test_y shape: (1, 50) ###Markdown As usual, you reshape and standardize the images before feeding them to the network. The code is given in the cell below.Figure 1: Image to vector conversion. ###Code # Reshape the training and test examples train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T # Standardize data to have feature values between 0 and 1. train_x = train_x_flatten/255. test_x = test_x_flatten/255. print ("train_x's shape: " + str(train_x.shape)) print ("test_x's shape: " + str(test_x.shape)) ###Output train_x's shape: (12288, 209) test_x's shape: (12288, 50) ###Markdown **Note**:$12,288$ equals $64 \times 64 \times 3$, which is the size of one reshaped image vector. 3 - Model Architecture 3.1 - 2-layer Neural NetworkNow that you're familiar with the dataset, it's time to build a deep neural network to distinguish cat images from non-cat images!You're going to build two different models:- A 2-layer neural network- An L-layer deep neural networkThen, you'll compare the performance of these models, and try out some different values for $L$. Let's look at the two architectures:Figure 2: 2-layer neural network. The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.Detailed Architecture of Figure 2:- The input is a (64,64,3) image which is flattened to a vector of size $(12288,1)$. - The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ of size $(n^{[1]}, 12288)$.- Then, add a bias term and take its relu to get the following vector: $[a_0^{[1]}, a_1^{[1]},..., a_{n^{[1]}-1}^{[1]}]^T$.- Repeat the same process.- Multiply the resulting vector by $W^{[2]}$ and add the intercept (bias). - Finally, take the sigmoid of the result. If it's greater than 0.5, classify it as a cat. 3.2 - L-layer Deep Neural NetworkIt's pretty difficult to represent an L-layer deep neural network using the above representation. However, here is a simplified network representation:Figure 3: L-layer neural network. The model can be summarized as: [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOIDDetailed Architecture of Figure 3:- The input is a (64,64,3) image which is flattened to a vector of size (12288,1).- The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ and then you add the intercept $b^{[1]}$. The result is called the linear unit.- Next, take the relu of the linear unit. This process could be repeated several times for each $(W^{[l]}, b^{[l]})$ depending on the model architecture.- Finally, take the sigmoid of the final linear unit. If it is greater than 0.5, classify it as a cat. 3.3 - General MethodologyAs usual, you'll follow the Deep Learning methodology to build the model:1. Initialize parameters / Define hyperparameters2. Loop for num_iterations: a. Forward propagation b. Compute cost function c. Backward propagation d. Update parameters (using parameters, and grads from backprop) 3. Use trained parameters to predict labelsNow go ahead and implement those two models! 4 - Two-layer Neural Network Exercise 1 - two_layer_model Use the helper functions you have implemented in the previous assignment to build a 2-layer neural network with the following structure: *LINEAR -> RELU -> LINEAR -> SIGMOID*. The functions and their inputs are:```pythondef initialize_parameters(n_x, n_h, n_y): ... return parameters def linear_activation_forward(A_prev, W, b, activation): ... return A, cachedef compute_cost(AL, Y): ... return costdef linear_activation_backward(dA, cache, activation): ... return dA_prev, dW, dbdef update_parameters(parameters, grads, learning_rate): ... return parameters``` ###Code ### CONSTANTS DEFINING THE MODEL #### n_x = 12288 # num_px * num_px * 3 n_h = 7 n_y = 1 layers_dims = (n_x, n_h, n_y) learning_rate = 0.0075 # GRADED FUNCTION: two_layer_model def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False): """ Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (n_x, number of examples) Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples) layers_dims -- dimensions of the layers (n_x, n_h, n_y) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- If set to True, this will print the cost every 100 iterations Returns: parameters -- a dictionary containing W1, W2, b1, and b2 """ np.random.seed(1) grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples (n_x, n_h, n_y) = layers_dims # Initialize parameters dictionary, by calling one of the functions you'd previously implemented #(โ‰ˆ 1 line of code) # parameters = ... # YOUR CODE STARTS HERE parameters =initialize_parameters(n_x, n_h, n_y) # YOUR CODE ENDS HERE # Get W1, b1, W2 and b2 from the dictionary parameters. W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2". #(โ‰ˆ 2 lines of code) # A1, cache1 = ... # A2, cache2 = ... # YOUR CODE STARTS HERE A1, cache1 =linear_activation_forward(X, W1, b1, "relu") A2, cache2 =linear_activation_forward(A1, W2, b2, "sigmoid") # YOUR CODE ENDS HERE # Compute cost #(โ‰ˆ 1 line of code) # cost = ... # YOUR CODE STARTS HERE cost =compute_cost(A2, Y) # YOUR CODE ENDS HERE # Initializing backward propagation dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2)) # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1". #(โ‰ˆ 2 lines of code) # dA1, dW2, db2 = ... # dA0, dW1, db1 = ... # YOUR CODE STARTS HERE dA1, dW2, db2 =linear_activation_backward(dA2, cache2, "sigmoid") dA0, dW1, db1 =linear_activation_backward(dA1, cache1, "relu") # YOUR CODE ENDS HERE # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2 grads['dW1'] = dW1 grads['db1'] = db1 grads['dW2'] = dW2 grads['db2'] = db2 # Update parameters. #(approx. 1 line of code) # parameters = ... # YOUR CODE STARTS HERE parameters =update_parameters(parameters, grads, learning_rate) # YOUR CODE ENDS HERE # Retrieve W1, b1, W2, b2 from parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Print the cost every 100 iterations if print_cost and i % 100 == 0 or i == num_iterations - 1: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if i % 100 == 0 or i == num_iterations: costs.append(cost) return parameters, costs def plot_costs(costs, learning_rate=0.0075): plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2, print_cost=False) print("Cost after first iteration: " + str(costs[0])) two_layer_model_test(two_layer_model) train_x.shape ###Output _____no_output_____ ###Markdown **Expected output:**```cost after iteration 1 must be around 0.69``` 4.1 - Train the model If your code passed the previous cell, run the cell below to train your parameters. - The cost should decrease on every iteration. - It may take up to 5 minutes to run 2500 iterations. ###Code parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True) plot_costs(costs, learning_rate) ###Output Cost after iteration 0: 0.693049735659989 Cost after iteration 100: 0.6464320953428849 Cost after iteration 200: 0.6325140647912677 Cost after iteration 300: 0.6015024920354665 Cost after iteration 400: 0.5601966311605747 Cost after iteration 500: 0.5158304772764729 Cost after iteration 600: 0.4754901313943325 Cost after iteration 700: 0.43391631512257495 Cost after iteration 800: 0.4007977536203886 Cost after iteration 900: 0.3580705011323798 Cost after iteration 1000: 0.3394281538366413 Cost after iteration 1100: 0.30527536361962654 Cost after iteration 1200: 0.2749137728213015 Cost after iteration 1300: 0.2468176821061484 Cost after iteration 1400: 0.19850735037466102 Cost after iteration 1500: 0.17448318112556638 Cost after iteration 1600: 0.1708076297809692 Cost after iteration 1700: 0.11306524562164715 Cost after iteration 1800: 0.09629426845937156 Cost after iteration 1900: 0.0834261795972687 Cost after iteration 2000: 0.07439078704319085 Cost after iteration 2100: 0.06630748132267933 Cost after iteration 2200: 0.05919329501038172 Cost after iteration 2300: 0.053361403485605606 Cost after iteration 2400: 0.04855478562877019 Cost after iteration 2499: 0.04421498215868956 ###Markdown **Expected Output**: Cost after iteration 0 0.6930497356599888 Cost after iteration 100 0.6464320953428849 ... ... Cost after iteration 2499 0.04421498215868956 **Nice!** You successfully trained the model. Good thing you built a vectorized implementation! Otherwise it might have taken 10 times longer to train this.Now, you can use the trained parameters to classify images from the dataset. To see your predictions on the training and test sets, run the cell below. ###Code predictions_train = predict(train_x, train_y, parameters) ###Output Accuracy: 0.9999999999999998 ###Markdown **Expected Output**: Accuracy 0.9999999999999998 ###Code predictions_test = predict(test_x, test_y, parameters) ###Output Accuracy: 0.72 ###Markdown **Expected Output**: Accuracy 0.72 Congratulations! It seems that your 2-layer neural network has better performance (72%) than the logistic regression implementation (70%, assignment week 2). Let's see if you can do even better with an $L$-layer model.**Note**: You may notice that running the model on fewer iterations (say 1500) gives better accuracy on the test set. This is called "early stopping" and you'll hear more about it in the next course. Early stopping is a way to prevent overfitting. 5 - L-layer Neural Network Exercise 2 - L_layer_model Use the helper functions you implemented previously to build an $L$-layer neural network with the following structure: *[LINEAR -> RELU]$\times$(L-1) -> LINEAR -> SIGMOID*. The functions and their inputs are:```pythondef initialize_parameters_deep(layers_dims): ... return parameters def L_model_forward(X, parameters): ... return AL, cachesdef compute_cost(AL, Y): ... return costdef L_model_backward(AL, Y, caches): ... return gradsdef update_parameters(parameters, grads, learning_rate): ... return parameters``` ###Code ### CONSTANTS ### layers_dims = [12288, 20, 7, 5, 1] # 4-layer model # GRADED FUNCTION: L_layer_model def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False): """ Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID. Arguments: X -- data, numpy array of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- list containing the input size and each layer size, of length (number of layers + 1). learning_rate -- learning rate of the gradient descent update rule num_iterations -- number of iterations of the optimization loop print_cost -- if True, it prints the cost every 100 steps Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(1) costs = [] # keep track of cost # Parameters initialization. #(โ‰ˆ 1 line of code) # parameters = ... # YOUR CODE STARTS HERE parameters =initialize_parameters_deep(layers_dims) # YOUR CODE ENDS HERE # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID. #(โ‰ˆ 1 line of code) # AL, caches = ... # YOUR CODE STARTS HERE AL, caches =L_model_forward(X, parameters) # YOUR CODE ENDS HERE # Compute cost. #(โ‰ˆ 1 line of code) # cost = ... # YOUR CODE STARTS HERE cost =compute_cost(AL, Y) # YOUR CODE ENDS HERE # Backward propagation. #(โ‰ˆ 1 line of code) # grads = ... # YOUR CODE STARTS HERE grads =L_model_backward(AL, Y, caches) # YOUR CODE ENDS HERE # Update parameters. #(โ‰ˆ 1 line of code) # parameters = ... # YOUR CODE STARTS HERE parameters= update_parameters(parameters, grads, learning_rate) # YOUR CODE ENDS HERE # Print the cost every 100 iterations if print_cost and i % 100 == 0 or i == num_iterations - 1: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if i % 100 == 0 or i == num_iterations: costs.append(cost) return parameters, costs parameters, costs = L_layer_model(train_x, train_y, layers_dims, num_iterations = 1, print_cost = False) print("Cost after first iteration: " + str(costs[0])) L_layer_model_test(L_layer_model) ###Output Cost after iteration 0: 0.7717493284237686 Cost after first iteration: 0.7717493284237686 Cost after iteration 1: 0.7070709008912569 Cost after iteration 1: 0.7070709008912569 Cost after iteration 1: 0.7070709008912569 Cost after iteration 2: 0.7063462654190897  All tests passed. ###Markdown 5.1 - Train the model If your code passed the previous cell, run the cell below to train your model as a 4-layer neural network. - The cost should decrease on every iteration. - It may take up to 5 minutes to run 2500 iterations. ###Code parameters, costs = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True) ###Output Cost after iteration 0: 0.7717493284237686 Cost after iteration 100: 0.6720534400822914 Cost after iteration 200: 0.6482632048575212 Cost after iteration 300: 0.6115068816101356 Cost after iteration 400: 0.5670473268366111 Cost after iteration 500: 0.5401376634547801 Cost after iteration 600: 0.5279299569455267 Cost after iteration 700: 0.4654773771766851 Cost after iteration 800: 0.369125852495928 Cost after iteration 900: 0.39174697434805344 Cost after iteration 1000: 0.31518698886006163 Cost after iteration 1100: 0.2726998441789385 Cost after iteration 1200: 0.23741853400268137 Cost after iteration 1300: 0.19960120532208644 Cost after iteration 1400: 0.18926300388463307 Cost after iteration 1500: 0.16118854665827753 Cost after iteration 1600: 0.14821389662363316 Cost after iteration 1700: 0.13777487812972944 Cost after iteration 1800: 0.1297401754919012 Cost after iteration 1900: 0.12122535068005211 Cost after iteration 2000: 0.11382060668633713 Cost after iteration 2100: 0.10783928526254133 Cost after iteration 2200: 0.10285466069352679 Cost after iteration 2300: 0.10089745445261786 Cost after iteration 2400: 0.09287821526472398 Cost after iteration 2499: 0.08843994344170202 ###Markdown **Expected Output**: Cost after iteration 0 0.771749 Cost after iteration 100 0.672053 ... ... Cost after iteration 2499 0.088439 ###Code pred_train = predict(train_x, train_y, parameters) ###Output Accuracy: 0.9856459330143539 ###Markdown **Expected Output**: Train Accuracy 0.985645933014 ###Code pred_test = predict(test_x, test_y, parameters) ###Output Accuracy: 0.8 ###Markdown **Expected Output**: Test Accuracy 0.8 Congrats! It seems that your 4-layer neural network has better performance (80%) than your 2-layer neural network (72%) on the same test set. This is pretty good performance for this task. Nice job! In the next course on "Improving deep neural networks," you'll be able to obtain even higher accuracy by systematically searching for better hyperparameters: learning_rate, layers_dims, or num_iterations, for example. 6 - Results AnalysisFirst, take a look at some images the L-layer model labeled incorrectly. This will show a few mislabeled images. ###Code print_mislabeled_images(classes, test_x, test_y, pred_test) ###Output _____no_output_____ ###Markdown **A few types of images the model tends to do poorly on include:** - Cat body in an unusual position- Cat appears against a background of a similar color- Unusual cat color and species- Camera Angle- Brightness of the picture- Scale variation (cat is very large or small in image) Congratulations on finishing this assignment! You just built and trained a deep L-layer neural network, and applied it in order to distinguish cats from non-cats, a very serious and important task in deep learning. ;) By now, you've also completed all the assignments for Course 1 in the Deep Learning Specialization. Amazing work! If you'd like to test out how closely you resemble a cat yourself, there's an optional ungraded exercise below, where you can test your own image. Great work and hope to see you in the next course! 7 - Test with your own image (optional/ungraded exercise) From this point, if you so choose, you can use your own image to test the output of your model. To do that follow these steps:1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.2. Add your image to this Jupyter Notebook's directory, in the "images" folder3. Change your image's name in the following code4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)! ###Code ## START CODE HERE ## my_image = "c.jpg" # change this to the name of your image file my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat) ## END CODE HERE ## fname = "images/" + my_image image = np.array(Image.open(fname).resize((num_px, num_px))) plt.imshow(image) print(image.shape) image = image / 255. image = image.reshape((1, num_px * num_px * 3)).T my_predicted_image = predict(image, my_label_y, parameters) print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.") ###Output (64, 64, 3) Accuracy: 1.0 y = 1.0, your L-layer model predicts a "cat" picture.
gaussian_elimination.ipynb
###Markdown Gaussian elimination in python Reference:* The Python code is copied from [Gaussian elimination method with pivoting](https://www.kaggle.com/code/sanjeetkp46/gaussian-elimination-method-with-pivoting/notebook) with slight modifications. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Gaussian elimination without pivoting ###Code def Cal_LU(D,g): A=np.array((D),dtype=float) f=np.array((g),dtype=float) n = f.size for i in range(0,n-1): # Loop through the columns of the matrix for j in range(i+1,n): # Loop through rows below diagonal for each column if A[i,i] == 0: print("Error: Zero on diagonal!") print("Need algorithm with pivoting") break m = A[j,i]/A[i,i] A[j,:] = A[j,:] - m*A[i,:] f[j] = f[j] - m*f[i] return A,f def Back_Subs(A,f): n = f.size x = np.zeros(n) # Initialize the solution vector, x, to zero x[n-1] = f[n-1]/A[n-1,n-1] # Solve for last entry first for i in range(n-2,-1,-1): # Loop from the end to the beginning sum_ = 0 for j in range(i+1,n): # For known x values, sum and move to rhs sum_ = sum_ + A[i,j]*x[j] x[i] = (f[i] - sum_)/A[i,i] return x ###Output _____no_output_____ ###Markdown Example ###Code # To solve Ax=b A = np.array([ [10**(-12),1], [1,1] ]) b = np.array([1,2]) # B,g = Cal_LU(A,b) x= Back_Subs(B,g) print('solution obtained by gaussian elimination without pivoting') print('x= ', x) ###Output solution obtained by gaussian elimination without pivoting x= [0.99997788 1. ] ###Markdown Gaussian elimination with pivoting ###Code def Cal_LU_pivot(D,g): A=np.array((D),dtype=float) f=np.array((g),dtype=float) n = len(f) for i in range(0,n-1): # Loop through the columns of the matrix for k in range(i+1,n): if np.abs(A[k,i])>np.abs(A[i,i]): A[[i,k]]=A[[k,i]] # Swaps ith and kth rows to each other f[[i,k]]=f[[k,i]] break for j in range(i+1,n): # Loop through rows below diagonal for each column m = A[j,i]/A[i,i] A[j,:] = A[j,:] - m*A[i,:] f[j] = f[j] - m*f[i] return A,f ###Output _____no_output_____ ###Markdown Example ###Code # To solve Ax=b A = np.array([ [10**(-12),1], [1,1] ]) b = np.array([1,2]) # B,g = Cal_LU_pivot(A,b) x= Back_Subs(B,g) print('solution obtained by gaussian elimination with pivoting') print('x= ', x) ###Output solution obtained by gaussian elimination with pivoting x= [1. 1.]
Yahoo Finance/Yahoo Finance Get_stock_data.ipynb
###Markdown Yahoo Finance - Get stock data 1. Install the quandl package ###Code #!pip install yfinance ###Output _____no_output_____ ###Markdown 2. Import the quandl package ###Code import yfinance as yf ###Output _____no_output_____ ###Markdown 3. Get the data for the stock AAPL ###Code data = yf.download('TSLA','2016-01-01','2019-08-01') ###Output [*********************100%***********************] 1 of 1 completed ###Markdown 4. Import the plotting library ###Code import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown 5. Plot the close price of the AAPL ###Code data['Adj Close'].plot() plt.show() ###Output _____no_output_____ ###Markdown Yahoo Finance - Get stock data 1. Install the quandl package ###Code #!pip install yfinance ###Output _____no_output_____ ###Markdown 2. Import the quandl package ###Code import yfinance as yf ###Output _____no_output_____ ###Markdown 3. Get the data for the stock AAPL ###Code data = yf.download('TSLA','2016-01-01','2019-08-01') ###Output _____no_output_____ ###Markdown 4. Import the plotting library ###Code import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown 5. Plot the close price of the AAPL ###Code data['Adj Close'].plot() plt.show() ###Output _____no_output_____
nb/maxent_ffjord.ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') %cd /content/drive/My\ Drive/xd_vs_flow !pip install torchdiffeq import os, sys, time import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import TensorDataset, DataLoader from torch.optim import Adam import lib.toy_data as toy_data import lib.utils as utils from lib.visualize_flow import visualize_transform import lib.layers.odefunc as odefunc from train_misc import standard_normal_logprob from train_misc import set_cnf_options, count_nfe, count_parameters, count_total_time from train_misc import add_spectral_norm, spectral_norm_power_iteration from train_misc import create_regularization_fns, get_regularization, append_regularization_to_log from train_misc import build_model_tabular from sklearn.preprocessing import StandardScaler ss = StandardScaler() # read in 1 Gyr SSFR and 100 Myr SSFR __ssfr_1gyr = np.load('_ssfr_1gyr.npy') __ssfr_100myr = np.load('_ssfr_100myr.npy') _ssfr_1gyr = np.log10(__ssfr_1gyr.copy()) _ssfr_100myr = np.log10(__ssfr_100myr.copy()) N = len(_ssfr_1gyr) print('N=%i' % N) npdata = np.array([_ssfr_1gyr, _ssfr_100myr]).T ss.fit(npdata) data = torch.from_numpy(npdata.astype(np.float32)) raw_np = np.load('quick_isochrone.npy') raw_np = raw_np raw = pd.DataFrame({'G': raw_np[:, 0], 'bp_rp': raw_np[:, 1]}) #Add some noise: raw['g_std'] = np.random.rand(len(raw))*0.3 + 1e-3 raw['bp_rp_p'] = raw['bp_rp'] + raw['g_std']*np.random.randn(len(raw)) raw['G_p'] = raw['G'] + raw['g_std']*np.random.randn(len(raw)) N = len(raw) print('N=%i' % N) use_cols = ['G_p', 'bp_rp_p']#, 'g_std']#, 'BP', 'RP'] cond_cols = [] npdata = np.array(raw[use_cols + cond_cols]) ss.fit(npdata) data = torch.from_numpy(npdata.astype(np.float32)) print(ss.scale_) print(ss.mean_) traindataset = TensorDataset(data[:-(N//5)]) testdataset = TensorDataset(data[-(N//5):]) batch = 1024 train = DataLoader(traindataset, batch_size=batch, shuffle=True, drop_last=True) test = DataLoader(testdataset, batch_size=batch, shuffle=False) len(traindataset)/batch args = pickle.load(open('args.pkl', 'rb')) ###Output _____no_output_____ ###Markdown ###Code regularization_fns, regularization_coeffs = create_regularization_fns(args) model = build_model_tabular(args, 2, regularization_fns).cuda() #if args.spectral_norm: add_spectral_norm(model) set_cnf_options(args, model) optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) transform_scale = torch.from_numpy(ss.scale_).float().cuda()[np.newaxis, :] transform_mean = torch.from_numpy(ss.mean_).float().cuda()[np.newaxis, :] def compute_loss(args, model, X, batch_size=None): if batch_size is None: batch_size = args.batch_size X = X.cuda() x = (X - transform_mean)/transform_scale zero = torch.zeros(x.shape[0], 1).to(x) # transform to z z, delta_logp = model(x, zero) #z = model(x) # compute log q(z) logpz = standard_normal_logprob(z).sum(1, keepdim=True) #return -torch.mean(logpz) logpx = logpz - delta_logp loss = -torch.mean(logpx) return loss time_meter = utils.RunningAverageMeter(0.93) loss_meter = utils.RunningAverageMeter(0.93) nfef_meter = utils.RunningAverageMeter(0.93) nfeb_meter = utils.RunningAverageMeter(0.93) tt_meter = utils.RunningAverageMeter(0.93) itr = 0 model = model.cuda() model.train() end = time.time() while itr < 10000: for X in train: optimizer.zero_grad() #if args.spectral_norm: spectral_norm_power_iteration(model, 1) loss = compute_loss(args, model, X[0]) loss_meter.update(loss.item()) total_time = count_total_time(model) nfe_forward = count_nfe(model) loss.backward() optimizer.step() itr += 1 if itr % 50 == 0: nfe_total = count_nfe(model) nfe_backward = nfe_total - nfe_forward nfef_meter.update(nfe_forward) nfeb_meter.update(nfe_backward) time_meter.update(time.time() - end) tt_meter.update(total_time) log_message = ( 'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) | NFE Forward {:.0f}({:.1f})' ' | NFE Backward {:.0f}({:.1f}) | CNF Time {:.4f}({:.4f})'.format( itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, nfef_meter.val, nfef_meter.avg, nfeb_meter.val, nfeb_meter.avg, tt_meter.val, tt_meter.avg ) ) print(log_message) from torch.functional import F def ezmodel(model, x): zero = torch.zeros(x.shape[0], 1) # transform to z z, delta_logp = model(x, zero) # compute log q(z) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = logpz - delta_logp return logpx def soft_lo_clamp(x, lo): return F.softplus(x-lo) + lo min_1gyr = 0 max_1gyr = 3e-9 min_100myr = 0 max_100myr = 3e-9 num = 100 p_1gyr, p_100myr = np.meshgrid(np.linspace(min_1gyr, max_1gyr, num=num), np.linspace(min_100myr, max_100myr, num=num)) p_1gyr = p_1gyr.reshape(-1) p_100myr = p_100myr.reshape(-1) pdatap = np.zeros((len(p_1gyr), 2), dtype=np.float32) pdatap[:, 0] = p_1gyr pdatap[:, 1] = p_100myr pdata = ss.transform(pdatap) pdata = torch.from_numpy(pdata)#.cuda() pdata_set = TensorDataset(pdata) pdata_loader = DataLoader(pdata_set, batch_size=1000, shuffle=False) model.eval() logprob = soft_lo_clamp(torch.cat([ezmodel(model, q[:, :2]).cpu().detach() for (q,) in pdata_loader], dim=0), -100).numpy() _exp = lambda _x: np.exp(_x/4) prob = _exp(logprob.reshape(num, num)) fig = plt.figure(figsize=(12,6)) sub = fig.add_subplot(121) norm = CustomNorm(0.5) h, _, _, _ = sub.hist2d(_ssfr_1gyr, _ssfr_100myr, bins=100, range=[(min_1gyr, max_1gyr), (min_100myr, max_100myr)], normed=True) sub = fig.add_subplot(122) sub.imshow(prob.T, origin='lower', extent=[min_1gyr, max_1gyr, min_100myr, max_100myr], aspect='auto') ###Output _____no_output_____
courses/machine_learning/tensorflow/b_estimator.ipynb
###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.1 import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.compat.v1.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code from google.cloud import bigquery import numpy as np import pandas as pd def create_query(phase, EVERY_N): """Creates a query with the proper splits. Args: phase: int, 1=train, 2=valid. EVERY_N: int, take an example EVERY_N rows. Returns: Query string with the proper splits. """ base_query = """ WITH daynames AS (SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek) SELECT (tolls_amount + fare_amount) AS fare_amount, daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek, EXTRACT(HOUR FROM pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count AS passengers, 'notneeded' AS key FROM `nyc-tlc.yellow.trips`, daynames WHERE trip_distance > 0 AND fare_amount > 0 """ if EVERY_N is None: if phase < 2: # training query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST (pickup_datetime AS STRING), 4)) < 2""".format(base_query) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING)), {1})) = {2}""".format( base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bigquery.Client().query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.logging.set_verbosity(tf.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.logging.set_verbosity(tf.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code from google.cloud import bigquery import numpy as np import pandas as pd def create_query(phase, EVERY_N): """Creates a query with the proper splits. Args: phase: int, 1=train, 2=valid. EVERY_N: int, take an example EVERY_N rows. Returns: Query string with the proper splits. """ base_query = """ WITH daynames AS (SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek) SELECT (tolls_amount + fare_amount) AS fare_amount, daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek, EXTRACT(HOUR FROM pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count AS passengers, 'notneeded' AS key FROM `nyc-tlc.yellow.trips`, daynames WHERE trip_distance > 0 AND fare_amount > 0 """ if EVERY_N is None: if phase < 2: # training query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST (pickup_datetime AS STRING), 4)) < 2""".format(base_query) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING)), {1})) = {2}""".format( base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bigquery.Client().query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.logging.set_verbosity(tf.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.logging.set_verbosity(tf.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code import datalab.bigquery as bq import numpy as np import pandas as pd def create_query(phase, EVERY_N): """ phase: 1 = train 2 = valid """ base_query = """ SELECT (tolls_amount + fare_amount) AS fare_amount, CONCAT(STRING(pickup_datetime), STRING(pickup_longitude), STRING(pickup_latitude), STRING(dropoff_latitude), STRING(dropoff_longitude)) AS key, DAYOFWEEK(pickup_datetime)*1.0 AS dayofweek, HOUR(pickup_datetime)*1.0 AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count*1.0 AS passengers, FROM [nyc-tlc:yellow.trips] WHERE trip_distance > 0 AND fare_amount >= 2.5 AND pickup_longitude > -78 AND pickup_longitude < -70 AND dropoff_longitude > -78 AND dropoff_longitude < -70 AND pickup_latitude > 37 AND pickup_latitude < 45 AND dropoff_latitude > 37 AND dropoff_latitude < 45 AND passenger_count > 0 """ if EVERY_N == None: if phase < 2: # Training query = "{0} AND ABS(HASH(pickup_datetime)) % 4 < 2".format(base_query) else: # Validation query = "{0} AND ABS(HASH(pickup_datetime)) % 4 == {1}".format(base_query, phase) else: query = "{0} AND ABS(HASH(pickup_datetime)) % {1} == {2}".format(base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bq.Query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code import datalab.bigquery as bq import tensorflow as tf import pandas as pd import numpy as np import shutil print tf.__version__ ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.logging.set_verbosity(tf.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print 'RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss'])) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print [pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))] ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.logging.set_verbosity(tf.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code import datalab.bigquery as bq import numpy as np import pandas as pd def create_query(phase, EVERY_N): """ phase: 1 = train 2 = valid """ base_query = """ SELECT (tolls_amount + fare_amount) AS fare_amount, CONCAT(STRING(pickup_datetime), STRING(pickup_longitude), STRING(pickup_latitude), STRING(dropoff_latitude), STRING(dropoff_longitude)) AS key, DAYOFWEEK(pickup_datetime)*1.0 AS dayofweek, HOUR(pickup_datetime)*1.0 AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count*1.0 AS passengers, FROM [nyc-tlc:yellow.trips] WHERE trip_distance > 0 AND fare_amount >= 2.5 AND pickup_longitude > -78 AND pickup_longitude < -70 AND dropoff_longitude > -78 AND dropoff_longitude < -70 AND pickup_latitude > 37 AND pickup_latitude < 45 AND dropoff_latitude > 37 AND dropoff_latitude < 45 AND passenger_count > 0 """ if EVERY_N == None: if phase < 2: # Training query = "{0} AND ABS(HASH(pickup_datetime)) % 4 < 2".format(base_query) else: # Validation query = "{0} AND ABS(HASH(pickup_datetime)) % 4 == {1}".format(base_query, phase) else: query = "{0} AND ABS(HASH(pickup_datetime)) % {1} == {2}".format(base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bq.Query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.6 import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.compat.v1.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code from google.cloud import bigquery import numpy as np import pandas as pd def create_query(phase, EVERY_N): """Creates a query with the proper splits. Args: phase: int, 1=train, 2=valid. EVERY_N: int, take an example EVERY_N rows. Returns: Query string with the proper splits. """ base_query = """ WITH daynames AS (SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek) SELECT (tolls_amount + fare_amount) AS fare_amount, daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek, EXTRACT(HOUR FROM pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count AS passengers, 'notneeded' AS key FROM `nyc-tlc.yellow.trips`, daynames WHERE trip_distance > 0 AND fare_amount > 0 """ if EVERY_N is None: if phase < 2: # training query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST (pickup_datetime AS STRING), 4)) < 2""".format(base_query) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING)), {1})) = {2}""".format( base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bigquery.Client().query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.5 import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.compat.v1.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code from google.cloud import bigquery import numpy as np import pandas as pd def create_query(phase, EVERY_N): """Creates a query with the proper splits. Args: phase: int, 1=train, 2=valid. EVERY_N: int, take an example EVERY_N rows. Returns: Query string with the proper splits. """ base_query = """ WITH daynames AS (SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek) SELECT (tolls_amount + fare_amount) AS fare_amount, daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek, EXTRACT(HOUR FROM pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count AS passengers, 'notneeded' AS key FROM `nyc-tlc.yellow.trips`, daynames WHERE trip_distance > 0 AND fare_amount > 0 """ if EVERY_N is None: if phase < 2: # training query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST (pickup_datetime AS STRING), 4)) < 2""".format(base_query) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING)), {1})) = {2}""".format( base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bigquery.Client().query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.6 import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.compat.v1.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code from google.cloud import bigquery import numpy as np import pandas as pd def create_query(phase, EVERY_N): """Creates a query with the proper splits. Args: phase: int, 1=train, 2=valid. EVERY_N: int, take an example EVERY_N rows. Returns: Query string with the proper splits. """ base_query = """ WITH daynames AS (SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek) SELECT (tolls_amount + fare_amount) AS fare_amount, daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek, EXTRACT(HOUR FROM pickup_datetime) AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count AS passengers, 'notneeded' AS key FROM `nyc-tlc.yellow.trips`, daynames WHERE trip_distance > 0 AND fare_amount > 0 """ if EVERY_N is None: if phase < 2: # training query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST (pickup_datetime AS STRING), 4)) < 2""".format(base_query) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase) else: query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST( pickup_datetime AS STRING)), {1})) = {2}""".format( base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bigquery.Client().query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____ ###Markdown Machine Learning using tf.estimator In this notebook, we will create a machine learning model using tf.estimator and evaluate its performance. The dataset is rather small (7700 samples), so we can do it all in-memory. We will also simply pass the raw data in as-is. ###Code import datalab.bigquery as bq import tensorflow as tf import pandas as pd import numpy as np import shutil print(tf.__version__) ###Output _____no_output_____ ###Markdown Read data created in the previous chapter. ###Code # In CSV, label is the first column, after the features, followed by the key CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key'] FEATURES = CSV_COLUMNS[1:len(CSV_COLUMNS) - 1] LABEL = CSV_COLUMNS[0] df_train = pd.read_csv('./taxi-train.csv', header = None, names = CSV_COLUMNS) df_valid = pd.read_csv('./taxi-valid.csv', header = None, names = CSV_COLUMNS) ###Output _____no_output_____ ###Markdown Input function to read from Pandas Dataframe into tf.constant ###Code def make_input_fn(df, num_epochs): return tf.estimator.inputs.pandas_input_fn( x = df, y = df[LABEL], batch_size = 128, num_epochs = num_epochs, shuffle = True, queue_capacity = 1000, num_threads = 1 ) ###Output _____no_output_____ ###Markdown Create feature columns for estimator ###Code def make_feature_cols(): input_columns = [tf.feature_column.numeric_column(k) for k in FEATURES] return input_columns ###Output _____no_output_____ ###Markdown Linear Regression with tf.Estimator framework ###Code tf.logging.set_verbosity(tf.logging.INFO) OUTDIR = 'taxi_trained' shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 10)) ###Output _____no_output_____ ###Markdown Evaluate on the validation data (we should defer using the test data to after we have selected a final model). ###Code def print_rmse(model, name, df): metrics = model.evaluate(input_fn = make_input_fn(df, 1)) print('RMSE on {} dataset = {}'.format(name, np.sqrt(metrics['average_loss']))) print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown This is nowhere near our benchmark (RMSE of $6 or so on this data), but it serves to demonstrate what TensorFlow code looks like. Let's use this model for prediction. ###Code import itertools # Read saved model and use it for prediction model = tf.estimator.LinearRegressor( feature_columns = make_feature_cols(), model_dir = OUTDIR) preds_iter = model.predict(input_fn = make_input_fn(df_valid, 1)) print([pred['predictions'][0] for pred in list(itertools.islice(preds_iter, 5))]) ###Output _____no_output_____ ###Markdown This explains why the RMSE was so high -- the model essentially predicts the same amount for every trip. Would a more complex model help? Let's try using a deep neural network. The code to do this is quite straightforward as well. Deep Neural Network regression ###Code tf.logging.set_verbosity(tf.logging.INFO) shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time model = tf.estimator.DNNRegressor(hidden_units = [32, 8, 2], feature_columns = make_feature_cols(), model_dir = OUTDIR) model.train(input_fn = make_input_fn(df_train, num_epochs = 100)); print_rmse(model, 'validation', df_valid) ###Output _____no_output_____ ###Markdown We are not beating our benchmark with either model ... what's up? Well, we may be using TensorFlow for Machine Learning, but we are not yet using it well. That's what the rest of this course is about!But, for the record, let's say we had to choose between the two models. We'd choose the one with the lower validation error. Finally, we'd measure the RMSE on the test data with this chosen model. Benchmark dataset Let's do this on the benchmark dataset. ###Code import datalab.bigquery as bq import numpy as np import pandas as pd def create_query(phase, EVERY_N): """ phase: 1 = train 2 = valid """ base_query = """ SELECT (tolls_amount + fare_amount) AS fare_amount, CONCAT(STRING(pickup_datetime), STRING(pickup_longitude), STRING(pickup_latitude), STRING(dropoff_latitude), STRING(dropoff_longitude)) AS key, DAYOFWEEK(pickup_datetime)*1.0 AS dayofweek, HOUR(pickup_datetime)*1.0 AS hourofday, pickup_longitude AS pickuplon, pickup_latitude AS pickuplat, dropoff_longitude AS dropofflon, dropoff_latitude AS dropofflat, passenger_count*1.0 AS passengers, FROM [nyc-tlc:yellow.trips] WHERE trip_distance > 0 AND fare_amount >= 2.5 AND pickup_longitude > -78 AND pickup_longitude < -70 AND dropoff_longitude > -78 AND dropoff_longitude < -70 AND pickup_latitude > 37 AND pickup_latitude < 45 AND dropoff_latitude > 37 AND dropoff_latitude < 45 AND passenger_count > 0 """ if EVERY_N == None: if phase < 2: # Training query = "{0} AND ABS(HASH(pickup_datetime)) % 4 < 2".format(base_query) else: # Validation query = "{0} AND ABS(HASH(pickup_datetime)) % 4 == {1}".format(base_query, phase) else: query = "{0} AND ABS(HASH(pickup_datetime)) % {1} == {2}".format(base_query, EVERY_N, phase) return query query = create_query(2, 100000) df = bq.Query(query).to_dataframe() print_rmse(model, 'benchmark', df) ###Output _____no_output_____
basic projects/maxpooling_visualization.ipynb
###Markdown Maxpooling LayerIn this notebook, we add and visualize the output of a maxpooling layer in a CNN. A convolutional layer + activation function, followed by a pooling layer, and a linear layer (to create a desired output size) make up the basic layers of a CNN. Import the image ###Code import cv2 import matplotlib.pyplot as plt %matplotlib inline # TODO: Feel free to try out your own images here by changing img_path # to a file path to another image on your computer! img_path = 'data/udacity_sdc.png' # load color image bgr_img = cv2.imread(img_path) # convert to grayscale gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY) # normalize, rescale entries to lie in [0,1] gray_img = gray_img.astype("float32")/255 # plot image plt.imshow(gray_img, cmap='gray') plt.show() ###Output _____no_output_____ ###Markdown Define and visualize the filters ###Code import numpy as np ## TODO: Feel free to modify the numbers here, to try out another filter! filter_vals = np.array([[-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]]) print('Filter shape: ', filter_vals.shape) # Defining four different filters, # all of which are linear combinations of the `filter_vals` defined above # define four filters filter_1 = filter_vals filter_2 = -filter_1 filter_3 = filter_1.T filter_4 = -filter_3 filters = np.array([filter_1, filter_2, filter_3, filter_4]) # For an example, print out the values of filter 1 print('Filter 1: \n', filter_1) ###Output Filter 1: [[-1 -1 1 1] [-1 -1 1 1] [-1 -1 1 1] [-1 -1 1 1]] ###Markdown Define convolutional and pooling layersYou've seen how to define a convolutional layer, next is a:* Pooling layerIn the next cell, we initialize a convolutional layer so that it contains all the created filters. Then add a maxpooling layer, [documented here](http://pytorch.org/docs/stable/_modules/torch/nn/modules/pooling.html), with a kernel size of (2x2) so you can see that the image resolution has been reduced after this step!A maxpooling layer reduces the x-y size of an input and only keeps the most *active* pixel values. Below is an example of a 2x2 pooling kernel, with a stride of 2, applied to a small patch of grayscale pixel values; reducing the x-y size of the patch by a factor of 2. Only the maximum pixel values in 2x2 remain in the new, pooled output. ###Code import torch import torch.nn as nn import torch.nn.functional as F # define a neural network with a convolutional layer with four filters # AND a pooling layer of size (2, 2) class Net(nn.Module): def __init__(self, weight): super(Net, self).__init__() # initializes the weights of the convolutional layer to be the weights of the 4 defined filters k_height, k_width = weight.shape[2:] # assumes there are 4 grayscale filters self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False) self.conv.weight = torch.nn.Parameter(weight) # define a pooling layer self.pool = nn.MaxPool2d(2, 2) def forward(self, x): # calculates the output of a convolutional layer # pre- and post-activation conv_x = self.conv(x) activated_x = F.relu(conv_x) # applies pooling layer pooled_x = self.pool(activated_x) # returns all layers return conv_x, activated_x, pooled_x # instantiate the model and set the weights weight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor) model = Net(weight) # print out the layer in the network print(model) ###Output _____no_output_____ ###Markdown Visualize the output of each filterFirst, we'll define a helper function, `viz_layer` that takes in a specific layer and number of filters (optional argument), and displays the output of that layer once an image has been passed through. ###Code # helper function for visualizing the output of a given layer # default number of filters is 4 def viz_layer(layer, n_filters= 4): fig = plt.figure(figsize=(20, 20)) for i in range(n_filters): ax = fig.add_subplot(1, n_filters, i+1) # grab layer outputs ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray') ax.set_title('Output %s' % str(i+1)) ###Output _____no_output_____ ###Markdown Let's look at the output of a convolutional layer after a ReLu activation function is applied. ReLu activationA ReLu function turns all negative pixel values in 0's (black). See the equation pictured below for input pixel values, `x`. ###Code # plot original image plt.imshow(gray_img, cmap='gray') # visualize all filters fig = plt.figure(figsize=(12, 6)) fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05) for i in range(4): ax = fig.add_subplot(1, 4, i+1, xticks=[], yticks=[]) ax.imshow(filters[i], cmap='gray') ax.set_title('Filter %s' % str(i+1)) # convert the image into an input Tensor gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1) # get all the layers conv_layer, activated_layer, pooled_layer = model(gray_img_tensor) # visualize the output of the activated conv layer viz_layer(activated_layer) ###Output _____no_output_____ ###Markdown Visualize the output of the pooling layerThen, take a look at the output of a pooling layer. The pooling layer takes as input the feature maps pictured above and reduces the dimensionality of those maps, by some pooling factor, by constructing a new, smaller image of only the maximum (brightest) values in a given kernel area.Take a look at the values on the x, y axes to see how the image has changed size. ###Code # visualize the output of the pooling layer viz_layer(pooled_layer) ###Output _____no_output_____
Kopie_von_S4_3_THOR.ipynb
###Markdown Photo Credits: Sea Foam by Ivan Bandura licensed under the Unsplash License >*A frequently asked question related to this work is โ€œWhich mixing processes matter most for climate?โ€ As with many alluringly comprehensive sounding questions, the answer is โ€œit depends.โ€* > $\qquad$ MacKinnon, Jennifer A., et al. $\qquad$"Climate process team on internal waveโ€“driven ocean mixing." $\qquad$ Bulletin of the American Meteorological Society 98.11 (2017): 2429-2454. In week 4's final notebook, we will perform clustering to identify regimes in data taken from the realistic numerical ocean model [Estimating the Circulation and Climate of the Ocean](https://www.ecco-group.org/products-ECCO-V4r4.htm). Sonnewald et al. point out that finding robust regimes is intractable with a naรฏve approach, so we will be using using reduced dimensionality data. It is worth pointing out, however, that the reduction was done with an equation instead of one of the algorithms we discussed this week. If you're interested in the full details, you can check out [Sonnewald et al. (2019)](https://doi.org/10.1029/2018EA000519) Setup First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn โ‰ฅ0.20. ###Code # Python โ‰ฅ3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn โ‰ฅ0.20 is required import sklearn assert sklearn.__version__ >= "0.20" # Common imports import numpy as np import os import xarray as xr import pooch # to make this notebook's output stable across runs rnd_seed = 42 rnd_gen = np.random.default_rng(rnd_seed) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "dim_reduction" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) ###Output _____no_output_____ ###Markdown Here we're going to import the [StandardScaler](https://duckduckgo.com/sklearn.preprocessing.standardscaler) function from scikit's preprocessing tools, import the [scikit clustering library](https://duckduckgo.com/sklearn.clustering), and set up the colormap that we will use when plotting. ###Code from sklearn.preprocessing import StandardScaler import sklearn.cluster as cluster from matplotlib.colors import LinearSegmentedColormap, ListedColormap colors = ['royalblue', 'cyan','yellow', 'orange', 'magenta', 'red'] mycmap = ListedColormap(colors) ###Output _____no_output_____ ###Markdown Data Preprocessing The first thing we need to do is retrieve the list of files we'll be working on. We'll rely on pooch to access the files hosted on the cloud. ###Code # Retrieve the files from the cloud using Pooch. data_url = 'https://unils-my.sharepoint.com/:u:/g/personal/tom_beucler_unil_ch/EUYqUzpIjoJBui02QEo6q1wBSN1Zsi1ofE6I3G4B9LJn_Q?download=1' hash = '3f41661c7a087fa7d7af1d2a8baf95c065468f8a415b8514baedda2f5bc18bb5' files = pooch.retrieve(data_url, known_hash=hash, processor=pooch.Unzip()) [print(filename) for filename in files]; ###Output Downloading data from 'https://unils-my.sharepoint.com/:u:/g/personal/tom_beucler_unil_ch/EUYqUzpIjoJBui02QEo6q1wBSN1Zsi1ofE6I3G4B9LJn_Q?download=1' to file '/root/.cache/pooch/8a10ee1ae6941d8b9bb543c954c793fa-EUYqUzpIjoJBui02QEo6q1wBSN1Zsi1ofE6I3G4B9LJn_Q'. Unzipping contents of '/root/.cache/pooch/8a10ee1ae6941d8b9bb543c954c793fa-EUYqUzpIjoJBui02QEo6q1wBSN1Zsi1ofE6I3G4B9LJn_Q' to '/root/.cache/pooch/8a10ee1ae6941d8b9bb543c954c793fa-EUYqUzpIjoJBui02QEo6q1wBSN1Zsi1ofE6I3G4B9LJn_Q.unzip' ###Markdown And now that we have a set of files to load, let's set up a dictionary with the variable names as keys and the data in numpy array format as the values. ###Code # Let's read in the variable names from the filepaths var_names = [] [var_names.append(path.split('/')[-1][:-4]) for path in files] # And build a dictionary of the data variables keyed to the filenames data_dict = {} for idx, val in enumerate(var_names): data_dict[val] = np.load(files[idx]).T #We'll print the name of the variable loaded and the associated shape [print(f'Varname: {item[0]:<15} Shape: {item[1].shape}') for item in data_dict.items()]; ###Output Varname: curlB Shape: (360, 720) Varname: BPT Shape: (360, 720) Varname: curlCori Shape: (360, 720) Varname: noiseMask Shape: (360, 720) Varname: curlA Shape: (360, 720) Varname: curlTau Shape: (360, 720) ###Markdown We now have a dictionary that uses the filename as the key! Feel free to explore the data (e.g., loading the keys, checking the shape of the arrays, plotting) ###Code #Feel free to explore the data dictionary ###Output _____no_output_____ ###Markdown We're eventually going to have an array of cluster classes that we're going to use to label dynamic regimes in the ocean. Let's make an array full of NaN (not-a-number) values that has the same shape as our other variables and store it in the data dictionary. ###Code data_dict['clusters'] = np.full_like(data_dict['BPT'],np.nan) ###Output _____no_output_____ ###Markdown Reformatting as Xarray In the original paper, this data was loaded as numpy arrays. However, we'll take this opportunity to demonstrate the same procedure while relying on xarray. First, let's instantiate a blank dataset.**Q1) Make a blank xarray dataset.***Hint: Look at the xarray [documentation](https://duckduckgo.com/?q=xarray+dataset)* ###Code ds=xr.Dataset() ###Output _____no_output_____ ###Markdown Image taken from the xarray Data Structure documentation In order to build the dataset, we're going to need a set of coordinate vectors that help us map out our data! For our data, we have two axes corresponding to longitude ($\lambda$) and latitude ($\phi$). We don't know much about how many lat/lon points we have, so let's explore one of the variables to make sense of the data the shape of one of the numpy arrays.**Q2) Visualize the data using a plot and printing the shape of the data to the console output.** ###Code #Complete the code # Let's print out an image of the Bottom Pressure Torques (BPT) plt.imshow( data_dict['BPT'] , origin='lower') # It will also be useful to store and print out the shape of the data data_shape =data_dict['BPT'].shape print(data_shape) ###Output (360, 720) ###Markdown Now that we know how the resolution of our data, we can prepare a set of axis arrays. We will use these to organize the data we will feed into the dataset.**Q3) Prepare the latitude and longitude arrays to be used as axes for our dataset***Hint 1: You can build ordered numpy arrays using, e.g., [numpy.linspace](https://numpy.org/doc/stable/reference/generated/numpy.linspace.html) and [numpy.arange](https://numpy.org/doc/stable/reference/generated/numpy.arange.html)**Hint 2: You can rely on the data_shape variable we loaded previously to know how many points you need along each axis* ###Code #Complete the code # Let's prepare the lat and lon axes for our data. lat =np.linspace(0,360,360) lon =np.linspace(0,720,720) ###Output _____no_output_____ ###Markdown Now that we have the axes we need, we can build xarray [*data arrays*](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html) for each data variable. Since we'll be doing it several times, let's go ahead and defined a function that does this for us!**Q4) Define a function that takes in: 1) an array name, 2) a numpy array, 3) a lat vector, and 4) a lon vector. The function should return a dataArray with lat-lon as the coordinate dimensions** ###Code #Complete the code def np_to_xr(array_name, array, lat, lon): #building the xarrray da = xr.DataArray(data = array, # Data to be stored #set the name of dimensions for the dataArray dims = ['lat', 'lon'], #Set the dictionary pointing the name dimensions to np arrays coords = {'lat':lat, 'lon':lon}, name=array_name) return da ###Output _____no_output_____ ###Markdown We're now ready to build our data array! Let's iterate through the items and merge our blank dataset with the data arrays we create.**Q5) Build the dataset from the data dictionary***Hint: We'll be using the xarray merge command to put everything together.* ###Code # The code in the notebook assumes you named your dataset ds. Change it to # whatever you used! # Complete the code for key, item in data_dict.items(): # Let's make use of our np_to_xr function to get the data as a dataArray da = np_to_xr(key, item, lat, lon) # Merge the dataSet with the dataArray here! ds = xr.merge( [ds , da ] ) ###Output _____no_output_____ ###Markdown Congratulations! You should now have a nicely set up xarray dataset. This let's you access a ton of nice features, e.g.:> Data plotting by calling, e.g., `ds.BPT.plot.imshow(cmap='ocean')`> > Find statistical measures of all variables at once! (e.g.: `ds.std()`, `ds.mean()`) ###Code # Play around with the dataset here if you'd like :) ###Output _____no_output_____ ###Markdown Now we want to find clusters of data considering each grid point as a datapoint with 5 dimensional data. However, we went through a lot of work to get the data nicely associated with a lat and lon - do we really want to undo that?Luckily, xarray develops foresaw the need to group dimensions together. Let's create a 'flat' version of our dataset using the [`stack`](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.stack.html) method. Let's make a flattened version of our dataset.**Q6) Store a flattened version of our dataset***Hint 1: You'll need to pass a dictionary with the 'new' stacked dimension name as the key and the 'flattened' dimensions as the values.**Hint 2: xarrays have a ['.values' attribute](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.values.html) that return their data as a numpy array.* ###Code # Complete the code # Let's store the stacked version of our dataset stacked = ds.stack({'dim':['lat','lon']}) # And verify the shape of our data print(stacked.to_array().values.shape) ###Output (7, 259200) ###Markdown So far we've ignored an important point - we're supposed to have 5 variables, not 6! As you may have guessed, `noiseMask` helps us throw away data we dont want (e.g., from land mass or bad pixels). We're now going to clean up the stacked dataset using the noise mask. Relax and read through the code, since there won't be a question in this part :) ###Code # Let's redefine stacked as all the points where noiseMask = 1, since noisemask # is binary data. print(f'Dataset shape before processing: {stacked.to_array().values.shape}') print("Let's do some data cleaning!") print(f'Points before cleaning: {len(stacked.BPT)}') stacked = stacked.where(stacked.noiseMask==1, drop=True) print(f'Points after cleaning: {len(stacked.BPT)}') # We also no longer need the noiseMask variable, so we can just drop it. print('And drop the noisemask variable...') print(f'Before dropping: {stacked.to_array().values.shape}') stacked = stacked.drop('noiseMask') print(f'Dataset shape after processing: {stacked.to_array().values.shape}') ###Output And drop the noisemask variable... Before dropping: (7, 149714) Dataset shape after processing: (6, 149714) ###Markdown We now have several thousand points which we want to divide into clusters using the kmeans clustering algorithm (you can check out the documentation for scikit's implementation of kmeans [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)).You'll note that the algorithm expects the input data `X` to be fed as `(n_samples, n_features)`. This is the opposite of what we have! Let's go ahead and make a copy to a numpy array has the axes in the right order.You'll need xarray's [`.to_array()`](https://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_array.html) method and [`.values`](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.values.html) parameter, as well as numpy's [`.moveaxis`](https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html) method.**Q7) Load the datapoints into a numpy array following the convention where the 0th axis corresponds to the samples and the 1st axis corresponds to the features.** ###Code # Complete the code input_data = np.moveaxis(stacked.to_array().values, # data to reshape 0, # source axis as integer, 1) # destination axis as integer # Does the input data look the way it's supposed to? Print the shape. print(input_data.shape) ###Output (149714, 6) ###Markdown In previous classes we discussed the importance of the scaling the data before implementing our algorithms. Now that our data is all but ready to be fed into an algorithm, let's make sure that it's been scaled.**Q8) Scale the input data***Hint 1: Import the [`StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) class from scikit and instantiate it**Hint 2: Update the input array to the one returned by the [`.fit_transform(X)`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.htmlsklearn.preprocessing.StandardScaler.fit_transform) method* ###Code from sklearn.preprocessing import StandardScaler SCL = StandardScaler() X = SCL.fit_transform(input_data) X.shape ###Output /usr/local/lib/python3.7/dist-packages/sklearn/utils/extmath.py:985: RuntimeWarning: invalid value encountered in true_divide updated_mean = (last_sum + new_sum) / updated_sample_count /usr/local/lib/python3.7/dist-packages/sklearn/utils/extmath.py:990: RuntimeWarning: invalid value encountered in true_divide T = new_sum / new_sample_count /usr/local/lib/python3.7/dist-packages/sklearn/utils/extmath.py:1020: RuntimeWarning: invalid value encountered in true_divide new_unnormalized_variance -= correction ** 2 / new_sample_count ###Markdown Now we're finally ready to train our algorithm! Let's load up the kmeans model and find clusters in our data.**Q9) Instantiate the kmeans clustering algorithm, and then fit it using 50 clusters, trying out 10 different initial centroids.***Hint 1: `sklearn.cluster` was imported as `cluser` during the notebook setup! [Here is the scikit `KMeans` documentation](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html).**Hint 2: Use the `fit_predict` method to organize the data into clusters**Warning! : Fitting the data may take some time (under a minute during the testing of the notebook) ###Code # Complete the code kmeans = cluster.KMeans(n_clusters=50, # Number of clusters random_state =42, # setting a random state n_init =10, # Number of initial centroid states to try verbose = 1) # Verbosity so we know things are working cluster_labels = kmeans.fit_predict(X[:,0:-1]) # Feed in out scaled input data! ###Output Initialization complete Iteration 0, inertia 178083.89703048766 Iteration 1, inertia 159390.21041351298 Iteration 2, inertia 154958.53378937 Iteration 3, inertia 153364.6906988097 Iteration 4, inertia 152324.72153485252 Iteration 5, inertia 151710.9167395463 Iteration 6, inertia 151215.18572026718 Iteration 7, inertia 150798.56641029703 Iteration 8, inertia 150503.84122090333 Iteration 9, inertia 150281.32586012976 Iteration 10, inertia 150105.95237949066 Iteration 11, inertia 149943.23463400244 Iteration 12, inertia 149800.1544897156 Iteration 13, inertia 149688.51613387442 Iteration 14, inertia 149583.5026197455 Iteration 15, inertia 149483.2763791494 Iteration 16, inertia 149393.45781591441 Iteration 17, inertia 149312.77247441385 Iteration 18, inertia 149250.21704388165 Iteration 19, inertia 149190.28168967392 Iteration 20, inertia 149124.99589589806 Iteration 21, inertia 149022.5203657826 Iteration 22, inertia 148931.91982966047 Iteration 23, inertia 148881.302942448 Iteration 24, inertia 148816.3560276227 Iteration 25, inertia 148776.7611786304 Iteration 26, inertia 148741.60861700718 Iteration 27, inertia 148719.2617312301 Iteration 28, inertia 148703.93326699806 Iteration 29, inertia 148692.22729303813 Iteration 30, inertia 148682.64309787488 Iteration 31, inertia 148672.61712235268 Iteration 32, inertia 148663.90789397885 Iteration 33, inertia 148641.6834777884 Iteration 34, inertia 148634.2919559529 Iteration 35, inertia 148624.43161181136 Iteration 36, inertia 148613.84541832458 Iteration 37, inertia 148603.78331589495 Iteration 38, inertia 148595.4238670601 Iteration 39, inertia 148587.17845988573 Iteration 40, inertia 148578.11542856574 Iteration 41, inertia 148567.90076078434 Iteration 42, inertia 148559.02322317427 Iteration 43, inertia 148550.21131428555 Iteration 44, inertia 148542.2734119076 Iteration 45, inertia 148533.63291469176 Iteration 46, inertia 148525.56020105616 Iteration 47, inertia 148517.9865819187 Iteration 48, inertia 148510.0633317366 Iteration 49, inertia 148502.99309017576 Iteration 50, inertia 148495.897611984 Iteration 51, inertia 148489.15066630984 Iteration 52, inertia 148482.56978448623 Iteration 53, inertia 148476.10945277987 Iteration 54, inertia 148469.46459661316 Iteration 55, inertia 148462.9645218944 Iteration 56, inertia 148454.6000770288 Iteration 57, inertia 148444.54231196654 Iteration 58, inertia 148431.81636241858 Iteration 59, inertia 148417.13183848833 Iteration 60, inertia 148401.9373189272 Iteration 61, inertia 148387.98604647382 Iteration 62, inertia 148375.4922147618 Iteration 63, inertia 148362.86434359473 Iteration 64, inertia 148351.5387655549 Iteration 65, inertia 148340.15065029144 Iteration 66, inertia 148329.72044806438 Iteration 67, inertia 148319.5655088859 Iteration 68, inertia 148309.68430809246 Iteration 69, inertia 148299.6153246931 Iteration 70, inertia 148289.6810514759 Iteration 71, inertia 148280.18493545937 Iteration 72, inertia 148271.06335637852 Iteration 73, inertia 148262.59289688684 Iteration 74, inertia 148253.89500313986 Iteration 75, inertia 148243.92435065997 Iteration 76, inertia 148231.93149678136 Iteration 77, inertia 148216.69788334065 Iteration 78, inertia 148197.65119578777 Iteration 79, inertia 148176.75768602142 Iteration 80, inertia 148154.56486051448 Iteration 81, inertia 148126.6339786329 Iteration 82, inertia 148097.08300035645 Iteration 83, inertia 148061.59341856794 Iteration 84, inertia 148024.87110692833 Iteration 85, inertia 147985.60165029758 Iteration 86, inertia 147937.907051183 Iteration 87, inertia 147890.2161698339 Iteration 88, inertia 147845.41694965406 Iteration 89, inertia 147806.36924628535 Iteration 90, inertia 147772.94074131484 Iteration 91, inertia 147747.35096398732 Iteration 92, inertia 147722.62360386126 Iteration 93, inertia 147704.2831620844 Iteration 94, inertia 147688.70510074834 Iteration 95, inertia 147675.62169597694 Iteration 96, inertia 147666.89343500722 Iteration 97, inertia 147659.68127761278 Iteration 98, inertia 147653.05726236757 Iteration 99, inertia 147647.98655506698 Iteration 100, inertia 147643.5871739356 Iteration 101, inertia 147639.98521748587 Iteration 102, inertia 147637.1888916474 Iteration 103, inertia 147634.95331611775 Iteration 104, inertia 147632.68080944207 Iteration 105, inertia 147630.48465640712 Iteration 106, inertia 147628.88832703052 Iteration 107, inertia 147627.82103774085 Iteration 108, inertia 147626.03212096027 Iteration 109, inertia 147624.5969392516 Iteration 110, inertia 147622.19374827726 Iteration 111, inertia 147618.90279747295 Iteration 112, inertia 147616.69746609853 Iteration 113, inertia 147615.28791851387 Iteration 114, inertia 147614.04936196195 Iteration 115, inertia 147610.2063622774 Iteration 116, inertia 147607.31556259797 Iteration 117, inertia 147603.82023048148 Iteration 118, inertia 147600.9957105015 Iteration 119, inertia 147599.53322249354 Iteration 120, inertia 147599.16002300274 Iteration 121, inertia 147599.0735864094 Converged at iteration 121: center shift 9.484554547794578e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 182194.85935363895 Iteration 1, inertia 163072.09672366185 Iteration 2, inertia 157922.92460970973 Iteration 3, inertia 155087.57073658568 Iteration 4, inertia 153449.09073747596 Iteration 5, inertia 152511.71792891365 Iteration 6, inertia 151956.7557053373 Iteration 7, inertia 151550.03999003986 Iteration 8, inertia 151226.67911664105 Iteration 9, inertia 150989.59081743716 Iteration 10, inertia 150800.30254658952 Iteration 11, inertia 150683.06487617453 Iteration 12, inertia 150580.19960186174 Iteration 13, inertia 150493.94095350633 Iteration 14, inertia 150430.27623244657 Iteration 15, inertia 150359.73417643263 Iteration 16, inertia 150287.4021281145 Iteration 17, inertia 150216.7420708682 Iteration 18, inertia 150149.51181872998 Iteration 19, inertia 150070.9868726355 Iteration 20, inertia 149975.20597457548 Iteration 21, inertia 149879.29559478816 Iteration 22, inertia 149823.40550624102 Iteration 23, inertia 149771.09231153037 Iteration 24, inertia 149684.79154302136 Iteration 25, inertia 149570.0657386692 Iteration 26, inertia 149460.56204667824 Iteration 27, inertia 149335.40534527414 Iteration 28, inertia 149163.76808644296 Iteration 29, inertia 148977.72605615773 Iteration 30, inertia 148827.11857174544 Iteration 31, inertia 148626.36103426604 Iteration 32, inertia 148458.34004532034 Iteration 33, inertia 148365.20836735753 Iteration 34, inertia 148281.14294266154 Iteration 35, inertia 148236.95578851135 Iteration 36, inertia 148190.32601486612 Iteration 37, inertia 148133.45806787512 Iteration 38, inertia 148109.522177055 Iteration 39, inertia 148084.6117238783 Iteration 40, inertia 148066.62586208025 Iteration 41, inertia 148050.73046091796 Iteration 42, inertia 148040.782380672 Iteration 43, inertia 148030.56055888082 Iteration 44, inertia 148022.2295031826 Iteration 45, inertia 148014.60644565892 Iteration 46, inertia 148006.60793378303 Iteration 47, inertia 147998.18618259128 Iteration 48, inertia 147989.43262930412 Iteration 49, inertia 147980.8455582714 Iteration 50, inertia 147969.04627274355 Iteration 51, inertia 147958.5147098747 Iteration 52, inertia 147945.90234608183 Iteration 53, inertia 147935.84566804435 Iteration 54, inertia 147926.36348463967 Iteration 55, inertia 147915.8595485374 Iteration 56, inertia 147907.84816952804 Iteration 57, inertia 147900.33848430598 Iteration 58, inertia 147892.1876670499 Iteration 59, inertia 147883.5717384335 Iteration 60, inertia 147875.36024308522 Iteration 61, inertia 147867.1771815683 Iteration 62, inertia 147859.82542418502 Iteration 63, inertia 147854.38249107424 Iteration 64, inertia 147849.96644224727 Iteration 65, inertia 147843.99828708963 Iteration 66, inertia 147837.58249324615 Iteration 67, inertia 147827.9585780491 Iteration 68, inertia 147813.78510491145 Iteration 69, inertia 147797.64788743103 Iteration 70, inertia 147783.69500360402 Iteration 71, inertia 147777.8713374529 Iteration 72, inertia 147773.8726589075 Iteration 73, inertia 147770.75807367556 Iteration 74, inertia 147768.0452332358 Iteration 75, inertia 147765.312231377 Iteration 76, inertia 147762.95425450837 Iteration 77, inertia 147761.10107982362 Iteration 78, inertia 147760.10599815467 Iteration 79, inertia 147759.65238589828 Iteration 80, inertia 147759.43209691427 Iteration 81, inertia 147759.14699653472 Iteration 82, inertia 147758.9018791755 Converged at iteration 82: center shift 4.334167224259372e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 181231.81431616278 Iteration 1, inertia 159316.65449611598 Iteration 2, inertia 154453.77138570847 Iteration 3, inertia 152376.35994652528 Iteration 4, inertia 151169.40704567585 Iteration 5, inertia 150418.97833418852 Iteration 6, inertia 149946.15250986803 Iteration 7, inertia 149677.581455114 Iteration 8, inertia 149471.65225443197 Iteration 9, inertia 149270.9343093569 Iteration 10, inertia 149076.73436677846 Iteration 11, inertia 148904.312097972 Iteration 12, inertia 148720.88099858077 Iteration 13, inertia 148551.16272716864 Iteration 14, inertia 148396.8080555 Iteration 15, inertia 148245.04759308376 Iteration 16, inertia 148097.45604670743 Iteration 17, inertia 147960.9852011893 Iteration 18, inertia 147833.8908557032 Iteration 19, inertia 147690.37469515036 Iteration 20, inertia 147556.29402672785 Iteration 21, inertia 147460.0974799695 Iteration 22, inertia 147365.40164283404 Iteration 23, inertia 147279.90944257082 Iteration 24, inertia 147213.9805861643 Iteration 25, inertia 147166.90991390872 Iteration 26, inertia 147124.77600084274 Iteration 27, inertia 147094.97613269178 Iteration 28, inertia 147070.1003058213 Iteration 29, inertia 147040.01028519234 Iteration 30, inertia 147008.60105020844 Iteration 31, inertia 146986.57689802366 Iteration 32, inertia 146959.40521140903 Iteration 33, inertia 146934.14731370274 Iteration 34, inertia 146910.16843191968 Iteration 35, inertia 146888.959034972 Iteration 36, inertia 146866.33170420112 Iteration 37, inertia 146846.3125248034 Iteration 38, inertia 146821.75262980186 Iteration 39, inertia 146797.2121358837 Iteration 40, inertia 146780.91310161492 Iteration 41, inertia 146770.77727693337 Iteration 42, inertia 146759.10050199708 Iteration 43, inertia 146747.4418178534 Iteration 44, inertia 146733.100472789 Iteration 45, inertia 146719.4698939445 Iteration 46, inertia 146705.98149264167 Iteration 47, inertia 146695.74867789846 Iteration 48, inertia 146684.41468430328 Iteration 49, inertia 146677.29684529605 Iteration 50, inertia 146671.33518612717 Iteration 51, inertia 146665.72114467487 Iteration 52, inertia 146657.47086361004 Iteration 53, inertia 146650.72537863126 Iteration 54, inertia 146644.32053623247 Iteration 55, inertia 146640.29069477046 Iteration 56, inertia 146636.91129630292 Iteration 57, inertia 146632.56760703042 Iteration 58, inertia 146627.92046214387 Iteration 59, inertia 146624.49666938357 Iteration 60, inertia 146619.37425561046 Iteration 61, inertia 146610.27265036537 Iteration 62, inertia 146603.28511799948 Iteration 63, inertia 146597.67182538286 Iteration 64, inertia 146593.35039043188 Iteration 65, inertia 146587.92465880723 Iteration 66, inertia 146583.11488685478 Iteration 67, inertia 146576.15118328683 Iteration 68, inertia 146566.4682728104 Iteration 69, inertia 146557.19615355623 Iteration 70, inertia 146543.41142196977 Iteration 71, inertia 146527.26861186203 Iteration 72, inertia 146512.88023746526 Iteration 73, inertia 146500.5103154578 Iteration 74, inertia 146492.59412655095 Iteration 75, inertia 146483.60386136835 Iteration 76, inertia 146475.59408219965 Iteration 77, inertia 146465.0196894001 Iteration 78, inertia 146454.73363270567 Iteration 79, inertia 146448.48333424388 Iteration 80, inertia 146445.6907498528 Iteration 81, inertia 146442.23388002085 Iteration 82, inertia 146438.80953297782 Iteration 83, inertia 146432.56464322025 Iteration 84, inertia 146424.7891757172 Iteration 85, inertia 146417.07312117887 Iteration 86, inertia 146407.21022630768 Iteration 87, inertia 146395.64655744497 Iteration 88, inertia 146387.92523699068 Iteration 89, inertia 146383.8136534192 Iteration 90, inertia 146378.71018750998 Iteration 91, inertia 146373.9399051664 Iteration 92, inertia 146371.0533236941 Iteration 93, inertia 146367.4898834253 Iteration 94, inertia 146366.393740919 Iteration 95, inertia 146365.6784385183 Iteration 96, inertia 146364.11289170827 Iteration 97, inertia 146360.9649267211 Iteration 98, inertia 146359.52902810357 Iteration 99, inertia 146357.78164840405 Iteration 100, inertia 146356.45486906223 Iteration 101, inertia 146355.5762189193 Iteration 102, inertia 146355.08348779316 Iteration 103, inertia 146354.5124027303 Iteration 104, inertia 146353.5992858485 Iteration 105, inertia 146352.48330417078 Iteration 106, inertia 146351.387301091 Iteration 107, inertia 146350.48814209455 Iteration 108, inertia 146350.1971704622 Iteration 109, inertia 146349.84873113054 Iteration 110, inertia 146349.72666638097 Iteration 111, inertia 146349.59798804478 Iteration 112, inertia 146349.40909683466 Iteration 113, inertia 146349.30237504074 Iteration 114, inertia 146349.1662700894 Converged at iteration 114: center shift 8.593944593245745e-06 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 180373.6751167826 Iteration 1, inertia 160153.90429951524 Iteration 2, inertia 155317.46193647227 Iteration 3, inertia 153123.90668331322 Iteration 4, inertia 151959.43826410559 Iteration 5, inertia 151368.78043941097 Iteration 6, inertia 150881.0338867371 Iteration 7, inertia 150562.3625784068 Iteration 8, inertia 150304.90802474078 Iteration 9, inertia 150014.04196610342 Iteration 10, inertia 149775.822327497 Iteration 11, inertia 149576.14445609704 Iteration 12, inertia 149335.83812204725 Iteration 13, inertia 149101.21241774395 Iteration 14, inertia 148950.30195872532 Iteration 15, inertia 148851.31145352218 Iteration 16, inertia 148768.73620840895 Iteration 17, inertia 148685.91027203016 Iteration 18, inertia 148602.10643194668 Iteration 19, inertia 148514.0437794624 Iteration 20, inertia 148426.619856589 Iteration 21, inertia 148333.83527466902 Iteration 22, inertia 148250.06492261443 Iteration 23, inertia 148189.32872207425 Iteration 24, inertia 148151.8167533082 Iteration 25, inertia 148127.2053694579 Iteration 26, inertia 148107.7690292423 Iteration 27, inertia 148082.14342437295 Iteration 28, inertia 148067.50087647297 Iteration 29, inertia 148051.51700330112 Iteration 30, inertia 148037.01557652513 Iteration 31, inertia 148022.71942494233 Iteration 32, inertia 148015.92266810217 Iteration 33, inertia 148010.70569990645 Iteration 34, inertia 148006.64413569626 Iteration 35, inertia 148002.5175783979 Iteration 36, inertia 147995.99767079577 Iteration 37, inertia 147989.945574518 Iteration 38, inertia 147985.39490393287 Iteration 39, inertia 147982.67392458318 Iteration 40, inertia 147979.82100476613 Iteration 41, inertia 147979.3016314202 Iteration 42, inertia 147978.8940117024 Converged at iteration 42: center shift 8.811238492159326e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 176030.44347663474 Iteration 1, inertia 161733.15943731146 Iteration 2, inertia 158541.8047796937 Iteration 3, inertia 156788.6345917383 Iteration 4, inertia 155408.80727383663 Iteration 5, inertia 154284.73976016502 Iteration 6, inertia 153343.78678512815 Iteration 7, inertia 152295.5373152041 Iteration 8, inertia 151222.93880925496 Iteration 9, inertia 150468.96229058478 Iteration 10, inertia 150008.0334354896 Iteration 11, inertia 149667.83049056187 Iteration 12, inertia 149356.72757920655 Iteration 13, inertia 149117.01957119937 Iteration 14, inertia 148865.41101483573 Iteration 15, inertia 148598.72605594865 Iteration 16, inertia 148297.06762790002 Iteration 17, inertia 148058.68335202834 Iteration 18, inertia 147859.4139270992 Iteration 19, inertia 147716.36318891417 Iteration 20, inertia 147586.1801754444 Iteration 21, inertia 147475.85580394472 Iteration 22, inertia 147352.16435297334 Iteration 23, inertia 147232.3146764884 Iteration 24, inertia 147133.21697522904 Iteration 25, inertia 147058.22555017224 Iteration 26, inertia 146992.3347522438 Iteration 27, inertia 146932.5172867082 Iteration 28, inertia 146880.48553159717 Iteration 29, inertia 146836.95648772974 Iteration 30, inertia 146795.82344898992 Iteration 31, inertia 146757.56853458073 Iteration 32, inertia 146717.1728076574 Iteration 33, inertia 146686.6999121632 Iteration 34, inertia 146655.6787168487 Iteration 35, inertia 146634.49011697323 Iteration 36, inertia 146619.6746252196 Iteration 37, inertia 146594.843894954 Iteration 38, inertia 146568.7836360905 Iteration 39, inertia 146533.05069126305 Iteration 40, inertia 146518.9475576128 Iteration 41, inertia 146509.65829744798 Iteration 42, inertia 146502.4164417311 Iteration 43, inertia 146495.38145261008 Iteration 44, inertia 146489.0683122402 Iteration 45, inertia 146484.4988052288 Iteration 46, inertia 146481.64924294912 Iteration 47, inertia 146479.6792725986 Iteration 48, inertia 146478.54676204405 Iteration 49, inertia 146477.54946370958 Iteration 50, inertia 146476.76238995232 Converged at iteration 50: center shift 8.126448060966502e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 179287.96632259738 Iteration 1, inertia 157786.87926666907 Iteration 2, inertia 153773.76636231324 Iteration 3, inertia 151837.03488340465 Iteration 4, inertia 150415.76504908607 Iteration 5, inertia 149576.89322323474 Iteration 6, inertia 149054.62776523386 Iteration 7, inertia 148610.06005916756 Iteration 8, inertia 148273.46771181235 Iteration 9, inertia 148012.1687098055 Iteration 10, inertia 147762.10159188378 Iteration 11, inertia 147512.45687076595 Iteration 12, inertia 147311.31033560616 Iteration 13, inertia 147162.43496129705 Iteration 14, inertia 147076.81541740726 Iteration 15, inertia 147021.27102892325 Iteration 16, inertia 146965.31964608538 Iteration 17, inertia 146907.63909194813 Iteration 18, inertia 146850.18484674883 Iteration 19, inertia 146811.7189057267 Iteration 20, inertia 146733.20665147976 Iteration 21, inertia 146693.88018866518 Iteration 22, inertia 146664.55628873716 Iteration 23, inertia 146651.62736028008 Iteration 24, inertia 146640.5474398756 Iteration 25, inertia 146631.0196714857 Iteration 26, inertia 146621.2748959381 Iteration 27, inertia 146615.52211677763 Iteration 28, inertia 146609.14306494477 Iteration 29, inertia 146603.65759804042 Iteration 30, inertia 146599.29582955097 Iteration 31, inertia 146595.87939012574 Iteration 32, inertia 146592.97019845922 Iteration 33, inertia 146590.6265618535 Iteration 34, inertia 146588.5253443754 Iteration 35, inertia 146586.97597486887 Iteration 36, inertia 146585.74634054466 Iteration 37, inertia 146584.66933239557 Iteration 38, inertia 146583.70071727489 Converged at iteration 38: center shift 9.679640726371067e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 177537.4401684333 Iteration 1, inertia 163038.09640245163 Iteration 2, inertia 158773.0643004182 Iteration 3, inertia 156213.2733781337 Iteration 4, inertia 154204.83119634446 Iteration 5, inertia 152720.90199203862 Iteration 6, inertia 151476.95942778443 Iteration 7, inertia 150552.80362503376 Iteration 8, inertia 149901.81998563142 Iteration 9, inertia 149471.5764495462 Iteration 10, inertia 149015.72135931105 Iteration 11, inertia 148667.99134438758 Iteration 12, inertia 148500.69105422602 Iteration 13, inertia 148368.58139087068 Iteration 14, inertia 148229.8611187638 Iteration 15, inertia 148151.91850304138 Iteration 16, inertia 148087.02743164782 Iteration 17, inertia 148005.91659302154 Iteration 18, inertia 147917.11852158638 Iteration 19, inertia 147839.89147871395 Iteration 20, inertia 147727.52045959776 Iteration 21, inertia 147498.3744562283 Iteration 22, inertia 147413.85074303628 Iteration 23, inertia 147358.15503726588 Iteration 24, inertia 147292.0799240925 Iteration 25, inertia 147240.9196287777 Iteration 26, inertia 147195.47827766422 Iteration 27, inertia 147156.83520217525 Iteration 28, inertia 147120.25540674932 Iteration 29, inertia 147079.2193861046 Iteration 30, inertia 147052.58699295184 Iteration 31, inertia 147032.38020807464 Iteration 32, inertia 147009.2049607872 Iteration 33, inertia 146983.90982806607 Iteration 34, inertia 146956.7121170134 Iteration 35, inertia 146921.30081908213 Iteration 36, inertia 146888.45053794672 Iteration 37, inertia 146858.46829448995 Iteration 38, inertia 146836.5710329273 Iteration 39, inertia 146812.35058007503 Iteration 40, inertia 146790.77196960786 Iteration 41, inertia 146774.31881559634 Iteration 42, inertia 146760.2310188346 Iteration 43, inertia 146748.81806826257 Iteration 44, inertia 146738.14105691624 Iteration 45, inertia 146725.93032370467 Iteration 46, inertia 146714.09245039377 Iteration 47, inertia 146696.98638841283 Iteration 48, inertia 146678.60868032568 Iteration 49, inertia 146658.51190158312 Iteration 50, inertia 146631.69091908142 Iteration 51, inertia 146594.3065861267 Iteration 52, inertia 146558.36636295292 Iteration 53, inertia 146519.424090906 Iteration 54, inertia 146477.65411900615 Iteration 55, inertia 146444.3529534516 Iteration 56, inertia 146417.53431118105 Iteration 57, inertia 146400.35769187912 Iteration 58, inertia 146384.35003431802 Iteration 59, inertia 146365.6930539784 Iteration 60, inertia 146323.9916405517 Iteration 61, inertia 146280.31525801792 Iteration 62, inertia 146251.0760841341 Iteration 63, inertia 146235.0547217445 Iteration 64, inertia 146216.46434784678 Iteration 65, inertia 146197.2798607304 Iteration 66, inertia 146178.1778110132 Iteration 67, inertia 146160.84948021002 Iteration 68, inertia 146151.02885933625 Iteration 69, inertia 146133.26459940895 Iteration 70, inertia 146120.5533882239 Iteration 71, inertia 146100.88200376258 Iteration 72, inertia 146080.9760268274 Iteration 73, inertia 146058.65054291644 Iteration 74, inertia 146040.865836675 Iteration 75, inertia 146021.38998653414 Iteration 76, inertia 146009.07658703203 Iteration 77, inertia 146002.48910069116 Iteration 78, inertia 145997.84309247427 Iteration 79, inertia 145993.21294860455 Iteration 80, inertia 145989.01285245497 Iteration 81, inertia 145986.02454653435 Iteration 82, inertia 145983.75205405877 Iteration 83, inertia 145981.278613162 Iteration 84, inertia 145977.06263238256 Iteration 85, inertia 145974.53275852755 Iteration 86, inertia 145971.5952321946 Iteration 87, inertia 145970.4876152583 Iteration 88, inertia 145969.6817960037 Iteration 89, inertia 145969.04428037655 Iteration 90, inertia 145968.7211037988 Iteration 91, inertia 145968.41515602195 Iteration 92, inertia 145968.0187112451 Iteration 93, inertia 145967.55241996833 Iteration 94, inertia 145967.2390838457 Iteration 95, inertia 145967.0653937853 Iteration 96, inertia 145966.91200746936 Converged at iteration 96: center shift 2.4373817891247376e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 184245.239463498 Iteration 1, inertia 161979.70835154247 Iteration 2, inertia 156554.1460848481 Iteration 3, inertia 153543.83228007314 Iteration 4, inertia 151839.94458027632 Iteration 5, inertia 150908.4868465594 Iteration 6, inertia 150195.87110393864 Iteration 7, inertia 149642.98721839095 Iteration 8, inertia 149117.3953205598 Iteration 9, inertia 148745.26549123088 Iteration 10, inertia 148457.5241082534 Iteration 11, inertia 148238.32402639883 Iteration 12, inertia 148083.80618938876 Iteration 13, inertia 147948.812068971 Iteration 14, inertia 147831.27943498897 Iteration 15, inertia 147743.80684098962 Iteration 16, inertia 147678.67481525254 Iteration 17, inertia 147629.3859930109 Iteration 18, inertia 147590.14343726682 Iteration 19, inertia 147544.77871532828 Iteration 20, inertia 147496.42677747647 Iteration 21, inertia 147419.095406103 Iteration 22, inertia 147369.93643222493 Iteration 23, inertia 147341.80818137754 Iteration 24, inertia 147321.44861721568 Iteration 25, inertia 147300.42099769568 Iteration 26, inertia 147286.9435473219 Iteration 27, inertia 147274.00491247445 Iteration 28, inertia 147246.8083852151 Iteration 29, inertia 147200.47356037705 Iteration 30, inertia 147170.1672485556 Iteration 31, inertia 147119.1464977358 Iteration 32, inertia 147079.48846272985 Iteration 33, inertia 147035.38870775007 Iteration 34, inertia 146985.55954417426 Iteration 35, inertia 146930.60531214793 Iteration 36, inertia 146870.78109899256 Iteration 37, inertia 146787.54325336203 Iteration 38, inertia 146744.94795792378 Iteration 39, inertia 146722.2694476394 Iteration 40, inertia 146708.58451057167 Iteration 41, inertia 146699.20134095056 Iteration 42, inertia 146693.6863745426 Iteration 43, inertia 146690.71164198703 Iteration 44, inertia 146685.54026957258 Iteration 45, inertia 146678.7773425431 Iteration 46, inertia 146672.4628716252 Iteration 47, inertia 146663.88183823842 Iteration 48, inertia 146652.72135845837 Iteration 49, inertia 146644.10811322276 Iteration 50, inertia 146639.91870041817 Iteration 51, inertia 146632.97015572066 Iteration 52, inertia 146626.77951979265 Iteration 53, inertia 146623.9623345082 Iteration 54, inertia 146620.6129524281 Iteration 55, inertia 146615.36801626082 Iteration 56, inertia 146604.66142630426 Iteration 57, inertia 146580.50504558257 Iteration 58, inertia 146568.68886896857 Iteration 59, inertia 146547.3196149323 Iteration 60, inertia 146505.09679687864 Iteration 61, inertia 146477.3740758965 Iteration 62, inertia 146461.8227710374 Iteration 63, inertia 146445.3795808457 Iteration 64, inertia 146408.9237571475 Iteration 65, inertia 146402.4821194481 Iteration 66, inertia 146396.07152050338 Iteration 67, inertia 146395.30326396876 Converged at iteration 67: center shift 1.5870451582887602e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 182826.10698283336 Iteration 1, inertia 163488.9375143451 Iteration 2, inertia 158355.82279718845 Iteration 3, inertia 155188.2012850572 Iteration 4, inertia 153223.6575607044 Iteration 5, inertia 151830.89402362664 Iteration 6, inertia 151062.0151721695 Iteration 7, inertia 150503.65989958672 Iteration 8, inertia 150096.95704388525 Iteration 9, inertia 149707.96068122296 Iteration 10, inertia 149341.4926451075 Iteration 11, inertia 148940.89655614662 Iteration 12, inertia 148565.9361288452 Iteration 13, inertia 148269.37055984288 Iteration 14, inertia 148019.02812369744 Iteration 15, inertia 147840.4304763001 Iteration 16, inertia 147698.277709722 Iteration 17, inertia 147589.7730923525 Iteration 18, inertia 147480.74341794063 Iteration 19, inertia 147374.58716200694 Iteration 20, inertia 147283.47452934165 Iteration 21, inertia 147201.3517933018 Iteration 22, inertia 147129.50548241322 Iteration 23, inertia 147057.3803695661 Iteration 24, inertia 146994.84479981652 Iteration 25, inertia 146936.3332907324 Iteration 26, inertia 146883.15946951846 Iteration 27, inertia 146828.50116865832 Iteration 28, inertia 146766.0422260381 Iteration 29, inertia 146699.51976102867 Iteration 30, inertia 146630.602621991 Iteration 31, inertia 146501.16584835382 Iteration 32, inertia 146365.9201473764 Iteration 33, inertia 146282.40647833695 Iteration 34, inertia 146227.0612460814 Iteration 35, inertia 146185.73374473336 Iteration 36, inertia 146155.9400041737 Iteration 37, inertia 146140.18148251285 Iteration 38, inertia 146126.86222455214 Iteration 39, inertia 146115.00299205421 Iteration 40, inertia 146103.7594917357 Iteration 41, inertia 146093.73435680987 Iteration 42, inertia 146083.96297113434 Iteration 43, inertia 146074.9296587879 Iteration 44, inertia 146067.63108049368 Iteration 45, inertia 146061.26217998777 Iteration 46, inertia 146055.18277160623 Iteration 47, inertia 146049.8550400421 Iteration 48, inertia 146044.90253938388 Iteration 49, inertia 146039.90926999864 Iteration 50, inertia 146036.155105909 Iteration 51, inertia 146033.1575825533 Iteration 52, inertia 146030.74808990597 Iteration 53, inertia 146028.63161233396 Iteration 54, inertia 146026.6967109553 Iteration 55, inertia 146025.07298133813 Converged at iteration 55: center shift 6.391134281399028e-05 within tolerance 0.00010000000000000047. Initialization complete Iteration 0, inertia 178994.18703937938 Iteration 1, inertia 159064.75524359779 Iteration 2, inertia 154331.96230890555 Iteration 3, inertia 152375.93974797073 Iteration 4, inertia 151276.32392840405 Iteration 5, inertia 150525.3010178235 Iteration 6, inertia 149917.59074440357 Iteration 7, inertia 149411.59764432593 Iteration 8, inertia 149034.48557399528 Iteration 9, inertia 148740.49518109873 Iteration 10, inertia 148562.07021218183 Iteration 11, inertia 148459.49539342494 Iteration 12, inertia 148388.84268535828 Iteration 13, inertia 148327.65756019205 Iteration 14, inertia 148275.21344089936 Iteration 15, inertia 148221.5282121772 Iteration 16, inertia 148175.05824913803 Iteration 17, inertia 148131.70793783278 Iteration 18, inertia 148082.9124245469 Iteration 19, inertia 148033.50065846764 Iteration 20, inertia 147991.60527442582 Iteration 21, inertia 147960.4534855629 Iteration 22, inertia 147922.3399568774 Iteration 23, inertia 147887.57981579297 Iteration 24, inertia 147858.09809038564 Iteration 25, inertia 147829.8582127038 Iteration 26, inertia 147805.93872007943 Iteration 27, inertia 147784.61505389953 Iteration 28, inertia 147762.23247286602 Iteration 29, inertia 147744.6816965132 Iteration 30, inertia 147728.17130032316 Iteration 31, inertia 147707.7669890909 Iteration 32, inertia 147685.41947274783 Iteration 33, inertia 147659.14798274048 Iteration 34, inertia 147625.44699619 Iteration 35, inertia 147605.54465934375 Iteration 36, inertia 147588.10431054243 Iteration 37, inertia 147572.3201191543 Iteration 38, inertia 147558.92422290787 Iteration 39, inertia 147541.0971895741 Iteration 40, inertia 147523.38863487064 Iteration 41, inertia 147483.78301038564 Iteration 42, inertia 147447.83462869743 Iteration 43, inertia 147415.9626979586 Iteration 44, inertia 147362.58826451655 Iteration 45, inertia 147313.63891643757 Iteration 46, inertia 147273.29614816152 Iteration 47, inertia 147196.63395576988 Iteration 48, inertia 147113.94165978784 Iteration 49, inertia 147001.29296518222 Iteration 50, inertia 146939.5869333765 Iteration 51, inertia 146905.25731523577 Iteration 52, inertia 146857.44409045757 Iteration 53, inertia 146817.16037172344 Iteration 54, inertia 146785.40960836955 Iteration 55, inertia 146753.69248787046 Iteration 56, inertia 146747.83680296628 Iteration 57, inertia 146744.9370737753 Iteration 58, inertia 146742.082893954 Iteration 59, inertia 146737.50988854002 Iteration 60, inertia 146734.96218786674 Iteration 61, inertia 146733.66880459286 Iteration 62, inertia 146732.4644378334 Iteration 63, inertia 146731.5746153261 Iteration 64, inertia 146731.32426079633 Iteration 65, inertia 146731.15780136213 Iteration 66, inertia 146730.82420812594 Converged at iteration 66: center shift 6.339320426859331e-05 within tolerance 0.00010000000000000047. ###Markdown We now have a set of cluster labels that group the data into 50 similar groups. Let's store it in our stacked dataset! ###Code # Let's run this line stacked['clusters'].values = cluster_labels ###Output _____no_output_____ ###Markdown We now have a set of labels, but they're stored in a flattened array. Since we'd like to see the data as a map, we still have some work to do. Let's go back to a 2D representation of our values.**Q10) Turn the flattened xarray back into a set of 2D fields***Hint*: xarrays have an [`.unstack` method](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.unstack.html) that you will find to be very useful for this. ###Code # Complete the code processed_ds = stacked.unstack() ###Output _____no_output_____ ###Markdown Now we have an unstacked dataset, and can now easily plot out the clusters we found!**Q11) Plot the 'cluster' variable using the buil-in xarray function***Hint: `.plot()` [link text](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.plot.html) let's you access the xarray implementations of [`pcolormesh`](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.pcolormesh.html) and [`imshow`](https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.imshow.html).* ###Code xr.plot.pcolormesh(processed_ds['clusters'], figsize = (15,7), cmap = 'jet') ###Output _____no_output_____ ###Markdown Compare your results to those from the paper: We now want to find the 5 most common regimes, and group the rest. This isn't straightforward, so we've gone ahead and prepared the code for you. Run through it and try to understand what the code is doing! ###Code # Make field filled with -1 vals so unprocessed points are easily retrieved. # Noise masked applied automatically by using previously found labels as base. processed_ds['final_clusters'] = (processed_ds.clusters * 0) - 1 # Find the 5 most common cluster labels top_clusters = processed_ds.groupby('clusters').count().sortby('BPT').tail(5).clusters.values #Build the set of indices for the cluster data, used for rewriting cluster labels for idx, label in enumerate(top_clusters): #Find the indices where the label is found indices = (processed_ds.clusters == label) processed_ds['final_clusters'].values[indices] = 4-idx # Set the remaining unlabeled regions to category 5 "non-linear" processed_ds['final_clusters'].values[processed_ds.final_clusters==-1] = 5 # Plot the figure processed_ds.final_clusters.plot.imshow(cmap=mycmap, figsize=(18,8)); # Feel free to use this space ###Output _____no_output_____
