path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Geometric Problems/Learning a quadratic pseudo-metric from distance measurements.ipynb
###Markdown ![image-2.png](attachment:image-2.png) FormulationLet's define: $\Delta_i = x_i - y_i$ $L_i = \Delta_i^T P \Delta_i$ The problem is:minimize $\sum -2 d_i (L_i)^{0.5} + L_i$ s.t $P \succeq 0$ Problem data ###Code X = [ [1.164954,1.696142,-1.446172,-0.360030,-0.044881,0.513478,0.375041,-0.322940,0.847649,-0.557094,-1.098195,-0.977814,-0.507700,-0.612911,1.133000,0.924159,0.394600,-0.137414,0.039885,-0.786457,-0.127443,-0.620214,-0.262681,0.499521,0.438705,0.292315,-0.759697,0.670292,-0.902031,0.846106,0.526163,0.889164,-1.010674,-1.406949,-0.165923,0.041430,-0.844414,0.336297,1.487524,0.786430,-0.702669,1.802440,-1.931134,-1.238566,1.547177,-2.526706,0.899884,-0.382918,-0.594524,1.879957,0.396727,-0.031243,0.251078,0.862500,0.968992,0.536007,1.524681,1.157783,-1.898778,-1.454749,0.418469,1.766708,-0.159448,-1.179060,-1.226502,0.658153,-0.397914,1.271743,-1.389722,-0.797533,-0.268286,1.939318,1.338814,0.420989,0.139860,-2.014986,-0.267458,0.605540,0.186747,0.434313,0.149996,1.136805,-1.378907,0.086932,-0.066596,0.642066,0.565239,-0.591204,0.393682,0.667201,-0.514013,1.289554,-0.227852,-0.904204,-1.586917,-0.047555,-0.391039,-0.956374,1.042360,-1.024905], [0.626839,0.059060,-0.701165,-0.135576,-0.798945,0.396681,1.125162,0.317988,0.268101,-0.336706,1.122648,-1.021466,0.885299,-0.209144,0.149994,-1.814115,0.639406,0.615770,-2.482843,0.634809,0.554172,0.237149,0.976490,-1.055375,-1.247344,2.565910,-0.674721,0.420146,-2.053257,-0.184538,-0.184454,-1.299152,-0.960498,1.030812,0.300907,-1.098050,-0.311630,-0.221361,-0.836821,-1.461639,0.356429,-0.642984,0.660300,-1.889236,0.644933,-0.312981,-0.200899,0.155083,0.130246,-1.003849,-0.527115,0.778212,-0.310471,-1.034706,-0.747317,0.298451,-0.195261,0.161908,1.822525,0.466546,0.247349,-0.382104,2.704026,-0.277776,0.069600,0.491314,0.864280,-0.035344,0.229328,-0.936741,-1.082140,-0.895840,1.222299,-0.433373,-0.748089,0.491717,-0.570245,-0.624481,1.594939,-0.386207,0.542038,0.391314,-0.260172,1.955674,0.373381,0.923087,-0.610781,1.691546,-0.905427,-0.067794,1.896261,-0.530575,0.376770,0.698670,-0.920783,-0.614736,-1.382045,0.451807,1.209120,-1.056846], [0.075080,1.797072,1.245982,-1.349338,-0.765172,0.756219,0.728642,-0.511172,-0.923489,0.415227,0.581667,0.317688,-0.248094,0.562148,0.703144,0.034973,0.874213,0.977894,1.158655,0.820410,-1.097344,-1.586847,0.977815,-0.450743,0.324667,-0.457816,-1.171687,-2.872751,0.089086,1.030714,0.198783,1.182573,0.691160,-0.759874,-0.322467,1.566724,0.397810,0.016649,-1.300982,1.554466,0.652636,0.109555,-1.102510,-0.973585,-2.148359,-0.593618,-0.233735,-0.964648,0.035014,-0.497446,0.344571,2.180484,-0.923004,-0.192673,-2.796024,0.284043,0.017260,1.557064,-1.518415,0.545437,0.704110,-0.911425,-0.198500,-1.581053,-0.396516,0.800734,-0.177618,-1.501329,0.271190,-0.002433,2.014134,-0.304158,-1.595978,0.706252,-0.628975,-1.554975,-0.187267,0.572228,0.321307,-0.112564,0.254409,1.605148,0.994768,0.161454,0.217314,-1.555108,1.231111,0.953356,-1.274473,-1.735660,-0.253230,-0.692971,1.221556,0.482598,-0.614274,0.240362,1.076292,-1.253778,0.780955,2.887723], [0.351607,0.264069,-0.638977,-1.270450,0.861735,0.400486,-2.377454,-0.002041,-0.070499,1.557814,-0.271354,1.516108,-0.726249,-1.063923,-0.052412,-1.807862,1.752402,-1.115348,-1.026279,-0.176027,-0.731301,-0.401485,1.170021,1.270378,0.390070,-1.610827,2.032930,1.685874,2.087099,-1.527623,1.590427,1.817472,-0.758618,0.874127,-0.368411,-1.048423,1.049786,-1.192361,1.574132,-0.597535,0.215671,-0.719038,-0.102971,0.212116,-1.028845,0.332322,1.449907,0.038756,-0.624674,-1.504397,-0.723291,0.437814,-0.384776,-1.299723,0.696732,0.959664,0.246340,-0.193544,-1.051071,1.320319,0.631939,-0.996090,-0.141405,1.049022,1.388807,-0.767269,1.874381,0.365373,-0.366360,0.396086,1.944031,0.555253,-1.067730,0.227857,1.394831,-0.140609,1.208557,-0.724410,0.866841,-0.964333,-0.307241,0.825892,1.834034,-0.628688,-0.179457,0.663594,0.994300,-1.930055,0.346546,0.806349,-0.174531,-0.859806,1.098288,0.811696,-0.334672,0.125017,1.269466,0.256435,-1.179900,-0.267744], [-0.696513,0.871673,0.577350,0.984570,-0.056225,-1.341381,-0.273782,1.606511,0.147891,-2.444299,0.414191,0.749432,-0.445040,0.351589,2.018496,1.028193,-0.320051,-0.550021,1.153487,0.562474,1.404732,-0.770692,0.159311,0.898694,-0.405138,-2.669524,0.968481,0.027925,0.365118,0.964939,0.032192,-0.584302,-0.096972,0.761127,1.147895,0.422724,-0.340796,-0.131646,1.166040,-1.210568,-0.263896,0.420628,-1.059802,0.493442,-0.141582,0.558851,1.836132,0.765458,-0.539775,-0.095449,1.268193,1.333329,1.158181,0.306596,3.206908,2.087593,-0.854485,1.651301,0.049931,-0.404494,-0.992362,1.195143,0.411268,0.302689,1.364422,0.364420,0.172400,-0.198660,1.376960,-0.508693,-1.521529,-0.324247,-0.759919,-1.016992,-1.647691,0.244944,-0.638855,1.192196,1.291844,-2.057251,-0.417112,1.470390,-1.715910,-1.438824,0.025673,-0.609500,-0.803475,0.512845,-1.195235,-0.914801,0.978788,0.529038,-0.853014,0.327883,0.080345,-0.223605,0.487268,0.421229,1.001450,-0.488540], ] Y = [ [0.419420,-0.611729,-0.506138,-2.122378,-0.673263,-1.350292,0.202680,0.186106,1.408075,0.179925,-0.683631,0.450343,-0.201343,-0.906374,-0.179097,0.067372,1.177170,1.173296,-0.574005,-0.081630,1.662312,1.166705,-0.960461,-0.915962,0.427947,0.213963,0.261843,0.144555,-0.972946,-0.534127,-0.310909,-1.719190,-0.345134,-0.785496,-0.275569,-0.744296,2.680118,-0.583258,-2.068566,0.385524,0.610146,-0.226541,0.263481,-0.988875,-0.130638,-1.266094,-0.768533,1.100780,-0.328912,-1.555024,0.698124,1.361879,-1.159160,-1.450383,-1.304731,1.000335,0.125589,-0.260304,-1.212525,-0.265477,-1.474263,-2.366324,1.195417,1.966075,2.955089,-1.133640,-2.032843,-0.902634,-1.327697,0.323356,0.096060,-0.875772,-1.672760,-1.548104,-0.426525,1.189467,0.750603,-1.340946,-0.876102,0.982860,0.016264,-0.934128,0.660062,0.131692,1.855048,-0.835704,-1.685751,-0.632046,1.599021,-0.245918,1.132966,-0.997240,-0.242387,0.082218,0.836056,-2.938220,1.116575,0.750101,-1.146451,-0.040269], [-0.742745,0.100402,-0.983137,-0.850378,0.989850,0.092861,-0.421487,0.667174,-1.476422,0.029963,0.813277,-0.119641,-1.236394,-0.515380,0.168926,0.184150,-1.298539,1.611950,1.362962,-1.223518,-0.256088,-0.659430,0.130287,1.490409,0.357348,0.100046,-0.440424,0.810685,1.150638,0.688182,0.177537,0.090665,-1.015168,-0.242882,2.150379,-0.200403,-0.384886,-1.039926,1.674866,-0.784288,0.478515,1.329307,0.647336,1.036852,0.015360,1.299368,1.038744,-0.393357,1.739255,0.853390,0.623186,-0.105752,1.466680,0.475028,0.443241,-0.010695,1.233429,1.302974,0.593773,1.787029,0.268053,-0.869979,-1.700570,-2.301185,1.874092,0.462473,0.564390,1.279284,0.786037,0.615560,-0.395321,0.665887,-0.027883,0.612520,-0.508498,-0.363852,0.547452,0.181441,-1.256036,1.333580,-1.287073,0.035241,-1.229566,1.644603,2.084384,-1.018327,0.358190,0.783785,0.990909,1.646456,-0.492347,1.105070,-0.445072,0.732257,-1.958656,-1.104897,-1.372281,-0.728689,1.365443,-0.281505], [0.572912,-1.112905,-0.437222,-0.424095,-0.577293,1.390198,1.218891,-0.429976,-0.809376,-0.711098,0.137012,0.299881,0.576187,1.181516,0.796552,-0.056014,-0.410115,2.318210,1.148564,-1.084040,-0.807258,0.385522,0.893410,2.148636,-0.513751,0.721376,-1.816264,-0.617132,0.042902,1.722587,-0.976696,1.660189,0.805136,-0.020406,-1.161508,-0.276941,-0.057147,-1.398089,-0.582561,0.384008,0.620631,-1.655171,0.814268,-0.057835,-0.673946,0.531241,0.639814,-0.222340,-1.587151,-0.779175,0.625826,-2.359716,0.255200,-0.586808,-0.400561,-0.832345,1.059862,-1.358675,0.597249,0.034741,1.765786,-0.699984,-0.585549,-0.994563,0.109977,-0.046205,1.156908,-0.346535,1.117178,-1.723877,-1.651466,0.937835,0.438835,0.193465,0.241914,-0.228302,-1.737480,0.030161,-0.269798,-0.926771,-1.553320,1.576796,-0.570628,-0.236055,-0.227784,-0.945054,-0.671933,0.240538,0.066988,1.561130,-0.336589,-1.148196,0.748184,-0.962436,-0.779537,-1.547502,2.074836,-0.648186,-0.632439,-1.227824], [-0.143680,0.957172,1.640728,-1.029596,-1.278514,0.153271,-1.751493,-1.146584,-0.196892,0.456901,0.403788,0.643104,0.933544,0.200532,-0.464512,0.674326,-1.847284,-0.814667,-0.378804,-0.440653,-0.077400,-0.187585,0.348338,1.129853,-0.086701,0.091444,0.528719,-1.191801,0.664119,-1.273178,-0.765922,-0.653223,-1.287555,-1.440631,-0.001266,-0.975253,-1.728765,0.844010,-0.785796,0.839488,-1.770459,-0.060916,-0.709093,-0.823255,-0.525083,-0.719614,-0.661728,-0.259005,1.013978,0.844147,-1.408990,-0.777909,-0.146252,0.305144,-0.621204,-1.181208,-1.755407,0.359975,-0.294485,0.325478,-1.768180,0.859512,2.205565,0.106741,-1.372973,-1.298474,1.253641,0.081997,-0.540079,1.241964,-1.098188,1.563100,0.800308,-1.093574,-0.408954,-0.824891,-0.296406,0.381845,-0.732456,1.154125,-0.059866,-1.532254,-0.682228,-0.706986,-0.265914,-0.865398,-1.021033,-1.470454,1.993145,-0.758432,0.059077,-0.473563,-2.271209,0.876035,1.224104,-1.434385,1.485758,0.138927,1.959653,1.159358], [-0.156844,-0.577886,0.530367,-0.349036,0.281387,0.801381,2.945547,-1.873306,-1.127700,-1.077242,1.288723,-1.775968,1.131390,-0.364330,-0.814449,2.557545,-0.899062,0.853069,-2.380476,-1.522343,-1.595641,-1.598445,0.760433,-1.434479,-0.668682,-0.002400,-0.351920,-2.082037,1.577989,-1.126164,-2.372749,2.050284,2.145294,0.780599,-1.142249,0.397122,1.280767,0.248825,-0.594914,0.471760,-0.351909,-0.470341,-0.669992,1.956099,0.711471,-0.107439,-0.170603,-1.262057,1.207766,-0.643000,-1.170419,-0.059081,-0.108548,1.017417,1.200154,-0.766562,-0.554640,1.314540,-0.935959,0.565107,1.627511,-1.296415,-0.827220,1.375143,-1.354662,0.080468,0.309434,-1.756170,-0.920435,0.568060,-1.103339,-0.756307,-0.974407,0.977825,-1.021484,0.610675,-0.369597,1.463439,0.279208,2.135796,0.582646,-0.254342,0.254562,-0.588331,-0.021790,-0.808710,2.498869,0.334877,-0.633251,-0.903983,-0.991926,0.333565,-1.080591,-0.633172,0.576336,0.128015,-0.043598,-0.153634,0.431631,-1.274743], ] X_test = [ [-0.186647,-0.636795,-0.242266,-1.000994,-1.094656,-0.088627,0.357200,1.236353,-0.657828,-1.081924], [-2.001022,0.007438,0.545292,1.134810,1.258890,-0.459909,1.365078,-1.397270,-0.864847,0.965412], [-1.028858,-0.002620,1.980639,0.758663,0.336024,-0.261001,-0.718739,-1.722115,-2.186815,0.701975], [0.545433,0.056516,0.111102,0.291716,1.496372,0.085050,0.415523,-1.234309,-0.785680,-1.487673], [0.224813,-1.022040,3.533658,2.245274,-0.665822,-0.009841,0.179097,0.494105,-0.905888,-0.197859], ] Y_test = [ [-0.294687,-0.689915,-2.285898,-0.938975,0.035156,-0.430063,0.352267,-0.385081,-0.752931,-0.014699], [-0.222314,0.699612,-0.264101,-0.767007,-0.183959,1.502923,-0.280606,1.081048,0.391797,-0.011185], [1.801455,0.772426,-0.945537,0.322200,0.057886,0.579556,0.961475,-1.396751,0.404377,-0.063508], [-0.133797,0.497607,0.310190,0.612367,-0.926959,-0.457190,1.309079,-1.575387,-1.116767,-1.027934], [-2.243783,0.391663,0.852659,0.069602,2.284313,-0.057675,-1.306810,-0.515741,-1.484789,0.988259], ] d = [3.105698,9.303920,6.834464,8.535880,6.895867,2.084421,5.802307,6.078630,7.676743,7.889291,1.747867,5.421094,8.056460,5.403059,6.134915,9.260686,11.292909,6.465282,12.659127,6.716904,8.247420,7.677115,2.345364,10.289954,7.556104,9.927747,2.885653,8.667243,10.105910,8.164997,4.403754,10.905269,6.736946,7.881454,9.098149,5.616785,13.511874,8.607833,10.158668,7.828967,6.669338,10.942197,7.102851,12.512170,1.693926,5.316018,6.161766,7.008868,8.568092,13.728702,4.080557,10.282838,6.515821,11.142170,8.083361,4.659479,7.252958,11.903167,9.148000,7.844158,7.144369,12.485157,16.621630,13.365911,10.855162,4.169473,3.658437,6.554199,5.956399,6.189959,15.132870,8.958080,11.450199,6.767207,6.598192,8.818651,8.531837,5.173845,8.337579,10.310235,6.315191,1.352438,12.100806,2.871881,5.391262,5.899694,12.221590,4.330038,5.430671,8.585915,9.817138,8.901824,9.322942,3.233721,4.747448,5.238966,4.640416,5.379597,11.164867,10.616969] d_test = [7.600672,4.423181,9.997974,8.315172,12.786013,7.426758,11.055029,8.688143,6.585704,4.253190] X = np.array(X) Y = np.array(Y) X_test = np.array(X_test) Y_test = np.array(Y_test) d = np.array(d) d_test = np.array(d_test) print('Shapes X,Y,d :', X.shape , Y.shape , d.shape) print('Shapes X,Y,d test:',X_test.shape, Y_test.shape, d_test.shape) ###Output Shapes X,Y,d : (5, 100) (5, 100) (100,) Shapes X,Y,d test: (5, 10) (5, 10) (10,) ###Markdown Solving ###Code n, m = X.shape delta = X - Y P = cp.Variable((n,n), PSD = True) error = 0 for i in range(m): delta_i = delta[:,i] L_i = cp.quad_form(delta_i, P) error += -2 * d[i] * cp.sqrt(L_i) + L_i + d[i]**2 error /= m obj = cp.Minimize(error) prob = cp.Problem(obj) prob.solve() assert prob.status == cp.OPTIMAL print("P:") print(P.value) print('error:', error.value) def get_error(P, X, Y, d_true): delta = X - Y return ((np.sum((P @ delta) * delta, axis = 0)**0.5 - d_true)**2).mean() get_error(P.value, X, Y, d).round(2) get_error(P.value, X_test, Y_test, d_test).round(2) ###Output _____no_output_____
notebook/cmx/cmx_sky_ratio.ipynb
###Markdown Q: For exposure time calculations, should we be using the (bright sky)/(nominal dark sky) ratio derived at 5000A (b spectrograph) or 6500A (r spectrograph)? In this notebook, I'll measure this sky ratio at 5000A and 6500A for the CMX sky data updates- **06/08/2020** sky ratios at more wavelengths and broader smoothing to erase out some of the features- **06/09/2020** sky ratios that were brighter at higher wavelenghts were exposures taken during 20200314. I will rerun the fsky wavelength test excluding these exposures. ###Code import h5py import numpy as np from scipy.signal import medfilt from scipy.signal import medfilt2d # -- astropy -- import astropy.units as u # -- desihub -- import desisim.simexp from desimodel.io import load_throughput # -- plotting -- import matplotlib as mpl import matplotlib.pyplot as plt #mpl.rcParams['medfilt2dtex'] = True mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.linewidth'] = 1.5 mpl.rcParams['axes.xmargin'] = 1 mpl.rcParams['xtick.labelsize'] = 'x-large' mpl.rcParams['xtick.major.size'] = 5 mpl.rcParams['xtick.major.width'] = 1.5 mpl.rcParams['ytick.labelsize'] = 'x-large' mpl.rcParams['ytick.major.size'] = 5 mpl.rcParams['ytick.major.width'] = 1.5 mpl.rcParams['legend.frameon'] = False # read nominal dark sky surface brightness wavemin = load_throughput('b').wavemin - 10.0 wavemax = load_throughput('z').wavemax + 10.0 wave = np.arange(round(wavemin, 1), wavemax, 0.8) * u.Angstrom # Generate specsim config object for a given wavelength grid config = desisim.simexp._specsim_config_for_wave(wave.to('Angstrom').value, dwave_out=0.8, specsim_config_file='desi') nominal_surface_brightness_dict = config.load_table(config.atmosphere.sky, 'surface_brightness', as_dict=True) # read sky surface brightnesses for CMX BGS exposures fskies = h5py.File('/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/sky_fibers.cmx.v1.hdf5', 'r') skies = {} for k in fskies.keys(): skies[k] = fskies[k][...] fskies.close() iexp = 0 for k in skies.keys(): if 'wave' not in k and 'sky_sb' not in k: print(k, skies[k][iexp]) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) sub.scatter(wave, nominal_surface_brightness_dict['dark'], c='k', s=1) for band in ['b', 'r', 'z']: sub.scatter(skies['wave_%s' % band], skies['sky_sb_%s' % band][iexp], s=1) sub.set_xlabel('wavelength', fontsize=20) sub.set_xlim(3.6e3, 9.8e3) sub.set_ylabel('sky surface brightness', fontsize=20) sub.set_ylim(0., 10) expids = np.unique(skies['expid']) smooth_skies_b, smooth_skies_r = [], [] for expid in expids: isexp = (skies['expid'] == expid) smooth_skies_b.append(medfilt(np.median(skies['sky_sb_b'][isexp], axis=0), 501)) smooth_skies_r.append(medfilt(np.median(skies['sky_sb_r'][isexp], axis=0), 501)) smooth_skies_b = np.array(smooth_skies_b) smooth_skies_r = np.array(smooth_skies_r) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) sub.scatter(wave, nominal_surface_brightness_dict['dark'], c='k', s=1) sub.plot(wave, medfilt(nominal_surface_brightness_dict['dark'], 501), c='r', ls='--') for band in ['b', 'r', 'z']: sub.scatter(skies['wave_%s' % band], skies['sky_sb_%s' % band][iexp], s=1) sub.plot(skies['wave_b'], smooth_skies_b[iexp], c='k', ls='--') sub.plot(skies['wave_r'], smooth_skies_r[iexp], c='k', ls='--') sub.set_xlabel('wavelength', fontsize=20) sub.set_xlim(3.6e3, 9.8e3) sub.set_ylabel('sky surface brightness', fontsize=20) sub.set_ylim(0., 10) waves = [4000, 5000, 6000, 7000] sky_ratios = [] for w in waves: if w < skies['wave_b'].max(): _wave = skies['wave_b'] _smooth_skies = smooth_skies_b elif w < skies['wave_r'].max(): _wave = skies['wave_r'] _smooth_skies = smooth_skies_r else: raise ValueError nom_near_wave = np.median(medfilt(nominal_surface_brightness_dict['dark'], 501)[(wave.value > w-5.) & (wave.value < w+5.)]) near_wave = (_wave > w-5.) & (_wave < w+5.) sky_ratio = np.median(_smooth_skies[:, near_wave], axis=1) / nom_near_wave sky_ratios.append(sky_ratio) fig = plt.figure(figsize=(18,6)) for i in range(3): sub = fig.add_subplot(1,3,i+1) sub.scatter(sky_ratios[i+1], sky_ratios[0]) sub.plot([0., 6.], [0., 6.], c='k', ls='--') sub.set_xlabel('sky ratio at %i' % waves[i+1], fontsize=20) sub.set_xlim(0., 6) if i == 0: sub.set_ylabel('sky ratio at %iA' % waves[0], fontsize=20) sub.set_ylim(0., 6) fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.scatter(sky_ratios[3], sky_ratios[1]) sub.plot([0., 6.], [0., 6.], c='k', ls='--') sub.set_xlabel('sky ratio at %iA' % waves[3], fontsize=20) sub.set_xlim(0., 6) sub.set_ylabel('sky ratio at %iA' % waves[1], fontsize=20) sub.set_ylim(0., 6) ###Output _____no_output_____ ###Markdown Exposures taken during 2020/03/14 ###Code dates = [] for expid in expids: dates.append(skies['date'][skies['expid'] == expid][0]) subset = (np.array(dates) == 20200314) fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.scatter(sky_ratios[3], sky_ratios[1]) sub.scatter(np.array(sky_ratios[3])[subset], np.array(sky_ratios[1])[subset], c='C1') sub.plot([0., 6.], [0., 6.], c='k', ls='--') sub.set_xlabel('sky ratio at %iA' % waves[3], fontsize=20) sub.set_xlim(0., 6) sub.set_ylabel('sky ratio at %iA' % waves[1], fontsize=20) sub.set_ylim(0., 6) fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.scatter(sky_ratios[3], sky_ratios[1]) sub.scatter(np.array(sky_ratios[3])[sky_ratios[3] > 5], np.array(sky_ratios[1])[sky_ratios[3] > 5], c='C1') sub.plot([0., 6.], [0., 6.], c='k', ls='--') sub.set_xlabel('sky ratio at %iA' % waves[3], fontsize=20) sub.set_xlim(0., 6) sub.set_ylabel('sky ratio at %iA' % waves[1], fontsize=20) sub.set_ylim(0., 6) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) sub.scatter(wave, nominal_surface_brightness_dict['dark'], c='k', s=1) sub.plot(wave, medfilt(nominal_surface_brightness_dict['dark'], 501), c='r', ls='--') for i, expid in enumerate(expids[sky_ratios[3] > 5]): isexp = (skies['expid'] == expid) for band in ['b', 'r', 'z']: sub.scatter(skies['wave_%s' % band], np.median(skies['sky_sb_%s' % band][isexp], axis=0), s=1, c='C%i' % i) sub.set_xlabel('wavelength', fontsize=20) sub.set_xlim(3.6e3, 9.8e3) sub.set_ylabel('sky surface brightness', fontsize=20) sub.set_ylim(0., 10) subset = (sky_ratios[0] > 2) & (sky_ratios[3] < 3) & (sky_ratios[0] > sky_ratios[3]) fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.scatter(sky_ratios[3], sky_ratios[1]) sub.scatter(np.array(sky_ratios[3])[subset], np.array(sky_ratios[1])[subset], c='C1') sub.plot([0., 6.], [0., 6.], c='k', ls='--') sub.set_xlabel('sky ratio at %iA' % waves[3], fontsize=20) sub.set_xlim(0., 6) sub.set_ylabel('sky ratio at %iA' % waves[1], fontsize=20) sub.set_ylim(0., 6) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) sub.scatter(wave, nominal_surface_brightness_dict['dark'], c='k', s=1) sub.plot(wave, medfilt(nominal_surface_brightness_dict['dark'], 501), c='r', ls='--') for i, expid in enumerate(expids[subset]): isexp = (skies['expid'] == expid) for band in ['b', 'r', 'z']: sub.scatter(skies['wave_%s' % band], np.median(skies['sky_sb_%s' % band][isexp], axis=0), s=1, c='C%i' % (i % 10)) sub.set_xlabel('wavelength', fontsize=20) sub.set_xlim(3.6e3, 9.8e3) sub.set_ylabel('sky surface brightness', fontsize=20) sub.set_ylim(0., 10) ###Output _____no_output_____
Convolutional Neural Networks/Week 2/Assignments/Residual+Networks+-+v2.ipynb
###Markdown Residual NetworksWelcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by [He et al.](https://arxiv.org/pdf/1512.03385.pdf), allow you to train much deeper networks than were previously practically feasible.**In this assignment, you will:**- Implement the basic building blocks of ResNets. - Put together these building blocks to implement and train a state-of-the-art neural network for image classification. This assignment will be done in Keras. Before jumping into the problem, let's run the cell below to load the required packages. ###Code import numpy as np from keras import layers from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from keras.models import Model, load_model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input import pydot from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from resnets_utils import * from keras.initializers import glorot_uniform import scipy.misc from matplotlib.pyplot import imshow %matplotlib inline import keras.backend as K K.set_image_data_format('channels_last') K.set_learning_phase(1) ###Output Using TensorFlow backend. ###Markdown 1 - The problem of very deep neural networksLast week, you built your first convolutional neural network. In recent years, neural networks have become deeper, with state-of-the-art networks going from just a few layers (e.g., AlexNet) to over a hundred layers.The main benefit of a very deep network is that it can represent very complex functions. It can also learn features at many different levels of abstraction, from edges (at the lower layers) to very complex features (at the deeper layers). However, using a deeper network doesn't always help. A huge barrier to training them is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent unbearably slow. More specifically, during gradient descent, as you backprop from the final layer back to the first layer, you are multiplying by the weight matrix on each step, and thus the gradient can decrease exponentially quickly to zero (or, in rare cases, grow exponentially quickly and "explode" to take very large values). During training, you might therefore see the magnitude (or norm) of the gradient for the earlier layers descrease to zero very rapidly as training proceeds: **Figure 1** : **Vanishing gradient** The speed of learning decreases very rapidly for the early layers as the network trains You are now going to solve this problem by building a Residual Network! 2 - Building a Residual NetworkIn ResNets, a "shortcut" or a "skip connection" allows the gradient to be directly backpropagated to earlier layers: **Figure 2** : A ResNet block showing a **skip-connection** The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network. We also saw in lecture that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance. (There is also some evidence that the ease of learning an identity function--even more than skip connections helping with vanishing gradients--accounts for ResNets' remarkable performance.)Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are same or different. You are going to implement both of them. 2.1 - The identity blockThe identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say $a^{[l]}$) has the same dimension as the output activation (say $a^{[l+2]}$). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps: **Figure 3** : **Identity block.** Skip connection "skips over" 2 layers. The upper path is the "shortcut path." The lower path is the "main path." In this diagram, we have also made explicit the CONV2D and ReLU steps in each layer. To speed up training we have also added a BatchNorm step. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras! In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this: **Figure 4** : **Identity block.** Skip connection "skips over" 3 layers.Here're the individual steps.First component of main path: - The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be `conv_name_base + '2a'`. Use 0 as the seed for the random initialization. - The first BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2a'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Second component of main path:- The second CONV2D has $F_2$ filters of shape $(f,f)$ and a stride of (1,1). Its padding is "same" and its name should be `conv_name_base + '2b'`. Use 0 as the seed for the random initialization. - The second BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2b'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Third component of main path:- The third CONV2D has $F_3$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be `conv_name_base + '2c'`. Use 0 as the seed for the random initialization. - The third BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2c'`. Note that there is no ReLU activation function in this component. Final step: - The shortcut and the input are added together.- Then apply the ReLU activation function. This has no name and no hyperparameters. **Exercise**: Implement the ResNet identity block. We have implemented the first component of the main path. Please read over this carefully to make sure you understand what it is doing. You should implement the rest. - To implement the Conv2D step: [See reference](https://keras.io/layers/convolutional/conv2d)- To implement BatchNorm: [See reference](https://faroit.github.io/keras-docs/1.2.2/layers/normalization/) (axis: Integer, the axis that should be normalized (typically the channels axis))- For the activation, use: `Activation('relu')(X)`- To add the value passed forward by the shortcut: [See reference](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: identity_block def identity_block(X, f, filters, stage, block): """ Implementation of the identity block as defined in Figure 3 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) """ # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value. You'll need this later to add back to the main path. X_shortcut = X # First component of main path X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path (≈2 lines) X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = Add()([X, X_shortcut]) X = Activation('relu')(X) ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) ###Output out = [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] ###Markdown **Expected Output**: **out** [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] 2.2 - The convolutional blockYou've implemented the ResNet identity block. Next, the ResNet "convolutional block" is the other type of block. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path: **Figure 4** : **Convolutional block** The CONV2D layer in the shortcut path is used to resize the input $x$ to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix $W_s$ discussed in lecture.) For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2. The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step. The details of the convolutional block are as follows. First component of main path:- The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '2a'`. - The first BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2a'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Second component of main path:- The second CONV2D has $F_2$ filters of (f,f) and a stride of (1,1). Its padding is "same" and it's name should be `conv_name_base + '2b'`.- The second BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2b'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Third component of main path:- The third CONV2D has $F_3$ filters of (1,1) and a stride of (1,1). Its padding is "valid" and it's name should be `conv_name_base + '2c'`.- The third BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '2c'`. Note that there is no ReLU activation function in this component. Shortcut path:- The CONV2D has $F_3$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '1'`.- The BatchNorm is normalizing the channels axis. Its name should be `bn_name_base + '1'`. Final step: - The shortcut and the main path values are added together.- Then apply the ReLU activation function. This has no name and no hyperparameters. **Exercise**: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.- [Conv Hint](https://keras.io/layers/convolutional/conv2d)- [BatchNorm Hint](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- For the activation, use: `Activation('relu')(X)`- [Addition Hint](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: convolutional_block def convolutional_block(X, f, filters, stage, block, s = 2): """ Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network s -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) """ # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = Conv2D(filters=F1, kernel_size=(1, 1), strides = (s,s), name = conv_name_base + '2a', padding="valid", kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = Conv2D(filters=F2, kernel_size=(f, f), strides = (1,1), name = conv_name_base + '2b', padding="same", kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path (≈2 lines) X = Conv2D(filters=F3, kernel_size=(1, 1), strides = (1,1), name = conv_name_base + '2c', padding="valid", kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) ##### SHORTCUT PATH #### (≈2 lines) X_shortcut = Conv2D(filters=F3, kernel_size=(1, 1), strides = (s,s), name = conv_name_base + '1', padding="valid", kernel_initializer = glorot_uniform(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = Add()([X, X_shortcut]) X = Activation('relu')(X) ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) ###Output out = [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] ###Markdown **Expected Output**: **out** [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] 3 - Building your first ResNet model (50 layers)You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together. **Figure 5** : **ResNet-50 model** The details of this ResNet-50 model are:- Zero-padding pads the input with a pad of (3,3)- Stage 1: - The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1". - BatchNorm is applied to the channels axis of the input. - MaxPooling uses a (3,3) window and a (2,2) stride.