PHYS201/Lab5.ipynb
###Markdown Experiment 5: Air Track III---Conservation of Energy Objectives- To learn to take good measurements- To learn how to estimate and propagate errors- To learn how to take measurements to verify a theory- To learn how to measure potential and kinetic energies Equipment- One Airtrack, Blower, and Cart- One accessory kit containing: one pulley, one mass hanger, and masses for cart and hanger.- One string (150 cm long)- One photogate- One 30 cm ruler- One scale- One vernier caliper- One two-meter stick- One 3โ€ x 5/32โ€ rod- One 6โ€ x 5/32โ€ rod- One 6 mm x 44 mm spring- One flat washer- One 2x4- One 1x4- One set of slotted weights: (Eight 100g and four 50g) Safety- **Be careful placing the carts on the track. Do not damage the track.**- Please place paper underneath the carts when they are resting on the track without the air turned on. **Do not slide the carts on the track without the air turned on.**- **Do not launch the cart unless a rubber-band bumper is secured to the opposite end of the track.** IntroductionThere are two kinds of energy in mechanical systems: Potential energy and Kinetic energy. *Potential* energy is stored energy. When this energy is released, it can be converted into *kinetic* energy---energy of motion. In this lab you will conduct two experiments to determine if all of the potential energy stored in a system can be converted into kinetic energy.In the first experiment, you will convert gravitational potential energy to kinetic energy (using the hanging mass and pulley). In the second, you will convert spring potential energy to kinetic energy. Theory KinematicsFirst and foremost, you will need to compute the velocity of the aitrack glider. The information you will have, however, is velocity computed by a photogate. The photogate measures thevelocity of the glider as it passes through by timing how long the infrared LED is blocked by the object (sometimes called a โ€œflagโ€) passing through and uses the definition of velocity: \begin{equation}v \equiv \frac{\Delta x}{\Delta t}\tag{1}\end{equation}where $\Delta x$ is the length of the flag and $\Delta t$ is the time the LED was blocked. Gravitational Potential EnergyRecall that the amount of energy stored in an object in a gravitational field is \begin{equation}U_{g} = m g \Delta y\tag{2}\end{equation} where *m* is the mass of the object, *g* is the gravitational constant, and $ \Delta y$ is the change in height of that object. Spring Potential EnergyThe amount of energy stored in a compressed spring is \begin{equation}U_{s} = \frac{1}{2} k (\Delta x)^2\tag{3}\end{equation} where *k* is the spring constant. You will need to measure this spring constant for your spring. You can find this constant by recalling Hookeโ€™s Law: \begin{equation}F = -k \Delta x\tag{4}\end{equation} The force you apply to the spring is directly related to the compression, $ \Delta x$, of that spring (the negative sign is a reminder that the force is opposes the spring compression). By plotting the force vs. compression for different weights, you can plot a straight line. The slope of that straight line will be the spring constant (if you have plotted the correct variable on the correct axis---recall the definition of the slope of a straight line and youโ€™ll figure it out). Kinetic EnergyKinetic energy is the energy of motion. For objects moving much slower than the speed of light, we can use the formula: \begin{equation}K = \frac{1}{2} m v^2\tag{5}\end{equation} where *m* is the mass of all the objects moving at speed v. Uncertainty AnalysisYour Lab Manual and the previous labs can guide you in estimating the uncertainties in your measurements and propagating those uncertainties into your computed energies. The uncertainty in the masses of the glider and hanging mass will be determined by the accuracy of the scale. In some cases, it might be easier to use the standard deviation of a large number of measurements as your velocity measurement uncertainty. The uncertainty in your spring constant and kinetic and potential energies, however, will have to be computed using the three equations in your Lab Manual.In order to minimize random errors, it is extremely important that each of your measurements be performed several times. Experimental Procedure Setting up the Air TrackEnsure that the pulley is securely inserted into the top hole in the bracket at the far end of the track, that it spins freely, and that the hanging mass does not strike the table as it falls. You will need to level the airtrack for two of the experiments. Look back to the second lab for instructions if youโ€™ve forgotten how to do this. Setting up a Photogate1. Turn on the PASCO 850 Interface and start the PASCO Capstone software.2. Plug a photogate into a Digital input.3. Click the โ€œHardware Setupโ€ tab in the left โ€œToolsโ€ palette, left-click the jack on the diagram where you inserted the plug, and select โ€œPhotogateโ€ from the drop-down menu.4. You should see a tab labeled โ€œTimer Setup.โ€ Open that tab and set up a pre-configured timer: 1. Select the photogate you just installed. 2. You will be using this photogate with a single flag. 3. The computer need only keep track of the speed through the gate. 4. A text box requesting the length of the flag in meters will appear. Measure the flag as best you can and enter that information in the box. 5. Give this sensor a name such as โ€œPhotogate 1โ€ or similar. ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd from P201_Functions import * # Flag length measurement (m) and its uncertainty flag_len = 0.1 delta_x = 0.005 ###Output _____no_output_____ ###Markdown When you adjust the height of the photogate, make sure that it is triggered only by the flag. The string should not trigger the photogate. You can tell when the photogate is triggered by looking for the red LED to light when the infrared LED is blocked. Ensure that the red LED only lights when the proper portion of the cart passes through.When choosing the positions for your photogate, think carefully about whether you want the cart to be coasting through the gate or experiencing a force as it travels through the gate. Also keep in mind that the airtrack only *reduces* friction, it does not eliminate it. Measuring the Spring ConstantIt will be easiest to measure the compression of the spring while it is on a long rod. This will keep the spring from bending while weights are applied to the spring. Place one end of the rod on the table, then place the spring on the rod, and then place a washer on top of the spring. You should then be able to measure the compression of the spring as a function of the masses you apply. A series of ten 100 g weights should give you a good graph. (It might be instructive to start with ten 10 g weights before applying the remaining nine 100g weights to see if the spring constant is truly linear.) **Donโ€™t forget to include the mass of the washer and do not exceed 1.1 kg of mass on the spring!**(Ask your instructor how to remove and use one of the end-brackets of the air-track to support the bottom portion of the rod if that would help make your compression measurements easier).You must use PASCO Capstone to create the graph of "Weight vs. Compression": 1. Start the Capstone program and click โ€œTable & Graphโ€ in the main window.2. In the first table column, click `` and then select โ€œCreate Newโ€ โ€œUser-Entered Dataโ€ in the cascading menus.3. Rename the column either โ€œWeightโ€ or โ€œMeasured Compressionโ€ when the โ€œUser Data 1/2โ€ title is highlighted in blue and put the appropriate units (โ€œNโ€ or โ€œmโ€).4. In the graph, you can then click on the `` button on each axis and select the data you would like on that axis.**For reasons you will soon discover, plot the *compression* on the x-axis.** You will need to printthe graphs you produce for each team member. **Be sure to properly label your graphs!** ###Code # Weight vs. Compression Graph # Reads the name of the csv file and gets the data df = pd.read_csv("./ExampleFiles/Spring Constant.csv") # Prints information about the file #df.info() print(df) print() # Defines the x and y values weight = df.filter(['Weight (N)'], axis=1).dropna() compr = df.filter(['Compression (m)'], axis=1).dropna() # Create a figure of reasonable size and resolution, white background, black edge color fig=plt.figure(figsize=(7,5), dpi= 100, facecolor='w', edgecolor='k') # Gets the data values for x and y x_data = compr.values.reshape(-1, 1) y_data = weight.values.reshape(-1, 1) xi = df['Compression (m)'].to_numpy() yi = df['Weight (N)'].to_numpy() # Creates the base plot with titles plt.plot(x_data,y_data,'b.',label='Raw Data') plt.ylabel('Weight (N)') plt.xlabel('Measured Compression (m)') plt.title('Weight vs. Compression') # Takes the x and y values to make a trendline #intercept, slope = linear_fit_plot(x_data,y_data) intercept, slope, dintercept, dslope = linear_fit_plot_errors(xi,yi,0.006,0.024) # Adds the legend to the plot plt.legend() # Displays the plot plt.show() print() ###Output Compression (m) Weight (N) 0 0.006 1.984 1 0.012 3.946 2 0.019 5.908 3 0.024 7.870 Linear Fit: Coefficients (from curve_fit) [4.03854511e-02 3.20433740e+02] Linear Fit: Covariance Matrix (from curve_fit) [[ 5.39396725e-02 -2.94567762e+00] [-2.94567762e+00 1.93159241e+02]] Linear Fit: Final Result: y = (320.43374 +/- 13.89817) x + (0.04039 +/- 0.23225) ###Markdown Experiment 1: Gravitational Potential Energy vs. Kinetic EnergyFor this experiment, repeat the set up from the last lab. You will be comparing the initial potential energy of the mass hanger to **the sum of** the final kinetic energies of both the cart and the mass hanger (the instant before it strikes the ground). Do four trials (for statistics) for four different combinations of masses (the hanger mass must change each time).Where should the photogate be placed for this experiment? ###Code # Experiment 1 Raw Data # Cart 1 # Create an empty numpy array to hold the raw data raw_data_1 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_1[0][0]=1 raw_data_1[1][0]=2 raw_data_1[2][0]=3 raw_data_1[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df1 = pd.DataFrame(raw_data_1, columns=["Trial", "Measured v_f (m/s)"]) df1['Trial'] = df1['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Mass of hanging mass (kg) and its uncertainty m_hang = 0.01175 delta_m_hang = 5e-06 # Height of the spring (m) and its uncertainty h = 0.952 delta_h = 0.0005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 1.028 delta_v_p = 0.0007081 # Enter the measured values of v_f (m/s) df1['Measured v_f (m/s)'] = [0.98,0.98,0.97,0.99] ########################################### # calculates the mass of the cart with the mass of the hanger and its uncertainty m_total = m_cart + m_hang delta_m_total = np.sqrt(2) * delta_m_cart # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df1['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("m_hang = %0.5f kg ๐›ฟm_hang = %g" % (m_hang,delta_m_hang)) print("h = %0.3f m ๐›ฟh = %0.4f" % (h,delta_h)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 1") display(df1) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 m_hang = 0.01175 kg ๐›ฟm_hang = 5e-06 h = 0.952 m ๐›ฟh = 0.0005 Predicted v_f = 1.02800 m/s ๐›ฟv_p_f = 0.0007 Cart 1 ###Markdown *** ###Code # Experiment 1 Raw Data # Cart 2 # Create an empty numpy array to hold the raw data raw_data_2 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_2[0][0]=1 raw_data_2[1][0]=2 raw_data_2[2][0]=3 raw_data_2[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df2 = pd.DataFrame(raw_data_2, columns=["Trial", "Measured v_f (m/s)"]) df2['Trial'] = df2['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Mass of hanging mass (kg) and its uncertainty m_hang = 0.01665 delta_m_hang = 5e-06 # Height of the spring (m) and its uncertainty h = 0.952 delta_h = 0.0005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 1.209 delta_v_p = 0.0007081 # Enter the measured values of v_f (m/s) df2['Measured v_f (m/s)'] = [1.17,1.18,1.17,1.16] ########################################### # calculates the mass of the cart with the mass of the hanger and its uncertainty m_total = m_cart + m_hang delta_m_total = np.sqrt(2) * delta_m_cart # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df2['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("m_hang = %0.5f kg ๐›ฟm_hang = %g" % (m_hang,delta_m_hang)) print("h = %0.3f m ๐›ฟh = %0.4f" % (h,delta_h)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 2") display(df2) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 m_hang = 0.01665 kg ๐›ฟm_hang = 5e-06 h = 0.952 m ๐›ฟh = 0.0005 Predicted v_f = 1.20900 m/s ๐›ฟv_p_f = 0.0007 Cart 2 ###Markdown *** ###Code # Experiment 1 Raw Data # Cart 3 # Create an empty numpy array to hold the raw data raw_data_3 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_3[0][0]=1 raw_data_3[1][0]=2 raw_data_3[2][0]=3 raw_data_3[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df3 = pd.DataFrame(raw_data_3, columns=["Trial", "Measured v_f (m/s)"]) df3['Trial'] = df3['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Mass of hanging mass (kg) and its uncertainty m_hang = 0.00965 delta_m_hang = 5e-06 # Height of the spring (m) and its uncertainty h = 0.820 delta_h = 0.0005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 0.9367 delta_v_p = 0.0007081 # Enter the measured values of v_f (m/s) df3['Measured v_f (m/s)'] = [0.83,0.85,0.82,0.83] ########################################### # calculates the mass of the cart with the mass of the hanger and its uncertainty m_total = m_cart + m_hang delta_m_total = np.sqrt(2) * delta_m_cart # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df3['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("m_hang = %0.5f kg ๐›ฟm_hang = %g" % (m_hang,delta_m_hang)) print("h = %0.3f m ๐›ฟh = %0.4f" % (h,delta_h)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 3") display(df3) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 m_hang = 0.00965 kg ๐›ฟm_hang = 5e-06 h = 0.820 m ๐›ฟh = 0.0005 Predicted v_f = 0.93670 m/s ๐›ฟv_p_f = 0.0007 Cart 3 ###Markdown *** ###Code # Experiment 1 Raw Data # Cart 4 # Create an empty numpy array to hold the raw data raw_data_4 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_4[0][0]=1 raw_data_4[1][0]=2 raw_data_4[2][0]=3 raw_data_4[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df4 = pd.DataFrame(raw_data_4, columns=["Trial", "Measured v_f (m/s)"]) df4['Trial'] = df4['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Mass of hanging mass (kg) and its uncertainty m_hang = 0.01000 delta_m_hang = 5e-06 # Height of the spring (m) and its uncertainty h = 0.95 delta_h = 0.0005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 0.9666 delta_v_p = 0.0007081 # Enter the measured values of v_f (m/s) df4['Measured v_f (m/s)'] = [0.93,0.93,0.92,0.94] ########################################### # calculates the mass of the cart with the mass of the hanger and its uncertainty m_total = m_cart + m_hang delta_m_total = np.sqrt(2) * delta_m_cart # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df4['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("m_hang = %0.5f kg ๐›ฟm_hang = %g" % (m_hang,delta_m_hang)) print("h = %0.3f m ๐›ฟh = %0.4f" % (h,delta_h)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 4") display(df4) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 m_hang = 0.01000 kg ๐›ฟm_hang = 5e-06 h = 0.950 m ๐›ฟh = 0.0005 Predicted v_f = 0.96660 m/s ๐›ฟv_p_f = 0.0007 Cart 4 ###Markdown *** ###Code # Initial Potential Energy vs. Final Kinetic Energy Plot # Reads the name of the csv file and gets the data df = pd.read_csv("./ExampleFiles/Lab 5 Graphs - PEi vs KEf.csv") # Prints information about the file #df.info() print(df) print() # Defines the x and y values pe = df.filter(['Ug (J)'], axis=1).dropna() ke = df.filter(['Kf (J)'], axis=1).dropna() # Create a figure of reasonable size and resolution, white background, black edge color fig=plt.figure(figsize=(7,5), dpi= 100, facecolor='w', edgecolor='k') # Gets the data values for x and y x_data = pe.values.reshape(-1, 1) y_data = ke.values.reshape(-1, 1) xi = df['Ug (J)'].to_numpy() yi = df['Kf (J)'].to_numpy() # Creates the base plot with titles plt.plot(x_data,y_data,'b.',label='Raw Data') #plt.errorbar(x_data,y_data,Delta_x,Delta_t,'b.',label='Raw Data') plt.ylabel('Kinetic Energy (J)') plt.xlabel('Gravitational Potential Energy(J)') plt.title('Initial Potential Energy vs. Final Kinetic Energy') # Takes the x and y values to make a trendline intercept, slope, dintercept, dslope = linear_fit_plot_errors(xi,yi,0.07763,0.15120) # Adds the legend to the plot plt.legend() # Displays the plot plt.show() print("") ###Output Ug (J) Kf (J) 0 0.10660 0.09686 1 0.15120 0.14140 2 0.07763 0.06962 3 0.09320 0.08647 Linear Fit: Coefficients (from curve_fit) [-0.00408172 0.96004316] Linear Fit: Covariance Matrix (from curve_fit) [[ 2.49619856e-05 -2.04180950e-04] [-2.04180950e-04 1.74513640e-03]] Linear Fit: Final Result: y = (0.96004 +/- 0.04177) x + (-0.00408 +/- 0.00500) ###Markdown ****** Experiment 2: Spring Potential Energy vs. Kinetic EnergyFor this experiment, you will store potential energy in a compressed spring and launch the cart down the airtrack. You will need to use the 3โ€ rod to support the spring to launch the cart (See the diagram below). The best way to launch the cart is to use a fingernail to hold the cart back on the compressed spring and then let the cart slip out from under your fingernail. You might devise a better method, but it is important to release the cart as quickly as possible. **Do not fully compress the spring!** The last few millimeters are non-linear. But donโ€™t be too gentle: at least compress the spring 1 cm.You will need to perform four trial launches for each value of compression, $x_{s}$, that you determine is necessary (minimum of two). Consider carefully what your uncertainty, $ \delta x_{s}$, in compression is over each set of trials. This will be important in calculating your uncertainty in the stored potential energy.Where should the photogate be placed for *this* experiment? ###Code # Experiment 2 Raw Data # Cart 1 # Create an empty numpy array to hold the raw data raw_data_5 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_5[0][0]=1 raw_data_5[1][0]=2 raw_data_5[2][0]=3 raw_data_5[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df5 = pd.DataFrame(raw_data_5, columns=["Trial", "Measured v_f (m/s)"]) df5['Trial'] = df5['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Value of compression (m) and its uncertainty x_s = 0.01 delta_xs = 0.005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 0.4104 delta_v_p = 0.2052 # Enter the measured values of v_f (m/s) df5['Measured v_f (m/s)'] = [0.54,0.44,0.50,0.50] ########################################### # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df5['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("x_s = %0.2f m ๐›ฟx_s = %0.4f" % (x_s,delta_xs)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 1") display(df5) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 x_s = 0.01 m ๐›ฟx_s = 0.0050 Predicted v_f = 0.41040 m/s ๐›ฟv_p_f = 0.2052 Cart 1 ###Markdown *** ###Code # Experiment 2 Raw Data # Cart 2 # Create an empty numpy array to hold the raw data raw_data_6 = np.empty((4,2)) # Set the trial number column identifiers for each Trial raw_data_6[0][0]=1 raw_data_6[1][0]=2 raw_data_6[2][0]=3 raw_data_6[3][0]=4 # Create a Pandas dataframe, and convert the Trial number column to integer format df6 = pd.DataFrame(raw_data_6, columns=["Trial", "Measured v_f (m/s)"]) df6['Trial'] = df6['Trial'].astype(int) #### Enter Raw Data Here!!!!!!!!!!!!!! #### # Mass of the cart (kg) and its uncertainty m_cart = 0.18995 delta_m_cart = 5e-06 # Value of compression (m) and its uncertainty x_s = 0.02 delta_xs = 0.005 # Predicted Final Velocity (m/s) and its uncertainty v_p = 0.6739 delta_v_p = 0.16 # Enter the measured values of v_f (m/s) df6['Measured v_f (m/s)'] = [0.82,0.81,0.83,0.82] ########################################### # Calculates the uncertainty of the velocity using standard deviation uncertainty_v = np.std(df6['Measured v_f (m/s)']) # prints out the cart data print("Data for: ") print("m_cart = %0.5f kg ๐›ฟm_cart = %g" % (m_cart, delta_m_cart)) print("x_s = %0.2f m ๐›ฟx_s = %0.4f" % (x_s,delta_xs)) print("Predicted v_f = %0.5f m/s ๐›ฟv_p_f = %0.4f" % (v_p,delta_v_p)) print("") # Display the dataframe from IPython.display import display print ("Cart 2") display(df6) # Print statements for uncertainty of final velocity print("๐›ฟv = %0.5f m/s" % (uncertainty_v)) ###Output Data for: m_cart = 0.18995 kg ๐›ฟm_cart = 5e-06 x_s = 0.02 m ๐›ฟx_s = 0.0050 Predicted v_f = 0.67390 m/s ๐›ฟv_p_f = 0.1600 Cart 2
courses/dl2/translate.ipynb
###Markdown Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = en_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * from pathlib import Path torch.cuda.set_device(0) PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) %%time en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) en_tok[0], fr_tok[0] def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors ###Code with (PATH/'glove.6B.100d.txt').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] en_vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines} pickle.dump(en_vecd, open(PATH/'glove.6B.100d.dict.pkl','wb')) def is_number(s): try: float(s) return True except ValueError: return False def get_vecs(lang): with (PATH/f'wiki.{lang}.vec').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] lines.pop(0) vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines if is_number(v[0]) and len(v)==300} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en') fr_vecd = get_vecs('fr') en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(to_gpu(rand_t(*sz))) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec*2, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = ft_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = ft_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = en_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * from pathlib import Path torch.cuda.set_device(1) ?re.compile ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html .Download with `wget http://www.statmt.org/wmt10/training-giga-fren.tar` ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) %%time en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) en_tok[0], fr_tok[0] def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors ###Code with (PATH/'glove.6B.100d.txt').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] en_vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines} pickle.dump(en_vecd, open(PATH/'glove.6B.100d.dict.pkl','wb')) ###Output _____no_output_____ ###Markdown fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code def is_number(s): try: float(s) return True except ValueError: return False def get_vecs(lang): with (PATH/f'wiki.{lang}.vec').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] lines.pop(0) vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines if is_number(v[0]) and len(v)==300} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en') fr_vecd = get_vecs('fr') en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec*2, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Neural Machine Translation ###Code %matplotlib inline %reload_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown 1. Data Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown **Download dataset** French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code %cd data %mkdir translate ###Output /home/ubuntu/data ###Markdown ~20 minutes to download at 1.5 MB/s ###Code !aria2c --file-allocation=none -c -x 5 -s 5 http://www.statmt.org/wmt10/training-giga-fren.tar !tar -xf training-giga-fren.tar %mv giga-fren.release2.fixed.en.gz giga-fren.release2.fixed.fr.gz training-giga-fren.tar translate/ %cd translate/ # Strange error !tar -xzf giga-fren.release2.fixed.en.gz # Resolve the previous issue !gunzip giga-fren.release2.fixed.en.gz !gunzip giga-fren.release2.fixed.fr.gz %cd ../.. ###Output /home/ubuntu ###Markdown **Setup the directories and files** ###Code PATH = Path('data/translate') TMP_PATH = PATH / 'tmp' TMP_PATH.mkdir(exist_ok=True) fname = 'giga-fren.release2.fixed' en_fname = PATH / f'{fname}.en' fr_fname = PATH / f'{fname}.fr' ###Output _____no_output_____ ###Markdown Tokenizing and Pre-processing Training a neural model takes a long time- Google's model has 8 layers- we are going to build a simpler one- Instead of a general model we will translate French questions ###Code # Question regex search filters re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') # grabbing lines from the English and French source texts lines = ( (re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) # isolate the questions qs = [(e.group(), f.group()) for e, f in lines if e and f] # save the questions for later pickle.dump(qs, (PATH / 'fr-en-qs.pkl').open('wb')) # load in pickled questions qs = pickle.load((PATH / 'fr-en-qs.pkl').open('rb')) # ======================================== START DEBUG ======================================== print(len(qs)) print(qs[:5]) # ======================================== END DEBUG ======================================== # ======================================== START DEBUG ======================================== # Python zip method: https://www.programiz.com/python-programming/methods/built-in/zip # What is iterable, iterator: https://stackoverflow.com/questions/9884132/what-exactly-are-iterator-iterable-and-iteration coord = ['x', 'y', 'z'] value = [3, 4, 5, 0, 9] result = zip(coord, value) result_list = list(result) print(result_list) # unzip result_list c, v = zip(*result_list) print(c) print(v) # ======================================== END DEBUG ======================================== ###Output [('x', 3), ('y', 4), ('z', 5)] ('x', 'y', 'z') (3, 4, 5) ###Markdown Tokenize all the questions. ###Code en_qs, fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) ###Output _____no_output_____ ###Markdown _Note: tokenizing for French is much different compared to english_ ###Code # Download spaCy 'fr' model.Otherwise, you'll encounter errorr "OSError: [E050] Can't find model 'fr'..." !python -m spacy download fr fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[:3], fr_tok[:3] ###Output _____no_output_____ ###Markdown Check stats for the sentences length ###Code # 90th percentile of English and French sentences length. np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) ###Output _____no_output_____ ###Markdown We are keeping tokens that are less than 30 chars. The filter is applied on the English words, and the same tokens are kept for French. ###Code keep = np.array([len(o) < 30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] # save our work pickle.dump(en_tok, (PATH / 'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH / 'fr_tok.pkl').open('wb')) def toks2ids(tok, pre): """ Numericalize words to integers. Arguments: tok: token pre: prefix """ freq = Counter(p for o in tok for p in o) itos = [o for o, c in freq.most_common(40000)] # 40k most common words itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, { v: k for k, v in enumerate(itos) }) #reverse ids = np.array([ ([stoi[o] for o in p] + [2]) for p in tok ]) np.save(TMP_PATH / f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH / f'{pre}_itos.pkl', 'wb')) return ids, itos, stoi en_ids, en_itos, en_stoi = toks2ids(en_tok, 'en') fr_ids, fr_itos, fr_stoi = toks2ids(fr_tok, 'fr') def load_ids(pre): ids = np.load(TMP_PATH / f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH / f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, { v: k for k, v in enumerate(itos) }) return ids, itos, stoi en_ids, en_itos, en_stoi = load_ids('en') fr_ids, fr_itos, fr_stoi = load_ids('fr') # Sanity check [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors Facebook's fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html Download word vectors:We are using the pre-trained word vectors for English language, trained on Wikipedia using fastText. These vectors in dimension 300 were obtained using the skip-gram model: https://fasttext.cc/docs/en/pretrained-vectors.html ###Code !aria2c --file-allocation=none -c -x 5 -s 5 -d data/translate https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip !aria2c --file-allocation=none -c -x 5 -s 5 -d data/translate https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.fr.zip !unzip data/translate/wiki.en.zip -d data/translate/ !unzip data/translate/wiki.fr.zip -d data/translate/ ###Output Archive: data/translate/wiki.fr.zip inflating: data/translate/wiki.fr.vec inflating: data/translate/wiki.fr.bin ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code !pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft en_vecs = ft.load_model(str((PATH / 'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH / 'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): """ Convert fastText word vectors into a standard Python dictionary to make it a bit easier to work with. This is just going through each word with a dictionary comprehension and save it as a pickle dictionary. get_word_vector: [method] get the vector representation of word. get_words: [method] get the entire list of words of the dictionary optionally including the frequency of the individual words. This does not include any subwords. """ vecd = { w: ft_vecs.get_word_vector(w) for w in ft_vecs.get_words() } pickle.dump(vecd, open(PATH / f'wiki.{lang}.pkl', 'wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH / 'wiki.en.pkl', 'rb')) fr_vecd = pickle.load(open(PATH / 'wiki.fr.pkl', 'rb')) # DEBUG ft_vecs = en_vecs # DEBUG ft_words = ft_vecs.get_words(include_freq=True) ft_word_dict = { k: v for k, v in zip(*ft_words) } ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec, dim_fr_vec ###Output _____no_output_____ ###Markdown Find out what the mean and standard deviation of our vectors are. So the mean is about zero and standard deviation is about 0.3. ###Code # en_vecd type is dict en_vecs = np.stack(list(en_vecd.values())) # convert dict_values to list and then stack it en_vecs.mean(), en_vecs.std() ###Output _____no_output_____ ###Markdown Model data **Exclude the extreme cases** Often corpuses have a pretty long tailed distribution of sequence length and it's the longest sequences that tend to overwhelm how long things take, how much memory is used, etc. So in this case, we are going to grab 99th to 97th percentile of the English and French and truncate them to that amount. Originally Jeremy was using 90 percentiles (hence the variable name): ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 99)) enlen_90, frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) ###Output _____no_output_____ ###Markdown **Create our Dataset, DataLoaders** ###Code class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x, self.y = x, y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) # A for Arrays def __len__(self): return len(self.x) ###Output _____no_output_____ ###Markdown **Split the training and testing set** Here is an easy way to get training and validation sets. Grab a bunch of random numbersโ€Šโ€”โ€Šone for each row of your data, and see if they are bigger than 0.1 or not. That gets you a list of booleans. Index into your array with that list of booleans to grab a training set, index into that array with the opposite of that list of booleans to get your validation set. ###Code np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr)) > 0.1 en_trn, fr_trn = en_ids_tr[trn_keep], fr_ids_tr[trn_keep] # training set en_val, fr_val = en_ids_tr[~trn_keep], fr_ids_tr[~trn_keep] # validation set len(en_trn), len(en_val) ###Output _____no_output_____ ###Markdown **Create training and validation sets** ###Code trn_ds = Seq2SeqDataset(fr_trn, en_trn) val_ds = Seq2SeqDataset(fr_val, en_val) # Set batch size bs = 125 ###Output _____no_output_____ ###Markdown - Most of our preprocessing is complete, so making `numworkers = 1` will save you some time.- Padding will pad the shorter phrases to be the same length.- Classifier โ†’ padding in the beginning.- Decoder โ†’ padding at the end.- Sampler - so we keep the similar sentences together (sorted by length). ###Code # arranges sentences so that similar lengths are close to each other trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) ###Output _____no_output_____ ###Markdown **Create DataLoaders** ###Code trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs * 1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) # Test - inspect it = iter(trn_dl) # trn_dl is iterable. turns iterable into iterator. # Return the next item from the iterator. its = [next(it) for i in range(5)] [(len(x), len(y)) for x, y in its] ###Output _____no_output_____ ###Markdown 2. Architecture Initial model ![Architecture diagram](https://s15.postimg.cc/x710hbkdn/1_1f_KDa_Dsww_Vu3w2_Zt_Cg-_Uow.png)- The architecture is going to take our sequence of tokens.- It is going to spit them into an encoder (a.k.a. backbone).- That is going to spit out the final hidden state which for each sentence, itโ€™s just a single vector.- Then, it will need to be passed to a decoder that will walk through the words one by one. ###Code def create_emb(vecs, itos, em_sz): """ Creates embedding: 1. rows = number of vocab 2. cols = embedding size dimension Will randomly initialize the embedding """ emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] # goes through the embedding and replace # the initialized weights with existing word vectors # multiply x3 to compensate for the stdev 0.3 for i, w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w] * 3) except: miss.append(w) print(len(miss), miss[5:10]) return emb nh, nl = 256, 2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() # encoder (enc) self.nl, self.nh, self.out_sl = nl, nh, out_sl # for each word, pull up the 300M vector and create an embedding self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) # GRU - similiar to LSTM self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) # decoder (dec) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl, bs = inp.size() # ================================================== # Encoder version # ================================================== # initialize the hidden layer h = self.initHidden(bs) # run the input through our embeddings + apply dropout emb = self.emb_enc_drop(self.emb_enc(inp)) # run it through the RNN layer enc_out, h = self.gru_enc(emb, h) # run the hidden state through our linear layer # note: we are only using the last hidden state to 'decode' into another phrase h = self.out_enc(h) # ================================================== # Decoder version # ================================================== # starting with a 0 (or beginning of string _BOS_) dec_inp = V(torch.zeros(bs).long()) res = [] # will loop as long as the longest english sentence for i in range(self.out_sl): # embedding - we are only looking at a section at time # which is why the .unsqueeze is required emb = self.emb_dec(dec_inp).unsqueeze(0) # rnn - typically works with whole phrases, but we passing # only 1 unit at a time in a loop outp, h = self.gru_dec(emb, h) # dropout outp = self.out(self.out_drop(outp[0])) res.append(outp) # highest probability word dec_inp = V(outp.data.max(1)[1]) # if its padding ,we are at the end of the sentence if (dec_inp == 1).all(): break # stack the output into a single tensor return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): """ Loss function - modified version of cross entropy """ sl, bs = target.size() sl_in, bs_in, nc = input.size() # sequence length could be shorter than the original # need to add padding to even out the size if sl > sl_in: input = F.pad(input, (0, 0, 0, 0, 0, sl - sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1, nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss # Find the learning rate learn.lr_find() learn.sched.plot() ###Output _____no_output_____ ###Markdown **Fit the model (15-20 mins to train)** ###Code lr = 3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20, 10)) learn.sched.plot_loss() learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x, y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180, 190): print(' '.join([ fr_itos[o] for o in x[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in y[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in preds[:, i] if o != 1 ])) print() ###Output quelles composantes des diffรฉrents aspects de la performance devraient รชtre mesurรฉes , quelles donnรฉes pertinentes recueillir et comment ? _eos_ which components within various performance areas should be measured , whatkinds of data are appropriate to collect , and how should this be done ? _eos_ what aspects of the and and be be be be be be be be be ? ? _eos_ le premier ministre doit - il nommer un ministre dโ€™ รฉtat ร  la santรฉ mentale , ร  la maladie mentale et ร  la toxicomanie ? _eos_ what role can the federal government play to ensure that individuals with mental illness and addiction have access to the drug therapy they need ? _eos_ what minister the minister minister minister minister minister , , , , health health and health ? ? ? ? _eos_ quelles sont les consรฉquences de la hausse des formes dโ€™ emploi non conformes aux normes chez les travailleurs hautement qualifiรฉs et chez ceux qui occupent des emplois plus marginaux ? _eos_ what is the impact of growing forms of non - standard employment for highly skilled workers and for those employed in more marginal occupations ? _eos_ what are the consequences of workers workers workers workers workers workers and and workers and workers workers workers workers workers workers ? ? ? _eos_ _eos_ que se produit - il si le gestionnaire nโ€™ est pas en mesure de donner ร  lโ€™ employรฉ nommรฉ pour une pรฉriode dรฉterminรฉe un prรฉavis de cessation dโ€™ emploi dโ€™ un mois ou sโ€™ il nรฉglige de le what happens if the manager is unable to or neglects to give a term employee the one - month notice of non - renewal ? _eos_ what happens the the employee employee employee employee employee the the the the the or or the the the ? ? _eos_ quelles personnes , communautรฉs ou entitรฉs sont considรฉrรฉes comme potentiels i ) bรฉnรฉficiaires de la protection et ii ) titulaires de droits ? _eos_ which persons , communities or entities are identified as potential ( i ) beneficiaries of protection and / or ( ii ) rights holders ? _eos_ who , , , , , or or or or or or or or protection ? ? ? ? _eos_ quelles conditions particuliรจres doivent รชtre remplies pendant lโ€™ examen prรฉliminaire international en ce qui concerne les listages des sรฉquences de nuclรฉotides ou dโ€™ acides aminรฉs ou les tableaux y relatifs ? _eos_ what special requirements apply during the international preliminary examination to nucleotide and / or amino acid sequence listings and / or tables related thereto ? _eos_ what specific must be be be be sequence sequence or or or or sequence or or sequence or sequence or sequence in in ? ? ? ? _eos_ _eos_ pourquoi cette soudaine rรฉticence ร  promouvoir lโ€™ รฉgalitรฉ des genres et ร  protรฉger les femmes de ce que , dans la plupart des cas , on peut qualifier de violations grossiรจres des droits humains ? _eos_ why this sudden reluctance to effectively promote gender equality and protect women from what are โ€“ in many cases โ€“ egregious human rights violations ? _eos_ why is the so for such of of of of of and rights and rights rights of rights rights ? ? ? ? _eos_ _eos_ pouvez - vous dire comment votre bagage culturel vous a aidรฉe ร  aborder votre nouvelle vie au canada ( ร  vous adapter au mode de vie canadien ) ? _eos_ what are some things from your cultural background that have helped you navigate canadian life ( helped you adjust to life in canada ) ? _eos_ what are you new to to to to to to to to life life life life ? ? ? ? _eos_ _eos_ selon vous , quels seront , dans les dix prochaines annรฉes , les cinq enjeux les plus urgents en matiรจre d' environnement et d' avenir viable pour vous et votre rรฉgion ? _eos_ which do you think will be the five most pressing environmental and sustainability issues for you and your region in the next ten years ? _eos_ what do you see the next priorities priorities next the next the and and in in in in in in ? ? ? ? ? _eos_ _eos_ dans quelle mesure lโ€™ expert est-il motivรฉ et capable de partager ses connaissances , et dans quelle mesure son successeur est-il motivรฉ et capable de recevoir ce savoir ? _eos_ what is the expert โ€™s level of motivation and capability for sharing knowledge , and the successor โ€™s motivation and capability of acquiring it ? _eos_ what is the nature and and and and and and and and and and and and and to to to ? ? ? ? _eos_ _eos_ _eos_ ###Markdown Bi-direction Take all your sequences and reverse them and make a "backwards model" then average the predictions. Note that with deeper models, not all levels may be bi-directional. ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl, self.nh, self.out_sl = nl, nh, out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) # for bidir, bidirectional=True self.out_enc = nn.Linear(nh * 2, em_sz_dec, bias=False) # for bidir, nh * 2 self.drop_enc = nn.Dropout(0.05) # additional for bidir self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl, bs = inp.size() # ================================================== # Encoder version # ================================================== # initialize the hidden layer h = self.initHidden(bs) # run the input through our embeddings + apply dropout emb = self.emb_enc_drop(self.emb_enc(inp)) # run it through the RNN layer enc_out, h = self.gru_enc(emb, h) # Additional for bidir h = h.view(2, 2, bs, -1).permute(0, 2, 1, 3).contiguous().view(2, bs, -1) # run the hidden state through our linear layer h = self.out_enc(self.drop_enc(h)) # new for bidir; dropout hidden state. # ================================================== # Decoder version # ================================================== # starting with a 0 (or beginning of string _BOS_) dec_inp = V(torch.zeros(bs).long()) res = [] # will loop as long as the longest english sentence for i in range(self.out_sl): # embedding - we are only looking at a section at time # which is why the .unsqueeze is required emb = self.emb_dec(dec_inp).unsqueeze(0) # rnn - typically works with whole phrases, but we passing # only 1 unit at a time in a loop outp, h = self.gru_dec(emb, h) # dropout outp = self.out(self.out_drop(outp[0])) res.append(outp) # highest probability word dec_inp = V(outp.data.max(1)[1]) # if its padding ,we are at the end of the sentence if (dec_inp == 1).all(): break # stack the output into a single tensor return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl * 2, bs, self.nh)) # for bidir, sel.nl * 2 rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20, 10)) learn.sched.plot_loss() learn.save('bidir') learn.load('bidir') ###Output _____no_output_____ ###Markdown **Test** ###Code x, y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180, 190): print(' '.join([ fr_itos[o] for o in x[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in y[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in preds[:, i] if o != 1 ])) print() ###Output quelles composantes des diffรฉrents aspects de la performance devraient รชtre mesurรฉes , quelles donnรฉes pertinentes recueillir et comment ? _eos_ which components within various performance areas should be measured , whatkinds of data are appropriate to collect , and how should this be done ? _eos_ which aspects of should should should be be and and how how how be be be ? ? _eos_ _eos_ le premier ministre doit - il nommer un ministre dโ€™ รฉtat ร  la santรฉ mentale , ร  la maladie mentale et ร  la toxicomanie ? _eos_ what role can the federal government play to ensure that individuals with mental illness and addiction have access to the drug therapy they need ? _eos_ who is the minister minister minister to minister mental mental mental mental mental health health ? ? ? _eos_ quelles sont les consรฉquences de la hausse des formes dโ€™ emploi non conformes aux normes chez les travailleurs hautement qualifiรฉs et chez ceux qui occupent des emplois plus marginaux ? _eos_ what is the impact of growing forms of non - standard employment for highly skilled workers and for those employed in more marginal occupations ? _eos_ what are the implications of of of of of workers workers workers workers workers workers workers in less workers ? ? ? _eos_ _eos_ que se produit - il si le gestionnaire nโ€™ est pas en mesure de donner ร  lโ€™ employรฉ nommรฉ pour une pรฉriode dรฉterminรฉe un prรฉavis de cessation dโ€™ emploi dโ€™ un mois ou sโ€™ il nรฉglige de le what happens if the manager is unable to or neglects to give a term employee the one - month notice of non - renewal ? _eos_ what happens if the employee of the the the the of of of or or or or of of of quelles personnes , communautรฉs ou entitรฉs sont considรฉrรฉes comme potentiels i ) bรฉnรฉficiaires de la protection et ii ) titulaires de droits ? _eos_ which persons , communities or entities are identified as potential ( i ) beneficiaries of protection and / or ( ii ) rights holders ? _eos_ which communities are are or as or or or or or , , of ? ? ? ? ? quelles conditions particuliรจres doivent รชtre remplies pendant lโ€™ examen prรฉliminaire international en ce qui concerne les listages des sรฉquences de nuclรฉotides ou dโ€™ acides aminรฉs ou les tableaux y relatifs ? _eos_ what special requirements apply during the international preliminary examination to nucleotide and / or amino acid sequence listings and / or tables related thereto ? _eos_ what special requirements requirements be be for for for / sequence / or or sequence or or sequence sequence or or sequence sequence ? ? _eos_ _eos_ pourquoi cette soudaine rรฉticence ร  promouvoir lโ€™ รฉgalitรฉ des genres et ร  protรฉger les femmes de ce que , dans la plupart des cas , on peut qualifier de violations grossiรจres des droits humains ? _eos_ why this sudden reluctance to effectively promote gender equality and protect women from what are โ€“ in many cases โ€“ egregious human rights violations ? _eos_ why is such such such women women of women , , , , rights rights ? ? ? ? ? _eos_ _eos_ pouvez - vous dire comment votre bagage culturel vous a aidรฉe ร  aborder votre nouvelle vie au canada ( ร  vous adapter au mode de vie canadien ) ? _eos_ what are some things from your cultural background that have helped you navigate canadian life ( helped you adjust to life in canada ) ? _eos_ what is your you to you you to to to to to life life life life in life canada ? ? ? ? _eos_ selon vous , quels seront , dans les dix prochaines annรฉes , les cinq enjeux les plus urgents en matiรจre d' environnement et d' avenir viable pour vous et votre rรฉgion ? _eos_ which do you think will be the five most pressing environmental and sustainability issues for you and your region in the next ten years ? _eos_ what do you see the the the the the the , , future and and and and and future future future future future ? ? ? ? _eos_ dans quelle mesure lโ€™ expert est-il motivรฉ et capable de partager ses connaissances , et dans quelle mesure son successeur est-il motivรฉ et capable de recevoir ce savoir ? _eos_ what is the expert โ€™s level of motivation and capability for sharing knowledge , and the successor โ€™s motivation and capability of acquiring it ? _eos_ what is is expertise of the of and and and and and and and and and and and and and and and and ? ? ? ###Markdown Teacher forcing When the model starts learning, it starts out not knowing anything about the different languages. It will eventually get better, but in the beginning it doesn't have a lot to work with.**idea:** what if we force feed the correct answer in the beginnging? ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10 - epoch) * 0.1 if epoch < 10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output, tuple): output, *xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl, self.nh, self.out_sl = nl, nh, out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. # new for teacher forcing def forward(self, inp, y=None): # argument y is new for teacher forcing sl, bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp == 1).all(): break if (y is not None) and (random.random() < self.pr_force): # new for teacher forcing if i >= len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20, 10), stepper=Seq2SeqStepper) learn.sched.plot_loss() learn.save('forcing') learn.load('forcing') ###Output _____no_output_____ ###Markdown **Test** ###Code x, y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180, 190): print(' '.join([ fr_itos[o] for o in x[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in y[:, i] if o != 1 ])) print(' '.join([ en_itos[o] for o in preds[:, i] if o != 1 ])) print() ###Output quelles composantes des diffรฉrents aspects de la performance devraient รชtre mesurรฉes , quelles donnรฉes pertinentes recueillir et comment ? _eos_ which components within various performance areas should be measured , whatkinds of data are appropriate to collect , and how should this be done ? _eos_ what elements of the should be be be be and and and and ? ? ? ? le premier ministre doit - il nommer un ministre dโ€™ รฉtat ร  la santรฉ mentale , ร  la maladie mentale et ร  la toxicomanie ? _eos_ what role can the federal government play to ensure that individuals with mental illness and addiction have access to the drug therapy they need ? _eos_ what is the minister of the the of the and and and and and and mental health ? ? ? _eos_ quelles sont les consรฉquences de la hausse des formes dโ€™ emploi non conformes aux normes chez les travailleurs hautement qualifiรฉs et chez ceux qui occupent des emplois plus marginaux ? _eos_ what is the impact of growing forms of non - standard employment for highly skilled workers and for those employed in more marginal occupations ? _eos_ what are the implications of of of of of of workers in in in and and and workers and workers and workers ? ? _eos_ _eos_ que se produit - il si le gestionnaire nโ€™ est pas en mesure de donner ร  lโ€™ employรฉ nommรฉ pour une pรฉriode dรฉterminรฉe un prรฉavis de cessation dโ€™ emploi dโ€™ un mois ou sโ€™ il nรฉglige de le what happens if the manager is unable to or neglects to give a term employee the one - month notice of non - renewal ? _eos_ what if if not is not a a or or or or or or or ? ? ? ? ? ? ? quelles personnes , communautรฉs ou entitรฉs sont considรฉrรฉes comme potentiels i ) bรฉnรฉficiaires de la protection et ii ) titulaires de droits ? _eos_ which persons , communities or entities are identified as potential ( i ) beneficiaries of protection and / or ( ii ) rights holders ? _eos_ who communities or persons , as as as as ( ( ( , protection and ? ? ? _eos_ quelles conditions particuliรจres doivent รชtre remplies pendant lโ€™ examen prรฉliminaire international en ce qui concerne les listages des sรฉquences de nuclรฉotides ou dโ€™ acides aminรฉs ou les tableaux y relatifs ? _eos_ what special requirements apply during the international preliminary examination to nucleotide and / or amino acid sequence listings and / or tables related thereto ? _eos_ what special conditions to to to to the the / / / / sequence sequence sequence of of / / / / ? ? ? ? ? _eos_ pourquoi cette soudaine rรฉticence ร  promouvoir lโ€™ รฉgalitรฉ des genres et ร  protรฉger les femmes de ce que , dans la plupart des cas , on peut qualifier de violations grossiรจres des droits humains ? _eos_ why this sudden reluctance to effectively promote gender equality and protect women from what are โ€“ in many cases โ€“ egregious human rights violations ? _eos_ why encourage such such such such such such as as human human human ? ? ? _eos_ _eos_ pouvez - vous dire comment votre bagage culturel vous a aidรฉe ร  aborder votre nouvelle vie au canada ( ร  vous adapter au mode de vie canadien ) ? _eos_ what are some things from your cultural background that have helped you navigate canadian life ( helped you adjust to life in canada ) ? _eos_ what are the you you you to to to to to to to to your your in in in in canada ? ? ? _eos_ selon vous , quels seront , dans les dix prochaines annรฉes , les cinq enjeux les plus urgents en matiรจre d' environnement et d' avenir viable pour vous et votre rรฉgion ? _eos_ which do you think will be the five most pressing environmental and sustainability issues for you and your region in the next ten years ? _eos_ what do you see as the most most most important future and and and and future future future ? ? ? ? _eos_ dans quelle mesure lโ€™ expert est-il motivรฉ et capable de partager ses connaissances , et dans quelle mesure son successeur est-il motivรฉ et capable de recevoir ce savoir ? _eos_ what is the expert โ€™s level of motivation and capability for sharing knowledge , and the successor โ€™s motivation and capability of acquiring it ? _eos_ what is the expert of and and and and and and and and and and and and and ? ? ? ? ? ###Markdown Attentional model Our RNN model exports the hidden state at every time step, along with the hidden state at the last time step. Initially we are only using the LAST hidden state to 'decode' into another phrase.Can we use the rest of those hidden states?**goal:** use some percentage of all hidden states and add another trainable parameter to find good answers in the model.**idea:** expecting the entire sentence to be summarized into a vector is a lot. Instead of having a hidden state at the end of the phrase, we can have a hidden state after every single word. So how do we use the hidden information after every word. ###Code def rand_t(*sz): return torch.randn(sz) / math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data # these 4 lines are addition for 'attention' self.W1 = rand_p(nh, em_sz_dec) # random matrix wrapped up in PyTorch Parameter self.l2 = nn.Linear(em_sz_dec, em_sz_dec) # this is the mini NN that will calculate the weights self.l3 = nn.Linear(em_sz_dec + nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl, bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res, attns = [], [] # attns is addition for 'attention' w1e = enc_out @ self.W1 # this line is addition for 'attention'. matrix product. for i in range(self.out_sl): # these 5 lines are addition for 'attention'. # create a little neural network. # use softmax to generate the probabilities. w2h = self.l2(h[-1]) # take last layers hidden state put into linear layer u = F.tanh(w1e + w2h) # nonlinear activation a = F.softmax(u @ self.V, 0) # matrix product attns.append(a) # take a weighted average. Use the weights from mini NN. # note we are using all the encoder states Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) # adding the hidden states to the encoder weights wgt_enc = self.l3(torch.cat([emb, Xa], 1)) # this line is addition for 'attention' outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) # this line has changed for 'attention' outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random() < self.pr_force): # why is teacher forcing logic still here? bug? if i >= len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res, torch.stack(attns) # bug? return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr = 2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20, 10), stepper=Seq2SeqStepper) learn.sched.plot_loss() learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown **Test** ###Code x, y = next(iter(val_dl)) probs, attns = learn.model(V(x), ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180, 190): print(' '.join([fr_itos[o] for o in x[:, i] if o != 1])) print(' '.join([en_itos[o] for o in y[:, i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:, i] if o != 1])) print() ###Output quelles composantes des diffรฉrents aspects de la performance devraient รชtre mesurรฉes , quelles donnรฉes pertinentes recueillir et comment ? _eos_ which components within various performance areas should be measured , whatkinds of data are appropriate to collect , and how should this be done ? _eos_ what components of the performance should be be be data be and and how ? ? _eos_ ? le premier ministre doit - il nommer un ministre dโ€™ รฉtat ร  la santรฉ mentale , ร  la maladie mentale et ร  la toxicomanie ? _eos_ what role can the federal government play to ensure that individuals with mental illness and addiction have access to the drug therapy they need ? _eos_ what is the minister minister โ€™s minister minister to to minister to health health ? and mental mental health _eos_ _eos_ mental _eos_ quelles sont les consรฉquences de la hausse des formes dโ€™ emploi non conformes aux normes chez les travailleurs hautement qualifiรฉs et chez ceux qui occupent des emplois plus marginaux ? _eos_ what is the impact of growing forms of non - standard employment for highly skilled workers and for those employed in more marginal occupations ? _eos_ what are the implications of of - statistics - workers - workers workers and and skilled workers workers workers older workers _eos_ ? workers ? _eos_ _eos_ que se produit - il si le gestionnaire nโ€™ est pas en mesure de donner ร  lโ€™ employรฉ nommรฉ pour une pรฉriode dรฉterminรฉe un prรฉavis de cessation dโ€™ emploi dโ€™ un mois ou sโ€™ il nรฉglige de le what happens if the manager is unable to or neglects to give a term employee the one - month notice of non - renewal ? _eos_ what if the manager is not to to employee employee employee a employee the employee for retirement time hours employee after a employee of ? after _eos_ quelles personnes , communautรฉs ou entitรฉs sont considรฉrรฉes comme potentiels i ) bรฉnรฉficiaires de la protection et ii ) titulaires de droits ? _eos_ which persons , communities or entities are identified as potential ( i ) beneficiaries of protection and / or ( ii ) rights holders ? _eos_ who , or or or or considered as as recipients of of of protection protection protection _eos_ ? _eos_ _eos_ quelles conditions particuliรจres doivent รชtre remplies pendant lโ€™ examen prรฉliminaire international en ce qui concerne les listages des sรฉquences de nuclรฉotides ou dโ€™ acides aminรฉs ou les tableaux y relatifs ? _eos_ what special requirements apply during the international preliminary examination to nucleotide and / or amino acid sequence listings and / or tables related thereto ? _eos_ what specific conditions conditions be be during the international examination examination in the for nucleotide or amino amino / or or ? _eos_ ? ? _eos_ tables _eos_ ? pourquoi cette soudaine rรฉticence ร  promouvoir lโ€™ รฉgalitรฉ des genres et ร  protรฉger les femmes de ce que , dans la plupart des cas , on peut qualifier de violations grossiรจres des droits humains ? _eos_ why this sudden reluctance to effectively promote gender equality and protect women from what are โ€“ in many cases โ€“ egregious human rights violations ? _eos_ why this this to to to to to to women to and and and women to , of _eos_ of many people ? ? of _eos_ ? human human pouvez - vous dire comment votre bagage culturel vous a aidรฉe ร  aborder votre nouvelle vie au canada ( ร  vous adapter au mode de vie canadien ) ? _eos_ what are some things from your cultural background that have helped you navigate canadian life ( helped you adjust to life in canada ) ? _eos_ what is your your of your you to you to to in canada canada canada life canada canada canada _eos_ _eos_ _eos_ _eos_ _eos_ selon vous , quels seront , dans les dix prochaines annรฉes , les cinq enjeux les plus urgents en matiรจre d' environnement et d' avenir viable pour vous et votre rรฉgion ? _eos_ which do you think will be the five most pressing environmental and sustainability issues for you and your region in the next ten years ? _eos_ what do you think in the next five five next , , next and and and and and and you and in ? _eos_ ? ? _eos_ ? dans quelle mesure lโ€™ expert est-il motivรฉ et capable de partager ses connaissances , et dans quelle mesure son successeur est-il motivรฉ et capable de recevoir ce savoir ? _eos_ what is the expert โ€™s level of motivation and capability for sharing knowledge , and the successor โ€™s motivation and capability of acquiring it ? _eos_ what is the the of the the and and and and and and and to and to and and ? ? ? _eos_ _eos_ ###Markdown Visualization ###Code attn = to_np(attns[..., 180]) # DEBUG print(attn.shape) # graph 1 print(attn[0].shape) print(attn[0][:10]) # END DEBUG fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i, ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All (seq2seq + bi-directional + attention) ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl, self.nh, self.out_sl = nl, nh, out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh * 2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh * 2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec + nh * 2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl, bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2, 2, bs, -1).permute(0, 2, 1, 3).contiguous().view(2, bs, -1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res, attns = [], [] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp == 1).all(): break if (y is not None) and (random.random() < self.pr_force): if i >= len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl * 2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20, 10), stepper=Seq2SeqStepper) learn.sched.plot_loss() learn.save('all') learn.load('all') ###Output _____no_output_____ ###Markdown **Test** ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180, 190): print(' '.join([fr_itos[o] for o in x[:, i] if o != 1])) print(' '.join([en_itos[o] for o in y[:, i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:, i] if o != 1])) print() ###Output quelles composantes des diffรฉrents aspects de la performance devraient รชtre mesurรฉes , quelles donnรฉes pertinentes recueillir et comment ? _eos_ which components within various performance areas should be measured , whatkinds of data are appropriate to collect , and how should this be done ? _eos_ what components of the different aspects of should be be measured , and and how how ? _eos_ le premier ministre doit - il nommer un ministre dโ€™ รฉtat ร  la santรฉ mentale , ร  la maladie mentale et ร  la toxicomanie ? _eos_ what role can the federal government play to ensure that individuals with mental illness and addiction have access to the drug therapy they need ? _eos_ who is the minister minister to minister minister to mental health mental and mental ? ? ? _eos_ quelles sont les consรฉquences de la hausse des formes dโ€™ emploi non conformes aux normes chez les travailleurs hautement qualifiรฉs et chez ceux qui occupent des emplois plus marginaux ? _eos_ what is the impact of growing forms of non - standard employment for highly skilled workers and for those employed in more marginal occupations ? _eos_ what are the implications of increasing employment forms of workers workers workers workers workers workers workers workers workers workers workers workers more more ? _eos_ _eos_ _eos_ que se produit - il si le gestionnaire nโ€™ est pas en mesure de donner ร  lโ€™ employรฉ nommรฉ pour une pรฉriode dรฉterminรฉe un prรฉavis de cessation dโ€™ emploi dโ€™ un mois ou sโ€™ il nรฉglige de le what happens if the manager is unable to or neglects to give a term employee the one - month notice of non - renewal ? _eos_ what happens the manager does not to to the employee employee employee employee a a employee a employee or employee or or or or or or or or ? quelles personnes , communautรฉs ou entitรฉs sont considรฉrรฉes comme potentiels i ) bรฉnรฉficiaires de la protection et ii ) titulaires de droits ? _eos_ which persons , communities or entities are identified as potential ( i ) beneficiaries of protection and / or ( ii ) rights holders ? _eos_ who , communities communities or entities as as potential as beneficiaries of ( protection and protection protection protection ? ? _eos_ _eos_ _eos_ quelles conditions particuliรจres doivent รชtre remplies pendant lโ€™ examen prรฉliminaire international en ce qui concerne les listages des sรฉquences de nuclรฉotides ou dโ€™ acides aminรฉs ou les tableaux y relatifs ? _eos_ what special requirements apply during the international preliminary examination to nucleotide and / or amino acid sequence listings and / or tables related thereto ? _eos_ what special conditions must be required during the international preliminary preliminary in for nucleotide or sequence amino or sequence or or or or tables ? ? _eos_ _eos_ _eos_ pourquoi cette soudaine rรฉticence ร  promouvoir lโ€™ รฉgalitรฉ des genres et ร  protรฉger les femmes de ce que , dans la plupart des cas , on peut qualifier de violations grossiรจres des droits humains ? _eos_ why this sudden reluctance to effectively promote gender equality and protect women from what are โ€“ in many cases โ€“ egregious human rights violations ? _eos_ why this sudden effect of to to women women women and and of of of , , of of of human human human human ? _eos_ _eos_ _eos_ _eos_ pouvez - vous dire comment votre bagage culturel vous a aidรฉe ร  aborder votre nouvelle vie au canada ( ร  vous adapter au mode de vie canadien ) ? _eos_ what are some things from your cultural background that have helped you navigate canadian life ( helped you adjust to life in canada ) ? _eos_ what can you you your your cultural your your you to to to canada canada canada life life life life canada ? _eos_ selon vous , quels seront , dans les dix prochaines annรฉes , les cinq enjeux les plus urgents en matiรจre d' environnement et d' avenir viable pour vous et votre rรฉgion ? _eos_ which do you think will be the five most pressing environmental and sustainability issues for you and your region in the next ten years ? _eos_ what do you see be be the the next five five five , and and and and and and and your your ? ? ? _eos_ _eos_ _eos_ dans quelle mesure lโ€™ expert est-il motivรฉ et capable de partager ses connaissances , et dans quelle mesure son successeur est-il motivรฉ et capable de recevoir ce savoir ? _eos_ what is the expert โ€™s level of motivation and capability for sharing knowledge , and the successor โ€™s motivation and capability of acquiring it ? _eos_ what is the expert โ€™s and and knowledge knowledge knowledge knowledge and and and and and and and and and and and ? ? ? _eos_ _eos_ ###Markdown **Important: This notebook will only work with fastai-0.7.x. Do not try to run any fastai-1.x code from this path in the repository because it will load fastai-0.7.x** ###Code %matplotlib inline %reload_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Please note that this notebook is most likely going to cause a stuck process. So if you are going to run it, please make sure to restart your jupyter notebook as soon as you completed running it.The bug happens inside the `fastText` library, which we have no control over. You can check the status of this issue: [here](https://github.com/fastai/fastai/issues/754) and [here](https://github.com/facebookresearch/fastText/issues/618issuecomment-419554225).For the future, note that there're 3 separate implementations of fasttext, perhaps one of them works:https://github.com/facebookresearch/fastText/tree/master/pythonhttps://pypi.org/project/fasttext/https://radimrehurek.com/gensim/models/fasttext.htmlmodule-gensim.models.fasttext Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = en_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Translation files ###Code from fastai.text import * from pathlib import Path torch.cuda.set_device(1) PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) %%time en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) en_tok[0], fr_tok[0] def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors ###Code with (PATH/'glove.6B.100d.txt').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] en_vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines} pickle.dump(en_vecd, open(PATH/'glove.6B.100d.dict.pkl','wb')) def is_number(s): try: float(s) return True except ValueError: return False def get_vecs(lang): with (PATH/f'wiki.{lang}.vec').open('r', encoding='utf-8') as f: lines = [line.split() for line in f] lines.pop(0) vecd = {w:np.array(v, dtype=np.float32) for w,*v in lines if is_number(v[0]) and len(v)==300} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en') fr_vecd = get_vecs('fr') en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec*2, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_ ###Markdown Please note that this notebook is most likely going to cause a stuck process. So if you are going to run it, please make sure to restart your jupyter notebook as soon as you completed running it.The bug happens inside the `fastText` library, which we have no control over. You can check the status of this issue: [here](https://github.com/fastai/fastai/issues/754) and [here](https://github.com/facebookresearch/fastText/issues/618issuecomment-419554225).For the future, note that there're 3 separate implementations of fasttext, perhaps one of them works:https://github.com/facebookresearch/fastText/tree/master/pythonhttps://pypi.org/project/fasttext/https://radimrehurek.com/gensim/models/fasttext.htmlmodule-gensim.models.fasttext Translation files ###Code from fastai.text import * ###Output _____no_output_____ ###Markdown French/English parallel texts from http://www.statmt.org/wmt15/translation-task.html . It was created by Chris Callison-Burch, who crawled millions of web pages and then used *a set of simple heuristics to transform French URLs onto English URLs (i.e. replacing "fr" with "en" and about 40 other hand-written rules), and assume that these documents are translations of each other*. ###Code PATH = Path('data/translate') TMP_PATH = PATH/'tmp' TMP_PATH.mkdir(exist_ok=True) fname='giga-fren.release2.fixed' en_fname = PATH/f'{fname}.en' fr_fname = PATH/f'{fname}.fr' re_eq = re.compile('^(Wh[^?.!]+\?)') re_fq = re.compile('^([^?.!]+\?)') lines = ((re_eq.search(eq), re_fq.search(fq)) for eq, fq in zip(open(en_fname, encoding='utf-8'), open(fr_fname, encoding='utf-8'))) qs = [(e.group(), f.group()) for e,f in lines if e and f] pickle.dump(qs, (PATH/'fr-en-qs.pkl').open('wb')) qs = pickle.load((PATH/'fr-en-qs.pkl').open('rb')) qs[:5], len(qs) en_qs,fr_qs = zip(*qs) en_tok = Tokenizer.proc_all_mp(partition_by_cores(en_qs)) fr_tok = Tokenizer.proc_all_mp(partition_by_cores(fr_qs), 'fr') en_tok[0], fr_tok[0] np.percentile([len(o) for o in en_tok], 90), np.percentile([len(o) for o in fr_tok], 90) keep = np.array([len(o)<30 for o in en_tok]) en_tok = np.array(en_tok)[keep] fr_tok = np.array(fr_tok)[keep] pickle.dump(en_tok, (PATH/'en_tok.pkl').open('wb')) pickle.dump(fr_tok, (PATH/'fr_tok.pkl').open('wb')) en_tok = pickle.load((PATH/'en_tok.pkl').open('rb')) fr_tok = pickle.load((PATH/'fr_tok.pkl').open('rb')) def toks2ids(tok,pre): freq = Counter(p for o in tok for p in o) itos = [o for o,c in freq.most_common(40000)] itos.insert(0, '_bos_') itos.insert(1, '_pad_') itos.insert(2, '_eos_') itos.insert(3, '_unk') stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) ids = np.array([([stoi[o] for o in p] + [2]) for p in tok]) np.save(TMP_PATH/f'{pre}_ids.npy', ids) pickle.dump(itos, open(TMP_PATH/f'{pre}_itos.pkl', 'wb')) return ids,itos,stoi en_ids,en_itos,en_stoi = toks2ids(en_tok,'en') fr_ids,fr_itos,fr_stoi = toks2ids(fr_tok,'fr') def load_ids(pre): ids = np.load(TMP_PATH/f'{pre}_ids.npy') itos = pickle.load(open(TMP_PATH/f'{pre}_itos.pkl', 'rb')) stoi = collections.defaultdict(lambda: 3, {v:k for k,v in enumerate(itos)}) return ids,itos,stoi en_ids,en_itos,en_stoi = load_ids('en') fr_ids,fr_itos,fr_stoi = load_ids('fr') [fr_itos[o] for o in fr_ids[0]], len(en_itos), len(fr_itos) ###Output _____no_output_____ ###Markdown Word vectors fasttext word vectors available from https://fasttext.cc/docs/en/english-vectors.html ###Code # ! pip install git+https://github.com/facebookresearch/fastText.git import fastText as ft ###Output _____no_output_____ ###Markdown To use the fastText library, you'll need to download [fasttext word vectors](https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md) for your language (download the 'bin plus text' ones). ###Code en_vecs = ft.load_model(str((PATH/'wiki.en.bin'))) fr_vecs = ft.load_model(str((PATH/'wiki.fr.bin'))) def get_vecs(lang, ft_vecs): vecd = {w:ft_vecs.get_word_vector(w) for w in ft_vecs.get_words()} pickle.dump(vecd, open(PATH/f'wiki.{lang}.pkl','wb')) return vecd en_vecd = get_vecs('en', en_vecs) fr_vecd = get_vecs('fr', fr_vecs) en_vecd = pickle.load(open(PATH/'wiki.en.pkl','rb')) fr_vecd = pickle.load(open(PATH/'wiki.fr.pkl','rb')) ft_words = en_vecs.get_words(include_freq=True) ft_word_dict = {k:v for k,v in zip(*ft_words)} ft_words = sorted(ft_word_dict.keys(), key=lambda x: ft_word_dict[x]) len(ft_words) dim_en_vec = len(en_vecd[',']) dim_fr_vec = len(fr_vecd[',']) dim_en_vec,dim_fr_vec en_vecs = np.stack(list(en_vecd.values())) en_vecs.mean(),en_vecs.std() ###Output _____no_output_____ ###Markdown Model data ###Code enlen_90 = int(np.percentile([len(o) for o in en_ids], 99)) frlen_90 = int(np.percentile([len(o) for o in fr_ids], 97)) enlen_90,frlen_90 en_ids_tr = np.array([o[:enlen_90] for o in en_ids]) fr_ids_tr = np.array([o[:frlen_90] for o in fr_ids]) class Seq2SeqDataset(Dataset): def __init__(self, x, y): self.x,self.y = x,y def __getitem__(self, idx): return A(self.x[idx], self.y[idx]) def __len__(self): return len(self.x) np.random.seed(42) trn_keep = np.random.rand(len(en_ids_tr))>0.1 en_trn,fr_trn = en_ids_tr[trn_keep],fr_ids_tr[trn_keep] en_val,fr_val = en_ids_tr[~trn_keep],fr_ids_tr[~trn_keep] len(en_trn),len(en_val) trn_ds = Seq2SeqDataset(fr_trn,en_trn) val_ds = Seq2SeqDataset(fr_val,en_val) bs=125 trn_samp = SortishSampler(en_trn, key=lambda x: len(en_trn[x]), bs=bs) val_samp = SortSampler(en_val, key=lambda x: len(en_val[x])) trn_dl = DataLoader(trn_ds, bs, transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=trn_samp) val_dl = DataLoader(val_ds, int(bs*1.6), transpose=True, transpose_y=True, num_workers=1, pad_idx=1, pre_pad=False, sampler=val_samp) md = ModelData(PATH, trn_dl, val_dl) it = iter(trn_dl) its = [next(it) for i in range(5)] [(len(x),len(y)) for x,y in its] ###Output _____no_output_____ ###Markdown Initial model ###Code def create_emb(vecs, itos, em_sz): emb = nn.Embedding(len(itos), em_sz, padding_idx=1) wgts = emb.weight.data miss = [] for i,w in enumerate(itos): try: wgts[i] = torch.from_numpy(vecs[w]*3) except: miss.append(w) print(len(miss),miss[5:10]) return emb nh,nl = 256,2 class Seq2SeqRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.nl,self.nh,self.out_sl = nl,nh,out_sl self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.emb_enc_drop = nn.Dropout(0.15) self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) def seq2seq_loss(input, target): sl,bs = target.size() sl_in,bs_in,nc = input.size() if sl>sl_in: input = F.pad(input, (0,0,0,0,0,sl-sl_in)) input = input[:sl] return F.cross_entropy(input.view(-1,nc), target.view(-1))#, ignore_index=1) opt_fn = partial(optim.Adam, betas=(0.8, 0.99)) rnn = Seq2SeqRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.lr_find() learn.sched.plot() lr=3e-3 learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('initial') learn.load('initial') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might might influence on the their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what not change change ? _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the doors doors ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are the located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim sexual sexual ? ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are people people aboriginal aboriginal ? _eos_ pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these two different ? ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not _eos_ ###Markdown Bidir ###Code class Seq2SeqRNN_Bidir(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.05) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data def forward(self, inp): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_Bidir(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10)) learn.save('bidir') ###Output _____no_output_____ ###Markdown Teacher forcing ###Code class Seq2SeqStepper(Stepper): def step(self, xs, y, epoch): self.m.pr_force = (10-epoch)*0.1 if epoch<10 else 0 xtra = [] output = self.m(*xs, y) if isinstance(output,tuple): output,*xtra = output self.opt.zero_grad() loss = raw_loss = self.crit(output, y) if self.reg_fn: loss = self.reg_fn(output, xtra, raw_loss) loss.backward() if self.clip: # Gradient clipping nn.utils.clip_grad_norm(trainable_params_(self.m), self.clip) self.opt.step() return raw_loss.data[0] class Seq2SeqRNN_TeacherForcing(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.pr_force = 1. def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res = [] for i in range(self.out_sl): emb = self.emb_dec(dec_inp).unsqueeze(0) outp, h = self.gru_dec(emb, h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqRNN_TeacherForcing(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=12, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('forcing') ###Output _____no_output_____ ###Markdown Attentional model ###Code def rand_t(*sz): return torch.randn(sz)/math.sqrt(sz[0]) def rand_p(*sz): return nn.Parameter(rand_t(*sz)) class Seq2SeqAttnRNN(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25) self.out_enc = nn.Linear(nh, em_sz_dec, bias=False) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None, ret_attn=False): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = self.out_enc(h) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] res = torch.stack(res) if ret_attn: res = res,torch.stack(attns) return res def initHidden(self, bs): return V(torch.zeros(self.nl, bs, self.nh)) rnn = Seq2SeqAttnRNN(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss lr=2e-3 learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) learn.save('attn') learn.load('attn') ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs,attns = learn.model(V(x),ret_attn=True) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() attn = to_np(attns[...,180]) fig, axes = plt.subplots(3, 3, figsize=(15, 10)) for i,ax in enumerate(axes.flat): ax.plot(attn[i]) ###Output _____no_output_____ ###Markdown All ###Code class Seq2SeqRNN_All(nn.Module): def __init__(self, vecs_enc, itos_enc, em_sz_enc, vecs_dec, itos_dec, em_sz_dec, nh, out_sl, nl=2): super().__init__() self.emb_enc = create_emb(vecs_enc, itos_enc, em_sz_enc) self.nl,self.nh,self.out_sl = nl,nh,out_sl self.gru_enc = nn.GRU(em_sz_enc, nh, num_layers=nl, dropout=0.25, bidirectional=True) self.out_enc = nn.Linear(nh*2, em_sz_dec, bias=False) self.drop_enc = nn.Dropout(0.25) self.emb_dec = create_emb(vecs_dec, itos_dec, em_sz_dec) self.gru_dec = nn.GRU(em_sz_dec, em_sz_dec, num_layers=nl, dropout=0.1) self.emb_enc_drop = nn.Dropout(0.15) self.out_drop = nn.Dropout(0.35) self.out = nn.Linear(em_sz_dec, len(itos_dec)) self.out.weight.data = self.emb_dec.weight.data self.W1 = rand_p(nh*2, em_sz_dec) self.l2 = nn.Linear(em_sz_dec, em_sz_dec) self.l3 = nn.Linear(em_sz_dec+nh*2, em_sz_dec) self.V = rand_p(em_sz_dec) def forward(self, inp, y=None): sl,bs = inp.size() h = self.initHidden(bs) emb = self.emb_enc_drop(self.emb_enc(inp)) enc_out, h = self.gru_enc(emb, h) h = h.view(2,2,bs,-1).permute(0,2,1,3).contiguous().view(2,bs,-1) h = self.out_enc(self.drop_enc(h)) dec_inp = V(torch.zeros(bs).long()) res,attns = [],[] w1e = enc_out @ self.W1 for i in range(self.out_sl): w2h = self.l2(h[-1]) u = F.tanh(w1e + w2h) a = F.softmax(u @ self.V, 0) attns.append(a) Xa = (a.unsqueeze(2) * enc_out).sum(0) emb = self.emb_dec(dec_inp) wgt_enc = self.l3(torch.cat([emb, Xa], 1)) outp, h = self.gru_dec(wgt_enc.unsqueeze(0), h) outp = self.out(self.out_drop(outp[0])) res.append(outp) dec_inp = V(outp.data.max(1)[1]) if (dec_inp==1).all(): break if (y is not None) and (random.random()<self.pr_force): if i>=len(y): break dec_inp = y[i] return torch.stack(res) def initHidden(self, bs): return V(torch.zeros(self.nl*2, bs, self.nh)) rnn = Seq2SeqRNN_All(fr_vecd, fr_itos, dim_fr_vec, en_vecd, en_itos, dim_en_vec, nh, enlen_90) learn = RNN_Learner(md, SingleModel(to_gpu(rnn)), opt_fn=opt_fn) learn.crit = seq2seq_loss learn.fit(lr, 1, cycle_len=15, use_clr=(20,10), stepper=Seq2SeqStepper) ###Output _____no_output_____ ###Markdown Test ###Code x,y = next(iter(val_dl)) probs = learn.model(V(x)) preds = to_np(probs.max(2)[1]) for i in range(180,190): print(' '.join([fr_itos[o] for o in x[:,i] if o != 1])) print(' '.join([en_itos[o] for o in y[:,i] if o != 1])) print(' '.join([en_itos[o] for o in preds[:,i] if o!=1])) print() ###Output quels facteurs pourraient influer sur le choix de leur emplacement ? _eos_ what factors influencetheir location ? _eos_ what factors might affect the choice of their ? ? _eos_ quโ€™ est -ce qui ne peut pas changer ? _eos_ what can not change ? _eos_ what can not change change _eos_ que faites - vous ? _eos_ what do you do ? _eos_ what do you do ? _eos_ qui rรฉglemente les pylรดnes d' antennes ? _eos_ who regulates antenna towers ? _eos_ who regulates the antenna ? ? _eos_ oรน sont - ils situรฉs ? _eos_ where are they located ? _eos_ where are they located ? _eos_ quelles sont leurs compรฉtences ? _eos_ what are their qualifications ? _eos_ what are their skills ? _eos_ qui est victime de harcรจlement sexuel ? _eos_ who experiences sexual harassment ? _eos_ who is victim harassment harassment ? _eos_ quelles sont les personnes qui visitent les communautรฉs autochtones ? _eos_ who visits indigenous communities ? _eos_ who are the people people ? ? pourquoi ces trois points en particulier ? _eos_ why these specific three ? _eos_ why are these three specific ? _eos_ pourquoi ou pourquoi pas ? _eos_ why or why not ? _eos_ why or why not ? _eos_