- Stage 2: - The convolutional block uses three set of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a". - The 2 identity blocks use three set of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".- Stage 3: - The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a". - The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".- Stage 4: - The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a". - The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".- Stage 5: - The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a". - The 2 identity blocks use three set of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".- The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".- The flatten doesn't have any hyperparameters or name.- The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be `'fc' + str(classes)`.**Exercise**: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above. You'll need to use this function: - Average pooling [see reference](https://keras.io/layers/pooling/averagepooling2d)Here're some other functions we used in the code below:- Conv2D: [See reference](https://keras.io/layers/convolutional/conv2d)- BatchNorm: [See reference](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- Zero padding: [See reference](https://keras.io/layers/convolutional/zeropadding2d)- Max pooling: [See reference](https://keras.io/layers/pooling/maxpooling2d)- Fully conected layer: [See reference](https://keras.io/layers/core/dense)- Addition: [See reference](https://keras.io/layers/merge/add) ###Code # GRADED FUNCTION: ResNet50 def ResNet50(input_shape = (64, 64, 3), classes = 6): """ Implementation of the popular ResNet50 the following architecture: CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER Arguments: input_shape -- shape of the images of the dataset classes -- integer, number of classes Returns: model -- a Model() instance in Keras """ # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = 'bn_conv1')(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1) X = identity_block(X, 3, [64, 64, 256], stage=2, block='b') X = identity_block(X, 3, [64, 64, 256], stage=2, block='c') ### START CODE HERE ### # Stage 3 (≈4 lines) X = convolutional_block(X,f=3, filters=[128, 128, 512], stage = 3, block='a', s = 2) X = identity_block(X, 3, [128, 128, 512], stage=3, block='b') X = identity_block(X, 3, [128, 128, 512], stage=3, block='c') X = identity_block(X, 3, [128, 128, 512], stage=3, block='d') # Stage 4 (≈6 lines) X = convolutional_block(X,f=3, filters=[256, 256, 1024], stage = 4, block='a', s = 2) X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f') # Stage 5 (≈3 lines) X = convolutional_block(X,f=3, filters=[512, 512, 2048], stage = 5, block='a', s = 2) X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b') X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c') # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)" X = AveragePooling2D((2, 2), name="avg_pool")(X) ### END CODE HERE ### # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X) # Create model model = Model(inputs = X_input, outputs = X, name='ResNet50') return model ###Output _____no_output_____ ###Markdown Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running `model.fit(...)` below. ###Code model = ResNet50(input_shape = (64, 64, 3), classes = 6) ###Output _____no_output_____ ###Markdown As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model. ###Code model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown The model is now ready to be trained. The only thing you need is a dataset. Let's load the SIGNS Dataset. **Figure 6** : **SIGNS dataset** ###Code X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) ###Output number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6) ###Markdown Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch. ###Code model.fit(X_train, Y_train, epochs = 2, batch_size = 32) ###Output Epoch 1/2 1080/1080 [==============================] - 272s - loss: 3.1091 - acc: 0.2454 Epoch 2/2 1080/1080 [==============================] - 254s - loss: 2.2991 - acc: 0.3315 ###Markdown **Expected Output**: ** Epoch 1/2** loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours. ** Epoch 2/2** loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing. Let's see how this model (trained on only two epochs) performs on the test set. ###Code preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) ###Output 120/120 [==============================] - 9s Loss = 2.23173121611 Test Accuracy = 0.166666666667 ###Markdown **Expected Output**: **Test Accuracy** between 0.16 and 0.25 For the purpose of this assignment, we've asked you to train the model only for two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well. After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU. Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model. ###Code model = load_model('ResNet50.h5') preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) ###Output 120/120 [==============================] - 9s Loss = 0.530178320408 Test Accuracy = 0.866666662693 ###Markdown ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system! 4 - Test on your own image (Optional/Ungraded) If you wish, you can also take a picture of your own hand and see the output of the model. To do this: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right! ###Code img_path = 'images/my_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) my_image = scipy.misc.imread(img_path) imshow(my_image) print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ") print(model.predict(x)) ###Output Input image shape: (1, 64, 64, 3) class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = [[ 1. 0. 0. 0. 0. 0.]] ###Markdown You can also print a summary of your model by running the following code. ###Code model.summary() ###Output ____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 64, 64, 3) 0 ____________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] ____________________________________________________________________________________________________ conv1 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d_1[0][0] ____________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 32, 32, 64) 256 conv1[0][0] ____________________________________________________________________________________________________ activation_4 (Activation) (None, 32, 32, 64) 0 bn_conv1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0 activation_4[0][0] ____________________________________________________________________________________________________ res2a_branch2a (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2a[0][0] ____________________________________________________________________________________________________ activation_5 (Activation) (None, 15, 15, 64) 0 bn2a_branch2a[0][0] ____________________________________________________________________________________________________ res2a_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_5[0][0] ____________________________________________________________________________________________________ bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2b[0][0] ____________________________________________________________________________________________________ activation_6 (Activation) (None, 15, 15, 64) 0 bn2a_branch2b[0][0] ____________________________________________________________________________________________________ res2a_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_6[0][0] ____________________________________________________________________________________________________ res2a_branch1 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2a_branch2c[0][0] ____________________________________________________________________________________________________ bn2a_branch1 (BatchNormalization (None, 15, 15, 256) 1024 res2a_branch1[0][0] ____________________________________________________________________________________________________ add_2 (Add) (None, 15, 15, 256) 0 bn2a_branch2c[0][0] bn2a_branch1[0][0] ____________________________________________________________________________________________________ activation_7 (Activation) (None, 15, 15, 256) 0 add_2[0][0] ____________________________________________________________________________________________________ res2b_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_7[0][0] ____________________________________________________________________________________________________ bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2a[0][0] ____________________________________________________________________________________________________ activation_8 (Activation) (None, 15, 15, 64) 0 bn2b_branch2a[0][0] ____________________________________________________________________________________________________ res2b_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_8[0][0] ____________________________________________________________________________________________________ bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2b[0][0] ____________________________________________________________________________________________________ activation_9 (Activation) (None, 15, 15, 64) 0 bn2b_branch2b[0][0] ____________________________________________________________________________________________________ res2b_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_9[0][0] ____________________________________________________________________________________________________ bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2b_branch2c[0][0] ____________________________________________________________________________________________________ add_3 (Add) (None, 15, 15, 256) 0 bn2b_branch2c[0][0] activation_7[0][0] ____________________________________________________________________________________________________ activation_10 (Activation) (None, 15, 15, 256) 0 add_3[0][0] ____________________________________________________________________________________________________ res2c_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_10[0][0] ____________________________________________________________________________________________________ bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2a[0][0] ____________________________________________________________________________________________________ activation_11 (Activation) (None, 15, 15, 64) 0 bn2c_branch2a[0][0] ____________________________________________________________________________________________________ res2c_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_11[0][0] ____________________________________________________________________________________________________ bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2b[0][0] ____________________________________________________________________________________________________ activation_12 (Activation) (None, 15, 15, 64) 0 bn2c_branch2b[0][0] ____________________________________________________________________________________________________ res2c_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_12[0][0] ____________________________________________________________________________________________________ bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2c_branch2c[0][0] ____________________________________________________________________________________________________ add_4 (Add) (None, 15, 15, 256) 0 bn2c_branch2c[0][0] activation_10[0][0] ____________________________________________________________________________________________________ activation_13 (Activation) (None, 15, 15, 256) 0 add_4[0][0] ____________________________________________________________________________________________________ res3a_branch2a (Conv2D) (None, 8, 8, 128) 32896 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2a[0][0] ____________________________________________________________________________________________________ activation_14 (Activation) (None, 8, 8, 128) 0 bn3a_branch2a[0][0] ____________________________________________________________________________________________________ res3a_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_14[0][0] ____________________________________________________________________________________________________ bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2b[0][0] ____________________________________________________________________________________________________ activation_15 (Activation) (None, 8, 8, 128) 0 bn3a_branch2b[0][0] ____________________________________________________________________________________________________ res3a_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_15[0][0] ____________________________________________________________________________________________________ res3a_branch1 (Conv2D) (None, 8, 8, 512) 131584 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3a_branch2c[0][0] ____________________________________________________________________________________________________ bn3a_branch1 (BatchNormalization (None, 8, 8, 512) 2048 res3a_branch1[0][0] ____________________________________________________________________________________________________ add_5 (Add) (None, 8, 8, 512) 0 bn3a_branch2c[0][0] bn3a_branch1[0][0] ____________________________________________________________________________________________________ activation_16 (Activation) (None, 8, 8, 512) 0 add_5[0][0] ____________________________________________________________________________________________________ res3b_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_16[0][0] ____________________________________________________________________________________________________ bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2a[0][0] ____________________________________________________________________________________________________ activation_17 (Activation) (None, 8, 8, 128) 0 bn3b_branch2a[0][0] ____________________________________________________________________________________________________ res3b_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_17[0][0] ____________________________________________________________________________________________________ bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2b[0][0] ____________________________________________________________________________________________________ activation_18 (Activation) (None, 8, 8, 128) 0 bn3b_branch2b[0][0] ____________________________________________________________________________________________________ res3b_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_18[0][0] ____________________________________________________________________________________________________ bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3b_branch2c[0][0] ____________________________________________________________________________________________________ add_6 (Add) (None, 8, 8, 512) 0 bn3b_branch2c[0][0] activation_16[0][0] ____________________________________________________________________________________________________ activation_19 (Activation) (None, 8, 8, 512) 0 add_6[0][0] ____________________________________________________________________________________________________ res3c_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_19[0][0] ____________________________________________________________________________________________________ bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2a[0][0] ____________________________________________________________________________________________________ activation_20 (Activation) (None, 8, 8, 128) 0 bn3c_branch2a[0][0] ____________________________________________________________________________________________________ res3c_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_20[0][0] ____________________________________________________________________________________________________ bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2b[0][0] ____________________________________________________________________________________________________ activation_21 (Activation) (None, 8, 8, 128) 0 bn3c_branch2b[0][0] ____________________________________________________________________________________________________ res3c_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_21[0][0] ____________________________________________________________________________________________________ bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3c_branch2c[0][0] ____________________________________________________________________________________________________ add_7 (Add) (None, 8, 8, 512) 0 bn3c_branch2c[0][0] activation_19[0][0] ____________________________________________________________________________________________________ activation_22 (Activation) (None, 8, 8, 512) 0 add_7[0][0] ____________________________________________________________________________________________________ res3d_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_22[0][0] ____________________________________________________________________________________________________ bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2a[0][0] ____________________________________________________________________________________________________ activation_23 (Activation) (None, 8, 8, 128) 0 bn3d_branch2a[0][0] ____________________________________________________________________________________________________ res3d_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_23[0][0] ____________________________________________________________________________________________________ bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2b[0][0] ____________________________________________________________________________________________________ activation_24 (Activation) (None, 8, 8, 128) 0 bn3d_branch2b[0][0] ____________________________________________________________________________________________________ res3d_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_24[0][0] ____________________________________________________________________________________________________ bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3d_branch2c[0][0] ____________________________________________________________________________________________________ add_8 (Add) (None, 8, 8, 512) 0 bn3d_branch2c[0][0] activation_22[0][0] ____________________________________________________________________________________________________ activation_25 (Activation) (None, 8, 8, 512) 0 add_8[0][0] ____________________________________________________________________________________________________ res4a_branch2a (Conv2D) (None, 4, 4, 256) 131328 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2a[0][0] ____________________________________________________________________________________________________ activation_26 (Activation) (None, 4, 4, 256) 0 bn4a_branch2a[0][0] ____________________________________________________________________________________________________ res4a_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_26[0][0] ____________________________________________________________________________________________________ bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2b[0][0] ____________________________________________________________________________________________________ activation_27 (Activation) (None, 4, 4, 256) 0 bn4a_branch2b[0][0] ____________________________________________________________________________________________________ res4a_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_27[0][0] ____________________________________________________________________________________________________ res4a_branch1 (Conv2D) (None, 4, 4, 1024) 525312 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4a_branch2c[0][0] ____________________________________________________________________________________________________ bn4a_branch1 (BatchNormalization (None, 4, 4, 1024) 4096 res4a_branch1[0][0] ____________________________________________________________________________________________________ add_9 (Add) (None, 4, 4, 1024) 0 bn4a_branch2c[0][0] bn4a_branch1[0][0] ____________________________________________________________________________________________________ activation_28 (Activation) (None, 4, 4, 1024) 0 add_9[0][0] ____________________________________________________________________________________________________ res4b_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_28[0][0] ____________________________________________________________________________________________________ bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2a[0][0] ____________________________________________________________________________________________________ activation_29 (Activation) (None, 4, 4, 256) 0 bn4b_branch2a[0][0] ____________________________________________________________________________________________________ res4b_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_29[0][0] ____________________________________________________________________________________________________ bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2b[0][0] ____________________________________________________________________________________________________ activation_30 (Activation) (None, 4, 4, 256) 0 bn4b_branch2b[0][0] ____________________________________________________________________________________________________ res4b_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_30[0][0] ____________________________________________________________________________________________________ bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4b_branch2c[0][0] ____________________________________________________________________________________________________ add_10 (Add) (None, 4, 4, 1024) 0 bn4b_branch2c[0][0] activation_28[0][0] ____________________________________________________________________________________________________ activation_31 (Activation) (None, 4, 4, 1024) 0 add_10[0][0] ____________________________________________________________________________________________________ res4c_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_31[0][0] ____________________________________________________________________________________________________ bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2a[0][0] ____________________________________________________________________________________________________ activation_32 (Activation) (None, 4, 4, 256) 0 bn4c_branch2a[0][0] ____________________________________________________________________________________________________ res4c_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_32[0][0] ____________________________________________________________________________________________________ bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2b[0][0] ____________________________________________________________________________________________________ activation_33 (Activation) (None, 4, 4, 256) 0 bn4c_branch2b[0][0] ____________________________________________________________________________________________________ res4c_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_33[0][0] ____________________________________________________________________________________________________ bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4c_branch2c[0][0] ____________________________________________________________________________________________________ add_11 (Add) (None, 4, 4, 1024) 0 bn4c_branch2c[0][0] activation_31[0][0] ____________________________________________________________________________________________________ activation_34 (Activation) (None, 4, 4, 1024) 0 add_11[0][0] ____________________________________________________________________________________________________ res4d_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_34[0][0] ____________________________________________________________________________________________________ bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2a[0][0] ____________________________________________________________________________________________________ activation_35 (Activation) (None, 4, 4, 256) 0 bn4d_branch2a[0][0] ____________________________________________________________________________________________________ res4d_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_35[0][0] ____________________________________________________________________________________________________ bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2b[0][0] ____________________________________________________________________________________________________ activation_36 (Activation) (None, 4, 4, 256) 0 bn4d_branch2b[0][0] ____________________________________________________________________________________________________ res4d_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_36[0][0] ____________________________________________________________________________________________________ bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4d_branch2c[0][0] ____________________________________________________________________________________________________ add_12 (Add) (None, 4, 4, 1024) 0 bn4d_branch2c[0][0] activation_34[0][0] ____________________________________________________________________________________________________ activation_37 (Activation) (None, 4, 4, 1024) 0 add_12[0][0] ____________________________________________________________________________________________________ res4e_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_37[0][0] ____________________________________________________________________________________________________ bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2a[0][0] ____________________________________________________________________________________________________ activation_38 (Activation) (None, 4, 4, 256) 0 bn4e_branch2a[0][0] ____________________________________________________________________________________________________ res4e_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_38[0][0] ____________________________________________________________________________________________________ bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2b[0][0] ____________________________________________________________________________________________________ activation_39 (Activation) (None, 4, 4, 256) 0 bn4e_branch2b[0][0] ____________________________________________________________________________________________________ res4e_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_39[0][0] ____________________________________________________________________________________________________ bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4e_branch2c[0][0] ____________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 bn4e_branch2c[0][0] activation_37[0][0] ____________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] ____________________________________________________________________________________________________ res4f_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_40[0][0] ____________________________________________________________________________________________________ bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2a[0][0] ____________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 bn4f_branch2a[0][0] ____________________________________________________________________________________________________ res4f_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_41[0][0] ____________________________________________________________________________________________________ bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2b[0][0] ____________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 256) 0 bn4f_branch2b[0][0] ____________________________________________________________________________________________________ res4f_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_42[0][0] ____________________________________________________________________________________________________ bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4f_branch2c[0][0] ____________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 bn4f_branch2c[0][0] activation_40[0][0] ____________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] ____________________________________________________________________________________________________ res5a_branch2a (Conv2D) (None, 2, 2, 512) 524800 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2a[0][0] ____________________________________________________________________________________________________ activation_44 (Activation) (None, 2, 2, 512) 0 bn5a_branch2a[0][0] ____________________________________________________________________________________________________ res5a_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_44[0][0] ____________________________________________________________________________________________________ bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2b[0][0] ____________________________________________________________________________________________________ activation_45 (Activation) (None, 2, 2, 512) 0 bn5a_branch2b[0][0] ____________________________________________________________________________________________________ res5a_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_45[0][0] ____________________________________________________________________________________________________ res5a_branch1 (Conv2D) (None, 2, 2, 2048) 2099200 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5a_branch2c[0][0] ____________________________________________________________________________________________________ bn5a_branch1 (BatchNormalization (None, 2, 2, 2048) 8192 res5a_branch1[0][0] ____________________________________________________________________________________________________ add_15 (Add) (None, 2, 2, 2048) 0 bn5a_branch2c[0][0] bn5a_branch1[0][0] ____________________________________________________________________________________________________ activation_46 (Activation) (None, 2, 2, 2048) 0 add_15[0][0] ____________________________________________________________________________________________________ res5b_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_46[0][0] ____________________________________________________________________________________________________ bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2a[0][0] ____________________________________________________________________________________________________ activation_47 (Activation) (None, 2, 2, 512) 0 bn5b_branch2a[0][0] ____________________________________________________________________________________________________ res5b_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_47[0][0] ____________________________________________________________________________________________________ bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2b[0][0] ____________________________________________________________________________________________________ activation_48 (Activation) (None, 2, 2, 512) 0 bn5b_branch2b[0][0] ____________________________________________________________________________________________________ res5b_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_48[0][0] ____________________________________________________________________________________________________ bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5b_branch2c[0][0] ____________________________________________________________________________________________________ add_16 (Add) (None, 2, 2, 2048) 0 bn5b_branch2c[0][0] activation_46[0][0] ____________________________________________________________________________________________________ activation_49 (Activation) (None, 2, 2, 2048) 0 add_16[0][0] ____________________________________________________________________________________________________ res5c_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_49[0][0] ____________________________________________________________________________________________________ bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2a[0][0] ____________________________________________________________________________________________________ activation_50 (Activation) (None, 2, 2, 512) 0 bn5c_branch2a[0][0] ____________________________________________________________________________________________________ res5c_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_50[0][0] ____________________________________________________________________________________________________ bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2b[0][0] ____________________________________________________________________________________________________ activation_51 (Activation) (None, 2, 2, 512) 0 bn5c_branch2b[0][0] ____________________________________________________________________________________________________ res5c_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_51[0][0] ____________________________________________________________________________________________________ bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5c_branch2c[0][0] ____________________________________________________________________________________________________ add_17 (Add) (None, 2, 2, 2048) 0 bn5c_branch2c[0][0] activation_49[0][0] ____________________________________________________________________________________________________ activation_52 (Activation) (None, 2, 2, 2048) 0 add_17[0][0] ____________________________________________________________________________________________________ avg_pool (AveragePooling2D) (None, 1, 1, 2048) 0 activation_52[0][0] ____________________________________________________________________________________________________ flatten_1 (Flatten) (None, 2048) 0 avg_pool[0][0] ____________________________________________________________________________________________________ fc6 (Dense) (None, 6) 12294 flatten_1[0][0] ==================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 ____________________________________________________________________________________________________ ###Markdown Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png". ###Code plot_model(model, to_file='model.png') SVG(model_to_dot(model).create(prog='dot', format='svg')) ###Output _____no_output_____
notebooks_vacios/Clase1c_ElSaltoDeLaRana.ipynb
###Markdown El juego del salto de la rana Objetivos del ejercicio En todo curso de programación se enseñan tarde o temprano las funciones, y este por supuesto no ha sido una excepción. Lo que realmente diferencia un curso de programación de un curso de algorítmica o de métodos numéricos es como se enseñan dichas funciones, o más importante, como se saca partido de las mismas.En ese sentido, La armada americana (US Navy) ya introdujo en 1960 el principio KISS ###Code Image(filename='../static/kiss.jpg') ###Output _____no_output_____ ###Markdown Principio que de alguna forma toma prestado el zen de Python. Desafortunadamente, ese principio no siempre se cumple, y a menudo es debido a una deficiente o incluso negligente formación.Bien es cierto, y es de hecho el origen del problema, que el principio KISS para un profano en programación simplemente carece de significado. Por eso, durante este ejercicio vamos a intentar demostrar de forma práctica las ventajas de tomar como propio ese principio, usando un paradigma que yo he dado en describir como:**&ldquo;_Programar como humanos, no como máquinas_** Descripción del juego El juego es realmente un acertijo. Supongamos que tenemos un tablero como el siguiente: ###Code Image(filename='../static/juego_rana_001.png') ###Output _____no_output_____ ###Markdown Un tablero con 7 huecos, en los que los 3 huecos de la izquierda contienen fichas rojas, mientras que los 3 huecos de la derecha contienen fichas azules.El objetivo del juego/acertijo, es conseguir que todas las fichas rojas ocupen las posiciones de las fichas azules, y viceversa. Para alcanzar el objetivo las fichas rojas sólo pueden mover hacia la derecha mientras que las fichas azules sólo pueden mover hacia la izquierda.Los movimientos permitidos son los siguientes:* Se puede mover una ficha una única casilla hasta el hueco, que por supuesto deberá ser contiguo: ###Code Image(filename='../static/juego_rana_002.png') ###Output _____no_output_____ ###Markdown * O se permite avanzar dos casillas con una ficha, saltando otra ficha del color contrario: ###Code Image(filename='../static/juego_rana_003.png') ###Output _____no_output_____
Resistor Calculations/Resistors in Parallel.ipynb
###Markdown Contents* [Total resistance of resistors in parallel](Total-resistance-of-resistors-in-parallel) Total resistance of resistors in parallelCalculate the total resistance of resistors in parallel.![resistor-parallel](resistor-parallel.jpg) ###Code import sys import os module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import common_util resistor_collection = [] resistor_val = '' resistor_pos = 1 total_resistance = 0 while True: resistor_val = input("Resistor " + str(resistor_pos) + ": ") # Check for empty string to break the input loop. if resistor_val.strip() == '': break else: resistor_collection.append(resistor_val) resistor_pos = resistor_pos + 1 if len(resistor_collection) > 0: for resistor in resistor_collection: if common_util.is_float_number(resistor): resistor_val = float(resistor) else: resistor_val = common_util.decode_resistor_value(resistor) if total_resistance == 0: total_resistance = resistor_val else: total_resistance = (total_resistance * resistor_val) / (resistor_val + total_resistance) print("Total resistance = " + common_util.format_resistor_value(total_resistance)) ###Output Resistor 1: 100 Resistor 2: 220 Resistor 3: 1.2k Resistor 4: Total resistance = 65.024631Ω
Course1_Neural-Networks-and-Deep-Learning/Week2/Logistic-Regression-with-Neural-Network/Logistic+Regression+with+a+Neural+Network+mindset+v5.ipynb
###Markdown Logistic Regression with a Neural Network mindsetWelcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step you through how to do this with a Neural Network mindset, and so will also hone your intuitions about deep learning.**Instructions:**- Do not use loops (for/while) in your code, unless the instructions explicitly ask you to do so.**You will learn to:**- Build the general architecture of a learning algorithm, including: - Initializing parameters - Calculating the cost function and its gradient - Using an optimization algorithm (gradient descent) - Gather all three functions above into a main model function, in the right order. 1 - Packages First, let's run the cell below to import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.- [matplotlib](http://matplotlib.org) is a famous library to plot graphs in Python.- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end. ###Code import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage from lr_utils import load_dataset %matplotlib inline ###Output _____no_output_____ ###Markdown 2 - Overview of the Problem set **Problem Statement**: You are given a dataset ("data.h5") containing: - a training set of m_train images labeled as cat (y=1) or non-cat (y=0) - a test set of m_test images labeled as cat or non-cat - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB). Thus, each image is square (height = num_px) and (width = num_px).You will build a simple image-recognition algorithm that can correctly classify pictures as cat or non-cat.Let's get more familiar with the dataset. Load the data by running the following code. ###Code # Loading the data (cat/non-cat) train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() ###Output _____no_output_____ ###Markdown We added "_orig" at the end of image datasets (train and test) because we are going to preprocess them. After preprocessing, we will end up with train_set_x and test_set_x (the labels train_set_y and test_set_y don't need any preprocessing).Each line of your train_set_x_orig and test_set_x_orig is an array representing an image. You can visualize an example by running the following code. Feel free also to change the `index` value and re-run to see other images. ###Code # Example of a picture index = 20 plt.imshow(train_set_x_orig[index]) print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.") ###Output y = [0], it's a 'non-cat' picture. ###Markdown Many software bugs in deep learning come from having matrix/vector dimensions that don't fit. If you can keep your matrix/vector dimensions straight you will go a long way toward eliminating many bugs. **Exercise:** Find the values for: - m_train (number of training examples) - m_test (number of test examples) - num_px (= height = width of a training image)Remember that `train_set_x_orig` is a numpy-array of shape (m_train, num_px, num_px, 3). For instance, you can access `m_train` by writing `train_set_x_orig.shape[0]`. ###Code ### START CODE HERE ### (≈ 3 lines of code) m_train = train_set_x_orig.shape[0] m_test = test_set_x_orig.shape[0] num_px = train_set_x_orig.shape[1] ### END CODE HERE ### print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height/Width of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_set_x shape: " + str(train_set_x_orig.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x shape: " + str(test_set_x_orig.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) ###Output Number of training examples: m_train = 209 Number of testing examples: m_test = 50 Height/Width of each image: num_px = 64 Each image is of size: (64, 64, 3) train_set_x shape: (209, 64, 64, 3) train_set_y shape: (1, 209) test_set_x shape: (50, 64, 64, 3) test_set_y shape: (1, 50) ###Markdown **Expected Output for m_train, m_test and num_px**: **m_train** 209 **m_test** 50 **num_px** 64 For convenience, you should now reshape images of shape (num_px, num_px, 3) in a numpy-array of shape (num_px $*$ num_px $*$ 3, 1). After this, our training (and test) dataset is a numpy-array where each column represents a flattened image. There should be m_train (respectively m_test) columns.**Exercise:** Reshape the training and test data sets so that images of size (num_px, num_px, 3) are flattened into single vectors of shape (num\_px $*$ num\_px $*$ 3, 1).A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b$*$c$*$d, a) is to use: ```pythonX_flatten = X.reshape(X.shape[0], -1).T X.T is the transpose of X``` ###Code # Reshape the training and test examples ### START CODE HERE ### (≈ 2 lines of code) train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T ### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0])) ###Output train_set_x_flatten shape: (12288, 209) train_set_y shape: (1, 209) test_set_x_flatten shape: (12288, 50) test_set_y shape: (1, 50) sanity check after reshaping: [17 31 56 22 33] ###Markdown **Expected Output**: **train_set_x_flatten shape** (12288, 209) **train_set_y shape** (1, 209) **test_set_x_flatten shape** (12288, 50) **test_set_y shape** (1, 50) **sanity check after reshaping** [17 31 56 22 33] To represent color images, the red, green and blue channels (RGB) must be specified for each pixel, and so the pixel value is actually a vector of three numbers ranging from 0 to 255.One common preprocessing step in machine learning is to center and standardize your dataset, meaning that you substract the mean of the whole numpy array from each example, and then divide each example by the standard deviation of the whole numpy array. But for picture datasets, it is simpler and more convenient and works almost as well to just divide every row of the dataset by 255 (the maximum value of a pixel channel). Let's standardize our dataset. ###Code train_set_x = train_set_x_flatten/255. test_set_x = test_set_x_flatten/255. ###Output _____no_output_____ ###Markdown **What you need to remember:**Common steps for pre-processing a new dataset are:- Figure out the dimensions and shapes of the problem (m_train, m_test, num_px, ...)