templates/extratrees.ipynb
###Markdown Imports ###Code import time import gc gc.enable() import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import scipy.stats as st from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import #task-dependent from sklearn.ensemble import ExtraTreesClassifier as XTC from sklearn.ensemble import ExtraTreesRegressor as XTR import optuna from optuna.samplers import TPESampler train = pd.read_csv('') test = pd.read_csv('') ###Output _____no_output_____ ###Markdown Config ###Code SEED = 2311 N_FOLDS = 5 N_THREADS = 4 #number of CPUs IS_CLF = True #True for Classification, False for Regression TARGET = '----' ID_COL = '----' TEST_INDEX = test.pop(ID_COL) # id column ###Output _____no_output_____ ###Markdown Preprocessing ###Code features = list(test.columns) cat_features = list(test.select_dtypes('category').columns) num_features = list(test.select_dtypes('number').columns) train[cat_features] = train[cat_features].astype('int') test[cat_features] = test[cat_features].astype('int') labels = LabelEncoder() train[TARGET] = labels.fit_transform(train[TARGET]) ###Output _____no_output_____ ###Markdown Baseline ###Code baseline_params = { 'n_estimators': 150, 'n_jobs': N_THREADS, 'verbose': 0, 'random_state': SEED } if TASK_IS_CLF: baseline = XTC(**baseline_params).fit(train[features], train[TARGET]) else: baseline = XTR(**baseline_params).fit(train[features], train[TARGET]) predictions = baseline.predict(test[features]) submission_baseline = pd.DataFrame({ID_COL: TEST_INDEX, TARGET: labels.inverse_transform(predictions)}) del baseline gc.collect() ###Output _____no_output_____ ###Markdown Hyperparameter tuning ###Code def objective(trial, train): param_grid = { 'n_estimators': trial.suggest_int('n_estimators', 200, 2000, step=50), 'max_depth': trial.suggest_int('max_depth', 3, 15), 'max_features': trial.suggest_discrete_uniform('max_features', 0.1, 1.0, 0.1), 'bootstrap': trial.suggest_categorical('bootstrap', [True, False]), 'ccp_alpha': trial.suggest_uniform('ccp_alpha', 0.0, 0.1) } if param_grid['bootstrap']: param_grid['oob_score'] = trial.suggest_categorical('oob_score', [True, False]) param_grid['max_samples'] = trial.suggest_uniform('max_samples', 0.1, 1.0) if IS_CLF: param_grid['criterion'] = trial.suggest_categorical('criterion', ['gini', 'entropy']) param_grid['class_weight'] = trial.suggest_categorical('class_weight', ['balanced', 'balanced_subsample']) model = XTC(**param_grid, verbose=0, n_jobs=N_THREADS, random_state=SEED) else: param_grid['criterion'] = trial.suggest_categorical('criterion', ['squared_error', 'absolute_error']) model = XTR(**param_grid, verbose=0, n_jobs=N_THREADS, random_state=SEED) scores = [] for fold in range(N_FOLDS): xtrain = train[train.fold != fold] ytrain = xtrain[TARGET] xval = train[train.fold == fold] yval = xval[TARGET] gc.collect() model.fit(xtrain[features], ytrain) val_preds = model.predict(xval[features]) # val_preds = model.predict_proba(xval[features])[:1] score = ----(yval, val_preds) scores.append(score) return np.mean(scores) def tune(objective, direction, train): study = optuna.create_study(sampler=TPESampler(seed=SEED), direction=direction) study.optimize(lambda trial: objective(trial, train), n_trials=100) best_params = study.best_params print(f'Best score: {study.best_value:.5f}') print('Best params:') for key, value in best_params.items(): print(f'\t{key}: {value}') return best_params direction = '----' #maximize/minimize according to metric best_params = tune(objective, direction, train) gc.collect() ###Output _____no_output_____ ###Markdown CV + Inference ###Code def custom_cv(train, test, features, model): oof_preds = {} test_preds = [] scores = [] cv_start = time.time() for fold in range(N_SPLITS): print('-' * 40) xtrain = train[train.fold != fold].reset_index(drop=True) xval = train[train.fold == fold].reset_index(drop=True) val_idx = xval[ID_COL].values.tolist() fold_start = time.time() model.fit(xtrain[features], xtrain[TARGET]) val_preds = model.predict(xval[features]) # val_preds = model.predict_proba(xval[features])[:,1] oof_preds.update(dict(zip(val_idx, val_preds))) score = ----(xval[TARGET], val_preds) scores.append(score) fold_end = time.time() print(f'Fold #{fold}: Score = {score:.5f}\t[Time: {fold_end - fold_start:.2f} secs]') test_preds.append(model.predict(test[features])) # test_preds.append(model.predict_proba(test[features])[:,1]) cv_end = time.time() print(f'\nAverage score = {np.mean(scores):.5f} with std. dev. = {np.std(scores):.5f}') print(f'[Total time: {cv_end - cv_start:.2f} secs]\n') oof_preds = pd.DataFrame.from_dict(oof_preds, orient='index').reset_index() test_preds = st.mode(np.column_stack(test_preds), axis=1).mode # test_preds = np.mean(np.column_stack(test_preds), axis=1) return oof_preds, test_preds if IS_CLF: model = XTC(**best_params, verbose=0, n_jobs=N_THREADS, random_state=SEED) else: model = XTR(**best_params, verbose=0, n_jobs=N_THREADS, random_state=SEED) oof_preds, test_preds = custom_cv(train, test, features, model) ###Output _____no_output_____ ###Markdown Postprocessing and Submission ###Code #any post-processing if needed test_preds = labels.inverse_transform(test_preds) submission_xt = pd.DataFrame({ID_COL: TEST_INDEX, TARGET: test_preds}) submission_xt.to_csv('submission_xt.csv', index=False) ###Output _____no_output_____
patrick_codes/twiiter_api.ipynb
###Markdown This Notebook would be used to Fetch Twitter Data via Twitter API > import libraries ###Code import pandas as pd import tweepy from tweepy import OAuthHandler from tweepy import API from tweepy import Cursor from datetime import datetime, date, time, timedelta from collections import Counter import os, sys import csv ###Output _____no_output_____ ###Markdown > Load dotenv to expose api keys to the application ###Code from dotenv import load_dotenv load_dotenv('../.env') API_KEY="API_KEY" API_SECRET_KEY="API_SECRET_KEY" ACCESS_TOKEN="ACCESS_TOKEN" ACCESS_TOKEN_SECRET="ACCESS_TOKEN_SECRET" print(API_KEY, API_SECRET_KEY, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) API_KEY = os.environ.get(API_KEY) API_SECRET_KEY = os.getenv(API_SECRET_KEY) ACCESS_TOKEN = os.getenv(ACCESS_TOKEN) ACCESS_TOKEN_SECRET=os.getenv(ACCESS_TOKEN_SECRET) auth = OAuthHandler(API_KEY, API_SECRET_KEY) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True) auth_api = API(auth) ###Output _____no_output_____ ###Markdown > Testing Api ###Code search_words = "airquality" date_since="2020-03-03" # Collect tweets tweets = tweepy.Cursor(api.search, q=search_words, tweet_mode='extended', lang="en", since=date_since ).items(2) # Iterate and print tweets for tweet in tweets: print(tweet.full_text) # print(tweet._json['full_text']) tweets = Cursor(api.user_timeline, id='WestAfricaAQ', tweet_mode='extended', lang="en", count=10).items(2) for tweet in tweets: print(tweet.full_text) ###Output RT @AguGeohealth: Are you a #BlackGeoscientist (anywhere in the world!) who is interested in how our environment and Earth impacts human heโ€ฆ RT @cleanaironea: 1/n While this is preliminary, we have tried to firstly test our open source data mining tools plus compare current trendโ€ฆ ###Markdown > TWITTER API ALL SET UP! Data Extraction ###Code hashtags= ['#airquality ','#cleanair','#airpollution' ,'#pollution', '#hvac', '#airpurifier', '#indoorairquality','#health', '#covid', '#air', '#climatechange',' #indoorair', '#environment','#airconditioning', '#coronavirus', '#heating', '#mold', '#freshair', '#safety', '#ac', '#airfilter', '#allergies', '#hvacservice', '#ventilation','#wellness','#delhipollution', '#airconditioner','#airqualityindex','#bhfyp', 'particulate matter', 'fine particulate matter','#pm2_5', '#emissions', '#natureishealing','#nature','#pollutionfree', '#wearethevirus'] accounts = ['@GhanaAQ','@asap_eastafrica', '@WestAfricaAQ'] geocodes = {'lagos':("6.48937,3.37709"),'cape_town':("-33.99268,18.46654"), 'joburg' : ("-26.22081,28.03239"), 'accra' : ("5.58445,-0.20514"), 'nairobi' : ("-1.27467,36.81178"), 'mombasa' : ("-4.04549,39.66644"), 'kigali' : ("-1.95360,30.09186"), 'kampala' : ("0.32400,32.58662")} str(65) x = geocodes['lagos'] x+','+str(7)+'km' x ###Output _____no_output_____ ###Markdown ___________________________________ ###Code !pip install GetOldTweets3 import twint import GetOldTweets3 as got got.manager.TweetCriteria # tweetCriteria = got.manager.TweetCriteria().setQuerySearch('europe refugees')\ # .setSince("2015-05-01")\ # .setUntil("2015-09-30")\ # .setMaxTweets(1) # tweet = got.manager.TweetManager.getTweets(tweetCriteria)[0] # print(tweet.text) # %tb class GetCursor(): import tweepy from tweepy import OAuthHandler from tweepy import API from tweepy import Cursor from dotenv import load_dotenv import os, sys def __init__(self,env_file=None): if env_file is None: self.env = load_dotenv('../.env') else: self.env = load_dotenv(env_file) def __repr__(self): return "Twitter API Auth Object" def get_auth(self): API_KEY="API_KEY" API_SECRET_KEY="API_SECRET_KEY" ACCESS_TOKEN="ACCESS_TOKEN" ACCESS_TOKEN_SECRET="ACCESS_TOKEN_SECRET" self.__API_KEY = os.environ.get(API_KEY) self.__API_SECRET_KEY = os.getenv(API_SECRET_KEY) self.__ACCESS_TOKEN = os.getenv(ACCESS_TOKEN) self.__ACCESS_TOKEN_SECRET=os.getenv(ACCESS_TOKEN_SECRET) try: self.__auth = OAuthHandler(API_KEY, API_SECRET_KEY) self.__auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) self.api = API(auth, wait_on_rate_limit=True) self.auth_api = API(auth, retry_count=5,retry_delay=5, timeout=60, wait_on_rate_limit=True,wait_on_rate_limit_notify=True) except tweepy.TweepError as e: print(e.reason()) class GetTweets(GetCursor): # import dependencies import tweepy from tweepy import Cursor from datetime import datetime, date, time, timedelta def __init__(self,env_file=None): super().__init__(env_file) self.get_auth() print('Authentication successful') def __repr__(self): return "Get tweets from Hashtags -> # & Users -> @" """ helper functions 1. limit_handled - handle wait_limit error 2. check_is_bot - check if handle is a bot 3. save_result - save data to a file """ def limit_handled(cursor): while True: try: yield cursor.next() except tweepy.RateLimitError: time.sleep(15 * 60) #default 15mins def check_is_bot(self, handle)-> bool: self.is_bot = False account_age_days = 0 item = self.auth_api.get_user(handle) account_created_date = item.created_at delta = datetime.utcnow() - account_created_date account_age_days = delta.days if account_age_days < 180: #(6 months) is_bot=True return self.is_bot def save_result(self, data:pd.DataFrame, path:str='../saved_data/', fname='new_file'): data.to_csv(path+name, index=False) def get_handle_tweets(self, handles:list=[], items_count=20): self.handles = handles if len(self.handles) > 0: for handle in self.handles: print(f"collecting tweets of -> {handle}") users_tweets = {} # this helps avoid Tweepy errors like suspended users or user not found errors try: item = self.auth_api.get_user(handle) except tweepy.TweepError as e: print("found errors!!!") continue #check if handle is a potential bot if self.check_is_bot(handle): print('bot alert!!!, skipping the bad guy :(') continue else: current_handle_tweets = Cursor(api.user_timeline, id=handle, tweet_mode='extended', lang="en").items(items_count) for tweet in current_handle_tweets: users_tweets[handle] = ({'tweet_text':tweet.full_text.encode('utf-8'), 'tweet_date':tweet._json['created_at'], 'retweet_count':tweet._json['retweet_count'], 'favorite_count':tweet._json['favorite_count']}) self.handles_data = pd.DataFrame(users_tweets).T return self.handles_data def get_tag_tweets(self, tags:list=[], geocode:str=None, radius:int=None, until_date:str="2020-03-30", no_of_items=10): """ until_date should be formatted as YYYY-MM-DD geocode should be used """ #if geocode is not None self.tags = tags tags_tweets = {} for tag in self.tags: print(f"collecting tweets of -> {tag}") if radius is not None and geocode is not None: geocode = geocode+','+str(radius)+'km' current_tag_tweets = tweepy.Cursor(api.search, q=tag, tweet_mode='extended', lang="en", since=until_date, geocode=geocode, ).items(no_of_items) for tweet in current_tag_tweets: tags_tweets[tag] = ({'tweet_text':tweet.full_text.encode('utf-8'), 'tweet_date':tweet._json['created_at'], 'retweet_count':tweet._json['retweet_count'], 'favorite_count':tweet._json['favorite_count']}) self.tags_data = pd.DataFrame(tags_tweets).T return self.tags_data def main(): return "wip" if __name__== main(): pass get_tweet= GetTweets() trial_tags = ['#airquality']#,'#cleanair','#airpollution' ,'#pollution', #'#hvac', '#airpurifier'] trial_accounts = ['@GhanaAQ']#,'@asap_eastafrica', '@WestAfricaAQ']created_at ###Output _____no_output_____ ###Markdown >> test for tags ###Code trial_tags_result = get_tweet.get_tag_tweets(trial_tags) trial_tags_result ###Output _____no_output_____ ###Markdown >> test for accounts ###Code trial_account_results = get_tweet.get_handle_tweets(trial_accounts) trial_account_results ###Output _____no_output_____ ###Markdown _____________________________________________________________________________________________________ Working with BlueBird ###Code !pip install bluebird ###Output Defaulting to user installation because normal site-packages is not writeable Collecting bluebird Downloading bluebird-0.0.4a0-py3-none-any.whl (19 kB) Requirement already satisfied: lxml in /home/patrick/.local/lib/python3.6/site-packages (from bluebird) (4.5.0) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from bluebird) (2.24.0) Collecting orderedset Downloading orderedset-2.0.3.tar.gz (101 kB)  |โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 101 kB 306 kB/s ta 0:00:01 [?25hRequirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests->bluebird) (2018.1.18) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/lib/python3/dist-packages (from requests->bluebird) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /home/patrick/.local/lib/python3.6/site-packages (from requests->bluebird) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/lib/python3/dist-packages (from requests->bluebird) (2.6) Building wheels for collected packages: orderedset Building wheel for orderedset (setup.py) ... [?25ldone [?25h Created wheel for orderedset: filename=orderedset-2.0.3-cp36-cp36m-linux_x86_64.whl size=255683 sha256=bd7ff7ebd8f0f3274190dc56a7abf1b9319df19040e21cc1433ca5b5f8670266 Stored in directory: /home/patrick/.cache/pip/wheels/ff/f8/cf/5baf5e74a6f3a9b5cb405408673ed11dc1276599cc0877dae7 Successfully built orderedset Installing collected packages: orderedset, bluebird Successfully installed bluebird-0.0.4a0 orderedset-2.0.3 WARNING: You are using pip version 20.2.2; however, version 20.2.3 is available. You should consider upgrading via the '/usr/bin/python3 -m pip install --upgrade pip' command. ###Markdown This Notebook would be used to Fetch Twitter Data via Twitter API > import libraries ###Code import pandas as pd import tweepy from tweepy import OAuthHandler from tweepy import API from tweepy import Cursor from datetime import datetime, date, time, timedelta from collections import Counter import os, sys import csv ###Output _____no_output_____ ###Markdown > Load dotenv to expose api keys to the application ###Code from dotenv import load_dotenv load_dotenv('../.env') API_KEY="API_KEY" API_SECRET_KEY="API_SECRET_KEY" ACCESS_TOKEN="ACCESS_TOKEN" ACCESS_TOKEN_SECRET="ACCESS_TOKEN_SECRET" print(API_KEY, API_SECRET_KEY, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) API_KEY = os.environ.get(API_KEY) API_SECRET_KEY = os.getenv(API_SECRET_KEY) ACCESS_TOKEN = os.getenv(ACCESS_TOKEN) ACCESS_TOKEN_SECRET=os.getenv(ACCESS_TOKEN_SECRET) auth = OAuthHandler(API_KEY, API_SECRET_KEY) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True) auth_api = API(auth) ###Output _____no_output_____ ###Markdown > Testing Api ###Code search_words = "#wildfires" date_since="2018-11-16" # Collect tweets tweets = tweepy.Cursor(api.search, q=search_words, lang="en", since=date_since).items(2) # Iterate and print tweets for tweet in tweets: print(tweet.text) ###Output RT @jcfphotog: The Glass Fire burns in the hills of Calistoga, Calif., on Monday, Sept. 28, 2020. Calistoga is under mandatory evacuation tโ€ฆ The Glass Fire burns in the hills of Calistoga, Calif., on Monday, Sept. 28, 2020. Calistoga is under mandatory evaโ€ฆ https://t.co/qCnmxzqQyz
week_6.ipynb
###Markdown Football Prediction - Regression Analysis1. Defining the Questiona) Specifying the QuestionMchezopesa Ltd and tasked to accomplish the task below. A prediction result of a game between team 1 and team 2, based on who's home and who's away, and on whether or not the game is friendly (include rank in your training). You have two possible approaches (as shown below) given the datasets that will be providedInput: Home team, Away team, Tournament type (World cup, Friendly, Other)**Approach 1: Polynomial approach**What to train given:Rank of home teamRank of away teamTournament typeModel 1: Predict how many goals the home team scores.Model 2: Predict how many goals the away team scores.**Approach 2: Logistic approach**Feature Engineering: Figure out from the home teamโ€™s perspective if the game is a Win, Lose or Draw (W, L, D)b) Defining the Metric for SuccessUsing Polynomial regression, the Root Mean Squared Error will be used to measure the performace of the model.The prediction of model using logistic regression model will be measured using the accuracy scorec) Understanding the contextAs a data analyst at Mchezo Ltd, the following task is required of you: Make a prediction of a game between team 1 and team 2 , based on who's home and who isaway and on whether or not the game is friendly.A more detailed explanation and history of the rankings is available here: [link text](https://en.wikipedia.org/wiki/FIFA_World_Rankings)An explanation of the ranking procedure is available here: [link text](https://www.fifa.com/fifa-world-ranking/procedure/men.html)Some features are available on the FIFA ranking page: [link text](https://https://www.fifa.com/fifa-world-ranking/ranking-table/men/index.html)d) Recording the Experimental DesignPerform appropriate regressions on the data including your justificationChallenge your solution by providing insights on how you can make improvements.* Perform your EDA* Perform any necessary feature engineering* Check of multicollinearity* Cross-validate the model* Compute RMSE* Create residual plots for your models, and assess their heteroscedasticity using Bartlettโ€™s test ###Code # Import Libraries # Analysis libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Machine learning libraries from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split, GridSearchCV, KFold, cross_val_score from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.metrics import mean_squared_error, f1_score, accuracy_score, confusion_matrix # Loading the Datasets # Fifa dataset rank = pd.read_csv('fifa_ranking.csv') # results dataset results = pd.read_csv('results.csv') # Previewing the top of our dataset rank.head() results.head() # getting the info rank.info() results.info() rank.isnull().sum() results.isnull().sum() # check rank.duplicated().sum() # drop duplicate in rank rank.drop_duplicates(inplace=True) rank.duplicated().sum() # drop duplicate in results results.duplicated().sum() # selecting all non-objects data cols = rank.dtypes[rank.dtypes != "object"].index cols # Checking for Outliers # Ranking Dataset fig, ax = plt.subplots(len(cols), figsize=(8,30)) for i, col_val in enumerate(cols): sns.boxplot(y=rank[col_val], ax=ax[i]) ax[i].set_title('Box plot - {}'.format(col_val), fontsize=10) ax[i].set_xlabel(col_val, fontsize=8) plt.tight_layout() plt.show() # Checking for outliers # Results dataset cols_re = results.dtypes[results.dtypes != "object"].index fig, ax = plt.subplots(len(cols_re), figsize=(8,20)) for i, col_val in enumerate(cols_re): sns.boxplot(y=results[col_val], ax=ax[i]) ax[i].set_title('Box plot - {}'.format(col_val), fontsize=10) ax[i].set_xlabel(col_val, fontsize=8) plt.tight_layout() plt.show() # Changing the date column data type to datetime# rank['rank_date'] = pd.to_datetime(rank['rank_date']) results['date'] = pd.to_datetime(results['date']) # Create new columns and split the date colums into month and year. # # For the year columns rank['year'] = rank['rank_date'].dt.year results['year'] = results['date'].dt.year # Now for the month columns rank['month'] = rank['rank_date'].dt.month results['month'] = results['date'].dt.month # Dropping irrelevant columns in rank dataset rank_clean = rank.drop(['country_abrv', 'total_points', 'previous_points', 'rank_change', 'cur_year_avg', 'cur_year_avg_weighted', 'last_year_avg', 'last_year_avg_weighted', 'two_year_ago_avg', 'two_year_ago_weighted', 'three_year_ago_avg', 'three_year_ago_weighted',], axis=1) results_clean =results.drop(['city', 'country' ], axis=1) rank_clean.head() results_clean.head() # Merging the dataset # Home Team dataset total_home = pd.merge(results_clean, rank_clean, left_on = ['home_team', 'year', 'month'], right_on = ['country_full', 'year', 'month'], how = 'inner' ) # Merging the dataset # Away Team dataset total_away = pd.merge(results_clean, rank_clean, how = 'inner', left_on = ['year', 'month', 'away_team'], right_on = ['year', 'month', 'country_full']) # Renaming the ranks columns to get the home team and away team ranks # total_home.rename({'rank' : 'home_rank'}, axis = 1, inplace = True) total_away.rename({'rank' : 'away_rank'}, axis =1, inplace = True) away = total_away[['away_team','away_rank','year','month']] away.head() total_df = pd.merge(total_home, away, how = 'inner', left_on = ['year', 'month', 'away_team'], right_on = ['year', 'month', 'away_team']) total_df.head() total_df = total_df.drop(['date','country_full','rank_date','confederation'], 1) total_df.head() # Dropping duplicate rows from the dataset total_df.drop_duplicates(keep = 'first', inplace = True) total_df.isnull().sum() # 0 means a draw # A positive value means the home team won # A negative value means the away team won, ie. that the home team lost. # total_df['score'] = total_df['home_score'] - total_df['away_score'] # Creating a function to be used to create a win, draw or lose column # def result(goals): if goals > 0: return 'Win' elif goals < 0: return 'Lose' else: return 'Draw' # Applying the result function to the dataframe total_df['result'] = total_df['score'].apply(lambda x: result(x)) # Dropping the score column, as it has served its purpose #total_df.drop('score', axis = 1, inplace = True) # Creating a column of total goals scored total_df['total_goals'] = total_df['home_score'] + total_df['away_score'] # Previewing the last five rows of the dataframe together with the result column # total_df.tail() ###Output _____no_output_____ ###Markdown EDA ###Code # Pie chart to check the distribution of W,D,L total_df['result'].value_counts().plot(kind='pie', subplots=True, figsize=(10, 5), autopct='%1.1f%%') # Ploting the univariate summaries and recording our observations # Boxplots # Creating a list of columns to check for outliers # Creating a list of colors # col_list = ['home_score', 'away_score', 'home_rank', 'away_rank'] # Plotting boxplots of the col_list columns to check for outliers # fig, axes = plt.subplots(nrows = 2, ncols = 2, figsize = (15, 10)) plt.suptitle('Boxplots', fontsize = 15, y = 0.92) for ax, data, column, color in zip(axes.flatten(), total_df, col_list, colors): sns.boxplot(total_df[column], ax = ax) ###Output _____no_output_____ ###Markdown Regression ###Code # Polynomial # choosing columns to use in regression # reg_total = total_df[['home_team', 'away_team', 'home_score', 'away_score', 'tournament', 'home_rank', 'away_rank']] reg_total.head() # Displaying the correlations between the variables corr = reg_total.corr() corr sns.heatmap(corr, annot=True) # multicollinearity with VIF table pd.DataFrame(np.linalg.inv(corr.values), index = corr.index, columns=corr.columns) reg_total.head() X = reg_total.iloc[:, [2, 3, 5, 6]] y = reg_total.home_score # Splitting the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 101) # Standardising the X_train and the X_test to the same scale sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting the polynomial features to the X_train and X_test poly_features = PolynomialFeatures(degree = 1) X_train = poly_features.fit_transform(X_train) X_test = poly_features.fit_transform(X_test) # Training the model regressor = LinearRegression() regressor.fit(X_train, y_train) # Making predictions y_pred = regressor.predict(X_test) # Measuring the accuracy of the model print(np.sqrt(mean_squared_error(y_test, y_pred))) # Creating a parameters dictionary # params = {'normalize': [True, False], 'fit_intercept': [True, False]} # Creating a cross validation of 5 folds # kfold = KFold(n_splits = 5) # Using grid search to find the optimal parameters grid_search = GridSearchCV(estimator=regressor, param_grid = params, cv = kfold) # Fitting the grid search grid_search_results = grid_search.fit(X, y) # Displaying the best parameters and the the best score print(f'Best score is {grid_search.best_score_}') # Performing cross validation of ten folds scores = cross_val_score(regressor, X, y, cv = 10) # Calculating the mean of the cross validation scores print(f'Mean of cross validation scores is {np.round(scores.mean()*-1, 3)}') # Calculating the variance of the cross validation scores from the mean print(f'Standard deviation of the cross validation scores is {np.round(scores.std(), 3)}') # Plotting the residual plot # Residuals have been calculated by by substracting the test value from the predicted value residuals = np.subtract(y_pred, y_test) # Plotting the residual scatterplot plt.scatter(y_pred, residuals, color='black') plt.ylabel('residual') plt.xlabel('fitted values') plt.axhline(y= residuals.mean(), color='red', linewidth=1) plt.show() # Performing the barlett's test test_result, p_value = sp.stats.bartlett(y_pred, residuals) # Calculating the critical value of the chi squared distribution, to compare it with the test_result degrees_of_freedom = len(y_pred) - 1 probability = 1 - p_value critical_value = sp.stats.chi2.ppf(probability, degrees_of_freedom) if (test_result > critical_value): print('The variances are heterogenous') else: print('The variances are homogeneous') ###Output The variances are homogeneous ###Markdown Logistic ###Code # Selecting the relevant features for the logistic regression model log_total = total_df[['home_team', 'away_team', 'home_score', 'away_score', 'tournament', 'year', 'home_rank', 'away_rank', 'result']] # Previewing the first five rows of the data log_total.head() # Checking for correlations between features # plt.figure(figsize = (10, 6)) sns.heatmap(log_total.corr(), annot = True) plt.title('Correlation between variables') plt.show() # Spliting the data into features and the target variable X = log_total.drop('result', axis = 1) y = log_total.result # Encoding the categorical features X = pd.get_dummies(X, drop_first=True) # Spliting the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 101) # Instantiating the model and training the model logistic = LogisticRegression() logistic.fit(X_train, y_train) # Test and Training Scores score = logistic.score(X_train, y_train) score2 = logistic.score(X_test, y_test) print(f'Training set accuracy: {score}') print(f'Test set accuracy: {score2}') # Making predictions y_pred = logistic.predict(X_test) # confsion matrix print(confusion_matrix(y_pred,y_test)) # Creating a dictioanry of parameters to be tuned params = {'C': [1.0, 5.0], 'penalty': ['l1', 'l2']} logistic = LogisticRegression() # Creating a cross validation of 10 folds kfold = KFold(n_splits = 10) # Using grid search to find the optimal parameters grid_search = GridSearchCV(estimator=logistic, param_grid = params, cv = kfold) # Fitting the grid search grid_search_results = grid_search.fit(X, y) # Displaying the best parameters and the the best score print(f'Best score is {grid_search.best_score_}') ###Output _____no_output_____
nb/tests/models.ipynb
###Markdown `DESIspeculator._emulator` test ###Code # load test parameter and spectrum. These were generated for the validation of the trained Speculator model test_theta = np.load('/Users/chahah/data/gqp_mc/speculator/DESI_complexdust.theta_test.npy')[:10000] test_logspec = np.load('/Users/chahah/data/gqp_mc/speculator/DESI_complexdust.logspectrum_fsps_test.npy')[:10000] # initiate desi model Mdesi = Models.DESIspeculator() %timeit Mdesi._emulator(test_theta[0]) log_emu = np.array([Mdesi._emulator(tt) for tt in test_theta]) # 100,000 evaluates takes about 2 mins fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for i in range(10): sub.plot(Mdesi._emu_waves, np.exp(log_emu[i]), c='C%i' % i) sub.plot(Mdesi._emu_waves, np.exp(test_logspec[i]), c='k', ls=':', lw=1) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(Mdesi._emu_waves.min(), Mdesi._emu_waves.max()) sub.set_ylabel('SSP luminosity [$L_\odot/\AA$]', fontsize=25) sub.set_ylim(0., None) # fractional error of the Speculator model frac_dspectrum = 1. - np.exp(log_emu - test_logspec) frac_dspectrum_quantiles = np.nanquantile(frac_dspectrum, [0.0005, 0.005, 0.025, 0.16, 0.84, 0.975, 0.995, 0.9995], axis=0) fig = plt.figure(figsize=(15,5)) sub = fig.add_subplot(111) sub.fill_between(Mdesi._emu_waves, frac_dspectrum_quantiles[0], frac_dspectrum_quantiles[-1], fc='C0', ec='none', alpha=0.1, label=r'$99.9\%$') sub.fill_between(Mdesi._emu_waves, frac_dspectrum_quantiles[1], frac_dspectrum_quantiles[-2], fc='C0', ec='none', alpha=0.2, label=r'$99\%$') sub.fill_between(Mdesi._emu_waves, frac_dspectrum_quantiles[2], frac_dspectrum_quantiles[-3], fc='C0', ec='none', alpha=0.3, label=r'$95\%$') sub.fill_between(Mdesi._emu_waves, frac_dspectrum_quantiles[3], frac_dspectrum_quantiles[-4], fc='C0', ec='none', alpha=0.5, label=r'$68\%$') sub.legend(loc='upper right', fontsize=20) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(Mdesi._emu_waves.min(), Mdesi._emu_waves.max()) sub.set_ylabel(r'$(f_{\rm speculator} - f_{\rm test})/f_{\rm test}$', fontsize=25) sub.set_ylim(-0.1, 0.1) ###Output _____no_output_____ ###Markdown Lets compare it to the FSPS model ###Code fsps = Models.FSPS(name='nmf_bases') fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for i in range(3): _w, _ssp_lum = fsps._sps_model(test_theta[i]) sub.plot(_w, _ssp_lum, c='r') sub.plot(Mdesi._emu_waves, np.exp(log_emu[i]), c='C%i' % i, ls='--') sub.plot(Mdesi._emu_waves, np.exp(test_logspec[i]), c='k', ls=':', lw=1) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(Mdesi._emu_waves.min(), Mdesi._emu_waves.max()) sub.set_ylabel('SSP luminosity [$L_\odot/\AA$]', fontsize=25) sub.set_ylim(0., None) ###Output /Users/chahah/projects/provabgs/src/provabgs/models.py:379: RuntimeWarning: divide by zero encountered in log10 self._ssp.params['logzsol'] = np.log10(z/0.0190) # log(Z/Zsun) /Users/chahah/projects/provabgs/src/provabgs/models.py:379: RuntimeWarning: divide by zero encountered in log10 self._ssp.params['logzsol'] = np.log10(z/0.0190) # log(Z/Zsun) /Users/chahah/projects/provabgs/src/provabgs/models.py:379: RuntimeWarning: divide by zero encountered in log10 self._ssp.params['logzsol'] = np.log10(z/0.0190) # log(Z/Zsun) ###Markdown `DESIspeculator.sed` test ###Code some_theta = np.concatenate([[10.], test_theta[0][:-1]]) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for z in [0.1, 0.2, 0.3]: w, flux = Mdesi.sed(some_theta, z) sub.plot(w, flux, label='$z=%.1f$' % z) sub.legend(loc='upper left', fontsize=20) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(Mdesi._emu_waves.min(), Mdesi._emu_waves.max()) sub.set_ylabel(r'$f(\lambda)$ [$10^{-17}erg/s/cm^2/\AA$]', fontsize=25) sub.set_ylim(0., None) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for z in [0.1, 0.2, 0.3]: w, flux = Mdesi.sed(some_theta, z) sub.plot(w, flux, label='$z=%.1f$' % z) _w, _flux = fsps.sed(some_theta, z) sub.plot(_w, _flux, c='k', ls=':') sub.legend(loc='upper left', fontsize=20) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(Mdesi._emu_waves.min(), Mdesi._emu_waves.max()) sub.set_ylabel(r'$f(\lambda)$ [$10^{-17}erg/s/cm^2/\AA$]', fontsize=25) sub.set_ylim(0., 1.5) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for vdisp in [0., 50, 150, 500, 1000]: w, flux = Mdesi.sed(some_theta, 0.1, vdisp=vdisp) sub.plot(w, flux, label=r'$v_{\rm disp}=%.1f$' % vdisp) sub.legend(loc='upper left', fontsize=20) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(7000., 8000.) sub.set_ylabel(r'$f(\lambda)$ [$10^{-17}erg/s/cm^2/\AA$]', fontsize=25) sub.set_ylim(0., None) from gqp_mc import data as Data specs, prop = Data.Spectra(sim='lgal', noise='bgs0', lib='bc03', sample='mini_mocha') fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) w, flux = Mdesi.sed(some_theta, 0.1, vdisp=0) sub.plot(w, flux, c='k', lw=3, label=r'model') w, flux = Mdesi.sed(some_theta, 0.1, vdisp=150) sub.plot(w, flux, c='C0', lw=3, label=r'$v_{\rm disp}=150$') w, flux = Mdesi.sed(some_theta, 0.1, vdisp=150, resolution=[specs['res_b'][0], specs['res_r'][0], specs['res_z'][0]]) sub.plot(w, flux, c='C1', lw=3, ls='--', label=r'$v_{\rm disp}=150$ + res. matrix') sub.legend(loc='upper left', fontsize=20) sub.set_xlabel('wavelength [$\AA$]', fontsize=25) sub.set_xlim(7000., 8000.) sub.set_ylabel(r'$f(\lambda)$ [$10^{-17}erg/s/cm^2/\AA$]', fontsize=25) sub.set_ylim(0., None) %timeit w, flux = Mdesi.sed(some_theta, 0.1, vdisp=0) %timeit w, flux = Mdesi.sed(some_theta, 0.1, vdisp=150) %timeit w, flux = Mdesi.sed(some_theta, 0.1, vdisp=150, resolution=[specs['res_b'][0], specs['res_r'][0], specs['res_z'][0]]) ###Output _____no_output_____ ###Markdown `DESIspeculator.SFH` and `DESIspeculator.ZH` tests ###Code tlookback, sfh = Mdesi.SFH(some_theta, 0.1) # get SFH for some arbitrary galaxy at z=0.1 avgSFR = Mdesi.avgSFR(some_theta, 0.1, dt=1) fig = plt.figure(figsize=(6,4)) sub = fig.add_subplot(111) sub.plot(tlookback, sfh) for i in range(4): sub.plot(tlookback, 10**some_theta[0]*some_theta[i+1] * Mdesi._sfh_basis[i](tlookback) / np.trapz(Mdesi._sfh_basis[i](tlookback), tlookback), c='C%i' % i, ls='--') sub.legend(loc='upper right', handletextpad=0, markerscale=2, fontsize=20) sub.set_xlabel(r'$t_{\rm lookback}$', fontsize=25) sub.set_xlim(0, Mdesi.cosmo.age(0.).value) sub.set_ylabel('SFH [$M_\odot/Gyr$]', fontsize=25) sub.set_ylim(0, None) fig = plt.figure(figsize=(6,4)) sub = fig.add_subplot(111) sub.plot(tlookback, sfh) i0 = np.where(tlookback > 1.)[0][0] sub.fill_between(tlookback[:i0+1], np.zeros(i0+1), sfh[:i0+1]) sub.scatter([0.5], [avgSFR*1e9], label='1Gyr avg. SFR') # convert to per Gyr sub.legend(loc='upper right', handletextpad=0, markerscale=2, fontsize=20) sub.set_xlabel(r'$t_{\rm lookback}$', fontsize=25) sub.set_xlim(0, Mdesi.cosmo.age(0.).value) sub.set_ylabel('SFH [$M_\odot/Gyr$]', fontsize=25) sub.set_ylim(0, None) avgSFR_2gyrago = Mdesi.avgSFR(some_theta, 0.1, dt=1, t0=2) fig = plt.figure(figsize=(6,4)) sub = fig.add_subplot(111) sub.plot(tlookback, sfh) i0 = np.where(tlookback > 1.)[0][0] sub.fill_between(tlookback[:i0+1], np.zeros(i0+1), sfh[:i0+1]) sub.scatter([0.5], [avgSFR*1e9], label='1Gyr avg. SFR') # convert to per Gyr i0 = np.where(tlookback < 2)[0][-1] i1 = np.where(tlookback > 3)[0][0] print(tlookback[i0], tlookback[i1]) sub.fill_between(tlookback[i0:i1], np.zeros(i1-i0), sfh[i0:i1], color='C0') sub.scatter([2.5], [avgSFR_2gyrago*1e9], c='C1', label=r'avg. SFR over $t_{\rm looback} = $[2,3]') sub.legend(loc='lower right', handletextpad=0, markerscale=2, fontsize=20) sub.set_xlabel(r'$t_{\rm lookback}$', fontsize=25) sub.set_xlim(0, Mdesi.cosmo.age(0.).value) sub.set_ylabel('SFH [$M_\odot/Gyr$]', fontsize=25) sub.set_ylim(0, None) _, zh = Mdesi.ZH(some_theta, 0.1) # get ZH for some arbitrary galaxy zmw = Mdesi.Z_MW(some_theta, 0.1) fig = plt.figure(figsize=(6,4)) sub = fig.add_subplot(111) sub.plot(tlookback, zh) for i in range(2): sub.plot(tlookback, some_theta[i+5] * Mdesi._zh_basis[i](tlookback), c='C%i' % i, ls='--') sub.scatter([np.mean(tlookback)], [zmw], c='C1', s=20, label='mass-weighted metallicity') sub.legend(loc='upper right', handletextpad=0, fontsize=20) sub.set_xlabel(r'$t_{\rm cosmic}$', fontsize=25) sub.set_xlim(0, Mdesi.cosmo.age(0.).value) sub.set_ylabel('metallicity history', fontsize=25) sub.set_ylim(0, None) ###Output _____no_output_____
Chapter 5/R Lab/5.3.1 The Validation Set Approach.ipynb
###Markdown Preprocessing ###Code # import statistical packages import numpy as np import pandas as pd # import data visualisation packages import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown *I do not need to specify a separate 50% training dataset. Instead we use the [train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) method from sklearn.* ###Code from sklearn.model_selection import train_test_split url = "/Users/arpanganguli/Documents/Professional/Finance/ISLR/Datasets/Auto.csv" df = pd.read_csv(url) df.head() df.horsepower.dtype ###Output _____no_output_____ ###Markdown *Quite annoyingly, I have to convert the datatype in horsepwer into float and store them in a separate column called 'hp'* ###Code df['hp'] = df.horsepower.astype(float) df.head() df.hp.dtype ###Output _____no_output_____ ###Markdown *Okay cool!* Regressions using random state = 1 **Simple Linear Regression** ###Code X = df[['hp']] y = df['mpg'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=1) X_train.shape y_train.shape X_test.shape y_test.shape df.shape ###Output _____no_output_____ ###Markdown *The Auto dataset contains 397 rows whereas the same dataset in the book example contains 392 rows. This can be explainedby the fact that some of the rows have missing values and have been deleted. I have, however, imputed those values. So,I have the same number of rows as the original dataset. More information about imputation of missing values can be found [here](http://www.stat.columbia.edu/~gelman/arm/missing.pdf). In any case, it does not matter since the prime purpose of the chapter is to show relative differences in prediction abilities of different methodologies. So as long as the relative difference is more or less the same, the point still stands.* ###Code from sklearn.linear_model import LinearRegression lmfit = LinearRegression().fit(X_train, y_train) lmpred = lmfit.predict(X_test) from sklearn.metrics import mean_squared_error MSE = mean_squared_error(y_test, lmpred) round(MSE, 2) ###Output _____no_output_____ ###Markdown **Polynomial Regression (horsepower$^2$)** ###Code from sklearn.preprocessing import PolynomialFeatures as PF X = df[['hp']] X_ = pd.DataFrame(PF(2).fit_transform(X)) y = df[['mpg']] X_.head() X_.drop(columns=0, inplace=True) X_train, X_test, y_train, y_test = train_test_split(X_, y, test_size=0.5, random_state=1) lmfit2 = LinearRegression().fit(X_train, y_train) lmpred2 = lmfit2.predict(X_test) MSE2 = mean_squared_error(y_test, lmpred2) round(MSE2, 2) ###Output _____no_output_____ ###Markdown **Polynomial Regression (horsepower$^3$)** ###Code from sklearn.preprocessing import PolynomialFeatures as PF X = df[['hp']] X_ = pd.DataFrame(PF(3).fit_transform(X)) y = df[['mpg']] X_.head() X_.drop(columns=0, inplace=True) X_.head() X_train, X_test, y_train, y_test = train_test_split(X_, y, test_size=0.5, random_state=1) lmfit3 = LinearRegression().fit(X_train, y_train) lmpred3 = lmfit3.predict(X_test) MSE3 = mean_squared_error(y_test, lmpred3) round(MSE3, 2) ###Output _____no_output_____ ###Markdown Regressions using random state = 2 **Simple Linear Regression** ###Code X = df[['hp']] y = df['mpg'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=2) from sklearn.linear_model import LinearRegression lmfit = LinearRegression().fit(X_train, y_train) lmpred = lmfit.predict(X_test) MSE = mean_squared_error(y_test, lmpred) round(MSE, 2) ###Output _____no_output_____ ###Markdown **Polynomial Regression (horsepower$^2$)** ###Code from sklearn.preprocessing import PolynomialFeatures as PF X = df[['hp']] X_ = pd.DataFrame(PF(2).fit_transform(X)) y = df[['mpg']] X_.head() X_.drop(columns=0, inplace=True) X_.head() X_train, X_test, y_train, y_test = train_test_split(X_, y, test_size=0.5, random_state=2) lmfit2 = LinearRegression().fit(X_train, y_train) lmpred2 = lmfit2.predict(X_test) MSE2 = mean_squared_error(y_test, lmpred2) round(MSE2, 2) ###Output _____no_output_____ ###Markdown **Polynomial Regression (horsepower$^3$)** ###Code from sklearn.preprocessing import PolynomialFeatures as PF X = df[['hp']] X_ = pd.DataFrame(PF(3).fit_transform(X)) y = df[['mpg']] X_.head() X_.drop(columns=0, inplace=True) X_.head() X_train, X_test, y_train, y_test = train_test_split(X_, y, test_size=0.5, random_state=2) lmfit3 = LinearRegression().fit(X_train, y_train) lmpred3 = lmfit3.predict(X_test) MSE3 = mean_squared_error(y_test, lmpred3) round(MSE3, 2) ###Output _____no_output_____
planner/experiments/analysis-Copy1.ipynb
###Markdown Robot boxes domain analysis - RRT-Plan vs A* with hADD heuristic ###Code import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df_rrt = pd.read_csv('RRT_Plan_Robot_Boxes _RRT_PLAN.csv') df_rrt.head() df_astar = pd.read_csv('RRT_Plan_Robot_Boxes_ASTAR_hADD.csv') df_astar.head() df_ling = pd.read_csv('RRT_Plan_Robot_Boxes_RRT_PLAN_lingcomp.csv') df_ling.head() ###Output _____no_output_____ ###Markdown Time x Problem Complexity ###Code x = df_rrt['problem'].values rrt_y = df_rrt['time_seconds'].values astar_y = df_astar['time_seconds'].values rrt_ling = df_ling['time_seconds'].values plt.plot(x, rrt_y, 'bo--', x, astar_y, 'ro--') plt.legend(['RRT-Plan', 'A*+hADD']) plt.xlabel('Boxes Problem') plt.ylabel('Time (seconds)') plt.show() plt.plot(x, rrt_ling, 'bo--', x, astar_y, 'ro--') plt.legend(['RRT-Plan LING', 'A*+hADD']) plt.xlabel('Boxes Problem') plt.ylabel('Time (seconds)') plt.show() ###Output _____no_output_____ ###Markdown Solution Length x Problem Complexity ###Code optimal_solution = np.array([3,5,9,11,15,17,21,23,27,29,33,35,39,41,45,47,51,53,57,59]) rrt_y = df_rrt['solution_length'].values astar_y = df_astar['solution_length'].values rrt_ling = df_ling['solution_length'].values plt.plot(x, rrt_y, 'bo--', x, astar_y, 'ro--', x, optimal_solution, 'mo--') plt.legend(['RRT-Plan', 'A*+hADD','Optimal solution']) plt.xlabel('Boxes Problem') plt.ylabel('Solution Length') plt.show() plt.plot(x, rrt_ling, 'bo--', x, astar_y, 'ro--', x, optimal_solution, 'mo--') plt.legend(['RRT-Plan LING', 'A*+hADD','Optimal solution']) plt.xlabel('Boxes Problem') plt.ylabel('Solution Length') plt.show() ###Output _____no_output_____ ###Markdown Individual time analysis ###Code rrt_time = df_rrt['time_seconds'].values plt.figure(figsize=(10,5)) plt.title('Robot Boxes - RRT-Plan') axis_values = [0, 20, -500, max(rrt_time[:-1])+500] # xmin, xmax, ymin, ymax plt.axis(axis_values) plt.plot(x, rrt_time, 'bo--') plt.xticks(np.arange(min(x), max(x)+1, 1.0)) plt.xlabel('Boxes Problem') plt.ylabel('Time (seconds)') plt.show() rrt_time = df_ling['time_seconds'].values plt.figure(figsize=(10,5)) plt.title('Robot Boxes - RRT-Plan LING') axis_values = [0, 20, -500, max(rrt_time[:-1])+500] # xmin, xmax, ymin, ymax plt.axis(axis_values) plt.plot(x, rrt_time, 'bo--') plt.xticks(np.arange(min(x), max(x)+1, 1.0)) plt.xlabel('Boxes Problem') plt.ylabel('Time (seconds)') plt.show() astar_time = df_astar['time_seconds'].values plt.figure(figsize=(10,5)) plt.title('Robot Boxes - A* + hADD') plt.plot(x[:astar_time.shape[0]], astar_time, 'ro--') plt.xticks(np.arange(min(x), max(x)+1, 1.0)) plt.xlabel('Boxes Problem') plt.ylabel('Time (seconds)') plt.show() ###Output _____no_output_____
ipynb/movie_renege.ipynb
###Markdown [Movie Renege](https://simpy.readthedocs.io/en/latest/examples/movie_renege.html)Covers:* Resources: Resource* Condition events* Shared eventsThis examples models a movie theater with one ticket counter selling tickets for three movies (next show only). People arrive at random times and try to buy a random number (1โ€“6) of tickets for a random movie. When a movie is sold out, all people waiting to buy a ticket for that movie renege (leave the queue).The movie theater is just a container for all the related data (movies, the counter, tickets left, collected data, โ€ฆ). The counter is a `Resource` with a capacity of one.The moviegoer process starts waiting until either itโ€™s his turn (it acquires the counter resource) or until the sold out signal is triggered. If the latter is the case it reneges (leaves the queue). If it gets to the counter, it tries to buy some tickets. This might not be successful, e.g. if the process tries to buy 5 tickets but only 3 are left. If less than two tickets are left after the ticket purchase, the sold out signal is triggered.Moviegoers are generated by the customer arrivals process. It also chooses a movie and the number of tickets for the moviegoer. ###Code """ Movie renege example Covers: - Resources: Resource - Condition events - Shared events Scenario: A movie theatre has one ticket counter selling tickets for three movies (next show only). When a movie is sold out, all people waiting to buy tickets for that movie renege (leave queue). """ import collections import random import simpy RANDOM_SEED = 42 TICKETS = 50 # Number of tickets per movie SIM_TIME = 120 # Simulate until def moviegoer(env, movie, num_tickets, theater): """A moviegoer tries to by a number of tickets (*num_tickets*) for a certain *movie* in a *theater*. If the movie becomes sold out, she leaves the theater. If she gets to the counter, she tries to buy a number of tickets. If not enough tickets are left, she argues with the teller and leaves. If at most one ticket is left after the moviegoer bought her tickets, the *sold out* event for this movie is triggered causing all remaining moviegoers to leave. """ with theater.counter.request() as my_turn: # Wait until its our turn or until the movie is sold out result = yield my_turn | theater.sold_out[movie] # Check if it's our turn or if movie is sold out if my_turn not in result: theater.num_renegers[movie] += 1 return # Check if enough tickets left. if theater.available[movie] < num_tickets: # Moviegoer leaves after some discussion yield env.timeout(0.5) return # Buy tickets theater.available[movie] -= num_tickets if theater.available[movie] < 2: # Trigger the "sold out" event for the movie theater.sold_out[movie].succeed() theater.when_sold_out[movie] = env.now theater.available[movie] = 0 yield env.timeout(1) def customer_arrivals(env, theater): """Create new *moviegoers* until the sim time reaches 120.""" while True: yield env.timeout(random.expovariate(1 / 0.5)) movie = random.choice(theater.movies) num_tickets = random.randint(1, 6) if theater.available[movie]: env.process(moviegoer(env, movie, num_tickets, theater)) Theater = collections.namedtuple('Theater', 'counter, movies, available, ' 'sold_out, when_sold_out, ' 'num_renegers') # Setup and start the simulation print('Movie renege') random.seed(RANDOM_SEED) env = simpy.Environment() # Create movie theater counter = simpy.Resource(env, capacity=1) movies = ['Python Unchained', 'Kill Process', 'Pulp Implementation'] available = {movie: TICKETS for movie in movies} sold_out = {movie: env.event() for movie in movies} when_sold_out = {movie: None for movie in movies} num_renegers = {movie: 0 for movie in movies} theater = Theater(counter, movies, available, sold_out, when_sold_out, num_renegers) # Start process and run env.process(customer_arrivals(env, theater)) env.run(until=SIM_TIME) # Analysis/results for movie in movies: if theater.sold_out[movie]: print('Movie "%s" sold out %.1f minutes after ticket counter ' 'opening.' % (movie, theater.when_sold_out[movie])) print(' Number of people leaving queue when film sold out: %s' % theater.num_renegers[movie]) ###Output Movie renege Movie "Python Unchained" sold out 38.0 minutes after ticket counter opening. Number of people leaving queue when film sold out: 16 Movie "Kill Process" sold out 43.0 minutes after ticket counter opening. Number of people leaving queue when film sold out: 5 Movie "Pulp Implementation" sold out 28.0 minutes after ticket counter opening. Number of people leaving queue when film sold out: 5
notebooks/NB05 - Interact with an Ethereum Contract .ipynb
###Markdown AboutInteract with a deployed ethereum contract.For this example I'll try to read information from the reserve token contract. ###Code from web3 import Web3 import sys; sys.path.insert(0, '../') # Add project root to path for imports from config.credentials import infura_hello_world # Import variable from local config/credentials.py file ###Output _____no_output_____ ###Markdown Connect to a NodeConnect to an ethereum node. This repeats steps done in notebook 04. ###Code # Ethereum node endpoint on infura url = infura_hello_world # i.e. "https://mainnet.infura.io/v3/..." w3 = Web3(Web3.HTTPProvider(url)) # Check note is connected w3.isConnected() ###Output _____no_output_____ ###Markdown Connect to a Contract I am following the `web3.py` documentation, found [here](https://web3py.readthedocs.io/en/stable/examples.htmlinteracting-with-existing-contracts).And also this article from Dapp University:* See the section titled "2 ยท Read Data from Smart Contracts with Web3.py"* https://www.dappuniversity.com/articles/web3-py-intro Define the contract address:I got the contract address from the RSV v2 README file [here](https://github.com/reserve-protocol/rsv-v2readme). The contract source code is [here](https://github.com/reserve-protocol/rsv-v2/blob/working/contracts/rsv/Reserve.sol). ###Code # Reserve Token Address rsv_token_address = "0x1C5857e110CD8411054660F60B5De6a6958CfAE2" ###Output _____no_output_____ ###Markdown Get the ABIThe ABI is a thing with information for encoding/decoding. How to get the ABI from etherscan:* Search for the contract in [etherscan.io](https://etherscan.io/) by pasting in its address.* Scroll down and Select the *Contract* tab* Scroll down until you see something about *Contract ABI** Click the "Copy ABI to clipboard" icon* Wrap the text in single quotes * So your `abi` variable is a string ###Code abi = '[{"constant":true,"inputs":[],"name":"name","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"minter","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"value","type":"uint256"}],"name":"approve","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"newOwner","type":"address"}],"name":"nominateNewOwner","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"newFeeRecipient","type":"address"}],"name":"changeFeeRecipient","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"from","type":"address"},{"name":"to","type":"address"},{"name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"newMinter","type":"address"}],"name":"changeMinter","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"newPauser","type":"address"}],"name":"changePauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"unpause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"newMaxSupply","type":"uint256"}],"name":"changeMaxSupply","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"account","type":"address"},{"name":"value","type":"uint256"}],"name":"mint","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"feeRecipient","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"declaration","type":"string"}],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"nominatedOwner","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"holder","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"acceptOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"account","type":"address"},{"name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"pause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"newReserveAddress","type":"address"}],"name":"transferEternalStorage","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"pauser","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"to","type":"address"},{"name":"value","type":"uint256"}],"name":"transfer","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"newTrustedTxFee","type":"address"}],"name":"changeTxFeeHelper","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"trustedTxFee","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"maxSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"holder","type":"address"},{"name":"spender","type":"address"}],"name":"allowance","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"getEternalStorageAddress","outputs":[{"name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newMinter","type":"address"}],"name":"MinterChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newPauser","type":"address"}],"name":"PauserChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newFeeRecipient","type":"address"}],"name":"FeeRecipientChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newMaxSupply","type":"uint256"}],"name":"MaxSupplyChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newReserveAddress","type":"address"}],"name":"EternalStorageTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"newTxFeeHelper","type":"address"}],"name":"TxFeeHelperChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"previousOwner","type":"address"},{"indexed":true,"name":"nominee","type":"address"}],"name":"NewOwnerNominated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"previousOwner","type":"address"},{"indexed":true,"name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"from","type":"address"},{"indexed":true,"name":"to","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"owner","type":"address"},{"indexed":true,"name":"spender","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Approval","type":"event"}]' ###Output _____no_output_____ ###Markdown Instantiate the Contract ###Code contract_instance = w3.eth.contract(address=rsv_token_address, abi=abi) ###Output _____no_output_____ ###Markdown List all functions available in the contract: ###Code contract_instance.all_functions() # Total Supply contract_instance.caller().totalSupply() # Max Supply contract_instance.caller().maxSupply() # Max Supply contract_instance.caller().symbol() ###Output _____no_output_____
notebooks/DataLoading-Fannie_Entire_Acquisitions_File.ipynb
###Markdown All Acquisition Data AnalysisWe first put together all of the `Acquisition` datasets. ###Code import pandas as pd from os import listdir from os.path import join from tqdm import tqdm import matplotlib.pyplot as plt from utils import hello_world hello_world() AcquisitionColumnNames = ( "LOAN_ID", "ORIG_CHN", "Seller.Name", "ORIG_RT", "ORIG_AMT", "ORIG_TRM", "ORIG_DTE", "FRST_DTE", "OLTV", "OCLTV", "NUM_BO", "DTI", "CSCORE_B", "FTHB_FLG", "PURPOSE", "PROP_TYP", "NUM_UNIT", "OCC_STAT", "STATE", "ZIP_3", "MI_PCT", "Product.Type", "CSCORE_C", "MI_TYPE", "RELOCATION_FLG" ) base_path = "/home/capcolabs/data/FannieMae" all_acq = join(base_path, "Acquisition_All") files = [ join(all_acq, f) for f in listdir(all_acq) ] ###Output _____no_output_____ ###Markdown We create dataframes for all of the files and create a column in each `QUARTER` which is the combined `YEAR` and `QUARTER` ###Code DFS = [] for file in tqdm(files): df = pd.read_csv( file, names=AcquisitionColumnNames, header=None, sep="|" ) df['QUARTER'] = file.split("/")[-1].replace(".txt","").split("_")[-1] DFS.append(df) df = pd.concat(DFS) df.columns df['ORIG_DTE'] = pd.to_datetime(df["ORIG_DTE"]) ###Output _____no_output_____ ###Markdown Getting Monthly DataWe will group by the `ORIG_DTE` and use this to get the various descriptive statistics for our dataset. ###Code loans = performance_df.groupby("LOAN_ID", sort=True)['Delq.Status'].max() ID_To_Delinq = {} for row in loans.iteritems(): loan_id, delinq = row ID_To_Delinq[loan_id] = delinq credit_score_mean = df.groupby("ORIG_DTE", sort=True)['CSCORE_B'].mean() credit_score_std = df.groupby("ORIG_DTE", sort=True)['CSCORE_B'].std() plt.plot(credit_score) plt.plot(credit_score - credit_score_std) plt.plot(credit_score + credit_score_std) oltv = df.groupby("ORIG_DTE", sort=True)['OLTV'].mean() oltv_std = df.groupby("ORIG_DTE", sort=True)['OLTV'].std() plt.plot(oltv) plt.plot(oltv - oltv_std) plt.plot(oltv + oltv_std) orate = df.groupby("ORIG_DTE", sort=True)['ORIG_RT'].mean() orate_std = df.groupby("ORIG_DTE", sort=True)['ORIG_RT'].std() plt.plot(orate) plt.plot(orate - orate_std) plt.plot(orate + orate_std) dti = df.groupby("ORIG_DTE", sort=True)['DTI'].mean() dti_std = df.groupby("ORIG_DTE", sort=True)['DTI'].std() plt.plot(dti) plt.plot(dti - dti_std) plt.plot(dti + dti_std) ###Output _____no_output_____ ###Markdown Analyzing the Performance Set ###Code base_path = "/home/capcolabs/data/FannieMae" all_acq = join(base_path, "Performance_All") files = [ join(all_acq, f) for f in listdir(all_acq) ] print(f'There are {len(files)} Performance Files!') PerformanceColumnNames = ( "LOAN_ID", "Monthly.Rpt.Prd", "Servicer.Name", "LAST_RT", "LAST_UPB", "Loan.Age", "Months.To.Legal.Mat", "Adj.Month.To.Mat", "Maturity.Date", "MSA", "Delq.Status", "MOD_FLAG", "Zero.Bal.Code", "ZB_DTE", "LPI_DTE", "FCC_DTE","DISP_DT", "FCC_COST", "PP_COST", "AR_COST", "IE_COST", "TAX_COST", "NS_PROCS","CE_PROCS", "RMW_PROCS", "O_PROCS", "NON_INT_UPB", "PRIN_FORG_UPB_FHFA", "REPCH_FLAG", "PRIN_FORG_UPB_OTH", "TRANSFER_FLG" ) from sqlalchemy import create_engine engine = create_engine('postgres://postgres@localhost:5432', echo=False) DFS = [] FCC = {} for file in tqdm(files): pf = pd.read_csv( file, names=PerformanceColumnNames, header=None, sep="|" ) pf['QUARTER'] = file.split("/")[-1].replace(".txt","").split("_")[-1] pf.to_sql('performance', con=engine, if_exists='append') ###Output 0%| | 0/75 [00:00<?, ?it/s]
examples/aerosols_pysics_hygroscopicity.ipynb
###Markdown HygroscopicGrowthFactorDistributions We need to generate a data set that can be used to initiate a HygroscopicGrowthFactorDistributions instance. Hiere we take Arm data generated by a HTDMA. The Arm data contains gf-distributions for different diameters, so we select one (200.0 nm). ###Code fname = '../atmPy/unit_testing/test_data/sgptdmahygC1.b1.20120601.004227.cdf' out = arm.read_netCDF(fname, data_quality= 'patchy', leave_cdf_open= False) ###Output _____no_output_____ ###Markdown in general Peaks in the gf-distribution are detected and fit by normal distributions (at log-base). Fit parameters are tightly constrained to avoid run-away parameters and unrealistic results, which in turn can result in unexpacted results ... hard coded fit parameters/boundaries might need adjustment. Growth modes Position of detected growthmodes and ratio of particles in it as a function of time. Here plotted on top of the gf-distribution time series. ###Code out.hyg_distributions_d200nm.plot(growth_modes=True) out.hyg_distributions_d200nm.growth_modes_kappa ###Output _____no_output_____ ###Markdown Mixing state I came up with the following definition, it should be adjusted if there is a better one in the literature Mixing state is given by the pythagoras of the particle ratios of all detected growth modes in a growth distribution. E.g. if there where three modes detected with ratios $r_1$, $r_2$, $r_3$ the mixing state is given by $\sqrt{r_1^2 + r_2^2 + r_3^2}$. ###Code out.hyg_distributions_d200nm.mixing_state.plot(marker = 'o', ls = '') ###Output _____no_output_____ ###Markdown Grown size distribution this is the sum. for optical properties the individual information is used so the change in the refractive index which is different for each growth mode is considered individually. ###Code fname = '../atmPy/unit_testing/test_data/sgptdmaapssizeC1.c1.20120601.004227.cdf' tdmaaps = arm.read_netCDF(fname, data_quality= 'patchy', leave_cdf_open= False) sd = tdmaaps.size_distribution hgfd = out.hyg_distributions_d200nm # gmk = out.hyg_distributions_d200nm.growth_modes_kappa sd.convert2dVdlogDp().plot() sd.hygroscopicity.parameters.growth_distribution = hgfd sd.hygroscopicity.parameters.RH = 90 sd.hygroscopicity.grown_size_distribution.sum_of_all_sizeditributions.convert2dVdlogDp().plot() ###Output _____no_output_____ ###Markdown Optical properties scattering ###Code sd.optical_properties.parameters.wavelength = 550 sd.optical_properties.parameters.refractive_index = 1.5 sd.hygroscopicity.grown_size_distribution.optical_properties.scattering_coeff.plot() ###Output /Users/htelg/prog/atm-py/atmPy/aerosols/physics/optical_properties.py:112: RuntimeWarning: invalid value encountered in true_divide y_phase_func = y_1p * 4 * _np.pi / scattering_cross_eff.sum() ###Markdown fRH ###Code a = sd.hygroscopicity.f_RH_85_40.plot() sd.hygroscopicity.f_RH_85_0.plot(ax = a) ###Output /Users/htelg/prog/atm-py/atmPy/aerosols/physics/optical_properties.py:112: RuntimeWarning: invalid value encountered in true_divide y_phase_func = y_1p * 4 * _np.pi / scattering_cross_eff.sum() ###Markdown catch fit runaways ###Code from atmPy.tools import math_functions as _math_functions def multi_gauss(x, *params, verbose=False): # print(params) y = np.zeros_like(x) for i in range(0, len(params), 3): if verbose: print(len(params), i) amp = params[i] pos = params[i + 1] sig = params[i + 2] y = y + _math_functions.gauss(x, amp, pos, sig) return y # %%debug --breakpoint /Users/htelg/prog/atm-py/atmPy/aerosols/physics/hygroscopicity.py:523 out.hyg_distributions_d200nm.plot(growth_modes=True) ###Output _____no_output_____ ###Markdown atmPy.aerosols.physics.hygroscopicityipdb> globals()['x'] = xipdb> globals()['y'] = yipdb> globals()['param'] = paramipdb> globals()['bound_l'] = bound_lipdb> globals()['bound_h'] = bound_hglobals()['x'] = x; globals()['y'] = y; globals()['param'] = param; globals()['bound_l'] = bound_l; globals()['bound_h'] = bound_h ###Code x = atmPy.aerosols.physics.hygroscopicity.x y = atmPy.aerosols.physics.hygroscopicity.y param = atmPy.aerosols.physics.hygroscopicity.param bound_l = atmPy.aerosols.physics.hygroscopicity.bound_l bound_h= atmPy.aerosols.physics.hygroscopicity.bound_h plt.plot(x,y) plt.plot(x, y_start) plt.plot(x, new_y) parry = np.array(param) # parry[::3] *= 10 y_start = multi_gauss(x, *parry) # fitres, _ = atmPy.aerosols.physics.hygroscopicity._curve_fit(multi_gauss, x, y, p0=param[:-3], bounds=(bound_l[:-3], bound_h[:-3])) fitres, _ = atmPy.aerosols.physics.hygroscopicity._curve_fit(multi_gauss, x, y, p0=parry, bounds=(bound_l, bound_h), # max_nfev = 10000 ) new_y = multi_gauss(x, *fitres) ###Output _____no_output_____ ###Markdown Kappa In this section a kappa is defined instead of a growth distribution. ###Code # fname = '../atmPy/unit_testing/test_data/sgptdmaapssizeC1.c1.20120601.004227.cdf fname = '/Users/htelg/data/ARM/SGP/tdmaaps/sgptdmaapssizeC1.c1.20120201.002958.cdf' tdmaaps = arm.read_netCDF(fname, data_quality= 'patchy', leave_cdf_open= False) fname = '/Users/htelg/data/ARM/SGP/acsm/sgpaosacsmC1.b1.20120201.002022.cdf' acsm = arm.read_netCDF(fname, data_quality= 'patchy', leave_cdf_open= False) tdmaaps.size_distribution.parameters4reductions.wavelength = 550 # %%debug --breakpoint /Users/htelg/prog/atm-py/atmPy/aerosols/physics/hygroscopicity.py:606 tdmaaps.size_distribution.hygroscopicity.parameters.kappa = acsm.kappa tdmaaps.size_distribution.hygroscopicity.parameters.refractive_index = acsm.refractive_index fRH_nams_kams = tdmaaps.size_distribution.hygroscopicity.f_RH_85_0.copy() # %%debug --breakpoint /Users/htelg/prog/atm-py/atmPy/aerosols/physics/hygroscopicity.py:742 tdmaaps.size_distribution.hygroscopicity.parameters.kappa = acsm.kappa tdmaaps.size_distribution.hygroscopicity.parameters.refractive_index = 1.5#acsm.refractive_index fRH_nfix_kams = tdmaaps.size_distribution.hygroscopicity.f_RH_85_0.copy() tdmaaps.size_distribution.hygroscopicity.parameters.kappa = acsm.kappa.data.values.mean() #acsm.kappa tdmaaps.size_distribution.hygroscopicity.parameters.refractive_index = 1.5#acsm.refractive_index fRH_nfix_kfix = tdmaaps.size_distribution.hygroscopicity.f_RH_85_0.copy() a = fRH_nfix_kfix.plot(label = 'nfix kfix') fRH_nfix_kams.plot(ax = a, label = 'nfix_kams') fRH_nams_kams.plot(ax = a, label = 'nams_kams') a.legend() ###Output _____no_output_____
notebooks/cores/core-number.ipynb
###Markdown Core NumberIn this notebook, we will use cuGraph to compute the core number of every vertex in our test graph Notebook Credits* Original Authors: Bradley Rees* Created: 10/28/2019* Last Edit: 03/03/2020RAPIDS Versions: 0.13Test Hardware* GV100 32G, CUDA 10.2 IntroductionCore Number computes the core number for every vertex of a graph G. A k-core of a graph is a maximal subgraph that contains nodes of degree k or more. A node has a core number of k if it belongs to a k-core but not to k+1-core. This call does not support a graph with self-loops and parallel edges.For a detailed description of the algorithm see: https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)It takes as input a cugraph.Graph object and returns as output a cudf.Dataframe object To compute the K-Core Number cluster in cuGraph use: * __df = cugraph.core_number(G)__ * G: A cugraph.Graph object Returns:* __df : cudf.DataFrame__ * df['vertex'] - vertex ID * df['core_number'] - core number of that vertex cuGraph Notice The current version of cuGraph has some limitations:* Vertex IDs need to be 32-bit integers.* Vertex IDs are expected to be contiguous integers starting from 0.cuGraph provides the renumber function to mitigate this problem. Input vertex IDs for the renumber function can be either 32-bit or 64-bit integers, can be non-contiguous, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to 32-bit contiguous integers starting from 0. cuGraph still requires the renumbered vertex IDs to be representable in 32-bit integers. These limitations are being addressed and will be fixed soon. Test DataWe will be using the Zachary Karate club dataset *W. W. Zachary, An information flow model for conflict and fission in small groups, Journal ofAnthropological Research 33, 452-473 (1977).*![Karate Club](../img/zachary_black_lines.png) Prep ###Code # Import needed libraries import cugraph import cudf ###Output _____no_output_____ ###Markdown Read data using cuDF ###Code # Test file datafile='../data//karate-data.csv' # read the data using cuDF gdf = cudf.read_csv(datafile, delimiter='\t', names=['src', 'dst'], dtype=['int32', 'int32'] ) # create a Graph G = cugraph.Graph() G.from_cudf_edgelist(gdf, source='src', destination='dst') ###Output _____no_output_____ ###Markdown Now compute the Core Number ###Code # Call k-cores on the graph df = cugraph.core_number(G) df ###Output _____no_output_____ ###Markdown Core NumberIn this notebook, we will use cuGraph to compute the core number of every vertex in our test graph Notebook Credits* Original Authors: Bradley Rees* Created: 10/28/2019* Last Edit: 03/03/2020RAPIDS Versions: 0.13Test Hardware* GV100 32G, CUDA 10.2 IntroductionCore Number computes the core number for every vertex of a graph G. A k-core of a graph is a maximal subgraph that contains nodes of degree k or more. A node has a core number of k if it belongs to a k-core but not to k+1-core. This call does not support a graph with self-loops and parallel edges.For a detailed description of the algorithm see: https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)It takes as input a cugraph.Graph object and returns as output a cudf.Dataframe object To compute the K-Core Number cluster in cuGraph use: * __df = cugraph.core_number(G)__ * G: A cugraph.Graph object Returns:* __df : cudf.DataFrame__ * df['vertex'] - vertex ID * df['core_number'] - core number of that vertex cuGraph Notice The current version of cuGraph has some limitations:* Vertex IDs need to be 32-bit integers.* Vertex IDs are expected to be contiguous integers starting from 0.cuGraph provides the renumber function to mitigate this problem. Input vertex IDs for the renumber function can be either 32-bit or 64-bit integers, can be non-contiguous, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to 32-bit contiguous integers starting from 0. cuGraph still requires the renumbered vertex IDs to be representable in 32-bit integers. These limitations are being addressed and will be fixed soon. Test DataWe will be using the Zachary Karate club dataset *W. W. Zachary, An information flow model for conflict and fission in small groups, Journal ofAnthropological Research 33, 452-473 (1977).*![Karate Club](../img/zachary_black_lines.png) Prep ###Code # Import needed libraries import cugraph import cudf ###Output _____no_output_____ ###Markdown Read data using cuDF ###Code # Test file datafile='../data//karate-data.csv' # read the data using cuDF gdf = cudf.read_csv(datafile, delimiter='\t', names=['src', 'dst'], dtype=['int32', 'int32'] ) # create a Graph G = cugraph.Graph() G.from_cudf_edgelist(gdf, source='src', destination='dst') ###Output _____no_output_____ ###Markdown Now compute the Core Number ###Code # Call k-cores on the graph df = cugraph.core_number(G) df ###Output _____no_output_____ ###Markdown Core NumberIn this notebook, we will use cuGraph to compute the core number of every vertex in our test graph Notebook Credits* Original Authors: Bradley Rees* Created: 10/28/2019* Last Edit: 08/16/2020RAPIDS Versions: 0.13Test Hardware* GV100 32G, CUDA 10.2 IntroductionCore Number computes the core number for every vertex of a graph G. A k-core of a graph is a maximal subgraph that contains nodes of degree k or more. A node has a core number of k if it belongs to a k-core but not to k+1-core. This call does not support a graph with self-loops and parallel edges.For a detailed description of the algorithm see: https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)It takes as input a cugraph.Graph object and returns as output a cudf.Dataframe object To compute the K-Core Number cluster in cuGraph use: * __df = cugraph.core_number(G)__ * G: A cugraph.Graph object Returns:* __df : cudf.DataFrame__ * df['vertex'] - vertex ID * df['core_number'] - core number of that vertex Some notes about vertex IDs...* The current version of cuGraph requires that vertex IDs be representable as 32-bit integers, meaning graphs currently can contain at most 2^32 unique vertex IDs. However, this limitation is being actively addressed and a version of cuGraph that accommodates more than 2^32 vertices will be available in the near future.* cuGraph will automatically renumber graphs to an internal format consisting of a contiguous series of integers starting from 0, and convert back to the original IDs when returning data to the caller. If the vertex IDs of the data are already a contiguous series of integers starting from 0, the auto-renumbering step can be skipped for faster graph creation times. * To skip auto-renumbering, set the `renumber` boolean arg to `False` when calling the appropriate graph creation API (eg. `G.from_cudf_edgelist(gdf_r, source='src', destination='dst', renumber=False)`). * For more advanced renumbering support, see the examples in `structure/renumber.ipynb` and `structure/renumber-2.ipynb` Test DataWe will be using the Zachary Karate club dataset *W. W. Zachary, An information flow model for conflict and fission in small groups, Journal ofAnthropological Research 33, 452-473 (1977).*![Karate Club](../img/zachary_black_lines.png) Prep ###Code # Import needed libraries import cugraph import cudf ###Output _____no_output_____ ###Markdown Read data using cuDF ###Code # Test file datafile='../data//karate-data.csv' # read the data using cuDF gdf = cudf.read_csv(datafile, delimiter='\t', names=['src', 'dst'], dtype=['int32', 'int32'] ) # create a Graph G = cugraph.Graph() G.from_cudf_edgelist(gdf, source='src', destination='dst') ###Output _____no_output_____ ###Markdown Now compute the Core Number ###Code # Call k-cores on the graph df = cugraph.core_number(G) df ###Output _____no_output_____ ###Markdown Core NumberIn this notebook, we will use cuGraph to compute the core number of every vertex in our test graph Notebook Credits* Original Authors: Bradley Rees* Created: 10/28/2019* Last Edit: 10/28/2019RAPIDS Versions: 0.10.0Test Hardware* GV100 32G, CUDA 10.0 IntroductionCore Number computes the core number for every vertex of a graph G. A k-core of a graph is a maximal subgraph that contains nodes of degree k or more. A node has a core number of k if it belongs to a k-core but not to k+1-core. This call does not support a graph with self-loops and parallel edges.For a detailed description of the algorithm see: https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)It takes as input a cugraph.Graph object and returns as output a cudf.Dataframe object To compute the K-Core Number cluster in cuGraph use: * __df = cugraph.core_number(G)__ * G: A cugraph.Graph object Returns:* __df : cudf.DataFrame__ * df['vertex'] - vertex ID * df['core_number'] - core number of that vertex cuGraph Notice The current version of cuGraph has some limitations:* Vertex IDs need to be 32-bit integers.* Vertex IDs are expected to be contiguous integers starting from 0.cuGraph provides the renumber function to mitigate this problem. Input vertex IDs for the renumber function can be either 32-bit or 64-bit integers, can be non-contiguous, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to 32-bit contiguous integers starting from 0. cuGraph still requires the renumbered vertex IDs to be representable in 32-bit integers. These limitations are being addressed and will be fixed soon. Test DataWe will be using the Zachary Karate club dataset *W. W. Zachary, An information flow model for conflict and fission in small groups, Journal ofAnthropological Research 33, 452-473 (1977).*![Karate Club](../img/zachary_black_lines.png) Prep ###Code # Import needed libraries import cugraph import cudf ###Output _____no_output_____ ###Markdown Read data using cuDF ###Code # Test file datafile='../data//karate-data.csv' # read the data using cuDF gdf = cudf.read_csv(datafile, delimiter='\t', names=['src', 'dst'], dtype=['int32', 'int32'] ) # create a Graph G = cugraph.Graph() G.from_cudf_edgelist(gdf, source='src', destination='dst') ###Output _____no_output_____ ###Markdown Now compute the Core Number ###Code # Call k-cores on the graph df = cugraph.core_number(G) df ###Output _____no_output_____
Walmart v1.ipynb
###Markdown Missing Value Treatment ###Code #Handling missings def Missing_imputation(x): x = x.fillna(x.median()) return x train_num=train_num.apply(Missing_imputation) test_num=test_num.apply(Missing_imputation) #print(df_train_merged_2.isnull().sum()) #print(df_test_merged_2.isnull().sum()) # df_test_merged_2['CPI']=df_test_merged_2.groupby(['Dept'])['CPI'].transform(lambda x: x.fillna(x.mean())) # df_test_merged_2['Unemployment']=df_test_merged_2.groupby(['Dept'])['Unemployment'].transform(lambda x: x.fillna(x.mean())) # df_train_merged_2=df_train_merged_2.fillna(0) # df_test_merged_2=df_test_merged_2.fillna(0) #print(df_train_merged_2.isnull().sum()) #print(df_test_merged_2.isnull().sum()) ###Output _____no_output_____ ###Markdown Outlier Treatment ###Code #Handling Outliers def outlier_capping(x): x = x.clip(upper=x.quantile(0.99)) x = x.clip(lower=x.quantile(0.01)) return x train_num=train_num.apply(outlier_capping) test_num=test_num.apply(outlier_capping) #df_train_merged_2.Weekly_Sales=np.where(df_train_merged_2.Weekly_Sales>100000, 100000,df_train_merged_2.Weekly_Sales) df_train_merged_2.Weekly_Sales.plot.hist(bins=25) #df_train_merged_2.loc[df_train_merged_2.Type== 'A']= 1 #df_train_merged_2.loc[df_train_merged_2.Type== 'B']= 2 #df_train_merged_2.loc[df_train_merged_2.Type== 'C']= 3 #df_test_merged_2.loc[df_test_merged_2.Type== 'A']= 1 #df_test_merged_2.loc[df_test_merged_2.Type== 'B']= 2 #df_test_merged_2.loc[df_test_merged_2.Type== 'C']= 3 ###Output _____no_output_____ ###Markdown Dummy Creation ###Code # An utility function to create dummy variable def create_dummies( df, colname ): col_dummies = pd.get_dummies(df[colname], prefix=colname, drop_first=True) df = pd.concat([df, col_dummies], axis=1) df.drop( colname, axis = 1, inplace = True ) return df for c_feature in ['IsHoliday', 'Type']: train_cat.loc[:,c_feature] = train_cat[c_feature].astype('category') train_cat = create_dummies(train_cat , c_feature ) train_cat.head() for c_feature in ['IsHoliday', 'Type']: test_cat.loc[:,c_feature] = test_cat[c_feature].astype('category') test_cat = create_dummies(test_cat , c_feature ) train = pd.concat([train_num, train_cat], axis=1) train.head() test = pd.concat([test_num, test_cat], axis=1) test.head() train_corr2= train.corr() train_corr2.to_csv('train_corr2.csv') sns.heatmap(train.corr()) ###Output _____no_output_____ ###Markdown Model Buildings Linear Regression model basic phase 1 ###Code lm=smf.ols('Weekly_Sales~CPI+Dept+Fuel_Price+IsHoliday_True+MarkDown1+MarkDown2+MarkDown3+MarkDown4+MarkDown5+Size+Store+Temperature+Type_B+Type_C+Unemployment+Week', train).fit() print(lm.summary()) lm=smf.ols('Weekly_Sales~CPI+Dept+IsHoliday_True+MarkDown3+MarkDown4+MarkDown5+Size+Store+Type_B+Type_C+Unemployment+Week', train).fit() print(lm.summary()) train_new=train[['Weekly_Sales','CPI','Dept','IsHoliday_True','MarkDown3','MarkDown4','MarkDown5','Size','Store','Type_B','Type_C','Unemployment','Week']] test_new=test[['CPI','Dept','IsHoliday_True','MarkDown3','MarkDown4','MarkDown5','Size','Store','Type_B','Type_C','Unemployment','Week']] train_X=train_new[train_new.columns.difference(['Weekly_Sales'])] train_y=train_new['Weekly_Sales'] test_X=test_new ###Output _____no_output_____ ###Markdown Decision Tree ###Code from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import cross_val_predict regressor_dt = DecisionTreeRegressor(max_depth=5,random_state=123) regressor_dt.fit(train_X, train_y) predict_train=regressor_dt.predict(train_X) print('Mean Absolute Error:', metrics.mean_absolute_error(train_y, predict_train)) print('Mean Squared Error:', metrics.mean_squared_error(train_y, predict_train)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(train_y, predict_train))) print("R-squared for Train:",regressor_dt.score(train_X, train_y)) y_pred = regressor_dt.predict(test_X) y_pred ### Tunning dt # list of values to try max_depth_range = range(5, 15) # list to store the average RMSE for each value of max_depth RMSE_Scores = [] MSE_Scores = [] # use LOOCV with each value of max_depth for depth in max_depth_range: treereg = DecisionTreeRegressor(max_depth=depth, random_state=345) MSE_scores = cross_val_score(treereg, train_X, train_y, cv=14, scoring='neg_mean_squared_error') RMSE_Scores.append(np.mean(np.sqrt(-MSE_scores))) MSE_Scores.append(MSE_scores) print (RMSE_Scores) # plot max_depth (x-axis) versus RMSE (y-axis) plt.plot(max_depth_range, RMSE_Scores) plt.xlabel('max_depth') plt.ylabel('RMSE (lower is better)') ###Output _____no_output_____ ###Markdown Final Dt ###Code # max_depth=10 was best, so fit a tree using that parameter treereg = DecisionTreeRegressor(max_depth=10, random_state=345) treereg.fit(train_X, train_y) treereg.feature_importances_ # "Gini importance" of each feature: the (normalized) total reduction of error brought by that feature pd.DataFrame({'feature':train_new.columns.difference(['Weekly_Sales']), 'importance':treereg.feature_importances_}) # predictions predict_train_dt=treereg.predict(train_X) dtree=pd.DataFrame({'Actual':train_y, 'Predicted':predict_train_dt ,'Week':train_new.Week}) dtree mean_week=dtree.groupby('Week').apply(lambda x:np.mean(x)) mean_week mean_week.plot(kind='line',x='Week',y='Actual', color='yellow',ax=plt.gca()) mean_week.plot(kind='line',x='Week',y='Predicted', color='blue', ax=plt.gca()) plt.xlabel('Week Number') plt.ylabel('Weekly Sales') plt.title('Comparison of Predicted Sales and Actual Sales in Decision Tree') plt.show() print('Mean Absolute Error:', metrics.mean_absolute_error(train_y, predict_train_dt)) print('Mean Squared Error:', metrics.mean_squared_error(train_y, predict_train_dt)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(train_y, predict_train_dt))) print("R-squared for Train:",treereg.score(train_X, train_y)) y_pred = treereg.predict(test_X) pd.DataFrame(y_pred) DT_output=pd.read_csv('test.csv') DT_output['Weekly_Sales']=pd.DataFrame(y_pred) DT_output.to_csv('DT_output.csv') ###Output _____no_output_____ ###Markdown Random Forest ###Code from sklearn.ensemble import RandomForestRegressor rfr = RandomForestRegressor(max_depth=5,n_estimators=20, random_state=0) rfr.fit(train_X, train_y) pred = rfr.predict(train_X) print('Mean Absolute Error:', metrics.mean_absolute_error(train_y, pred)) print('Mean Squared Error:', metrics.mean_squared_error(train_y, pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(train_y, pred))) print("R-squared for Train:",rfr.score(train_X, train_y)) y_pred = rfr.predict(test_X) y_pred ###Output _____no_output_____ ###Markdown Tuning rf ###Code from sklearn.model_selection import GridSearchCV param_grid={'max_depth': range(8,15), 'n_estimators': (10, 50)} # Perform Grid-Search gsc = GridSearchCV(estimator=RandomForestRegressor(),param_grid=param_grid,cv=5, verbose=0, n_jobs=-1) grid_result = gsc.fit(train_X, train_y) grid_result.best_score_ grid_result.best_params_ ###Output _____no_output_____ ###Markdown Final rf ###Code rfr = RandomForestRegressor(max_depth=14,n_estimators=50, random_state=0) rfr.fit(train_X, train_y) pred = rfr.predict(train_X) rf=pd.DataFrame({'Actual':train_y, 'Predicted':pred, 'Week': train_new.Week}) rf week_mean=rf.groupby('Week').apply(lambda x:np.mean(x)) week_mean week_mean.plot(kind='line',x='Week',y='Actual', color='yellow',ax=plt.gca()) week_mean.plot(kind='line',x='Week',y='Predicted', color='blue', ax=plt.gca()) plt.xlabel('Week Number') plt.ylabel('Weekly Sales') plt.title('Comparison of Predicted and Actual Sales in Random Forest') plt.show() print("R-squared for Train:",rfr.score(train_X, train_y)) y_pred = rfr.predict(test_X) pd.DataFrame(y_pred) RF_output=pd.read_csv('test.csv') RF_output['Weekly_Sales']=pd.DataFrame(y_pred) RF_output.to_csv('RF_output.csv') ###Output _____no_output_____
analysis_and_initial_cleaning.ipynb