- Reshape the datasets such that each example is now a vector of size (num_px \* num_px \* 3, 1)- "Standardize" the data 3 - General Architecture of the learning algorithm It's time to design a simple algorithm to distinguish cat images from non-cat images.You will build a Logistic Regression, using a Neural Network mindset. The following Figure explains why **Logistic Regression is actually a very simple Neural Network!****Mathematical expression of the algorithm**:For one example $x^{(i)}$:$$z^{(i)} = w^T x^{(i)} + b \tag{1}$$$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}$$ $$ \mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}$$The cost is then computed by summing over all training examples:$$ J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{6}$$**Key steps**:In this exercise, you will carry out the following steps: - Initialize the parameters of the model - Learn the parameters for the model by minimizing the cost - Use the learned parameters to make predictions (on the test set) - Analyse the results and conclude 4 - Building the parts of our algorithm The main steps for building a Neural Network are:1. Define the model structure (such as number of input features) 2. Initialize the model's parameters3. Loop: - Calculate current loss (forward propagation) - Calculate current gradient (backward propagation) - Update parameters (gradient descent)You often build 1-3 separately and integrate them into one function we call `model()`. 4.1 - Helper functions**Exercise**: Using your code from "Python Basics", implement `sigmoid()`. As you've seen in the figure above, you need to compute $sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$ to make predictions. Use np.exp(). ###Code # GRADED FUNCTION: sigmoid def sigmoid(z): """ Compute the sigmoid of z Arguments: z -- A scalar or numpy array of any size. Return: s -- sigmoid(z) """ ### START CODE HERE ### (≈ 1 line of code) s = 1/(1 + np.exp(-z)) ### END CODE HERE ### return s print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2])))) ###Output sigmoid([0, 2]) = [ 0.5 0.88079708] ###Markdown **Expected Output**: **sigmoid([0, 2])** [ 0.5 0.88079708] 4.2 - Initializing parameters**Exercise:** Implement parameter initialization in the cell below. You have to initialize w as a vector of zeros. If you don't know what numpy function to use, look up np.zeros() in the Numpy library's documentation. ###Code # GRADED FUNCTION: initialize_with_zeros def initialize_with_zeros(dim): """ This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. Argument: dim -- size of the w vector we want (or number of parameters in this case) Returns: w -- initialized vector of shape (dim, 1) b -- initialized scalar (corresponds to the bias) """ ### START CODE HERE ### (≈ 1 line of code) w = np.zeros((dim, 1)) b = 0 ### END CODE HERE ### assert(w.shape == (dim, 1)) assert(isinstance(b, float) or isinstance(b, int)) return w, b dim = 2 w, b = initialize_with_zeros(dim) print ("w = " + str(w)) print ("b = " + str(b)) ###Output w = [[ 0.] [ 0.]] b = 0 ###Markdown **Expected Output**: ** w ** [[ 0.] [ 0.]] ** b ** 0 For image inputs, w will be of shape (num_px $\times$ num_px $\times$ 3, 1). 4.3 - Forward and Backward propagationNow that your parameters are initialized, you can do the "forward" and "backward" propagation steps for learning the parameters.**Exercise:** Implement a function `propagate()` that computes the cost function and its gradient.**Hints**:Forward Propagation:- You get X- You compute $A = \sigma(w^T X + b) = (a^{(1)}, a^{(2)}, ..., a^{(m-1)}, a^{(m)})$- You calculate the cost function: $J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$Here are the two formulas you will be using: $$ \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{7}$$$$ \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{8}$$ ###Code # GRADED FUNCTION: propagate def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b Tips: - Write your code step by step for the propagation. np.log(), np.dot() """ m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST) ### START CODE HERE ### (≈ 2 lines of code) A = sigmoid(np.dot(w.T, X) + b) # compute activation cost = -(np.dot(Y, (np.log(A)).T) + np.dot((1-Y), (np.log(1-A)).T)) / m # compute cost ### END CODE HERE ### # BACKWARD PROPAGATION (TO FIND GRAD) ### START CODE HERE ### (≈ 2 lines of code) dw = np.dot(X, (A-Y).T) / m db = np.sum(A-Y) / m ### END CODE HERE ### assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ()) grads = {"dw": dw, "db": db} return grads, cost w, b, X, Y = np.array([[1.],[2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) ###Output dw = [[ 0.99845601] [ 2.39507239]] db = 0.00145557813678 cost = 5.801545319394553 ###Markdown **Expected Output**: ** dw ** [[ 0.99845601] [ 2.39507239]] ** db ** 0.00145557813678 ** cost ** 5.801545319394553 4.4 - Optimization- You have initialized your parameters.- You are also able to compute a cost function and its gradient.- Now, you want to update the parameters using gradient descent.**Exercise:** Write down the optimization function. The goal is to learn $w$ and $b$ by minimizing the cost function $J$. For a parameter $\theta$, the update rule is $ \theta = \theta - \alpha \text{ } d\theta$, where $\alpha$ is the learning rate. ###Code # GRADED FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ This function optimizes w and b by running a gradient descent algorithm Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- True to print the loss every 100 steps Returns: params -- dictionary containing the weights w and bias b grads -- dictionary containing the gradients of the weights and bias with respect to the cost function costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. Tips: You basically need to write down two steps and iterate through them: 1) Calculate the cost and the gradient for the current parameters. Use propagate(). 2) Update the parameters using gradient descent rule for w and b. """ costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code) ### START CODE HERE ### grads, cost = propagate(w, b, X, Y) ### END CODE HERE ### # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule (≈ 2 lines of code) ### START CODE HERE ### w = w - learning_rate * dw b = b - learning_rate * db ### END CODE HERE ### # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training iterations if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) ###Output w = [[ 0.19033591] [ 0.12259159]] b = 1.92535983008 dw = [[ 0.67752042] [ 1.41625495]] db = 0.219194504541 ###Markdown **Expected Output**: **w** [[ 0.19033591] [ 0.12259159]] **b** 1.92535983008 **dw** [[ 0.67752042] [ 1.41625495]] **db** 0.219194504541 **Exercise:** The previous function will output the learned w and b. We are able to use w and b to predict the labels for a dataset X. Implement the `predict()` function. There are two steps to computing predictions:1. Calculate $\hat{Y} = A = \sigma(w^T X + b)$2. Convert the entries of a into 0 (if activation 0.5), stores the predictions in a vector `Y_prediction`. If you wish, you can use an `if`/`else` statement in a `for` loop (though there is also a way to vectorize this). ###Code # GRADED FUNCTION: predict def predict(w, b, X): ''' Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X ''' m = X.shape[1] Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture ### START CODE HERE ### (≈ 1 line of code) A = sigmoid(np.dot(w.T, X) + b) ### END CODE HERE ### for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] ### START CODE HERE ### (≈ 4 lines of code) if A[0, i] > 0.5: Y_prediction[0, i] = 1 else: Y_prediction[0, i] = 0 ### END CODE HERE ### assert(Y_prediction.shape == (1, m)) return Y_prediction w = np.array([[0.1124579],[0.23106775]]) b = -0.3 X = np.array([[1.,-1.1,-3.2],[1.2,2.,0.1]]) print ("predictions = " + str(predict(w, b, X))) ###Output predictions = [[ 1. 1. 0.]] ###Markdown **Expected Output**: **predictions** [[ 1. 1. 0.]] **What to remember:**You've implemented several functions that:- Initialize (w,b)- Optimize the loss iteratively to learn parameters (w,b): - computing the cost and its gradient - updating the parameters using gradient descent- Use the learned (w,b) to predict the labels for a given set of examples 5 - Merge all functions into a model You will now see how the overall model is structured by putting together all the building blocks (functions implemented in the previous parts) together, in the right order.**Exercise:** Implement the model function. Use the following notation: - Y_prediction_test for your predictions on the test set - Y_prediction_train for your predictions on the train set - w, costs, grads for the outputs of optimize() ###Code # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False): """ Builds the logistic regression model by calling the function you've implemented previously Arguments: X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train) Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train) X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test) Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test) num_iterations -- hyperparameter representing the number of iterations to optimize the parameters learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize() print_cost -- Set to true to print the cost every 100 iterations Returns: d -- dictionary containing information about the model. """ ### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) ### END CODE HERE ### # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} return d ###Output _____no_output_____ ###Markdown Run the following cell to train your model. ###Code d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) ###Output Cost after iteration 0: 0.693147 Cost after iteration 100: 0.584508 Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.214820 Cost after iteration 1100: 0.203078 Cost after iteration 1200: 0.192544 Cost after iteration 1300: 0.183033 Cost after iteration 1400: 0.174399 Cost after iteration 1500: 0.166521 Cost after iteration 1600: 0.159305 Cost after iteration 1700: 0.152667 Cost after iteration 1800: 0.146542 Cost after iteration 1900: 0.140872 train accuracy: 99.04306220095694 % test accuracy: 70.0 % ###Markdown **Expected Output**: **Cost after iteration 0 ** 0.693147 $\vdots$ $\vdots$ **Train Accuracy** 99.04306220095694 % **Test Accuracy** 70.0 % **Comment**: Training accuracy is close to 100%. This is a good sanity check: your model is working and has high enough capacity to fit the training data. Test error is 68%. It is actually not bad for this simple model, given the small dataset we used and that logistic regression is a linear classifier. But no worries, you'll build an even better classifier next week!Also, you see that the model is clearly overfitting the training data. Later in this specialization you will learn how to reduce overfitting, for example by using regularization. Using the code below (and changing the `index` variable) you can look at predictions on pictures of the test set. ###Code # Example of a picture that was wrongly classified. index = 1 plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3))) print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0,index]].decode("utf-8") + "\" picture.") ###Output /opt/conda/lib/python3.5/site-packages/ipykernel/__main__.py:4: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future ###Markdown Let's also plot the cost function and the gradients. ###Code # Plot learning curve (with costs) costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show() ###Output _____no_output_____ ###Markdown **Interpretation**:You can see the cost decreasing. It shows that the parameters are being learned. However, you see that you could train the model even more on the training set. Try to increase the number of iterations in the cell above and rerun the cells. You might see that the training set accuracy goes up, but the test set accuracy goes down. This is called overfitting. 6 - Further analysis (optional/ungraded exercise) Congratulations on building your first image classification model. Let's analyze it further, and examine possible choices for the learning rate $\alpha$. Choice of learning rate **Reminder**:In order for Gradient Descent to work you must choose the learning rate wisely. The learning rate $\alpha$ determines how rapidly we update the parameters. If the learning rate is too large we may "overshoot" the optimal value. Similarly, if it is too small we will need too many iterations to converge to the best values. That's why it is crucial to use a well-tuned learning rate.Let's compare the learning curve of our model with several choices of learning rates. Run the cell below. This should take about 1 minute. Feel free also to try different values than the three we have initialized the `learning_rates` variable to contain, and see what happens. ###Code learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations (hundreds)') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') plt.show() ###Output learning rate is: 0.01 train accuracy: 99.52153110047847 % test accuracy: 68.0 % ------------------------------------------------------- learning rate is: 0.001 train accuracy: 88.99521531100478 % test accuracy: 64.0 % ------------------------------------------------------- learning rate is: 0.0001 train accuracy: 68.42105263157895 % test accuracy: 36.0 % ------------------------------------------------------- ###Markdown **Interpretation**: - Different learning rates give different costs and thus different predictions results.- If the learning rate is too large (0.01), the cost may oscillate up and down. It may even diverge (though in this example, using 0.01 still eventually ends up at a good value for the cost). - A lower cost doesn't mean a better model. You have to check if there is possibly overfitting. It happens when the training accuracy is a lot higher than the test accuracy.- In deep learning, we usually recommend that you: - Choose the learning rate that better minimizes the cost function. - If your model overfits, use other techniques to reduce overfitting. (We'll talk about this in later videos.) 7 - Test with your own image (optional/ungraded exercise) Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Change your image's name in the following code 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)! ###Code ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "my_image.jpg" # change this to the name of your image file ## END CODE HERE ## # We preprocess the image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T my_predicted_image = predict(d["w"], d["b"], my_image) plt.imshow(image) print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.") ###Output y = 0.0, your algorithm predicts a "non-cat" picture.
notebooks/readme_example.ipynb
###Markdown Validation skconfig creates a DSL for defining the search space for a sklearn model. For example, we can defined a LogRegressionValidator as follows: ###Code class LogRegressionValidator(BaseValidator): estimator = LogisticRegression penalty = StringParam("l2", "l1") dual = BoolParam() tol = FloatIntervalParam(lower=0, include_lower=False) C = FloatIntervalParam(lower=0) fit_intercept = BoolParam() intercept_scaling = FloatIntervalParam(lower=0, include_lower=False) class_weight = NoneParam() random_state = UnionParam(IntParam(), NoneParam()) solver = StringParam("newton-cg", "lbfgs", "liblinear", "sag", "saga", "warn") max_iter = IntIntervalParam(lower=1) multi_class = StringParam("ovr", "multinomial", "auto", "warn") verbose = IntParam() warm_start = BoolParam() n_jobs = UnionParam(NoneParam(), IntIntervalParam(lower=-1)) forbiddens = [ ForbiddenAnd([ForbiddenEquals("penalty", "l1"), ForbiddenIn("solver", ["newton-cg", "sag", "lbfgs"])]), ForbiddenAnd([ForbiddenEquals("solver", "liblinear"), ForbiddenEquals("multi_class", "multinomial")]), ] ###Output _____no_output_____ ###Markdown With this validator object, we can validate a set of parameters: ###Code validator = LogRegressionValidator() validator.validate_params(multi_class="ovr") # Does not raise validator.validate_params(penalty="hello world") validator.validate_params(solver="liblinear", multi_class="multinomial") validator.validate_params(penalty="l1", solver="sag") params_dict = {"penalty": "l1", "solver": "sag"} validator.validate_params(**params_dict) ###Output _____no_output_____ ###Markdown Or validate a estimator: ###Code est = LogisticRegression() validator.validate_estimator(est) ###Output _____no_output_____ ###Markdown SamplingTo sample the parameter space, a skconfig has a DSL for defining the distribution to be sampled from: ###Code validator = LogRegressionValidator() sampler = Sampler(validator, dual=UniformBoolDistribution(), C=UniformFloatDistribution(0.0, 1.0), solver=CategoricalDistribution(["newton-cg", "lbfgs", "liblinear", "sag", "saga"]), random_state=UnionDistribution(ConstantDistribution(None), UniformIntDistribution(0, 10)), penalty=CategoricalDistribution(["l2", "l1"]), multi_class=CategoricalDistribution(["ovr", "multinomial"]) ) params_sample = sampler.sample(5) params_sample ###Output _____no_output_____ ###Markdown Create an estimator from the first param from params_sample ###Code est = LogisticRegression(**params_sample[0]) est.get_params() ###Output _____no_output_____ ###Markdown SerializationThe sampler can be serialized into a json: ###Code import json from IPython.display import JSON serialized = sampler.to_dict() json_serialized = json.dumps(serialized, indent=2) JSON(serialized) sampler_dict = json.loads(json_serialized) sampler_new = Sampler(validator).from_dict(sampler_dict) sampler_new ###Output _____no_output_____
examples/iv_using-formulas.ipynb
###Markdown Using formulas to specify models Basic UsageFormulas provide an alternative method to specify a model. The formulas used here utilize [patsy](http://patsy.readthedocs.io/en/latest/) are similar to those in [statsmodels](http://www.statsmodels.org), although they use an enhanced syntax to allow identification of endogenous regressors. The basis formula syntax for a single variable regression would be```y ~ 1 + x```where the `1` indicates that a constant should be included and `x` is the regressor. In the context of an instrumental variables model, it is necessary to mark variables as endogenous and to provide a list of instruments that are included only in the model for the endogenous variables. In a basic single regressor model, this would be specified using `[]` to surround an inner model.```y ~ 1 + [x ~ z]```In this expression, `x` is now marked as endogenous and `z` is an instrument. Any exogenous variable will automatically be used when instrumenting `x` so there is no need to repeat these here (in this example, the "first stage" would include a constant and z). Multiple Endogenous VariablesMultiple endogenous variables are specified in a similar manner. The basic concept is that any model can be expressed as ```dep ~ exog + [ endog ~ instruments]```and it must be the case that ```dep ~ exog + endog```and```dep ~ exog + instruments```are valid patsy formulas. This means that multiple endogenous regressors or instruments should be joined with `+`, but that the first endogenous or first instrument should not have a leading `+`. A simple example with 2 endogenous variables and 3 instruments would be ```y ~ 1 + x1 + x2 + x3 + [ x4 + x5 ~ z1 + z2 + z3]```In this example, the "submodels" `y ~ 1 + x1 + x2 +x3 + x4 + x5` and `y ~ 1 + x1 + x2 + x3 + z1 + z2 +z3` are both valid patsy expressions. Standard patsyAside from this change, the standard rules of patsy apply, and so it is possible to use mathematical expression or other patsy-specific features. See the [patsy quickstart](http://patsy.readthedocs.io/en/latest/quickstart.html) for some examples of what is possible. MEPS dataThis example shows the use of formulas to estimate both IV and OLS models using the [medical expenditure panel survey](https://meps.ahrq.gov). The model measures the effect of various characteristics on the log of drug expenditure and instruments the variable that measures where a subject was insured through a union with their social security to income ratio.This first block imports the data and numpy. ###Code import numpy as np from linearmodels.datasets import meps from linearmodels.iv import IV2SLS data = meps.load() data = data.dropna() print(meps.DESCR) ###Output _____no_output_____ ###Markdown Estimating a model with a formulaThis model uses a formula which is input using the `from_formula` interface. Unlike direct initialization, this interface takes the formula and a DataFrame containing the data necessary to evaluate the formula. ###Code formula = ( "ldrugexp ~ 1 + totchr + female + age + linc + blhisp + [hi_empunion ~ ssiratio]" ) mod = IV2SLS.from_formula(formula, data) iv_res = mod.fit(cov_type="robust") print(iv_res) ###Output _____no_output_____ ###Markdown Mathematical expression in formulasStandard patsy expression, such as using mathematical expressions, can be readily used. ###Code formula = ( "np.log(drugexp) ~ 1 + totchr + age + linc + blhisp + [hi_empunion ~ ssiratio]" ) mod = IV2SLS.from_formula(formula, data) iv_res2 = mod.fit(cov_type="robust") ###Output _____no_output_____ ###Markdown OLSOmitting the block that marks a variable as endogenous will produce OLS -- just like using `None` for both `endog` and `instruments`. ###Code formula = "ldrugexp ~ 1 + totchr + female + age + linc + blhisp + hi_empunion" ols = IV2SLS.from_formula(formula, data) ols_res = ols.fit(cov_type="robust") print(ols_res) ###Output _____no_output_____ ###Markdown Comparing resultsThe function `compare` can be used to compare the result of multiple models. Here dropping `female` from the IV regression improves the $R^2$. ###Code from linearmodels.iv import compare print(compare({"IV": iv_res, "OLS": ols_res, "IV-formula": iv_res2})) ###Output _____no_output_____ ###Markdown Using formulas to specify models Basic UsageFormulas provide an alternative method to specify a model. The formulas used here utilize [formulaic](https://github.com/matthewwardrop/formulaic/) ([documentation](https://matthewwardrop.github.io/formulaic/)) are similar to those in [statsmodels](http://www.statsmodels.org), although they use an enhanced syntax to allow identification of endogenous regressors. The basis formula syntax for a single variable regression would be```y ~ 1 + x```where the `1` indicates that a constant should be included and `x` is the regressor. In the context of an instrumental variables model, it is necessary to mark variables as endogenous and to provide a list of instruments that are included only in the model for the endogenous variables. In a basic single regressor model, this would be specified using `[]` to surround an inner model.```y ~ 1 + [x ~ z]```In this expression, `x` is now marked as endogenous and `z` is an instrument. Any exogenous variable will automatically be used when instrumenting `x` so there is no need to repeat these here (in this example, the "first stage" would include a constant and z). Multiple Endogenous VariablesMultiple endogenous variables are specified in a similar manner. The basic concept is that any model can be expressed as ```dep ~ exog + [ endog ~ instruments]```and it must be the case that ```dep ~ exog + endog```and```dep ~ exog + instruments```are valid formulaic formulas. This means that multiple endogenous regressors or instruments should be joined with `+`, but that the first endogenous or first instrument should not have a leading `+`. A simple example with 2 endogenous variables and 3 instruments would be```y ~ 1 + x1 + x2 + x3 + [ x4 + x5 ~ z1 + z2 + z3]```In this example, the "submodels" `y ~ 1 + x1 + x2 +x3 + x4 + x5` and `y ~ 1 + x1 + x2 + x3 + z1 + z2 +z3` are both valid formulaic expressions. Standard formulaicAside from this change, the standard rules of formulaic apply, and so it is possible to use mathematical expression or other formulaic-specific features. See the [formulaic quickstart](https://matthewwardrop.github.io/formulaic/guides/quickstart/) for some examples of what is possible. MEPS dataThis example shows the use of formulas to estimate both IV and OLS models using the [medical expenditure panel survey](https://meps.ahrq.gov). The model measures the effect of various characteristics on the log of drug expenditure and instruments the variable that measures where a subject was insured through a union with their social security to income ratio.This first block imports the data and numpy. ###Code import numpy as np from linearmodels.datasets import meps from linearmodels.iv import IV2SLS data = meps.load() data = data.dropna() print(meps.DESCR) ###Output _____no_output_____ ###Markdown Estimating a model with a formulaThis model uses a formula which is input using the `from_formula` interface. Unlike direct initialization, this interface takes the formula and a DataFrame containing the data necessary to evaluate the formula. ###Code formula = ( "ldrugexp ~ 1 + totchr + female + age + linc + blhisp + [hi_empunion ~ ssiratio]" ) mod = IV2SLS.from_formula(formula, data) iv_res = mod.fit(cov_type="robust") print(iv_res) ###Output _____no_output_____ ###Markdown Mathematical expression in formulasStandard formulaic syntax, such as using mathematical expressions, can be readily used. ###Code formula = ( "np.log(drugexp) ~ 1 + totchr + age + linc + blhisp + [hi_empunion ~ ssiratio]" ) mod = IV2SLS.from_formula(formula, data) iv_res2 = mod.fit(cov_type="robust") ###Output _____no_output_____ ###Markdown OLSOmitting the block that marks a variable as endogenous will produce OLS -- just like using `None` for both `endog` and `instruments`. ###Code formula = "ldrugexp ~ 1 + totchr + female + age + linc + blhisp + hi_empunion" ols = IV2SLS.from_formula(formula, data) ols_res = ols.fit(cov_type="robust") print(ols_res) ###Output _____no_output_____ ###Markdown Comparing resultsThe function `compare` can be used to compare the result of multiple models. Here dropping `female` from the IV regression improves the $R^2$. ###Code from linearmodels.iv import compare print(compare({"IV": iv_res, "OLS": ols_res, "IV-formula": iv_res2})) ###Output _____no_output_____
IoTFuzzyThreeState/IoT_Python_Fuzzy_SMS.ipynb