###Markdown Limpieza inicialEste notebook documenta el proceso de razonamiento para limpiar la data proporcionada. Al final se genera un script con la data limpia para ser preprocesada. Cargar los datos que usaremosUsaremos los archivos entrenamiento_precios_vivienda.csv y prueba_precios_vivienda.csv. Note que los datos del archivo prueba_precios_vivienda.csv no contienen la columna de los precios de la vivienda. La idea de este archivo, es que usted complete dicha columna con los predicciones resultantes de su modelo, y mediante un proceso de validaciรณn externo, Learning Code calcula el desempeรฑo de este. Esta es una prรกctica muy comรบn en pruebas de este tipo. ###Code import pandas as pd from content.utils.data_processing import load_csv_data, set_index trainData = load_csv_data("./content/sample_data/train.csv") testData = load_csv_data("./content/sample_data/test.csv") # Ahora asignamos un index para manejar de manera mas eficiente la data. indexedTrainData = set_index(trainData) indexedTestData = set_index(testData) print(f'Train data have {indexedTrainData.shape[0]} rows, \nTest data only {indexedTestData.shape[0]}') ###Output Train data have 9629 rows, Test data only 3175 ###Markdown Ahora veamos que data esta vacia en cada columna ###Code indexedTrainData[indexedTrainData.columns[indexedTrainData.isnull().any()]].isnull().sum() ###Output _____no_output_____ ###Markdown Pocos datos faltantes, pero los pocos que no estan pueden rellenarse facilmente. El tipo de subsidio tiene demasiados datos faltantes. ###Code indexedTestData[indexedTestData.columns[indexedTestData.isnull().any()]].isnull().sum() ###Output _____no_output_____ ###Markdown Aparte de los datos faltantes en el valor (entendible pues son datos que deben rellenarse), se nota que el tipo de subsidio tiene demasiados datos faltantes. En los demas pueden rellenarse los datos. Fecha de aprobacion y tipo de subsidio de nuevo tienen muchos datos faltantes. Limpiando los datosUna columna que tiene demasiados datos faltantes en ambos dataframes es el de fecha de aprobaciรณn, por lo que se removera. Tambien podemos alegar que la fecha no deberia ser relevante, por lo menos en comparacion a otros parametros.Tipo de subsidio tambien vemos que presenta muchos datos nulos, se eliminira. Data que no aporta nadaLas columnas que consideramos que tienen poca informacion relevante y deben borrarse son: ###Code extra_data = [ 'fecha_aprobaciรณn', 'tipo_subsidio', 'numero_garaje_1', 'matricula_garaje_1', 'numero_garaje_2', 'matricula_garaje_2', 'numero_garaje_3', 'matricula_garaje_3', 'numero_garaje_4', 'matricula_garaje_4', 'numero_garaje_5', 'matricula_garaje_5', 'numero_deposito_1', 'matricula_inmobiliaria_deposito_1', 'numero_deposito_2', 'matricula_inmobiliaria_deposito_2', 'numero_deposito_3', 'matricula_inmobiliaria_deposito_3', 'numero_deposito_4', 'matricula_inmobiliaria_deposito_4', 'numero_deposito_5', 'matricula_inmobiliaria_deposito_5', 'metodo_valuacion_1', 'concepto_del_metodo_1', 'metodo_valuacion_2', 'concepto_del_metodo_2', 'metodo_valuacion_3', 'concepto_del_metodo_3', 'metodo_valuacion_4', 'concepto_del_metodo_4', 'metodo_valuacion_5', 'concepto_del_metodo_5', 'metodo_valuacion_6', 'concepto_del_metodo_6', 'metodo_valuacion_7', 'concepto_del_metodo_7', 'metodo_valuacion_8', 'concepto_del_metodo_8', 'metodo_valuacion_9', 'concepto_del_metodo_9', 'Longitud', 'Latitud', 'tipo_deposito', 'numero_total_depositos', ] ###Output _____no_output_____ ###Markdown Se proporciono el archivo `PuntosInteres.csv`, creemos que podria comparase con las columnas `Longitud` y `Latitud`, pero requiere clasificar los tipos de interes, por ejemplo "sera que la farmacia es beneficiosa para el valuo?". Por lo tanto decidimos que no se tomara en cuenta dada la limitante de tiempo. Valorizacion en base a la percepcion y la descripcion del inmueblePor otro lado tenemos algunas que consideramos que pueden arrojan informacion pero necesitan trabajo adicional, mas que todo preprocesar intensamente la data, para extraerle un score o sentimiento:Estas se trabajaran aparte y se integraran despues a la data para el entrenamiento. ###Code descriptions_related = [ 'descripcion_clase_inmueble', 'perspectivas_de_valorizacion', 'actualidad_edificadora', 'comportamiento_oferta_demanda', 'observaciones_generales_inmueble', 'observaciones_estructura', 'observaciones_generales_construccion', 'observaciones_dependencias', 'descripcion_tipo_inmueble', 'descripcion_uso_inmueble', ] ###Output _____no_output_____ ###Markdown Influencia de la zonaUn caso interesante aca es el de 'sector' pues usualmente rural siempre vale menos que urbano por metro cuadrado. Sin embargo combinandolo con los anteriores puede dar mas informacion sobre la zona especifica, por ejemplo inidicar que un apartamento en la zona urbana tiene mayor valor que un lote urbano.Pero las 3 ultimas son las que dan mas informacion, pues indican con palabras si el barrio o la ciudad estan cotizadas. Creemos que usar tambien departamento, municipio o barrio implicaria en la practica hacer una etiquetacion de tales columnas (es bogota bueno, malo o no afecta al valor?). Por eso se incluyo al final a las 3 primeras para eliminar, pues no aportan tanta data como se quisiera. ###Code zone_related = [ 'departamento_inmueble', 'municipio_inmueble', 'barrio', 'descripcion_general_sector', 'direccion_inmueble_informe', 'descripcion_general_sector', ] ###Output _____no_output_____ ###Markdown Influencia de la estructuraSe refieren a elementos de la infraestructura en si, por ejemplo si la estructura se ve suficientemente segura.Se sacara por el momento y se integrara luego de haberse analizado aparte. ###Code structure_related = [ 'observaciones_generales_inmueble', 'observaciones_estructura', 'observaciones_dependencias', 'observaciones_generales_construccion', ] ###Output _____no_output_____ ###Markdown Area, altura, dimensionesAca podria pensarse que el area total y el area contruida serian los valores mas importantes, y otros valores no ayudan individualmente, asi mismo la atura no se toma en cuenta. ###Code dimensions_related = [ 'area_privada', 'area_garaje', 'area_deposito', 'area_terreno', 'area_construccion', 'area_otros', 'area_libre', ] ###Output _____no_output_____ ###Markdown Notamos que hay una seccion de "garages", segun se analiza la columna que podria aportar mas informacion es la `numero_total_de_garajes` y alternativamente `total_cupos_parquedaro`, las demas columnas son redundantes. ###Code garage_related = [ 'garaje_cubierto_1', 'garaje_doble_1', 'garaje_paralelo_1', 'garaje_servidumbre_1', 'garaje_cubierto_2', 'garaje_doble_2', 'garaje_paralelo_2', 'garaje_servidumbre_2', 'garaje_cubierto_3', 'garaje_doble_3', 'garaje_paralelo_3', 'garaje_servidumbre_3', 'garaje_cubierto_4', 'garaje_doble_4', 'garaje_paralelo_4', 'garaje_servidumbre_4', 'garaje_cubierto_5', 'garaje_doble_5', 'garaje_paralelo_5', 'garaje_servidumbre_5', 'garaje_visitantes', # ya oncluido en el numero de garages ] ###Output _____no_output_____ ###Markdown Otra seccion es la referente a las normas de contruccion, pensamos que no son importantes ###Code norms_solumns = [ 'altura_permitida', 'observaciones_altura_permitida', 'aislamiento_posterior', 'observaciones_aislamiento_posterior', 'aislamiento_lateral', 'observaciones_aislamiento_lateral', 'antejardin', 'observaciones_antejardin', 'indice_ocupacion', 'observaciones_indice_ocupacion', 'indice_construccion', 'observaciones_indice_construccion', 'predio_subdividido_fisicamente', # Si | No (Contiene datos espureos) 'rph', # (Muchas, se nota tambien muchos datos espureos) 'sometido_a_propiedad_horizontal', # Si | No (Contiene datos espureos) ] ###Output _____no_output_____ ###Markdown Columnas de casos muy especificosSe refiere a columnas que solo aplican a casos no muy generales, por ejemplo el de numero de unidades se refiere a cuantas subdivisiones tiene un predio, pero si notamos no puede aplicarse a la mayoria de casos que son casas o terrenos individuales, en cuyo casos se asigna usualmente un cero. ###Code specific_cases = [ 'condicion_ph', 'ajustes_sismoresistentes', # No Disponibles | No Reparados | Reparados (Contiene datos espureos) 'danos_previos', # No disponible | Sin daรฑos previos | Con daรฑos previos (Contiene datos espureos) ] ###Output _____no_output_____ ###Markdown ValorAca solo tomamos el valor total, las demas quedan borradasNos quedaremos con `valor_total_avaluo` pues el que se requiere en la descripcion del proyecto, aunque 'valor_avaluo_en_uvr' es independiente de la fecha, es decir que muestra mas claro la diferencia de comprar un terreno en el 2000 contra comprar en el 2020, por ejemplo. ###Code value_related = [ 'valor_area_privada', 'valor_area_garaje', 'valor_area_deposito', 'valor_area_terreno', 'valor_area_construccion', 'valor_area_otros', 'valor_area_libre', 'valor_uvr', 'valor_avaluo_en_uvr', ] ###Output _____no_output_____ ###Markdown Con lo anterior podemos limpiar la data inicial de columnas innecesarias, y luego integrar las que se analizaran aparte. ###Code columnsToErase = extra_data + descriptions_related + zone_related + structure_related + dimensions_related + garage_related + norms_solumns + value_related + specific_cases cleanTrainData = indexedTrainData.drop(columnsToErase, axis=1) cleanTestData = indexedTestData.drop(columnsToErase, axis=1) print(f'Train data now have {cleanTrainData.shape}') print(f'Test data now have {cleanTestData.shape}') cleanTrainData.head() ###Output _____no_output_____ ###Markdown Seleccionemos primero las columnas con data categorica ###Code categorical_columns = [ # Seccion avaluo 'objeto', # Originaciรณn | Remate (Contiene datos espureos) 'motivo', # Crรฉdito hipotecario de vivienda | Empleados | Leasing Visto Bueno | Leasing Habitacional | Remates | Garantรญa | Actualizacion de garantias | Colomext Hipotecario | Credito Comercial | Compra de cartera | Dacion en Pago | Leasing Comercial | Reformas | Originacion | Leasing Inmobiliario - Persona Natural 'proposito', # Crรฉdito hipotecario de vivienda | Garantรญa Hipotecaria | Transaccion Comercial de Venta | Valor Asegurable 'tipo_avaluo', # Hipotecario | Remates | Garantia Hipotecaria 'tipo_credito', # Vivienda | Diferente de Vivienda | Hipotecario # Seccion Informacion general y situacional 'sector', # Urbano | Rural | Poblado (Contiene datos espureos) # Seccion Informacion del inmueble 'tipo_inmueble', # Apartamento | Casa | Casa Rural | Conjunto o Edificio | Deposito | Finca | Garaje | Lote | Lote Urbano | Oficina (Contiene datos espureos) 'uso_actual', # (Muchas, se nota tambien muchos datos espureos) 'clase_inmueble', # (Muchas, se nota tambien muchos datos espureos) 'ocupante', # (Muchas, se nota tambien muchos datos espureos) 'area_actividad', # (Muchas, se nota tambien muchos datos espureos) 'uso_principal_ph', # Vivienda | Finca | Viviend, Serv y Comercio (Muchas, se nota tambien muchos datos espureos) 'estructura', # Mamposteria Estructural | Tradicional | Industrializada | Muro de carga (Contiene datos espureos) 'cubierta', # Teja Metalica | Teja Plastica | Tradicional | Teja fibrocemento | Teja de Barro (Contiene datos espureos) 'fachada', # Concreto texturado | Flotante | Graniplast | Industrilizada | Ladrillo a la vista (Contiene datos espureos) 'estructura_reforzada', # Flotante | Graniplast | Trabes coladas en sitio | No tiene trabes (Contiene datos espureos) 'material_de_construccion', # Acero | Adobe, bahareque o tapia | Concreto Reforzado (Contiene datos espureos) 'detalle_material', # Mamposterรญa reforzada | Pรณrticos | Mamposterรญa confinada (Contiene datos espureos) 'iluminacion', # Bueno | Paneles prefabricados | Muros (Contiene datos espureos) 'calidad_acabados_cocina', # Integral | Semi-Integral | Sencillo | Bueno | Lujoso | Normal | Regular | Sin Acabados # Seccion Garage 'tipo_garaje', # Bueno | Comunal | Exclusivo | Integral | Lujoso | No tiene | Normal | Privado | Regular | Semi-Integral | Sencillo | Sin Acabados ] binary_columns = [ 'alcantarillado_en_el_sector', # Si | No (Contiene datos espureos) 'acueducto_en_el_sector', # Si | No (Contiene datos espureos) 'gas_en_el_sector', # Si | No 'energia_en_el_sector', # Si | No 'telefono_en_el_sector', # Si | No 'vias_pavimentadas', # Si | No 'sardineles_en_las_vias', # Si | No 'andenes_en_las_vias', # Si | No 'barrio_legal', # Si | No (Contiene datos espureos) 'paradero', # Si | No (Contiene datos espureos) 'alumbrado', # Si | No (Contiene datos espureos) 'arborizacion', # Si | No (Contiene datos espureos) 'alamedas', # Si | No 'ciclo_rutas', # Si | No 'alcantarillado_en_el_predio', # Si | No (Contiene datos espureos) 'acueducto_en_el_predio', # Si | No (Contiene datos espureos) 'gas_en_el_predio', # Si | No (Contiene datos espureos) 'energia_en_el_predio', # Si | No (Contiene datos espureos) 'telefono_en_el_predio', # Si | No (Contiene datos espureos) 'porteria', # Si | No (Contiene datos espureos) 'citofono', # Si | No (Contiene datos espureos) 'bicicletero', # Si | No (Contiene datos espureos) 'piscina', # Si | No (Contiene datos espureos) 'tanque_de_agua', # Si | No (Contiene datos espureos) 'club_house', # Si | No (Contiene dato espureo "0", podria tomarse como No) 'teatrino', # Si | No (Contiene dato espureo "0", podria tomarse como No) 'sauna', # Si | No (Contiene dato espureo "0", podria tomarse como No) 'vigilancia_privada', # Si | No (Contiene dato espureo "0", podria tomarse como No) 'administracion', # Si | No (Contiene datos espureos) ] ###Output _____no_output_____ ###Markdown Datos ordinalesExpresan una cualidad a travรฉs de un dato que es posible ordenar a travรฉs de una escala previamente definida. ###Code ordinal_columns = [ 'estrato', # 1 - 6 (Contiene datos espureos) 'topografia_sector', # Inclinado | Ligera | Plano (Contiene datos espureos) 'condiciones_salubridad', # Buenas | Malas | Regulares (Contiene datos espureos) 'transporte', # Bueno | Regular | Malo (Contiene datos espureos) 'demanda_interes', # Nula | Bueno | Debil | Fuerte (Contiene datos espureos) 'nivel_equipamiento_comercial', # En Proyecto | Regular Malo | Bueno | Muy bueno (Contiene datos espureos) 'tipo_vigilancia', # 12 Horas | 24 Horas | No (Dato espureo Si podria tomarse como "24 Horas", dato espureo "0" podria tomarse como "No") 'tipo_fachada', # De 0 a 3 metros | de 3 a 6 metros | Mayor a 6 metros (Contiene datos espureos) 'ventilacion', # Bueno | Regular | Malo (Contiene datos espureos) 'irregularidad_planta', # Sin irregularidad | No disponible | Con irregularidad (Contiene datos espureos) 'irregularidad_altura', # Sin irregularidad | No disponible | Con irregularidad (Contiene datos espureos)= 'estado_acabados_cocina', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados 'estado_acabados_pisos', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'calidad_acabados_pisos', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'estado_acabados_muros', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'calidad_acabados_muros', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'estado_acabados_techos', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'calidad_acabados_techos', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'estado_acabados_madera', # Bueno | Sin Acabados | Normal | Sencillo (Contiene datos espureos) 'calidad_acabados_madera', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados 'estado_acabados_metal', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados 'calidad_acabados_metal', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados 'estado_acabados_banos', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados 'calidad_acabados_banos', # Bueno | Lujoso | Malo | Normal | Regular | Sencillo | Sin acabados ] ###Output _____no_output_____ ###Markdown Datos numericosEstos datos son expresados en nรบmeros y sรญ que pueden medirse. ###Code numeric_columns = [ # Seccion Informacion del inmueble 'unidades', # [Int] 0 - 92 (Contiene datos espureos) 'contadores_agua', # [Int] 0 - 6 (Contiene datos espureos "92", "Aplica", "No", podria asumirse que es cero, "Resultante") 'contadores_luz', # [Int] 0 - 6 (Contiene datos espureos "92", "Aplica", "No", podria asumirse que es cero) 'accesorios', # # [Int] 0 - 46 (Contiene dato espureo "No", podria asumirse que es cero) 'area_valorada', # [Float] 0.0 - 1058.2 (Contiene unos numeros gitantes) 'numero_piso', # [Int] 0 - 99 (Contiene datos espureos) 'numero_de_edificios', # [Int] 0 - 99 (Contiene datos espureos) 'vetustez', # a veces dice anhos antiguedad, a veces el anho de construccion 'pisos_bodega', # [Int] 0 - 52 (Contiene datos espureos) 'habitaciones', # [Int] 0 - 32 (Contiene datos espureos) 'estar_habitacion', # [Int] 0 - 9 (Contiene datos espureos) 'cuarto_servicio', # [Int] 0 - 5 (Contiene datos espureos) 'closet', # [Int] 0 - 17 (Contiene datos espureos) 'sala', # [Int] 0 - 24 (Contiene datos espureos) 'comedor', # [Int] 0 - 31 (Contiene datos espureos) 'bano_privado', # [Int] 0 - 24 (Contiene datos espureos) 'bano_social', # [Int] 0 - 12 'bano_servicio', # [Int] 0 - 11 'cocina', # [Int] 0 - 13 'estudio', # [Int] 0 - 3 'balcon', # [Int] 0 - 11 'terraza', # [Int] 0 - 9 'patio_interior', # [Int] 0 - 11 'jardin', # [Int] 0 - 4 'zona_de_ropas', # [Int] 0 - 13 'zona_verde_privada', # [Int] 0 - 4 'local', # [Int] 0 - 10 'oficina', # [Int] 0 - 9 'bodega', # [Int] 0 - 2 # Seccion Garage 'numero_total_de_garajes', # [Int] 0 - 5 (Contiene datos espureos) 'total_cupos_parquedaro', # [Int] 0 - 8 (Contiene datos espureos) ] ###Output _____no_output_____ ###Markdown Se notan varios datos espureos, en el id 13365 pudimos notar que las columnas estan movidas, se movio la data manualmente.Otro arreglo que se realizo sobre la data 320437301104211601entre otros que tenia columnas movidas Se eliminaron472485547621833837141915741675174933654059572877395814731532274628554008436546694783524352695986621664147200742079348124839088141004710543113211230512839160481723911928039462984393112921394172217772997Al inspeccionar visualmente la data, la mayoria por que el valor total esta vacio, junto a otros errores1398341752659673015942403276928713568364538353864391140314059413541684267449246534726498350015496593563726866691971067529758678717982808996029618102891075310883111841181012396125301319513204134201410814210142251468915230160571620416508165401676416850169241705717234172361744217543176861772817796178061814318214267046126403 Con respecto al documento de pruebas tambien se hallaron problemas que se solucionaron de la siguiente maneraSe modifico varios que tenian el mismo error que en el de entrenamiento. Por ultimo, se procedio a terminar de limpiar data eliminando celdas vacias.El el caso de las columnas numericas se relleno con ceros cuando la celda esta vacia. ###Code cleanTrainData[numeric_columns] = cleanTrainData[numeric_columns].fillna(0) for column in numeric_columns: cleanTrainData[column] = cleanTrainData[column].str.replace(",", ".") cleanTrainData[numeric_columns] = cleanTrainData.loc[:,numeric_columns].transform(lambda x: x.map(lambda x: { "Si": 1., "No": 0. }.get(x,x))) cleanTrainData[numeric_columns] = cleanTrainData[numeric_columns].apply(pd.to_numeric).astype(float) cleanTrainData[numeric_columns].isnull().sum() cleanTrainData[numeric_columns] ###Output _____no_output_____ ###Markdown Ahora las columnas booleanas convertirlas a numeros (1/0) ###Code cleanTrainData[binary_columns] = cleanTrainData.loc[:,binary_columns].transform(lambda x: x.map(lambda x: { "Si": 1., "No": 0. }.get(x,x))) cleanTrainData[binary_columns] = cleanTrainData[binary_columns].fillna(0.).apply(pd.to_numeric).astype(float) cleanTrainData[binary_columns].isnull().sum() cleanTrainData[binary_columns] ###Output _____no_output_____ ###Markdown Ahora trataremos individualmente algunas columnas ordinales ###Code cleanTrainData['estrato'] = cleanTrainData.loc[:,'estrato'].transform(lambda x: x.map(lambda x: { "Comercial": 7., "Oficina": 8., "Industrial": 9., "No": 0. }.get(x,x))) cleanTrainData['topografia_sector'] = cleanTrainData.loc[:,'topografia_sector'].transform(lambda x: x.map(lambda x: { "Plano": 0., "Ligera": 1., "Inclinado": 2., "Accidentada": 3., "No": 0. }.get(x,x))) cleanTrainData['condiciones_salubridad'] = cleanTrainData.loc[:,'condiciones_salubridad'].transform(lambda x: x.map(lambda x: { "Malas": 0., "Bueno": 1., "Buenas": 1., "Regulares": 2., "Malas": 3., "No": 0. }.get(x,x))) cleanTrainData['transporte'] = cleanTrainData.loc[:,'transporte'].transform(lambda x: x.map(lambda x: { "Malo": 0., "Regular": 1., "Bueno": 2., "Vivienda": 3., "Hotelero": 4., "No": 0. }.get(x,x))) cleanTrainData['demanda_interes'] = cleanTrainData.loc[:,'demanda_interes'].transform(lambda x: x.map(lambda x: { "Nula": 0., "Dรฉbil": 1., "Media": 2., "Bueno": 3., "Fuerte": 4., "No": 0. }.get(x,x))) cleanTrainData['nivel_equipamiento_comercial'] = cleanTrainData.loc[:,'nivel_equipamiento_comercial'].transform(lambda x: x.map(lambda x: { "En Proyecto": 1., "Regular Malo": 0., "Bueno": 2., "Muy bueno": 3., "No": 0. }.get(x,x))) cleanTrainData['tipo_vigilancia'] = cleanTrainData.loc[:,'tipo_vigilancia'].transform(lambda x: x.map(lambda x: { "12 Horas": 1., "24 Horas": 2., "No": 0. }.get(x,x))) cleanTrainData['tipo_fachada'] = cleanTrainData.loc[:,'tipo_fachada'].transform(lambda x: x.map(lambda x: { "De 0 a 3 metros": 1., "De 3 a 6 metros": 2., "Mayor a 6 metros": 3., "No": 0. }.get(x,x))) cleanTrainData['ventilacion'] = cleanTrainData.loc[:,'ventilacion'].transform(lambda x: x.map(lambda x: { "Malo": 0., "Regular": 1., "Bueno": 2., "No": 0. }.get(x,x))) cleanTrainData['irregularidad_planta'] = cleanTrainData.loc[:,'irregularidad_planta'].transform(lambda x: x.map(lambda x: { "No disponible": 0., "Con irregularidad": 1., "Sin irregularidad": 2., "No": 0. }.get(x,x))) cleanTrainData['irregularidad_altura'] = cleanTrainData.loc[:,'irregularidad_altura'].transform(lambda x: x.map(lambda x: { "No disponible": 0., "Con irregularidad": 1., "Sin irregularidad": 2., "No": 0. }.get(x,x))) dictionary_details = { "Malo": 0., "Sin Acabados": 1., "Sin acabados": 1., "Sencillo": 2., "Normal": 4., "Bueno": 5., "Lujoso": 5., "No disponible": 0., "Regular": 3., "No": 0.} cleanTrainData['estado_acabados_cocina'] = cleanTrainData.loc[:,'estado_acabados_cocina'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_pisos'] = cleanTrainData.loc[:,'estado_acabados_pisos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_pisos'] = cleanTrainData.loc[:,'calidad_acabados_pisos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_muros'] = cleanTrainData.loc[:,'estado_acabados_muros'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_muros'] = cleanTrainData.loc[:,'calidad_acabados_muros'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_techos'] = cleanTrainData.loc[:,'estado_acabados_techos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_techos'] = cleanTrainData.loc[:,'calidad_acabados_techos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_madera'] = cleanTrainData.loc[:,'estado_acabados_madera'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_madera'] = cleanTrainData.loc[:,'calidad_acabados_madera'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_metal'] = cleanTrainData.loc[:,'estado_acabados_metal'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_metal'] = cleanTrainData.loc[:,'calidad_acabados_metal'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['estado_acabados_banos'] = cleanTrainData.loc[:,'estado_acabados_banos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData['calidad_acabados_banos'] = cleanTrainData.loc[:,'calidad_acabados_banos'].transform(lambda x: x.map(lambda x: dictionary_details.get(x,x))) cleanTrainData[ordinal_columns] = cleanTrainData[ordinal_columns].fillna(0.).apply(pd.to_numeric).astype(float) cleanTrainData[ordinal_columns].isnull().sum() cleanTrainData[ordinal_columns] ###Output _____no_output_____ ###Markdown Por ultimo convertimos las categoricas en dummies ###Code cleanTrainData = pd.get_dummies(cleanTrainData, columns = categorical_columns, dtype=float ) cleanTrainData ###Output _____no_output_____
LDA/LDA.ipynb
###Markdown Some information about the Algorithm ###Code from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # load Iris dataset from sklearn iris =datasets.load_iris() features = iris.data # print (features) labels = iris.target # print(labels) # split the data to 60% training and 40% testing x_train,x_test,y_train,y_test=train_test_split(features,labels,test_size=.4) print('Training samples is : ',len(x_train)) print('Testing samples is : ', len((x_test))) LDA = LinearDiscriminantAnalysis() clf = LDA.fit(x_train,y_train) predictions = LDA.predict(x_test) print('Training ......') print ('Accuracy is : ',accuracy_score(y_test,predictions)) ###Output Training samples is : 90 Testing samples is : 60 Training ...... Accuracy is : 0.983333333333 ###Markdown ***Tweet Activity Over Years*** ###Code '''import plotly.plotly as py import plotly.graph_objs as go ''' tweets['datetime'] = pd.to_datetime(tweets['datetime'], format='%Y-%m-%d') tweetsT = tweets['datetime'] trace = go.Histogram( x=tweetsT, marker=dict( color='blue' ), opacity=0.75 ) layout = go.Layout( title='Tweet Activity in May', height=450, width=1200, xaxis=dict( title='Date and Month' ), yaxis=dict( title='Tweet Quantity' ), bargap=0.2, ) data = [trace] fig = go.Figure(data=data, layout=layout) py.offline.iplot(fig) # Preparing a corpus for analysis and checking first 10 entries corpus=[] a=[] for i in range(len(tweets['text'])): a=tweets['text'][i] corpus.append(a) corpus[0:10] TEMP_FOLDER = tempfile.gettempdir() print('Folder "{}" will be used to save temporary dictionary and corpus.'.format(TEMP_FOLDER)) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import nltk nltk.download('stopwords') # removing common words and tokenizing list1 = ['corona', 'coronavirus','indonesia', 'indonesian','covid19', 'covid', 'via', 'city', 'names', 'may', 'today', 'new', 'could', '24', '557', '678', '4', '20', '1520', '25773', '30', '10', '25216', '29', '1', '53', '28', 'รขโ‚ฌยฆ', 'รขโ‚ฌยข', 'รขโ‚ฌโ„ข', 'รขโ‚ฌโ€œ', 'ร‚ยซ', 'รขโ‚ฌ', 'ร‚ยป', 'รขโ€šยฌ', 'ร‚ยฃ', 'ร‚ยฉ', 'ร‚ยฐc', ' ร‚ยฃ', 'รฅ', 'รข', 'รซ'] stoplist = stopwords.words('english') + list(punctuation) + list1 texts = [[word for word in str(document).lower().split() if word not in stoplist] for document in corpus] dictionary = corpora.Dictionary(texts) dictionary.save(os.path.join(TEMP_FOLDER, 'elon.dict')) # store the dictionary, for future reference #print(dictionary) #print(dictionary.token2id) corpus = [dictionary.doc2bow(text) for text in texts] corpora.MmCorpus.serialize(os.path.join(TEMP_FOLDER, 'elon.mm'), corpus) # store to disk, for later use ###Output 2020-06-23 11:02:31,023 : INFO : storing corpus in Matrix Market format to C:\Users\yusuf\AppData\Local\Temp\elon.mm 2020-06-23 11:02:31,025 : INFO : saving sparse matrix to C:\Users\yusuf\AppData\Local\Temp\elon.mm 2020-06-23 11:02:31,026 : INFO : PROGRESS: saving document #0 2020-06-23 11:02:31,056 : INFO : PROGRESS: saving document #1000 2020-06-23 11:02:31,083 : INFO : PROGRESS: saving document #2000 2020-06-23 11:02:31,108 : INFO : PROGRESS: saving document #3000 2020-06-23 11:02:31,134 : INFO : PROGRESS: saving document #4000 2020-06-23 11:02:31,140 : INFO : saved 4225x9746 matrix, density=0.132% (54414/41176850) 2020-06-23 11:02:31,142 : INFO : saving MmCorpus index to C:\Users\yusuf\AppData\Local\Temp\elon.mm.index ###Markdown In the previous cells, I created a corpus of documents represented as a stream of vectors. To continue, lets use that corpus, with the help of Gensim. Creating a transformation The transformations are standard Python objects, typically initialized by means of a training corpus:Different transformations may require different initialization parameters; in case of TfIdf, the โ€œtrainingโ€ consists simply ofgoing through the supplied corpus once and computing document frequencies of all its features.Training other models, such as Latent Semantic Analysis or Latent Dirichlet Allocation, is much more involved and,consequently, takes much more time. ###Code tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model ###Output 2020-06-23 11:02:31,153 : INFO : collecting document frequencies 2020-06-23 11:02:31,154 : INFO : PROGRESS: processing document #0 2020-06-23 11:02:31,172 : INFO : calculating IDF weights for 4225 documents and 9746 features (54414 matrix non-zeros) ###Markdown NoteTransformations always convert between two specific vector spaces. The same vector space (= the same set of feature ids) must be used for training as well as for subsequent vector transformations. Failure to use the same input feature space, such as applying a different string preprocessing, using different feature ids, or using bag-of-words input vectors where TfIdf vectors are expected, will result in feature mismatch during transformation calls and consequently in either garbage output and/or runtime exceptions. From now on, tfidf is treated as a read-only object that can be used to apply a transformation to a whole corpus: ###Code corpus_tfidf = tfidf[corpus] # step 2 -- use the model to transform vectors ###Output _____no_output_____ ###Markdown LDA:https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation Latent Dirichlet Allocation, LDA is yet another transformation from bag-of-words counts into a topic space of lower dimensionality. LDA is a probabilistic extension of LSA (also called multinomial PCA), so LDAโ€™s topics can be interpreted as probability distributions over words. These distributions are, just like with LSA, inferred automatically from a training corpus. Documents are in turn interpreted as a (soft) mixture of these topics (again, just like with LSA). ###Code total_topics = 5 lda = models.LdaModel(corpus, id2word=dictionary, num_topics=total_topics) corpus_lda = lda[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi #Show first n important word in the topics: lda.show_topics(total_topics,5) data_lda = {i: OrderedDict(lda.show_topic(i,25)) for i in range(total_topics)} #data_lda df_lda = pd.DataFrame(data_lda) df_lda = df_lda.fillna(0).T print(df_lda.shape) df_lda g=sns.clustermap(df_lda.corr(), center=0, standard_scale=1, cmap="RdBu", metric='cosine', linewidths=.75, figsize=(15, 15)) plt.setp(g.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) plt.show() #plt.setp(ax_heatmap.get_yticklabels(), rotation=0) # For y axis pyLDAvis.enable_notebook() panel = pyLDAvis.gensim.prepare(lda, corpus_lda, dictionary, mds='tsne') panel ###Output _____no_output_____ ###Markdown Latent Dirichlet Allocation LDA WikifetcherRaw Text von Wikipedia mittels Suchbegriffen LDAbuilderAusfรผhren der LDA mit der gegebenen Dokumentliste (Rohtext-Liste von Wikifetcher) AusfรผhrungZusรคtzlich fรผr jeden Ausfรผhrungsblock wird die Ausfรผhrungszeit gemessen. Konfiguration - Wir benรถtigen Zugriff auf Wikipedia fรผr den Rohtext- Natural Language Toolkit NLTK fรผr die Tokenisierung und Stemming- Stop_words, um nichtssagende Wรถrter zu entfernen- Gensim fรผr die Implementierung der Latent Dirichlet Allocation LDA ###Code import wikipedia import time from nltk.tokenize import RegexpTokenizer from stop_words import get_stop_words from nltk.stem.porter import PorterStemmer import re import warnings warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') from gensim import corpora, models start = time.time() sentence_pat = re.compile(r'([A-Z][^\.!?]*[\.!?])', re.M) tokenizer = RegexpTokenizer(r'\w+') # Erzeuge englische stop words Liste en_stop = get_stop_words('en') # Erzeuge p_stemmer der Klasse PorterStemmer p_stemmer = PorterStemmer() doc_list = [] wikipedia.set_lang('en') end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') ###Output Ausfรผhrungszeit: 0.001001 s ###Markdown Wikipedia ContentMittels Suchbegriffen holen wir den Rohen Inhalt aus Wikipedia.Danach wird der Inhalt in Sรคtze getrennt, welche zur Dokumentliste hinzugefรผgt werden. ###Code def get_page(name): first_found = wikipedia.search(name)[0] try: return(wikipedia.page(first_found).content) except wikipedia.exceptions.DisambiguationError as e: return(wikipedia.page(e.options[0]).content) start = time.time() search_terms = ['Nature', 'Volcano', 'Ocean', 'Landscape', 'Earth', 'Animals'] separator = '== References ==' for term in search_terms: full_content = get_page(term).split(separator, 1)[0] # sentence_list = sentence_pat.findall(full_content) #for sentence in sentence_list: doc_list.append(full_content) print(full_content[0:1000] + '...') print('---') end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') ###Output Nature, in the broadest sense, is the natural, physical, or material world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large part of science. Although humans are part of nature, human activity is often understood as a separate category from other natural phenomena. The word nature is derived from the Latin word natura, or "essential qualities, innate disposition", and in ancient times, literally meant "birth". Natura is a Latin translation of the Greek word physis (ฯ†ฯฯƒฮนฯ‚), which originally related to the intrinsic characteristics that plants, animals, and other features of the world develop of their own accord. The concept of nature as a whole, the physical universe, is one of several expansions of the original notion; it began with certain core applications of the word ฯ†ฯฯƒฮนฯ‚ by pre-Socratic philosophers, and has steadily gained currency ever since. This usage continued during the advent of modern scienti... --- A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. Earth's volcanoes occur because its crust is broken into 17 major, rigid tectonic plates that float on a hotter, softer layer in its mantle. Therefore, on Earth, volcanoes are generally found where tectonic plates are diverging or converging, and most are found underwater. For example, a mid-oceanic ridge, such as the Mid-Atlantic Ridge, has volcanoes caused by divergent tectonic plates whereas the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates. Volcanoes can also form where there is stretching and thinning of the crust's plates, e.g., in the East African Rift and the Wells Gray-Clearwater volcanic field and Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantl... --- An ocean (from Ancient Greek แฝจฮบฮตฮฑฮฝฯŒฯ‚, transc. Okeanรณs, the sea of classical antiquity) is a body of saline water that composes much of a planet's hydrosphere. On Earth, an ocean is one of the major conventional divisions of the World Ocean. These are, in descending order by area, the Pacific, Atlantic, Indian, Southern (Antarctic), and Arctic Oceans. The word sea is often used interchangeably with "ocean" in American English but, strictly speaking, a sea is a body of saline water (generally a division of the world ocean) partly or fully enclosed by land. Saline water covers approximately 360,000,000 km2 (140,000,000 sq mi) and is customarily divided into several principal oceans and smaller seas, with the ocean covering approximately 71% of Earth's surface and 90% of the Earth's biosphere. The ocean contains 97% of Earth's water, and oceanographers have stated that less than 5% of the World Ocean has been explored. The total volume is approximately 1.35 billion cubic kilometers (320 mi... --- A landscape is the visible features of an area of land, its landforms and how they integrate with natural or man-made features. A landscape includes the physical elements of geophysically defined landforms such as (ice-capped) mountains, hills, water bodies such as rivers, lakes, ponds and the sea, living elements of land cover including indigenous vegetation, human elements including different forms of land use, buildings and structures, and transitory elements such as lighting and weather conditions. Combining both their physical origins and the cultural overlay of human presence, often created over millennia, landscapes reflect a living synthesis of people and place that is vital to local and national identity. The character of a landscape helps define the self-image of the people who inhabit it and a sense of place that differentiates one region from other regions. It is the dynamic backdrop to peopleโ€™s lives. Landscape can be as varied as farmland, a landscape park, or wilderness... --- Earth is the third planet from the Sun and the only object in the Universe known to harbor life. According to radiometric dating and other sources of evidence, Earth formed over 4 billion years ago. Earth's gravity interacts with other objects in space, especially the Sun and the Moon, Earth's only natural satellite. Earth revolves around the Sun in 365.26 days, a period known as an Earth year. During this time, Earth rotates about its axis about 366.26 times. Earth's axis of rotation is tilted, producing seasonal variations on the planet's surface. The gravitational interaction between the Earth and Moon causes ocean tides, stabilizes the Earth's orientation on its axis, and gradually slows its rotation. Earth is the densest planet in the Solar System and the largest of the four terrestrial planets. Earth's lithosphere is divided into several rigid tectonic plates that migrate across the surface over periods of many millions of years. About 71% of Earth's surface is covered with water... --- Animals are eukaryotic, multicellular organisms that form the biological kingdom Animalia. With few exceptions, animals are motile (able to move), heterotrophic (consume organic material), reproduce sexually, and their embryonic development includes a blastula stage. The body plan of the animal derives from this blastula, differentiating specialized tissues and organs as it develops; this plan eventually becomes fixed, although some undergo metamorphosis at some stage in their lives. Zoology is the study of animals. Currently there are over 66 thousand (less than 5% of all animals) vertebrate species, and over 1.3 million (over 95% of all animals) invertebrate species in existence. Classification of animals into groups (taxonomy) is accomplished using either the hierarchical Linnaean system; or cladistics, which displays diagrams (phylogenetic trees) called cladograms to show relationships based on the evolutionary principle of the most recent common ancestor. Some recent classificatio... --- Ausfรผhrungszeit: 8.894520 s ###Markdown VorverarbeitungDer Text wird nun Tokenisiert, gestemt, nutzlose Wรถrter werden entfernt ###Code num_topics = 5 num_words_per_topic = 20 texts = [] import pandas as pd start = time.time() for doc in doc_list: raw = doc.lower() # Erzeuge tokens tokens = tokenizer.tokenize(raw) # Entferne unnรผtze Information stopped_tokens = [i for i in tokens if not i in en_stop] # Stemme tokens - Entfernung von Duplikaten und Transformation zu Grundform (Optional) # stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens] texts.append(stopped_tokens) output_preprocessed = pd.Series(texts) print(output_preprocessed) end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') ###Output 0 [nature, broadest, sense, natural, physical, m... 1 [volcano, rupture, crust, planetary, mass, obj... 2 [ocean, ancient, greek, แฝ ฮบฮตฮฑฮฝฯŒฯ‚, transc, okean... 3 [landscape, visible, features, area, land, lan... 4 [earth, third, planet, sun, object, universe, ... 5 [animals, eukaryotic, multicellular, organisms... dtype: object Ausfรผhrungszeit: 0.062492 s ###Markdown Dictionary und VektorenIn diesem Abschnitt wird nun der Bag-of-words Korpus erstellt. Die Vektoren werden spรคter fรผr das LDA-Modell benรถtigt ###Code start = time.time() # Erzeuge ein dictionary dictionary = corpora.Dictionary(texts) # Konvertiere dictionary in Bag-of-Words # corpus ist eine Liste von Vektoren - Jeder Dokument-Vektor ist eine Serie von Tupeln corpus = [dictionary.doc2bow(text) for text in texts] output_vectors = pd.Series(corpus) print(dictionary) print('---') print(output_vectors) end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') ###Output Dictionary(5354 unique tokens: ['nature', 'broadest', 'sense', 'natural', 'physical']...) --- 0 [(0, 51), (1, 2), (2, 1), (3, 32), (4, 9), (5,... 1 [(3, 2), (5, 6), (6, 1), (8, 28), (9, 2), (11,... 2 [(3, 4), (4, 2), (5, 1), (6, 15), (8, 12), (11... 3 [(0, 10), (2, 4), (3, 15), (4, 10), (5, 2), (6... 4 [(0, 2), (2, 1), (3, 7), (4, 3), (5, 6), (6, 1... 5 [(5, 2), (6, 2), (8, 5), (9, 1), (10, 1), (11,... dtype: object Ausfรผhrungszeit: 0.062440 s ###Markdown LDA-ModellSchlieรŸlich kann das LDA-Modell angewandt werden. Die รœbergabeparameter dafรผr sind die Liste der Vektoren, die Anzahl der Themen, das Dictionary, sowie die Aktualisierungsrate.In der Trainingsphase sollte eine hรถhere Aktualisierungsrate >= 20 gewรคhlt werden. ###Code start = time.time() # Wende LDA-Modell an ldamodel = models.ldamodel.LdaModel(corpus, num_topics=num_topics, id2word = dictionary, passes=50) lda = ldamodel.print_topics(num_topics=num_topics, num_words=num_words_per_topic) for topic in lda: for entry in topic: print(entry) print('---') end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') ###Output 0 --- 0.032*"earth" + 0.018*"s" + 0.008*"sun" + 0.008*"surface" + 0.005*"solar" + 0.005*"atmosphere" + 0.005*"moon" + 0.005*"1" + 0.005*"life" + 0.004*"water" + 0.004*"years" + 0.004*"land" + 0.004*"million" + 0.004*"5" + 0.003*"oceans" + 0.003*"year" + 0.003*"3" + 0.003*"energy" + 0.003*"field" + 0.003*"crust" --- 1 --- 0.011*"water" + 0.010*"ocean" + 0.009*"animals" + 0.007*"earth" + 0.007*"surface" + 0.006*"life" + 0.005*"nature" + 0.005*"also" + 0.005*"zone" + 0.005*"oceans" + 0.005*"s" + 0.004*"species" + 0.004*"can" + 0.004*"natural" + 0.004*"human" + 0.004*"animal" + 0.004*"may" + 0.003*"world" + 0.003*"called" + 0.003*"within" --- 2 --- 0.036*"landscape" + 0.009*"landscapes" + 0.007*"s" + 0.006*"painting" + 0.006*"poetry" + 0.006*"century" + 0.005*"human" + 0.004*"chinese" + 0.004*"cultural" + 0.004*"english" + 0.004*"land" + 0.004*"also" + 0.004*"natural" + 0.004*"garden" + 0.004*"art" + 0.003*"people" + 0.003*"can" + 0.003*"gardens" + 0.003*"term" + 0.003*"many" --- 3 --- 0.019*"volcanoes" + 0.014*"volcanic" + 0.010*"lava" + 0.008*"volcano" + 0.007*"s" + 0.006*"can" + 0.006*"earth" + 0.006*"eruptions" + 0.006*"eruption" + 0.006*"years" + 0.005*"also" + 0.005*"activity" + 0.005*"surface" + 0.004*"active" + 0.004*"ash" + 0.004*"may" + 0.004*"extinct" + 0.004*"erupted" + 0.004*"flows" + 0.004*"mount" --- 4 --- 0.000*"earth" + 0.000*"landscape" + 0.000*"s" + 0.000*"volcanoes" + 0.000*"water" + 0.000*"surface" + 0.000*"also" + 0.000*"can" + 0.000*"ocean" + 0.000*"volcanic" + 0.000*"lava" + 0.000*"life" + 0.000*"years" + 0.000*"animals" + 0.000*"oceans" + 0.000*"within" + 0.000*"natural" + 0.000*"many" + 0.000*"nature" + 0.000*"may" --- Ausfรผhrungszeit: 20.614590 s ###Markdown VisualisierungMit pyLDAvis ###Code import pyLDAvis.gensim # dprecation warnings bei pyLDAvis vermeiden warnings.simplefilter("ignore", DeprecationWarning) start = time.time() pyLDAvis.enable_notebook() vis_data = pyLDAvis.gensim.prepare(ldamodel, corpus, dictionary) end = time.time() print('Ausfรผhrungszeit: %f' %(end-start) + ' s') pyLDAvis.display(vis_data) ###Output _____no_output_____
notebooks/Reinforcement_Learning_Exploitation_Demo.ipynb
###Markdown > **How to run this notebook (command-line)?**1. Install the `ReinventCommunity` environment:`conda env create -f environment.yml`2. Activate the environment:`conda activate ReinventCommunity`3. Execute `jupyter`:`jupyter notebook`4. Copy the link to a browser `REINVENT 3.0`: reinforcement learning exploitation demoThis demo illustrates how to set up a `REINVENT` run to optimize molecules that are active against _Aurora_ kinase. We use here predictive model as the main component to guide the generation of the molecules. we also include a `qed_score` component to stimulate the generation of more "drug-like" molecules. 1. Set up the paths_Please update the following code block such that it reflects your system's installation and execute it._ ###Code # load dependencies import os import re import json import tempfile # --------- change these path variables as required reinvent_dir = os.path.expanduser("~/Desktop/reinventcli") reinvent_env = os.path.expanduser("~/miniconda3/envs/reinvent.v3.0") output_dir = os.path.expanduser("~/Desktop/REINVENT_RL_Exploitation_demo") # --------- do not change # get the notebook's root path try: ipynb_path except NameError: ipynb_path = os.getcwd() # if required, generate a folder to store the results try: os.mkdir(output_dir) except FileExistsError: pass ###Output _____no_output_____ ###Markdown 2. Setting up the configuration In the cells below we will build a nested dictionary object that will be eventually converted to JSON file which in turn will be consumed by `REINVENT`. You can find this file in your `output_dir` location. A) Declare the run type ###Code # initialize the dictionary configuration = { "version": 3, # we are going to use REINVENT's newest release "run_type": "reinforcement_learning" # other run types: "sampling", "validation", # "transfer_learning", # "scoring" and "create_model" } ###Output _____no_output_____ ###Markdown B) Sort out the logging detailsThis includes `result_folder` path where the results will be produced.Also: `REINVENT` can send custom log messages to a remote location. We have retained this capability in the code. if the `recipient` value differs from `"local"` `REINVENT` will attempt to POST the data to the specified `recipient`. ###Code # add block to specify whether to run locally or not and # where to store the results and logging configuration["logging"] = { "sender": "http://0.0.0.1", # only relevant if "recipient" is set to "remote" "recipient": "local", # either to local logging or use a remote REST-interface "logging_frequency": 10, # log every x-th steps "logging_path": os.path.join(output_dir, "progress.log"), # load this folder in tensorboard "result_folder": os.path.join(output_dir, "results"), # will hold the compounds (SMILES) and summaries "job_name": "Reinforcement learning demo", # set an arbitrary job name for identification "job_id": "demo" # only relevant if "recipient" is set to a specific REST endpoint } ###Output _____no_output_____ ###Markdown Create `"parameters"` field ###Code # add the "parameters" block configuration["parameters"] = {} ###Output _____no_output_____ ###Markdown C) Set Diversity FilterDuring each step of Reinforcement Learning the compounds scored above `minscore` threshold are kept in memory. The scored smiles are written out to a file in the results folder `scaffold_memory.csv`. In the example here we are not using any filter by setting it to `"NoFilter"`. This will lead to exploitation of the chemical space in vicinity to the local optimum for the defined scoring function. The scoring function will likely reach a higher overall score sooner than the exploration scenario.For exploratory behavior the diversity filters below should be set to any of the listed alternatives `"IdenticalTopologicalScaffold"`, `"IdenticalMurckoScaffold"` or `"ScaffoldSimilarity"`. This will boost the diversity of generated solutions. The maximum value of the scoring fuinction will be lower in exploration mode because the Agent is encouraged to search for diverse solutions rather than to only optimize the best that are being found so far. The number of generated compounds should be higher in comparison to the exploitation scenario. ###Code # add a "diversity_filter" configuration["parameters"]["diversity_filter"] = { "name": "NoFilter", # other options are: "IdenticalTopologicalScaffold", # "IdenticalMurckoScaffold" and "ScaffoldSimilarity" # -> use "NoFilter" to disable this feature "nbmax": 25, # the bin size; penalization will start once this is exceeded "minscore": 0.4, # the minimum total score to be considered for binning "minsimilarity": 0.4 # the minimum similarity to be placed into the same bin } ###Output _____no_output_____ ###Markdown D) Set Inception* `smiles` provide here a list of smiles to be incepted * `memory_size` the number of smiles allowed in the inception memory* `sample_size` the number of smiles that can be sampled at each reinforcement learning step from inception memory ###Code # prepare the inception (we do not use it in this example, so "smiles" is an empty list) configuration["parameters"]["inception"] = { "smiles": [], # fill in a list of SMILES here that can be used (or leave empty) "memory_size": 100, # sets how many molecules are to be remembered "sample_size": 10 # how many are to be sampled each epoch from the memory } ###Output _____no_output_____ ###Markdown E) Set the general Reinforcement Learning parameters* `n_steps` is the amount of Reinforcement Learning steps to perform. Best start with 1000 steps and see if thats enough.* `agent` is the generative model that undergoes transformation during the Reinforcement Learning run.We reccomend keeping the other parameters to their default values. ###Code # set all "reinforcement learning"-specific run parameters configuration["parameters"]["reinforcement_learning"] = { "prior": os.path.join(ipynb_path, "models/random.prior.new"), # path to the pre-trained model "agent": os.path.join(ipynb_path, "models/random.prior.new"), # path to the pre-trained model "n_steps": 1000, # the number of epochs (steps) to be performed; often 1000 "sigma": 128, # used to calculate the "augmented likelihood", see publication "learning_rate": 0.0001, # sets how strongly the agent is influenced by each epoch "batch_size": 128, # specifies how many molecules are generated per epoch "reset": 0, # if not '0', the reset the agent if threshold reached to get # more diverse solutions "reset_score_cutoff": 0.5, # if resetting is enabled, this is the threshold "margin_threshold": 50 # specify the (positive) margin between agent and prior } ###Output _____no_output_____ ###Markdown F) Define the scoring functionWe will use a `custom_product` type. The component types included are:* `predictive_property` which is the target activity to _Aurora_ kinase represented by the predictive `regression` model. Note that we set the weight of this component to be the highest.* `qed_score` is the implementation of QED in RDKit. It biases the egenration of molecules towars more "drug-like" space. Depending on the study case can have beneficial or detrimental effect.* `custom_alerts` the `"smiles"` field also can work with SMILES or SMARTSNote: The model used in this example is a regression model ###Code # prepare the scoring function definition and add at the end scoring_function = { "name": "custom_product", # this is our default one (alternative: "custom_sum") "parallel": False, # sets whether components are to be executed # in parallel; note, that python uses "False" / "True" # but the JSON "false" / "true" # the "parameters" list holds the individual components "parameters": [ # add component: an activity model { "component_type": "predictive_property", # this is a scikit-learn model, returning # activity values "name": "Aurora kinase", # arbitrary name for the component "weight": 6, # the weight ("importance") of the component (default: 1) "specific_parameters": { "model_path": os.path.join(ipynb_path, "models/Aurora_model.pkl"), # absolute model path "transformation": { "transformation_type": "sigmoid", # see description above "high": 9, # parameter for sigmoid transformation "low": 4, # parameter for sigmoid transformation "k": 0.25 # parameter for sigmoid transformation }, "scikit": "regression", # model can be "regression" or "classification" "descriptor_type": "ecfp_counts", # sets the input descriptor for this model "size": 2048, # parameter of descriptor type "radius": 3, # parameter of descriptor type "use_counts": True, # parameter of descriptor type "use_features": True # parameter of descriptor type } }, # add component: QED { "component_type": "qed_score", # this is the QED score as implemented in RDKit "name": "QED", # arbitrary name for the component "weight": 2 # the weight ("importance") of the component (default: 1) }, # add component: enforce to NOT match a given substructure { "component_type": "custom_alerts", "name": "Custom alerts", # arbitrary name for the component "weight": 1, # the weight of the component (default: 1) "specific_parameters": { "smiles": [ # specify the substructures (as list) to penalize "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]", "[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#8][#8]", "[#6;+]", "[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]", "C#C", "C(=[O,S])[O,S]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]" ] } }] } configuration["parameters"]["scoring_function"] = scoring_function ###Output _____no_output_____ ###Markdown NOTE: Getting the selectivity score component to reach satisfactory levels is non-trivial and might take considerably higher number of steps 3. Write out the configuration We now have successfully filled the dictionary and will write it out as a `JSON` file in the output directory. Please have a look at the file before proceeding in order to see how the paths have been inserted where required and the `dict` -> `JSON` translations (e.g. `True` to `true`) have taken place. ###Code # write the configuration file to the disc configuration_JSON_path = os.path.join(output_dir, "RL_config.json") with open(configuration_JSON_path, 'w') as f: json.dump(configuration, f, indent=4, sort_keys=True) ###Output _____no_output_____ ###Markdown 4. Run `REINVENT`Now it is time to execute `REINVENT` locally. Note, that depending on the number of epochs (steps) and the execution time of the scoring function components, this might take a while. The command-line execution looks like this:``` activate envionmentconda activate reinvent.v3.0 execute REINVENTpython /input.py .json``` ###Code %%capture captured_err_stream --no-stderr # execute REINVENT from the command-line !{reinvent_env}/bin/python {reinvent_dir}/input.py {configuration_JSON_path} # print the output to a file, just to have it for documentation with open(os.path.join(output_dir, "run.err"), 'w') as file: file.write(captured_err_stream.stdout) # prepare the output to be parsed list_epochs = re.findall(r'INFO.*?local', captured_err_stream.stdout, re.DOTALL) data = [epoch for idx, epoch in enumerate(list_epochs) if idx in [1, 75, 124]] data = ["\n".join(element.splitlines()[:-1]) for element in data] ###Output _____no_output_____ ###Markdown Below you see the print-out of the first, one from the middle and the last epoch, respectively. Note, that the fraction of valid `SMILES` is high right from the start (because we use a pre-trained prior). You can see the partial scores for each component for the first couple of compounds, but the most important information is the average score. You can clearly see how it increases over time. ###Code for element in data: print(element) ###Output INFO Step 0 Fraction valid SMILES: 96.1 Score: 0.2655 Time elapsed: 0 Time left: 0.0 Agent Prior Target Score SMILES -51.31 -51.31 -51.31 0.00 C(C(CC=C(CCC=C(CCC(=O)O)C=C(CC=CCCC=C(C)C)C)=O)C)=C -35.59 -35.59 21.37 0.44 c1cc(C(=O)NC(C)c2ccc(OC3CCN(c4ccc(OCC5C(F)(F)C5)cn4)CC3O)cc2)c(OC)nc1 -27.17 -27.17 -27.17 0.00 c1c(Cl)ccc2c(=Nc3c(Cl)cc(OC)cc3)c(C(OCC)=O)c[nH]c12 -32.39 -32.39 -32.39 0.00 C(=O)(OCC)C1(C(C)=NN)CC2c3c(cccc3)C1c1ccccc12 -26.54 -26.54 19.96 0.36 C1(=O)C(Oc2ccc(C(N)=N)cc2)(CC)CCC1O -22.56 -22.56 30.60 0.42 C(NS(c1ccc(NC(=O)C)cc1)(=O)=O)Cc1cc(C)ccc1 -32.63 -32.63 18.67 0.40 c1(CNC(=O)CN2C(=O)C3N(CCOC)CCC3O2)c2c(ccc1)cccc2 -28.76 -28.76 23.42 0.41 O=C(N(C)CC(Nc1c(C)cc(Br)cc1)=O)C1(CC)C(Cl)(Cl)C1C -32.71 -32.71 24.86 0.45 O=S(c1ccc(C(=O)N)cc1)(=O)Oc1c(NC(c2ccco2)=O)cc(Cl)cc1 -32.85 -32.85 -32.85 0.00 N=c1[nH]c2nc(-c3ccc(CCNC(CCC(=O)O)=O)cc3)cnc2c(=N)[nH]1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.0 0.0 0.0 0.0 0.46610119938850403 0.38718461990356445 1.0 6.382042407989502 0.37139689922332764 0.644282877445221 0.0 6.042923450469971 0.3336728513240814 0.40394356846809387 0.0 5.899266719818115 0.31423062086105347 0.5612077116966248 1.0 5.822140693664551 0.3267623484134674 0.8531444668769836 1.0 5.872127056121826 0.3209114670753479 0.7809154391288757 1.0 5.848917484283447 0.3407776951789856 0.6974791288375854 1.0 5.926878452301025 0.4110566973686218 0.5894344449043274 1.0 6.187656402587891 0.3114776313304901 0.34777504205703735 0.0 5.8110175132751465 INFO Step 72 Fraction valid SMILES: 99.2 Score: 0.3254 Time elapsed: 44 Time left: 559.3 Agent Prior Target Score SMILES -21.50 -21.70 52.27 0.42 c1(C(Nc2ccccc2OC)=O)ccc(NC(=O)C2CC2)cc1 -29.32 -30.07 -30.07 0.00 c1c(S(=O)(N)=O)ccc(Cl)c1C(NNC(c1oc2c(cccc2)c1)=O)=O -19.69 -20.35 54.20 0.42 Cc1sc2n(n1)cc(-c1cc3c(cc1)OCCO3)n2 -30.97 -30.64 44.41 0.42 O=S(=O)(CC)N1c2c(cc(OC)c(OC)c2)CC1(C)C -25.06 -25.66 42.32 0.38 Clc1ccc(-c2cccc(-c3c(N)c(O)oc3)c2)cc1 -32.35 -33.76 56.65 0.51 C(c1cc(F)c(F)cc1F)C(NC(C)C)C(N=c1[nH]cc(Cl)s1)=O -22.32 -23.29 47.97 0.40 Fc1ccc(Oc2ccc(COc3nc(=O)n(C)c(N4CCOCC4)c3)cc2F)cc1 -35.10 -35.53 36.74 0.41 c1c2c(cc(F)c1)-c1c(c3cc([N+](=O)[O-])ccc3n1C)C(CCC)(C)NC2=O -23.14 -23.47 40.64 0.36 N(C(=O)CCN1CCOCC1)c1ccc2c(c1)c(C)cc(N1CCN(C)CC1)n2 -29.77 -29.73 35.43 0.37 c1(-c2sc(C(=O)CC(C)C)cc2)cn(Cc2ccccc2)nn1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.322376549243927 0.890160858631134 1.0 5.854750156402588 0.3206542730331421 0.5836869478225708 0.0 5.8478922843933105 0.35576075315475464 0.683357834815979 1.0 5.984221458435059 0.33314836025238037 0.8549820780754089 1.0 5.897216796875 0.30833700299263 0.7257052063941956 1.0 5.798262119293213 0.43912962079048157 0.7861695885658264 1.0 6.2874603271484375 0.34998154640197754 0.5994198322296143 1.0 5.962238788604736 0.37158986926078796 0.5297967791557312 1.0 6.043641567230225 0.2724348306655884 0.8323323130607605 1.0 5.6467814445495605 0.3045485317707062 0.6354219317436218 1.0 5.782779216766357 INFO Step 121 Fraction valid SMILES: 99.2 Score: 0.3721 Time elapsed: 74 Time left: 533.2 Agent Prior Target Score SMILES -31.75 -30.82 38.81 0.39 Cc1c(C(NCC2(N)CCS(=O)(=O)CC2)=O)cc(Cl)cc1 -18.79 -20.73 37.41 0.33 c12c([n+]([O-])c(-c3cccs3)c(C)[n+]1[O-])cccc2 -17.08 -18.10 61.54 0.45 FC(c1cc(N2C(=O)N(C)C(c3ccc(C#N)cc3)C3=C2CCC3=O)ccc1)(F)F -20.02 -21.80 53.73 0.42 C1N(C(C)C)CCC(Oc2c(OC)ccc(C(NC3CCCC3)=O)c2)C1 -25.74 -27.65 45.30 0.41 c1n[nH]c(=NS(=O)(=O)c2ccc(Oc3c(-c4ccn[nH]4)cc(F)cc3)c(C#N)c2)s1 -21.43 -23.16 -23.16 0.00 N1N=C(c2ccc(C)cc2)CC1c1c(C)nn(-c2ccccc2)c1Cl -33.71 -33.20 -33.20 0.00 n1(CC)c2ccccc2c2c3c(c4c5c(cccc5)[nH]c41)cccc3C(=O)C2=O -19.83 -21.49 49.54 0.40 C1N(C=C2C(=O)c3ccccc3C2=O)CCN(Cc2ccccc2)C1 -28.13 -28.89 43.99 0.41 c1nc2[nH]c(SC)nc(=Nc3ccc(CC)cc3)c2cc1C#N -22.24 -22.75 51.72 0.42 c1(O)c(C(NC(C)C2CCCCC2)=O)cc(Cl)cc1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.2992677688598633 0.8734317421913147 1.0 5.761015892028809 0.28419438004493713 0.4957776963710785 1.0 5.697640895843506 0.3830990195274353 0.7126726508140564 1.0 6.086191177368164 0.33775582909584045 0.8417723178863525 1.0 5.9151692390441895 0.38679444789886475 0.48748698830604553 1.0 6.099748134613037 0.39176592230796814 0.7507633566856384 0.0 6.1179118156433105 0.0 0.0 0.0 0.0 0.34084388613700867 0.6400846242904663 1.0 5.9271345138549805 0.3619540333747864 0.5925776362419128 1.0 6.007602691650391 0.32573503255844116 0.8865053057670593 1.0 5.868067741394043 ###Markdown 5. Analyse the resultsIn order to analyze the run in a more intuitive way, we can use `tensorboard`:``` go to the root folder of the outputcd /REINVENT_RL_demo make sure, you have activated the proper environmentconda activate reinvent.v3.0 start tensorboardtensorboard --logdir progress.log```Then copy the link provided to a browser window, e.g. "http://workstation.url.com:6006/". The following figures are exmaple plots - remember, that there is always some randomness involved. In `tensorboard` you can monitor the individual scoring function components. The score for predicted Aurora Kinase activity.![](img/exploit_aurora_kinase.png)The average score over time.![](img/exploit_avg_score.png)It might also be informative to look at the results from the prior (dark blue), the agent (blue) and the augmented likelihood (purple) over time.![](img/nll_plot.png)And last but not least, there is a "Images" tab available that lets you browse through the compounds generated in an easy way. In the molecules, the substructure matches that were defined to be required are highlighted in red (if present). Also, the total scores are given per molecule.![](img/molecules.png) The results folder will hold four different files: the agent (pickled), the input JSON (just for reference purposes), the memory (highest scoring compounds in `CSV` format) and the scaffold memory (in `CSV` format). ###Code !head -n 15 {output_dir}/results/memory.csv ###Output ,smiles,score,likelihood 27,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC1O,0.8451204,-42.869774 22,C1N(c2ncncc2-c2cn(CC4OCCN(C)CC4)nc2)CCCC1O,0.8451204,-53.072266 19,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CC1,0.8451204,-45.846977 50,C1CN(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)C1,0.8451204,-45.26066 61,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCC1,0.8451204,-45.653194 60,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC(O)C1,0.8451204,-43.792747 55,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCCC1O,0.84456897,-48.738205 112,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCC1,0.84456897,-49.809258 92,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCCC1,0.84456897,-52.195297 107,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCNCC1,0.8443355,-43.1882 51,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCNCCC1,0.8443355,-43.12227 70,N1CCN(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCC1,0.8443355,-44.6098 62,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCNCC1,0.8443355,-46.611633 1,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC1=N,0.8419696,-52.32989 ###Markdown > **How to run this notebook (command-line)?**1. Install the `ReinventCommunity` environment:`conda env create -f environment.yml`2. Activate the environment:`conda activate ReinventCommunity`3. Execute `jupyter`:`jupyter notebook`4. Copy the link to a browser `REINVENT 3.0`: reinforcement learning exploitation demoThis demo illustrates how to set up a `REINVENT` run to optimize molecules that are active against _Aurora_ kinase. We use here predictive model as the main component to guide the generation of the molecules. we also include a `qed_score` component to stimulate the generation of more "drug-like" molecules. 1. Set up the paths_Please update the following code block such that it reflects your system's installation and execute it._ ###Code # load dependencies import os import re import json import tempfile # --------- change these path variables as required reinvent_dir = os.path.expanduser("~/Desktop/Reinvent") reinvent_env = os.path.expanduser("~/miniconda3/envs/reinvent.v3.0") output_dir = os.path.expanduser("~/Desktop/REINVENT_RL_Exploitation_demo") # --------- do not change # get the notebook's root path try: ipynb_path except NameError: ipynb_path = os.getcwd() # if required, generate a folder to store the results try: os.mkdir(output_dir) except FileExistsError: pass ###Output _____no_output_____ ###Markdown 2. Setting up the configuration In the cells below we will build a nested dictionary object that will be eventually converted to JSON file which in turn will be consumed by `REINVENT`. You can find this file in your `output_dir` location. A) Declare the run type ###Code # initialize the dictionary configuration = { "version": 3, # we are going to use REINVENT's newest release "run_type": "reinforcement_learning" # other run types: "sampling", "validation", # "transfer_learning", # "scoring" and "create_model" } ###Output _____no_output_____ ###Markdown B) Sort out the logging detailsThis includes `result_folder` path where the results will be produced.Also: `REINVENT` can send custom log messages to a remote location. We have retained this capability in the code. if the `recipient` value differs from `"local"` `REINVENT` will attempt to POST the data to the specified `recipient`. ###Code # add block to specify whether to run locally or not and # where to store the results and logging configuration["logging"] = { "sender": "http://0.0.0.1", # only relevant if "recipient" is set to "remote" "recipient": "local", # either to local logging or use a remote REST-interface "logging_frequency": 10, # log every x-th steps "logging_path": os.path.join(output_dir, "progress.log"), # load this folder in tensorboard "result_folder": os.path.join(output_dir, "results"), # will hold the compounds (SMILES) and summaries "job_name": "Reinforcement learning demo", # set an arbitrary job name for identification "job_id": "demo" # only relevant if "recipient" is set to a specific REST endpoint } ###Output _____no_output_____ ###Markdown Create `"parameters"` field ###Code # add the "parameters" block configuration["parameters"] = {} ###Output _____no_output_____ ###Markdown C) Set Diversity FilterDuring each step of Reinforcement Learning the compounds scored above `minscore` threshold are kept in memory. The scored smiles are written out to a file in the results folder `scaffold_memory.csv`. In the example here we are not using any filter by setting it to `"NoFilter"`. This will lead to exploitation of the chemical space in vicinity to the local optimum for the defined scoring function. The scoring function will likely reach a higher overall score sooner than the exploration scenario.For exploratory behavior the diversity filters below should be set to any of the listed alternatives `"IdenticalTopologicalScaffold"`, `"IdenticalMurckoScaffold"` or `"ScaffoldSimilarity"`. This will boost the diversity of generated solutions. The maximum value of the scoring fuinction will be lower in exploration mode because the Agent is encouraged to search for diverse solutions rather than to only optimize the best that are being found so far. The number of generated compounds should be higher in comparison to the exploitation scenario. ###Code # add a "diversity_filter" configuration["parameters"]["diversity_filter"] = { "name": "NoFilter", # other options are: "IdenticalTopologicalScaffold", # "IdenticalMurckoScaffold" and "ScaffoldSimilarity" # -> use "NoFilter" to disable this feature "nbmax": 25, # the bin size; penalization will start once this is exceeded "minscore": 0.4, # the minimum total score to be considered for binning "minsimilarity": 0.4 # the minimum similarity to be placed into the same bin } ###Output _____no_output_____ ###Markdown D) Set Inception* `smiles` provide here a list of smiles to be incepted * `memory_size` the number of smiles allowed in the inception memory* `sample_size` the number of smiles that can be sampled at each reinforcement learning step from inception memory ###Code # prepare the inception (we do not use it in this example, so "smiles" is an empty list) configuration["parameters"]["inception"] = { "smiles": [], # fill in a list of SMILES here that can be used (or leave empty) "memory_size": 100, # sets how many molecules are to be remembered "sample_size": 10 # how many are to be sampled each epoch from the memory } ###Output _____no_output_____ ###Markdown E) Set the general Reinforcement Learning parameters* `n_steps` is the amount of Reinforcement Learning steps to perform. Best start with 1000 steps and see if thats enough.* `agent` is the generative model that undergoes transformation during the Reinforcement Learning run.We reccomend keeping the other parameters to their default values. ###Code # set all "reinforcement learning"-specific run parameters configuration["parameters"]["reinforcement_learning"] = { "prior": os.path.join(ipynb_path, "models/random.prior.new"), # path to the pre-trained model "agent": os.path.join(ipynb_path, "models/random.prior.new"), # path to the pre-trained model "n_steps": 1000, # the number of epochs (steps) to be performed; often 1000 "sigma": 128, # used to calculate the "augmented likelihood", see publication "learning_rate": 0.0001, # sets how strongly the agent is influenced by each epoch "batch_size": 128, # specifies how many molecules are generated per epoch "reset": 0, # if not '0', the reset the agent if threshold reached to get # more diverse solutions "reset_score_cutoff": 0.5, # if resetting is enabled, this is the threshold "margin_threshold": 50 # specify the (positive) margin between agent and prior } ###Output _____no_output_____ ###Markdown F) Define the scoring functionWe will use a `custom_product` type. The component types included are:* `predictive_property` which is the target activity to _Aurora_ kinase represented by the predictive `regression` model. Note that we set the weight of this component to be the highest.* `qed_score` is the implementation of QED in RDKit. It biases the egenration of molecules towars more "drug-like" space. Depending on the study case can have beneficial or detrimental effect.* `custom_alerts` the `"smiles"` field also can work with SMILES or SMARTSNote: The model used in this example is a regression model ###Code # prepare the scoring function definition and add at the end scoring_function = { "name": "custom_product", # this is our default one (alternative: "custom_sum") "parallel": False, # sets whether components are to be executed # in parallel; note, that python uses "False" / "True" # but the JSON "false" / "true" # the "parameters" list holds the individual components "parameters": [ # add component: an activity model { "component_type": "predictive_property", # this is a scikit-learn model, returning # activity values "name": "Aurora kinase", # arbitrary name for the component "weight": 6, # the weight ("importance") of the component (default: 1) "specific_parameters": { "model_path": os.path.join(ipynb_path, "models/Aurora_model.pkl"), # absolute model path "transformation": { "transformation_type": "sigmoid", # see description above "high": 9, # parameter for sigmoid transformation "low": 4, # parameter for sigmoid transformation "k": 0.25 # parameter for sigmoid transformation }, "scikit": "regression", # model can be "regression" or "classification" "descriptor_type": "ecfp_counts", # sets the input descriptor for this model "size": 2048, # parameter of descriptor type "radius": 3, # parameter of descriptor type "use_counts": True, # parameter of descriptor type "use_features": True # parameter of descriptor type } }, # add component: QED { "component_type": "qed_score", # this is the QED score as implemented in RDKit "name": "QED", # arbitrary name for the component "weight": 2 # the weight ("importance") of the component (default: 1) }, # add component: enforce to NOT match a given substructure { "component_type": "custom_alerts", "name": "Custom alerts", # arbitrary name for the component "weight": 1, # the weight of the component (default: 1) "specific_parameters": { "smiles": [ # specify the substructures (as list) to penalize "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]", "[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#8][#8]", "[#6;+]", "[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]", "C#C", "C(=[O,S])[O,S]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]" ] } }] } configuration["parameters"]["scoring_function"] = scoring_function ###Output _____no_output_____ ###Markdown NOTE: Getting the selectivity score component to reach satisfactory levels is non-trivial and might take considerably higher number of steps 3. Write out the configuration We now have successfully filled the dictionary and will write it out as a `JSON` file in the output directory. Please have a look at the file before proceeding in order to see how the paths have been inserted where required and the `dict` -> `JSON` translations (e.g. `True` to `true`) have taken place. ###Code # write the configuration file to the disc configuration_JSON_path = os.path.join(output_dir, "RL_config.json") with open(configuration_JSON_path, 'w') as f: json.dump(configuration, f, indent=4, sort_keys=True) ###Output _____no_output_____ ###Markdown 4. Run `REINVENT`Now it is time to execute `REINVENT` locally. Note, that depending on the number of epochs (steps) and the execution time of the scoring function components, this might take a while. The command-line execution looks like this:``` activate envionmentconda activate reinvent.v3.0 execute REINVENTpython /input.py .json``` ###Code %%capture captured_err_stream --no-stderr # execute REINVENT from the command-line !{reinvent_env}/bin/python {reinvent_dir}/input.py {configuration_JSON_path} # print the output to a file, just to have it for documentation with open(os.path.join(output_dir, "run.err"), 'w') as file: file.write(captured_err_stream.stdout) # prepare the output to be parsed list_epochs = re.findall(r'INFO.*?local', captured_err_stream.stdout, re.DOTALL) data = [epoch for idx, epoch in enumerate(list_epochs) if idx in [1, 75, 124]] data = ["\n".join(element.splitlines()[:-1]) for element in data] ###Output _____no_output_____ ###Markdown Below you see the print-out of the first, one from the middle and the last epoch, respectively. Note, that the fraction of valid `SMILES` is high right from the start (because we use a pre-trained prior). You can see the partial scores for each component for the first couple of compounds, but the most important information is the average score. You can clearly see how it increases over time. ###Code for element in data: print(element) ###Output INFO Step 0 Fraction valid SMILES: 96.1 Score: 0.2655 Time elapsed: 0 Time left: 0.0 Agent Prior Target Score SMILES -51.31 -51.31 -51.31 0.00 C(C(CC=C(CCC=C(CCC(=O)O)C=C(CC=CCCC=C(C)C)C)=O)C)=C -35.59 -35.59 21.37 0.44 c1cc(C(=O)NC(C)c2ccc(OC3CCN(c4ccc(OCC5C(F)(F)C5)cn4)CC3O)cc2)c(OC)nc1 -27.17 -27.17 -27.17 0.00 c1c(Cl)ccc2c(=Nc3c(Cl)cc(OC)cc3)c(C(OCC)=O)c[nH]c12 -32.39 -32.39 -32.39 0.00 C(=O)(OCC)C1(C(C)=NN)CC2c3c(cccc3)C1c1ccccc12 -26.54 -26.54 19.96 0.36 C1(=O)C(Oc2ccc(C(N)=N)cc2)(CC)CCC1O -22.56 -22.56 30.60 0.42 C(NS(c1ccc(NC(=O)C)cc1)(=O)=O)Cc1cc(C)ccc1 -32.63 -32.63 18.67 0.40 c1(CNC(=O)CN2C(=O)C3N(CCOC)CCC3O2)c2c(ccc1)cccc2 -28.76 -28.76 23.42 0.41 O=C(N(C)CC(Nc1c(C)cc(Br)cc1)=O)C1(CC)C(Cl)(Cl)C1C -32.71 -32.71 24.86 0.45 O=S(c1ccc(C(=O)N)cc1)(=O)Oc1c(NC(c2ccco2)=O)cc(Cl)cc1 -32.85 -32.85 -32.85 0.00 N=c1[nH]c2nc(-c3ccc(CCNC(CCC(=O)O)=O)cc3)cnc2c(=N)[nH]1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.0 0.0 0.0 0.0 0.46610119938850403 0.38718461990356445 1.0 6.382042407989502 0.37139689922332764 0.644282877445221 0.0 6.042923450469971 0.3336728513240814 0.40394356846809387 0.0 5.899266719818115 0.31423062086105347 0.5612077116966248 1.0 5.822140693664551 0.3267623484134674 0.8531444668769836 1.0 5.872127056121826 0.3209114670753479 0.7809154391288757 1.0 5.848917484283447 0.3407776951789856 0.6974791288375854 1.0 5.926878452301025 0.4110566973686218 0.5894344449043274 1.0 6.187656402587891 0.3114776313304901 0.34777504205703735 0.0 5.8110175132751465 INFO Step 72 Fraction valid SMILES: 99.2 Score: 0.3254 Time elapsed: 44 Time left: 559.3 Agent Prior Target Score SMILES -21.50 -21.70 52.27 0.42 c1(C(Nc2ccccc2OC)=O)ccc(NC(=O)C2CC2)cc1 -29.32 -30.07 -30.07 0.00 c1c(S(=O)(N)=O)ccc(Cl)c1C(NNC(c1oc2c(cccc2)c1)=O)=O -19.69 -20.35 54.20 0.42 Cc1sc2n(n1)cc(-c1cc3c(cc1)OCCO3)n2 -30.97 -30.64 44.41 0.42 O=S(=O)(CC)N1c2c(cc(OC)c(OC)c2)CC1(C)C -25.06 -25.66 42.32 0.38 Clc1ccc(-c2cccc(-c3c(N)c(O)oc3)c2)cc1 -32.35 -33.76 56.65 0.51 C(c1cc(F)c(F)cc1F)C(NC(C)C)C(N=c1[nH]cc(Cl)s1)=O -22.32 -23.29 47.97 0.40 Fc1ccc(Oc2ccc(COc3nc(=O)n(C)c(N4CCOCC4)c3)cc2F)cc1 -35.10 -35.53 36.74 0.41 c1c2c(cc(F)c1)-c1c(c3cc([N+](=O)[O-])ccc3n1C)C(CCC)(C)NC2=O -23.14 -23.47 40.64 0.36 N(C(=O)CCN1CCOCC1)c1ccc2c(c1)c(C)cc(N1CCN(C)CC1)n2 -29.77 -29.73 35.43 0.37 c1(-c2sc(C(=O)CC(C)C)cc2)cn(Cc2ccccc2)nn1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.322376549243927 0.890160858631134 1.0 5.854750156402588 0.3206542730331421 0.5836869478225708 0.0 5.8478922843933105 0.35576075315475464 0.683357834815979 1.0 5.984221458435059 0.33314836025238037 0.8549820780754089 1.0 5.897216796875 0.30833700299263 0.7257052063941956 1.0 5.798262119293213 0.43912962079048157 0.7861695885658264 1.0 6.2874603271484375 0.34998154640197754 0.5994198322296143 1.0 5.962238788604736 0.37158986926078796 0.5297967791557312 1.0 6.043641567230225 0.2724348306655884 0.8323323130607605 1.0 5.6467814445495605 0.3045485317707062 0.6354219317436218 1.0 5.782779216766357 INFO Step 121 Fraction valid SMILES: 99.2 Score: 0.3721 Time elapsed: 74 Time left: 533.2 Agent Prior Target Score SMILES -31.75 -30.82 38.81 0.39 Cc1c(C(NCC2(N)CCS(=O)(=O)CC2)=O)cc(Cl)cc1 -18.79 -20.73 37.41 0.33 c12c([n+]([O-])c(-c3cccs3)c(C)[n+]1[O-])cccc2 -17.08 -18.10 61.54 0.45 FC(c1cc(N2C(=O)N(C)C(c3ccc(C#N)cc3)C3=C2CCC3=O)ccc1)(F)F -20.02 -21.80 53.73 0.42 C1N(C(C)C)CCC(Oc2c(OC)ccc(C(NC3CCCC3)=O)c2)C1 -25.74 -27.65 45.30 0.41 c1n[nH]c(=NS(=O)(=O)c2ccc(Oc3c(-c4ccn[nH]4)cc(F)cc3)c(C#N)c2)s1 -21.43 -23.16 -23.16 0.00 N1N=C(c2ccc(C)cc2)CC1c1c(C)nn(-c2ccccc2)c1Cl -33.71 -33.20 -33.20 0.00 n1(CC)c2ccccc2c2c3c(c4c5c(cccc5)[nH]c41)cccc3C(=O)C2=O -19.83 -21.49 49.54 0.40 C1N(C=C2C(=O)c3ccccc3C2=O)CCN(Cc2ccccc2)C1 -28.13 -28.89 43.99 0.41 c1nc2[nH]c(SC)nc(=Nc3ccc(CC)cc3)c2cc1C#N -22.24 -22.75 51.72 0.42 c1(O)c(C(NC(C)C2CCCCC2)=O)cc(Cl)cc1 Aurora kinase QED Custom alerts raw_Aurora kinase 0.2992677688598633 0.8734317421913147 1.0 5.761015892028809 0.28419438004493713 0.4957776963710785 1.0 5.697640895843506 0.3830990195274353 0.7126726508140564 1.0 6.086191177368164 0.33775582909584045 0.8417723178863525 1.0 5.9151692390441895 0.38679444789886475 0.48748698830604553 1.0 6.099748134613037 0.39176592230796814 0.7507633566856384 0.0 6.1179118156433105 0.0 0.0 0.0 0.0 0.34084388613700867 0.6400846242904663 1.0 5.9271345138549805 0.3619540333747864 0.5925776362419128 1.0 6.007602691650391 0.32573503255844116 0.8865053057670593 1.0 5.868067741394043 ###Markdown 5. Analyse the resultsIn order to analyze the run in a more intuitive way, we can use `tensorboard`:``` go to the root folder of the outputcd /REINVENT_RL_demo make sure, you have activated the proper environmentconda activate reinvent.v3.0 start tensorboardtensorboard --logdir progress.log```Then copy the link provided to a browser window, e.g. "http://workstation.url.com:6006/". The following figures are exmaple plots - remember, that there is always some randomness involved. In `tensorboard` you can monitor the individual scoring function components. The score for predicted Aurora Kinase activity.![](img/exploit_aurora_kinase.png)The average score over time.![](img/exploit_avg_score.png)It might also be informative to look at the results from the prior (dark blue), the agent (blue) and the augmented likelihood (purple) over time.![](img/nll_plot.png)And last but not least, there is a "Images" tab available that lets you browse through the compounds generated in an easy way. In the molecules, the substructure matches that were defined to be required are highlighted in red (if present). Also, the total scores are given per molecule.![](img/molecules.png) The results folder will hold four different files: the agent (pickled), the input JSON (just for reference purposes), the memory (highest scoring compounds in `CSV` format) and the scaffold memory (in `CSV` format). ###Code !head -n 15 {output_dir}/results/memory.csv ###Output ,smiles,score,likelihood 27,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC1O,0.8451204,-42.869774 22,C1N(c2ncncc2-c2cn(CC4OCCN(C)CC4)nc2)CCCC1O,0.8451204,-53.072266 19,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CC1,0.8451204,-45.846977 50,C1CN(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)C1,0.8451204,-45.26066 61,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCC1,0.8451204,-45.653194 60,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC(O)C1,0.8451204,-43.792747 55,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCCC1O,0.84456897,-48.738205 112,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCC1,0.84456897,-49.809258 92,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CC(O)CCCC1,0.84456897,-52.195297 107,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCNCC1,0.8443355,-43.1882 51,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCNCCC1,0.8443355,-43.12227 70,N1CCN(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCC1,0.8443355,-44.6098 62,N1(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCNCC1,0.8443355,-46.611633 1,C1N(c2ncncc2-c2cn(CC3OCCN(C)CC3)nc2)CCCC1=N,0.8419696,-52.32989 ###Markdown > **How to run this notebook (command-line)?**1. Install the `ReinventCommunity` environment:`conda env create -f environment.yml`2. Activate the environment:`conda activate ReinventCommunity`3. Execute `jupyter`:`jupyter notebook`4. Copy the link to a browser `REINVENT 3.0`: reinforcement learning exploitation demoThis demo illustrates how to set up a `REINVENT` run to optimize molecules that are active against _Aurora_ kinase. We use here predictive model as the main component to guide the generation of the molecules. we also include a `qed_score` component to stimulate the generation of more "drug-like" molecules. 1. Set up the paths_Please update the following code block such that it reflects your system's installation and execute it._ ###Code # load dependencies import os import re import json import tempfile # --------- change these path variables as required reinvent_dir = os.path.expanduser("~/Desktop/Projects/Publications/2020/2020-04_REINVENT_2.0/Reinvent") reinvent_env = os.path.expanduser("~/miniconda3/envs/reinvent_shared.v2.1") output_dir = os.path.expanduser("~/Desktop/REINVENT_RL_demo") # --------- do not change # get the notebook's root path try: ipynb_path except NameError: ipynb_path = os.getcwd() # if required, generate a folder to store the results try: os.mkdir(output_dir) except FileExistsError: pass ###Output _____no_output_____ ###Markdown 2. Setting up the configuration In the cells below we will build a nested dictionary object that will be eventually converted to JSON file which in turn will be consumed by `REINVENT`. You can find this file in your `output_dir` location. A) Declare the run type ###Code # initialize the dictionary configuration = { "version": 3, # we are going to use REINVENT's newest release "run_type": "reinforcement_learning" # other run types: "sampling", "validation", # "transfer_learning", # "scoring" and "create_model" } ###Output _____no_output_____ ###Markdown B) Sort out the logging detailsThis includes `resultdir` path where the results will be produced.Also: `REINVENT` can send custom log messages to a remote location. We have retained this capability in the code. if the `recipient` value differs from `"local"` `REINVENT` will attempt to POST the data to the specified `recipient`. ###Code # add block to specify whether to run locally or not and # where to store the results and logging configuration["logging"] = { "sender": "http://0.0.0.1", # only relevant if "recipient" is set to "remote" "recipient": "local", # either to local logging or use a remote REST-interface "logging_frequency": 10, # log every x-th steps "logging_path": os.path.join(output_dir, "progress.log"), # load this folder in tensorboard "resultdir": os.path.join(output_dir, "results"), # will hold the compounds (SMILES) and summaries "job_name": "Reinforcement learning demo", # set an arbitrary job name for identification "job_id": "demo" # only relevant if "recipient" is set to a specific REST endpoint } ###Output _____no_output_____ ###Markdown Create `"parameters"` field ###Code # add the "parameters" block configuration["parameters"] = {} ###Output _____no_output_____ ###Markdown C) Set Diversity FilterDuring each step of Reinforcement Learning the compounds scored above `minscore` threshold are kept in memory. The scored smiles are written out to a file in the results folder `scaffold_memory.csv`. In the example here we are not using any filter by setting it to `"NoFilter"`. This will lead to exploitation of the chemical space in vicinity to the local optimum for the defined scoring function. The scoring function will likely reach a higher overall score sooner than the exploration scenario.For exploratory behavior the diversity filters below should be set to any of the listed alternatives `"IdenticalTopologicalScaffold"`, `"IdenticalMurckoScaffold"` or `"ScaffoldSimilarity"`. This will boost the diversity of generated solutions. The maximum value of the scoring fuinction will be lower in exploration mode because the Agent is encouraged to search for diverse solutions rather than to only optimize the best that are being found so far. The number of generated compounds should be higher in comparison to the exploitation scenario. ###Code # add a "diversity_filter" configuration["parameters"]["diversity_filter"] = { "name": "NoFilter", # other options are: "IdenticalTopologicalScaffold", # "IdenticalMurckoScaffold" and "ScaffoldSimilarity" # -> use "NoFilter" to disable this feature "nbmax": 25, # the bin size; penalization will start once this is exceeded "minscore": 0.4, # the minimum total score to be considered for binning "minsimilarity": 0.4 # the minimum similarity to be placed into the same bin } ###Output _____no_output_____ ###Markdown D) Set Inception* `smiles` provide here a list of smiles to be incepted * `memory_size` the number of smiles allowed in the inception memory* `sample_size` the number of smiles that can be sampled at each reinforcement learning step from inception memory ###Code # prepare the inception (we do not use it in this example, so "smiles" is an empty list) configuration["parameters"]["inception"] = { "smiles": [], # fill in a list of SMILES here that can be used (or leave empty) "memory_size": 100, # sets how many molecules are to be remembered "sample_size": 10 # how many are to be sampled each epoch from the memory } ###Output _____no_output_____ ###Markdown E) Set the general Reinforcement Learning parameters* `n_steps` is the amount of Reinforcement Learning steps to perform. Best start with 1000 steps and see if thats enough.* `agent` is the generative model that undergoes transformation during the Reinforcement Learning run.We reccomend keeping the other parameters to their default values. ###Code # set all "reinforcement learning"-specific run parameters configuration["parameters"]["reinforcement_learning"] = { "prior": os.path.join(ipynb_path, "models/augmented.prior"), # path to the pre-trained model "agent": os.path.join(ipynb_path, "models/augmented.prior"), # path to the pre-trained model "n_steps": 1000, # the number of epochs (steps) to be performed; often 1000 "sigma": 128, # used to calculate the "augmented likelihood", see publication "learning_rate": 0.0001, # sets how strongly the agent is influenced by each epoch "batch_size": 128, # specifies how many molecules are generated per epoch "reset": 0, # if not '0', the reset the agent if threshold reached to get # more diverse solutions "reset_score_cutoff": 0.5, # if resetting is enabled, this is the threshold "margin_threshold": 50 # specify the (positive) margin between agent and prior } ###Output _____no_output_____ ###Markdown F) Define the scoring functionWe will use a `custom_product` type. The component types included are:* `predictive_property` which is the target activity to _Aurora_ kinase represented by the predictive `regression` model. Note that we set the weight of this component to be the highest.* `qed_score` is the implementation of QED in RDKit. It biases the egenration of molecules towars more "drug-like" space. Depending on the study case can have beneficial or detrimental effect.* `custom_alerts` the `"smiles"` field also can work with SMILES or SMARTSNote: The model used in this example is a regression model ###Code # prepare the scoring function definition and add at the end scoring_function = { "name": "custom_product", # this is our default one (alternative: "custom_sum") "parallel": False, # sets whether components are to be executed # in parallel; note, that python uses "False" / "True" # but the JSON "false" / "true" # the "parameters" list holds the individual components "parameters": [ # add component: an activity model { "component_type": "predictive_property", # this is a scikit-learn model, returning # activity values "name": "Aurora kinase", # arbitrary name for the component "weight": 6, # the weight ("importance") of the component (default: 1) "model_path": os.path.join(ipynb_path, "models/Aurora_model.pkl"), # absolute model path "smiles": [], # list of SMILES (not required for this component) "specific_parameters": { "transformation_type": "sigmoid", # see description above "high": 9, # parameter for sigmoid transformation "low": 4, # parameter for sigmoid transformation "k": 0.25, # parameter for sigmoid transformation "scikit": "regression", # model can be "regression" or "classification" "transformation": True, # enable the transformation "descriptor_type": "ecfp_counts", # sets the input descriptor for this model "size": 2048, # parameter of descriptor type "radius": 3, # parameter of descriptor type "use_counts": True, # parameter of descriptor type "use_features": True # parameter of descriptor type } }, # add component: QED { "component_type": "qed_score", # this is the QED score as implemented in RDKit "name": "QED", # arbitrary name for the component "weight": 2, # the weight ("importance") of the component (default: 1) "model_path": None, "smiles": None }, # add component: enforce to NOT match a given substructure { "component_type": "custom_alerts", "name": "Custom alerts", # arbitrary name for the component "weight": 1, # the weight of the component (default: 1) "model_path": None, # not required; note, this is "null" in JSON "smiles": [ # specify the substructures (as list) to penalize "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]", "[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#8][#8]", "[#6;+]", "[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]", "C#C", "C(=[O,S])[O,S]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]" ], "specific_parameters": None # not required; note, this is "null" in JSON }] } configuration["parameters"]["scoring_function"] = scoring_function ###Output _____no_output_____ ###Markdown NOTE: Getting the selectivity score component to reach satisfactory levels is non-trivial and might take considerably higher number of steps 3. Write out the configuration We now have successfully filled the dictionary and will write it out as a `JSON` file in the output directory. Please have a look at the file before proceeding in order to see how the paths have been inserted where required and the `dict` -> `JSON` translations (e.g. `True` to `true`) have taken place. ###Code # write the configuration file to the disc configuration_JSON_path = os.path.join(output_dir, "RL_config.json") with open(configuration_JSON_path, 'w') as f: json.dump(configuration, f, indent=4, sort_keys=True) ###Output _____no_output_____ ###Markdown 4. Run `REINVENT`Now it is time to execute `REINVENT` locally. Note, that depending on the number of epochs (steps) and the execution time of the scoring function components, this might take a while. The command-line execution looks like this:``` activate envionmentconda activate reinvent.v3.0 execute REINVENTpython /input.py .json``` ###Code %%capture captured_err_stream --no-stderr # execute REINVENT from the command-line !python {reinvent_dir}/input.py {configuration_JSON_path} # print the output to a file, just to have it for documentation with open(os.path.join(output_dir, "run.err"), 'w') as file: file.write(captured_err_stream.stdout) # prepare the output to be parsed list_epochs = re.findall(r'INFO.*?local', captured_err_stream.stdout, re.DOTALL) data = [epoch for idx, epoch in enumerate(list_epochs) if idx in [1, 75, 124]] data = ["\n".join(element.splitlines()[:-1]) for element in data] ###Output _____no_output_____ ###Markdown Below you see the print-out of the first, one from the middle and the last epoch, respectively. Note, that the fraction of valid `SMILES` is high right from the start (because we use a pre-trained prior). You can see the partial scores for each component for the first couple of compounds, but the most important information is the average score. You can clearly see how it increases over time. ###Code for element in data: print(element) ###Output INFO Step 0 Fraction valid SMILES: 99.2 Score: 0.2306 Time elapsed: 0 Time left: 0.0 Agent Prior Target Score SMILES -19.51 -19.51 21.92 0.32 n1cnc(N2CCN(C)CC2)c2c(-c3ccccc3)c(-c3ccccc3)oc12 -53.61 -53.61 -53.61 0.00 c1c(-c2ccccc2)c(C)cc(CCC2COC3C(NC(C(C)NC)=O)(OC)COCC3(O)C2)c1 -32.90 -32.90 15.19 0.38 c1cc(C(Nc2cc(N=c3[nH]ccc(-c4ccnc(-c5cccnc5)c4)n3)ccc2)=O)ccc1NC(=O)C=C -18.69 -18.69 28.08 0.37 OC1C(O)C(n2c3c(nc2)c(=Nc2ccccc2)[nH]cn3)OC1CO -24.39 -24.39 16.43 0.32 O=C(c1c(C(=O)NCCC)nc[nH]1)N=c1c(C)ccc[nH]1 -34.69 -34.69 10.84 0.36 C1CC(CNC(=O)C(N)Cc2ccc(OC)cc2)CCN1C(=O)Cn1cccn1 -21.42 -21.42 -21.42 0.00 c1(=Cc2[nH]c(=O)[nH]c2O)c2nc(Nc3cccc(C#C)c3)cc(=NC3CC3)n2nc1 -23.29 -23.29 13.14 0.28 n1(-c2ccc([N+](=O)[O-])cc2)c(O)c(C2=c3ccccc3=NC2=O)c2ccccc12 -28.67 -28.67 -28.67 0.00 c1cccc2c1CC1(C2=O)OC(c2ccccc2)(c2ccccc2)OO1 -59.00 -59.00 -59.00 0.00 O(C1(OC(C)C(NC(C(NC(COC(CCC(=C)C2CCC(C=C)(C)C(C(=O)C)C2)=O)=O)=O)C)=O)CCCCC1)C Aurora kinase Custom alerts 0.32369956374168396 1.0 0.3522017002105713 0.0 0.37566933035850525 1.0 0.3654446601867676 1.0 0.31891217827796936 1.0 0.355679452419281 1.0 0.39393407106399536 0.0 0.2846657335758209 1.0 0.2996329665184021 0.0 0.3963213264942169 0.0 INFO Step 74 Fraction valid SMILES: 97.7 Score: 0.3038 Time elapsed: 26 Time left: 321.0 Agent Prior Target Score SMILES -31.52 -32.78 -32.78 0.00 n1(C)ncc(-c2ccc3ncc(NCc4cccc(SC)c4)c3c2)c1 -19.84 -18.95 22.67 0.33 COc1c(OC)cc(C(N(CC)CC)=O)cc1OC -17.59 -18.34 20.06 0.30 O(c1cc(C)c(N)c(C)c1)C -46.62 -46.57 3.88 0.39 O1CCC2(CC1)C1(CCN(C(c3c4ncncc4ccc3)CF)CC1)NC(=O)C2 -30.05 -31.16 9.96 0.32 c1ccc(Nc2ccc(CN3CCN(C)CC3)cc2)c(-c2sc3c(n2)cncc3)c1 -35.30 -36.26 27.78 0.50 c1c(NC(=O)N=c2cc(C)[nH]c(N3CCN(c4cccc(OC)c4)CC3)n2)cc(Cl)c(Cl)c1 -31.53 -29.53 13.16 0.33 c1ccccc1CN(C(C)=O)CCC(Nc1ccc(OCC)cc1)=O -37.70 -38.49 0.82 0.31 C(CN)CCC1C(=O)N(CCC2CCCC2)Cc2c(ccc(OCC(=NO)O)c2)C1 -31.83 -32.79 25.84 0.46 c1(-c2cc(C(=O)NCC3CCO3)c3cnn(C)c3n2)ccc(F)c(F)c1 -27.14 -25.95 -25.95 0.00 C(N1CCC(NC(NC(=O)c2c([N+]([O-])=O)cccc2)=S)CC1)c1ccccc1 Aurora kinase Custom alerts 0.0 0.0 0.32515692710876465 1.0 0.30000120401382446 1.0 0.3941750228404999 1.0 0.321297287940979 1.0 0.5003294944763184 1.0 0.3334886431694031 1.0 0.3071417510509491 1.0 0.45798826217651367 1.0 0.28031840920448303 0.0 INFO Step 123 Fraction valid SMILES: 99.2 Score: 0.3181 Time elapsed: 44 Time left: 311.2 Agent Prior Target Score SMILES -27.24 -25.90 -25.90 0.00 C(O)(Nc1cc(C)ccc1)c1cn(-c2ccc(OC(F)F)cc2)c(O)c1 -22.40 -22.08 21.31 0.34 c1c2c(ccc1Cl)C(=O)N(C)Cc1n-2cnc1Br -38.70 -36.53 -36.53 0.00 C1C(O)C(O)C2OC(=O)C(=C)C2CN1S(=O)(=O)CCC -29.12 -30.39 12.22 0.33 C1N(Cc2ccc(OCCCCN3c4ccccc4CCc4c3cc(Cl)cc4)cc2)CCCC1 -35.30 -37.37 16.22 0.42 c1c(C(C)C)c(N2CCN(C(=O)CCc3c(Cl)onc3C)CC2)n2cc(C(NCC)=O)ccc12 -39.06 -40.07 8.68 0.38 S(c1c2ccc(-c3n[nH]nn3)cc2c(OC)cn1)c1cc2c(c(Cl)c1)OCCO2 -30.11 -28.48 -28.48 0.00 N(CC)(CCOC(=O)c1ccc(Cl)c(Cl)c1)CC=C -23.56 -24.55 14.09 0.30 c1(S(=O)(N(CC)CC)=O)ccc(C(=O)Nc2ccc(S(C)(=O)=O)cc2)cc1 -28.55 -28.66 15.51 0.35 c1(COc2ccc(CN3CCS(=O)(=O)CC3)cc2)c2ccccc2n[nH]1 -30.33 -32.81 18.71 0.40 C1CC(CC(=O)Nc2cc3c(nc[nH]c3=Nc3ccc(OCc4ccccc4)c(Cl)c3)cc2OC)CCN1Cc1cc(Cl)c(Cl)cc1 Aurora kinase Custom alerts 0.42681893706321716 0.0 0.3390008211135864 1.0 0.3794780969619751 0.0 0.3328739106655121 1.0 0.4186704456806183 1.0 0.380911260843277 1.0 0.43136125802993774 0.0 0.30190280079841614 1.0 0.34505319595336914 1.0 0.40252068638801575 1.0 ###Markdown 5. Analyse the resultsIn order to analyze the run in a more intuitive way, we can use `tensorboard`:``` go to the root folder of the outputcd /REINVENT_RL_demo make sure, you have activated the proper environmentconda activate reinvent.v3.0 start tensorboardtensorboard --logdir progress.log```Then copy the link provided to a browser window, e.g. "http://workstation.url.com:6006/". The following figures are exmaple plots - remember, that there is always some randomness involved. In `tensorboard` you can monitor the individual scoring function components. The score for predicted Aurora Kinase activity.![](img/exploit_aurora_kinase.png)The average score over time.![](img/exploit_avg_score.png)It might also be informative to look at the results from the prior (dark blue), the agent (blue) and the augmented likelihood (purple) over time.![](img/nll_plot.png)And last but not least, there is a "Images" tab available that lets you browse through the compounds generated in an easy way. In the molecules, the substructure matches that were defined to be required are highlighted in red (if present). Also, the total scores are given per molecule.![](img/molecules.png) The results folder will hold four different files: the agent (pickled), the input JSON (just for reference purposes), the memory (highest scoring compounds in `CSV` format) and the scaffold memory (in `CSV` format). ###Code !head -n 15 {output_dir}/results/memory.csv ###Output ,smiles,score,likelihood 65,C(CCCn1cc(C(C)(C)C)c2c(C(C)C)cc(C(C)C)cc2c1=O)C(=O)N=c1nc[nH][nH]1,0.3286117,-50.641468 70,C1C(N(CCC)CCC)Cc2cccc3[nH]c(=O)n(c32)C1,0.32649106,-18.146914 26,O1c2c(nc(OC)cc2)C(C(NCCCN(C)C)=O)(Cc2ccccc2)c2ccccc21,0.32437962,-35.405247 60,c1c(C(CNCCc2ccc(NS(=O)(c3ccc(-c4oc(Cc5c[nH]c(=N)s5)cc4)nc3)=O)cc2)O)c[nH]c(=N)c1,0.32314676,-38.32259 99,c1c2c(cc(Cl)c1Cl)C(CC(=O)c1cnn(C)c1)(O)C(=O)N2,0.31027606,-27.762121 11,c1c(O)c(C(Cc2ccc(Cl)cc2)=O)cc(O)c1Oc2c(O)cc(O)cc2CCC(O)c1cc(O)c(OC)cc1,0.30576745,-52.903526 32,c1(C(NC(Cc2ccccc2)C(C(NCCN2CCOCC2)=O)=O)=O)cc(C(=O)NS(Cc2ccccc2)(=O)=O)c(NCCC)s1,0.30178678,-43.933296 1,c1c(C(C)C)ccc(NC(c2cc3c(cc2)[nH]c2c(C(N)=O)ccc(O)c23)=O)c1,0.30052438,-31.108843 108,c1(C(C(F)(F)F)(F)F)cc(Cn2c3cccc(NC(c4n5ccc(OCCN6CCN(C)CC6)cc5nc4)=O)c3c(CC)n2)ccc1,0.29700187,-34.311478 118,c1ccc(C(COc2ccc3c(occ(Oc4ccccc4)c3=O)c2)(O)C(N2CCCCC2)C)cc1F,0.29602197,-45.389744 109,C1CN(CC(CNC(c2ccc3n(c(=O)cc(C)n3)c2)=O)O)CCC1Cc1ccccc1,0.29525602,-29.0487 19,c1cc(CC2C(OCC3CC3)CCN(c3ncncc3)C2)ccc1OC,0.29047668,-26.524956 109,c1cc(CN2Cc3c(cccc3)CC2)ccc1Cc1n[nH]c(=O)c2c1CCCC2,0.2882794,-24.313461 0,c1c2c(ccc1OCCN(C)CCc1ccc(NS(=O)(C)=O)cc1)CCC2,0.28584373,-26.92916 ###Markdown > **How to run this notebook (command-line)?**1. Install the `ReinventCommunity` environment:`conda env create -f environment.yml`2. Activate the environment:`conda activate ReinventCommunity`3. Execute `jupyter`:`jupyter notebook`4. Copy the link to a browser `REINVENT 2.0`: reinforcement learning exploitation demoThis demo illustrates how to set up a `REINVENT` run to optimize molecules that are active against _Aurora_ kinase. We use here predictive model as the main component to guide the generation of the molecules. we also include a `qed_score` component to stimulate the generation of more "drug-like" molecules. 1. Set up the paths_Please update the following code block such that it reflects your system's installation and execute it._ ###Code # load dependencies import os import re import json import tempfile # --------- change these path variables as required reinvent_dir = os.path.expanduser("~/Desktop/Projects/Publications/2020/2020-04_REINVENT_2.0/Reinvent") reinvent_env = os.path.expanduser("~/miniconda3/envs/reinvent_shared.v2.1") output_dir = os.path.expanduser("~/Desktop/REINVENT_RL_demo") # --------- do not change # get the notebook's root path try: ipynb_path except NameError: ipynb_path = os.getcwd() # if required, generate a folder to store the results try: os.mkdir(output_dir) except FileExistsError: pass ###Output _____no_output_____ ###Markdown 2. Setting up the configuration In the cells below we will build a nested dictionary object that will be eventually converted to JSON file which in turn will be consumed by `REINVENT`. You can find this file in your `output_dir` location. A) Declare the run type ###Code # initialize the dictionary configuration = { "version": 2, # we are going to use REINVENT's newest release "run_type": "reinforcement_learning" # other run types: "sampling", "validation", # "transfer_learning", # "scoring" and "create_model" } ###Output _____no_output_____ ###Markdown B) Sort out the logging detailsThis includes `resultdir` path where the results will be produced.Also: `REINVENT` can send custom log messages to a remote location. We have retained this capability in the code. if the `recipient` value differs from `"local"` `REINVENT` will attempt to POST the data to the specified `recipient`. ###Code # add block to specify whether to run locally or not and # where to store the results and logging configuration["logging"] = { "sender": "http://0.0.0.1", # only relevant if "recipient" is set to "remote" "recipient": "local", # either to local logging or use a remote REST-interface "logging_frequency": 10, # log every x-th steps "logging_path": os.path.join(output_dir, "progress.log"), # load this folder in tensorboard "resultdir": os.path.join(output_dir, "results"), # will hold the compounds (SMILES) and summaries "job_name": "Reinforcement learning demo", # set an arbitrary job name for identification "job_id": "demo" # only relevant if "recipient" is set to a specific REST endpoint } ###Output _____no_output_____ ###Markdown Create `"parameters"` field ###Code # add the "parameters" block configuration["parameters"] = {} ###Output _____no_output_____ ###Markdown C) Set Diversity FilterDuring each step of Reinforcement Learning the compounds scored above `minscore` threshold are kept in memory. The scored smiles are written out to a file in the results folder `scaffold_memory.csv`. In the example here we are not using any filter by setting it to `"NoFilter"`. This will lead to exploitation of the chemical space in vicinity to the local optimum for the defined scoring function. The scoring function will likely reach a higher overall score sooner than the exploration scenario.For exploratory behavior the diversity filters below should be set to any of the listed alternatives `"IdenticalTopologicalScaffold"`, `"IdenticalMurckoScaffold"` or `"ScaffoldSimilarity"`. This will boost the diversity of generated solutions. The maximum value of the scoring fuinction will be lower in exploration mode because the Agent is encouraged to search for diverse solutions rather than to only optimize the best that are being found so far. The number of generated compounds should be higher in comparison to the exploitation scenario. ###Code # add a "diversity_filter" configuration["parameters"]["diversity_filter"] = { "name": "NoFilter", # other options are: "IdenticalTopologicalScaffold", # "IdenticalMurckoScaffold" and "ScaffoldSimilarity" # -> use "NoFilter" to disable this feature "nbmax": 25, # the bin size; penalization will start once this is exceeded "minscore": 0.4, # the minimum total score to be considered for binning "minsimilarity": 0.4 # the minimum similarity to be placed into the same bin } ###Output _____no_output_____ ###Markdown D) Set Inception* `smiles` provide here a list of smiles to be incepted * `memory_size` the number of smiles allowed in the inception memory* `sample_size` the number of smiles that can be sampled at each reinforcement learning step from inception memory ###Code # prepare the inception (we do not use it in this example, so "smiles" is an empty list) configuration["parameters"]["inception"] = { "smiles": [], # fill in a list of SMILES here that can be used (or leave empty) "memory_size": 100, # sets how many molecules are to be remembered "sample_size": 10 # how many are to be sampled each epoch from the memory } ###Output _____no_output_____ ###Markdown E) Set the general Reinforcement Learning parameters* `n_steps` is the amount of Reinforcement Learning steps to perform. Best start with 1000 steps and see if thats enough.* `agent` is the generative model that undergoes transformation during the Reinforcement Learning run.We reccomend keeping the other parameters to their default values. ###Code # set all "reinforcement learning"-specific run parameters configuration["parameters"]["reinforcement_learning"] = { "prior": os.path.join(reinvent_dir, "data/augmented.prior"), # path to the pre-trained model "agent": os.path.join(reinvent_dir, "data/augmented.prior"), # path to the pre-trained model "n_steps": 1000, # the number of epochs (steps) to be performed; often 1000 "sigma": 128, # used to calculate the "augmented likelihood", see publication "learning_rate": 0.0001, # sets how strongly the agent is influenced by each epoch "batch_size": 128, # specifies how many molecules are generated per epoch "reset": 0, # if not '0', the reset the agent if threshold reached to get # more diverse solutions "reset_score_cutoff": 0.5, # if resetting is enabled, this is the threshold "margin_threshold": 50 # specify the (positive) margin between agent and prior } ###Output _____no_output_____ ###Markdown F) Define the scoring functionWe will use a `custom_product` type. The component types included are:* `predictive_property` which is the target activity to _Aurora_ kinase represented by the predictive `regression` model. Note that we set the weight of this component to be the highest.* `qed_score` is the implementation of QED in RDKit. It biases the egenration of molecules towars more "drug-like" space. Depending on the study case can have beneficial or detrimental effect.* `custom_alerts` the `"smiles"` field also can work with SMILES or SMARTSNote: The model used in this example is a regression model ###Code # prepare the scoring function definition and add at the end scoring_function = { "name": "custom_product", # this is our default one (alternative: "custom_sum") "parallel": False, # sets whether components are to be executed # in parallel; note, that python uses "False" / "True" # but the JSON "false" / "true" # the "parameters" list holds the individual components "parameters": [ # add component: an activity model { "component_type": "predictive_property", # this is a scikit-learn model, returning # activity values "name": "Aurora kinase", # arbitrary name for the component "weight": 6, # the weight ("importance") of the component (default: 1) "model_path": os.path.join(reinvent_dir, "data/Aurora_model.pkl"), # absolute model path "smiles": [], # list of SMILES (not required for this component) "specific_parameters": { "transformation_type": "sigmoid", # see description above "high": 9, # parameter for sigmoid transformation "low": 4, # parameter for sigmoid transformation "k": 0.25, # parameter for sigmoid transformation "scikit": "regression", # model can be "regression" or "classification" "transformation": True, # enable the transformation "descriptor_type": "ecfp_counts", # sets the input descriptor for this model "size": 2048, # parameter of descriptor type "radius": 3, # parameter of descriptor type "use_counts": True, # parameter of descriptor type "use_features": True # parameter of descriptor type } }, # add component: QED { "component_type": "qed_score", # this is the QED score as implemented in RDKit "name": "QED", # arbitrary name for the component "weight": 2, # the weight ("importance") of the component (default: 1) "model_path": None, "smiles": None }, # add component: enforce to NOT match a given substructure { "component_type": "custom_alerts", "name": "Custom alerts", # arbitrary name for the component "weight": 1, # the weight of the component (default: 1) "model_path": None, # not required; note, this is "null" in JSON "smiles": [ # specify the substructures (as list) to penalize "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]", "[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#8][#8]", "[#6;+]", "[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]", "C#C", "C(=[O,S])[O,S]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]" ], "specific_parameters": None # not required; note, this is "null" in JSON }] } configuration["parameters"]["scoring_function"] = scoring_function ###Output _____no_output_____ ###Markdown NOTE: Getting the selectivity score component to reach satisfactory levels is non-trivial and might take considerably higher number of steps 3. Write out the configuration We now have successfully filled the dictionary and will write it out as a `JSON` file in the output directory. Please have a look at the file before proceeding in order to see how the paths have been inserted where required and the `dict` -> `JSON` translations (e.g. `True` to `true`) have taken place. ###Code # write the configuration file to the disc configuration_JSON_path = os.path.join(output_dir, "RL_config.json") with open(configuration_JSON_path, 'w') as f: json.dump(configuration, f, indent=4, sort_keys=True) ###Output _____no_output_____ ###Markdown 4. Run `REINVENT`Now it is time to execute `REINVENT` locally. Note, that depending on the number of epochs (steps) and the execution time of the scoring function components, this might take a while. The command-line execution looks like this:``` activate envionmentconda activate reinvent_shared.v2.1 execute REINVENTpython /input.py .json``` ###Code %%capture captured_err_stream --no-stderr # execute REINVENT from the command-line !python {reinvent_dir}/input.py {configuration_JSON_path} # print the output to a file, just to have it for documentation with open(os.path.join(output_dir, "run.err"), 'w') as file: file.write(captured_err_stream.stdout) # prepare the output to be parsed list_epochs = re.findall(r'INFO.*?local', captured_err_stream.stdout, re.DOTALL) data = [epoch for idx, epoch in enumerate(list_epochs) if idx in [1, 75, 124]] data = ["\n".join(element.splitlines()[:-1]) for element in data] ###Output _____no_output_____ ###Markdown Below you see the print-out of the first, one from the middle and the last epoch, respectively. Note, that the fraction of valid `SMILES` is high right from the start (because we use a pre-trained prior). You can see the partial scores for each component for the first couple of compounds, but the most important information is the average score. You can clearly see how it increases over time. ###Code for element in data: print(element) ###Output INFO Step 0 Fraction valid SMILES: 99.2 Score: 0.2306 Time elapsed: 0 Time left: 0.0 Agent Prior Target Score SMILES -19.51 -19.51 21.92 0.32 n1cnc(N2CCN(C)CC2)c2c(-c3ccccc3)c(-c3ccccc3)oc12 -53.61 -53.61 -53.61 0.00 c1c(-c2ccccc2)c(C)cc(CCC2COC3C(NC(C(C)NC)=O)(OC)COCC3(O)C2)c1 -32.90 -32.90 15.19 0.38 c1cc(C(Nc2cc(N=c3[nH]ccc(-c4ccnc(-c5cccnc5)c4)n3)ccc2)=O)ccc1NC(=O)C=C -18.69 -18.69 28.08 0.37 OC1C(O)C(n2c3c(nc2)c(=Nc2ccccc2)[nH]cn3)OC1CO -24.39 -24.39 16.43 0.32 O=C(c1c(C(=O)NCCC)nc[nH]1)N=c1c(C)ccc[nH]1 -34.69 -34.69 10.84 0.36 C1CC(CNC(=O)C(N)Cc2ccc(OC)cc2)CCN1C(=O)Cn1cccn1 -21.42 -21.42 -21.42 0.00 c1(=Cc2[nH]c(=O)[nH]c2O)c2nc(Nc3cccc(C#C)c3)cc(=NC3CC3)n2nc1 -23.29 -23.29 13.14 0.28 n1(-c2ccc([N+](=O)[O-])cc2)c(O)c(C2=c3ccccc3=NC2=O)c2ccccc12 -28.67 -28.67 -28.67 0.00 c1cccc2c1CC1(C2=O)OC(c2ccccc2)(c2ccccc2)OO1 -59.00 -59.00 -59.00 0.00 O(C1(OC(C)C(NC(C(NC(COC(CCC(=C)C2CCC(C=C)(C)C(C(=O)C)C2)=O)=O)=O)C)=O)CCCCC1)C Aurora kinase Custom alerts 0.32369956374168396 1.0 0.3522017002105713 0.0 0.37566933035850525 1.0 0.3654446601867676 1.0 0.31891217827796936 1.0 0.355679452419281 1.0 0.39393407106399536 0.0 0.2846657335758209 1.0 0.2996329665184021 0.0 0.3963213264942169 0.0 INFO Step 74 Fraction valid SMILES: 97.7 Score: 0.3038 Time elapsed: 26 Time left: 321.0 Agent Prior Target Score SMILES -31.52 -32.78 -32.78 0.00 n1(C)ncc(-c2ccc3ncc(NCc4cccc(SC)c4)c3c2)c1 -19.84 -18.95 22.67 0.33 COc1c(OC)cc(C(N(CC)CC)=O)cc1OC -17.59 -18.34 20.06 0.30 O(c1cc(C)c(N)c(C)c1)C -46.62 -46.57 3.88 0.39 O1CCC2(CC1)C1(CCN(C(c3c4ncncc4ccc3)CF)CC1)NC(=O)C2 -30.05 -31.16 9.96 0.32 c1ccc(Nc2ccc(CN3CCN(C)CC3)cc2)c(-c2sc3c(n2)cncc3)c1 -35.30 -36.26 27.78 0.50 c1c(NC(=O)N=c2cc(C)[nH]c(N3CCN(c4cccc(OC)c4)CC3)n2)cc(Cl)c(Cl)c1 -31.53 -29.53 13.16 0.33 c1ccccc1CN(C(C)=O)CCC(Nc1ccc(OCC)cc1)=O -37.70 -38.49 0.82 0.31 C(CN)CCC1C(=O)N(CCC2CCCC2)Cc2c(ccc(OCC(=NO)O)c2)C1 -31.83 -32.79 25.84 0.46 c1(-c2cc(C(=O)NCC3CCO3)c3cnn(C)c3n2)ccc(F)c(F)c1 -27.14 -25.95 -25.95 0.00 C(N1CCC(NC(NC(=O)c2c([N+]([O-])=O)cccc2)=S)CC1)c1ccccc1 Aurora kinase Custom alerts 0.0 0.0 0.32515692710876465 1.0 0.30000120401382446 1.0 0.3941750228404999 1.0 0.321297287940979 1.0 0.5003294944763184 1.0 0.3334886431694031 1.0 0.3071417510509491 1.0 0.45798826217651367 1.0 0.28031840920448303 0.0 INFO Step 123 Fraction valid SMILES: 99.2 Score: 0.3181 Time elapsed: 44 Time left: 311.2 Agent Prior Target Score SMILES -27.24 -25.90 -25.90 0.00 C(O)(Nc1cc(C)ccc1)c1cn(-c2ccc(OC(F)F)cc2)c(O)c1 -22.40 -22.08 21.31 0.34 c1c2c(ccc1Cl)C(=O)N(C)Cc1n-2cnc1Br -38.70 -36.53 -36.53 0.00 C1C(O)C(O)C2OC(=O)C(=C)C2CN1S(=O)(=O)CCC -29.12 -30.39 12.22 0.33 C1N(Cc2ccc(OCCCCN3c4ccccc4CCc4c3cc(Cl)cc4)cc2)CCCC1 -35.30 -37.37 16.22 0.42 c1c(C(C)C)c(N2CCN(C(=O)CCc3c(Cl)onc3C)CC2)n2cc(C(NCC)=O)ccc12 -39.06 -40.07 8.68 0.38 S(c1c2ccc(-c3n[nH]nn3)cc2c(OC)cn1)c1cc2c(c(Cl)c1)OCCO2 -30.11 -28.48 -28.48 0.00 N(CC)(CCOC(=O)c1ccc(Cl)c(Cl)c1)CC=C -23.56 -24.55 14.09 0.30 c1(S(=O)(N(CC)CC)=O)ccc(C(=O)Nc2ccc(S(C)(=O)=O)cc2)cc1 -28.55 -28.66 15.51 0.35 c1(COc2ccc(CN3CCS(=O)(=O)CC3)cc2)c2ccccc2n[nH]1 -30.33 -32.81 18.71 0.40 C1CC(CC(=O)Nc2cc3c(nc[nH]c3=Nc3ccc(OCc4ccccc4)c(Cl)c3)cc2OC)CCN1Cc1cc(Cl)c(Cl)cc1 Aurora kinase Custom alerts 0.42681893706321716 0.0 0.3390008211135864 1.0 0.3794780969619751 0.0 0.3328739106655121 1.0 0.4186704456806183 1.0 0.380911260843277 1.0 0.43136125802993774 0.0 0.30190280079841614 1.0 0.34505319595336914 1.0 0.40252068638801575 1.0 ###Markdown 5. Analyse the resultsIn order to analyze the run in a more intuitive way, we can use `tensorboard`:``` go to the root folder of the outputcd /REINVENT_RL_demo make sure, you have activated the proper environmentconda activate reinvent_shared.v2.1 start tensorboardtensorboard --logdir progress.log```Then copy the link provided to a browser window, e.g. "http://workstation.url.com:6006/". The following figures are exmaple plots - remember, that there is always some randomness involved. In `tensorboard` you can monitor the individual scoring function components. The score for predicted Aurora Kinase activity.![](img/exploit_aurora_kinase.png)The average score over time.![](img/exploit_avg_score.png)It might also be informative to look at the results from the prior (dark blue), the agent (blue) and the augmented likelihood (purple) over time.![](img/nll_plot.png)And last but not least, there is a "Images" tab available that lets you browse through the compounds generated in an easy way. In the molecules, the substructure matches that were defined to be required are highlighted in red (if present). Also, the total scores are given per molecule.![](img/molecules.png) The results folder will hold four different files: the agent (pickled), the input JSON (just for reference purposes), the memory (highest scoring compounds in `CSV` format) and the scaffold memory (in `CSV` format). ###Code !head -n 15 {output_dir}/results/memory.csv ###Output ,smiles,score,likelihood 65,C(CCCn1cc(C(C)(C)C)c2c(C(C)C)cc(C(C)C)cc2c1=O)C(=O)N=c1nc[nH][nH]1,0.3286117,-50.641468 70,C1C(N(CCC)CCC)Cc2cccc3[nH]c(=O)n(c32)C1,0.32649106,-18.146914 26,O1c2c(nc(OC)cc2)C(C(NCCCN(C)C)=O)(Cc2ccccc2)c2ccccc21,0.32437962,-35.405247 60,c1c(C(CNCCc2ccc(NS(=O)(c3ccc(-c4oc(Cc5c[nH]c(=N)s5)cc4)nc3)=O)cc2)O)c[nH]c(=N)c1,0.32314676,-38.32259 99,c1c2c(cc(Cl)c1Cl)C(CC(=O)c1cnn(C)c1)(O)C(=O)N2,0.31027606,-27.762121 11,c1c(O)c(C(Cc2ccc(Cl)cc2)=O)cc(O)c1Oc2c(O)cc(O)cc2CCC(O)c1cc(O)c(OC)cc1,0.30576745,-52.903526 32,c1(C(NC(Cc2ccccc2)C(C(NCCN2CCOCC2)=O)=O)=O)cc(C(=O)NS(Cc2ccccc2)(=O)=O)c(NCCC)s1,0.30178678,-43.933296 1,c1c(C(C)C)ccc(NC(c2cc3c(cc2)[nH]c2c(C(N)=O)ccc(O)c23)=O)c1,0.30052438,-31.108843 108,c1(C(C(F)(F)F)(F)F)cc(Cn2c3cccc(NC(c4n5ccc(OCCN6CCN(C)CC6)cc5nc4)=O)c3c(CC)n2)ccc1,0.29700187,-34.311478 118,c1ccc(C(COc2ccc3c(occ(Oc4ccccc4)c3=O)c2)(O)C(N2CCCCC2)C)cc1F,0.29602197,-45.389744 109,C1CN(CC(CNC(c2ccc3n(c(=O)cc(C)n3)c2)=O)O)CCC1Cc1ccccc1,0.29525602,-29.0487 19,c1cc(CC2C(OCC3CC3)CCN(c3ncncc3)C2)ccc1OC,0.29047668,-26.524956 109,c1cc(CN2Cc3c(cccc3)CC2)ccc1Cc1n[nH]c(=O)c2c1CCCC2,0.2882794,-24.313461 0,c1c2c(ccc1OCCN(C)CCc1ccc(NS(=O)(C)=O)cc1)CCC2,0.28584373,-26.92916 ###Markdown > **How to run this notebook (command-line)?**1. Install the `reinvent_shared.v2.1` environment:`conda env create -f reinvent_shared.yml`2. Activate the environment:`conda activate reinvent_shared.v2.1`3. Execute `jupyter`:`jupyter notebook`4. Copy the link to a browser `REINVENT 2.0`: reinforcement learning exploitation demoThis demo illustrates how to set up a `REINVENT` run to optimize molecules that are active against _Aurora_ kinase. We use here predictive model as the main component to guide the generation of the molecules. we also include a `qed_score` component to stimulate the generation of more "drug-like" molecules. 1. Set up the paths_Please update the following code block such that it reflects your system's installation and execute it._ ###Code # load dependencies import os import re import json import tempfile # --------- change these path variables as required reinvent_dir = os.path.expanduser("~/Desktop/Projects/Publications/2020/2020-04_REINVENT_2.0/Reinvent") reinvent_env = os.path.expanduser("~/miniconda3/envs/reinvent_shared.v2.1") output_dir = os.path.expanduser("~/Desktop/REINVENT_RL_demo") # --------- do not change # get the notebook's root path try: ipynb_path except NameError: ipynb_path = os.getcwd() # if required, generate a folder to store the results try: os.mkdir(output_dir) except FileExistsError: pass ###Output _____no_output_____ ###Markdown 2. Setting up the configuration In the cells below we will build a nested dictionary object that will be eventually converted to JSON file which in turn will be consumed by `REINVENT`. You can find this file in your `output_dir` location. A) Declare the run type ###Code # initialize the dictionary configuration = { "version": 2, # we are going to use REINVENT's newest release "run_type": "reinforcement_learning" # other run types: "sampling", "validation", # "transfer_learning", # "scoring" and "create_model" } ###Output _____no_output_____ ###Markdown B) Sort out the logging detailsThis includes `resultdir` path where the results will be produced.Also: `REINVENT` can send custom log messages to a remote location. We have retained this capability in the code. if the `recipient` value differs from `"local"` `REINVENT` will attempt to POST the data to the specified `recipient`. ###Code # add block to specify whether to run locally or not and # where to store the results and logging configuration["logging"] = { "sender": "http://0.0.0.1", # only relevant if "recipient" is set to "remote" "recipient": "local", # either to local logging or use a remote REST-interface "logging_frequency": 10, # log every x-th steps "logging_path": os.path.join(output_dir, "progress.log"), # load this folder in tensorboard "resultdir": os.path.join(output_dir, "results"), # will hold the compounds (SMILES) and summaries "job_name": "Reinforcement learning demo", # set an arbitrary job name for identification "job_id": "demo" # only relevant if "recipient" is set to a specific REST endpoint } ###Output _____no_output_____ ###Markdown Create `"parameters"` field ###Code # add the "parameters" block configuration["parameters"] = {} ###Output _____no_output_____ ###Markdown C) Set Diversity FilterDuring each step of Reinforcement Learning the compounds scored above `minscore` threshold are kept in memory. The scored smiles are written out to a file in the results folder `scaffold_memory.csv`. In the example here we are not using any filter by setting it to `"NoFilter"`. This will lead to exploitation of the chemical space in vicinity to the local optimum for the defined scoring function. The scoring function will likely reach a higher overall score sooner than the exploration scenario.For exploratory behavior the diversity filters below should be set to any of the listed alternatives `"IdenticalTopologicalScaffold"`, `"IdenticalMurckoScaffold"` or `"ScaffoldSimilarity"`. This will boost the diversity of generated solutions. The maximum value of the scoring fuinction will be lower in exploration mode because the Agent is encouraged to search for diverse solutions rather than to only optimize the best that are being found so far. The number of generated compounds should be higher in comparison to the exploitation scenario. ###Code # add a "diversity_filter" configuration["parameters"]["diversity_filter"] = { "name": "NoFilter", # other options are: "IdenticalTopologicalScaffold", # "IdenticalMurckoScaffold" and "ScaffoldSimilarity" # -> use "NoFilter" to disable this feature "nbmax": 25, # the bin size; penalization will start once this is exceeded "minscore": 0.4, # the minimum total score to be considered for binning "minsimilarity": 0.4 # the minimum similarity to be placed into the same bin } ###Output _____no_output_____ ###Markdown D) Set Inception* `smiles` provide here a list of smiles to be incepted * `memory_size` the number of smiles allowed in the inception memory* `sample_size` the number of smiles that can be sampled at each reinforcement learning step from inception memory ###Code # prepare the inception (we do not use it in this example, so "smiles" is an empty list) configuration["parameters"]["inception"] = { "smiles": [], # fill in a list of SMILES here that can be used (or leave empty) "memory_size": 100, # sets how many molecules are to be remembered "sample_size": 10 # how many are to be sampled each epoch from the memory } ###Output _____no_output_____ ###Markdown E) Set the general Reinforcement Learning parameters* `n_steps` is the amount of Reinforcement Learning steps to perform. Best start with 1000 steps and see if thats enough.* `agent` is the generative model that undergoes transformation during the Reinforcement Learning run.We reccomend keeping the other parameters to their default values. ###Code # set all "reinforcement learning"-specific run parameters configuration["parameters"]["reinforcement_learning"] = { "prior": os.path.join(reinvent_dir, "data/augmented.prior"), # path to the pre-trained model "agent": os.path.join(reinvent_dir, "data/augmented.prior"), # path to the pre-trained model "n_steps": 1000, # the number of epochs (steps) to be performed; often 1000 "sigma": 128, # used to calculate the "augmented likelihood", see publication "learning_rate": 0.0001, # sets how strongly the agent is influenced by each epoch "batch_size": 128, # specifies how many molecules are generated per epoch "reset": 0, # if not '0', the reset the agent if threshold reached to get # more diverse solutions "reset_score_cutoff": 0.5, # if resetting is enabled, this is the threshold "margin_threshold": 50 # specify the (positive) margin between agent and prior } ###Output _____no_output_____ ###Markdown F) Define the scoring functionWe will use a `custom_product` type. The component types included are:* `predictive_property` which is the target activity to _Aurora_ kinase represented by the predictive `regression` model. Note that we set the weight of this component to be the highest.* `qed_score` is the implementation of QED in RDKit. It biases the egenration of molecules towars more "drug-like" space. Depending on the study case can have beneficial or detrimental effect.* `custom_alerts` the `"smiles"` field also can work with SMILES or SMARTSNote: The model used in this example is a regression model ###Code # prepare the scoring function definition and add at the end scoring_function = { "name": "custom_product", # this is our default one (alternative: "custom_sum") "parallel": False, # sets whether components are to be executed # in parallel; note, that python uses "False" / "True" # but the JSON "false" / "true" # the "parameters" list holds the individual components "parameters": [ # add component: an activity model { "component_type": "predictive_property", # this is a scikit-learn model, returning # activity values "name": "Aurora kinase", # arbitrary name for the component "weight": 6, # the weight ("importance") of the component (default: 1) "model_path": os.path.join(reinvent_dir, "data/Aurora_model.pkl"), # absolute model path "smiles": [], # list of SMILES (not required for this component) "specific_parameters": { "transformation_type": "sigmoid", # see description above "high": 9, # parameter for sigmoid transformation "low": 4, # parameter for sigmoid transformation "k": 0.25, # parameter for sigmoid transformation "scikit": "regression", # model can be "regression" or "classification" "transformation": True, # enable the transformation "descriptor_type": "ecfp_counts", # sets the input descriptor for this model "size": 2048, # parameter of descriptor type "radius": 3, # parameter of descriptor type "use_counts": True, # parameter of descriptor type "use_features": True # parameter of descriptor type } }, # add component: QED { "component_type": "qed_score", # this is the QED score as implemented in RDKit "name": "QED", # arbitrary name for the component "weight": 2, # the weight ("importance") of the component (default: 1) "model_path": None, "smiles": None }, # add component: enforce to NOT match a given substructure { "component_type": "custom_alerts", "name": "Custom alerts", # arbitrary name for the component "weight": 1, # the weight of the component (default: 1) "model_path": None, # not required; note, this is "null" in JSON "smiles": [ # specify the substructures (as list) to penalize "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]", "[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#8][#8]", "[#6;+]", "[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]", "C#C", "C(=[O,S])[O,S]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]" ], "specific_parameters": None # not required; note, this is "null" in JSON }] } configuration["parameters"]["scoring_function"] = scoring_function ###Output _____no_output_____ ###Markdown NOTE: Getting the selectivity score component to reach satisfactory levels is non-trivial and might take considerably higher number of steps 3. Write out the configuration We now have successfully filled the dictionary and will write it out as a `JSON` file in the output directory. Please have a look at the file before proceeding in order to see how the paths have been inserted where required and the `dict` -> `JSON` translations (e.g. `True` to `true`) have taken place. ###Code # write the configuration file to the disc configuration_JSON_path = os.path.join(output_dir, "RL_config.json") with open(configuration_JSON_path, 'w') as f: json.dump(configuration, f, indent=4, sort_keys=True) ###Output _____no_output_____ ###Markdown 4. Run `REINVENT`Now it is time to execute `REINVENT` locally. Note, that depending on the number of epochs (steps) and the execution time of the scoring function components, this might take a while. The command-line execution looks like this:``` activate envionmentconda activate reinvent_shared.v2.1 execute REINVENTpython /input.py .json``` ###Code %%capture captured_err_stream --no-stderr # execute REINVENT from the command-line !python {reinvent_dir}/input.py {configuration_JSON_path} # print the output to a file, just to have it for documentation with open(os.path.join(output_dir, "run.err"), 'w') as file: file.write(captured_err_stream.stdout) # prepare the output to be parsed list_epochs = re.findall(r'INFO.*?local', captured_err_stream.stdout, re.DOTALL) data = [epoch for idx, epoch in enumerate(list_epochs) if idx in [1, 75, 124]] data = ["\n".join(element.splitlines()[:-1]) for element in data] ###Output _____no_output_____ ###Markdown Below you see the print-out of the first, one from the middle and the last epoch, respectively. Note, that the fraction of valid `SMILES` is high right from the start (because we use a pre-trained prior). You can see the partial scores for each component for the first couple of compounds, but the most important information is the average score. You can clearly see how it increases over time. ###Code for element in data: print(element) ###Output INFO Step 0 Fraction valid SMILES: 99.2 Score: 0.2306 Time elapsed: 0 Time left: 0.0 Agent Prior Target Score SMILES -19.51 -19.51 21.92 0.32 n1cnc(N2CCN(C)CC2)c2c(-c3ccccc3)c(-c3ccccc3)oc12 -53.61 -53.61 -53.61 0.00 c1c(-c2ccccc2)c(C)cc(CCC2COC3C(NC(C(C)NC)=O)(OC)COCC3(O)C2)c1 -32.90 -32.90 15.19 0.38 c1cc(C(Nc2cc(N=c3[nH]ccc(-c4ccnc(-c5cccnc5)c4)n3)ccc2)=O)ccc1NC(=O)C=C -18.69 -18.69 28.08 0.37 OC1C(O)C(n2c3c(nc2)c(=Nc2ccccc2)[nH]cn3)OC1CO -24.39 -24.39 16.43 0.32 O=C(c1c(C(=O)NCCC)nc[nH]1)N=c1c(C)ccc[nH]1 -34.69 -34.69 10.84 0.36 C1CC(CNC(=O)C(N)Cc2ccc(OC)cc2)CCN1C(=O)Cn1cccn1 -21.42 -21.42 -21.42 0.00 c1(=Cc2[nH]c(=O)[nH]c2O)c2nc(Nc3cccc(C#C)c3)cc(=NC3CC3)n2nc1 -23.29 -23.29 13.14 0.28 n1(-c2ccc([N+](=O)[O-])cc2)c(O)c(C2=c3ccccc3=NC2=O)c2ccccc12 -28.67 -28.67 -28.67 0.00 c1cccc2c1CC1(C2=O)OC(c2ccccc2)(c2ccccc2)OO1 -59.00 -59.00 -59.00 0.00 O(C1(OC(C)C(NC(C(NC(COC(CCC(=C)C2CCC(C=C)(C)C(C(=O)C)C2)=O)=O)=O)C)=O)CCCCC1)C Aurora kinase Custom alerts 0.32369956374168396 1.0 0.3522017002105713 0.0 0.37566933035850525 1.0 0.3654446601867676 1.0 0.31891217827796936 1.0 0.355679452419281 1.0 0.39393407106399536 0.0 0.2846657335758209 1.0 0.2996329665184021 0.0 0.3963213264942169 0.0 INFO Step 74 Fraction valid SMILES: 97.7 Score: 0.3038 Time elapsed: 26 Time left: 321.0 Agent Prior Target Score SMILES -31.52 -32.78 -32.78 0.00 n1(C)ncc(-c2ccc3ncc(NCc4cccc(SC)c4)c3c2)c1 -19.84 -18.95 22.67 0.33 COc1c(OC)cc(C(N(CC)CC)=O)cc1OC -17.59 -18.34 20.06 0.30 O(c1cc(C)c(N)c(C)c1)C -46.62 -46.57 3.88 0.39 O1CCC2(CC1)C1(CCN(C(c3c4ncncc4ccc3)CF)CC1)NC(=O)C2 -30.05 -31.16 9.96 0.32 c1ccc(Nc2ccc(CN3CCN(C)CC3)cc2)c(-c2sc3c(n2)cncc3)c1 -35.30 -36.26 27.78 0.50 c1c(NC(=O)N=c2cc(C)[nH]c(N3CCN(c4cccc(OC)c4)CC3)n2)cc(Cl)c(Cl)c1 -31.53 -29.53 13.16 0.33 c1ccccc1CN(C(C)=O)CCC(Nc1ccc(OCC)cc1)=O -37.70 -38.49 0.82 0.31 C(CN)CCC1C(=O)N(CCC2CCCC2)Cc2c(ccc(OCC(=NO)O)c2)C1 -31.83 -32.79 25.84 0.46 c1(-c2cc(C(=O)NCC3CCO3)c3cnn(C)c3n2)ccc(F)c(F)c1 -27.14 -25.95 -25.95 0.00 C(N1CCC(NC(NC(=O)c2c([N+]([O-])=O)cccc2)=S)CC1)c1ccccc1 Aurora kinase Custom alerts 0.0 0.0 0.32515692710876465 1.0 0.30000120401382446 1.0 0.3941750228404999 1.0 0.321297287940979 1.0 0.5003294944763184 1.0 0.3334886431694031 1.0 0.3071417510509491 1.0 0.45798826217651367 1.0 0.28031840920448303 0.0 INFO Step 123 Fraction valid SMILES: 99.2 Score: 0.3181 Time elapsed: 44 Time left: 311.2 Agent Prior Target Score SMILES -27.24 -25.90 -25.90 0.00 C(O)(Nc1cc(C)ccc1)c1cn(-c2ccc(OC(F)F)cc2)c(O)c1 -22.40 -22.08 21.31 0.34 c1c2c(ccc1Cl)C(=O)N(C)Cc1n-2cnc1Br -38.70 -36.53 -36.53 0.00 C1C(O)C(O)C2OC(=O)C(=C)C2CN1S(=O)(=O)CCC -29.12 -30.39 12.22 0.33 C1N(Cc2ccc(OCCCCN3c4ccccc4CCc4c3cc(Cl)cc4)cc2)CCCC1 -35.30 -37.37 16.22 0.42 c1c(C(C)C)c(N2CCN(C(=O)CCc3c(Cl)onc3C)CC2)n2cc(C(NCC)=O)ccc12 -39.06 -40.07 8.68 0.38 S(c1c2ccc(-c3n[nH]nn3)cc2c(OC)cn1)c1cc2c(c(Cl)c1)OCCO2 -30.11 -28.48 -28.48 0.00 N(CC)(CCOC(=O)c1ccc(Cl)c(Cl)c1)CC=C -23.56 -24.55 14.09 0.30 c1(S(=O)(N(CC)CC)=O)ccc(C(=O)Nc2ccc(S(C)(=O)=O)cc2)cc1 -28.55 -28.66 15.51 0.35 c1(COc2ccc(CN3CCS(=O)(=O)CC3)cc2)c2ccccc2n[nH]1 -30.33 -32.81 18.71 0.40 C1CC(CC(=O)Nc2cc3c(nc[nH]c3=Nc3ccc(OCc4ccccc4)c(Cl)c3)cc2OC)CCN1Cc1cc(Cl)c(Cl)cc1 Aurora kinase Custom alerts 0.42681893706321716 0.0 0.3390008211135864 1.0 0.3794780969619751 0.0 0.3328739106655121 1.0 0.4186704456806183 1.0 0.380911260843277 1.0 0.43136125802993774 0.0 0.30190280079841614 1.0 0.34505319595336914 1.0 0.40252068638801575 1.0 ###Markdown 5. Analyse the resultsIn order to analyze the run in a more intuitive way, we can use `tensorboard`:``` go to the root folder of the outputcd /REINVENT_RL_demo make sure, you have activated the proper environmentconda activate reinvent_shared.v2.1 start tensorboardtensorboard --logdir progress.log```Then copy the link provided to a browser window, e.g. "http://workstation.url.com:6006/". The following figures are exmaple plots - remember, that there is always some randomness involved. In `tensorboard` you can monitor the individual scoring function components. The score for predicted Aurora Kinase activity.![](img/exploit_aurora_kinase.png)The average score over time.![](img/exploit_avg_score.png)It might also be informative to look at the results from the prior (dark blue), the agent (blue) and the augmented likelihood (purple) over time.![](img/nll_plot.png)And last but not least, there is a "Images" tab available that lets you browse through the compounds generated in an easy way. In the molecules, the substructure matches that were defined to be required are highlighted in red (if present). Also, the total scores are given per molecule.![](img/molecules.png) The results folder will hold four different files: the agent (pickled), the input JSON (just for reference purposes), the memory (highest scoring compounds in `CSV` format) and the scaffold memory (in `CSV` format). ###Code !head -n 15 {output_dir}/results/memory.csv ###Output ,smiles,score,likelihood 65,C(CCCn1cc(C(C)(C)C)c2c(C(C)C)cc(C(C)C)cc2c1=O)C(=O)N=c1nc[nH][nH]1,0.3286117,-50.641468 70,C1C(N(CCC)CCC)Cc2cccc3[nH]c(=O)n(c32)C1,0.32649106,-18.146914 26,O1c2c(nc(OC)cc2)C(C(NCCCN(C)C)=O)(Cc2ccccc2)c2ccccc21,0.32437962,-35.405247 60,c1c(C(CNCCc2ccc(NS(=O)(c3ccc(-c4oc(Cc5c[nH]c(=N)s5)cc4)nc3)=O)cc2)O)c[nH]c(=N)c1,0.32314676,-38.32259 99,c1c2c(cc(Cl)c1Cl)C(CC(=O)c1cnn(C)c1)(O)C(=O)N2,0.31027606,-27.762121 11,c1c(O)c(C(Cc2ccc(Cl)cc2)=O)cc(O)c1Oc2c(O)cc(O)cc2CCC(O)c1cc(O)c(OC)cc1,0.30576745,-52.903526 32,c1(C(NC(Cc2ccccc2)C(C(NCCN2CCOCC2)=O)=O)=O)cc(C(=O)NS(Cc2ccccc2)(=O)=O)c(NCCC)s1,0.30178678,-43.933296 1,c1c(C(C)C)ccc(NC(c2cc3c(cc2)[nH]c2c(C(N)=O)ccc(O)c23)=O)c1,0.30052438,-31.108843 108,c1(C(C(F)(F)F)(F)F)cc(Cn2c3cccc(NC(c4n5ccc(OCCN6CCN(C)CC6)cc5nc4)=O)c3c(CC)n2)ccc1,0.29700187,-34.311478 118,c1ccc(C(COc2ccc3c(occ(Oc4ccccc4)c3=O)c2)(O)C(N2CCCCC2)C)cc1F,0.29602197,-45.389744 109,C1CN(CC(CNC(c2ccc3n(c(=O)cc(C)n3)c2)=O)O)CCC1Cc1ccccc1,0.29525602,-29.0487 19,c1cc(CC2C(OCC3CC3)CCN(c3ncncc3)C2)ccc1OC,0.29047668,-26.524956 109,c1cc(CN2Cc3c(cccc3)CC2)ccc1Cc1n[nH]c(=O)c2c1CCCC2,0.2882794,-24.313461 0,c1c2c(ccc1OCCN(C)CCc1ccc(NS(=O)(C)=O)cc1)CCC2,0.28584373,-26.92916
.ipynb_checkpoints/0_visualizing_Data-checkpoint.ipynb
###Markdown Bar Charts ###Code movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"] num_oscars = [5, 11, 3, 8, 10] # bars are by default width 0.8, so we'll add 0.1 to the left coordinates # so that each bar is centered xs = [i + 0.1 for i, _ in enumerate(movies)] # plot bars with left x-coordinates [xs], heights [num_oscars] plt.bar(xs, num_oscars) plt.ylabel("# of Academy Awards") plt.title("My Favourite Movies") # label x-axis with movie names at bar centers plt.xticks([i + .1 for i, _ in enumerate(movies)], movies); ###Output _____no_output_____ ###Markdown Histograms ###Code from collections import Counter grades = [83,95,91,87,70,0,85,82,100,67,73,77,0] # bucket grade by decile, but place the 100 in the 90s histogram = Counter(min(grade//10 * 10, 90) for grade in grades) histogram plt.bar([x + 5 for x in histogram.keys()], # shift bars to the right by 5 histogram.values(), # give the bars the correct values 10,# increase the width edgecolor=(0, 0, 0)) # black edges for the bars plt.axis([-5, 105, 0, 5]) plt.xticks([i for i in range(0,110,10)]); plt.xlabel("Decile") plt.ylabel("# of Students") plt.title("Distribution of Exam 1 Grades") ###Output _____no_output_____ ###Markdown Line Charts ###Code variance = [1, 2, 4, 8, 16, 32, 64, 128, 256] bias_squared = [256, 128, 64, 32, 16, 8, 4, 2, 1] total_error = [x + y for x,y in zip(variance, bias_squared)] xs = [i for i, _ in enumerate(variance)] # we can make multiple calls to plt.plot # to show multiple series on the same chart plt.figure(figsize=(10,6)) plt.plot(xs, variance, 'g-', label = 'variance') # green solid line plt.plot(xs, bias_squared, 'r-', label = 'bias^2') # red dotted line plt.plot(xs, total_error, 'b:', label = 'total error') # blue dotted line # because we've assigned labels to each series # we can get a legend for free # loc=9 means "top center" plt.legend(loc=9) plt.xlabel("model complexity") plt.title("The Bias-Variance tradeoff") ###Output _____no_output_____ ###Markdown Scatterplots ###Code friends = [ 70, 65, 72, 63, 71, 64, 60, 64, 67] minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190] labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] plt.scatter(friends, minutes) # label each point for label, friend_count, minute_count in zip(labels, friends, minutes): plt.annotate(label, xy=(friend_count,minute_count), # put the label with its point xytext=(5, -5), textcoords="offset points") plt.title("Daily Minutes vs. Number of Friends"); plt.xlabel("# of Friends") plt.ylabel("daily minutes spend on the website"); #plt.axis('equal') ###Output _____no_output_____ ###Markdown Warning for variables that are comparable with axis that aren't ###Code test_1_grades = [ 99, 90, 85, 97, 80] test_2_grades = [100, 85, 60, 90, 70] plt.scatter(test_1_grades, test_2_grades) #plt.title("Axes Aren't Comparable") plt.xlabel("test 1 grade") plt.ylabel("test 2 grade") #plt.axis("equal") # turn this command on and off to see the difference plt.show() # for ipython %whos ###Output Variable Type Data/Info ------------------------------------ Counter type <class 'collections.Counter'> bias_squared list n=9 friend_count int 67 friends list n=9 gdp list n=7 grades list n=13 histogram Counter Counter({80: 4, 90: 3, 70: 3, 0: 2, 60: 1}) label str i labels list n=9 minute_count int 190 minutes list n=9 movies list n=5 num_oscars list n=5 plt module <module 'matplotlib.pyplo<...>\\matplotlib\\pyplot.py'> test_1_grades list n=5 test_2_grades list n=5 total_error list n=9 variance list n=9 xs list n=9 years list n=7
10 - Random Forests/random-forests.ipynb
###Markdown IntroductionDecision trees leave you with a difficult decision. A deep tree with lots of leaves will overfit because each prediction is coming from historical data from only the few houses at its leaf. But a shallow tree with few leaves will perform poorly because it fails to capture as many distinctions in the raw data.Even today's most sophisticated modeling techniques face this tension between underfitting and overfitting. But, many models have clever ideas that can lead to better performance. We'll look at the **random forest** as an example.The random forest uses many trees, and it makes a prediction by averaging the predictions of each component tree. It generally has much better predictive accuracy than a single decision tree and it works well with default parameters. If you keep modeling, you can learn more models with even better performance, but many of those are sensitive to getting the right parameters. ExampleYou've already seen the code to load the data a few times. At the end of data-loading, we have the following variables:- train_X- val_X- train_y- val_y ###Code import pandas as pd # Load data melbourne_file_path = '../input/melbourne-housing-snapshot/melb_data.csv' melbourne_data = pd.read_csv(melbourne_file_path) # Filter rows with missing values melbourne_data = melbourne_data.dropna(axis=0) # Choose target and features y = melbourne_data.Price melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'BuildingArea', 'YearBuilt', 'Lattitude', 'Longtitude'] X = melbourne_data[melbourne_features] from sklearn.model_selection import train_test_split # split data into training and validation data, for both features and target # The split is based on a random number generator. Supplying a numeric value to # the random_state argument guarantees we get the same split every time we # run this script. train_X, val_X, train_y, val_y = train_test_split(X, y,random_state = 0) ###Output _____no_output_____ ###Markdown We build a random forest model similarly to how we built a decision tree in scikit-learn - this time using the `RandomForestRegressor` class instead of `DecisionTreeRegressor`. ###Code from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error forest_model = RandomForestRegressor(random_state=1) forest_model.fit(train_X, train_y) melb_preds = forest_model.predict(val_X) print(mean_absolute_error(val_y, melb_preds)) ###Output 191669.7536453626
Models/Training utils/LSTM.ipynb
###Markdown Prepare data ###Code path_train = '../Datasets/Videos/lstm/train/' path_test = '../Datasets/Videos/lstm/test/' X_train = [] X_test = [] y_train = [] y_test = [] for file in os.listdir(path_train): if file.endswith(".csv"): data = pd.read_csv(path_train + file).drop('Unnamed: 0', axis=1) pos = 9 while pos < data.shape[0]: X_train.append(data.drop('label', axis=1).values[pos-9: pos+1, :]) y_train.append(data['label'].iloc[pos]) pos += 1 for file in os.listdir(path_test): if file.endswith(".csv"): data = pd.read_csv(path_test + file).drop('Unnamed: 0', axis=1) pos = 9 while pos < data.shape[0]: X_test.append(data.drop('label', axis=1).values[pos-9: pos+1, :]) y_test.append(data['label'].iloc[pos]) pos += 1 X_train = np.array(X_train) X_test = np.array(X_test) def label_to_float(x): return 0.0 if x == 'fire' else 1.0 y_train = np.array([label_to_float(x) for x in y_train]) y_test = np.array([label_to_float(x) for x in y_test]) scale = np.abs(X_train).max() X_train /= scale X_test /= scale ###Output _____no_output_____ ###Markdown Train model ###Code n_timesteps = 10 n_features = 640 model = Sequential() model.add(LSTM(100, input_shape=(n_timesteps, n_features))) model.add(Dropout(0.5)) model.add(Dense(100, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.summary() model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, epochs=30, batch_size=64, verbose=1) model.save('Trained models/LSTM #1') results = model.evaluate(X_test, y_test, batch_size=64) print('test loss, test acc:', results) from sklearn.metrics import classification_report y_pred = model.predict(X_test, batch_size=64, verbose=1) y_pred[y_pred <= 0.5] = 0 y_pred[y_pred > 0.5] = 1 print(classification_report(y_test, y_pred)) ###Output 276/276 [==============================] - 0s 1ms/step precision recall f1-score support 0.0 0.94 0.97 0.96 260 1.0 0.00 0.00 0.00 16 accuracy 0.92 276 macro avg 0.47 0.49 0.48 276 weighted avg 0.89 0.92 0.90 276 ###Markdown 2 layers ###Code n_timesteps = 10 n_features = 640 model2 = Sequential() model2.add(LSTM(100, input_shape=(n_timesteps, n_features), return_sequences=True)) model2.add(Dropout(0.5)) model2.add(LSTM(200, return_sequences=False)) model2.add(Dropout(0.5)) model2.add(Dense(100, activation='relu')) model2.add(Dense(1, activation='sigmoid')) model2.summary() model2.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) hist2 = model2.fit(X_train, y_train, epochs=30, batch_size=64, verbose=1) model2.save('Trained models/LSTM #2') results2 = model2.evaluate(X_test, y_test, batch_size=64) print('test loss, test acc:', results2) from sklearn.metrics import classification_report y_pred = model2.predict(X_test, batch_size=64, verbose=1) y_pred[y_pred <= 0.5] = 0 y_pred[y_pred > 0.5] = 1 print(classification_report(y_test, y_pred)) ###Output 276/276 [==============================] - 0s 661us/step precision recall f1-score support 0.0 0.94 0.97 0.96 260 1.0 0.11 0.06 0.08 16 accuracy 0.92 276 macro avg 0.53 0.52 0.52 276 weighted avg 0.90 0.92 0.91 276 ###Markdown 3 layers ###Code n_timesteps = 10 n_features = 640 model3 = Sequential() model3.add(LSTM(100, input_shape=(n_timesteps, n_features), return_sequences=True)) model3.add(Dropout(0.5)) model3.add(LSTM(200, return_sequences=True)) model3.add(Dropout(0.5)) model3.add(LSTM(200, return_sequences=False)) model3.add(Dropout(0.5)) model3.add(Dense(100, activation='relu')) model3.add(Dense(1, activation='sigmoid')) model3.summary() model3.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) hist2 = model3.fit(X_train, y_train, epochs=30, batch_size=64, verbose=1) model3.save('Trained models/LSTM #3') results3 = model3.evaluate(X_test, y_test, batch_size=64) print('test loss, test acc:', results3) from sklearn.metrics import classification_report y_pred = model3.predict(X_test, batch_size=64, verbose=1) y_pred[y_pred <= 0.5] = 0 y_pred[y_pred > 0.5] = 1 print(classification_report(y_test, y_pred)) ###Output 276/276 [==============================] - 1s 2ms/step precision recall f1-score support 0.0 0.94 0.95 0.95 260 1.0 0.08 0.06 0.07 16 accuracy 0.90 276 macro avg 0.51 0.51 0.51 276 weighted avg 0.89 0.90 0.90 276 ###Markdown Mega ###Code n_timesteps = 10 n_features = 640 mega = Sequential() mega.add(LSTM(100, input_shape=(n_timesteps, n_features), return_sequences=True)) mega.add(Dropout(0.5)) mega.add(LSTM(200, return_sequences=True)) mega.add(Dropout(0.5)) mega.add(LSTM(300, return_sequences=True)) mega.add(Dropout(0.5)) mega.add(LSTM(100, return_sequences=False)) mega.add(Dropout(0.5)) mega.add(Dense(100, activation='relu')) mega.add(Dense(1, activation='sigmoid')) mega.summary() mega.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) hist_mega = mega.fit(X_train, y_train, epochs=30, batch_size=64, verbose=1) mega.save('Trained models/LSTM #mega') from sklearn.metrics import classification_report y_pred = mega.predict(X_test, batch_size=64, verbose=1) y_pred[y_pred <= 0.5] = 0 y_pred[y_pred > 0.5] = 1 print(classification_report(y_test, y_pred)) results_mega = mega.evaluate(X_test, y_test, batch_size=64) print('test loss, test acc:', results_mega) ###Output 276/276 [==============================] - 1s 3ms/step test loss, test acc: [0.42382233384726703, 0.9202898740768433]
03-Preprocessing_ConnectomeDB.ipynb
###Markdown Preprocess ConnectomeDB The script in this file can be used to extract the type of .nii.gz images desired from the files downloaded from the Connectome Database. ConnectomeDB files can be downloaded once registered in https://db.humanconnectome.org/ ###Code # Required librearies are imported import os import glob import zipfile # Path where are downloaded the data of patients #path = 'E:/Z-MRI/Test' path = 'E:/Z-MRI/3T_MRI' # Path where will be uncompressed the files we want from the patients output_path = 'E:/Z-MRI/3T_T1w' # File pattern we want to uncompress pattern = '3T_T1w_MPR1.nii.gz' files = glob.glob(path + '/*.zip') # Show first file files[0] # Show the number of files print("The number of files is %d." % len(files)) # Reference: # https://stackoverflow.com/questions/4917284/extract-files-from-zip-without-keeping-the-structure-using-python-zipfile for file in files: with zipfile.ZipFile(file) as z: for member in z.infolist(): filename = os.path.basename(member.filename) # skip directories if not filename: continue # extract file if (filename[-len(pattern):] == pattern): print("Extracting " + filename) # The full path is replaced by the filename only member.filename = os.path.basename(member.filename) z.extract(member, output_path) ###Output Extracting 100206_3T_T1w_MPR1.nii.gz Extracting 100307_3T_T1w_MPR1.nii.gz Extracting 100408_3T_T1w_MPR1.nii.gz Extracting 100610_3T_T1w_MPR1.nii.gz Extracting 101006_3T_T1w_MPR1.nii.gz Extracting 101107_3T_T1w_MPR1.nii.gz Extracting 101309_3T_T1w_MPR1.nii.gz Extracting 101410_3T_T1w_MPR1.nii.gz Extracting 101915_3T_T1w_MPR1.nii.gz Extracting 102008_3T_T1w_MPR1.nii.gz Extracting 102109_3T_T1w_MPR1.nii.gz Extracting 102311_3T_T1w_MPR1.nii.gz Extracting 102513_3T_T1w_MPR1.nii.gz Extracting 102614_3T_T1w_MPR1.nii.gz Extracting 102715_3T_T1w_MPR1.nii.gz Extracting 102816_3T_T1w_MPR1.nii.gz Extracting 103010_3T_T1w_MPR1.nii.gz Extracting 103111_3T_T1w_MPR1.nii.gz Extracting 103212_3T_T1w_MPR1.nii.gz Extracting 103414_3T_T1w_MPR1.nii.gz Extracting 103515_3T_T1w_MPR1.nii.gz Extracting 103818_3T_T1w_MPR1.nii.gz Extracting 104012_3T_T1w_MPR1.nii.gz Extracting 104416_3T_T1w_MPR1.nii.gz Extracting 104820_3T_T1w_MPR1.nii.gz Extracting 105014_3T_T1w_MPR1.nii.gz Extracting 105115_3T_T1w_MPR1.nii.gz Extracting 105216_3T_T1w_MPR1.nii.gz Extracting 105620_3T_T1w_MPR1.nii.gz Extracting 105923_3T_T1w_MPR1.nii.gz Extracting 106016_3T_T1w_MPR1.nii.gz Extracting 106319_3T_T1w_MPR1.nii.gz Extracting 106521_3T_T1w_MPR1.nii.gz Extracting 106824_3T_T1w_MPR1.nii.gz Extracting 107018_3T_T1w_MPR1.nii.gz Extracting 107220_3T_T1w_MPR1.nii.gz Extracting 107321_3T_T1w_MPR1.nii.gz Extracting 107422_3T_T1w_MPR1.nii.gz Extracting 107725_3T_T1w_MPR1.nii.gz Extracting 108020_3T_T1w_MPR1.nii.gz Extracting 108121_3T_T1w_MPR1.nii.gz Extracting 108222_3T_T1w_MPR1.nii.gz Extracting 108323_3T_T1w_MPR1.nii.gz Extracting 108525_3T_T1w_MPR1.nii.gz Extracting 108828_3T_T1w_MPR1.nii.gz Extracting 109123_3T_T1w_MPR1.nii.gz Extracting 109325_3T_T1w_MPR1.nii.gz Extracting 109830_3T_T1w_MPR1.nii.gz Extracting 110007_3T_T1w_MPR1.nii.gz Extracting 110411_3T_T1w_MPR1.nii.gz Extracting 110613_3T_T1w_MPR1.nii.gz Extracting 111009_3T_T1w_MPR1.nii.gz Extracting 111211_3T_T1w_MPR1.nii.gz Extracting 111312_3T_T1w_MPR1.nii.gz Extracting 111413_3T_T1w_MPR1.nii.gz Extracting 111514_3T_T1w_MPR1.nii.gz Extracting 111716_3T_T1w_MPR1.nii.gz Extracting 112112_3T_T1w_MPR1.nii.gz Extracting 112314_3T_T1w_MPR1.nii.gz Extracting 112516_3T_T1w_MPR1.nii.gz Extracting 112819_3T_T1w_MPR1.nii.gz Extracting 112920_3T_T1w_MPR1.nii.gz Extracting 113215_3T_T1w_MPR1.nii.gz Extracting 113316_3T_T1w_MPR1.nii.gz Extracting 113417_3T_T1w_MPR1.nii.gz Extracting 113619_3T_T1w_MPR1.nii.gz Extracting 113821_3T_T1w_MPR1.nii.gz Extracting 113922_3T_T1w_MPR1.nii.gz Extracting 114116_3T_T1w_MPR1.nii.gz Extracting 114217_3T_T1w_MPR1.nii.gz Extracting 114318_3T_T1w_MPR1.nii.gz Extracting 114419_3T_T1w_MPR1.nii.gz Extracting 114621_3T_T1w_MPR1.nii.gz Extracting 114823_3T_T1w_MPR1.nii.gz Extracting 114924_3T_T1w_MPR1.nii.gz Extracting 115017_3T_T1w_MPR1.nii.gz Extracting 115219_3T_T1w_MPR1.nii.gz Extracting 115320_3T_T1w_MPR1.nii.gz Extracting 115724_3T_T1w_MPR1.nii.gz Extracting 115825_3T_T1w_MPR1.nii.gz Extracting 116120_3T_T1w_MPR1.nii.gz Extracting 116221_3T_T1w_MPR1.nii.gz Extracting 116423_3T_T1w_MPR1.nii.gz Extracting 116524_3T_T1w_MPR1.nii.gz Extracting 116726_3T_T1w_MPR1.nii.gz Extracting 117021_3T_T1w_MPR1.nii.gz Extracting 117122_3T_T1w_MPR1.nii.gz Extracting 117324_3T_T1w_MPR1.nii.gz Extracting 117728_3T_T1w_MPR1.nii.gz Extracting 117930_3T_T1w_MPR1.nii.gz Extracting 118023_3T_T1w_MPR1.nii.gz Extracting 118124_3T_T1w_MPR1.nii.gz Extracting 118225_3T_T1w_MPR1.nii.gz Extracting 118528_3T_T1w_MPR1.nii.gz Extracting 118730_3T_T1w_MPR1.nii.gz Extracting 118831_3T_T1w_MPR1.nii.gz Extracting 118932_3T_T1w_MPR1.nii.gz Extracting 119025_3T_T1w_MPR1.nii.gz Extracting 119126_3T_T1w_MPR1.nii.gz Extracting 119732_3T_T1w_MPR1.nii.gz Extracting 119833_3T_T1w_MPR1.nii.gz Extracting 120010_3T_T1w_MPR1.nii.gz Extracting 120111_3T_T1w_MPR1.nii.gz Extracting 120212_3T_T1w_MPR1.nii.gz Extracting 120414_3T_T1w_MPR1.nii.gz Extracting 120515_3T_T1w_MPR1.nii.gz Extracting 120717_3T_T1w_MPR1.nii.gz Extracting 121315_3T_T1w_MPR1.nii.gz Extracting 121416_3T_T1w_MPR1.nii.gz Extracting 121618_3T_T1w_MPR1.nii.gz Extracting 121719_3T_T1w_MPR1.nii.gz Extracting 121820_3T_T1w_MPR1.nii.gz Extracting 121921_3T_T1w_MPR1.nii.gz Extracting 122317_3T_T1w_MPR1.nii.gz Extracting 122418_3T_T1w_MPR1.nii.gz Extracting 122620_3T_T1w_MPR1.nii.gz Extracting 122822_3T_T1w_MPR1.nii.gz Extracting 123117_3T_T1w_MPR1.nii.gz Extracting 123420_3T_T1w_MPR1.nii.gz Extracting 123521_3T_T1w_MPR1.nii.gz Extracting 123723_3T_T1w_MPR1.nii.gz Extracting 123824_3T_T1w_MPR1.nii.gz Extracting 123925_3T_T1w_MPR1.nii.gz Extracting 124220_3T_T1w_MPR1.nii.gz Extracting 124422_3T_T1w_MPR1.nii.gz Extracting 124624_3T_T1w_MPR1.nii.gz Extracting 124826_3T_T1w_MPR1.nii.gz Extracting 125222_3T_T1w_MPR1.nii.gz Extracting 125424_3T_T1w_MPR1.nii.gz Extracting 125525_3T_T1w_MPR1.nii.gz Extracting 126325_3T_T1w_MPR1.nii.gz Extracting 126426_3T_T1w_MPR1.nii.gz Extracting 126628_3T_T1w_MPR1.nii.gz Extracting 126931_3T_T1w_MPR1.nii.gz Extracting 127226_3T_T1w_MPR1.nii.gz Extracting 127327_3T_T1w_MPR1.nii.gz Extracting 127630_3T_T1w_MPR1.nii.gz Extracting 127731_3T_T1w_MPR1.nii.gz Extracting 127832_3T_T1w_MPR1.nii.gz Extracting 127933_3T_T1w_MPR1.nii.gz Extracting 128026_3T_T1w_MPR1.nii.gz Extracting 128127_3T_T1w_MPR1.nii.gz Extracting 128329_3T_T1w_MPR1.nii.gz Extracting 128632_3T_T1w_MPR1.nii.gz Extracting 128935_3T_T1w_MPR1.nii.gz Extracting 129028_3T_T1w_MPR1.nii.gz Extracting 129129_3T_T1w_MPR1.nii.gz Extracting 129331_3T_T1w_MPR1.nii.gz Extracting 129432_3T_T1w_MPR1.nii.gz Extracting 129533_3T_T1w_MPR1.nii.gz Extracting 129634_3T_T1w_MPR1.nii.gz Extracting 129937_3T_T1w_MPR1.nii.gz Extracting 130013_3T_T1w_MPR1.nii.gz Extracting 130114_3T_T1w_MPR1.nii.gz Extracting 130316_3T_T1w_MPR1.nii.gz Extracting 130417_3T_T1w_MPR1.nii.gz Extracting 130518_3T_T1w_MPR1.nii.gz Extracting 130619_3T_T1w_MPR1.nii.gz Extracting 130720_3T_T1w_MPR1.nii.gz Extracting 130821_3T_T1w_MPR1.nii.gz Extracting 130922_3T_T1w_MPR1.nii.gz Extracting 131217_3T_T1w_MPR1.nii.gz Extracting 131419_3T_T1w_MPR1.nii.gz Extracting 131621_3T_T1w_MPR1.nii.gz Extracting 131722_3T_T1w_MPR1.nii.gz Extracting 131823_3T_T1w_MPR1.nii.gz Extracting 131924_3T_T1w_MPR1.nii.gz Extracting 132017_3T_T1w_MPR1.nii.gz Extracting 132118_3T_T1w_MPR1.nii.gz Extracting 133019_3T_T1w_MPR1.nii.gz Extracting 133625_3T_T1w_MPR1.nii.gz Extracting 133827_3T_T1w_MPR1.nii.gz Extracting 133928_3T_T1w_MPR1.nii.gz Extracting 134021_3T_T1w_MPR1.nii.gz Extracting 134223_3T_T1w_MPR1.nii.gz Extracting 134324_3T_T1w_MPR1.nii.gz Extracting 134425_3T_T1w_MPR1.nii.gz Extracting 134627_3T_T1w_MPR1.nii.gz Extracting 134728_3T_T1w_MPR1.nii.gz Extracting 134829_3T_T1w_MPR1.nii.gz Extracting 135124_3T_T1w_MPR1.nii.gz Extracting 135225_3T_T1w_MPR1.nii.gz Extracting 135528_3T_T1w_MPR1.nii.gz Extracting 135629_3T_T1w_MPR1.nii.gz Extracting 135730_3T_T1w_MPR1.nii.gz Extracting 135932_3T_T1w_MPR1.nii.gz Extracting 136126_3T_T1w_MPR1.nii.gz Extracting 136227_3T_T1w_MPR1.nii.gz Extracting 136631_3T_T1w_MPR1.nii.gz Extracting 136732_3T_T1w_MPR1.nii.gz Extracting 136833_3T_T1w_MPR1.nii.gz Extracting 137027_3T_T1w_MPR1.nii.gz Extracting 137128_3T_T1w_MPR1.nii.gz Extracting 137229_3T_T1w_MPR1.nii.gz Extracting 137431_3T_T1w_MPR1.nii.gz Extracting 137532_3T_T1w_MPR1.nii.gz Extracting 137633_3T_T1w_MPR1.nii.gz Extracting 137936_3T_T1w_MPR1.nii.gz Extracting 138130_3T_T1w_MPR1.nii.gz Extracting 138231_3T_T1w_MPR1.nii.gz Extracting 138332_3T_T1w_MPR1.nii.gz Extracting 138534_3T_T1w_MPR1.nii.gz Extracting 138837_3T_T1w_MPR1.nii.gz Extracting 139233_3T_T1w_MPR1.nii.gz Extracting 139435_3T_T1w_MPR1.nii.gz Extracting 139637_3T_T1w_MPR1.nii.gz Extracting 139839_3T_T1w_MPR1.nii.gz Extracting 140117_3T_T1w_MPR1.nii.gz Extracting 140319_3T_T1w_MPR1.nii.gz Extracting 140420_3T_T1w_MPR1.nii.gz Extracting 140824_3T_T1w_MPR1.nii.gz Extracting 140925_3T_T1w_MPR1.nii.gz Extracting 141119_3T_T1w_MPR1.nii.gz Extracting 141422_3T_T1w_MPR1.nii.gz Extracting 141826_3T_T1w_MPR1.nii.gz Extracting 142424_3T_T1w_MPR1.nii.gz Extracting 142828_3T_T1w_MPR1.nii.gz Extracting 143224_3T_T1w_MPR1.nii.gz Extracting 143325_3T_T1w_MPR1.nii.gz Extracting 143426_3T_T1w_MPR1.nii.gz Extracting 143527_3T_T1w_MPR1.nii.gz Extracting 143830_3T_T1w_MPR1.nii.gz
notebooks/Read_formation_tops.ipynb
###Markdown Read formation tops- Read tops to dictionaries- Read tops to `striplog`- Read tops to `pandas` Raw data ###Code from striplog.utils import read_petrel import numpy as np fname = "../data/NAM/Formation_tops/Well_Tops.asc" # Need striplog 0.8.8 to pass a single function. nullify = lambda x: np.nan if x==-999 else x data = read_petrel(fname, function=nullify) data.keys() ###Output _____no_output_____ ###Markdown To `pandas` ###Code import pandas as pd df = pd.DataFrame.from_dict(data) df.head() ###Output _____no_output_____ ###Markdown Read metadataWe need the CRS, among other things. Spoiler alert, it's this one: https://spatialreference.org/ref/epsg/28992/I read the metadata file, `../data/Formation_tops/Well_Tops.asc.crsmeta.xml`, in the [Read CRS metadta](./Read_CRS_metadata.ipynb) notebook. For now we'll use the EPSG code I have. To CSV ###Code df.to_csv("../data/NAM/Formation_tops/Groningen__Formation_tops__EPSG_28992.csv", index=False) ###Output _____no_output_____
ShopifyChallenge.ipynb
###Markdown Winter 2019 Data Science Intern Challenge Question 1 Analysis (*Scroll down to the end of Question 1 if you would prefer a summary of the answers found from the analysis below. Question 2 answers are there too.*) ###Code #Load the data library(tidyverse) #For dplyr and ggplot2 library(ggthemes) #Used with ggplot2 library(lubridate) #For dates library(repr) #For sizing graphs #Load the dataset shopify <- read.csv("shopify.csv") ###Output _____no_output_____ ###Markdown Notice that there's something curious happening when we inspect how many transactions are made for each transaction size: ###Code items_count <- as.tibble(table(shopify$total_items)) colnames(items_count) <- c("total_items", "count_transactions") items_count ###Output _____no_output_____ ###Markdown All of the transaction sizes are 8 items or smaller, except for the 17 of size 2000. It's likely that these excessively large transactions are driving up the AOV. Let's inspect this further. ###Code manyItems <- shopify %>% filter(total_items==2000) #Convert created_at from factor to dttm so we can order by date manyItems$created_at <- ymd_hms(manyItems$created_at) #Order by date manyItems <- manyItems[order(manyItems$created_at),] manyItems ###Output _____no_output_____ ###Markdown We see that all of the recorded transactions of size 2000 occurred from the same user_id (607) of the same shop_id (42), and that the order_amount is exactly the same in each case (704000). Moreover, we see that there are some days where there are multiple identical transactions, and all purchases are made at exactly 4 a.m., to the second. Either there was a mistake in the dataset with duplicate entries, or this customer is automating the process of buying shoes in bulk, which he or she will presumably sell at a higher price. There's also something fishy going on when we inspect the maximum order amount for the various transaction sizes: ###Code shopify %>% group_by(total_items) %>% summarise(mean_order_amount = round(mean(order_amount), 2), max_order_amount = max(order_amount)) %>% mutate(fishy_observation = max_order_amount/total_items) ###Output _____no_output_____ ###Markdown There are very large maximum order amounts for purchases of 1 item, 2 items, 3 items, 4 items and 6 items. Moreover, when each of these maximum order amounts is divided by the total items bought in its respective transaction, we get 25725. We would never expect an average pair of shoes to cost 25725, and therefore there is probably a specific recording mistake that is being repeated in the dataset. Now how do we handle these potential problems in our dataset? Let's take a look at a scatterplot which shows the order amount for each of our 5000 transactions. ###Code #Sizing the graph output options(repr.plot.width=8, repr.plot.height=3) #Creating the graph shopify %>% ggplot(aes(x=order_id, y=order_amount)) + geom_point(color="blue", alpha=0.2) + labs(x='', y="Order Amount ($)", title="Most order amounts are of reasonable sizes", caption="Each point is one transaction") + scale_y_continuous(breaks=200000*(0:3), labels=c('0', '200000', '400000', '600000')) + theme_few() + theme(axis.title.y = element_text(size=10)) ###Output _____no_output_____ ###Markdown Notice that most of the transactions are along the dark blue line, which corresponds to purchases that are a few hundred or a few thousand dollars - plausible order amounts when buying at most 8 pairs of shoes. We saw that our original choice of evaluation metric, AOV, is largely affected by the numerous extreme values in this dataset, both from the 2000 item purchases and from the fishy order amounts that were multiples of 25725. To protect our evaluation metric from the effects of these outliers it would therefore be wise to instead use a robust evaluation metric, median, which will be found among the points in the dark blue line. ###Code median(shopify$order_amount) ###Output _____no_output_____ ###Markdown Shopify Challenge 2021 Data Science Internship Jose Rincon ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Question 1: On Shopify, we have exactly 100 sneaker shops, and each of these shops sells only one model of shoe. We want to do some analysis of the average order value (AOV). When we look at orders data over a 30 day window, we naively calculate an AOV of 3145.13. Given that we know these shops are selling sneakers, a relatively affordable item, something seems wrong with our analysis. a. Think about what could be going wrong with our calculation. Think about a better way to evaluate this data. Solution a Read data using pandas ###Code my_data = pd.read_excel("/home/jose/Documents/Professional Development/shopify_challenge/2019 Winter Data Science Intern Challenge Data Set.xlsx", engine = 'openpyxl') ###Output _____no_output_____ ###Markdown Perform 30 day window average using the original computation ###Code order_values = my_data['order_amount'].to_numpy() store_ids = my_data['shop_id'].to_numpy() average_order_value = np.mean(order_values) print(average_order_value) ###Output 3145.128 ###Markdown Find any possible outliers in the dataset. We do this by finding the average and standard deviation of number of items in an order. Orders that fall within three standard deviations could be deemed common for the stores. Orders with very large number of shoes could be unusual for the stores. Those outliers could be ignored in our calculation. ###Code total_items = my_data['total_items'].to_numpy() ###Output _____no_output_____ ###Markdown Compute mean and standard deviation of total_items per order ###Code mean = np.mean(total_items) std = np.std(total_items) median = np.median(total_items) print(mean, std, median) ###Output 8.7872 116.3086871912842 2.0 ###Markdown Find outliers in store orders ###Code # Use 3 standard deviations to find ourliers cut_off = 3 * std # find lower boundary of our good data lower = mean - cut_off # find upper boundary of our good data upper = mean + cut_off # find the indices of outliers indices_outliers = (total_items < lower) + (total_items > upper) # find the number of items in outliers outliers_total_items = total_items[indices_outliers] print(outliers_total_items) # find the store ids with the outliers outliers_store_ids = store_ids[indices_outliers] print(outliers_store_ids) ###Output [2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000] [42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42] ###Markdown They are orders with 2000 items sold by store 42. Let's now remove the outliers from our data ###Code # get new_total_items new_total_items = total_items[~indices_outliers] # get new_order_values new_order_values = order_values[~indices_outliers] # get max, min, mean, std of new_total_items max_total_items = np.max(new_total_items) min_total_items = np.min(new_total_items) average_total_items = np.average(new_total_items) std_total_items = np.std(new_total_items) print('max_total_items', max_total_items) print('min_total_items', min_total_items) print('average_total_items', average_total_items) print('std_total_items', std_total_items) ###Output max_total_items 8 min_total_items 1 average_total_items 1.9939795304033714 std_total_items 0.9830817903534801 ###Markdown There are 17 outliers from our 5000 order data set. I am not sure why store 42 has those 2000 item orders made by their customer 607 but these type of orders are not usual for a retail shoe store. Moreover, there are also outliers in store 78 where shoes are sold for a unit price of 25725. These outliers are definetely affecting the Average Order Value (AOV). b. What metric would you report for this dataset? Solution b Given that this data set has a few very large outliers, the mean is skewed by these few samples. We could use the median as better value of central tendency. c. What is the value? Solution: The Median Order Value is ###Code median_order_value = np.median(order_values) print("The Median Order Value (MOV) is: ", median_order_value) ###Output The Median Order Value (MOV) is: 284.0 ###Markdown Question 2: For this question youโ€™ll need to use SQL. Follow this link to access the data set required for the challenge. Please use queries to answer the following questions. Paste your queries along with your final numerical answers below a. How many orders were shipped by Speedy Express in total? ###Code ''' SELECT COUNT(tempOrders.ShipperID) FROM Orders AS tempOrders WHERE (SELECT ShipperID FROM Shippers AS tempShippers WHERE tempShippers.ShipperName == "Speedy Express") == tempOrders.ShipperID''' ###Output _____no_output_____ ###Markdown Solution a: The number of orders shipped by Speedy Express were 54 b. What is the last name of the employee with the most orders? ###Code ''' SELECT Employees.LastName FROM Employees LEFT JOIN Orders ON Orders.EmployeeID = Employees.EmployeeID GROUP BY Orders.EmployeeID ORDER BY COUNT(Orders.EmployeeID) DESC LIMIT 1;''' ###Output _____no_output_____ ###Markdown Solution b: The employee with most orders is Peacock c. What product was ordered the most by customers in Germany? ###Code '''SELECT Products.ProductName, SUM(OrderDetails.Quantity) AS Total_orders, Customers.Country FROM Products JOIN OrderDetails ON OrderDetails.ProductID = Products.ProductID JOIN Orders ON Orders.OrderID = OrderDetails.OrderID JOIN Customers ON Customers.CustomerID = Orders.CustomerID WHERE Customers.Country = "Germany" GROUP BY Products.ProductName ORDER BY Total_orders DESC LIMIT 1;''' ###Output _____no_output_____
1_ShallowToDeepNeuralNetwork/6_Deep+Neural+Network+-+Application+v8.ipynb
###Markdown Deep Neural Network for Image Classification: ApplicationWhen you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this course! You will use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classification. Hopefully, you will see an improvement in accuracy relative to your previous logistic regression implementation. **After this assignment you will be able to:**- Build and apply a deep neural network to supervised learning. Let's get started! 1 - Packages Let's first import all the packages that you will need during this assignment. - [numpy](https://www.numpy.org/) is the fundamental package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end.- dnn_app_utils provides the functions implemented in the "Building your Deep Neural Network: Step by Step" assignment to this notebook.- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. ###Code import time import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage from dnn_app_utils_v3 import * %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) ###Output _____no_output_____ ###Markdown 2 - DatasetYou will use the same "Cat vs non-Cat" dataset as in "Logistic Regression as a Neural Network" (Assignment 2). The model you had built had 70% test accuracy on classifying cats vs non-cats images. Hopefully, your new model will perform a better!**Problem Statement**: You are given a dataset ("data.h5") containing: - a training set of m_train images labelled as cat (1) or non-cat (0) - a test set of m_test images labelled as cat and non-cat - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB).Let's get more familiar with the dataset. Load the data by running the cell below. ###Code train_x_orig, train_y, test_x_orig, test_y, classes = load_data() ###Output _____no_output_____ ###Markdown The following code will show you an image in the dataset. Feel free to change the index and re-run the cell multiple times to see other images. ###Code # Example of a picture index = 10 plt.imshow(train_x_orig[index]) print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.") # Explore your dataset m_train = train_x_orig.shape[0] num_px = train_x_orig.shape[1] m_test = test_x_orig.shape[0] print ("Number of training examples: " + str(m_train)) print ("Number of testing examples: " + str(m_test)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_x_orig shape: " + str(train_x_orig.shape)) print ("train_y shape: " + str(train_y.shape)) print ("test_x_orig shape: " + str(test_x_orig.shape)) print ("test_y shape: " + str(test_y.shape)) ###Output Number of training examples: 209 Number of testing examples: 50 Each image is of size: (64, 64, 3) train_x_orig shape: (209, 64, 64, 3) train_y shape: (1, 209) test_x_orig shape: (50, 64, 64, 3) test_y shape: (1, 50) ###Markdown As usual, you reshape and standardize the images before feeding them to the network. The code is given in the cell below. Figure 1: Image to vector conversion. ###Code # Reshape the training and test examples train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T # Standardize data to have feature values between 0 and 1. train_x = train_x_flatten/255. test_x = test_x_flatten/255. print ("train_x's shape: " + str(train_x.shape)) print ("test_x's shape: " + str(test_x.shape)) ###Output train_x's shape: (12288, 209) test_x's shape: (12288, 50) ###Markdown $12,288$ equals $64 \times 64 \times 3$ which is the size of one reshaped image vector. 3 - Architecture of your model Now that you are familiar with the dataset, it is time to build a deep neural network to distinguish cat images from non-cat images.You will build two different models:- A 2-layer neural network- An L-layer deep neural networkYou will then compare the performance of these models, and also try out different values for $L$. Let's look at the two architectures. 3.1 - 2-layer neural network Figure 2: 2-layer neural network. The model can be summarized as: ***INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT***. Detailed Architecture of figure 2:- The input is a (64,64,3) image which is flattened to a vector of size $(12288,1)$. - The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ of size $(n^{[1]}, 12288)$.- You then add a bias term and take its relu to get the following vector: $[a_0^{[1]}, a_1^{[1]},..., a_{n^{[1]}-1}^{[1]}]^T$.- You then repeat the same process.- You multiply the resulting vector by $W^{[2]}$ and add your intercept (bias). - Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat. 3.2 - L-layer deep neural networkIt is hard to represent an L-layer deep neural network with the above representation. However, here is a simplified network representation: Figure 3: L-layer neural network. The model can be summarized as: ***[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID***Detailed Architecture of figure 3:- The input is a (64,64,3) image which is flattened to a vector of size (12288,1).- The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ and then you add the intercept $b^{[1]}$. The result is called the linear unit.- Next, you take the relu of the linear unit. This process could be repeated several times for each $(W^{[l]}, b^{[l]})$ depending on the model architecture.- Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat. 3.3 - General methodologyAs usual you will follow the Deep Learning methodology to build the model: 1. Initialize parameters / Define hyperparameters 2. Loop for num_iterations: a. Forward propagation b. Compute cost function c. Backward propagation d. Update parameters (using parameters, and grads from backprop) 4. Use trained parameters to predict labelsLet's now implement those two models! 4 - Two-layer neural network**Question**: Use the helper functions you have implemented in the previous assignment to build a 2-layer neural network with the following structure: *LINEAR -> RELU -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:```pythondef initialize_parameters(n_x, n_h, n_y): ... return parameters def linear_activation_forward(A_prev, W, b, activation): ... return A, cachedef compute_cost(AL, Y): ... return costdef linear_activation_backward(dA, cache, activation): ... return dA_prev, dW, dbdef update_parameters(parameters, grads, learning_rate): ... return parameters``` ###Code ### CONSTANTS DEFINING THE MODEL #### n_x = 12288 # num_px * num_px * 3 n_h = 7 n_y = 1 layers_dims = (n_x, n_h, n_y) # GRADED FUNCTION: two_layer_model def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False): """ Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (n_x, number of examples) Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples) layers_dims -- dimensions of the layers (n_x, n_h, n_y) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- If set to True, this will print the cost every 100 iterations Returns: parameters -- a dictionary containing W1, W2, b1, and b2 """ np.random.seed(1) grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples (n_x, n_h, n_y) = layers_dims # Initialize parameters dictionary, by calling one of the functions you'd previously implemented ### START CODE HERE ### (โ‰ˆ 1 line of code) parameters = initialize_parameters(n_x=n_x, n_h=n_h, n_y=n_y) ### END CODE HERE ### # Get W1, b1, W2 and b2 from the dictionary parameters. W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2". ### START CODE HERE ### (โ‰ˆ 2 lines of code) A1, cache1 = linear_activation_forward(A_prev=X, activation="relu", b=b1, W=W1) A2, cache2 = linear_activation_forward(A_prev=A1, activation="sigmoid", b=b2, W=W2) ### END CODE HERE ### # Compute cost ### START CODE HERE ### (โ‰ˆ 1 line of code) cost = compute_cost(AL=A2, Y=Y) ### END CODE HERE ### # Initializing backward propagation dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2)) # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1". ### START CODE HERE ### (โ‰ˆ 2 lines of code) dA1, dW2, db2 = linear_activation_backward(dA=dA2, cache=cache2, activation="sigmoid") dA0, dW1, db1 = linear_activation_backward(dA=dA1, cache=cache1, activation="relu") ### END CODE HERE ### # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2 grads['dW1'] = dW1 grads['db1'] = db1 grads['dW2'] = dW2 grads['db2'] = db2 # Update parameters. ### START CODE HERE ### (approx. 1 line of code) parameters = update_parameters(parameters=parameters, grads=grads, learning_rate=learning_rate) ### END CODE HERE ### # Retrieve W1, b1, W2, b2 from parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Print the cost every 100 training example if print_cost and i % 100 == 0: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown Run the cell below to train your parameters. See if your model runs. The cost should be decreasing. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square (โฌ›) on the upper bar of the notebook to stop the cell and try to find your error. ###Code parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True) ###Output Cost after iteration 0: 0.6930497356599888 Cost after iteration 100: 0.6464320953428849 Cost after iteration 200: 0.6325140647912677 Cost after iteration 300: 0.6015024920354665 Cost after iteration 400: 0.5601966311605747 Cost after iteration 500: 0.5158304772764729 Cost after iteration 600: 0.47549013139433255 Cost after iteration 700: 0.43391631512257495 Cost after iteration 800: 0.400797753620389 Cost after iteration 900: 0.3580705011323798 Cost after iteration 1000: 0.3394281538366411 Cost after iteration 1100: 0.3052753636196264 Cost after iteration 1200: 0.2749137728213018 Cost after iteration 1300: 0.24681768210614854 Cost after iteration 1400: 0.19850735037466094 Cost after iteration 1500: 0.17448318112556666 Cost after iteration 1600: 0.17080762978096128 Cost after iteration 1700: 0.11306524562164724 Cost after iteration 1800: 0.09629426845937152 Cost after iteration 1900: 0.08342617959726856 Cost after iteration 2000: 0.07439078704319078 Cost after iteration 2100: 0.06630748132267927 Cost after iteration 2200: 0.05919329501038164 Cost after iteration 2300: 0.05336140348560553 Cost after iteration 2400: 0.048554785628770115 ###Markdown **Expected Output**: **Cost after iteration 0** 0.6930497356599888 **Cost after iteration 100** 0.6464320953428849 **...** ... **Cost after iteration 2400** 0.048554785628770226 Good thing you built a vectorized implementation! Otherwise it might have taken 10 times longer to train this.Now, you can use the trained parameters to classify images from the dataset. To see your predictions on the training and test sets, run the cell below. ###Code predictions_train = predict(train_x, train_y, parameters) ###Output Accuracy: 1.0 ###Markdown **Expected Output**: **Accuracy** 1.0 ###Code predictions_test = predict(test_x, test_y, parameters) ###Output Accuracy: 0.72 ###Markdown **Expected Output**: **Accuracy** 0.72 **Note**: You may notice that running the model on fewer iterations (say 1500) gives better accuracy on the test set. This is called "early stopping" and we will talk about it in the next course. Early stopping is a way to prevent overfitting. Congratulations! It seems that your 2-layer neural network has better performance (72%) than the logistic regression implementation (70%, assignment week 2). Let's see if you can do even better with an $L$-layer model. 5 - L-layer Neural Network**Question**: Use the helper functions you have implemented previously to build an $L$-layer neural network with the following structure: *[LINEAR -> RELU]$\times$(L-1) -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:```pythondef initialize_parameters_deep(layers_dims): ... return parameters def L_model_forward(X, parameters): ... return AL, cachesdef compute_cost(AL, Y): ... return costdef L_model_backward(AL, Y, caches): ... return gradsdef update_parameters(parameters, grads, learning_rate): ... return parameters``` ###Code ### CONSTANTS ### layers_dims = [12288, 20, 7, 5, 1] # 4-layer model # GRADED FUNCTION: L_layer_model def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009 """ Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID. Arguments: X -- data, numpy array of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- list containing the input size and each layer size, of length (number of layers + 1). learning_rate -- learning rate of the gradient descent update rule num_iterations -- number of iterations of the optimization loop print_cost -- if True, it prints the cost every 100 steps Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(1) costs = [] # keep track of cost # Parameters initialization. (โ‰ˆ 1 line of code) ### START CODE HERE ### parameters = initialize_parameters_deep(layer_dims=layers_dims) ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID. ### START CODE HERE ### (โ‰ˆ 1 line of code) AL, caches = L_model_forward(X=X, parameters=parameters) ### END CODE HERE ### # Compute cost. ### START CODE HERE ### (โ‰ˆ 1 line of code) cost = compute_cost(AL=AL, Y=Y) ### END CODE HERE ### # Backward propagation. ### START CODE HERE ### (โ‰ˆ 1 line of code) grads = L_model_backward(AL=AL, Y=Y, caches=caches) ### END CODE HERE ### # Update parameters. ### START CODE HERE ### (โ‰ˆ 1 line of code) parameters = update_parameters(grads=grads, parameters=parameters, learning_rate=learning_rate) ### END CODE HERE ### # Print the cost every 100 training example if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown You will now train the model as a 4-layer neural network. Run the cell below to train your model. The cost should decrease on every iteration. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square (โฌ›) on the upper bar of the notebook to stop the cell and try to find your error. ###Code parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True) ###Output Cost after iteration 0: 0.771749 Cost after iteration 100: 0.672053 Cost after iteration 200: 0.648263 Cost after iteration 300: 0.611507 Cost after iteration 400: 0.567047 Cost after iteration 500: 0.540138 Cost after iteration 600: 0.527930 Cost after iteration 700: 0.465477 Cost after iteration 800: 0.369126 Cost after iteration 900: 0.391747 Cost after iteration 1000: 0.315187 Cost after iteration 1100: 0.272700 Cost after iteration 1200: 0.237419 Cost after iteration 1300: 0.199601 Cost after iteration 1400: 0.189263 Cost after iteration 1500: 0.161189 Cost after iteration 1600: 0.148214 Cost after iteration 1700: 0.137775 Cost after iteration 1800: 0.129740 Cost after iteration 1900: 0.121225 Cost after iteration 2000: 0.113821 Cost after iteration 2100: 0.107839 Cost after iteration 2200: 0.102855 Cost after iteration 2300: 0.100897 Cost after iteration 2400: 0.092878 ###Markdown **Expected Output**: **Cost after iteration 0** 0.771749 **Cost after iteration 100** 0.672053 **...** ... **Cost after iteration 2400** 0.092878 ###Code pred_train = predict(train_x, train_y, parameters) ###Output Accuracy: 0.985645933014 ###Markdown **Train Accuracy** 0.985645933014 ###Code pred_test = predict(test_x, test_y, parameters) ###Output Accuracy: 0.8 ###Markdown **Expected Output**: **Test Accuracy** 0.8 Congrats! It seems that your 4-layer neural network has better performance (80%) than your 2-layer neural network (72%) on the same test set. This is good performance for this task. Nice job! Though in the next course on "Improving deep neural networks" you will learn how to obtain even higher accuracy by systematically searching for better hyperparameters (learning_rate, layers_dims, num_iterations, and others you'll also learn in the next course). 6) Results AnalysisFirst, let's take a look at some images the L-layer model labeled incorrectly. This will show a few mislabeled images. ###Code print_mislabeled_images(classes, test_x, test_y, pred_test) ###Output _____no_output_____ ###Markdown **A few types of images the model tends to do poorly on include:** - Cat body in an unusual position- Cat appears against a background of a similar color- Unusual cat color and species- Camera Angle- Brightness of the picture- Scale variation (cat is very large or small in image) 7) Test with your own image (optional/ungraded exercise) Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Change your image's name in the following code 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)! ###Code ## START CODE HERE ## my_image = "my_image.jpg" # change this to the name of your image file my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat) ## END CODE HERE ## fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1)) my_image = my_image/255. my_predicted_image = predict(my_image, my_label_y, parameters) plt.imshow(image) print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.") ###Output _____no_output_____
master/convteo.ipynb
###Markdown Demonstration of Convolution TheoremIllustrate the discrete convolution theorem.F indicates Fourier transform operator and F{f} and F{g} are the fourier transform of "f" and "g" so we have:$$ F\left \{ f * g \right \} = F\left \{ f \right \} \cdot F\left \{ g \right \} $$$$ F(f\cdot g) = F\left \{ f \right \} * F\left \{ g \right \} $$ Importing ###Code %matplotlib inline import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt import sys,os ea979path = os.path.abspath('../../') if ea979path not in sys.path: sys.path.append(ea979path) import ea979.src as ia from numpy.fft import fft2 from numpy.fft import ifft2 ###Output _____no_output_____ ###Markdown Numeric sample ###Code fr = np.linspace(-1,1,6) f = np.array([fr,2*fr,fr,fr]) print(f) hh = np.array([-1,0,+1]) h = np.array([hh,2*hh,hh]) print(h) g = ia.pconv(f,h) print(g) ###Output [[ 6.4 6.4 -3.2 -3.2 -3.2 -3.2] [ 8. 8. -4. -4. -4. -4. ] [ 9.6 9.6 -4.8 -4.8 -4.8 -4.8] [ 8. 8. -4. -4. -4. -4. ]] ###Markdown See that f and h are periodic images and the period is (H,W) that is the shape of f.At the following code, the F and H need to be the same shape ###Code #Deixar o h (3,3) com o mesmo shape de f (4,6) aux = np.zeros(f.shape) r,c = h.shape aux[:r,:c] = h F = fft2(f) H = fft2(aux) G = F * H gg = ifft2(G) print("Result gg: \n",np.around(gg)) ###Output Result gg: [[ 6.-0.j 6.-0.j -3.-0.j -3.-0.j -3.+0.j -3.-0.j] [ 8.-0.j 8.-0.j -4.-0.j -4.-0.j -4.+0.j -4.-0.j] [ 10.-0.j 10.-0.j -5.-0.j -5.-0.j -5.+0.j -5.-0.j] [ 8.-0.j 8.-0.j -4.-0.j -4.-0.j -4.+0.j -4.-0.j]] ###Markdown gg and g need to be equal: ###Code print('The discrete convolution theorem worked?', np.allclose(gg.real,g)) ###Output The discrete convolution theorem worked? True ###Markdown Using an image to illustrate the discrete convolution theoremSee the original image (keyb,tif) and h ###Code f = mpimg.imread('../data/keyb.tif') plt.imshow(f,cmap='gray'); plt.title('Original') plt.colorbar() plt.show() hh = np.array([-1,0,+1]) h = np.array([hh,2*hh,hh]) print(h) ###Output [[-1 0 1] [-2 0 2] [-1 0 1]] ###Markdown Convolution in frequency domain: ###Code aux = np.zeros(f.shape) r,c = h.shape aux[:r,:c] = h F = fft2(f) H = fft2(aux) x,y = f.shape plt.figure(1) plt.imshow(np.log(np.abs(ia.ptrans(F,(x//2,y//2))+1)),cmap='gray') plt.title('DFT of f') plt.colorbar() plt.figure(2) plt.imshow(np.log(np.abs(ia.ptrans(H,(x//2,y//2))+1)),cmap='gray') plt.title('DFT of h') plt.colorbar() G = F * H plt.figure(3) plt.imshow(np.log(np.abs(ia.ptrans(G,(x//2,y//2))+1)),cmap='gray') plt.title('F * H') plt.colorbar() gg = ifft2(G) plt.figure(4) plt.imshow(gg.real.astype(np.float),cmap='gray'); plt.title('Convolution in frequency domain') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown Convolution in space domain ###Code g = ia.pconv(f,h) plt.imshow(g.real.astype(np.float),cmap='gray'); plt.title('Convolution in space domain') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown The convolution in frequency domain and space domain need to be equals ###Code print('The discrete convolution theorem worked?', np.allclose(gg.real,g)) ###Output The discrete convolution theorem worked? True ###Markdown Demonstration of Convolution TheoremIllustrate the discrete convolution theorem.F indicates Fourier transform operator and F{f} and F{g} are the fourier transform of "f" and "g" so we have:$$ F\left \{ f * g \right \} = F\left \{ f \right \} \cdot F\left \{ g \right \} $$$$ F(f\cdot g) = F\left \{ f \right \} * F\left \{ g \right \} $$ Importing ###Code %matplotlib inline import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt import sys,os ia898path = os.path.abspath('/etc/jupyterhub/ia898_1s2017/') if ia898path not in sys.path: sys.path.append(ia898path) import ia898.src as ia from numpy.fft import fft2 from numpy.fft import ifft2 ###Output _____no_output_____ ###Markdown Numeric sample ###Code fr = np.linspace(-1,1,6) f = np.array([fr,2*fr,fr,fr]) print(f) hh = np.array([-1,0,+1]) h = np.array([hh,2*hh,hh]) print(h) g = ia.pconv(f,h) print(g) ###Output [[ 6.4 6.4 -3.2 -3.2 -3.2 -3.2] [ 8. 8. -4. -4. -4. -4. ] [ 9.6 9.6 -4.8 -4.8 -4.8 -4.8] [ 8. 8. -4. -4. -4. -4. ]] ###Markdown See that f and h are periodic images and the period is (H,W) that is the shape of f.At the following code, the F and H need to be the same shape ###Code #Deixar o h (3,3) com o mesmo shape de f (4,6) aux = np.zeros(f.shape) r,c = h.shape aux[:r,:c] = h F = fft2(f) H = fft2(aux) G = F * H gg = ifft2(G) print("Result gg: \n",np.around(gg)) ###Output Result gg: [[ 6.-0.j 6.-0.j -3.-0.j -3.-0.j -3.+0.j -3.-0.j] [ 8.-0.j 8.-0.j -4.-0.j -4.-0.j -4.+0.j -4.-0.j] [ 10.-0.j 10.-0.j -5.-0.j -5.-0.j -5.+0.j -5.-0.j] [ 8.-0.j 8.-0.j -4.-0.j -4.-0.j -4.+0.j -4.-0.j]] ###Markdown gg and g need to be equal: ###Code print('The discrete convolution theorem worked?', np.allclose(gg.real,g)) ###Output The discrete convolution theorem worked? True ###Markdown Using an image to illustrate the discrete convolution theoremSee the original image (keyb,tif) and h ###Code f = mpimg.imread('/home/lotufo/ia898/data/keyb.tif') plt.imshow(f,cmap='gray'); plt.title('Original') plt.colorbar() plt.show() hh = np.array([-1,0,+1]) h = np.array([hh,2*hh,hh]) print(h) ###Output [[-1 0 1] [-2 0 2] [-1 0 1]] ###Markdown Convolution in frequency domain: ###Code aux = np.zeros(f.shape) r,c = h.shape aux[:r,:c] = h F = fft2(f) H = fft2(aux) x,y = f.shape plt.figure(1) plt.imshow(np.log(np.abs(ia.ptrans(F,(x//2,y//2))+1)),cmap='gray') plt.title('DFT of f') plt.colorbar() plt.figure(2) plt.imshow(np.log(np.abs(ia.ptrans(H,(x//2,y//2))+1)),cmap='gray') plt.title('DFT of h') plt.colorbar() G = F * H plt.figure(3) plt.imshow(np.log(np.abs(ia.ptrans(G,(x//2,y//2))+1)),cmap='gray') plt.title('F * H') plt.colorbar() gg = ifft2(G) plt.figure(4) plt.imshow(gg.real.astype(np.float),cmap='gray'); plt.title('Convolution in frequency domain') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown Convolution in space domain ###Code g = ia.pconv(f,h) plt.imshow(g.real.astype(np.float),cmap='gray'); plt.title('Convolution in space domain') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown The convolution in frequency domain and space domain need to be equals ###Code print('The discrete convolution theorem worked?', np.allclose(gg.real,g)) ###Output The discrete convolution theorem worked? True
code/basics_and_cnn/9 mnist mlp with best model save.ipynb
###Markdown Multi Layer Perceptron * split train validation and test sets* design model* save best model* test best model libraries ###Code import torch import numpy as np from torchvision import datasets # to load mnist dataset import torchvision.transforms as transforms # dataset transformations such as totensor from torch.utils.data.sampler import SubsetRandomSampler # random sampler ###Output _____no_output_____ ###Markdown load, transform and split data sets ###Code num_workers = 0 batch_size = 64 validation_size = 0.3 # data transformations. In this instance, test and train will have the same transformation which is not the case most often transform = transforms.ToTensor() # train and test sets train_set = datasets.MNIST(root='../data',train=True,download=True, transform=transform) test_set = datasets.MNIST(root='../data',train=False,download=False, transform=transform) num_train = int(np.floor(len(train_set)*(1-validation_size))) num_valid = int(np.floor(len(train_set)*validation_size)) print(num_valid,num_train) ids = np.arange(len(train_set)) np.random.shuffle(ids) # define samplers: train_ids, validation_ids = ids[:num_train], ids[num_train:] print(len(train_ids),len(validation_ids)) train_sampler = SubsetRandomSampler(train_ids) valid_sampler = SubsetRandomSampler(validation_ids) # data loader train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers) valid_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, num_workers=num_workers) ###Output 18000 42000 42000 18000 ###Markdown plot samples ###Code import matplotlib.pyplot as plt %matplotlib inline dataiter = iter(train_loader) images, labels = dataiter.next() # get the batch images = images.numpy() # convert to numpy fig = plt.figure(figsize = (25,4)) for i in np.arange(20): ax = fig.add_subplot(2, 20/2, i+1, xticks=[], yticks=[]) ax.imshow(np.squeeze(images[i]),cmap='gray') ax.set_title(labels[i].item()) ###Output _____no_output_____ ###Markdown Network ###Code import torch.nn as nn import torch.nn.functional as F class Network(nn.Module): def __init__(self,batch_size,flat_image_size): super(Network,self).__init__() self.batch_size = batch_size self.flat_image_size = flat_image_size #input layer self.fc1 = nn.Linear(28*28,128) # hidden layers self.fc2 = nn.Linear(128,64) self.fc3 = nn.Linear(64,32) self.classifier = nn.Linear(32,10) # dropout self.dropout = nn.Dropout(p=0.2) def forward(self,x): #reshape the image x = x.view(-1,self.flat_image_size) # network x = F.relu(self.fc1(x)) #second layer x = F.relu(self.fc2(x)) x = self.dropout(x) #third layer x = F.relu(self.fc3(x)) x = self.dropout(x) # output layer x = F.log_softmax(self.classifier(x), dim=1) return x model = Network(64, 28*28) print(model) ###Output Network( (fc1): Linear(in_features=784, out_features=128, bias=True) (fc2): Linear(in_features=128, out_features=64, bias=True) (fc3): Linear(in_features=64, out_features=32, bias=True) (classifier): Linear(in_features=32, out_features=10, bias=True) (dropout): Dropout(p=0.2, inplace=False) ) ###Markdown loss and optimiser ###Code from torch import optim criterion = nn.NLLLoss() # Loss function Negative log likelyhood loss optimizer = optim.Adam(model.parameters(), lr=0.01) # learning rate 0.003 def accuracy(y_hat_tensor,label_tensor): ''' args: y_hat_tensor tensor: direct output of the model. label_tensor tensor: actual labels of the given items returns: accuracy float accurate float: number of accurately labeled items total_samples float : number of samples investigated ''' y_hat_tensor = torch.exp(y_hat_tensor) values, pred_labels = y_hat_tensor.max(1) # works like numpy argmax plus returns the values of the cells. accurate = sum(1 for a, b in zip(pred_labels.numpy(), label_tensor.numpy()) if a == b) total_samples = len(label_tensor) accuracy = accurate/total_samples return accuracy,accurate,total_samples epochs = 10 epoch = 0 valid_loss_min = np.Inf train_losses = [] valid_losses = [] for e in range(epochs): running_loss = 0 total_accurate = 0 total_samples = 0 for images, labels in train_loader: # Training pass #print(images.shape) output = model(images) # directly passes the images into forward method loss = criterion(output, labels) optimizer.zero_grad() # clear gradients loss.backward() # compute gradients optimizer.step() # update weights batch_train_accuracy,accurate,total_sample = accuracy(output,labels) running_loss += loss.item() total_accurate += accurate total_samples += total_sample #print(total_accurate) else: with torch.no_grad(): model.eval() valid_loss = 0 total_samples_test = 0 total_accurate_test = 0 for images, labels in valid_loader: output = model(images) valid_loss += criterion(output, labels) batch_test_accuracy,accurate_test,total_sample_test = accuracy(output,labels) total_accurate_test += accurate_test total_samples_test += total_sample_test model.train() train_losses.append(running_loss/len(train_loader)) valid_losses.append(valid_loss/len(valid_loader)) print('''---------- epoch : {} -----------'''.format(epoch+1)) print(''' Training Accuracy = {} - Training Loss = {}'''.format(total_accurate/total_samples,running_loss/len(train_loader))) print(''' Test Accuracy = {} - Test Loss = {}'''.format(total_accurate_test/total_samples_test,valid_loss/len(valid_loader))) epoch += 1 print(valid_loss/len(valid_loader)) print(valid_loss_min) if valid_loss/len(valid_loader)<valid_loss_min: valid_loss_min = valid_loss/len(valid_loader) print('validation loss decreased! Saving model..') torch.save(model.state_dict(), '../models/model_9.pt') ###Output ---------- epoch : 1 ----------- Training Accuracy = 0.8858571428571429 - Training Loss = 0.4003699090915819 Test Accuracy = 0.9433888888888889 - Test Loss = 0.2006707787513733 tensor(0.2007) inf validation loss decreased! Saving model.. ---------- epoch : 2 ----------- Training Accuracy = 0.9413571428571429 - Training Loss = 0.23330283287630518 Test Accuracy = 0.9547222222222222 - Test Loss = 0.1671222746372223 tensor(0.1671) tensor(0.2007) validation loss decreased! Saving model.. ---------- epoch : 3 ----------- Training Accuracy = 0.9457857142857143 - Training Loss = 0.2083977587064629 Test Accuracy = 0.9576666666666667 - Test Loss = 0.1852959543466568 tensor(0.1853) tensor(0.1671) ---------- epoch : 4 ----------- Training Accuracy = 0.9511904761904761 - Training Loss = 0.19451083942023042 Test Accuracy = 0.9594444444444444 - Test Loss = 0.17316097021102905 tensor(0.1732) tensor(0.1671) ---------- epoch : 5 ----------- Training Accuracy = 0.9571190476190476 - Training Loss = 0.17043421232237946 Test Accuracy = 0.9540555555555555 - Test Loss = 0.20067720115184784 tensor(0.2007) tensor(0.1671) ---------- epoch : 6 ----------- Training Accuracy = 0.9557619047619048 - Training Loss = 0.17273564156020113 Test Accuracy = 0.9566666666666667 - Test Loss = 0.19843901693820953 tensor(0.1984) tensor(0.1671) ---------- epoch : 7 ----------- Training Accuracy = 0.9575476190476191 - Training Loss = 0.1677878784303535 Test Accuracy = 0.9573333333333334 - Test Loss = 0.2368217408657074 tensor(0.2368) tensor(0.1671) ---------- epoch : 8 ----------- Training Accuracy = 0.9625476190476191 - Training Loss = 0.15237614573521718 Test Accuracy = 0.9652777777777778 - Test Loss = 0.1935972422361374 tensor(0.1936) tensor(0.1671) ---------- epoch : 9 ----------- Training Accuracy = 0.9627857142857142 - Training Loss = 0.15491290535822372 Test Accuracy = 0.9646666666666667 - Test Loss = 0.20754936337471008 tensor(0.2075) tensor(0.1671) ---------- epoch : 10 ----------- Training Accuracy = 0.963047619047619 - Training Loss = 0.14900076282501243 Test Accuracy = 0.9531111111111111 - Test Loss = 0.23505236208438873 tensor(0.2351) tensor(0.1671) ###Markdown load the best model ###Code model.load_state_dict(torch.load('../models/model_9.pt')) ###Output _____no_output_____ ###Markdown Test ###Code with torch.no_grad(): model.eval() test_loss = 0 total_samples_test = 0 total_accurate_test = 0 for images, labels in test_loader: output = model(images) test_loss += criterion(output, labels) batch_test_accuracy,accurate_test,total_sample_test = accuracy(output,labels) total_accurate_test += accurate_test total_samples_test += total_sample_test loss = test_loss/len(test_loader) print(loss) print(total_accurate_test/total_samples_test) ###Output 0.9565
ch02_basics/Concept09_queue.ipynb
###Markdown Ch `01`: Concept `09` Using Queues If you have a lot of training data, you probably don't want to load it all into memory at once. The QueueRunner in TensorFlow is a tool to efficiently employ a queue data-structure in a multi-threaded way. ###Code import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown We will be running multiple threads, so let's figure out the number of CPUs: ###Code import multiprocessing NUM_THREADS = multiprocessing.cpu_count() ###Output _____no_output_____ ###Markdown Generate some fake data to work with: ###Code xs = np.random.randn(100, 3) ys = np.random.randint(0, 2, size=100) ###Output _____no_output_____ ###Markdown Here's a couple concrete examples of our data: ###Code xs_and_ys = zip(xs, ys) for _ in range(5): x, y = next(xs_and_ys) print('Input {} ---> Output {}'.format(x, y)) ###Output Input [ 1.46034759 0.71462742 0.73288402] ---> Output 0 Input [ 1.1537654 -0.09128405 0.08036941] ---> Output 1 Input [-0.61164559 -0.19188485 0.06064167] ---> Output 0 Input [ 0.1007337 0.34815357 0.24346031] ---> Output 0 Input [-1.25581117 1.44738085 1.15035257] ---> Output 0 ###Markdown Define a queue: ###Code queue = tf.FIFOQueue(capacity=1000, dtypes=[tf.float32, tf.int32]) ###Output _____no_output_____ ###Markdown Set up the enqueue and dequeue ops: ###Code enqueue_op = queue.enqueue_many([xs, ys]) x_op, y_op = queue.dequeue() ###Output _____no_output_____ ###Markdown Define a QueueRunner: ###Code qr = tf.train.QueueRunner(queue, [enqueue_op] * 4) ###Output _____no_output_____ ###Markdown Now that all variables and ops have been defined, let's get started with a session: ###Code sess = tf.InteractiveSession() ###Output _____no_output_____ ###Markdown Create threads for the QueueRunner: ###Code coord = tf.train.Coordinator() enqueue_threads = qr.create_threads(sess, coord=coord, start=True) ###Output _____no_output_____ ###Markdown Test out dequeueing: ###Code for _ in range(100): if coord.should_stop(): break x, y = sess.run([x_op, y_op]) print(x, y) coord.request_stop() coord.join(enqueue_threads) ###Output [ 1.46034753 0.71462744 0.73288405] 0 [ 1.15376544 -0.09128405 0.08036941] 1 [-0.61164558 -0.19188486 0.06064167] 0 [ 0.1007337 0.34815356 0.24346031] 0 [-1.25581121 1.4473809 1.1503526 ] 0 [ 0.60369009 -0.87942719 -1.37121975] 1 [ 1.30641925 1.55316997 1.01789773] 0 [ 0.0575242 0.59463078 0.47600508] 1 [-1.22782397 -0.86792755 1.37459588] 1 [-0.27896652 0.51645088 1.36873603] 0 [-0.34542757 0.79360306 0.32000065] 0 [-0.46792462 -0.31817994 0.91739392] 0 [ 0.24787657 0.83848852 1.16125166] 0 [-0.46220389 -0.09412029 -0.9981451 ] 1 [ 0.06739734 -1.08405316 -0.3582162 ] 1 [-1.2644819 -0.27479929 1.15882337] 1 [-0.68015367 -0.10199564 1.4274267 ] 0 [-0.48884565 -0.39484504 0.1496018 ] 1 [ 1.48414564 -0.43943462 -0.12646018] 0 [ 0.49450573 0.42091215 -0.17693481] 0 [ 0.02265234 0.99832052 0.26808155] 1 [-0.94086462 1.67000341 0.92434174] 1 [-0.50961769 -0.39044595 -0.5737586 ] 0 [-0.95702702 0.61196166 -0.86487901] 1 [-0.6125344 -0.30916786 -1.06602347] 1 [-1.91383719 0.26860073 0.50380921] 1 [-0.14638679 0.11614402 1.36613548] 1 [-0.56817967 1.4221288 0.99365205] 0 [-0.04597072 0.43875724 -0.4809106 ] 0 [-0.2000681 -0.2384561 0.06599616] 0 [ 0.5862993 0.85386461 0.82285357] 1 [ 1.64371336 -0.46838599 0.22755136] 0 [ 0.21683638 -0.96399426 1.78278649] 1 [ 0.03778305 2.49208736 0.07467758] 0 [-1.48958826 -0.11699235 0.98281074] 1 [-0.27623582 -0.41658697 -0.89554274] 0 [-1.64742625 1.83507264 -0.76936585] 0 [-1.5386405 0.14272654 0.17047048] 1 [ 0.63654041 1.75451732 -1.14198494] 0 [-0.57061732 0.11121389 1.39394116] 1 [ 1.94736981 -0.36588097 0.54801333] 1 [-0.56976408 -1.36990237 -0.9922803 ] 1 [-2.47653961 1.19603479 -0.3038739 ] 0 [-0.76740891 -0.49611184 0.47167206] 0 [ 1.62004089 0.13268068 0.28845155] 0 [-0.91749012 -0.30151108 -0.08271972] 0 [-0.21053326 -0.16114895 -0.52424961] 1 [ 0.19968066 0.2387522 2.0314014 ] 0 [-0.29072183 0.53720349 -0.38972732] 0 [-0.85891634 -0.26684314 -1.91741192] 1 [-2.07077003 1.97488022 -0.92741841] 0 [ 2.37270904 2.19385314 -0.29643178] 0 [-0.18054648 -0.1651988 1.70858753] 1 [-0.27851281 -0.13095042 0.30613536] 1 [-0.13653868 -0.14431253 1.3018136 ] 1 [-1.79938364 0.26698261 -0.3283855 ] 0 [-0.43491617 -0.8737886 -0.48871836] 1 [-0.27275884 0.08004636 -0.34334385] 0 [-0.06538768 -0.47280514 -1.82918119] 0 [ 1.72329473 0.6359638 1.53474641] 0 [ 0.88200653 0.87051851 0.17676826] 1 [-2.22127795 -0.39812142 0.69118947] 0 [-0.90146214 0.23153968 -1.07890677] 0 [-0.66513097 -0.74897975 -1.9886812 ] 0 [ 0.95217085 -0.1361241 -0.81558466] 1 [ 0.97319698 0.10349847 1.78010297] 0 [ 0.54321396 1.10134006 -1.03641176] 1 [ 0.46445891 0.56387979 0.10383373] 0 [ 0.22231635 -1.20880091 0.20125042] 1 [ 0.56338882 -0.76195502 -0.33035895] 0 [ 0.13885871 0.62347603 0.32560909] 0 [-0.63413048 0.19185983 1.65251637] 1 [ 0.81965917 -0.14427175 -0.9943186 ] 0 [ 1.98786604 -1.38118052 -0.34296793] 0 [-0.49028778 -0.30242845 0.81718981] 0 [ 0.48434621 -1.3200016 -0.32307461] 0 [-0.91041267 -0.34315997 0.71205115] 0 [ 0.61457998 -0.85814965 0.6939835 ] 0 [-0.40195578 -1.11846507 -0.19713871] 1 [-0.47889531 -0.75685191 1.68955612] 1 [ 1.51117146 -2.23529124 1.13895822] 0 [-0.00831293 -0.50950557 0.08648733] 1 [-0.47011089 1.04781067 -0.05893843] 1 [-0.34855339 -0.5695411 -0.12196264] 1 [-0.47251806 -0.49479187 0.27609721] 0 [-2.04546118 -0.16185458 1.42348552] 0 [-0.67136103 -0.16650072 0.3609505 ] 0 [ 1.22566068 1.18665588 -1.87292075] 0 [-0.80474126 -0.1114784 0.00531922] 1 [ 0.62691861 -3.26328206 -0.39003551] 0 [-0.77470082 -1.23692167 -1.55790484] 0 [-0.49005547 -0.19645052 -0.21566501] 1 [-0.44095206 -0.13273652 -0.59810853] 0 [-0.9750855 -0.46043435 0.06064714] 1 [-0.181191 -0.12452056 0.23064452] 1 [-0.34818363 -1.13179028 1.20628965] 0 [-1.58196092 -1.3506341 -2.05767131] 1 [-1.66225421 -0.43541616 1.55258 ] 0 [-0.12949325 -0.15456693 0.04389611] 0 [ 0.24592777 0.11407969 -0.31221709] 1
hw4/t08902205.ipynb
###Markdown Graph Plotting ###Code df_plot["Date"] = df_plot['Date'].astype('datetime64[ns]') df_plot["Date"] = df_plot["Date"].map(mdates.date2num) df_plot.head() ###Output _____no_output_____ ###Markdown Candlestick chart with 2 moving average lines ###Code f, ax = plt.subplots() # f.hold(True) f.set_size_inches((12.8,9.6)) candlestick_ohlc(ax, df_plot.values, width=5, colorup='g', colordown='r') ma_10_plot = MA(df_plot_ma_10["Close"], timeperiod=10, matype=0) ma_30_plot = MA(df_plot_ma_30["Close"], timeperiod=30, matype=0) ma_10_plot = ma_10_plot.dropna(axis=0) ma_30_plot = ma_30_plot.dropna(axis=0) ax.xaxis_date() ax.plot(df_plot["Date"],ma_10_plot, label="MA-10") ax.plot(df_plot["Date"],ma_30_plot, label="MA-30") ax.legend() plt.show() ###Output C:\Users\TaiT_\Anaconda3\lib\site-packages\pandas\plotting\_matplotlib\converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters. To register the converters: >>> from pandas.plotting import register_matplotlib_converters >>> register_matplotlib_converters() warnings.warn(msg, FutureWarning) ###Markdown K/D Line ###Code k_plot, d_plot = STOCH(df_plot_kd["High"], df_plot_kd["Low"], df_plot_kd["Close"],fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) k_plot = k_plot.dropna(axis=0) d_plot = d_plot.dropna(axis=0) plt.figure(figsize=[19.2,3.6]) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=30)) plt.plot(df_plot["Date"],k_plot, label="K") plt.plot(df_plot["Date"],d_plot, label="D") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Volume bar chart ###Code dates = df_plot["Date"] dates = np.asarray(dates) volume = df_plot["Volume"] volume = np.asarray(volume) pos = df_plot['Open']-df_plot['Close']>0 neg = df_plot['Open']-df_plot['Close']<0 plt.figure(figsize=(24,7.2)) plt.bar(dates[pos],volume[pos],color='green',width=0.7) plt.bar(dates[neg],volume[neg],color='red',width=0.7) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=30)) plt.show() ###Output _____no_output_____ ###Markdown Data preprocess Add technical analysis ###Code ma_10_train = MA(df_train["Close"], timeperiod=10, matype=0) ma_30_train = MA(df_train["Close"], timeperiod=30, matype=0) k_train, d_train = STOCH(df_train["High"], df_train["Low"], df_train["Close"],fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df_train["MA10"] = ma_10_train df_train["MA30"] = ma_30_train df_train["K"] = k_train df_train["D"] = d_train ma_10_validation = MA(df_validation["Close"], timeperiod=10, matype=0) ma_30_validation = MA(df_validation["Close"], timeperiod=30, matype=0) k_validation, d_validation = STOCH(df_validation["High"], df_validation["Low"], df_validation["Close"],fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df_validation["MA10"] = ma_10_validation df_validation["MA30"] = ma_30_validation df_validation["K"] = k_validation df_validation["D"] = d_validation df_validation.shape ###Output _____no_output_____ ###Markdown Drop dates and NA ###Code df_train = df_train.dropna(axis=0) df_train = df_train.drop(["Date"], axis=1) df_validation = df_validation.dropna(axis=0) df_validation["Date"] = df_validation["Date"].astype('datetime64[ns]') df_validation["Date"] = df_validation["Date"].map(mdates.date2num) validation_date = df_validation["Date"].copy() df_validation = df_validation.drop(["Date"], axis=1) df_validation.shape ###Output _____no_output_____ ###Markdown Normalize data ###Code def normalizeDataframe(data_frame): normalize_df = data_frame.copy() for column in normalize_df.columns: min_value = min(normalize_df[column]) max_value = max(normalize_df[column]) normalize_df[column] = (normalize_df[column] - min_value) / (max_value - min_value) return normalize_df df_train = normalizeDataframe(df_train) df_validation = normalizeDataframe(df_validation) df_validation.shape ###Output _____no_output_____ ###Markdown Prepare X_train, X_validation, y_train, y_validation for RNN ###Code data_train = df_train.values data_validation = df_validation.values X_train = [] y_train = [] X_validation = [] y_validation = [] for i in range(30,data_train.shape[0]): X_train.append(data_train[i-30:i]) y_train.append(data_train[i, 0]) for i in range(30, data_validation.shape[0]): X_validation.append(data_validation[i-30:i]) y_validation.append(data_validation[i,0]) X_train, y_train = np.array(X_train), np.array(y_train) X_validation, y_validation = np.array(X_validation), np.array(y_validation) X_train.shape # y_train.shape ###Output _____no_output_____ ###Markdown Building Models ###Code from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout, SimpleRNN, GRU from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping early_stopping = EarlyStopping(monitor="val_loss", mode="min", patience=8) def plotModelLoss(history): plt.figure(figsize=[9.6,7.2]) plt.plot(history["loss"]) plt.plot(history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("Epoch") plt.legend(["Train", "Validation"], loc="upper left") plt.show() def plotPrediction(model,name="Prediction by RNN"): y_pred = model.predict(X_validation) plt.figure(figsize=[19.2,14.4]) plt.plot(validation_date[30:], y_validation) plt.plot(validation_date[30:], y_pred) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y/%m/%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=30)) plt.gcf().autofmt_xdate() plt.title(name) plt.legend(["real", "predict"], loc="upper left") plt.show() ###Output _____no_output_____ ###Markdown Vanilla RNN ###Code regressor_RNN = Sequential() regressor_RNN.add(SimpleRNN(units = 32, activation = 'tanh', input_shape = (X_train.shape[1], X_train.shape[2]))) regressor_RNN.add(Dense(units = 1)) regressor_RNN.summary() checkpoint_RNN = ModelCheckpoint(filepath="best_params_RNN.hdf5", monitor="val_loss",verbose=1,save_best_only=True) regressor_RNN.compile(optimizer='adam', loss = 'mean_squared_error') # regressor_RNN.load_weights("best_params_RNN.hdf5") RNN_history = regressor_RNN.fit(X_train, y_train, epochs=256, batch_size=64, validation_data = (X_validation, y_validation),callbacks=[checkpoint_RNN, early_stopping]) plotModelLoss(RNN_history.history) plotPrediction(regressor_RNN) ###Output _____no_output_____ ###Markdown LSTM ###Code regressor_LSTM = Sequential() regressor_LSTM.add(LSTM(units = 32, activation = 'tanh', input_shape = (X_train.shape[1], X_train.shape[2]))) regressor_LSTM.add(Dense(units = 1)) regressor_LSTM.summary() checkpoint_LSTM = ModelCheckpoint(filepath="best_params_LSTM.hdf5", monitor="val_loss",verbose=1,save_best_only=True) regressor_LSTM.compile(optimizer='adam', loss = 'mean_squared_error') LSTM_history = regressor_LSTM.fit(X_train, y_train, epochs=256, batch_size=64, validation_data = (X_validation, y_validation),callbacks=[checkpoint_LSTM, early_stopping]) plotModelLoss(LSTM_history.history) plotPrediction(regressor_LSTM, name="Prediction by LSTM") ###Output _____no_output_____ ###Markdown GRU ###Code regressor_GRU = Sequential() regressor_GRU.add(GRU(units = 32, activation = 'tanh', input_shape = (X_train.shape[1], X_train.shape[2]))) regressor_GRU.add(Dense(units = 1)) regressor_GRU.summary() checkpoint_GRU = ModelCheckpoint(filepath="best_params_GRU.hdf5", monitor="val_loss",verbose=1,save_best_only=True) regressor_GRU.compile(optimizer='adam', loss = 'mean_squared_error') GRU_history = regressor_GRU.fit(X_train, y_train, epochs=256, batch_size=64, validation_data = (X_validation, y_validation),callbacks=[checkpoint_GRU, early_stopping]) plotModelLoss(GRU_history.history) plotPrediction(regressor_GRU, name="Prediction by GRU") ###Output _____no_output_____
_notebooks/2020-07-18-creating_meshes.ipynb
###Markdown Plotting surface in matplotlib > Simple notebook looking at meshes in matplotlib- toc:true- badges: true- comments: true- author: Pushkar G. Ghanekar- categories: [python, data-visualization, machine-learning] This is adapted from the following Tutorial: [Link](https://pundit.pratt.duke.edu/wiki/Python:Plotting_Surfaces) ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d %matplotlib inline %config InlineBackend.figure_format = 'retina' fig = plt.figure(1, clear=True) ax = fig.add_subplot(1,1,1, projection='3d') x = np.array([[1, 3], [2, 4]]) #Array format: [[a,b],[c,d]] -- a b are in row; c d are in row y = np.array([[5, 6], [7, 8]]) z = np.array([[9, 12], [10, 11]]) ax.plot_surface(x, y, z) ax.set(xlabel='x', ylabel='y', zlabel='z') fig.tight_layout() ###Output _____no_output_____ ###Markdown MeshgridMesh is important to create a surface since just looking at the x, y vector by themselves what you would look at is the diagonal of the matrix formed by combination of all the possible x values with y values. For the given x and y vector, every entry in x vector can have the entire y vector as a possible point. So it is important to generate an array which captures all these possible pairing. So using `mesh-grid` if `x-vector` is of dimensions M and `y-vector` is of dimensions N -- the final resulting matrix is NxM dimensions where every $n^{th}$ entry in `y` all the entries of `x` are added. Finally the ouput is given as `x` coordinate of that matrix and `y` coordinate of that matrix. Example: * $X$ : $\begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}$* $Y$ : $\begin{bmatrix} y_{1} & y_{2} \end{bmatrix}$Then resulting mesh would be: $$ X-Y-Mesh = \begin{bmatrix} x_{1}y_{1} & x_{2}y_{1} & x_{3}y_{1} \\ x_{1}y_{2} & x_{2}y_{2} & x_{3}y_{2} \end{bmatrix}$$$$ X-path = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & x_{3} \end{bmatrix}$$$$ X-path = \begin{bmatrix} y_{1} & y_{1} & y_{1} \\ y_{2} & y_{2} & y_{2} \end{bmatrix}$$ ###Code #Setting the bounds of the x and y axis x_axis_range = np.arange(-2,2.1,1) y_axis_range = np.arange(-4,4.1,1) #Make the meshgrid for the x and y (x,y) = np.meshgrid(x_axis_range, y_axis_range, sparse=True) z = x + y fig = plt.figure(1, clear=True) ax = fig.add_subplot(1,1,1, projection='3d') ax.plot_surface(x, y, z) fig.tight_layout() ###Output _____no_output_____ ###Markdown Plotting this 2D function: $$ z = e^{-\sqrt {x^2 + y^2}}cos(4x)cos(4y) $$ using the surface ###Code import matplotlib.cm as cm x_axis_bound = np.linspace(-1.8,1.8,100) y_axis_bound = np.linspace(-1.8,1.8,100) (x,y) = np.meshgrid(x_axis_bound, y_axis_bound, sparse=True) def f(x,y): return np.exp(-np.sqrt( x**2 + y**2 )) * np.cos(4*x) * np.cos(4*y) Z = f(x,y) fig = plt.figure(1, clear=True) ax = fig.add_subplot(1,1,1, projection='3d') ax.plot_surface(x, y, Z, cmap=cm.hot) ax.set_xlabel('x') ax.set_ylabel('y') fig.tight_layout() ###Output _____no_output_____
NHDPlus21_Into_SB_For_BIS/Reg15_NHDPlusV21_IntoSB_BIS.ipynb
###Markdown This python code builds ScienceBase items that house and describe specific versions of data files from the NHDPlusV2.1 that are being used in the Biogeographic Information System. Data were extracted from ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/ and stored within ScienceBase as attachments. Although reorganized, the files stored in the ScienceBase Items were not altered. In future iterations of this code we would like to avoid using local disk space and operations that may be dependent on a local operating system. ###Code import pysb import urllib import os import getpass import time import subprocess from zipfile import ZipFile import zipfile #Downloads Files of Interest, The next few steps should be done within memory when we get a chance but didn't find a complete workflow of methods that would get us where we needed to be in memory import urllib.request as ur ur.urlretrieve('ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Data/NHDPlusCO/NHDPlus15/NHDPlusV21_CO_15_NHDPLusAttributes_08.7z', 'NHDPlusV21_CO_15_NHDPLusAttributes_08.7z') ur.urlretrieve('ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Data/NHDPlusCO/NHDPlus15/NHDPlusV21_CO_15_NHDSnapshot_04.7z', 'NHDPlusV21_CO_15_NHDSnapshot_04.7z') ur.urlretrieve('ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Data/NHDPlusCO/NHDPlus15/NHDPlusV21_CO_15_NHDPlusCatchment_01.7z', 'NHDPlusV21_CO_15_NHDPlusCatchment_01.7z') #This code isn't currently doing anything in the SB item creation, but eventually something like this could be used to track the "last update" of the NHD file being harvested. import urllib.request with urllib.request.urlopen('ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Data/NHDPlusCO/NHDPlus15/') as response: html = response.read() print (html) #Unzips the 7z files. This may only run on windows? subprocess.call(r'"C:\Program Files\7-Zip\7z.exe" x ' + 'NHDPlusV21_CO_15_NHDPLusAttributes_08.7z' ) subprocess.call(r'"C:\Program Files\7-Zip\7z.exe" x ' + 'NHDPlusV21_CO_15_NHDSnapshot_04.7z' ) subprocess.call(r'"C:\Program Files\7-Zip\7z.exe" x ' + 'NHDPlusV21_CO_15_NHDPlusCatchment_01.7z' ) #Selects only the files we are using and zips them into 3 directories (using .zip). The three folders include Hydrography, NHDPlusAttributes, and Catchment dataTypes = ['Hydrography', 'NHDPlusAttributes', 'Catchment'] for fileType in dataTypes: z = ZipFile((fileType + '.zip'), 'w') if fileType == 'Hydrography': ZipFileList = ['NHDWaterbody.dbf','NHDWaterbody.prj','NHDWaterbody.shp','NHDWaterbody.shx','NHDFlowline.dbf','NHDFlowline.prj','NHDFlowline.shp','NHDFlowline.shx' ] for file in ZipFileList: procFile = ('NHDPlusCO/NHDPlus15/NHDSnapshot/Hydrography/' + file) z.write(procFile, file) elif fileType == 'NHDPlusAttributes': ZipFileList = ['elevslope.dbf','PlusFlow.dbf','PlusFlowLineVAA.dbf'] for file in ZipFileList: procFile = ('NHDPlusCO/NHDPlus15/NHDPlusAttributes/' + file) z.write(procFile, file) elif fileType == 'Catchment': target_dir = r'NHDPlusCO\NHDPlus15\NHDPlusCatchment' CatZip = ZipFile('Catchment.zip', 'w', zipfile.ZIP_DEFLATED) rootlen = len(target_dir) + 1 for base, dirs, files in os.walk(target_dir): for file in files: fn = os.path.join(base, file) CatZip.write(fn, fn[rootlen:]) #Create ScienceBase Item loginu=input("Username: ") #asks user for username sb = pysb.SbSession() sb.loginc(str(loginu)) time.sleep(2) ret = sb.upload_files_and_create_item(sb.get_my_items_id(), ['Catchment.zip', 'Hydrography.zip', 'NHDPlusAttributes.zip']) SbItem = ret['id'] print (SbItem) #Variables to populate the metadata in the SB Item #Acquisition Date import datetime dNow = datetime.datetime.now() AcqDate = dNow.strftime("%Y-%m-%d") #AcqDate = dNow.isoformat() UpdateItem = {'id': SbItem, 'title': 'NHDPlusV2.1 Processing Region 15; Files Used in the Biogeographic Information System', 'body': 'A subset of files from within processing region 15 of the NHDPlus Version 2.1. Although reorganized, the files within the attachments are unaltered from the NHDPlus Version 2.1 as they were acquired (see acquisition date listed within this metadata). This item links to python code used to generate the item.', 'purpose': 'This item is intended to preseve specific versions of files being used in the Biogeographic Information System.', 'dates': [{'type': 'Acquisition', 'dateString': AcqDate, 'label': 'Acquisition'}], 'webLinks': [{"type":"sourceCode","typeLabel":"Source Code","uri":"https://github.com/dwief-usgs/BCB_Ipython_Notebooks/blob/master/NHDPlus21_Into_SB_For_BIS/Reg15_NHDPlusV21_IntoSB_BIS.ipynb","rel":"related","title":"Python Code Used to Develop and Populate This SB Item","hidden":False},{"type":"webLink","typeLabel":"Web Link","uri":"http://www.horizon-systems.com/NHDPlus/NHDPlusV2_home.php","rel":"related","title":"Additional Information About the NHDPlusV2","hidden":False}], 'contacts': [{"name":"Horizon Systems","type":"Data Owner","contactType":"organization","onlineResource":"http://www.horizon-systems.com","organization":{},"primaryLocation":{"streetAddress":{},"mailAddress":{}}},{"name":"Daniel J Wieferich","oldPartyId":66431,"type":"Contact","contactType":"person","email":"[email protected]","active":True,"jobTitle":"Physical Scientist","firstName":"Daniel","middleName":"J","lastName":"Wieferich","organization":{"displayText":"Biogeographic Characterization"},"primaryLocation":{"name":"CN=Daniel J Wieferich,OU=CSS,OU=Users,OU=OITS,OU=DI,DC=gs,DC=doi,DC=net - Primary Location","building":"DFC Bldg 810","buildingCode":"KBT","officePhone":"3032024594","faxPhone":"3032024710","streetAddress":{"line1":"W 6th Ave Kipling St","city":"Lakewood","state":"CO","zip":"80225"},"mailAddress":{}},"orcId":"0000-0003-1554-7992"}], 'tags': [{"type":"Theme","scheme":"BIS","name":"NHDPlusV2.1"},{"type":"Theme","scheme":"BIS","name":"Reg15"}] } updateItem = sb.updateSbItem(UpdateItem) #Remove unneeded local copies of files import shutil import os os.remove('Catchment.zip') os.remove('Hydrography.zip') os.remove('NHDPlusAttributes.zip') os.remove('NHDPlusV21_CO_15_NHDPLusAttributes_08.7z') os.remove('NHDPlusV21_CO_15_NHDPlusCatchment_01.7z') os.remove('NHDPlusV21_CO_15_NHDSnapshot_04.7z') shutil.rmtree('NHDPlusCO') ###Output _____no_output_____
examples/contactMatrix/ex04-non-normal-transients.ipynb
###Markdown Non normal network and transient response Introduction: Where eigen-analysis breaks downConsider an evolution equation of the form $$\dot{\boldsymbol{u}}=\boldsymbol{J}\boldsymbol{u}$$ where $$\boldsymbol{J}=\begin{pmatrix}-1 & 500\\0 & -2\end{pmatrix}$$The eigenvalues are clearly $-1,-2$. However, for some initial conditions this system will still grow massively in amplitude ###Code import numpy as np import scipy.linalg as spl from scipy.integrate import solve_ivp import matplotlib.pyplot as plt from pyross.contactMatrix import characterise_transient A = [[-1,500],[0,-2]] x0 = [1,1] tf = 10 def linear_system(t, x, A): return A@x ivp = solve_ivp(linear_system, (0,tf), x0, args=[A], t_eval=np.arange(0,tf,.1)) plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) plt.xlabel("time") plt.ylabel("$|u|/|u_0|$") ###Output _____no_output_____ ###Markdown Here we see a massive amplification of the initial conditions, although the eigenvalues would suggest exponential decay. What is happening? The answer is that any non-normal matrix $\boldsymbol{J}$ (such that $\boldsymbol{J}\boldsymbol{J}^T \neq \boldsymbol{J}^T\boldsymbol{J}$) will give a transient response as the system relaxes back down to the (non-orthogonal) eigendirection.Such transients can be classified in terms of the spectral abcissa (eigenvalue(s) with maximal real component) $\alpha (\boldsymbol{J})$ which determines the long term behaviour, the numerical abcissa (eigenvalues of $\frac{1}{2}(\boldsymbol{J}+\boldsymbol{J}^T)$) $\omega (\boldsymbol{J})$, the Kreiss constant $\mathcal{K}(\boldsymbol{J})$ which gives a lower bound to the transient behaviour (the upper bound is given by $eN\mathcal{K}(\boldsymbol{J})$ where $N$ is the matrix dimensionality), and the time over which the transient occurs $\tau=\log(\mathcal{K})/a$ where $a$ is the real part of the maximal pseudoeigenvalue.These quantities can be found using the `characterise_transient` function: ###Code mcA = characterise_transient(A) t=ivp.t f, ax = plt.subplots() plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|u|/|u_0|$') ax.set_title(r'$\dot{u}=J\cdot u$') ax.set_ylim((-.1,np.max(spl.norm(ivp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA[3])] ax.plot(t_trunc,np.exp(mcA[1]*t_trunc),"--",color="orange") ax.plot(t, np.exp(mcA[0]*t),"--",color="darkgreen") plt.axhline(y=mcA[2],linestyle="dotted",color="black") if 3*mcA[3]<t[-1]: plt.axvline(x=mcA[3],linestyle="dotted",color="black") ax.set_xlim((-.1, np.min([3*mcA[3],t[-1]]))) plt.annotate(r'Long time behaviour $\alpha (J)$',[1,1], [.2,2]) plt.annotate(r'Inital growth rate $\omega (J)$',[.01,90]) plt.annotate(r'Transient duration',[3.4,20], [3.3,20]) plt.annotate(r'Kreiss constant',[3.4,26], [5.3,90]) ###Output /home/ab/python/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:12: RuntimeWarning: overflow encountered in exp if sys.path[0] == '': /home/ab/python/anaconda3/lib/python3.6/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /home/ab/python/anaconda3/lib/python3.6/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /home/ab/python/anaconda3/lib/python3.6/site-packages/matplotlib/transforms.py:918: ComplexWarning: Casting complex values to real discards the imaginary part self._points[:, 0] = interval ###Markdown Exponential growth Suppose the system we are interested in grows exponentially in time. Then there is no meaning to a lower bound for a transient process, since the system will always saturate this bound at a large enough time. ###Code A2 = np.array([[3,2],[9,4]]) mcA2 =characterise_transient(A2) print("Kreiss constant = ", mcA2[2]) x0 = [1,1] tf = 1 ivp_exp = solve_ivp(linear_system, (0,tf), x0, args=[A2], t_eval=np.arange(0,tf,.1)) mc = characterise_transient(A2) t=ivp_exp.t f, ax = plt.subplots() plt.plot(ivp_exp.t,spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|x|/|x_0|$') ax.set_title(r'$\dot{x}=A\cdot x$') ax.set_ylim((-.1,np.max(spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.set_xlim((-.1, np.min([3*mcA2[3],t[-1]]))) plt.yscale('log') plt.autoscale(enable=True, axis='y', tight=True) plt.plot(t,np.exp(mcA2[0]*t),color="orange") plt.legend(["Evolution with $A$","evolution with $\lambda_{Max}$"]) ###Output Kreiss constant = (2002900100+0j) ###Markdown The Kreiss constant $K_0 \approx 10^{16}$ doesn't give us any useful information. Is there any way to get a good estimate for the transient properties of this system? The answer is, in fact, yes. Consider the ratio of maximum transient growth to maximum regular growth $$\frac{e^{\boldsymbol{J}t}}{e^{\lambda_{\text{max}}t}}$$ This is the solution to the associated kinematical system $$\dot{u}=\left(\boldsymbol{J}-\lambda_{\text{max}}I\right)u = \Gamma u$$ If we now characterise the transients of $\Gamma$ we get: ###Code Gamma = A2 - np.max(spl.eigvals(A2))*np.identity(len(A2)) mcA2 = characterise_transient(Gamma) print("Kreiss constant = ", mcA2[2]) x0 = [1.7,1] tf = 1 ivp_exp2 = solve_ivp(linear_system, (0,tf), x0, args=[Gamma], t_eval=np.arange(0,tf,.01)) f, ax = plt.subplots() plt.plot(ivp_exp2.t,spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|u|/|u_0|$') # ax.set_title(r'$\dot{u}=\Gamma\cdot u$') ax.plot(t, np.exp(mcA2[0]*t),"--",color="darkgreen") ax.set_ylim((-.1,np.max(spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.plot(t_trunc,np.exp(mcA2[1]*t_trunc),"--",color="orange") plt.axhline(y=mcA2[2],linestyle="dotted",color="black") plt.ylim([.98,1.4]) plt.annotate(r'Long time behaviour $\alpha (\Gamma)$', [.2,1.01]) plt.annotate(r'Initial growth rate $\omega (\Gamma)$',[.0,1.05], rotation=68) plt.annotate(r'Kreiss constant $\mathcal{K} (\Gamma)$', [.4,1.3]) ###Output Kreiss constant = (1.292701+0j) ###Markdown Non normal network and transient response Introduction: Where eigen-analysis breaks downConsider an evolution equation of the form $$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$ where $$\boldsymbol{A}=\begin{pmatrix}-1 & 500\\0 & -2\end{pmatrix}$$The eigenvalues are clearly $-1,-2$. However, for some initial conditions this system will still grow massively in amplitude ###Code %%capture ## compile PyRoss for this notebook import os owd = os.getcwd() os.chdir('../../') %run setup.py install os.chdir(owd) import numpy as np import scipy.linalg as spl from scipy.integrate import solve_ivp import matplotlib.pyplot as plt from pyross.contactMatrix import characterise_transient A = [[-1,500],[0,-2]] x0 = [1,1] tf = 10 def linear_system(t, x, A): return A@x ivp = solve_ivp(linear_system, (0,tf), x0, args=[A], t_eval=np.arange(0,tf,.1)) plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) plt.xlabel("time") plt.ylabel("$|x|/|x_0|$") ###Output _____no_output_____ ###Markdown Here we see a massive amplification of the initial conditions, although the eigenvalues would suggest exponential decay. What is happening? The answer is that any non-normal matrix $\boldsymbol{A}$ (such that $\boldsymbol{A}\boldsymbol{A}^T \neq \boldsymbol{A}^T\boldsymbol{A}$) will give a transient response as the system relaxes back down to the (non-orthogonal) eigendirection.Such transients can be classified in terms of the spectral abcissa (eigenvalue(s) with maximal real component) $\alpha (\boldsymbol{A})$ which determines the long term behaviour, the numerical abcissa (eigenvalues of $\frac{1}{2}(\boldsymbol{A}+\boldsymbol{A}^T)$) $\omega (\boldsymbol{A})$, the Kreiss constant $\mathcal{K}(\boldsymbol{A})$ which gives a lower bound to the transient behaviour (the upper bound is given by $eN\mathcal{K}(\boldsymbol{A})$ where $N$ is the matrix dimensionality), and the time over which the transient occurs $\tau=\log(\mathcal{K})/a$ where $a$ is the real part of the maximal pseudoeigenvalue.These quantities can be found using the `characterise_transient` function: ###Code mcA = characterise_transient(A) t=ivp.t f, ax = plt.subplots() plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|x|/|x_0|$') ax.set_title(r'$\dot{x}=A\cdot x$') ax.set_ylim((-.1,np.max(spl.norm(ivp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA[3])] ax.plot(t_trunc,np.exp(mcA[1]*t_trunc),"--",color="orange") ax.plot(t, np.exp(mcA[0]*t),"--",color="darkgreen") plt.axhline(y=mcA[2],linestyle="dotted",color="black") if 3*mcA[3]<t[-1]: plt.axvline(x=mcA[3],linestyle="dotted",color="black") ax.set_xlim((-.1, np.min([3*mcA[3],t[-1]]))) plt.annotate(r'Long time behaviour $\alpha (A)$',[1,1], [.2,2]) plt.annotate(r'Inital growth rate $\omega (A)$',[.01,90]) plt.annotate(r'Transient duration',[3.4,20], [3.3,20]) plt.annotate(r'Kreiss constant',[3.4,26], [5.3,90]) ###Output /Users/rsingh/software/anaconda/lib/python3.7/site-packages/ipykernel_launcher.py:12: RuntimeWarning: overflow encountered in exp if sys.path[0] == '': /Users/rsingh/software/anaconda/lib/python3.7/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /Users/rsingh/software/anaconda/lib/python3.7/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /Users/rsingh/software/anaconda/lib/python3.7/site-packages/matplotlib/transforms.py:2817: ComplexWarning: Casting complex values to real discards the imaginary part vmin, vmax = map(float, [vmin, vmax]) ###Markdown Exponential growth Suppose the system we are interested in grows exponentially in time. Then there is no meaning to a lower bound for a transient process, since the system will always saturate this bound at a large enough time. ###Code A2 = np.array([[3,2],[9,4]]) mcA2 =characterise_transient(A2) print("Kreiss constant = ", mcA2[2]) x0 = [1,1] tf = 1 ivp_exp = solve_ivp(linear_system, (0,tf), x0, args=[A2], t_eval=np.arange(0,tf,.1)) mc = characterise_transient(A2) t=ivp_exp.t f, ax = plt.subplots() plt.plot(ivp_exp.t,spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|x|/|x_0|$') ax.set_title(r'$\dot{x}=A\cdot x$') ax.set_ylim((-.1,np.max(spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.set_xlim((-.1, np.min([3*mcA2[3],t[-1]]))) plt.yscale('log') plt.autoscale(enable=True, axis='y', tight=True) plt.plot(t,np.exp(mcA2[0]*t),color="orange") plt.legend(["Evolution with $A$","evolution with $\lambda_{Max}$"]) ###Output Kreiss constant = (2002900200+0j) ###Markdown The Kreiss constant $K_0 \approx 10^{16}$ doesn't give us any useful information. Is there any way to get a good estimate for the transient properties of this system? The answer is, in fact, yes. Consider the ratio of maximum transient growth to maximum regular growth $$\frac{e^{\boldsymbol{A}t}}{e^{\lambda_{\text{max}}t}}$$ This is the solution to the associated kinematical system $$\dot{x}=\left(\boldsymbol{A}-\lambda_{\text{max}}I\right)x = \Gamma x$$ If we now characterise the transients of $\Gamma$ we get: ###Code Gamma = A2 - np.max(spl.eigvals(A2))*np.identity(len(A2)) mcA2 = characterise_transient(Gamma) print("Kreiss constant = ", mcA2[2]) x0 = [2,1] tf = 10 ivp_exp2 = solve_ivp(linear_system, (0,tf), x0, args=[Gamma], t_eval=np.arange(0,tf,.1)) f, ax = plt.subplots() plt.plot(ivp_exp2.t,spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|x|/|x_0|$') ax.set_title(r'$\dot{x}=\Gamma\cdot x$') ax.plot(t, np.exp(mcA2[0]*t),"--",color="darkgreen") ax.set_ylim((-.1,np.max(spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.plot(t_trunc,np.exp(mcA2[1]*t_trunc),"--",color="orange") plt.axhline(y=mcA2[2],linestyle="dotted",color="black") plt.ylim([.98,1.4]) plt.annotate(r'Long time behaviour $\alpha (\Gamma)$', [.2,1.01]) plt.annotate(r'Inital growth rate $\omega (\Gamma)$',[.4,1.35]) plt.annotate(r'Kreiss constant $\mathcal{K} (\Gamma)$', [3.53,1.3]) ###Output Kreiss constant = (1.292701+0j) ###Markdown Non normal network and transient response Introduction: Where eigen-analysis breaks downConsider an evolution equation of the form $$\dot{\boldsymbol{u}}=\boldsymbol{J}\boldsymbol{u}$$ where $$\boldsymbol{J}=\begin{pmatrix}-1 & 500\\0 & -2\end{pmatrix}$$The eigenvalues are clearly $-1,-2$. However, for some initial conditions this system will still grow massively in amplitude ###Code %%capture ## compile PyRoss for this notebook import os owd = os.getcwd() os.chdir('../../') %run setup.py install os.chdir(owd) import numpy as np import scipy.linalg as spl from scipy.integrate import solve_ivp import matplotlib.pyplot as plt from pyross.contactMatrix import characterise_transient A = [[-1,500],[0,-2]] x0 = [1,1] tf = 10 def linear_system(t, x, A): return A@x ivp = solve_ivp(linear_system, (0,tf), x0, args=[A], t_eval=np.arange(0,tf,.1)) plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) plt.xlabel("time") plt.ylabel("$|u|/|u_0|$") ###Output _____no_output_____ ###Markdown Here we see a massive amplification of the initial conditions, although the eigenvalues would suggest exponential decay. What is happening? The answer is that any non-normal matrix $\boldsymbol{J}$ (such that $\boldsymbol{J}\boldsymbol{J}^T \neq \boldsymbol{J}^T\boldsymbol{J}$) will give a transient response as the system relaxes back down to the (non-orthogonal) eigendirection.Such transients can be classified in terms of the spectral abcissa (eigenvalue(s) with maximal real component) $\alpha (\boldsymbol{J})$ which determines the long term behaviour, the numerical abcissa (eigenvalues of $\frac{1}{2}(\boldsymbol{J}+\boldsymbol{J}^T)$) $\omega (\boldsymbol{J})$, the Kreiss constant $\mathcal{K}(\boldsymbol{J})$ which gives a lower bound to the transient behaviour (the upper bound is given by $eN\mathcal{K}(\boldsymbol{J})$ where $N$ is the matrix dimensionality), and the time over which the transient occurs $\tau=\log(\mathcal{K})/a$ where $a$ is the real part of the maximal pseudoeigenvalue.These quantities can be found using the `characterise_transient` function: ###Code mcA = characterise_transient(A) t=ivp.t f, ax = plt.subplots() plt.plot(ivp.t,spl.norm(ivp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|u|/|u_0|$') ax.set_title(r'$\dot{u}=J\cdot u$') ax.set_ylim((-.1,np.max(spl.norm(ivp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA[3])] ax.plot(t_trunc,np.exp(mcA[1]*t_trunc),"--",color="orange") ax.plot(t, np.exp(mcA[0]*t),"--",color="darkgreen") plt.axhline(y=mcA[2],linestyle="dotted",color="black") if 3*mcA[3]<t[-1]: plt.axvline(x=mcA[3],linestyle="dotted",color="black") ax.set_xlim((-.1, np.min([3*mcA[3],t[-1]]))) plt.annotate(r'Long time behaviour $\alpha (J)$',[1,1], [.2,2]) plt.annotate(r'Inital growth rate $\omega (J)$',[.01,90]) plt.annotate(r'Transient duration',[3.4,20], [3.3,20]) plt.annotate(r'Kreiss constant',[3.4,26], [5.3,90]) ###Output /home/ab/python/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:12: RuntimeWarning: overflow encountered in exp if sys.path[0] == '': /home/ab/python/anaconda3/lib/python3.6/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /home/ab/python/anaconda3/lib/python3.6/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) /home/ab/python/anaconda3/lib/python3.6/site-packages/matplotlib/transforms.py:918: ComplexWarning: Casting complex values to real discards the imaginary part self._points[:, 0] = interval ###Markdown Exponential growth Suppose the system we are interested in grows exponentially in time. Then there is no meaning to a lower bound for a transient process, since the system will always saturate this bound at a large enough time. ###Code A2 = np.array([[3,2],[9,4]]) mcA2 =characterise_transient(A2) print("Kreiss constant = ", mcA2[2]) x0 = [1,1] tf = 1 ivp_exp = solve_ivp(linear_system, (0,tf), x0, args=[A2], t_eval=np.arange(0,tf,.1)) mc = characterise_transient(A2) t=ivp_exp.t f, ax = plt.subplots() plt.plot(ivp_exp.t,spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|x|/|x_0|$') ax.set_title(r'$\dot{x}=A\cdot x$') ax.set_ylim((-.1,np.max(spl.norm(ivp_exp.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.set_xlim((-.1, np.min([3*mcA2[3],t[-1]]))) plt.yscale('log') plt.autoscale(enable=True, axis='y', tight=True) plt.plot(t,np.exp(mcA2[0]*t),color="orange") plt.legend(["Evolution with $A$","evolution with $\lambda_{Max}$"]) ###Output Kreiss constant = (2002900100+0j) ###Markdown The Kreiss constant $K_0 \approx 10^{16}$ doesn't give us any useful information. Is there any way to get a good estimate for the transient properties of this system? The answer is, in fact, yes. Consider the ratio of maximum transient growth to maximum regular growth $$\frac{e^{\boldsymbol{J}t}}{e^{\lambda_{\text{max}}t}}$$ This is the solution to the associated kinematical system $$\dot{u}=\left(\boldsymbol{J}-\lambda_{\text{max}}I\right)u = \Gamma u$$ If we now characterise the transients of $\Gamma$ we get: ###Code Gamma = A2 - np.max(spl.eigvals(A2))*np.identity(len(A2)) mcA2 = characterise_transient(Gamma) print("Kreiss constant = ", mcA2[2]) x0 = [1.7,1] tf = 1 ivp_exp2 = solve_ivp(linear_system, (0,tf), x0, args=[Gamma], t_eval=np.arange(0,tf,.01)) f, ax = plt.subplots() plt.plot(ivp_exp2.t,spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0)) ax.set_xlabel("time") ax.set_ylabel(r'$|u|/|u_0|$') # ax.set_title(r'$\dot{u}=\Gamma\cdot u$') ax.plot(t, np.exp(mcA2[0]*t),"--",color="darkgreen") ax.set_ylim((-.1,np.max(spl.norm(ivp_exp2.y.T, axis=1)/spl.norm(x0))*1.1)) t_trunc = t[np.where(t<mcA2[3])] ax.plot(t_trunc,np.exp(mcA2[1]*t_trunc),"--",color="orange") plt.axhline(y=mcA2[2],linestyle="dotted",color="black") plt.ylim([.98,1.4]) plt.annotate(r'Long time behaviour $\alpha (\Gamma)$', [.2,1.01]) plt.annotate(r'Initial growth rate $\omega (\Gamma)$',[.0,1.05], rotation=68) plt.annotate(r'Kreiss constant $\mathcal{K} (\Gamma)$', [.4,1.3]) ###Output Kreiss constant = (1.292701+0j)
content/notebooks/kl-divergence.ipynb
###Markdown Motivating ExampleTo give a simple concrete example, lets suppose that we are given two of normal distributions $N(\mu_1,1)$ and $N(\mu_2, 1)$ where a normal distribution is defined as $f(x\ |\ \mu,\ \sigma^2)=\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. Our goal is to find a new approximating normal distribution $N(\mu_Q, \sigma_Q)$ that best fits the sum of the original normal distributions.Here we run into a problem: **how do we define the quality of fit of the original distribution to the new distribution?** For example, would it be better to smooth out the approximating normal distribution across the two original modes or to fully cover one mode while leaving the other one uncovered? Visually, this corresponds to preferring option A or option B in the following plots: ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as sb import scipy from scipy import stats x = np.linspace(-10, 10, num=300) norm_1 = stats.norm.pdf(x, loc=3) / 2 norm_2 = stats.norm.pdf(x, loc=-3) / 2 two_norms = norm_1 + norm_2 approx_norm_middle = stats.norm.pdf(x, loc=0, scale=4) plt.figure(figsize=(16, 6)) plt.subplot(1, 2, 1) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_middle, label='Q=N(0, 4)') plt.title('Option A') plt.legend(loc=2) approx_norm_side = stats.norm.pdf(x, loc=3, scale=2) plt.subplot(1, 2, 2) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_side, label='Q=N(3, 2)') plt.title(f'Option B') plt.legend(loc=2) plt.show() ###Output _____no_output_____ ###Markdown To give one answer to this question lets first label the original distribution (average of two normals) $P$ and the distribution we are using to approximate it $Q$. The view that the KL divergence takes is of asking "if I gave someone only $Q$, how much *additional* information would they need to know everything about $P$?"The usefulness of this formulation becomes obvious if you consider trying to approximate a very complex distribution $P$ with a simpler distribution $Q$. **You want to know how bad your new approximation $Q$ is!**. To do so we first need to visit the concepts of entropy and cross entropy though. EntropyWe can formalize this notion of counting the information contained in a distribution by computing its [entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory). An intuitive way to understand what entropy means is by viewing it as the number of bits needed to encode some piece of information. For example, if I toss a coin three times I can have complete information of the events that occurred using only three bits (a 1 or 0 for each heads/tails).We are interested in the entropy of probability distributions which is defined as:$$H(X)=-\sum_{i=1}^n P(x_i)\log P(x_i)$$That is all well and good, but what does it mean? Lets start with a simple concrete example. Suppose we have a simple probability distribution over the likelihood of a coin flip resulting in heads or tails $[p, 1-p]$. Plugging this into the formula for entropy $H(x)$ we get $H(X)=-(p\log p +(1-p)\log (1-p))$Setting $p=.5$ results in $H(x)=.69$, and setting $p=.9$ results in $H(x)=.32$. We can also observe that as $p\rightarrow 1$, $H(X)\rightarrow 0$. This shows that if $p$ is very close to $1$ (where almost all the coin tosses will be heads), then the entropy is low. If $p$ is close to $.5$ then the entropy is at its peak.Conceptually this makes sense since there is more information in a sequence of coin tosses where the results are mixed rather than one where they are all the same. You can see this by considering the case where the distribution generates heads with likelihood $.99$ and tails with likelihood $.01$. A naive way to convey this information would be to report a $1$ for each heads and a $0$ for each tails. One way to represent this more efficiently would be to encode every two heads as a $1$, one heads as $01$, and tails as $00$ (note that there is no $0$ symbol otherwise you would not be able to tell whether $01$ meant a tails then a heads or one heads). This means that for every pair of heads we can represent it in half as many bits, but what about the other cases? We only need to represent a single heads when a tails occurs for which the overall cost of this combination is $4$ bits for 2 numbers. Take an example of encoding 99 heads and 1 tails: it would use $98/2=54$ bits to represent nearly all the heads and $4$ bits for the remaining heads and tails for a grand total of $58$ bits. This is much less than $100$ bits and its all possible because the entropy is low!Now lets formalize the intuition from that example and return to the normal definition of entropy to explain why the entropy is defined that way.$$H(X)=-\sum_{i=1}^n P(x_i)\log P(x_i)=\sum_{i=1}^n P(x_i)\log \frac{1}{P(x_i)}$$To assist us lets define an information function $I$ in terms of an event $i$ and probability of that event $p_i$. How much information is acquired due to the observation of event $i$? Consider the properties of the information function $I$1. When $p$ goes up then $I(p)$ goes down. When $p$ goes down then $I(p)$ goes up. This is sensible because under the coin toss example making a particular event more likely caused the entropy to go down and vice versa.2. $I(p)\ge 0$: Information cannot be negative, also sensible.3. $I(1)=0$: Events that always occur contain no information. This makes sense since as we took the limit of $p\rightarrow 1$, $H(X)\rightarrow 0$.4. $I(p_1p_2)=I(p_1)+I(p_2)$: Information due to independent events is additive. To see why property (4) is crucial and true consider two individual events. If the first event could result in one of $n$ equally likely outcomes and the second event in $m$ equally likely outcomes then there are $mn$ possible outcomes of both events combined. From information theory we know that $\log_2(n)$ bits and $\log_2(m)$ bits are required to encode events $n$ and $m$ respectively. From the property of logarithms we know that $\log_2(n)+\log_2(m)=\log_2(mn)$ so logarithmic functions preserve (4)! If we recall that the events are equally likely with some probability $p$ then we can realize that $1/p$ is the number of possible outcomes so it corresponds to choosing $I(p)=\log(1/p)$ (this generalizes with some more math). If we sample $N$ points then we observe each outcome $i$ on average $n_i=Np_i$. Thus the total amount of information received is:$$\sum_i n_i I(p_i)=\sum_i N p_i\log\frac{1}{p_i}$$Finally note that if we want the average amount of information per event that is simply $\sum_i p_i\log\frac{1}{p_i}$ which is exactly the expression for entropy $H(X)$ Cross EntropyWe have now seen that entropy gives us a way to quantify the information content of a given probability distribution, but what about the information content of one distribution relative to another? The [cross entropy](https://en.wikipedia.org/wiki/Cross_entropy) which is defined similarly to the regular entropy is used to calculate this. It quantifies the amount of information required to encode information coming from a probability distribution $P$ by using a different/wrong distribution $Q$. In particular, we want to know the average number of bits needed to encode some outcomes $x_i$ from $X$ with the probability distribution $q(x_i)=2^{-l_i}$ where $l_i$ is the length of the code for $x_i$ in bits. To arrive at the definition for cross entropy we will take the expectation of this length over the probability distribution $p$.$$\begin{align*}H(p,q)&=E_p[l_i]=E_p\big[\log\frac{1}{q(x_i)}\big]\\H(p,q)&=\sum_{x_i}p(x_i)\log\frac{1}{q(x_i)}\\H(p,q)&=-\sum_x p(x)\log q(x)\end{align*}$$With the definition of the cross entropy we can now move onto combining it with the entropy to arrive at the KL divergence. KL DivergenceNow armed with the definitions for entropy and cross entropy we are ready to return to defining the KL divergence. Recall that $H(P, Q)$ represents the amount of information needed to encode $P$ with $Q$. Also recall that $H(P)$ is the amount of information necessary to encode $P$. Knowing these makes defining the KL divergence trivial as simply the amount of information needed to encode $P$ with $Q$ minus the amount of information to encode $P$ with itself:$$\begin{align*}D_{KL}(P||Q)&=H(P,Q)-H(P)\\&=-\sum_x p(x)\log q(x)+\sum_x p(x)\log p(x)\\&=\sum_x\bigg[p(x)[\log p(x)-\log q(x)]\bigg]\\&=\sum_x p(x)\log\frac{p(x)}{q(x)}\end{align*}$$With the origin and derivation of the KL divergence clear now, lets get some intuition on how the KL divergence behaves then returning to the original example involving two normal distributions. Observe that:1. When $p(x)$ is large, but $q(x)$ is small, the divergence gets very big. This corresponds to not covering $P$ well with $Q$2. When $p(x)$ is small, but $q(x)$ is large, the divergence is also large, but not as large as in (1). This corresponds to putting $Q$ where $P$ is not.I have again plotted the normal distributions from the beginning of this post, but am now including the raw value of the KL divergence as well as its value at each point. ###Code approx_norm_middle = stats.norm.pdf(x, loc=0, scale=4) middle_kl = stats.entropy(two_norms, approx_norm_middle) middle_pointwise_kl = scipy.special.kl_div(two_norms, approx_norm_middle) plt.figure(figsize=(16, 6)) plt.subplot(1, 2, 1) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_middle, label='Q=N(0, 4)') plt.plot(x, middle_pointwise_kl, label='KL Divergence', linestyle='-') plt.title(f'Approximate two Guassians with one in the center, KL={middle_kl:.4f}') plt.legend() plt.subplot(1, 2, 2) approx_norm_side = stats.norm.pdf(x, loc=3, scale=2) side_kl = stats.entropy(two_norms, approx_norm_side) side_pointwise_kl = scipy.special.kl_div(two_norms, approx_norm_side) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_side, label='Q=N(3, 2)') plt.plot(x, side_pointwise_kl, label='KL Divergence', linestyle='-') plt.title(f'Approximate two Guassians by covering one more than the other, KL={side_kl:.4f}') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown By looking at this its now easy to see how properties (1) and (2) play out in practice. The KL divergence is much happier with the solution on the left since $P$ is always at least partially covered. It is comparatively unhappy with the right solution since it leaves the left normal mode uncovered. Thus, in general the KL divergence of $P$ approximated with $Q$ prefers to average out modes.One increasingly common use case for the KL divergence in machine learning is in [Variational Inference](https://en.wikipedia.org/wiki/Variational_Bayesian_methods). For a number of reasons, the optimized quantity is the KL divergence of $Q$ approximated by $P$ written as $D_{KL}(Q||P)$. The KL divergence is **not** symmetric so the behavior could be and in general is different. I have drawn the same normal distributions but instead this time using this alternative use of the KL divergence. ###Code approx_norm_middle = stats.norm.pdf(x, loc=0, scale=4) middle_kl = stats.entropy(approx_norm_middle, two_norms) middle_pointwise_kl = scipy.special.kl_div(approx_norm_middle, two_norms) plt.figure(figsize=(16, 6)) plt.subplot(1, 2, 1) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_middle, label='Q=N(0, 4)') plt.plot(x, middle_pointwise_kl, label='KL Divergence', linestyle='-') plt.title(f'Approximate two Guassians with one in the center, KL={middle_kl:.4f}') plt.legend() plt.subplot(1, 2, 2) approx_norm_side = stats.norm.pdf(x, loc=3, scale=2) side_kl = stats.entropy(approx_norm_side, two_norms) side_pointwise_kl = scipy.special.kl_div(approx_norm_side, two_norms) plt.plot(x, two_norms, label='P=(N(-3, 1) + N(3, 1))/2') plt.plot(x, approx_norm_side, label='Q=N(3, 2)') plt.plot(x, side_pointwise_kl, label='KL Divergence', linestyle='-') plt.title(f'Approximate two Guassians by covering one more than the other, KL={side_kl:.4f}') plt.legend() plt.show() ###Output _____no_output_____
notebooks/TRIANGLES_eval_models.ipynb
###Markdown TRIANGLES ###Code data_dir = '/scratch/ssd/data/graph_attention_pool/' checkpoints_dir = '../checkpoints' device = 'cuda' with open('%s/random_graphs_triangles_test.pkl' % data_dir, 'rb') as f: data = pickle.load(f) print(data.keys()) targets = torch.from_numpy(data['graph_labels']).long() Node_degrees = [np.sum(A, 1).astype(np.int32) for A in data['Adj_matrices']] feature_dim = data['Max_degree'] + 1 node_features = [] for i in range(len(data['Adj_matrices'])): N = data['Adj_matrices'][i].shape[0] D_onehot = np.zeros((N, feature_dim )) D_onehot[np.arange(N), Node_degrees[i]] = 1 node_features.append(D_onehot) def acc(pred): n = len(pred) return torch.mean((torch.stack(pred).view(n) == targets[:len(pred)].view(n)).float()).item() * 100 def test(model, index, show_img=False): N_nodes = data['Adj_matrices'][index].shape[0] mask = torch.ones(1, N_nodes, dtype=torch.uint8) x = torch.from_numpy(node_features[index]).unsqueeze(0).float() A = torch.from_numpy(data['Adj_matrices'][index].astype(np.float32)).float().unsqueeze(0) y, other_outputs = model(data_to_device([x, A, mask, -1, {'N_nodes': torch.zeros(1, 1) + N_nodes}], device)) y = y.round().long().data.cpu()[0][0] alpha = other_outputs['alpha'][0].data.cpu() if 'alpha' in other_outputs else [] return y, alpha # This function returns predictions for the entire clean and noise test sets def get_predictions(model_path): state = torch.load(model_path) args = state['args'] model = ChebyGIN(in_features=14, out_features=1, filters=args.filters, K=args.filter_scale, n_hidden=args.n_hidden, aggregation=args.aggregation, dropout=args.dropout, readout=args.readout, pool=args.pool, pool_arch=args.pool_arch) model.load_state_dict(state['state_dict']) model = model.eval().to(device) # print(model) # Get predictions pred, alpha = [], [] for index in range(len(data['Adj_matrices'])): y = test(model, index, index == 0) pred.append(y[0]) alpha.append(y[1]) if len(pred) % 1000 == 0: print('{}/{}, acc on the combined test set={:.2f}%'.format(len(pred), len(data['Adj_matrices']), acc(pred))) return pred, alpha ###Output _____no_output_____ ###Markdown Weakly-supervised attention model ###Code pred, alpha = get_predictions('%s/checkpoint_triangles_230187_epoch100_seed0000111.pth.tar' % checkpoints_dir) ###Output ChebyGINLayer torch.Size([64, 98]) tensor([0.5568, 0.5545, 0.5580, 0.5656, 0.5318, 0.5698, 0.5655, 0.5937, 0.6087, 0.5437], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([32, 128]) tensor([0.5730, 0.5968, 0.5778, 0.5940, 0.5981, 0.5787, 0.5619, 0.5798, 0.5741, 0.5833], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([32, 64]) tensor([0.5703, 0.5380, 0.5825, 0.5836, 0.5649, 0.5537, 0.6568, 0.6129, 0.6161, 0.5258], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([1, 64]) tensor([0.5634], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([64, 448]) tensor([0.5923, 0.5840, 0.5608, 0.5615, 0.5799, 0.5668, 0.5924, 0.5840, 0.5709, 0.5637], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([32, 128]) tensor([0.5606, 0.5821, 0.5540, 0.5596, 0.6033, 0.6147, 0.5738, 0.5865, 0.5981, 0.5800], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([32, 64]) tensor([0.5938, 0.6073, 0.5995, 0.5230, 0.6091, 0.6070, 0.5901, 0.5752, 0.5594, 0.5499], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([1, 64]) tensor([0.6102], grad_fn=<SliceBackward>) ChebyGINLayer torch.Size([64, 448]) tensor([0.5877, 0.5797, 0.5591, 0.5688, 0.5758, 0.5645, 0.5483, 0.5846, 0.5883, 0.5961], grad_fn=<SliceBackward>) 1000/10000, acc on the combined test set=83.00% 2000/10000, acc on the combined test set=76.30% 3000/10000, acc on the combined test set=72.23% 4000/10000, acc on the combined test set=68.73% 5000/10000, acc on the combined test set=66.82% 6000/10000, acc on the combined test set=59.90% 7000/10000, acc on the combined test set=55.04% 8000/10000, acc on the combined test set=51.60% 9000/10000, acc on the combined test set=49.02% 10000/10000, acc on the combined test set=46.69%
Term Project_Neural Network_numeric.ipynb
###Markdown New Section ###Code packageList <- c("dplyr", "keras","jpeg", "ggplot2", "rio") for(package in packageList){ if(!require(package,character.only = TRUE)){ install.packages(package);require(package,character.only = TRUE);} } df <- read.csv("NHANES for ML.csv", row.names=1) # table(df$HbA1c) colnames(df) table(df$diagnosed.diabetes) table(df$diagnosed.kidney.disease) table(df$diagnosed.diabetes, df$diagnosed.kidney.disease, dnn = list("diabetes", "kidney.disease")) table(df$KIQ022) table(df$DIQ010) # table(df$URDACT) table(df$PA_level) dim(df) # create selection dataframe for columns to avoid NA selection <- sapply(df, function(xx) {c("Missing.numbers" = sum(is.na(xx)), "Missing.percentage" = sum(is.na(xx))/nrow(df), "Is.numeric" = is.numeric(xx), "Median.values" = ifelse( is.numeric(xx), median(xx, na.rm = TRUE), 999999999) ) }) %>% t %>% as.data.frame() %>% add_rownames hist(selection$Missing.percentage, breaks = 200) select.names <- subset(selection, Missing.percentage < 0.1 & Is.numeric == 1)$rowname # set 10% as the cutting line to select columns select.names character.names <- subset(selection, Is.numeric == 0)$rowname character.names df1 <- df[, c(character.names, select.names)] # delete rows with NA vaules df2 <- df1 for (col in select.names) {df2 <- subset(df2, !is.na(df2[[col]]))} sum(is.na(df2)) # Step 1.Set up the data # 1/3 is test and the rest are training n <- nrow(df2) set.seed (13) ntest <- trunc(n / 3) testid <- sample (1:n, ntest) # Step 2.Create x and y x <- model.matrix(HbA1c ~ . - 1, data = df2) %>% scale () # long time running dim(x) x_train <- array(x[-testid , ], dim = c(dim(x[-testid , ])[1], dim(x[-testid , ])[2])) x_test <- array(x[testid , ], dim = c(dim(x[testid , ])[1], dim(x[testid , ])[2])) y <- df2$diagnosed.diabetes g_train <- y[-testid] g_test <- y[testid] y_train <- to_categorical(g_train, length(unique(y))) y_test <- to_categorical(g_test , length(unique(y))) #Step 3.Linear regression lfit <- lm(HbA1c ~ ., data = df2[-testid , ]) lpred <- predict(lfit , df2[testid , ]) with(df2[testid , ], mean(abs(lpred - HbA1c))) # method 2 modnn <- keras_model_sequential () %>% layer_dense(units = round(max(x)), activation = "relu", input_shape = ncol(x)) %>% layer_dropout(rate = 0.4) %>% layer_dense(units = round(max(x))/2, activation = "relu" ) %>% layer_dropout(rate = 0.3) %>% layer_dense(units = 1) modnn %>% compile(loss = "mse", optimizer = optimizer_rmsprop (), metrics = list("mean_absolute_error") ) history <- modnn %>% fit( x_train, y_train, epochs = 150, batch_size = (max(x_train)/2), validation_data = list(x_test , y_test) ) plot(history , smooth = FALSE) npred <- predict(modnn , x[testid , ]) mean(abs(y[testid] - npred)) npred <- predict(modnn , x[-testid , ]) mean(abs(y[-testid] - npred)) ###Output _____no_output_____
Python/ResultsAnalysis/DifferentFeature_Compare.ipynb
###Markdown --- ISOLET--- ###Code import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-dark') names=['SPEC','NDFS','LS','AEFS', 'CAE', 'MCFS','PFA','AgnoS-S','$|W_1|$','$W_1^2$'] selected_features = [10,25,40,55,70,85] fig, (ax1, ax2) = plt.subplots(1,2,figsize=(24,8)) ax1.grid(True,linestyle='--',linewidth = 2.5,zorder=-1,axis="y") ax1.set_xticks(selected_features) ax1.set_xlabel('Number of selected features', fontsize = 28) ax1.set_yticks(np.arange(0,1.5,0.28)) ax1.set_ylabel('Linear reconstruction error', fontsize = 28) ax1.tick_params(labelsize=28) ax1.set_ylim([-0.05, 1.1]) ax2.grid(True,linestyle='--',linewidth = 2.5,zorder=-1,axis="y") ax2.set_xticks(selected_features) ax2.set_xlabel('Number of selected features', fontsize =28) ax2.set_yticks(np.arange(0,1.0,0.25)) ax2.set_ylabel('Classification accuracy', fontsize = 28) ax2.tick_params(labelsize=28) ax2.set_ylim([0, 1.0]) error_1 = [0.076348571948117,0.07706732006898086,0.12167384686141766,0.12004096940824423,0.12998828857527522,0.14228227798254703] error_2 = [0.07336641316191968,0.11500690614233806,0.11279193384337662,0.13976455731989382,0.13838623209285103,0.17183374820576663] error_3 = [1.0841869160233764, 1.0539002561490405, 1.0801097755695894, 0.7765303388410707, 0.7323556604028868, 0.7307772395890515] error_4 = [0.7198136265549714, 0.6083768522214379, 0.5319769727484903, 0.4820256201916196, 0.4429506596423366, 0.4421797105264942] error_5 = [0.6277713655799244, 0.5195723499119222, 0.4166404659164897, 0.3760960837075645, 0.35409210312886563, 0.3171214981498588] error_6 = [0.8013841008085286, 0.645445836312186, 0.6161071906135848, 0.5854821723427042, 0.6111251940631501, 0.5722731006860357] error_7 = [0.71003590252778, 0.5582584445668546, 0.5037666581433617, 0.43557315642500916, 0.4032654591565344, 0.3665151564517582] error_8=[0.031505184855725205,0.03327306713221566,0.043004340719269105,0.03670922624834148,0.03477488310043814,0.04338000007119776] error_9 =[0.029837051517744965, 0.02179263467379705, 0.018453868049122874, 0.016304111055073983, 0.014139283627847185, 0.012825284672845084] error_10 =[0.030390729947764403,0.023238077453928467, 0.019489918583178882, 0.016584674451470344, 0.014147786811767656, 0.012661939958993758] ax1.plot(selected_features, error_1, marker='o', mec='orange',c='orange', mfc='w',ms=12) ax1.plot(selected_features, error_2, marker='+', c='blue',ms=12) ax1.plot(selected_features, error_3, marker='2', c='darkcyan',ms=12) ax1.plot(selected_features, error_4, marker='v', c='fuchsia',ms=12) ax1.plot(selected_features, error_5, marker='s', c='chocolate',ms=12) ax1.plot(selected_features, error_6, marker='X', c='aqua',ms=12) ax1.plot(selected_features, error_7, marker='d', c='brown',ms=12) ax1.plot(selected_features, error_8, marker='>', c='dodgerblue',ms=12) ax1.plot(selected_features, error_9, marker='*', c='red',ms=18,lw=3) ax1.plot(selected_features, error_10, marker='<', c='green',ms=12,lw=3) accuracy_1=[0.046183450930083386,0.04490057729313662,0.05388069275176395,0.05195638229634381,0.04682488774855677, 0.04746632456703015] accuracy_2=[0.13598460551635663, 0.12379730596536241,0.08915971776779986,0.09557408595253368,0.0782552918537524,0.07633098139833226] accuracy_3=[0.1468890314304041, 0.1892238614496472, 0.2610647851186658, 0.43361128928800513, 0.477228992944195, 0.5253367543296985] accuracy_4=[0.28223220012828737, 0.4079538165490699, 0.5355997434252726, 0.5368826170622194, 0.6080821039127646, 0.6266837716484926] accuracy_5= [0.354073123797306, 0.5586914688903143, 0.6792815907633099, 0.704939063502245, 0.7196921103271328, 0.7190506735086594] accuracy_6=[0.2482360487491982, 0.4939063502245029, 0.5439384220654265, 0.5388069275176395, 0.5785760102629891, 0.6818473380372033] accuracy_7=[0.23733162283515075, 0.46247594611930726, 0.5618986529826812, 0.6484926234765875, 0.6933932007697242, 0.7190506735086594] accuracy_8=[0.5202052597819115,0.4413085311096857,0.07376523412443874,0.2783835792174471,0.31430404105195636,0.0885182809493265] accuracy_9=[0.43681847338037205, 0.7357280307889673, 0.8197562540089801, 0.8576010262989096, 0.8896728672225785, 0.8826170622193714] accuracy_10=[0.48877485567671586,0.699807568954458, 0.8242463117382938, 0.8300192431045542, 0.8883899935856319, 0.8832584990378448] ax2.plot(selected_features, accuracy_1, marker='o', mec='orange',c='orange', mfc='w',ms=12) ax2.plot(selected_features, accuracy_2, marker='+', c='blue',ms=12) ax2.plot(selected_features, accuracy_3, marker='2', c='darkcyan',ms=12) ax2.plot(selected_features, accuracy_4, marker='v', c='fuchsia',ms=12) ax2.plot(selected_features, accuracy_5, marker='s', c='chocolate',ms=12) ax2.plot(selected_features, accuracy_6, marker='X', c='aqua',ms=12) ax2.plot(selected_features, accuracy_7, marker='d', c='brown',ms=12) ax2.plot(selected_features, accuracy_8, marker='>', c='dodgerblue',ms=12) ax2.plot(selected_features, accuracy_9, marker='*', c='red',ms=18,lw=3) ax2.plot(selected_features, accuracy_10, marker='<', c='green',ms=12,lw=3) plt.subplots_adjust(right=1,wspace =0.15,hspace =0) fig.legend(labels=names,fontsize=28, loc='upper center', bbox_to_anchor=(0.535,1.0),ncol=10,handletextpad=0.1,columnspacing=1.4, fancybox=True,framealpha=0.1,shadow=True) plt.show() ###Output _____no_output_____
stimuli/tdw_to_png.ipynb
###Markdown Convert stimuli generated in TDW to png then upload to s31. The first part of this notbeook converts hdf5 files generated in tdw into png files with the appropriate labels in the format: study_condition_stability_numBlocks_index.png (e.g. curiotower_varyhorizontal_unstable_8_0001.png)2. The second part has some helpful analysis and can be used to visualize towers in the hdf5 format ###Code #!pip install h5py import warnings import os import h5py import numpy as np from PIL import Image import io warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown 1. Function to convert hdf5 into png with new nameTakes a stimulus condition (varyHorizontal,varyScale, or varyNumber) and converts the first frame to a png with information on stability and num blocks ###Code #condition = 'varyScale' #condition = 'varyHorizontal' condition = 'varyNumber' TDW_DIR = "../../tdw_physics/controllers/D:/{}/".format(condition) PNG_DIR = "./tdw_png/" idx = 0 for file in os.listdir(TDW_DIR): stability = "unstable" if file.endswith('.hdf5'): f = h5py.File(os.path.join(TDW_DIR, file)) frames = f['frames'] frame = frames["%04d" % (0)] #Get block count numBlocks = str(len(frame['objects']['positions'])) #Get index count index = str(idx).zfill(4) #Get stability if (((frames["%04d" % (0)]['objects']['positions'][-1][1])- (frames["%04d" % (len(frames)-1)]['objects']['positions'][-1][1]))<0.2): stability = 'stable' img = frame['images'] _img = Image.open(io.BytesIO(img["_img"][:])) new_filename = 'curiotower_' + condition + "_" + stability + "_" + numBlocks + "_" + index + ".png" _img.save(PNG_DIR+new_filename) #RENAME HDF5 WITH SAME INDEX os.rename(TDW_DIR+file, TDW_DIR+'curiotower_' + condition + "_" + stability + "_" + numBlocks + "_" + index + ".hdf5") idx+=1 ###Output _____no_output_____ ###Markdown 2. Some helpful functions to analyze and visualize hdf5 files Visualize first, middle, and last frame of hdf5 file ###Code # #condition = 'varyScale' # #condition = 'varyHorizontal' # condition = 'varyNumber' # TDW_DIR = "../../tdw_physics/controllers/D:/{}/".format(condition) TDW_DIR = "../../tdw_physics/controllers/D:/stability/" FILE = "0003.hdf5" f = h5py.File(os.path.join(TDW_DIR, FILE)) # print the data structure print("top keys", [k for k in f.keys()]) frames = f['frames'] n_frames = len([k for k in frames.keys()]) print("num frames: {}".format(n_frames)) #view_frame = np.minimum(view_frame, n_frames - 1) for view_frame in [0, 40, len(frames)-1]: frame = frames["%04d" % (view_frame)] img = frame['images'] _img = Image.open(io.BytesIO(img["_img"][:])) display(_img) ###Output top keys [] ###Markdown Function to classify stable, precarious, and unstable towers- we define "unstable" as any tower that falls over (large delta in y-axis height from first to last frame)- "precarious" towers are those that remain standing, but have an x-axis delta greater than the scale_factor/3- "stable" towers are those that remain standing with x-axis delta smaller than scale_factor/3 Calculate tower height- is this on some meaningful absolute scale?- how to account for viewing angle, etc... ###Code TDW_DIR = "../../tdw_physics/controllers/D:/stability/" #loop through generated hdf5 files tower_heights = [] for file in os.listdir(TDW_DIR): if file.endswith('.hdf5'): f = h5py.File(os.path.join(TDW_DIR, file)) frames = f['frames'] #get height of tallest block (last placed) in first frame tower_heights.append(frames["%04d" % (0)]['objects']['positions'][-1][1]) print(tower_heights) #To calculate precarious, get max difference in x-axis def get_x_diff(num_objects = 1): min_x = 100 max_x = -100 for i in range(num_objects): min_x = min(frames["%04d" % (0)]['objects']['positions'][i][0], min_x) max_x = max(frames["%04d" % (0)]['objects']['positions'][i][0], max_x) return(max_x - min_x) #Stable if it does not fall over #Precarious if max x-axis jitter is >1/4 scale #unstable if falls over ###Output _____no_output_____ ###Markdown Hdf5 hierarchy ###Code # static/ # Data that doesn't change per frame. # ....object_ids # ....mass # ....static_friction # ....dynamic_friction # ....bounciness # frames/ # Per-frame data. # ....0000/ # The frame number. # ........images/ # Each image pass. # ............_img # ............_id # ............_depth # ............_normals # ............_flow # ........objects/ # Per-object data. # ............positions # ............forwards # ............rotations # ............velocities # ............angular_velocities # ........collisions/ # Collisions between two objects. # ............object_ids # ............relative_velocities # ............contacts # ........env_collisions/ # Collisions between one object and the environment. # ............object_ids # ............contacts # ........camera_matrices/ # .\...........projection_matrix # ............camera_matrix # ....0001/ # ........ (etc.) ###Output _____no_output_____ ###Markdown Inspect Elements of hdf5 ###Code FILE = "0001.hdf5" f = h5py.File(os.path.join(TDW_DIR, FILE)) # print the data structure print("top keys", [k for k in f.keys()]) frames = f['frames'] view_frame =1 frame = frames["%04d" % (view_frame)] frame.keys() obj = frame['objects'] for key in obj.keys(): print(obj[key]) ###Output <HDF5 dataset "angular_velocities": shape (8, 3), type "<f4"> <HDF5 dataset "forwards": shape (8, 3), type "<f4"> <HDF5 dataset "positions": shape (8, 3), type "<f4"> <HDF5 dataset "rotations": shape (8, 4), type "<f4"> <HDF5 dataset "velocities": shape (8, 3), type "<f4"> ###Markdown Calculate stability ###Code FILE = "0005.hdf5" f = h5py.File(os.path.join(TDW_DIR, FILE)) # print the data structure print("top keys", [k for k in f.keys()]) frames = f['frames'] view_frame =0 frame = frames["%04d" % (view_frame)] obj = frame['objects'] print("Num objects:", len(obj['positions'])) for pos in obj['positions']: print(pos) get_x_diff(len(obj['positions'])) #To calculate precarious, get max difference in x-axis def get_x_diff(num_objects = len(obj['positions'])): min_x = 100 max_x = -100 for i in range(num_objects): min_x = min(frames["%04d" % (0)]['objects']['positions'][i][0], min_x) max_x = max(frames["%04d" % (0)]['objects']['positions'][i][0], max_x) return(max_x - min_x) TDW_DIR = "./controllers/D:/stability/" STABLE_DIR = "./controllers/D:/stable/" scale_factor = 0.23 stable_towers = {} precarious_towers = {} unstable_towers = {} #loop through generated hdf5 files for file in os.listdir(TDW_DIR): if file.endswith('.hdf5'): f = h5py.File(os.path.join(TDW_DIR, file)) frames = f['frames'] frame = frames["%04d" % (0)] obj = frame['objects'] #check if top block has moved down by more than one block length if (((frames["%04d" % (0)]['objects']['positions'][-1][1])- (frames["%04d" % (len(frames)-1)]['objects']['positions'][-1][1]))<0.2): if(get_x_diff(len(obj['positions'])) > scale_factor/2): precarious_towers[file] = get_x_diff(len(obj['positions'])) else: stable_towers[file] = get_x_diff(len(obj['positions'])) else: unstable_towers[file] = get_x_diff(len(obj['positions'])) #os.rename("./controllers/D:/stability/{}".format(file), "./controllers/D:/stable/{}".format(file)) print("Stable:", len(stable_towers), "| Precarious:", len(precarious_towers), "| Unstable:", len(unstable_towers)) print(stable_towers) ###Output Stable: 13 | Precarious: 0 | Unstable: 7 {'0000.hdf5': 0.05313666, '0017.hdf5': 0.08293782, '0001.hdf5': 0.03446407, '0006.hdf5': 0.080784045, '0007.hdf5': 0.06164322, '0012.hdf5': 0.007347323, '0004.hdf5': 0.00967929, '0008.hdf5': 0.019052664, '0009.hdf5': 0.075513095, '0005.hdf5': 0.034038514, '0013.hdf5': 0.10254289, '0002.hdf5': 0.00050380453, '0019.hdf5': 0.035791665}
Algorithm Problems/pgrms_3_124country.ipynb
###Markdown ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค(Programmers) level3 ๋ฌธ์ œ - 124๋‚˜๋ผ์˜ ์ˆซ์ž- https://programmers.co.kr/learn/courses/30/lessons/12899 ๋ฌธ์ œ124 ๋‚˜๋ผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. 124 ๋‚˜๋ผ์—์„œ๋Š” 10์ง„๋ฒ•์ด ์•„๋‹Œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ž์‹ ๋“ค๋งŒ์˜ ๊ทœ์น™์œผ๋กœ ์ˆ˜๋ฅผ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค.- 124 ๋‚˜๋ผ์—๋Š” ์ž์—ฐ์ˆ˜๋งŒ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.- 124 ๋‚˜๋ผ์—๋Š” ๋ชจ๋“  ์ˆ˜๋ฅผ ํ‘œํ˜„ํ•  ๋•Œ 1, 2, 4๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.- ์˜ˆ๋ฅผ ๋“ค์–ด์„œ 124 ๋‚˜๋ผ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ์ˆซ์ž๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค.```10์ง„๋ฒ• 124 ๋‚˜๋ผ 1 1 2 2 3 4 4 11 5 12 6 14 7 21 8 22 9 24 10 41```์ž์—ฐ์ˆ˜ n์ด ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ์ฃผ์–ด์งˆ ๋•Œ, n์„ 124 ๋‚˜๋ผ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ์ˆซ์ž๋กœ ๋ฐ”๊พผ ๊ฐ’์„ return ํ•˜๋„๋ก solution ํ•จ์ˆ˜๋ฅผ ์™„์„ฑํ•ด ์ฃผ์„ธ์š”.- ์ œํ•œ์‚ฌํ•ญ: n์€ 500,000,000์ดํ•˜์˜ ์ž์—ฐ์ˆ˜ ์ž…๋‹ˆ๋‹ค.- ์ž…์ถœ๋ ฅ ์˜ˆ```n result1 12 23 44 11``` ์ ‘๊ทผ - 3์ง„๋ฒ•์„ ๋ณ€ํ˜•ํ•ด์„œ ์ ‘๊ทผ (0,1,2๊ฐ€ ์•„๋‹ˆ๋ผ 1,2,3์œผ๋กœ ๋ณ€ํ˜•ํ•œ๋‹ค๊ณ  ์ƒ๊ฐ) - 3์œผ๋กœ ๋‚˜๋ˆˆ ๋ชซ์„ a๋กœ ์ €์žฅํ•˜์—ฌ string์œผ๋กœ ๋”ํ•ด๊ฐ - ๋‚˜๋จธ์ง€๊ฐ€ 0์ผ ๊ฒฝ์šฐ ๋‚˜๋จธ์ง€๋ฅผ 4์œผ๋กœ ๊ณ ์น˜๊ณ  ๋ชซ์€ -1 - ๊ฒฐ๊ณผ๋ฅผ ์—ญ์ˆœ์œผ๋กœ ๋ณด์—ฌ์คŒ ํ’€์ด ###Code def solution(n): answer = '' while n>0: a = n % 3 n //= 3 if a == 0: n -= 1 a = 4 answer += str(a) return(answer[::-1]) # answer = str(a) + answerํ•˜๊ณ  return(answer) ๋ณด๋‹ค ์†๋„๊ฐ€ ๋น ๋ฅด๊ฒŒ ๋‚˜์˜ด solution(15) ###Output _____no_output_____
pyspark-advanced/jupyter-repartition/Repartitioning - Full.ipynb
###Markdown Repartitioning DataFramesPartitions are a central concept in Apache Spark. They are used for distributing and parallelizing work onto different executors, which run on multiple servers. Determining PartitionsBasically Spark uses two different strategies for splitting up data into multiple partitions:1. When Spark loads data, the records are put into partitions along natural borders. For example every HDFS block (and thereby every file) is represented by a different partition. Therefore the number of partitions of a DataFrame read from disk is solely determined by the number of HDFS blocks2. Certain operations like `JOIN`s and aggregations require that records with the same key are physically in the same partition. This is achieved by a shuffle phase. The number of partitions is specified by the global Spark configuration variable `spark.sql.shuffle.partitions` which has a default value of 200. Repartitiong DataSince partitions have a huge influence on the execution, Spark also allows you to explicitly change the partitioning schema of a DataFrame. This makes sense only in a very limited (but still important) set of cases, which we will discuss in this notebook. Weather ExampleSurprise, surprise, we will again use the weather example and see what explicit repartitioning gives us. ###Code from pyspark.sql import SparkSession if not 'spark' in locals(): spark = ( SparkSession.builder.master("local[*]") .config("spark.driver.memory", "24G") .getOrCreate() ) spark ###Output _____no_output_____ ###Markdown Disable Automatic Broadcast JOINsIn order to see the shuffle operations, we need to prevent Spark from executiong `JOIN` operations as broadcast joins. Again this can be turned off by setting the Spark configuration variable `spark.sql.autoBroadcastJoinThreshold` to -1. ###Code spark.conf.set("spark.sql.adaptive.enabled", False) spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1) ###Output _____no_output_____ ###Markdown 1 Load DataFirst we load the weather data, which consists of the measurement data and some station metadata. ###Code storageLocation = "s3://dimajix-training/data/weather" ###Output _____no_output_____ ###Markdown 1.1 Load MeasurementsMeasurements are stored in multiple directories (one per year). But we will limit ourselves to a single year in the analysis to improve readability of execution plans. ###Code from functools import reduce import pyspark.sql.functions as f # Read in all years, store them in an Python array raw_weather_per_year = [ spark.read.text(storageLocation + "/" + str(i)).withColumn("year", f.lit(i)) for i in range(2003, 2015) ] # Union all years together raw_weather = reduce(lambda l, r: l.union(r), raw_weather_per_year) ###Output _____no_output_____ ###Markdown Use a single year to keep execution plans small ###Code raw_weather = spark.read.text(storageLocation + "/2003").withColumn("year", f.lit(2003)) ###Output _____no_output_____ ###Markdown Extract MeasurementsMeasurements were stored in a proprietary text based format, with some values at fixed positions. We need to extract these values with a simple `SELECT` statement. ###Code weather = raw_weather.select( f.col("year"), f.substring(f.col("value"), 5, 6).alias("usaf"), f.substring(f.col("value"), 11, 5).alias("wban"), f.substring(f.col("value"), 16, 8).alias("date"), f.substring(f.col("value"), 24, 4).alias("time"), f.substring(f.col("value"), 42, 5).alias("report_type"), f.substring(f.col("value"), 61, 3).alias("wind_direction"), f.substring(f.col("value"), 64, 1).alias("wind_direction_qual"), f.substring(f.col("value"), 65, 1).alias("wind_observation"), (f.substring(f.col("value"), 66, 4).cast("float") / f.lit(10.0)).alias("wind_speed"), f.substring(f.col("value"), 70, 1).alias("wind_speed_qual"), (f.substring(f.col("value"), 88, 5).cast("float") / f.lit(10.0)).alias( "air_temperature" ), f.substring(f.col("value"), 93, 1).alias("air_temperature_qual"), ) ###Output _____no_output_____ ###Markdown 1.2 Load Station MetadataWe also need to load the weather station meta data containing information about the geo location, country etc of individual weather stations. ###Code stations = spark.read.option("header", True).csv(storageLocation + "/isd-history") ###Output _____no_output_____ ###Markdown 2 PartitionsSince partitions is a concept at the RDD level and a DataFrame per se does not contain an RDD, we need to access the RDD in order to inspect the number of partitions. ###Code weather.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 2.1 Repartitioning DataYou can repartition any DataFrame by specifying the target number of partitions and the partitioning columns. While it should be clear what *number of partitions* actually means, the term *partitionng columns* might require some explanation. Partitioning ColumnsExcept for the case when Spark initially reads data, all DataFrames are partitioned along *partitioning columns*, which means that all records having the same values in the corresponding columns will end up in the same partition. Spark implicitly performs such repartitioning as shuffle operations for `JOIN`s and grouped aggregation (except when a DataFrame already has the correct partitioning columns and number of partitions) Manual RepartitioningAs already mentioned, you can explicitly repartition a DataFrame using teh `repartition()` method. ###Code weather_rep = weather.repartition(10, weather["usaf"], weather["wban"]) weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 3 Repartition & JoinsAs already mentioned, Spark implicitly performs a repartitioning aka shuffle for `JOIN` operations. Execution PlanSo let us inspect the execution plan of a `JOIN` operation. ###Code result = weather.join( stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"]), ) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#69] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 11, 5)) AND isnotnull(substring(value#82, 5, 6))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 11, 5)), isnotnull(substring(value#82, 5, 6))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#78] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksAs we already discussed, each `JOIN` is executed with the following steps1. Filter `NULL` values (it's an inner join)2. Repartition DataFrame on the join columns with 200 partitions3. Sort each partition independently4. Perform a `SortMergeJoin` 3.1 Pre-partition data (first try)Now let us try what happens when we explicitly repartition the data before the join operation. ###Code weather_rep = weather.repartition(10, weather["usaf"], weather["wban"]) weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf", "wban"]) result.explain() ###Output == Physical Plan == *(5) Project [usaf#87, wban#88, 2003 AS year#84, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#963] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#972] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown ObservationsSpark removed our explicit repartition, since it doesn't help and replaced it with the implicit repartition with 200 partitions 3.2 Pre-partition and Cache (second try)Now let us try if we can cache the shuffle (repartition) and sort operation. This is useful in cases, where you have to perform multiple joins on the same set of columns, for example with different DataFrames.So let's simply repartition the `weather` DataFrame on the two columns `usaf` and `wban`. ###Code weather_rep = weather.repartition(20, weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf", "wban"]) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#550] : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- Exchange hashpartitioning(usaf#87, wban#88, 20), false, [id=#402] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#559] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksOuch, now we have *two* shuffle operations. The reason is that Spark will use the default number of partitions for the JOIN operation, but we cached a differently partitioned DataFrame. 3.3 Pre-partition and Cache (third try)Now let us try if we can cache the shuffle (repartition) and sort operation. This is useful in cases, where you have to perform multiple joins on the same set of columns, for example with different DataFrames.So let's simply repartition the `weather` DataFrame on the two columns `usaf` and `wban`. We also have to use 200 partitions, because this is what Spark will use for `JOIN` operations. ###Code weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf", "wban"]) result.explain() ###Output == Physical Plan == *(4) Project [usaf#87, wban#88, year#84, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(4) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(1) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#992] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(3) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#1029] +- *(2) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(2) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksWe did not reach completely what we wanted. The `sort` and `filter` operation still occur after the cache. 3.4 Pre-partition and Cache (fourth try)We already partially achieved our goal of caching all preparational work of the `SortMergeJoin`, but the sorting was still preformed after the caching. So let's try to insert an appropriate sort operation. ###Code # Release cache to simplify execution plan weather_rep.unpersist() weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]).orderBy( weather["usaf"], weather["wban"] ) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution Plan ###Code result = weather_rep.join(stations, ["usaf", "wban"]) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#662] : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], true, 0 : +- Exchange rangepartitioning(usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST, 200), true, [id=#623] : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#622] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#671] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksWe actually created a worse situation: Now we have two sort operations! Definately not what we wanted to have.So let's think for a moment: The `SortMergeJoin` requires that each partition is sorted, but after the repartioning occured. The `orderBy` operation we used above will create a global order over all partitions (and thereby destroy all the repartition work immediately). So we need something else, which still keeps the current partitions but only sort in each partition independently. 3.5 Pre-partition and Cache (final try)Fortunately Spark provides a `sortWithinPartitions` method, which does exactly what it sounds like. ###Code # Release cache to simplify execution plan weather_rep.unpersist() weather_rep = weather.repartition( 200, weather["usaf"], weather["wban"] ).sortWithinPartitions(weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution Plan ###Code result = weather_rep.join( stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"]), ) result.explain() ###Output == Physical Plan == *(4) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#694] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(3) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#727] +- *(2) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(2) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksThat looks really good. The filter operation is still executed after the cache, but that cannot be cached such that Spark uses this information.So whenever you want to prepartition data, you need to execute the following steps:* repartition with the join columns and default number of partitions* sortWithinPartitions with the join columns* probably cache (otherwise there is no benefit at all) Inspect WebUIWe can also inspect the WebUI and see how everything is executed. Phase 1: Build cache ###Code result.count() ###Output _____no_output_____ ###Markdown Phase 2: Use cache ###Code result.count() ###Output _____no_output_____ ###Markdown 4 Repartition & AggregationsSimilar to `JOIN` operations, Spark also requires an appropriate partitioning in grouped aggregations. Again, we can use the same strategy and appropriateky prepartition data in cases where multiple joins and aggregations are performed using the same columns. 4.1 Simple AggregationSo let's perform the usual aggregation (but this time without a previous `JOIN`) with groups defined by the station id (`usaf` and `wban`). ###Code result = weather.groupBy(weather["usaf"], weather["wban"]).agg( f.min( f.when(weather.air_temperature_qual == f.lit(1), weather.air_temperature) ).alias('min_temp'), f.max( f.when(weather.air_temperature_qual == f.lit(1), weather.air_temperature) ).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#779] +- *(1) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> ###Markdown RemarksEach grouped aggregation is executed with the following steps:1. Perform partial aggregation (`HashAggregate`)2. Shuffle intermediate result (`Exchange hashpartitioning`)3. Perform final aggregation (`HashAggregate`) 4.2 Aggregation after repartitionNow let us perform the same aggregation, but this time let's use the preaggregated weather data set `weather_rep` instead. ###Code weather_rep = weather.repartition(87, weather["usaf"], weather["wban"]) weather_rep.unpersist() result = weather_rep.groupBy(weather["usaf"], weather["wban"]).agg( f.min( f.when(weather_rep.air_temperature_qual == f.lit(1), weather_rep.air_temperature) ).alias('min_temp'), f.max( f.when(weather_rep.air_temperature_qual == f.lit(1), weather_rep.air_temperature) ).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 87), false, [id=#391] +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> ###Markdown RemarksSpark obviously detects the correct partitioning of the `weather_rep` DataFrame. The sorting actually is not required, but does not hurt either (except performance...). Therefore only two steps are executed after the cache operation:1. Partial aggregation (`HashAggregate`)2. Final aggregation (`HashAggregate`)But note that although you saved a shuffle operation of partial aggregates, in most cases it is not adviseable to prepartition data only for aggregations for the following reasons:* You could perform all aggregations in a single `groupBy` and `agg` chain* In most cases the preaggregated data is significantly smaller than the original data, therefore the shuffle doesn't hurt that much 5 Interaction between Join, Aggregate & RepartitionNow we have seen two operations which require a shuffle of the data. Of course Spark is clever enough to avoid an additional shuffle operation in chains of `JOIN` and grouped aggregations, which use the same aggregation columns. 5.1 Aggregation after Join on same keySo let's see what happens with a grouped aggregation after a join operation. ###Code joined = weather.join( stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"]), ) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'min_temp' ), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'max_temp' ), ) result.explain() ###Output == Physical Plan == *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#840] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#849] +- *(3) Project [USAF#128, WBAN#129] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown RemarksAs you can see, Spark performs a single shuffle operation. The order of operation is as follows:1. Filter `NULL` values (it's an inner join)2. Shuffle data on `usaf` and `wban`3. Sort partitions by `usaf` and `wban`4. Perform `SortMergeJoin`5. Perform partial aggregation `HashAggregate`6. Perform final aggregation `HashAggregate` 5.2 Aggregation after Join using repartitioned dataOf course we can also use the pre-repartitioned weather DataFrame. This will work as expected, Spark does not add any additional shuffle operation. ###Code weather_rep = weather.repartition(84, weather["usaf"], weather["wban"]) joined = weather_rep.join(stations, ["usaf", "wban"]) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'min_temp' ), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'max_temp' ), ) result.explain() ###Output == Physical Plan == *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#893] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#902] +- *(3) Project [USAF#128, WBAN#129] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown Note that the explicit repartition has been removed by Spark - therefore it doesn't make any sense to `repartition` before a join operation. 5.3 Aggregation after Join with different keySo far we only looked at join and grouping operations using the same keys. If we use different keys (for example the country) in both operations, we expect Spark to add an additional shuffle operations. Let's see... ###Code joined = weather.join(stations, ["usaf", "wban"]) result = joined.groupBy(stations["ctry"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'min_temp' ), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'max_temp' ), ) result.explain() ###Output == Physical Plan == *(6) HashAggregate(keys=[ctry#131], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(ctry#131, 200), true, [id=#645] +- *(5) HashAggregate(keys=[ctry#131], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [air_temperature#97, air_temperature_qual#98, CTRY#131] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#627] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#636] +- *(3) Project [USAF#128, WBAN#129, CTRY#131] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,CTRY#131] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,CTRY:string> ###Markdown 5.4 Aggregation after Broadcast-Join If we use a broadcast join instead of a sort merge join, the we will have a shuffle operation for the aggregation again (since the broadcast join just avoids the shuffle). Let's verify that theory... ###Code joined = weather.join(f.broadcast(stations), ["usaf", "wban"]) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'min_temp' ), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias( 'max_temp' ), ) result.explain() ###Output == Physical Plan == *(3) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#578] +- *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(2) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(2) BroadcastHashJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner, BuildRight :- *(2) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(2) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true], input[1, string, true])), [id=#572] +- *(1) Project [USAF#128, WBAN#129] +- *(1) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown 6 CoalesceThere is another use case for changing the number of partitions: Writing results to HDFS/S3/whatever. Per design Spark writes each partition into a separate file, and there is no way around that. But when partitions do not contain many records, this may not only be ugly, but also unperformant and might cause additional trouble. Specifically currently HDFS is not designed to handle many small files, but prefers fewer large files instead.Therefore it is often desireable to reduce the number of partitions of a DataFrame just before writing the result to disk. You could perform this task by a `repartition` operation, but this is an expensive operation requiring an additional shuffle operation. Therefore Spark provides an additional method called `coalesce` which can be used to reduce the number of partitions without incurring an additional shuffle. Spark simply logically concatenates multiple partitions into new partitions. Inspect Number of PartitionsFor this example, we will use the `weather_rep` DataFrame, which contains exactly 200 partitions. ###Code weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) weather_rep.cache() weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 6.1 Merge Partitions using coalesceIn order to reduce the number of partitions, we simply use the `coalesce` method. ###Code weather_small = weather_rep.coalesce(16) weather_small.explain() weather_small.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown Inspect WebUI ###Code weather_rep.count() ###Output _____no_output_____ ###Markdown 6.2 Saving filesWe already discussed that Spark writes a separate file per partition. So let's see the result when we write the `weather_rep` DataFrame containing 200 partitions. Write 200 Partitions ###Code weather_rep.write.mode("overwrite").parquet("/tmp/weather_rep") ###Output _____no_output_____ ###Markdown Inspect the ResultUsing a simple HDFS CLI util, we can inspect the result on HDFS. ###Code %%bash hdfs dfs -ls /tmp/weather_rep ###Output Found 91 items -rw-r--r-- 1 hadoop hadoop 0 2018-10-07 07:17 /tmp/weather_rep/_SUCCESS -rw-r--r-- 1 hadoop hadoop 1337 2018-10-07 07:16 /tmp/weather_rep/part-00000-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 24241 2018-10-07 07:16 /tmp/weather_rep/part-00003-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 63340 2018-10-07 07:17 /tmp/weather_rep/part-00005-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 32695 2018-10-07 07:17 /tmp/weather_rep/part-00006-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 126661 2018-10-07 07:17 /tmp/weather_rep/part-00011-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 89610 2018-10-07 07:17 /tmp/weather_rep/part-00013-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73063 2018-10-07 07:17 /tmp/weather_rep/part-00014-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 70655 2018-10-07 07:17 /tmp/weather_rep/part-00016-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61512 2018-10-07 07:17 /tmp/weather_rep/part-00017-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 181909 2018-10-07 07:17 /tmp/weather_rep/part-00025-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 67545 2018-10-07 07:17 /tmp/weather_rep/part-00026-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 87515 2018-10-07 07:17 /tmp/weather_rep/part-00028-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76725 2018-10-07 07:17 /tmp/weather_rep/part-00031-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 16246 2018-10-07 07:17 /tmp/weather_rep/part-00032-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 68058 2018-10-07 07:17 /tmp/weather_rep/part-00033-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 84538 2018-10-07 07:17 /tmp/weather_rep/part-00034-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73316 2018-10-07 07:17 /tmp/weather_rep/part-00035-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 123655 2018-10-07 07:17 /tmp/weather_rep/part-00036-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 37920 2018-10-07 07:17 /tmp/weather_rep/part-00038-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 57775 2018-10-07 07:17 /tmp/weather_rep/part-00039-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 67351 2018-10-07 07:17 /tmp/weather_rep/part-00040-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 55996 2018-10-07 07:17 /tmp/weather_rep/part-00041-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 59784 2018-10-07 07:17 /tmp/weather_rep/part-00043-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 80773 2018-10-07 07:17 /tmp/weather_rep/part-00046-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 84986 2018-10-07 07:17 /tmp/weather_rep/part-00048-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 133418 2018-10-07 07:17 /tmp/weather_rep/part-00049-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 75265 2018-10-07 07:17 /tmp/weather_rep/part-00050-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60268 2018-10-07 07:17 /tmp/weather_rep/part-00053-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76993 2018-10-07 07:17 /tmp/weather_rep/part-00058-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 199806 2018-10-07 07:17 /tmp/weather_rep/part-00059-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 40241 2018-10-07 07:17 /tmp/weather_rep/part-00066-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 97540 2018-10-07 07:17 /tmp/weather_rep/part-00068-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 29008 2018-10-07 07:17 /tmp/weather_rep/part-00071-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73180 2018-10-07 07:17 /tmp/weather_rep/part-00078-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3393 2018-10-07 07:17 /tmp/weather_rep/part-00081-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 62817 2018-10-07 07:17 /tmp/weather_rep/part-00084-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3359 2018-10-07 07:17 /tmp/weather_rep/part-00088-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 34895 2018-10-07 07:17 /tmp/weather_rep/part-00092-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 21333 2018-10-07 07:17 /tmp/weather_rep/part-00096-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76141 2018-10-07 07:17 /tmp/weather_rep/part-00098-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 48870 2018-10-07 07:17 /tmp/weather_rep/part-00099-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 31191 2018-10-07 07:17 /tmp/weather_rep/part-00100-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61306 2018-10-07 07:17 /tmp/weather_rep/part-00102-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 145618 2018-10-07 07:17 /tmp/weather_rep/part-00104-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60617 2018-10-07 07:17 /tmp/weather_rep/part-00108-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78265 2018-10-07 07:17 /tmp/weather_rep/part-00111-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 31085 2018-10-07 07:17 /tmp/weather_rep/part-00112-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 90587 2018-10-07 07:17 /tmp/weather_rep/part-00113-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 59706 2018-10-07 07:17 /tmp/weather_rep/part-00114-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 22701 2018-10-07 07:17 /tmp/weather_rep/part-00118-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 66911 2018-10-07 07:17 /tmp/weather_rep/part-00119-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 161560 2018-10-07 07:17 /tmp/weather_rep/part-00122-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 79337 2018-10-07 07:17 /tmp/weather_rep/part-00124-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73118 2018-10-07 07:17 /tmp/weather_rep/part-00127-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 123673 2018-10-07 07:17 /tmp/weather_rep/part-00129-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 75963 2018-10-07 07:17 /tmp/weather_rep/part-00130-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 86810 2018-10-07 07:17 /tmp/weather_rep/part-00132-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 57741 2018-10-07 07:17 /tmp/weather_rep/part-00133-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3160 2018-10-07 07:17 /tmp/weather_rep/part-00134-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 124276 2018-10-07 07:17 /tmp/weather_rep/part-00137-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 68907 2018-10-07 07:17 /tmp/weather_rep/part-00141-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 37198 2018-10-07 07:17 /tmp/weather_rep/part-00143-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 80649 2018-10-07 07:17 /tmp/weather_rep/part-00145-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 12477 2018-10-07 07:17 /tmp/weather_rep/part-00150-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 52018 2018-10-07 07:17 /tmp/weather_rep/part-00151-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 79631 2018-10-07 07:17 /tmp/weather_rep/part-00152-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 90223 2018-10-07 07:17 /tmp/weather_rep/part-00154-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 135687 2018-10-07 07:17 /tmp/weather_rep/part-00156-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 142939 2018-10-07 07:17 /tmp/weather_rep/part-00157-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 63448 2018-10-07 07:17 /tmp/weather_rep/part-00158-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 144695 2018-10-07 07:17 /tmp/weather_rep/part-00163-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 56188 2018-10-07 07:17 /tmp/weather_rep/part-00164-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 163375 2018-10-07 07:17 /tmp/weather_rep/part-00165-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61759 2018-10-07 07:17 /tmp/weather_rep/part-00166-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 18942 2018-10-07 07:17 /tmp/weather_rep/part-00171-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 8239 2018-10-07 07:17 /tmp/weather_rep/part-00172-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78075 2018-10-07 07:17 /tmp/weather_rep/part-00173-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 69343 2018-10-07 07:17 /tmp/weather_rep/part-00174-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 86969 2018-10-07 07:17 /tmp/weather_rep/part-00178-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 30513 2018-10-07 07:17 /tmp/weather_rep/part-00179-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78521 2018-10-07 07:17 /tmp/weather_rep/part-00181-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 69376 2018-10-07 07:17 /tmp/weather_rep/part-00182-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 15683 2018-10-07 07:17 /tmp/weather_rep/part-00186-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 70658 2018-10-07 07:17 /tmp/weather_rep/part-00187-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 33030 2018-10-07 07:17 /tmp/weather_rep/part-00189-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 56766 2018-10-07 07:17 /tmp/weather_rep/part-00191-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78657 2018-10-07 07:17 /tmp/weather_rep/part-00192-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 50076 2018-10-07 07:17 /tmp/weather_rep/part-00195-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78921 2018-10-07 07:17 /tmp/weather_rep/part-00198-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60186 2018-10-07 07:17 /tmp/weather_rep/part-00199-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet ###Markdown Write 16 PartitionsNow let's write the `coalesce`d DataFrame and inspect the result on HDFS ###Code weather_small.write.mode("overwrite").parquet("/tmp/weather_small") ###Output _____no_output_____ ###Markdown Inspect Result ###Code %%bash hdfs dfs -ls /tmp/weather_small ###Output Found 17 items -rw-r--r-- 1 hadoop hadoop 0 2018-10-07 07:17 /tmp/weather_small/_SUCCESS -rw-r--r-- 1 hadoop hadoop 290888 2018-10-07 07:17 /tmp/weather_small/part-00000-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 539188 2018-10-07 07:17 /tmp/weather_small/part-00001-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 490533 2018-10-07 07:17 /tmp/weather_small/part-00002-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 338415 2018-10-07 07:17 /tmp/weather_small/part-00003-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 460959 2018-10-07 07:17 /tmp/weather_small/part-00004-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 358779 2018-10-07 07:17 /tmp/weather_small/part-00005-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 394439 2018-10-07 07:17 /tmp/weather_small/part-00006-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 295745 2018-10-07 07:17 /tmp/weather_small/part-00007-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 274293 2018-10-07 07:17 /tmp/weather_small/part-00008-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 352943 2018-10-07 07:17 /tmp/weather_small/part-00009-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 405437 2018-10-07 07:17 /tmp/weather_small/part-00010-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 337051 2018-10-07 07:17 /tmp/weather_small/part-00011-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 521293 2018-10-07 07:17 /tmp/weather_small/part-00012-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 330085 2018-10-07 07:17 /tmp/weather_small/part-00013-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 365699 2018-10-07 07:17 /tmp/weather_small/part-00014-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 398450 2018-10-07 07:17 /tmp/weather_small/part-00015-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet ###Markdown Repartitioning DataFramesPartitions are a central concept in Apache Spark. They are used for distributing and parallelizing work onto different executors, which run on multiple servers. Determining PartitionsBasically Spark uses two different strategies for splitting up data into multiple partitions:1. When Spark loads data, the records are put into partitions along natural borders. For example every HDFS block (and thereby every file) is represented by a different partition. Therefore the number of partitions of a DataFrame read from disk is solely determined by the number of HDFS blocks2. Certain operations like `JOIN`s and aggregations require that records with the same key are physically in the same partition. This is achieved by a shuffle phase. The number of partitions is specified by the global Spark configuration variable `spark.sql.shuffle.partitions` which has a default value of 200. Repartitiong DataSince partitions have a huge influence on the execution, Spark also allows you to explicitly change the partitioning schema of a DataFrame. This makes sense only in a very limited (but still important) set of cases, which we will discuss in this notebook. Weather ExampleSurprise, surprise, we will again use the weather example and see what explicit repartitioning gives us. ###Code from pyspark.sql import SparkSession if not 'spark' in locals(): spark = SparkSession.builder \ .master("local[*]") \ .config("spark.driver.memory","24G") \ .getOrCreate() spark ###Output _____no_output_____ ###Markdown Disable Automatic Broadcast JOINsIn order to see the shuffle operations, we need to prevent Spark from executiong `JOIN` operations as broadcast joins. Again this can be turned off by setting the Spark configuration variable `spark.sql.autoBroadcastJoinThreshold` to -1. ###Code spark.conf.set("spark.sql.adaptive.enabled", False) spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1) ###Output _____no_output_____ ###Markdown 1 Load DataFirst we load the weather data, which consists of the measurement data and some station metadata. ###Code storageLocation = "s3://dimajix-training/data/weather" ###Output _____no_output_____ ###Markdown 1.1 Load MeasurementsMeasurements are stored in multiple directories (one per year). But we will limit ourselves to a single year in the analysis to improve readability of execution plans. ###Code import pyspark.sql.functions as f from functools import reduce # Read in all years, store them in an Python array raw_weather_per_year = [spark.read.text(storageLocation + "/" + str(i)).withColumn("year", f.lit(i)) for i in range(2003,2015)] # Union all years together raw_weather = reduce(lambda l,r: l.union(r), raw_weather_per_year) ###Output _____no_output_____ ###Markdown Use a single year to keep execution plans small ###Code raw_weather = spark.read.text(storageLocation + "/2003").withColumn("year", f.lit(2003)) ###Output _____no_output_____ ###Markdown Extract MeasurementsMeasurements were stored in a proprietary text based format, with some values at fixed positions. We need to extract these values with a simple `SELECT` statement. ###Code weather = raw_weather.select( f.col("year"), f.substring(f.col("value"),5,6).alias("usaf"), f.substring(f.col("value"),11,5).alias("wban"), f.substring(f.col("value"),16,8).alias("date"), f.substring(f.col("value"),24,4).alias("time"), f.substring(f.col("value"),42,5).alias("report_type"), f.substring(f.col("value"),61,3).alias("wind_direction"), f.substring(f.col("value"),64,1).alias("wind_direction_qual"), f.substring(f.col("value"),65,1).alias("wind_observation"), (f.substring(f.col("value"),66,4).cast("float") / f.lit(10.0)).alias("wind_speed"), f.substring(f.col("value"),70,1).alias("wind_speed_qual"), (f.substring(f.col("value"),88,5).cast("float") / f.lit(10.0)).alias("air_temperature"), f.substring(f.col("value"),93,1).alias("air_temperature_qual") ) ###Output _____no_output_____ ###Markdown 1.2 Load Station MetadataWe also need to load the weather station meta data containing information about the geo location, country etc of individual weather stations. ###Code stations = spark.read \ .option("header", True) \ .csv(storageLocation + "/isd-history") ###Output _____no_output_____ ###Markdown 2 PartitionsSince partitions is a concept at the RDD level and a DataFrame per se does not contain an RDD, we need to access the RDD in order to inspect the number of partitions. ###Code weather.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 2.1 Repartitioning DataYou can repartition any DataFrame by specifying the target number of partitions and the partitioning columns. While it should be clear what *number of partitions* actually means, the term *partitionng columns* might require some explanation. Partitioning ColumnsExcept for the case when Spark initially reads data, all DataFrames are partitioned along *partitioning columns*, which means that all records having the same values in the corresponding columns will end up in the same partition. Spark implicitly performs such repartitioning as shuffle operations for `JOIN`s and grouped aggregation (except when a DataFrame already has the correct partitioning columns and number of partitions) Manual RepartitioningAs already mentioned, you can explicitly repartition a DataFrame using teh `repartition()` method. ###Code weather_rep = weather.repartition(10, weather["usaf"], weather["wban"]) weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 3 Repartition & JoinsAs already mentioned, Spark implicitly performs a repartitioning aka shuffle for `JOIN` operations. Execution PlanSo let us inspect the execution plan of a `JOIN` operation. ###Code result = weather.join(stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"])) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#69] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 11, 5)) AND isnotnull(substring(value#82, 5, 6))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 11, 5)), isnotnull(substring(value#82, 5, 6))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#78] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksAs we already discussed, each `JOIN` is executed with the following steps1. Filter `NULL` values (it's an inner join)2. Repartition DataFrame on the join columns with 200 partitions3. Sort each partition independently4. Perform a `SortMergeJoin` 3.1 Pre-partition data (first try)Now let us try what happens when we explicitly repartition the data before the join operation. ###Code weather_rep = weather.repartition(10, weather["usaf"], weather["wban"]) weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf","wban"]) result.explain() ###Output == Physical Plan == *(5) Project [usaf#87, wban#88, 2003 AS year#84, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#963] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#972] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown ObservationsSpark removed our explicit repartition, since it doesn't help and replaced it with the implicit repartition with 200 partitions 3.2 Pre-partition and Cache (second try)Now let us try if we can cache the shuffle (repartition) and sort operation. This is useful in cases, where you have to perform multiple joins on the same set of columns, for example with different DataFrames.So let's simply repartition the `weather` DataFrame on the two columns `usaf` and `wban`. ###Code weather_rep = weather.repartition(20, weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf","wban"]) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#550] : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- Exchange hashpartitioning(usaf#87, wban#88, 20), false, [id=#402] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#559] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksOuch, now we have *two* shuffle operations. The reason is that Spark will use the default number of partitions for the JOIN operation, but we cached a differently partitioned DataFrame. 3.3 Pre-partition and Cache (third try)Now let us try if we can cache the shuffle (repartition) and sort operation. This is useful in cases, where you have to perform multiple joins on the same set of columns, for example with different DataFrames.So let's simply repartition the `weather` DataFrame on the two columns `usaf` and `wban`. We also have to use 200 partitions, because this is what Spark will use for `JOIN` operations. ###Code weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution PlanLet's analyze the resulting execution plan. Ideally all the preparation work before the `SortMergeJoin` happens before the `cache` operation. ###Code result = weather_rep.join(stations, ["usaf","wban"]) result.explain() ###Output == Physical Plan == *(4) Project [usaf#87, wban#88, year#84, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(4) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(1) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#992] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(3) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#1029] +- *(2) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(2) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksWe did not reach completely what we wanted. The `sort` and `filter` operation still occur after the cache. 3.4 Pre-partition and Cache (fourth try)We already partially achieved our goal of caching all preparational work of the `SortMergeJoin`, but the sorting was still preformed after the caching. So let's try to insert an appropriate sort operation. ###Code # Release cache to simplify execution plan weather_rep.unpersist() weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) \ .orderBy(weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution Plan ###Code result = weather_rep.join(stations, ["usaf","wban"]) result.explain() ###Output == Physical Plan == *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#662] : +- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], true, 0 : +- Exchange rangepartitioning(usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST, 200), true, [id=#623] : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#622] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#671] +- *(3) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksWe actually created a worse situation: Now we have two sort operations! Definately not what we wanted to have.So let's think for a moment: The `SortMergeJoin` requires that each partition is sorted, but after the repartioning occured. The `orderBy` operation we used above will create a global order over all partitions (and thereby destroy all the repartition work immediately). So we need something else, which still keeps the current partitions but only sort in each partition independently. 3.5 Pre-partition and Cache (final try)Fortunately Spark provides a `sortWithinPartitions` method, which does exactly what it sounds like. ###Code # Release cache to simplify execution plan weather_rep.unpersist() weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) \ .sortWithinPartitions(weather["usaf"], weather["wban"]) weather_rep.cache() ###Output _____no_output_____ ###Markdown Execution Plan ###Code result = weather_rep.join(stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"])) result.explain() ###Output == Physical Plan == *(4) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(1) Filter (isnotnull(wban#88) AND isnotnull(usaf#87)) : +- InMemoryTableScan [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], [isnotnull(wban#88), isnotnull(usaf#87)] : +- InMemoryRelation [year#84, usaf#87, wban#88, date#89, time#90, report_type#91, wind_direction#92, wind_direction_qual#93, wind_observation#94, wind_speed#95, wind_speed_qual#96, air_temperature#97, air_temperature_qual#98], StorageLevel(disk, memory, deserialized, 1 replicas) : +- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), false, [id=#694] : +- *(1) Project [2003 AS year#84, substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, substring(value#82, 16, 8) AS date#89, substring(value#82, 24, 4) AS time#90, substring(value#82, 42, 5) AS report_type#91, substring(value#82, 61, 3) AS wind_direction#92, substring(value#82, 64, 1) AS wind_direction_qual#93, substring(value#82, 65, 1) AS wind_observation#94, (cast(cast(substring(value#82, 66, 4) as float) as double) / 10.0) AS wind_speed#95, substring(value#82, 70, 1) AS wind_speed_qual#96, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(3) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#727] +- *(2) Project [USAF#128, WBAN#129, STATION NAME#130, CTRY#131, STATE#132, ICAO#133, LAT#134, LON#135, ELEV(M)#136, BEGIN#137, END#138] +- *(2) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129,STATION NAME#130,CTRY#131,STATE#132,ICAO#133,LAT#134,LON#135,ELEV(M)#136,BEGIN#137,END#138] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,STATION NAME:string,CTRY:string,STATE:string,ICAO:string,LAT:strin... ###Markdown RemarksThat looks really good. The filter operation is still executed after the cache, but that cannot be cached such that Spark uses this information.So whenever you want to prepartition data, you need to execute the following steps:* repartition with the join columns and default number of partitions* sortWithinPartitions with the join columns* probably cache (otherwise there is no benefit at all) Inspect WebUIWe can also inspect the WebUI and see how everything is executed. Phase 1: Build cache ###Code result.count() ###Output _____no_output_____ ###Markdown Phase 2: Use cache ###Code result.count() ###Output _____no_output_____ ###Markdown 4 Repartition & AggregationsSimilar to `JOIN` operations, Spark also requires an appropriate partitioning in grouped aggregations. Again, we can use the same strategy and appropriateky prepartition data in cases where multiple joins and aggregations are performed using the same columns. 4.1 Simple AggregationSo let's perform the usual aggregation (but this time without a previous `JOIN`) with groups defined by the station id (`usaf` and `wban`). ###Code result = weather.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(weather.air_temperature_qual == f.lit(1), weather.air_temperature)).alias('min_temp'), f.max(f.when(weather.air_temperature_qual == f.lit(1), weather.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#779] +- *(1) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> ###Markdown RemarksEach grouped aggregation is executed with the following steps:1. Perform partial aggregation (`HashAggregate`)2. Shuffle intermediate result (`Exchange hashpartitioning`)3. Perform final aggregation (`HashAggregate`) 4.2 Aggregation after repartitionNow let us perform the same aggregation, but this time let's use the preaggregated weather data set `weather_rep` instead. ###Code weather_rep = weather.repartition(87, weather["usaf"], weather["wban"]) weather_rep.unpersist() result = weather_rep.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(weather_rep.air_temperature_qual == f.lit(1), weather_rep.air_temperature)).alias('min_temp'), f.max(f.when(weather_rep.air_temperature_qual == f.lit(1), weather_rep.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 87), false, [id=#391] +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] +- FileScan text [value#82] Batched: false, DataFilters: [], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> ###Markdown RemarksSpark obviously detects the correct partitioning of the `weather_rep` DataFrame. The sorting actually is not required, but does not hurt either (except performance...). Therefore only two steps are executed after the cache operation:1. Partial aggregation (`HashAggregate`)2. Final aggregation (`HashAggregate`)But note that although you saved a shuffle operation of partial aggregates, in most cases it is not adviseable to prepartition data only for aggregations for the following reasons:* You could perform all aggregations in a single `groupBy` and `agg` chain* In most cases the preaggregated data is significantly smaller than the original data, therefore the shuffle doesn't hurt that much 5 Interaction between Join, Aggregate & RepartitionNow we have seen two operations which require a shuffle of the data. Of course Spark is clever enough to avoid an additional shuffle operation in chains of `JOIN` and grouped aggregations, which use the same aggregation columns. 5.1 Aggregation after Join on same keySo let's see what happens with a grouped aggregation after a join operation. ###Code joined = weather.join(stations, (weather["usaf"] == stations["usaf"]) & (weather["wban"] == stations["wban"])) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('min_temp'), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(5) SortMergeJoin [usaf#87, wban#88], [usaf#128, wban#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#840] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [usaf#128 ASC NULLS FIRST, wban#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(usaf#128, wban#129, 200), true, [id=#849] +- *(3) Project [USAF#128, WBAN#129] +- *(3) Filter (isnotnull(usaf#128) AND isnotnull(wban#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown RemarksAs you can see, Spark performs a single shuffle operation. The order of operation is as follows:1. Filter `NULL` values (it's an inner join)2. Shuffle data on `usaf` and `wban`3. Sort partitions by `usaf` and `wban`4. Perform `SortMergeJoin`5. Perform partial aggregation `HashAggregate`6. Perform final aggregation `HashAggregate` 5.2 Aggregation after Join using repartitioned dataOf course we can also use the pre-repartitioned weather DataFrame. This will work as expected, Spark does not add any additional shuffle operation. ###Code weather_rep = weather.repartition(84, weather["usaf"], weather["wban"]) joined = weather_rep.join(stations, ["usaf","wban"]) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('min_temp'), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#893] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#902] +- *(3) Project [USAF#128, WBAN#129] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown Note that the explicit repartition has been removed by Spark - therefore it doesn't make any sense to `repartition` before a join operation. 5.3 Aggregation after Join with different keySo far we only looked at join and grouping operations using the same keys. If we use different keys (for example the country) in both operations, we expect Spark to add an additional shuffle operations. Let's see... ###Code joined = weather.join(stations, ["usaf","wban"]) result = joined.groupBy(stations["ctry"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('min_temp'), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(6) HashAggregate(keys=[ctry#131], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(ctry#131, 200), true, [id=#645] +- *(5) HashAggregate(keys=[ctry#131], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(5) Project [air_temperature#97, air_temperature_qual#98, CTRY#131] +- *(5) SortMergeJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner :- *(2) Sort [usaf#87 ASC NULLS FIRST, wban#88 ASC NULLS FIRST], false, 0 : +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#627] : +- *(1) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(1) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- *(4) Sort [USAF#128 ASC NULLS FIRST, WBAN#129 ASC NULLS FIRST], false, 0 +- Exchange hashpartitioning(USAF#128, WBAN#129, 200), true, [id=#636] +- *(3) Project [USAF#128, WBAN#129, CTRY#131] +- *(3) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129,CTRY#131] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string,CTRY:string> ###Markdown 5.4 Aggregation after Broadcast-Join If we use a broadcast join instead of a sort merge join, the we will have a shuffle operation for the aggregation again (since the broadcast join just avoids the shuffle). Let's verify that theory... ###Code joined = weather.join(f.broadcast(stations), ["usaf","wban"]) result = joined.groupBy(weather["usaf"], weather["wban"]).agg( f.min(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('min_temp'), f.max(f.when(joined.air_temperature_qual == f.lit(1), joined.air_temperature)).alias('max_temp'), ) result.explain() ###Output == Physical Plan == *(3) HashAggregate(keys=[usaf#87, wban#88], functions=[min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- Exchange hashpartitioning(usaf#87, wban#88, 200), true, [id=#578] +- *(2) HashAggregate(keys=[usaf#87, wban#88], functions=[partial_min(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END), partial_max(CASE WHEN (cast(air_temperature_qual#98 as int) = 1) THEN air_temperature#97 END)]) +- *(2) Project [usaf#87, wban#88, air_temperature#97, air_temperature_qual#98] +- *(2) BroadcastHashJoin [usaf#87, wban#88], [USAF#128, WBAN#129], Inner, BuildRight :- *(2) Project [substring(value#82, 5, 6) AS usaf#87, substring(value#82, 11, 5) AS wban#88, (cast(cast(substring(value#82, 88, 5) as float) as double) / 10.0) AS air_temperature#97, substring(value#82, 93, 1) AS air_temperature_qual#98] : +- *(2) Filter (isnotnull(substring(value#82, 5, 6)) AND isnotnull(substring(value#82, 11, 5))) : +- FileScan text [value#82] Batched: false, DataFilters: [isnotnull(substring(value#82, 5, 6)), isnotnull(substring(value#82, 11, 5))], Format: Text, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/2003], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string> +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true], input[1, string, true])), [id=#572] +- *(1) Project [USAF#128, WBAN#129] +- *(1) Filter (isnotnull(USAF#128) AND isnotnull(WBAN#129)) +- FileScan csv [USAF#128,WBAN#129] Batched: false, DataFilters: [isnotnull(USAF#128), isnotnull(WBAN#129)], Format: CSV, Location: InMemoryFileIndex[file:/dimajix/data/weather-noaa-sample/isd-history], PartitionFilters: [], PushedFilters: [IsNotNull(USAF), IsNotNull(WBAN)], ReadSchema: struct<USAF:string,WBAN:string> ###Markdown 6 CoalesceThere is another use case for changing the number of partitions: Writing results to HDFS/S3/whatever. Per design Spark writes each partition into a separate file, and there is no way around that. But when partitions do not contain many records, this may not only be ugly, but also unperformant and might cause additional trouble. Specifically currently HDFS is not designed to handle many small files, but prefers fewer large files instead.Therefore it is often desireable to reduce the number of partitions of a DataFrame just before writing the result to disk. You could perform this task by a `repartition` operation, but this is an expensive operation requiring an additional shuffle operation. Therefore Spark provides an additional method called `coalesce` which can be used to reduce the number of partitions without incurring an additional shuffle. Spark simply logically concatenates multiple partitions into new partitions. Inspect Number of PartitionsFor this example, we will use the `weather_rep` DataFrame, which contains exactly 200 partitions. ###Code weather_rep = weather.repartition(200, weather["usaf"], weather["wban"]) weather_rep.cache() weather_rep.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown 6.1 Merge Partitions using coalesceIn order to reduce the number of partitions, we simply use the `coalesce` method. ###Code weather_small = weather_rep.coalesce(16) weather_small.explain() weather_small.rdd.getNumPartitions() ###Output _____no_output_____ ###Markdown Inspect WebUI ###Code weather_rep.count() ###Output _____no_output_____ ###Markdown 6.2 Saving filesWe already discussed that Spark writes a separate file per partition. So let's see the result when we write the `weather_rep` DataFrame containing 200 partitions. Write 200 Partitions ###Code weather_rep.write.mode("overwrite").parquet("/tmp/weather_rep") ###Output _____no_output_____ ###Markdown Inspect the ResultUsing a simple HDFS CLI util, we can inspect the result on HDFS. ###Code %%bash hdfs dfs -ls /tmp/weather_rep ###Output Found 91 items -rw-r--r-- 1 hadoop hadoop 0 2018-10-07 07:17 /tmp/weather_rep/_SUCCESS -rw-r--r-- 1 hadoop hadoop 1337 2018-10-07 07:16 /tmp/weather_rep/part-00000-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 24241 2018-10-07 07:16 /tmp/weather_rep/part-00003-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 63340 2018-10-07 07:17 /tmp/weather_rep/part-00005-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 32695 2018-10-07 07:17 /tmp/weather_rep/part-00006-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 126661 2018-10-07 07:17 /tmp/weather_rep/part-00011-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 89610 2018-10-07 07:17 /tmp/weather_rep/part-00013-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73063 2018-10-07 07:17 /tmp/weather_rep/part-00014-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 70655 2018-10-07 07:17 /tmp/weather_rep/part-00016-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61512 2018-10-07 07:17 /tmp/weather_rep/part-00017-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 181909 2018-10-07 07:17 /tmp/weather_rep/part-00025-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 67545 2018-10-07 07:17 /tmp/weather_rep/part-00026-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 87515 2018-10-07 07:17 /tmp/weather_rep/part-00028-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76725 2018-10-07 07:17 /tmp/weather_rep/part-00031-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 16246 2018-10-07 07:17 /tmp/weather_rep/part-00032-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 68058 2018-10-07 07:17 /tmp/weather_rep/part-00033-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 84538 2018-10-07 07:17 /tmp/weather_rep/part-00034-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73316 2018-10-07 07:17 /tmp/weather_rep/part-00035-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 123655 2018-10-07 07:17 /tmp/weather_rep/part-00036-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 37920 2018-10-07 07:17 /tmp/weather_rep/part-00038-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 57775 2018-10-07 07:17 /tmp/weather_rep/part-00039-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 67351 2018-10-07 07:17 /tmp/weather_rep/part-00040-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 55996 2018-10-07 07:17 /tmp/weather_rep/part-00041-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 59784 2018-10-07 07:17 /tmp/weather_rep/part-00043-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 80773 2018-10-07 07:17 /tmp/weather_rep/part-00046-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 84986 2018-10-07 07:17 /tmp/weather_rep/part-00048-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 133418 2018-10-07 07:17 /tmp/weather_rep/part-00049-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 75265 2018-10-07 07:17 /tmp/weather_rep/part-00050-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60268 2018-10-07 07:17 /tmp/weather_rep/part-00053-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76993 2018-10-07 07:17 /tmp/weather_rep/part-00058-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 199806 2018-10-07 07:17 /tmp/weather_rep/part-00059-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 40241 2018-10-07 07:17 /tmp/weather_rep/part-00066-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 97540 2018-10-07 07:17 /tmp/weather_rep/part-00068-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 29008 2018-10-07 07:17 /tmp/weather_rep/part-00071-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73180 2018-10-07 07:17 /tmp/weather_rep/part-00078-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3393 2018-10-07 07:17 /tmp/weather_rep/part-00081-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 62817 2018-10-07 07:17 /tmp/weather_rep/part-00084-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3359 2018-10-07 07:17 /tmp/weather_rep/part-00088-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 34895 2018-10-07 07:17 /tmp/weather_rep/part-00092-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 21333 2018-10-07 07:17 /tmp/weather_rep/part-00096-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 76141 2018-10-07 07:17 /tmp/weather_rep/part-00098-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 48870 2018-10-07 07:17 /tmp/weather_rep/part-00099-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 31191 2018-10-07 07:17 /tmp/weather_rep/part-00100-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61306 2018-10-07 07:17 /tmp/weather_rep/part-00102-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 145618 2018-10-07 07:17 /tmp/weather_rep/part-00104-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60617 2018-10-07 07:17 /tmp/weather_rep/part-00108-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78265 2018-10-07 07:17 /tmp/weather_rep/part-00111-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 31085 2018-10-07 07:17 /tmp/weather_rep/part-00112-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 90587 2018-10-07 07:17 /tmp/weather_rep/part-00113-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 59706 2018-10-07 07:17 /tmp/weather_rep/part-00114-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 22701 2018-10-07 07:17 /tmp/weather_rep/part-00118-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 66911 2018-10-07 07:17 /tmp/weather_rep/part-00119-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 161560 2018-10-07 07:17 /tmp/weather_rep/part-00122-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 79337 2018-10-07 07:17 /tmp/weather_rep/part-00124-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 73118 2018-10-07 07:17 /tmp/weather_rep/part-00127-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 123673 2018-10-07 07:17 /tmp/weather_rep/part-00129-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 75963 2018-10-07 07:17 /tmp/weather_rep/part-00130-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 86810 2018-10-07 07:17 /tmp/weather_rep/part-00132-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 57741 2018-10-07 07:17 /tmp/weather_rep/part-00133-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 3160 2018-10-07 07:17 /tmp/weather_rep/part-00134-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 124276 2018-10-07 07:17 /tmp/weather_rep/part-00137-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 68907 2018-10-07 07:17 /tmp/weather_rep/part-00141-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 37198 2018-10-07 07:17 /tmp/weather_rep/part-00143-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 80649 2018-10-07 07:17 /tmp/weather_rep/part-00145-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 12477 2018-10-07 07:17 /tmp/weather_rep/part-00150-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 52018 2018-10-07 07:17 /tmp/weather_rep/part-00151-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 79631 2018-10-07 07:17 /tmp/weather_rep/part-00152-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 90223 2018-10-07 07:17 /tmp/weather_rep/part-00154-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 135687 2018-10-07 07:17 /tmp/weather_rep/part-00156-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 142939 2018-10-07 07:17 /tmp/weather_rep/part-00157-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 63448 2018-10-07 07:17 /tmp/weather_rep/part-00158-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 144695 2018-10-07 07:17 /tmp/weather_rep/part-00163-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 56188 2018-10-07 07:17 /tmp/weather_rep/part-00164-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 163375 2018-10-07 07:17 /tmp/weather_rep/part-00165-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 61759 2018-10-07 07:17 /tmp/weather_rep/part-00166-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 18942 2018-10-07 07:17 /tmp/weather_rep/part-00171-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 8239 2018-10-07 07:17 /tmp/weather_rep/part-00172-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78075 2018-10-07 07:17 /tmp/weather_rep/part-00173-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 69343 2018-10-07 07:17 /tmp/weather_rep/part-00174-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 86969 2018-10-07 07:17 /tmp/weather_rep/part-00178-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 30513 2018-10-07 07:17 /tmp/weather_rep/part-00179-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78521 2018-10-07 07:17 /tmp/weather_rep/part-00181-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 69376 2018-10-07 07:17 /tmp/weather_rep/part-00182-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 15683 2018-10-07 07:17 /tmp/weather_rep/part-00186-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 70658 2018-10-07 07:17 /tmp/weather_rep/part-00187-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 33030 2018-10-07 07:17 /tmp/weather_rep/part-00189-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 56766 2018-10-07 07:17 /tmp/weather_rep/part-00191-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78657 2018-10-07 07:17 /tmp/weather_rep/part-00192-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 50076 2018-10-07 07:17 /tmp/weather_rep/part-00195-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 78921 2018-10-07 07:17 /tmp/weather_rep/part-00198-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 60186 2018-10-07 07:17 /tmp/weather_rep/part-00199-19014412-a1e6-4348-a41d-49986590b40b-c000.snappy.parquet ###Markdown Write 16 PartitionsNow let's write the `coalesce`d DataFrame and inspect the result on HDFS ###Code weather_small.write.mode("overwrite").parquet("/tmp/weather_small") ###Output _____no_output_____ ###Markdown Inspect Result ###Code %%bash hdfs dfs -ls /tmp/weather_small ###Output Found 17 items -rw-r--r-- 1 hadoop hadoop 0 2018-10-07 07:17 /tmp/weather_small/_SUCCESS -rw-r--r-- 1 hadoop hadoop 290888 2018-10-07 07:17 /tmp/weather_small/part-00000-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 539188 2018-10-07 07:17 /tmp/weather_small/part-00001-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 490533 2018-10-07 07:17 /tmp/weather_small/part-00002-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 338415 2018-10-07 07:17 /tmp/weather_small/part-00003-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 460959 2018-10-07 07:17 /tmp/weather_small/part-00004-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 358779 2018-10-07 07:17 /tmp/weather_small/part-00005-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 394439 2018-10-07 07:17 /tmp/weather_small/part-00006-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 295745 2018-10-07 07:17 /tmp/weather_small/part-00007-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 274293 2018-10-07 07:17 /tmp/weather_small/part-00008-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 352943 2018-10-07 07:17 /tmp/weather_small/part-00009-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 405437 2018-10-07 07:17 /tmp/weather_small/part-00010-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 337051 2018-10-07 07:17 /tmp/weather_small/part-00011-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 521293 2018-10-07 07:17 /tmp/weather_small/part-00012-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 330085 2018-10-07 07:17 /tmp/weather_small/part-00013-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 365699 2018-10-07 07:17 /tmp/weather_small/part-00014-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet -rw-r--r-- 1 hadoop hadoop 398450 2018-10-07 07:17 /tmp/weather_small/part-00015-31d2cdf1-532c-4549-b706-d040d0a0921b-c000.snappy.parquet
2018-05-27-coffee.ipynb
###Markdown Using Bayesian inference to pick Coffee ShopsI like going to coffee shops in Edinburgh. I have opinions of them: some are better for meeting a friend and others are totally not laptop-friendly.| | | ||-|-|-|| ![](images/2018-05-27-spoon.png) | ![](images/2018-05-27-twelve-triangles.png) | ![](images/2018-05-27-cairngorm.png) | In this post, I prototype a way to use my opinions to rank coffee shops using a really simple probabilistic model. ![](images/2018-05-27-ranking.png) Ranking based on ComparisonsSince ranking 20+ coffee shops is not that much fun, I'll gather data as comparisons of pairs of coffee shops. For example, I'll tell my system that I think BrewLab is a lot more laptop-friendly than Wellington Coffee, but that BrewLab and Levels are equally laptop-friendly. Then I'll figure out which are the best and worst coffee shops for laptops using probabilistic modelling.Using pairs is convenient because it means I can borrow from approaches that rank players based on matches, like [this `pymc3` demo](https://docs.pymc.io/notebooks/rugby_analytics.html) or [Microsoft's post on TrueSkill](https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/). (We also had a homework assignment on the math of this problem.) Coffee shopsVery important is what I mean by the attributes for coffee shops. For now, I'm using four metrics defined below in `METRIC_LIST`. They are - **reading**: Chill and reading a book - **laptop**: Camp out and doing work on my laptop - **meet**: Meet up with someone - **group**: Grab a table and hang out with folks These metrics are completely independent. It's more like four copies of the same problem with data stored in one place. ###Code import os import json from collections import namedtuple import matplotlib.pyplot as plt import numpy as np import pymc3 as pm import seaborn as sns import yaml # helper functions you can skip over :D def hide_ticks(plot): plot.axes.get_xaxis().set_visible(False) plot.axes.get_yaxis().set_visible(False) SAVE = True def maybe_save_plot(filename): if SAVE: plt.tight_layout() plt.savefig('images/' + filename, bbox_inches="tight") ###Output _____no_output_____ ###Markdown Part 1: Data MetadataWhen I go into `pymc3` land, the data will end up in a big matrix. I'd like a way to associate indexes with static information about the coffee shop, like its name and location. This will come in handy later when I want to label plots or build an app.I really like using [YAML](http://yaml.org) for human-entered, computer-readable data. I entered a list of metadata about the coffee places I've visited in `data/coffee_metadata.yaml`. The `id` field is a human-readable unique identifier. - name: BrewLab id: brewlab location: university - name: Cult Espresso id: cult location: universityI also like using `namedtuples` to enforce schemas and catch typos when loading `yaml` or `json` files. I'll define a namedtuple `Metadata` for the above data and load the file. Then I'll make some useful data structures to map back and forth from id to index. The index in the data matrix will just be the position of the metadata dictionary in the `data/coffee_metadata.yaml` list. (I'm assuming `id` is unique and it won't ever change. When I save data, I'll associate data with a coffee shop by using it's `id`, not it's location in the matrix. I chose having a unique `id` field over using the index in the matrix because it's human-readable, which makes it easier to update incorrect comparisons, and it makes it trivial to add new coffee shops without changing matrix sizes.) ###Code Metadata = namedtuple('Metadata', ['name', 'id', 'location']) with open('data/coffee_metadata.yaml') as f: raw_data = yaml.load(f) metadata = [Metadata(**place) for place in raw_data] # this will be useful for converting an index into the id and back index_to_id = [d.id for d in metadata] ids_set = set(index_to_id) id_to_index = {name: i for i, name in enumerate(index_to_id)} num_items = len(index_to_id) # check ids are unique assert len(index_to_id) == len(ids_set), 'duplicate id! {}'.format( set(x for x in index_to_id if index_to_id.count(x) > 1) # thanks https://stackoverflow.com/questions/9835762/how-do-i-find-the-duplicates-in-a-list-and-create-another-list-with-them ) ###Output _____no_output_____ ###Markdown Loading comparisonsI like to store data that humans shouldn't need to mess with in a file with lines of `json`. Worst-case, I can go in and delete or change a value, but I don't need to think about weird key orders that writing `yaml` has.A file showing two comparisons would look like this: {"metric": "meet", "first": "artisan_broughton", "last": "cairngorm_george", "weight": 0.5} {"metric": "meet", "first": "wellington", "last": "twelve_triangles_portobello", "weight": 0.5} Here's the idea: `metric` is which metric I'm trying to measure. In this case, `meeting` means where I like to meet up with someone. `first` and `last` are the two `id`s that should be in the big list of coffee shop `metadata` defined above. `weight` is how much better `first` is than `last`. It could be negative if I really want. ###Code METRIC_LIST = ['meet', 'group', 'laptop', 'reading'] COMPARISON_FILE = 'data/coffee_comparisons.json' Comparison = namedtuple('Comparison', ['metric', 'first', 'last', 'weight']) metric_set = set(METRIC_LIST) def load_comparisons(): if os.path.isfile(COMPARISON_FILE): with open(COMPARISON_FILE) as f: all_comparisons = [ Comparison(**json.loads(line)) for line in f ] # make sure all metrics are legal! for c in all_comparisons: assert c.metric in metric_set, 'metric `{}` not in {}'.format(c.metric, metric_set) assert c.first in ids_set, 'id `{}` not in {}'.format(c.first, ids_set) assert c.last in ids_set, 'id `{}` not in {}'.format(c.last, ids_set) print('Loaded {} comparisons'.format(len(all_comparisons))) else: print("No comparision data yet. No worries, I'll create one in a second.") all_comparisons = [] return all_comparisons all_comparisons = load_comparisons() ###Output Loaded 72 comparisons ###Markdown Initial comparisonsIf I have no data so far, I can begin by requesting a few comparisons between two randomly selected coffee shops.The code will show me a `metric` name, and the first coffee shop id and second coffee shop id. Then I'll type in a number between 1 and 5. Here's what the keys mean: - `1`: totally the first coffee shop - `2`: lean towards the first coffee shop - `3`: draw - `4`: lean towards the second coffee shop - `5`: totally the second coffee shop ###Code def keypress_to_entry_comparison(keypress, id1, id2): '''Convert according to the following requirement. "1": 1.0 for id1 "2": 0.5 for id1 "3": 0.0 (a draw!) "4": 0.5 for id2 "5": 1.0 for id2 ''' keypress = int(keypress) if keypress < 1 or keypress > 5: raise Exception("bad key!") data = { 'weight': (3 - keypress) / 2, 'first': id1, 'last': id2, } # swap if negative if data['weight'] < 0: tmp = data['first'] data['first'] = data['second'] data['second'] = tmp return data # The plan is to select two random `id`s. This block defines some reasons why # we shouldn't bother asking about the pairs. def already_have_comparison(matches, metric, a, b): '''Returns true if ids `id1` and `id2` already have been compared for this stat''' all_comparison_pairs = set((c.first, c.last) for c in all_comparisons if c.metric == metric) return (a, b) in all_comparison_pairs or (b, a) in all_comparison_pairs def is_comparison_to_self(id1, id2): '''Returns true if `id1` and `id2` are the same''' return id1 == id2 ###Output _____no_output_____ ###Markdown Inputting comparisonsThis part gets nostalgic. A lot of my first programs were about asking for data from the user. Over time I've moved to different approaches, like the YAML file above, but I think this way works better because the computer is choosing which items to show me. As an example session: laptop 1) lowdown 5) wellington? 1 laptop 1) black_medicine 5) levels? 4 laptop 1) artisan_stockbridge 5) castello? q I can type `q` to exit. Otherwise, I'll be asked to compare two coffee shops and should type a number between 1 and 5.(If you want to run this, set `SHOULD_ASK = True`. I turn it off by default so I can run the entire notebook without being asked for input.) ###Code # Change this to True to start answering questions! # It's False by default so you can run the full notebook SHOULD_ASK = False # Update METRICS_TO_CHECK with the list of attributes this should ask about METRICS_TO_CHECK = METRIC_LIST # Note! I'm using a for-loop here so it doesn't continue forever if it can't # find anymore matches. Normally, I'm planning to press `q` to quit. MAX_CHECK = 100 if SHOULD_ASK else 0 for _ in range(MAX_CHECK): # Eh, reload the comparisons so I don't ask for duplicates in this session # Choose a random stat metric = np.random.choice(METRICS_TO_CHECK) # Choose two random ids id1, id2 = np.random.choice(index_to_id, size=2, replace=False) if is_comparison_to_self(id1, id2): print('Duplicate!') continue if already_have_comparison(all_comparisons, metric, id1, id2): print('Already have comparison of {} and {} for {}'.format(id1, id2, metric)) continue keyboard_input = input('{} 1) {} 5) {}? '.format(metric, id1, id2)) if keyboard_input == 'q': break entry_comparison = keypress_to_entry_comparison(keyboard_input, id1, id2) # modify entry_comparison to add stats to the entry comparison. entry_comparison['metric'] = metric # now append to the comparison file! with open(COMPARISON_FILE, 'a') as f: f.write(json.dumps(entry_comparison)) f.write('\n') ###Output _____no_output_____ ###Markdown Aside: exploring comparisions dataI can check what comparisons I have data for. Since the comparison is symmetric, I'll mark sides of the matrix. ###Code all_comparisons = load_comparisons() matches = { k: np.zeros((num_items, num_items)) for k in METRIC_LIST } for c in all_comparisons: # only use the most recent weight. matches[c.metric][id_to_index[c.first], id_to_index[c.last]] = c.weight matches[c.metric][id_to_index[c.last], id_to_index[c.first]] = -c.weight fig, axs = plt.subplots(2, 2, figsize=(8, 8)) axs = axs.flatten() for ax, (k, v) in zip(axs, matches.items()): ax.imshow(v) ax.set_title(k) hide_ticks(ax) plt.tight_layout() maybe_save_plot('2018-05-27-pairwise-comparison') plt.show() ###Output _____no_output_____ ###Markdown I can also show a plot of the weights. This shows how my data is a little odd: I only ever store positive numbers, and they're rarely 0. I'm going to ignore it in this post, but I think it's something my non-prototype model should take into account. ###Code # sorry i'm doing this four times all_ratings = [ [ c.weight for c in all_comparisons if c.metric == metric ] for metric in METRIC_LIST ] plt.ylabel("weights") sns.swarmplot(data=all_ratings, edgecolor="black", linewidth=.9) plt.xticks(plt.xticks()[0], METRIC_LIST) maybe_save_plot('2018-05-27-comparisons-box') pass ###Output _____no_output_____ ###Markdown Part 2: ModellingFor the rest of this notebook, I'll limit the scope to a single metric by setting `METRIC_NAME = laptop`. To explore other metrics, I can update that string and rerun the following cells. ModelUsing the `laptop` metric as an example, my model says there is some unknown `laptop` metric for each coffee shop. This is what I'm trying to learn. The metric is Gaussian distributed around some mean. Given enough data, it should approach the actual laptop-friendliness of the coffee shop. When I said that BrewLab was better for laptop work than Wellington Coffee, my model takes that to mean that BrewLab's `laptop` metric is probably higher than Wellington's. Specifically, the number between 0 and 1 that I gave it is the difference between BrewLab's mean and Wellington's mean.When I make a comparison, I might be a little off and the weights might be noisy. Maybe I'm more enthusiastic about Cairngorm over Press because I haven't been to Press recently. `pymc3` can take that into account too! I'll say my comparison weight is also Gaussian distributed.I'm basing my code on [this tutorial](https://docs.pymc.io/notebooks/rugby_analytics.html) but with the above model. Like the rugby model, I also use one shared `HalfStudentT` variable for the metric's standard deviations.For each comparison, I compute the difference between the "true_metric" for the first and second coffee shop, and say that should be around the score I actually gave it. WarningBecause the model is probably making terrible assumptions that I can't recognize yet, I'm mostly using this model to see how a `pymc3` model could fit into this project. I can always go back and improve the model! ###Code METRIC_NAME = 'laptop' all_comparisons = load_comparisons() FIRST = 0 LAST = 1 comparison_matrix = np.vstack( (id_to_index[c.first], id_to_index[c.last]) for c in all_comparisons if c.metric == METRIC_NAME ) weight_vector = np.vstack( c.weight for c in all_comparisons if c.metric == METRIC_NAME ) print('using {} observations for {}'.format(weight_vector.shape[0], METRIC_NAME)) model = pm.Model() with model: metric_sd = pm.HalfStudentT('metric_sd', nu=1, sd=3) true_metric = pm.Normal(METRIC_NAME, mu=0, sd=metric_sd, shape=num_items) comparison = pm.Deterministic( 'comparison', ( true_metric[comparison_matrix[:, FIRST]] - true_metric[comparison_matrix[:, LAST]] ) ) obs = pm.StudentT('obs', nu=7, mu=comparison, sd=0.25, observed=weight_vector) trace = pm.sample(500, tune=1000, cores=3) ###Output Loaded 72 comparisons using 21 observations for laptop ###Markdown `pymc3` gives a lot of tools to check how well sampling went. I'm still learning how they work, but nothing jumps out yet. - The sampler gave that the number of effective samples is small, but [they](https://discourse.pymc.io/t/the-number-of-effective-samples-is-smaller-than-25-for-some-parameters/1050) say that's probably okay. - Below I plot the `traceplot`. I told it to sample with 3 chains. There are three copies of each distribution which are all in roughly the same place. ###Code pm.traceplot(trace) maybe_save_plot('2018-05-27-traceplot') plt.show() ###Output _____no_output_____ ###Markdown Plotting*Watch out:* Now that I need to interpret the results, I'm at high risk of making embarrassing assumptions that I will use in the future as a "don't do it this way" :DLike [this tutorial](https://docs.pymc.io/notebooks/rugby_analytics.html), I'll plot the medians from the samples and use the Highest Posterior Density (HPD) as credible intervals. HPD finds the smallest range of the posterior distribution that contains 95% of its mass.This looks really cool! ###Code # code for plots def plot_hpd(trace, field_name, unsorted_labels): unsorted_medians = pm.stats.quantiles(trace[field_name])[50] unsorted_err = np.abs(pm.stats.hpd(trace[field_name]).T - unsorted_medians) sorted_indices = np.argsort(unsorted_medians) median = unsorted_medians[sorted_indices] err = unsorted_err[:, sorted_indices] labels = unsorted_labels[sorted_indices] fig = plt.figure(figsize=(6, 6)) plt.errorbar(median, range(len(median)), xerr=err, fmt='o', label=field_name) for i, label in enumerate(labels): plt.text(np.min(median - err[0]) * 1.1, i, s=label, horizontalalignment='right', verticalalignment='center') plt.title('{}'.format(field_name)) plt.axis('off') return sorted_indices plot_hpd(trace, METRIC_NAME, np.array(index_to_id)) maybe_save_plot('2018-05-27-ranking') pass ###Output _____no_output_____ ###Markdown I think I can take two coffee shops and ask in how many posterior samples one better than the other. When the model doesn't have much opinion, it's close to 0.5. Otherwise it's closer to 1 or 0. ###Code def plot_posterior(ax, trace, metric, coffee_id): sns.kdeplot(trace[metric][:, id_to_index[coffee_id]], shade=True, label=coffee_id, ax=ax) def compare_two(trace, metric, a, b): results_a = trace[metric][:, id_to_index[a]] results_b = trace[metric][:, id_to_index[b]] return (results_a > results_b).mean() pairs = [ ('milkman', 'castello'), ('brewlab', 'levels'), ('levels', 'castello'), ] fig, axs = plt.subplots(1, 3, figsize = (12, 4)) for ((a, b), ax) in zip(pairs, axs): plot_posterior(ax, trace, METRIC_NAME, a) plot_posterior(ax, trace, METRIC_NAME, b) ax.set_title('{} > {} ({:0.3f})'.format(a, b, compare_two(trace, METRIC_NAME, a, b))) maybe_save_plot('2018-05-27-posteriors') plt.show() ###Output _____no_output_____ ###Markdown Comparing model results to actual resultsThis is another step I can take in checking that the model seems reasonable is to ask what it predicts for each observation should be and plot it. This is asking if the model can predict the data it learned from.It does miss two values. It's a little suspicious. It seems like it tends to have trouble predicting that a comparison could be weighted as 0. ###Code labels = np.array([ '{} > {}'.format(c.first, c.last, c.weight) for c in all_comparisons if c.metric == METRIC_NAME ]) with model: ppc = pm.sample_ppc(trace, samples=500, model=model) sorted_indexes = plot_hpd(ppc, 'obs', labels) plt.plot(weight_vector[sorted_indexes], range(len(labels)), 'xk', label='true score') plt.legend() maybe_save_plot('2018-05-27-predictions') plt.show() ###Output 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 500/500 [00:00<00:00, 2786.01it/s] ###Markdown Part 3: Batched active learningI can use my attempts at quantifying uncertainty as a heuristic for choosing which questions to ask. I do this using `is_pretty_certain`. This is super cool! If the model is totally sure that Artisan is better for reading than Castello, it doesn't ask about it.Like before, update `SHOULD_ASK` if you want to try it out. Ways to make this even coolerThe thing is that I'll just train the model from scratch with this new data.In some special models like [TrueSkill](https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/), you can update the uncertainty in closed-form.If this was a real product, there might be enough random questions to ask that it's fine to not always ask the most-useful question. If it's time-consuming to answer the question, it might be worth learning the model in between, using a different model that's easy to update with new information, or finding some middle ground. ###Code def is_pretty_certain(trace, metric, a, b): '''If the posteriors probably don't overlap much, we are pretty certain one of them will win ''' hpd = pm.stats.hpd(trace[metric]) a_low, a_high = hpd[id_to_index[a]] b_low, b_high = hpd[id_to_index[b]] return (a_low > b_high or b_low > a_high) # Change this to True to start answering questions! # It's False by default so you can run the full notebook SHOULD_ASK = False # Note! I'm using a for-loop here so it doesn't continue forever if it can't # find anymore matches. Normally, I'm planning to press `q` to quit. MAX_CHECK = 100 if SHOULD_ASK else 0 for _ in range(MAX_CHECK): # only ask about the active metric, since we only have the trace for this metric. metric = METRIC_NAME # Choose two random ids id1, id2 = np.random.choice(index_to_id, size=2, replace=False) if is_comparison_to_self(id1, id2): print('Duplicate!') continue if already_have_comparison(all_comparisons, metric, id1, id2): print('Already have match between {} {}'.format(id1, id2)) continue if is_pretty_certain(trace, metric, id1, id2): print('Pretty sure about {} {}'.format(id1, id2)) continue keyboard_input = input('{} 1) {} 5) {}? '.format(metric, id1, id2)) if keyboard_input == 'q': break entry_comparison = keypress_to_entry_comparison(keyboard_input, id1, id2) # modify entry_comparison to add stats to the entry comparison. entry_comparison['metric'] = metric # now append to the comparison file! with open(COMPARISON_FILE, 'a') as f: f.write(json.dumps(entry_comparison)) f.write('\n') ###Output _____no_output_____
Weekly Sessions/Weekly_Session_7.ipynb
###Markdown Reservoir Sampling ###Code import random n = 20 k = 5 input_array = [1,123,32,12,98,12,76, 34, 76, 9, 90, 89, 96, 59, 94, 91, 101, 199, 201, 899 ] output_array = list() for i in range(k): output_array.append(input_array[i]) output_array for j in range(k, n): num = random.randint(0, j) if num < k: output_array[num] = input_array[j] output_array ###Output _____no_output_____ ###Markdown UpSampling2D & Conv2DTranspose ###Code import numpy as np import tensorflow as tf matrix = np.array([[1,2], [3,4]]) matrix = matrix.reshape((1,2,2,1)) model = tf.keras.models.Sequential() model.add(tf.keras.layers.UpSampling2D(input_shape = (2,2,1), interpolation='nearest', size = (3,3))) model.summary() yhat = model.predict(matrix) print(yhat.reshape((6,6))) ###Output _____no_output_____ ###Markdown Conv2DTranspose ###Code model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2DTranspose(1, (1,1), strides = (2,2), input_shape = (2,2,1))) model.summary() matrix.shape model.get_weights() weights = [np.array([[[[2]]]]), np.array([0])] model.set_weights(weights) yhat = model.predict(matrix) print(yhat.reshape((4,4))) ###Output _____no_output_____ ###Markdown Label Smoothing ###Code import tensorflow as tf import numpy as np def label_smoother(labels, factor, num_classes): new_labels = labels * (1 - factor) + factor/num_classes print(new_labels) label_smoother(np.array([0, 0 ,1]), 0.3, 3) y_true = [0, 1, 1] y_pred = [0.8, 0.99, 0.01] tf.keras.losses.binary_crossentropy( y_true, y_pred, from_logits=False, label_smoothing=0.1 ) ###Output _____no_output_____
csharp-101/03-Searching Strings.ipynb
###Markdown Searching StringsWatch the full [C 101 video](https://www.youtube.com/watch?v=JL30gSE3WaQ&list=PLdo4fOcmZ0oVxKLQCHpiUWun7vlJJvUiN&index=4) for this module. ContainsDoes your string contain another string within it? You can use `Contains` to find out!The `Contains` method returns a *boolean*. That's a type represented by the keyword `bool` that can hold two values: `true` or `false`. In this case, the method returns `true` when sought string is found, and `false` when it's not found.> Run the following code.>> What else would or wouldn't be contained?>> Does case matter?>> Can you store the return value of the `Contains` method> Remember the type of the result is a `bool`. ###Code string songLyrics = "You say goodbye, and I say hello"; Console.WriteLine(songLyrics.Contains("goodbye")); Console.WriteLine(songLyrics.Contains("greetings")); ###Output True False ###Markdown StartsWith and EndsWith`StartsWith` and `EndsWith` are methods similar to `Contains`, but more specific. They tell you if a string starts with or ends with the string you're checking. It has the same structure as `Contains`, that is: `bigstring.StartsWith(substring)`> Now you try!> In the following code, try searching the line to see if it starts with "you" or "I".> Next, see if the code ends with "hello" or "goodbye". ###Code string songLyrics = "You say goodbye, and I say hello"; ###Output _____no_output_____ ###Markdown PlaygroundPlay around with what you've learned! Here's some starting ideas:> How many lines say hello?> Which lines start with "You"?> Which lines end with "no"?> Think back to the previous module. Can you make some lines all uppercase and some lines all lowercase?> If you change case, how does that affect `Contains`? ###Code Console.WriteLine("Playground"); String line1 = "You say yes, I say no"; String line2 = "You say stop and I say go, go, go"; String line3 = "Oh, no"; String line4 = "You say goodbye and I say hello"; String line5 = "Hello, hello"; String line6 = "I don't know why you say goodbye, I say hello"; ###Output Playground ###Markdown Searching StringsWatch the full [C 101 video](https://www.youtube.com/watch?v=JL30gSE3WaQ&list=PLdo4fOcmZ0oVxKLQCHpiUWun7vlJJvUiN&index=4) for this module. ContainsDoes your string contain another string within it? You can use `Contains` to find out!The `Contains` method returns a *boolean*. That's a type represented by the keyword `bool` that can hold two values: `true` or `false`. In this case, the method returns `true` when sought string is found, and `false` when it's not found.> Run the following code.>> What else would or wouldn't be contained?>> Does case matter?>> Can you store the return value of the `Contains` method> Remember the type of the result is a `bool`. ###Code string songLyrics = "You say goodbye, and I say hello"; Console.WriteLine(songLyrics.Contains("goodbye")); Console.WriteLine(songLyrics.Contains("greetings")); ###Output True False ###Markdown StartsWith and EndsWith`StartsWith` and `EndsWith` are methods similar to `Contains`, but more specific. They tell you if a string starts with or ends with the string you're checking. It has the same structure as `Contains`, that is: `bigstring.StartsWith(substring)`> Now you try!> In the following code, try searching the line to see if it starts with "you" or "I".> Next, see if the code ends with "hello" or "goodbye". ###Code string songLyrics = "You say goodbye, and I say hello"; ###Output _____no_output_____ ###Markdown PlaygroundPlay around with what you've learned! Here's some starting ideas:> How many lines say hello?> Which lines start with "You"?> Which lines end with "no"?> Think back to the previous module. Can you make some lines all uppercase and some lines all lowercase?> If you change case, how does that affect `Contains`? ###Code Console.WriteLine("Playground"); String line1 = "You say yes, I say no"; String line2 = "You say stop and I say go, go, go"; String line3 = "Oh, no"; String line4 = "You say goodbye and I say hello"; String line5 = "Hello, hello"; String line6 = "I don't know why you say goodbye, I say hello"; ###Output Playground
notebooks/gridstack-plus.ipynb
###Markdown qgrid ###Code np.random.seed(0) n = 200 x = np.linspace(0.0, 10.0, n) y = np.cumsum(np.random.randn(n)) df = pd.DataFrame({'x': x, 'y':y}) tableOut = qgrid.QgridWidget(df=df, show_toolbar=True) tableOut ###Output _____no_output_____ ###Markdown Gridstack test notebook ###Code import ipywidgets as widgets from IPython.display import display import numpy as np import pandas as pd import qgrid print("hello world; a button should appear to the right --->") widgets.Button(description='a button') ###Output _____no_output_____ ###Markdown some more markdownhello world<--- a number should appear to the left ###Code 1 + 2 + 3 ###Output _____no_output_____ ###Markdown other tests font-awesome ###Code import ipywidgets as widgets display(widgets.Button(description='search', icon='search')) display(widgets.Button(description='retweet', icon='retweet', button_style='success')) display(widgets.Button(description='filter', icon='filter', button_style='danger')) ###Output _____no_output_____
Course1/Week4/01W4Assignment.ipynb
###Markdown Assignment 4 - Naive Machine Translation and LSHYou will now implement your first machine translation system and then youwill see how locality sensitive hashing works. Let's get started by importingthe required functions!If you are running this notebook in your local computer, don't forget todownload the twitter samples and stopwords from nltk.```nltk.download('stopwords')nltk.download('twitter_samples')``` **NOTE**: The `Exercise xx` numbers in this assignment **_are inconsistent_** with the `UNQ_Cx` numbers. This assignment covers the folowing topics:- [1. The word embeddings data for English and French words](1) - [1.1 Generate embedding and transform matrices](1-1) - [Exercise 1](ex-01)- [2. Translations](2) - [2.1 Translation as linear transformation of embeddings](2-1) - [Exercise 2](ex-02) - [Exercise 3](ex-03) - [Exercise 4](ex-04) - [2.2 Testing the translation](2-2) - [Exercise 5](ex-05) - [Exercise 6](ex-06) - [3. LSH and document search](3) - [3.1 Getting the document embeddings](3-1) - [Exercise 7](ex-07) - [Exercise 8](ex-08) - [3.2 Looking up the tweets](3-2) - [3.3 Finding the most similar tweets with LSH](3-3) - [3.4 Getting the hash number for a vector](3-4) - [Exercise 9](ex-09) - [3.5 Creating a hash table](3-5) - [Exercise 10](ex-10) - [3.6 Creating all hash tables](3-6) - [Exercise 11](ex-11) ###Code import pdb import pickle import string import time import gensim import matplotlib.pyplot as plt import nltk import numpy as np import scipy import sklearn from gensim.models import KeyedVectors from nltk.corpus import stopwords, twitter_samples from nltk.tokenize import TweetTokenizer from utils import (cosine_similarity, get_dict, process_tweet) from os import getcwd # add folder, tmp2, from our local workspace containing pre-downloaded corpora files to nltk's data path filePath = f"{getcwd()}/../tmp2/" nltk.data.path.append(filePath) ###Output _____no_output_____ ###Markdown 1. The word embeddings data for English and French wordsWrite a program that translates English to French. The dataThe full dataset for English embeddings is about 3.64 gigabytes, and the Frenchembeddings are about 629 megabytes. To prevent the Coursera workspace fromcrashing, we've extracted a subset of the embeddings for the words that you'lluse in this assignment.If you want to run this on your local computer and use the full dataset,you can download the* English embeddings from Google code archive word2vec[look for GoogleNews-vectors-negative300.bin.gz](https://code.google.com/archive/p/word2vec/) * You'll need to unzip the file first.* and the French embeddings from[cross_lingual_text_classification](https://github.com/vjstark/crosslingual_text_classification). * in the terminal, type (in one line) `curl -o ./wiki.multi.fr.vec https://dl.fbaipublicfiles.com/arrival/vectors/wiki.multi.fr.vec`Then copy-paste the code below and run it. ```python Use this code to download and process the full dataset on your local computerfrom gensim.models import KeyedVectorsen_embeddings = KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary = True)fr_embeddings = KeyedVectors.load_word2vec_format('./wiki.multi.fr.vec') loading the english to french dictionariesen_fr_train = get_dict('en-fr.train.txt')print('The length of the english to french training dictionary is', len(en_fr_train))en_fr_test = get_dict('en-fr.test.txt')print('The length of the english to french test dictionary is', len(en_fr_train))english_set = set(en_embeddings.vocab)french_set = set(fr_embeddings.vocab)en_embeddings_subset = {}fr_embeddings_subset = {}french_words = set(en_fr_train.values())for en_word in en_fr_train.keys(): fr_word = en_fr_train[en_word] if fr_word in french_set and en_word in english_set: en_embeddings_subset[en_word] = en_embeddings[en_word] fr_embeddings_subset[fr_word] = fr_embeddings[fr_word]for en_word in en_fr_test.keys(): fr_word = en_fr_test[en_word] if fr_word in french_set and en_word in english_set: en_embeddings_subset[en_word] = en_embeddings[en_word] fr_embeddings_subset[fr_word] = fr_embeddings[fr_word]pickle.dump( en_embeddings_subset, open( "en_embeddings.p", "wb" ) )pickle.dump( fr_embeddings_subset, open( "fr_embeddings.p", "wb" ) )``` The subset of dataTo do the assignment on the Coursera workspace, we'll use the subset of word embeddings. ###Code en_embeddings_subset = pickle.load(open("en_embeddings.p", "rb")) fr_embeddings_subset = pickle.load(open("fr_embeddings.p", "rb")) ###Output _____no_output_____ ###Markdown Look at the data* en_embeddings_subset: the key is an English word, and the vaule is a300 dimensional array, which is the embedding for that word.```'the': array([ 0.08007812, 0.10498047, 0.04980469, 0.0534668 , -0.06738281, ....```* fr_embeddings_subset: the key is an French word, and the vaule is a 300dimensional array, which is the embedding for that word.```'la': array([-6.18250e-03, -9.43867e-04, -8.82648e-03, 3.24623e-02,...``` Load two dictionaries mapping the English to French words* A training dictionary* and a testing dictionary. ###Code # loading the english to french dictionaries en_fr_train = get_dict('en-fr.train.txt') print('The length of the English to French training dictionary is', len(en_fr_train)) en_fr_test = get_dict('en-fr.test.txt') print('The length of the English to French test dictionary is', len(en_fr_train)) ###Output The length of the English to French training dictionary is 5000 The length of the English to French test dictionary is 5000 ###Markdown Looking at the English French dictionary* `en_fr_train` is a dictionary where the key is the English word and the valueis the French translation of that English word.```{'the': 'la', 'and': 'et', 'was': 'รฉtait', 'for': 'pour',```* `en_fr_test` is similar to `en_fr_train`, but is a test set. We won't look at ituntil we get to testing. 1.1 Generate embedding and transform matrices Exercise 01: Translating English dictionary to French by using embeddingsYou will now implement a function `get_matrices`, which takes the loaded dataand returns matrices `X` and `Y`.Inputs:- `en_fr` : English to French dictionary- `en_embeddings` : English to embeddings dictionary- `fr_embeddings` : French to embeddings dictionaryReturns:- Matrix `X` and matrix `Y`, where each row in X is the word embedding for anenglish word, and the same row in Y is the word embedding for the Frenchversion of that English word. Figure 2 Use the `en_fr` dictionary to ensure that the ith row in the `X` matrixcorresponds to the ith row in the `Y` matrix. **Instructions**: Complete the function `get_matrices()`:* Iterate over English words in `en_fr` dictionary.* Check if the word have both English and French embedding. Hints Sets are useful data structures that can be used to check if an item is a member of a group. You can get words which are embedded into the language by using keys method. Keep vectors in `X` and `Y` sorted in list. You can use np.vstack() to merge them into the numpy matrix. numpy.vstack stacks the items in a list as rows in a matrix. ###Code # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_matrices(en_fr, french_vecs, english_vecs): """ Input: en_fr: English to French dictionary french_vecs: French words to their corresponding word embeddings. english_vecs: English words to their corresponding word embeddings. Output: X: a matrix where the columns are the English embeddings. Y: a matrix where the columns correspong to the French embeddings. R: the projection matrix that minimizes the F norm ||X R -Y||^2. """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # X_l and Y_l are lists of the english and french word embeddings X_l = list() Y_l = list() # get the english words (the keys in the dictionary) and store in a set() english_set = set(english_vecs.keys()) # get the french words (keys in the dictionary) and store in a set() french_set = set(french_vecs.keys()) # store the french words that are part of the english-french dictionary (these are the values of the dictionary) french_words = set(en_fr.values()) # loop through all english, french word pairs in the english french dictionary for en_word, fr_word in en_fr.items(): # check that the french word has an embedding and that the english word has an embedding if fr_word in french_set and en_word in english_set: # get the english embedding en_vec = english_vecs[en_word] # get the french embedding fr_vec = french_vecs[fr_word] # add the english embedding to the list X_l.append(en_vec) # add the french embedding to the list Y_l.append(fr_vec) # stack the vectors of X_l into a matrix X X = np.vstack(X_l) # stack the vectors of Y_l into a matrix Y Y = np.vstack(Y_l) ### END CODE HERE ### return X, Y ###Output _____no_output_____ ###Markdown Now we will use function `get_matrices()` to obtain sets `X_train` and `Y_train`of English and French word embeddings into the corresponding vector space models. ###Code # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # getting the training set: X_train, Y_train = get_matrices( en_fr_train, fr_embeddings_subset, en_embeddings_subset) ###Output _____no_output_____ ###Markdown 2. Translations Figure 1 Write a program that translates English words to French words using word embeddings and vector space models. 2.1 Translation as linear transformation of embeddingsGiven dictionaries of English and French word embeddings you will create a transformation matrix `R`* Given an English word embedding, $\mathbf{e}$, you can multiply $\mathbf{eR}$ to get a new word embedding $\mathbf{f}$. * Both $\mathbf{e}$ and $\mathbf{f}$ are [row vectors](https://en.wikipedia.org/wiki/Row_and_column_vectors).* You can then compute the nearest neighbors to `f` in the french embeddings and recommend the word that is most similar to the transformed word embedding. Describing translation as the minimization problemFind a matrix `R` that minimizes the following equation. $$\arg \min _{\mathbf{R}}\| \mathbf{X R} - \mathbf{Y}\|_{F}\tag{1} $$ Frobenius normThe Frobenius norm of a matrix $A$ (assuming it is of dimension $m,n$) is defined as the square root of the sum of the absolute squares of its elements:$$\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}\tag{2}$$ Actual loss functionIn the real world applications, the Frobenius norm loss:$$\| \mathbf{XR} - \mathbf{Y}\|_{F}$$is often replaced by it's squared value divided by $m$:$$ \frac{1}{m} \| \mathbf{X R} - \mathbf{Y} \|_{F}^{2}$$where $m$ is the number of examples (rows in $\mathbf{X}$).* The same R is found when using this loss function versus the original Frobenius norm.* The reason for taking the square is that it's easier to compute the gradient of the squared Frobenius.* The reason for dividing by $m$ is that we're more interested in the average loss per embedding than the loss for the entire training set. * The loss for all training set increases with more words (training examples), so taking the average helps us to track the average loss regardless of the size of the training set. [Optional] Detailed explanation why we use norm squared instead of the norm: Click for optional details The norm is always nonnegative (we're summing up absolute values), and so is the square. When we take the square of all non-negative (positive or zero) numbers, the order of the data is preserved. For example, if 3 > 2, 3^2 > 2^2 Using the norm or squared norm in gradient descent results in the same location of the minimum. Squaring cancels the square root in the Frobenius norm formula. Because of the chain rule, we would have to do more calculations if we had a square root in our expression for summation. Dividing the function value by the positive number doesn't change the optimum of the function, for the same reason as described above. We're interested in transforming English embedding into the French. Thus, it is more important to measure average loss per embedding than the loss for the entire dictionary (which increases as the number of words in the dictionary increases). Exercise 02: Implementing translation mechanism described in this section. Step 1: Computing the loss* The loss function will be squared Frobenoius norm of the difference betweenmatrix and its approximation, divided by the number of training examples $m$.* Its formula is:$$ L(X, Y, R)=\frac{1}{m}\sum_{i=1}^{m} \sum_{j=1}^{n}\left( a_{i j} \right)^{2}$$where $a_{i j}$ is value in $i$th row and $j$th column of the matrix $\mathbf{XR}-\mathbf{Y}$. Instructions: complete the `compute_loss()` function* Compute the approximation of `Y` by matrix multiplying `X` and `R`* Compute difference `XR - Y`* Compute the squared Frobenius norm of the difference and divide it by $m$. Hints Useful functions: Numpy dot , Numpy sum, Numpy square, Numpy norm Be careful about which operation is elementwise and which operation is a matrix multiplication. Try to use matrix operations instead of the numpy norm function. If you choose to use norm function, take care of extra arguments and that it's returning loss squared, and not the loss itself. ###Code # UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def compute_loss(X, Y, R): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. R: a matrix of dimension (n,n) - transformation matrix from English to French vector space embeddings. Outputs: L: a matrix of dimension (m,n) - the value of the loss function for given X, Y and R. ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # m is the number of rows in X m = X.shape[0] # diff is XR - Y diff = np.dot(X,R) -Y # diff_squared is the element-wise square of the difference diff_squared = np.square(diff) # sum_diff_squared is the sum of the squared elements sum_diff_squared = np.sum(diff_squared) # loss i the sum_diff_squard divided by the number of examples (m) loss = sum_diff_squared / m ### END CODE HERE ### return loss ###Output _____no_output_____ ###Markdown Exercise 03 Step 2: Computing the gradient of loss in respect to transform matrix R* Calculate the gradient of the loss with respect to transform matrix `R`.* The gradient is a matrix that encodes how much a small change in `R`affect the change in the loss function.* The gradient gives us the direction in which we should decrease `R`to minimize the loss.* $m$ is the number of training examples (number of rows in $X$).* The formula for the gradient of the loss function $๐ฟ(๐‘‹,๐‘Œ,๐‘…)$ is:$$\frac{d}{dR}๐ฟ(๐‘‹,๐‘Œ,๐‘…)=\frac{d}{dR}\Big(\frac{1}{m}\| X R -Y\|_{F}^{2}\Big) = \frac{2}{m}X^{T} (X R - Y)$$**Instructions**: Complete the `compute_gradient` function below. Hints Transposing in numpy Finding out the dimensions of matrices in numpy Remember to use numpy.dot for matrix multiplication ###Code # UNQ_C4 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def compute_gradient(X, Y, R): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. R: a matrix of dimension (n,n) - transformation matrix from English to French vector space embeddings. Outputs: g: a matrix of dimension (n,n) - gradient of the loss function L for given X, Y and R. ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # m is the number of rows in X m = X.shape[0] # gradient is X^T(XR - Y) * 2/m gradient = np.dot(X.T,(np.dot(X,R) - Y)) * 2 / m ### END CODE HERE ### return gradient ###Output _____no_output_____ ###Markdown Step 3: Finding the optimal R with gradient descent algorithm Gradient descent[Gradient descent](https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html) is an iterative algorithm which is used in searching for the optimum of the function. * Earlier, we've mentioned that the gradient of the loss with respect to the matrix encodes how much a tiny change in some coordinate of that matrix affect the change of loss function.* Gradient descent uses that information to iteratively change matrix `R` until we reach a point where the loss is minimized. Training with a fixed number of iterationsMost of the time we iterate for a fixed number of training steps rather than iterating until the loss falls below a threshold. OPTIONAL: explanation for fixed number of iterations click here for detailed discussion You cannot rely on training loss getting low -- what you really want is the validation loss to go down, or validation accuracy to go up. And indeed - in some cases people train until validation accuracy reaches a threshold, or -- commonly known as "early stopping" -- until the validation accuracy starts to go down, which is a sign of over-fitting. Why not always do "early stopping"? Well, mostly because well-regularized models on larger data-sets never stop improving. Especially in NLP, you can often continue training for months and the model will continue getting slightly and slightly better. This is also the reason why it's hard to just stop at a threshold -- unless there's an external customer setting the threshold, why stop, where do you put the threshold? Stopping after a certain number of steps has the advantage that you know how long your training will take - so you can keep some sanity and not train for months. You can then try to get the best performance within this time budget. Another advantage is that you can fix your learning rate schedule -- e.g., lower the learning rate at 10% before finish, and then again more at 1% before finishing. Such learning rate schedules help a lot, but are harder to do if you don't know how long you're training. Pseudocode:1. Calculate gradient $g$ of the loss with respect to the matrix $R$.2. Update $R$ with the formula:$$R_{\text{new}}= R_{\text{old}}-\alpha g$$Where $\alpha$ is the learning rate, which is a scalar. Learning rate* The learning rate or "step size" $\alpha$ is a coefficient which decides how much we want to change $R$ in each step.* If we change $R$ too much, we could skip the optimum by taking too large of a step.* If we make only small changes to $R$, we will need many steps to reach the optimum.* Learning rate $\alpha$ is used to control those changes.* Values of $\alpha$ are chosen depending on the problem, and we'll use `learning_rate`$=0.0003$ as the default value for our algorithm. Exercise 04 Instructions: Implement `align_embeddings()` Hints Use the 'compute_gradient()' function to get the gradient in each step ###Code # UNQ_C5 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def align_embeddings(X, Y, train_steps=100, learning_rate=0.0003): ''' Inputs: X: a matrix of dimension (m,n) where the columns are the English embeddings. Y: a matrix of dimension (m,n) where the columns correspong to the French embeddings. train_steps: positive int - describes how many steps will gradient descent algorithm do. learning_rate: positive float - describes how big steps will gradient descent algorithm do. Outputs: R: a matrix of dimension (n,n) - the projection matrix that minimizes the F norm ||X R -Y||^2 ''' np.random.seed(129) # the number of columns in X is the number of dimensions for a word vector (e.g. 300) # R is a square matrix with length equal to the number of dimensions in th word embedding R = np.random.rand(X.shape[1], X.shape[1]) for i in range(train_steps): if i % 25 == 0: print(f"loss at iteration {i} is: {compute_loss(X, Y, R):.4f}") ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # use the function that you defined to compute the gradient gradient = compute_gradient(X,Y,R) # update R by subtracting the learning rate times gradient R -= learning_rate * gradient ### END CODE HERE ### return R # UNQ_C6 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Testing your implementation. np.random.seed(129) m = 10 n = 5 X = np.random.rand(m, n) Y = np.random.rand(m, n) * .1 R = align_embeddings(X, Y) ###Output loss at iteration 0 is: 3.7242 loss at iteration 25 is: 3.6283 loss at iteration 50 is: 3.5350 loss at iteration 75 is: 3.4442 ###Markdown **Expected Output:**```loss at iteration 0 is: 3.7242loss at iteration 25 is: 3.6283loss at iteration 50 is: 3.5350loss at iteration 75 is: 3.4442``` Calculate transformation matrix RUsing those the training set, find the transformation matrix $\mathbf{R}$ by calling the function `align_embeddings()`.**NOTE:** The code cell below will take a few minutes to fully execute (~3 mins) ###Code # UNQ_C7 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything R_train = align_embeddings(X_train, Y_train, train_steps=400, learning_rate=0.8) ###Output loss at iteration 0 is: 963.0146 loss at iteration 25 is: 97.8292 loss at iteration 50 is: 26.8329 loss at iteration 75 is: 9.7893 loss at iteration 100 is: 4.3776 loss at iteration 125 is: 2.3281 loss at iteration 150 is: 1.4480 loss at iteration 175 is: 1.0338 loss at iteration 200 is: 0.8251 loss at iteration 225 is: 0.7145 loss at iteration 250 is: 0.6534 loss at iteration 275 is: 0.6185 loss at iteration 300 is: 0.5981 loss at iteration 325 is: 0.5858 loss at iteration 350 is: 0.5782 loss at iteration 375 is: 0.5735 ###Markdown Expected Output```loss at iteration 0 is: 963.0146loss at iteration 25 is: 97.8292loss at iteration 50 is: 26.8329loss at iteration 75 is: 9.7893loss at iteration 100 is: 4.3776loss at iteration 125 is: 2.3281loss at iteration 150 is: 1.4480loss at iteration 175 is: 1.0338loss at iteration 200 is: 0.8251loss at iteration 225 is: 0.7145loss at iteration 250 is: 0.6534loss at iteration 275 is: 0.6185loss at iteration 300 is: 0.5981loss at iteration 325 is: 0.5858loss at iteration 350 is: 0.5782loss at iteration 375 is: 0.5735``` 2.2 Testing the translation k-Nearest neighbors algorithm[k-Nearest neighbors algorithm](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) * k-NN is a method which takes a vector as input and finds the other vectors in the dataset that are closest to it. * The 'k' is the number of "nearest neighbors" to find (e.g. k=2 finds the closest two neighbors). Searching for the translation embeddingSince we're approximating the translation function from English to French embeddings by a linear transformation matrix $\mathbf{R}$, most of the time we won't get the exact embedding of a French word when we transform embedding $\mathbf{e}$ of some particular English word into the French embedding space. * This is where $k$-NN becomes really useful! By using $1$-NN with $\mathbf{eR}$ as input, we can search for an embedding $\mathbf{f}$ (as a row) in the matrix $\mathbf{Y}$ which is the closest to the transformed vector $\mathbf{eR}$ Cosine similarityCosine similarity between vectors $u$ and $v$ calculated as the cosine of the angle between them.The formula is $$\cos(u,v)=\frac{u\cdot v}{\left\|u\right\|\left\|v\right\|}$$* $\cos(u,v)$ = $1$ when $u$ and $v$ lie on the same line and have the same direction.* $\cos(u,v)$ is $-1$ when they have exactly opposite directions.* $\cos(u,v)$ is $0$ when the vectors are orthogonal (perpendicular) to each other. Note: Distance and similarity are pretty much opposite things.* We can obtain distance metric from cosine similarity, but the cosine similarity can't be used directly as the distance metric. * When the cosine similarity increases (towards $1$), the "distance" between the two vectors decreases (towards $0$). * We can define the cosine distance between $u$ and $v$ as$$d_{\text{cos}}(u,v)=1-\cos(u,v)$$ **Exercise 05**: Complete the function `nearest_neighbor()`Inputs:* Vector `v`,* A set of possible nearest neighbors `candidates`* `k` nearest neighbors to find.* The distance metric should be based on cosine similarity.* `cosine_similarity` function is already implemented and imported for you. It's arguments are two vectors and it returns the cosine of the angle between them.* Iterate over rows in `candidates`, and save the result of similarities between current row and vector `v` in a python list. Take care that similarities are in the same order as row vectors of `candidates`.* Now you can use [numpy argsort]( https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.htmlnumpy.argsort) to sort the indices for the rows of `candidates`. Hints numpy.argsort sorts values from most negative to most positive (smallest to largest) The candidates that are nearest to 'v' should have the highest cosine similarity To get the last element of a list 'tmp', the notation is tmp[-1:] ###Code # UNQ_C8 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def nearest_neighbor(v, candidates, k=1): """ Input: - v, the vector you are going find the nearest neighbor for - candidates: a set of vectors where we will find the neighbors - k: top k nearest neighbors to find Output: - k_idx: the indices of the top k closest vectors in sorted form """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### similarity_l = [] # for each candidate vector... for row in candidates: # get the cosine similarity cos_similarity = cosine_similarity(v,row) # append the similarity to the list similarity_l.append(cos_similarity) # sort the similarity list and get the indices of the sorted list sorted_ids = np.argsort(similarity_l)[::-1] # get the indices of the k most similar candidate vectors k_idx = sorted_ids[0 : k][::-1] ### END CODE HERE ### return k_idx # UNQ_C9 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Test your implementation: v = np.array([1, 0, 1]) candidates = np.array([[1, 0, 5], [-2, 5, 3], [2, 0, 1], [6, -9, 5], [9, 9, 9]]) print(candidates[nearest_neighbor(v, candidates, 3)]) ###Output [[9 9 9] [1 0 5] [2 0 1]] ###Markdown **Expected Output**:`[[9 9 9] [1 0 5] [2 0 1]]` Test your translation and compute its accuracy**Exercise 06**:Complete the function `test_vocabulary` which takes in Englishembedding matrix $X$, French embedding matrix $Y$ and the $R$matrix and returns the accuracy of translations from $X$ to $Y$ by $R$.* Iterate over transformed English word embeddings and check if theclosest French word vector belongs to French word that is the actualtranslation.* Obtain an index of the closest French embedding by using`nearest_neighbor` (with argument `k=1`), and compare it to the indexof the English embedding you have just transformed.* Keep track of the number of times you get the correct translation.* Calculate accuracy as $$\text{accuracy}=\frac{\(\text{correct predictions})}{\(\text{total predictions})}$$ ###Code # UNQ_C10 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def test_vocabulary(X, Y, R): ''' Input: X: a matrix where the columns are the English embeddings. Y: a matrix where the columns correspong to the French embeddings. R: the transform matrix which translates word embeddings from English to French word vector space. Output: accuracy: for the English to French capitals ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # The prediction is X times R pred = np.dot(X,R) # initialize the number correct to zero num_correct = 0 # loop through each row in pred (each transformed embedding) for i in range(len(pred)): # get the index of the nearest neighbor of pred at row 'i'; also pass in the candidates in Y pred_idx = nearest_neighbor(pred[i],Y, k=1) # if the index of the nearest neighbor equals the row of i... \ if pred_idx == i: # increment the number correct by 1. num_correct += 1 # accuracy is the number correct divided by the number of rows in 'pred' (also number of rows in X) accuracy = num_correct / X.shape[0] ### END CODE HERE ### return accuracy ###Output _____no_output_____ ###Markdown Let's see how is your translation mechanism working on the unseen data: ###Code X_val, Y_val = get_matrices(en_fr_test, fr_embeddings_subset, en_embeddings_subset) # UNQ_C11 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything acc = test_vocabulary(X_val, Y_val, R_train) # this might take a minute or two print(f"accuracy on test set is {acc:.3f}") ###Output accuracy on test set is 0.557 ###Markdown **Expected Output**:```0.557```You managed to translate words from one language to another languagewithout ever seing them with almost 56% accuracy by using some basiclinear algebra and learning a mapping of words from one language to another! 3. LSH and document searchIn this part of the assignment, you will implement a more efficient versionof k-nearest neighbors using locality sensitive hashing.You will then apply this to document search.* Process the tweets and represent each tweet as a vector (represent adocument with a vector embedding).* Use locality sensitive hashing and k nearest neighbors to find tweetsthat are similar to a given tweet. ###Code # get the positive and negative tweets all_positive_tweets = twitter_samples.strings('positive_tweets.json') all_negative_tweets = twitter_samples.strings('negative_tweets.json') all_tweets = all_positive_tweets + all_negative_tweets ###Output _____no_output_____ ###Markdown 3.1 Getting the document embeddings Bag-of-words (BOW) document modelsText documents are sequences of words.* The ordering of words makes a difference. For example, sentences "Apple pie isbetter than pepperoni pizza." and "Pepperoni pizza is better than apple pie"have opposite meanings due to the word ordering.* However, for some applications, ignoring the order of words can allowus to train an efficient and still effective model.* This approach is called Bag-of-words document model. Document embeddings* Document embedding is created by summing up the embeddings of all wordsin the document.* If we don't know the embedding of some word, we can ignore that word. **Exercise 07**:Complete the `get_document_embedding()` function.* The function `get_document_embedding()` encodes entire document as a "document" embedding.* It takes in a docoument (as a string) and a dictionary, `en_embeddings`* It processes the document, and looks up the corresponding embedding of each word.* It then sums them up and returns the sum of all word vectors of that processed tweet. Hints You can handle missing words easier by using the `get()` method of the python dictionary instead of the bracket notation (i.e. "[ ]"). See more about it here The default value for missing word should be the zero vector. Numpy will broadcast simple 0 scalar into a vector of zeros during the summation. Alternatively, skip the addition if a word is not in the dictonary. You can use your `process_tweet()` function which allows you to process the tweet. The function just takes in a tweet and returns a list of words. ###Code # UNQ_C12 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_document_embedding(tweet, en_embeddings): ''' Input: - tweet: a string - en_embeddings: a dictionary of word embeddings Output: - doc_embedding: sum of all word embeddings in the tweet ''' doc_embedding = np.zeros(300) ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # process the document into a list of words (process the tweet) processed_doc = process_tweet(tweet) for word in processed_doc: # add the word embedding to the running total for the document embedding doc_embedding += en_embeddings.get(word,0) ### END CODE HERE ### return doc_embedding # UNQ_C13 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # testing your function custom_tweet = "RT @Twitter @chapagain Hello There! Have a great day. :) #good #morning http://chapagain.com.np" tweet_embedding = get_document_embedding(custom_tweet, en_embeddings_subset) tweet_embedding[-5:] ###Output _____no_output_____ ###Markdown **Expected output**:```array([-0.00268555, -0.15378189, -0.55761719, -0.07216644, -0.32263184])``` Exercise 08 Store all document vectors into a dictionaryNow, let's store all the tweet embeddings into a dictionary.Implement `get_document_vecs()` ###Code # UNQ_C14 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def get_document_vecs(all_docs, en_embeddings): ''' Input: - all_docs: list of strings - all tweets in our dataset. - en_embeddings: dictionary with words as the keys and their embeddings as the values. Output: - document_vec_matrix: matrix of tweet embeddings. - ind2Doc_dict: dictionary with indices of tweets in vecs as keys and their embeddings as the values. ''' # the dictionary's key is an index (integer) that identifies a specific tweet # the value is the document embedding for that document ind2Doc_dict = {} # this is list that will store the document vectors document_vec_l = [] for i, doc in enumerate(all_docs): ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # get the document embedding of the tweet doc_embedding = get_document_embedding(doc, en_embeddings) # save the document embedding into the ind2Tweet dictionary at index i ind2Doc_dict[i] = doc_embedding # append the document embedding to the list of document vectors document_vec_l.append(ind2Doc_dict[i]) ### END CODE HERE ### # convert the list of document vectors into a 2D array (each row is a document vector) document_vec_matrix = np.vstack(document_vec_l) return document_vec_matrix, ind2Doc_dict document_vecs, ind2Tweet = get_document_vecs(all_tweets, en_embeddings_subset) # UNQ_C15 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything print(f"length of dictionary {len(ind2Tweet)}") print(f"shape of document_vecs {document_vecs.shape}") ###Output length of dictionary 10000 shape of document_vecs (10000, 300) ###Markdown Expected Output```length of dictionary 10000shape of document_vecs (10000, 300)``` 3.2 Looking up the tweetsNow you have a vector of dimension (m,d) where `m` is the number of tweets(10,000) and `d` is the dimension of the embeddings (300). Now youwill input a tweet, and use cosine similarity to see which tweet in ourcorpus is similar to your tweet. ###Code my_tweet = 'i am sad' process_tweet(my_tweet) tweet_embedding = get_document_embedding(my_tweet, en_embeddings_subset) # UNQ_C16 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # this gives you a similar tweet as your input. # this implementation is vectorized... idx = np.argmax(cosine_similarity(document_vecs, tweet_embedding)) print(all_tweets[idx]) ###Output @zoeeylim sad sad sad kid :( it's ok I help you watch the match HAHAHAHAHA ###Markdown Expected Output```@zoeeylim sad sad sad kid :( it's ok I help you watch the match HAHAHAHAHA``` 3.3 Finding the most similar tweets with LSHYou will now implement locality sensitive hashing (LSH) to identify the most similar tweet.* Instead of looking at all 10,000 vectors, you can just search a subset to findits nearest neighbors.Let's say your data points are plotted like this: Figure 3 You can divide the vector space into regions and search within one region for nearest neighbors of a given vector. Figure 4 ###Code N_VECS = len(all_tweets) # This many vectors. N_DIMS = len(ind2Tweet[1]) # Vector dimensionality. print(f"Number of vectors is {N_VECS} and each has {N_DIMS} dimensions.") ###Output Number of vectors is 10000 and each has 300 dimensions. ###Markdown Choosing the number of planes* Each plane divides the space to $2$ parts.* So $n$ planes divide the space into $2^{n}$ hash buckets.* We want to organize 10,000 document vectors into buckets so that every bucket has about $~16$ planes.* For that we need $\frac{10000}{16}=625$ buckets.* We're interested in $n$, number of planes, so that $2^{n}= 625$. Now, we can calculate $n=\log_{2}625 = 9.29 \approx 10$. ###Code # The number of planes. We use log2(256) to have ~16 vectors/bucket. N_PLANES = 10 # Number of times to repeat the hashing to improve the search. N_UNIVERSES = 25 ###Output _____no_output_____ ###Markdown 3.4 Getting the hash number for a vectorFor each vector, we need to get a unique number associated to that vector in order to assign it to a "hash bucket". Hyperlanes in vector spaces* In $3$-dimensional vector space, the hyperplane is a regular plane. In $2$ dimensional vector space, the hyperplane is a line.* Generally, the hyperplane is subspace which has dimension $1$ lower than the original vector space has.* A hyperplane is uniquely defined by its normal vector.* Normal vector $n$ of the plane $\pi$ is the vector to which all vectors in the plane $\pi$ are orthogonal (perpendicular in $3$ dimensional case). Using Hyperplanes to split the vector spaceWe can use a hyperplane to split the vector space into $2$ parts.* All vectors whose dot product with a plane's normal vector is positive are on one side of the plane.* All vectors whose dot product with the plane's normal vector is negative are on the other side of the plane. Encoding hash buckets* For a vector, we can take its dot product with all the planes, then encode this information to assign the vector to a single hash bucket.* When the vector is pointing to the opposite side of the hyperplane than normal, encode it by 0.* Otherwise, if the vector is on the same side as the normal vector, encode it by 1.* If you calculate the dot product with each plane in the same order for every vector, you've encoded each vector's unique hash ID as a binary number, like [0, 1, 1, ... 0]. Exercise 09: Implementing hash bucketsWe've initialized hash table `hashes` for you. It is list of `N_UNIVERSES` matrices, each describes its own hash table. Each matrix has `N_DIMS` rows and `N_PLANES` columns. Every column of that matrix is a `N_DIMS`-dimensional normal vector for each of `N_PLANES` hyperplanes which are used for creating buckets of the particular hash table.*Exercise*: Your task is to complete the function `hash_value_of_vector` which places vector `v` in the correct hash bucket.* First multiply your vector `v`, with a corresponding plane. This will give you a vector of dimension $(1,\text{N_planes})$.* You will then convert every element in that vector to 0 or 1.* You create a hash vector by doing the following: if the element is negative, it becomes a 0, otherwise you change it to a 1.* You then compute the unique number for the vector by iterating over `N_PLANES`* Then you multiply $2^i$ times the corresponding bit (0 or 1).* You will then store that sum in the variable `hash_value`.**Intructions:** Create a hash for the vector in the function below.Use this formula:$$ hash = \sum_{i=0}^{N-1} \left( 2^{i} \times h_{i} \right) $$ Create the sets of planes* Create multiple (25) sets of planes (the planes that divide up the region).* You can think of these as 25 separate ways of dividing up the vector space with a different set of planes.* Each element of this list contains a matrix with 300 rows (the word vector have 300 dimensions), and 10 columns (there are 10 planes in each "universe"). ###Code np.random.seed(0) planes_l = [np.random.normal(size=(N_DIMS, N_PLANES)) for _ in range(N_UNIVERSES)] ###Output _____no_output_____ ###Markdown Hints numpy.squeeze() removes unused dimensions from an array; for instance, it converts a (10,1) 2D array into a (10,) 1D array ###Code # UNQ_C17 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) def hash_value_of_vector(v, planes): """Create a hash for a vector; hash_id says which random hash to use. Input: - v: vector of tweet. It's dimension is (1, N_DIMS) - planes: matrix of dimension (N_DIMS, N_PLANES) - the set of planes that divide up the region Output: - res: a number which is used as a hash for your vector """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # for the set of planes, # calculate the dot product between the vector and the matrix containing the planes # remember that planes has shape (300, 10) # The dot product will have the shape (1,10) dot_product = np.dot(v,planes) # get the sign of the dot product (1,10) shaped vector sign_of_dot_product = np.sign(dot_product) # set h to be false (eqivalent to 0 when used in operations) if the sign is negative, # and true (equivalent to 1) if the sign is positive (1,10) shaped vector h = sign_of_dot_product >=0 # remove extra un-used dimensions (convert this from a 2D to a 1D array) h = np.squeeze(h) # initialize the hash value to 0 hash_value = 0 n_planes = planes.shape[1] for i in range(n_planes): # increment the hash value by 2^i * h_i hash_value += (2 ** i ) * h[i] ### END CODE HERE ### # cast hash_value as an integer hash_value = int(hash_value) return hash_value # UNQ_C18 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything np.random.seed(0) idx = 0 planes = planes_l[idx] # get one 'universe' of planes to test the function vec = np.random.rand(1, 300) print(f" The hash value for this vector,", f"and the set of planes at index {idx},", f"is {hash_value_of_vector(vec, planes)}") ###Output The hash value for this vector, and the set of planes at index 0, is 768 ###Markdown Expected Output```The hash value for this vector, and the set of planes at index 0, is 768``` 3.5 Creating a hash table Exercise 10Given that you have a unique number for each vector (or tweet), You now want to create a hash table. You need a hash table, so that given a hash_id, you can quickly look up the corresponding vectors. This allows you to reduce your search by a significant amount of time. We have given you the `make_hash_table` function, which maps the tweet vectors to a bucket and stores the vector there. It returns the `hash_table` and the `id_table`. The `id_table` allows you know which vector in a certain bucket corresponds to what tweet. Hints a dictionary comprehension, similar to a list comprehension, looks like this: `{i:0 for i in range(10)}`, where the key is 'i' and the value is zero for all key-value pairs. ###Code # UNQ_C19 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # This is the code used to create a hash table: feel free to read over it def make_hash_table(vecs, planes): """ Input: - vecs: list of vectors to be hashed. - planes: the matrix of planes in a single "universe", with shape (embedding dimensions, number of planes). Output: - hash_table: dictionary - keys are hashes, values are lists of vectors (hash buckets) - id_table: dictionary - keys are hashes, values are list of vectors id's (it's used to know which tweet corresponds to the hashed vector) """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # number of planes is the number of columns in the planes matrix num_of_planes = planes.shape[1] # number of buckets is 2^(number of planes) num_buckets = 2 ** num_of_planes # create the hash table as a dictionary. # Keys are integers (0,1,2.. number of buckets) # Values are empty lists hash_table = {i : [] for i in range(num_buckets)} # create the id table as a dictionary. # Keys are integers (0,1,2... number of buckets) # Values are empty lists id_table = {i : [] for i in range(num_buckets)} # for each vector in 'vecs' for i, v in enumerate(vecs): # calculate the hash value for the vector h = hash_value_of_vector(v, planes) # store the vector into hash_table at key h, # by appending the vector v to the list at key h hash_table[h].append(v) # store the vector's index 'i' (each document is given a unique integer 0,1,2...) # the key is the h, and the 'i' is appended to the list at key h id_table[h].append(i) ### END CODE HERE ### return hash_table, id_table # UNQ_C20 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything np.random.seed(0) planes = planes_l[0] # get one 'universe' of planes to test the function vec = np.random.rand(1, 300) tmp_hash_table, tmp_id_table = make_hash_table(document_vecs, planes) print(f"The hash table at key 0 has {len(tmp_hash_table[0])} document vectors") print(f"The id table at key 0 has {len(tmp_id_table[0])}") print(f"The first 5 document indices stored at key 0 of are {tmp_id_table[0][0:5]}") ###Output The hash table at key 0 has 3 document vectors The id table at key 0 has 3 The first 5 document indices stored at key 0 of are [3276, 3281, 3282] ###Markdown Expected output```The hash table at key 0 has 3 document vectorsThe id table at key 0 has 3The first 5 document indices stored at key 0 of are [3276, 3281, 3282]``` 3.6 Creating all hash tablesYou can now hash your vectors and store them in a hash table thatwould allow you to quickly look up and search for similar vectors.Run the cell below to create the hashes. By doing so, you end up havingseveral tables which have all the vectors. Given a vector, you thenidentify the buckets in all the tables. You can then iterate over thebuckets and consider much fewer vectors. The more buckets you use, themore accurate your lookup will be, but also the longer it will take. ###Code # Creating the hashtables hash_tables = [] id_tables = [] for universe_id in range(N_UNIVERSES): # there are 25 hashes print('working on hash universe #:', universe_id) planes = planes_l[universe_id] hash_table, id_table = make_hash_table(document_vecs, planes) hash_tables.append(hash_table) id_tables.append(id_table) ###Output working on hash universe #: 0 working on hash universe #: 1 working on hash universe #: 2 working on hash universe #: 3 working on hash universe #: 4 working on hash universe #: 5 working on hash universe #: 6 working on hash universe #: 7 working on hash universe #: 8 working on hash universe #: 9 working on hash universe #: 10 working on hash universe #: 11 working on hash universe #: 12 working on hash universe #: 13 working on hash universe #: 14 working on hash universe #: 15 working on hash universe #: 16 working on hash universe #: 17 working on hash universe #: 18 working on hash universe #: 19 working on hash universe #: 20 working on hash universe #: 21 working on hash universe #: 22 working on hash universe #: 23 working on hash universe #: 24 ###Markdown Approximate K-NN Exercise 11Implement approximate K nearest neighbors using locality sensitive hashing,to search for documents that are similar to a given document at theindex `doc_id`. Inputs* `doc_id` is the index into the document list `all_tweets`.* `v` is the document vector for the tweet in `all_tweets` at index `doc_id`.* `planes_l` is the list of planes (the global variable created earlier).* `k` is the number of nearest neighbors to search for.* `num_universes_to_use`: to save time, we can use fewer than the totalnumber of available universes. By default, it's set to `N_UNIVERSES`,which is $25$ for this assignment.The `approximate_knn` function finds a subset of candidate vectors thatare in the same "hash bucket" as the input vector 'v'. Then it performsthe usual k-nearest neighbors search on this subset (instead of searchingthrough all 10,000 tweets). Hints There are many dictionaries used in this function. Try to print out planes_l, hash_tables, id_tables to understand how they are structured, what the keys represent, and what the values contain. To remove an item from a list, use `.remove()` To append to a list, use `.append()` To add to a set, use `.add()` ###Code # UNQ_C21 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # This is the code used to do the fast nearest neighbor search. Feel free to go over it def approximate_knn(doc_id, v, planes_l, k=1, num_universes_to_use=N_UNIVERSES): """Search for k-NN using hashes.""" assert num_universes_to_use <= N_UNIVERSES # Vectors that will be checked as possible nearest neighbor vecs_to_consider_l = list() # list of document IDs ids_to_consider_l = list() # create a set for ids to consider, for faster checking if a document ID already exists in the set ids_to_consider_set = set() # loop through the universes of planes for universe_id in range(num_universes_to_use): # get the set of planes from the planes_l list, for this particular universe_id planes = planes_l[universe_id] # get the hash value of the vector for this set of planes hash_value = hash_value_of_vector(v, planes) # get the hash table for this particular universe_id hash_table = hash_tables[universe_id] # get the list of document vectors for this hash table, where the key is the hash_value document_vectors_l = hash_table[hash_value] # get the id_table for this particular universe_id id_table = id_tables[universe_id] # get the subset of documents to consider as nearest neighbors from this id_table dictionary new_ids_to_consider = id_table[hash_value] ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # remove the id of the document that we're searching if doc_id in new_ids_to_consider: new_ids_to_consider.remove(doc_id) print(f"removed doc_id {doc_id} of input vector from new_ids_to_search") # loop through the subset of document vectors to consider for i, new_id in enumerate(new_ids_to_consider): # if the document ID is not yet in the set ids_to_consider... if new_id not in ids_to_consider_set: # access document_vectors_l list at index i to get the embedding # then append it to the list of vectors to consider as possible nearest neighbors document_vector_at_i = document_vectors_l[i] vecs_to_consider_l.append(document_vector_at_i) # append the new_id (the index for the document) to the list of ids to consider ids_to_consider_l.append(new_id) # also add the new_id to the set of ids to consider # (use this to check if new_id is not already in the IDs to consider) if ids_to_consider_set.add(new_id) == False : print('ID already existing') ### END CODE HERE ### # Now run k-NN on the smaller set of vecs-to-consider. print("Fast considering %d vecs" % len(vecs_to_consider_l)) # convert the vecs to consider set to a list, then to a numpy array vecs_to_consider_arr = np.array(vecs_to_consider_l) # call nearest neighbors on the reduced list of candidate vectors nearest_neighbor_idx_l = nearest_neighbor(v, vecs_to_consider_arr, k=k) # Use the nearest neighbor index list as indices into the ids to consider # create a list of nearest neighbors by the document ids nearest_neighbor_ids = [ids_to_consider_l[idx] for idx in nearest_neighbor_idx_l] return nearest_neighbor_ids #document_vecs, ind2Tweet doc_id = 0 doc_to_search = all_tweets[doc_id] vec_to_search = document_vecs[doc_id] # UNQ_C22 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # You do not have to input any code in this cell, but it is relevant to grading, so please do not change anything # Sample nearest_neighbor_ids = approximate_knn( doc_id, vec_to_search, planes_l, k=3, num_universes_to_use=5) print(f"Nearest neighbors for document {doc_id}") print(f"Document contents: {doc_to_search}") print("") for neighbor_id in nearest_neighbor_ids: print(f"Nearest neighbor at document id {neighbor_id}") print(f"document contents: {all_tweets[neighbor_id]}") ###Output Nearest neighbors for document 0 Document contents: #FollowFriday @France_Inte @PKuchly57 @Milipol_Paris for being top engaged members in my community this week :) Nearest neighbor at document id 2140 document contents: @PopsRamjet come one, every now and then is not so bad :) Nearest neighbor at document id 701 document contents: With the top cutie of Bohol :) https://t.co/Jh7F6U46UB Nearest neighbor at document id 51 document contents: #FollowFriday @France_Espana @reglisse_menthe @CCI_inter for being top engaged members in my community this week :)
programming/google_spreadsheet/pygspread.ipynb
###Markdown pygsheets- http://pygsheets.readthedocs.io/en/latest/- https://github.com/nithinmurali/pygsheets- $ pip3 install pygsheets get oauth 2.0 client id- http://pygsheets.readthedocs.io/en/latest/authorizing.htmloauth-credentials- ์ธ์ฆ ํ•˜๊ธฐ ๋ณ€์ˆ˜ ์‚ฌ์šฉ- gc : ์ธ์ฆ์™„๋ฃŒํ›„ ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ฒ„์— ์ ‘์†ํ• ์ˆ˜ ์žˆ๋Š” ๊ฐ์ฒด- sh : ํŒŒ์ผ์ ‘์†ํ›„ ์ „์ฒด ์‹œํŠธ ๊ฐ์ฒด- sheet : ์‹œํŠธ๋ฅผ ๋‹ด์€ ๋ณ€์ˆ˜- cell : ์…€์„ ๋‹ด์€ ๋ณ€์ˆ˜ ###Code import pygsheets ###Output _____no_output_____ ###Markdown access- ์‹œํŠธ ํŒŒ์ผ์— ์ ‘์†- oauth 2.0 ์ธ์ฆํ›„ ๋‹ค์šด ๋ฐ›์€ json ํŒŒ์ผ์„ outh_file์„ ํ‚ค๋กœํ•˜๋Š” ํ‚ค์›Œ๋“œ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ authorize ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœํ•ฉ๋‹ˆ๋‹ค.- ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•˜๋ฉด oauth ์ธ์ฆ ํ—ˆ์šฉ ์›น ํŽ˜์ด์ง€๊ฐ€ ๋œจ๊ณ  ํ—ˆ์šฉ์œผ๋กœ ์ธ์ฆ์„ ํ—ˆ์šฉํ•ด์•ผ google spreadsheet api๋ฅผ ์‚ฌ์šฉํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ###Code gc = pygsheets.authorize(outh_file='client_secret.json') ###Output _____no_output_____ ###Markdown open sheet- ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ธŒ๋กœ ๊ฐ€์„œ ์ƒˆ๋กœ์šด ์‹œํŠธ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.- ์‹œํŠธ ํŒŒ์ผ ์ด๋ฆ„์œผ๋กœ ์‹œํŠธ๋ฅผ ์˜คํ”ˆํ•ฉ๋‹ˆ๋‹ค.- open ํ•จ์ˆ˜์— ์‹œํŠธ์˜ ์ด๋ฆ„์„ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋„ฃ์–ด ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ฒ„์— ์žˆ๋Š” ์‹œํŠธ ํŒŒ์ผ์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์—ด์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.- sh๋กœ ์˜คํ”ˆํ•œ ์‹œํŠธ ํŒŒ์ผ์˜ ์‹œํŠธ๋Š” sh.sheet1์œผ๋กœ ์ฒซ๋ฒˆ์งธ ์‹œํŠธ๋ฅผ ๊ฐ€์ ธ์˜ฌ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.- ์ฒ˜์Œ์—๋Š” ํ•ญ์ƒ ์ฒซ๋ฒˆ์งธ ์‹œํŠธ๋ฅผ ๊ฐ€์ ธ์˜ค๊ณ  selecting๊ธฐ๋Šฅ์œผ๋กœ ๋‹ค๋ฅธ ์‹œํŠธ์— ์ ‘๊ทผํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ###Code sh = gc.open('email') # ํŒŒ์ผ ์—ด๊ธฐ (sh : ์ „์ฒด ์‹œํŠธ์— ๋Œ€ํ•œ ๊ฐ์ฒด) sheet1 = sh.sheet1 # ์‹œํŠธ ์ ‘๊ทผ (sheet1 : ์ฒซ๋ฒˆ์งธ ์‹œํŠธ์— ๋Œ€ํ•œ ๊ฐ์ฒด) sheet1 ###Output _____no_output_____ ###Markdown create sheet- ์‹œํŠธ ์ƒ์„ฑ- add_worksheet ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒ์„ฑํ•  ์‹œํŠธ์ด๋ฆ„, ํ–‰๊ณผ ์—ด์˜ ํฌ๊ธฐ๋ฅผ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋„˜๊ฒจ ์ƒˆ๋กœ์šด ์‹œํŠธ๋ฅผ ์ƒ์„ฑํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ###Code # 5์นธ, 20์ค„์„ ๊ฐ€์ง€๋Š” new_sheet๋ผ๋Š” ์ด๋ฆ„์˜ ์ƒˆ๋กœ์šด ์‹œํŠธ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ sheet2๋ผ๋Š” ๋ณ€์ˆ˜์— ๋„ฃ์–ด์คŒ sheet2 = sh.add_worksheet("new_sheet", rows=20, cols=5) sheet2 ###Output _____no_output_____ ###Markdown copy sheet- ์‹œํŠธ ๋ณต์‚ฌ- add_worksheet๋ฅผ ์ด์šฉํ•˜์—ฌ src_worksheet ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋ณต์‚ฌํ•  ์‹œํŠธ๋ฅผ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋„˜๊ธฐ๋ฉด ์ƒˆ๋กœ์šด ์‹œํŠธ๋ฅผ ์ƒ์„ฑํ• ๋•Œ src_worksheet์— ์„ค์ •ํ•œ ์‹œํŠธ๊ฐ€ ๋ณต์‚ฌ ๋ฉ๋‹ˆ๋‹ค. ###Code # sheet1์„ ๋ณต์‚ฌํ•˜์—ฌ email_copied๋ผ๋Š” title์˜ ์ƒˆ๋กœ์šด ์‹œํŠธ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ sheet3์ด๋ผ๋Š” ๋ณ€์ˆ˜์— ๋„ฃ์–ด์คŒ sheet3 = sh.add_worksheet("email_copied", src_worksheet=sheet1) sheet3 ###Output _____no_output_____ ###Markdown delete sheet- ์‹œํŠธ ์‚ญ์ œ- del_worksheet์— ์‚ญ์ œํ•œ ์‹œํŠธ ๊ฐ์ฒด๋ฅผ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋„˜๊ธฐ๋ฉด ํ•ด๋‹น ์‹œํŠธ๊ฐ€ ์‚ญ์ œ๋ฉ๋‹ˆ๋‹ค. ###Code # sheet3 ๋ณ€์ˆ˜๊ฐ€ ๊ฐ€์ง€๋Š” sheet๋ฅผ ์‚ญ์ œ sh.del_worksheet(sh[2]) ###Output _____no_output_____ ###Markdown selecting sheet- ์‹œํŠธ๊ฐ€ ๋ชจ์—ฌ์žˆ๋Š” ๊ฐ์ฒด์ธ sh ๊ฐ์ฒด์—์„œ ์›ํ•˜๋Š” ์‹œํŠธํ•˜๋‚˜์— ๋Œ€ํ•œ๊ฐ์ฒด๋ฅผ ์„ ํƒํ•ด์„œ ๊ฐ€์ ธ์˜ค๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.- ์ œ๋ชฉ๊ณผ ์ˆœ์„œ์— ๋Œ€ํ•œ ๊ฐ’์œผ๋กœ ์‹œํŠธ๋ฅผ ๊ฐ€์ ธ์˜ฌ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ###Code # ๋ชจ๋“  ์‹œํŠธ ๋ฆฌ์ŠคํŠธ๋กœ ๊ฐ€์ ธ์˜ค๊ธฐ sheet_list = sh.worksheets() print(sheet_list) # ์‹œํŠธ ์ œ๋ชฉ์œผ๋กœ ๊ฐ€์ ธ์˜ค๊ธฐ new_sheet = sh.worksheet_by_title("new_sheet") print(new_sheet) # index๋กœ ์‹œํŠธ ๊ฐ€์ ธ์˜ค๊ธฐ sheet0 = sh.worksheet("index", 0) print(sheet0) # ์œ„์— ์ €์žฅํ•œ ์ฒซ๋ฒˆ์งธ ์‹œํŠธ์ธ sheet1๊ณผ ๊ฐ™์€์ง€ ํ™•์ธํ•˜๊ธฐ sheet0 == sheet1 # offset์œผ๋กœ ๊ฐ€์ ธ์˜ค๊ธฐ sheet0 = sh[0] print(sheet0) # ์œ„์— ์ €์žฅํ•œ ์ฒซ๋ฒˆ์งธ ์‹œํŠธ์ธ sheet1๊ณผ ๊ฐ™์€์ง€ ํ™•์ธํ•˜๊ธฐ sheet0 == sheet1 ###Output _____no_output_____ ###Markdown get values ###Code # ์ „์ฒด ๋ฐ์ดํ„ฐ ๋ฆฌ์ŠคํŠธ๋กœ ๊ฐ€์ ธ์˜ค๊ธฐ (๋”•์…”๋„ˆ๋ฆฌํƒ€์ž…) pd.DataFrame(sheet1.get_all_records()) # ๋ชจ๋“  ๋ฐ์ดํ„ฐ ํ–‰๋ ฌ๋กœ ๊ฐ€์ ธ์˜ค๊ธฐ (๋ฆฌ์ŠคํŠธํƒ€์ž…) all_data_sheet1 = sheet1.get_all_values(returnas='matrix') all_data_sheet1 # ์œ„์น˜๋ฅผ ์ง€์ •ํ•˜์—ฌ ํ–‰๋ ฌ ํ˜•ํƒœ๋กœ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ some_data_sheet1 = sheet1.get_values(start=(2,2), end=(3,3), returnas='matrix') some_data_sheet1 # "์‹œํŠธ[ํ–‰][์—ด]"๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ํŠน์ • ์…€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์˜ฌ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. value = sheet1[3][2] value # ๋ฌธ์ž์—ด ์ฐพ๊ธฐ cell_list = sh[0].find("[email protected]") cell_list # ํŠน์ • ๋ฌธ์ž์—ด์ด ์žˆ๋Š” ์…€์„ ์ฐพ์•„์„œ ๋‹ค๋ฅธ ๋ฌธ์ž์—ด๋กœ ๋ฐ”๊พธ๊ธฐ cell_list = sh[0].find("[email protected]", replace="[email protected]") cell_list # csv ํŒŒ์ผ๋กœ exportํ•˜๊ธฐ sheet1.export(pygsheets.ExportType.CSV, filename="sheet1.csv") ###Output sheet1.csv ###Markdown update & insert ###Code # A1์—์„œ C4๊นŒ์ง€์˜ ์œ„์น˜์— some_data_sheet1 ๋ฐ์ดํ„ฐ๋กœ ์—…๋ฐ์ดํŠธํ•จ sh[1].update_cells(crange='A1:C4', values=some_data_sheet1) # sh[1] ์œ„์น˜์— ์žˆ๋Š” ๋‘๋ฒˆ์งธ ์‹œํŠธ์— ๋Œ€ํ•œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์˜ด all_data_sheet2 = sh[1].get_all_values() all_data_sheet2 # 4๋ฒˆ์งธ์ค„ ์•„๋ž˜๋กœ 2์ค„ ์‚ฝ์ž… (5,6๋ฒˆ์งธ์ค„์— ๋ฐ์ดํ„ฐ ์‚ฝ์ž…) sh[1].insert_rows(row=4, number=2, values=all_data_sheet2) # ์‹œํŠธ์˜ ์—ด๊ณผ ํ–‰์„ ์žฌ์„ค์ •ํ•ด์คŒ sh[1].rows = 7 sh[1].cols = 2 # ๋ฐ˜๋ณต๋ฌธ์„ ํ†ตํ•ด ํ•œ์ค„์”ฉ ์ฝ์–ด ์˜ฌ์ˆ˜ ์žˆ์Œ for row in sh[1]: print(row) # ์‹œํŠธ์˜ ์ œ๋ชฉ์„ ์—…๋ฐ์ดํŠธ sh[1].title = "NewSheet" # ์‹œํŠธ์˜ ๋งˆ์ง€๋ง‰ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐพ์•„ ๋งˆ์ง€๋ง‰ ๋ฐ์ดํ„ฐ์˜ ์•„๋ž˜์— ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”๊ฐ€ sh[1].append_table(values=["์ด๋ฏผ์„ฑ","[email protected]"]) ###Output _____no_output_____ ###Markdown delete ###Code # ์‹œํŠธ ๋‚ด์šฉ ๋ชจ๋‘ ์‚ญ์ œํ•˜๊ธฐ sh[1].clear() ###Output _____no_output_____ ###Markdown change to pandas- google sheet๋ฅผ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ ํŒŒ์ด์ฌ ํŒจํ‚ค์ง€์ธ pandas์˜ DataFrame์œผ๋กœ ๋ณ€ํ™˜ํ• ์ˆ˜ ์žˆ๋‹ค. ###Code import pandas as pd sheet1 df = pd.DataFrame(columns=["์ˆœ๋ฒˆ","์ด๋ฆ„","์ด๋ฉ”์ผ"]) sheet1.set_dataframe(df,(1,1)) # 1,1๋กœ ํ•ด์•ผ 1,1 ์œ„์น˜์˜ ์…€๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. df = sheet1.get_as_df() df # csv ํŒŒ์ผ๋กœ ์ €์žฅ df.to_csv("email.csv", index=False) # csv ํŒŒ์ผ ์ฝ์–ด์˜ค๊ธฐ df = pd.read_csv("email.csv") df ###Output _____no_output_____ ###Markdown Cell ###Code # sheet1์„ cell_test ์‹œํŠธ๋ฅผ ๋งŒ๋“ค์–ด ๋ณต์‚ฌํ•œ๋‹ค. test_sheet = sh.add_worksheet("cell_test", src_worksheet=sheet1) test_sheet # ํŠน์ • ์…€์˜ ๊ฐ์ฒด ๊ฐ€์ ธ์˜ค๊ธฐ b2 = test_sheet.cell('B2') # ์…€ ๊ฐ’ ํ™•์ธ print(b2.value) # b2 ๊ฐ์ฒด์˜ 3๋ฒˆ์งธ ์นธ์˜ ๋ฐ์ดํ„ฐ๋ฅผ b2์— ํ• ๋‹น b2.col = 3 # ์…€ ๊ฐ’ ํ™•์ธ print(b2.value) # b2์— ํ•ด๋‹นํ•˜๋Š” ์œ„์น˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ "[email protected]"๋กœ ๋ฐ”๊ฟˆ b2.value = "[email protected]" b2.value # C2 ์œ„์น˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ '[email protected]'๋กœ ์—…๋ฐ์ดํŠธํ•จ test_sheet.update_cell('C2', '[email protected]') # A1์—์„œ C4์˜ ์…€ ๋ฆฌ์ŠคํŠธ ๊ฐ€์ ธ์˜ด cell_list = test_sheet.range('A1:C4') print(cell_list) # A1์—์„œ C4์˜ ์…€ ๋ฆฌ์ŠคํŠธ ๊ฐ€์ ธ์˜ด cell_list = test_sheet.get_values('A1','C4', returnas='cells') print(cell_list) # ๋‘๋ฒˆ์งธ ์ค„์˜ ์…€ ๋ฆฌ์ŠคํŠธ ๊ฐ€์ ธ์˜ด cell_list = test_sheet.get_row(2, returnas='cells') print(cell_list) %%time cell = test_sheet.cell('C2') # ๋…ธํŠธ ์ถ”๊ฐ€ cell.note = "this is email data." # ์…€ ๋ฐฐ๊ฒฝ ์ƒ‰์ƒ ๋ณ€๊ฒฝ (Red, Green, Blue, Alpha cell.color = (1.0,1.0,0.0,1.0) # ํ…์ŠคํŠธ ํฌ๋ฉง ๋ณ€๊ฒฝ cell.text_format['fontSize'] = 12 cell.text_format['bold'] = True # sync the changes cell.update() ###Output CPU times: user 353 ms, sys: 20.3 ms, total: 374 ms Wall time: 9.3 s ###Markdown share ###Code # add sh.share("[email protected]") # remove sh.remove_permissions("[email protected]") ###Output _____no_output_____ ###Markdown all clear ###Code sh.del_worksheet(sh[1]) sh.del_worksheet(sh[1]) ###Output _____no_output_____ ###Markdown seaborn์—์„œ iris ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์™€์„œ ๊ตฌ๊ธ€ ๋ฐ์ดํ„ฐ ์‹œํŠธ์— ๋„ฃ๊ธฐ ###Code import seaborn as sns iris = sns.load_dataset("iris") iris.tail() # ์ƒˆ๋กœ์šด ์‹œํŠธ ๋งŒ๋“ค๊ธฐ iris_sheet = sh.add_worksheet("iris") iris_sheet.set_dataframe(iris, 'A1', copy_index=True) # (df, cell_start) ###Output _____no_output_____
notebooks/TensorBayes_v3.2.ipynb
###Markdown tensorboard \ --logdir ~/Dropbox/Cours/tensorbayes \ --port 6006 \ --debugger_port 6064 ###Code sess.run(tf.global_variables_initializer()) sess.run(ta_beta.eval(session=sess), feed_dict={ind: 0, Xj: x[:,0].reshape(N,1)}) x # Number of Gibbs sampling iterations num_iter = 5000 with tf.Session() as sess: # Initialize variable sess.run(tf.global_variables_initializer()) # Gibbs sampler iterations for i in range(num_iter): print("Gibbs sampling iteration: ", i) sess.run(emu_up) #sess.run(ny_reset) index = np.random.permutation(M) for marker in index: current_col = x[:,[marker]] feed = {ind: marker, Xj: current_col} sess.run(up_grp, feed_dict=feed) sess.run(nz_up) sess.run(emu_up) sess.run(eps_up) sess.run(s2b_up) sess.run(s2e_up) # Print operations print(sess.run(print_dict)) # End of Gibbs sampling print(sess.run(Ebeta), beta_true) total_time = time.clock()-start_time print("Total time: " + str(total_time) + "s") ###Output _____no_output_____
notebooks/Documentation_Database_Structure.ipynb
###Markdown The Database of Stonktastic*** Database StructureStonktastic uses a relational database created with SQLite3. The database consists of 5 different tables in a star schema. Why SQL LiteThe project was built using SQL Lite as we wanted some of the following features:- **Lightweight** : SQL lite databases require very little overhead and maintaince. It also connects into python easily with several common and easy to use libraries- **No installation** : We wanted a database that didn't require large amounts of set up and maintaince. - **Cheaper to run** : When running on a cloud server, the SQL lite database does not need to run. This is preferable for a low-traffic load website. Schema: ###Code from IPython.display import Image Image(filename="StockDatabase.jpg") ###Output _____no_output_____
Classification/Support Vector Machine/LinearSVC_Normalize_QuantileTransformer.ipynb
###Markdown LinearSVC with Normalize & Quantile Transformer This Code template is for classification analysis using the LinearSVC Classifier where rescaling method used is Normalize and feature transformation is done via Quantile Transformer. Required Packages ###Code import warnings import numpy as np import pandas as pd import seaborn as se import matplotlib.pyplot as plt from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC from imblearn.over_sampling import RandomOverSampler from sklearn.preprocessing import LabelEncoder, Normalizer, QuantileTransformer from sklearn.metrics import classification_report, plot_confusion_matrix warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= "" ###Output _____no_output_____ ###Markdown List of features which are required for model training. ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X=df[features] Y=df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ###Output _____no_output_____ ###Markdown Calling preprocessing functions on the feature and target set. ###Code x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown Data RescalingNormalizer normalizes samples (rows) individually to unit norm.Each sample with at least one non zero component is rescaled independently of other samples so that its norm (l1, l2 or inf) equals one.We will fit an object of Normalizer to train data then transform the same data via fit_transform(X_train) method, following which we will transform test data via transform(X_test) method. ###Code normalizer = Normalizer() x_train = normalizer.fit_transform(x_train) x_test = normalizer.transform(x_test) ###Output _____no_output_____ ###Markdown Quantile TransformerThis method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature, this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers: this is therefore a robust preprocessing scheme.Transform features using quantiles information. Linear Support Vector Classification.Similar to SVC with parameter kernel=โ€™linearโ€™, but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples.This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme.Model Tuning Parameters:**penalty: {โ€˜l1โ€™, โ€˜l2โ€™}, default=โ€™l2โ€™** ->Specifies the norm used in the penalization. The โ€˜l2โ€™ penalty is the standard used in SVC. The โ€˜l1โ€™ leads to coef_ vectors that are sparse.**loss: {โ€˜hingeโ€™, โ€˜squared_hingeโ€™}, default=โ€™squared_hingeโ€™** ->Specifies the loss function. โ€˜hingeโ€™ is the standard SVM loss (used e.g. by the SVC class) while โ€˜squared_hingeโ€™ is the square of the hinge loss. The combination of penalty='l1' and loss='hinge' is not supported.**dual: bool, default=True** ->Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features.**tol: float, default=1e-4** ->Tolerance for stopping criteria.**C: float, default=1.0** ->Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive.**multi_class: {โ€˜ovrโ€™, โ€˜crammer_singerโ€™}, default=โ€™ovrโ€™** ->Determines the multi-class strategy if y contains more than two classes. "ovr" trains n_classes one-vs-rest classifiers, while "crammer_singer" optimizes a joint objective over all classes. While crammer_singer is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If "crammer_singer" is chosen, the options loss, penalty and dual will be ignored.**fit_intercept: bool, default=True** ->Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered).**intercept_scaling: float, default=1** ->When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a โ€œsyntheticโ€ feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased.**class_weight: dict or โ€˜balancedโ€™, default=None** ->Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The โ€œbalancedโ€ mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).**verbose: int, default=0** ->Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context.**random_state: int, RandomState instance or None, default=None** ->Controls the pseudo random number generation for shuffling the data for the dual coordinate descent (if dual=True). When dual=False the underlying implementation of LinearSVC is not random and random_state has no effect on the results. Pass an int for reproducible output across multiple function calls. See Glossary.**max_iter: int, default=1000** ->The maximum number of iterations to be run. ###Code model=make_pipeline(QuantileTransformer(), LinearSVC()) model.fit(x_train,y_train) ###Output _____no_output_____ ###Markdown Model AccuracyWe will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model.score: The score function returns the coefficient of determination R2 of the prediction. ###Code print("Accuracy score {:.2f} %\n".format(model.score(x_test,y_test)*100)) ###Output Accuracy score 78.75 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code plot_confusion_matrix(model,x_test,y_test,cmap=plt.cm.Blues) ###Output _____no_output_____ ###Markdown Prediction PlotFirst, we make use of a plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code print(classification_report(y_test,model.predict(x_test))) ###Output precision recall f1-score support 0 0.81 0.86 0.83 50 1 0.74 0.67 0.70 30 accuracy 0.79 80 macro avg 0.78 0.76 0.77 80 weighted avg 0.78 0.79 0.79 80