###Markdown Crisp output for inputs of temp and gas('temp=', 71.1, ' ,gas=', 1.34)66.73498401885462 /////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ###Code # if-else code for IoTFuzzyFourStateTALKBACK ''' if crispO/P<=t1: requests.put(url,data=dataAlarmOn1) #client.send_message({'from': 'Nexmo', 'to': '971563201593', 'text': 'Emergency Shutdown Reqd'}) elif crispO/P>t1 and crispO/P<=t2: requests.put(url,data=dataAlarmOn2) #client.send_message({'from': 'Nexmo', 'to': '971563201593', 'text': 'Situation:Critical'}) elif crispO/P>t1 and crispO/P<=t2: requests.put(url,data=dataAlarmOn3) client.send_message({'from': 'Nexmo', 'to': '971563201593', 'text': 'Inspection Regd'}) else: requests.put(url,data=dataAlarmOff)''' # A demo showing only the fuzzy inference system computing output based on sample input values of temperature and gas ''' #inputs tempField_data=30 gasField_data=0.5 FgcsIot.input['temp_sense']=tempField_data FgcsIot.input['gas_sense']=gasField_data*100 #computation FgcsIot.compute() #df2.ix[3,6]=FgcsIot.output['fire_gasLeak_sense'] #output crispOP=FgcsIot.output['fire_gasLeak_sense'] #Crisp output print(crispOP) fire_gasLeak_sense.view(sim=FgcsIot) ''' ###Output 45.0
data/compare_data/compare_data.ipynb
###Markdown Compare Spectra Plot spectrum of transitional disks, separate laterfig=plt.figure(figsize=(18,8))Disks wavelengths within range of 4.645 - 4.785ax1=fig.add_subplot(211)Transitional Disksax1.plot(citau_wave, citau_flux, label='Ci Tau')ax1.plot(lkha330_wave, lkha330_flux, label='LkHa 330')ax1.plot(twhya_wave, twhya_flux, label='TW Hya')ax1.plot(doar44_wave, doar44_flux, label='DoAr 44')ax1.plot(hd135344_wave, hd135344_flux, label='HD 135344')ax1.plot(uxtau_wave, uxtau_flux, label='UX Tau')Classical Disksax1.plot(doar24_wave, doar24_flux, label='DoAr 24')ax1.plot(dftau_wave, dftau_flux, label='DF Tau')ax1.plot(dltau_wave, dltau_flux, label='DL Tau')Rangeax1.set_xlim(4.645,4.785)ax1.set_ylim(-0.5,4.5)for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.645) & (mywave<4.785) ): ax1.axvline(mywave,color='C1') ax1.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) Labelsax1.set_ylabel('Flux [Jy]',fontsize=14)ax1.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2)ax1.set_title('Composite Lineshape of Classical Disks')Disks wavelengths within range of 4.95 - 5.10ax2=fig.add_subplot(212)Transitional Disksax2.plot(citau_wave, citau_flux, label='Ci Tau')ax2.plot(lkha330_wave, lkha330_flux, label='LkHa 330')ax2.plot(twhya_wave, twhya_flux, label='TW Hya')ax2.plot(doar44_wave, doar44_flux, label='DoAr 44')ax2.plot(hd135344_wave, hd135344_flux, label='HD 135344')ax2.plot(uxtau_wave, uxtau_flux, label='UX Tau')Classical Disksax2.plot(doar24_wave, doar24_flux, label='DoAr 24')ax2.plot(dftau_wave, dftau_flux, label='DF Tau')ax2.plot(dltau_wave, dltau_flux, label='DL Tau')ax2.set_xlim(4.95,5.10)ax2.set_ylim(-0.5,4.5)for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.95) & (mywave<5.10) ): ax2.axvline(mywave,color='C1') ax2.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip())ax2.set_xlabel('Wavelength [$\mu$m]',fontsize=14)ax2.set_ylabel('Flux [Jy]',fontsize=14)ax2.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2)ax2.set_title('Composite Lineshape of Classical Disks') ###Code # Both Transitional and Classical #Plot spectrum of transitional disks, separate later fig=plt.figure(figsize=(18,8)) #Disks wavelengths within range of 4.645 - 4.785 ax1=fig.add_subplot(211) #Transitional Disks ax1.plot(citau_wave, citau_flux, label='Ci Tau', color='firebrick') ax1.plot(lkha330_wave, lkha330_flux, label='LkHa 330', color='firebrick') ax1.plot(twhya_wave, twhya_flux, label='TW Hya', color='firebrick') ax1.plot(doar44_wave, doar44_flux, label='DoAr 44', color='firebrick') ax1.plot(hd135344_wave, hd135344_flux, label='HD 135344', color='firebrick') ax1.plot(uxtau_wave, uxtau_flux, label='UX Tau', color='firebrick') #Classical Disks ax1.plot(doar24_wave, doar24_flux, label='DoAr 24', color='steelblue') ax1.plot(dftau_wave, dftau_flux, label='DF Tau', color='steelblue') ax1.plot(dltau_wave, dltau_flux, label='DL Tau', color='steelblue') #Range ax1.set_xlim(4.645,4.785) ax1.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.645) & (mywave<4.785) ): ax1.axvline(mywave,color='C1') ax1.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) #Labels ax1.set_ylabel('Flux [Jy]',fontsize=14) #ax1.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax1.set_title('Composite Lineshape of Classical Disks') #Disks wavelengths within range of 4.95 - 5.10 ax2=fig.add_subplot(212) #Transitional Disks ax2.plot(citau_wave, citau_flux, label='Ci Tau', color='firebrick') ax2.plot(lkha330_wave, lkha330_flux, label='LkHa 330', color='firebrick') ax2.plot(twhya_wave, twhya_flux, label='TW Hya', color='firebrick') ax2.plot(doar44_wave, doar44_flux, label='DoAr 44', color='firebrick') ax2.plot(hd135344_wave, hd135344_flux, label='HD 135344', color='firebrick') ax2.plot(uxtau_wave, uxtau_flux, label='UX Tau', color='firebrick') #Classical Disks ax2.plot(doar24_wave, doar24_flux, label='DoAr 24', color='steelblue') ax2.plot(dftau_wave, dftau_flux, label='DF Tau', color='steelblue') ax2.plot(dltau_wave, dltau_flux, label='DL Tau', color='steelblue') ax2.set_xlim(4.95,5.10) ax2.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.95) & (mywave<5.10) ): ax2.axvline(mywave,color='C1') ax2.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) ax2.set_xlabel('Wavelength [$\mu$m]',fontsize=14) ax2.set_ylabel('Flux [Jy]',fontsize=14) #ax2.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax2.set_title('Composite Lineshape of Classical Disks') #Transitional Disks #Plot spectrum of transitional disks fig=plt.figure(figsize=(18, 10)) #Disks wavelengths within range of 4.645 - 4.785 ax1=fig.add_subplot(211) #Transitional Disks ax1.plot(citau_wave, citau_flux, label='Ci Tau') ax1.plot(lkha330_wave, lkha330_flux, label='LkHa 330') ax1.plot(twhya_wave, twhya_flux, label='TW Hya') ax1.plot(doar44_wave, doar44_flux, label='DoAr 44') ax1.plot(hd135344_wave, hd135344_flux, label='HD 135344') ax1.plot(uxtau_wave, uxtau_flux, label='UX Tau') #Range ax1.set_xlim(4.645,4.785) ax1.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.645) & (mywave<4.785) ): ax1.axvline(mywave,color='C1') ax1.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) #Labels ax1.set_ylabel('Flux [Jy]',fontsize=14) #ax1.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax1.legend() ax1.set_title('Composite Lineshape of Transitional Disks') #Disks wavelengths within range of 4.95 - 5.10 ax2=fig.add_subplot(212) #Transitional Disks ax2.plot(citau_wave, citau_flux, label='Ci Tau') ax2.plot(lkha330_wave, lkha330_flux, label='LkHa 330') ax2.plot(twhya_wave, twhya_flux, label='TW Hya') ax2.plot(doar44_wave, doar44_flux, label='DoAr 44') ax2.plot(hd135344_wave, hd135344_flux, label='HD 135344') ax2.plot(uxtau_wave, uxtau_flux, label='UX Tau') ax2.set_xlim(4.95,5.10) ax2.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.95) & (mywave<5.10) ): ax2.axvline(mywave,color='C1') ax2.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) ax2.set_xlabel('Wavelength [$\mu$m]',fontsize=14) ax2.set_ylabel('Flux [Jy]',fontsize=14) #ax2.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax2.legend() ax2.set_title('Composite Lineshape of Transitional Disks') #Classical Disks #Plot spectrum of classical disks fig=plt.figure(figsize=(18,8)) #Disks wavelengths within range of 4.645 - 4.785 ax1=fig.add_subplot(211) #Classical Disks ax1.plot(doar24_wave, doar24_flux, label='DoAr 24') ax1.plot(dftau_wave, dftau_flux, label='DF Tau') ax1.plot(dltau_wave, dltau_flux, label='DL Tau') #Range ax1.set_xlim(4.645,4.785) ax1.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.645) & (mywave<4.785) ): ax1.axvline(mywave,color='C1') ax1.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) #Labels ax1.set_ylabel('Flux [Jy]',fontsize=14) #ax1.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax1.set_title('Composite Lineshape of Classical Disks') #Disks wavelengths within range of 4.95 - 5.10 ax2=fig.add_subplot(212) #Classical Disks ax2.plot(doar24_wave, doar24_flux, label='DoAr 24') ax2.plot(dftau_wave, dftau_flux, label='DF Tau') ax2.plot(dltau_wave, dltau_flux, label='DL Tau') ax2.set_xlim(4.95,5.10) ax2.set_ylim(-0.5,4.5) for i,mywave in enumerate(hitran_data['wave']): if( (mywave>4.95) & (mywave<5.10) ): ax2.axvline(mywave,color='C1') ax2.text(hitran_data['wave'][i],4.2,hitran_data['Qpp'][i].strip()) ax2.set_xlabel('Wavelength [$\mu$m]',fontsize=14) ax2.set_ylabel('Flux [Jy]',fontsize=14) #ax2.legend(loc="upper center", bbox_to_anchor=(0.5, 1.6), ncol=2) ax2.set_title('Composite Lineshape of Classical Disks') ###Output _____no_output_____ ###Markdown Compare Composite Lineshapes ###Code #Transitional Disks #CI Tau data citau_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/citau_lineflux_data.p','rb')) citau_lineshape_data=make_lineshape(citau_wave, citau_flux, citau_lineflux_data) #LkHa 330 data lkha330_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/lkha330_lineflux_data.p','rb')) lkha330_lineshape_data=make_lineshape(lkha330_wave, lkha330_flux, lkha330_lineflux_data) #TW Hya data twhya_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/twhya_lineflux_data.p','rb')) twhya_lineshape_data=make_lineshape(twhya_wave, twhya_flux, twhya_lineflux_data) #DoAr 44 data doar44_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/doar44_lineflux_data.p','rb')) doar44_lineshape_data=make_lineshape(doar44_wave, doar44_flux, doar44_lineflux_data) #HD 135344 data hd135344_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/hd135344_lineflux_data.p','rb')) hd135344_lineshape_data=make_lineshape(hd135344_wave, hd135344_flux, hd135344_lineflux_data) #UX Tau data uxtau_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/transitional_disks/uxtau_lineflux_data.p','rb')) uxtau_lineshape_data=make_lineshape(uxtau_wave, uxtau_flux, uxtau_lineflux_data) #Classical Disks #DoAr 24 data doar24_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/classical_disks/doar24_lineflux_data.p','rb')) doar24_lineshape_data=make_lineshape(doar24_wave, doar24_flux, doar24_lineflux_data) #DF Tau data dftau_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/classical_disks/dftau_lineflux_data.p','rb')) dftau_lineshape_data=make_lineshape(dftau_wave, dftau_flux, dftau_lineflux_data) #DL Tau data dltau_lineflux_data=pickle.load(open('/Users/erichegonzales/Desktop/eriche-thesis/data/classical_disks/dltau_lineflux_data.p','rb')) dltau_lineshape_data=make_lineshape(dltau_wave, dltau_flux, dltau_lineflux_data) #Plotting composite lineshapes fig=plt.figure(figsize=(16,8)) ax1=fig.add_subplot(121) ax1.plot(citau_lineshape_data[0], citau_lineshape_data[1], label='Ci Tau') ax1.plot(lkha330_lineshape_data[0], lkha330_lineshape_data[1], label='DoAr 44') ax1.plot(twhya_lineshape_data[0], twhya_lineshape_data[1], label='TW Hya') ax1.plot(doar44_lineshape_data[0], doar44_lineshape_data[1], label='DoAr 44') ax1.plot(hd135344_lineshape_data[0], hd135344_lineshape_data[1], label='HD 135344') ax1.plot(uxtau_lineshape_data[0], uxtau_lineshape_data[1], label='UX Tau') #Setting labels, limits, legend ax1.set_xlabel('Velocity [km/s]') ax1.set_ylabel('Arbitrary flux') ax1.set_title('Composite Lineshape of Transitional Disks') ax1.legend(loc="upper center", bbox_to_anchor=(0.5, 1.2), ncol=2) ax1.set_ylim(0, 4) #Plotting composite lineshapes ax2=fig.add_subplot(122) ax2.plot(doar24_lineshape_data[0], doar24_lineshape_data[1], label='DoAr 24') ax2.plot(dftau_lineshape_data[0], dftau_lineshape_data[1], label='DF Tau') ax2.plot(dltau_lineshape_data[0], dltau_lineshape_data[1], label='DL Tau') #Setting labels, limits, legend ax2.set_xlabel('Velocity [km/s]') ax2.set_ylabel('Arbitrary flux') ax2.set_title('Composite Lineshape of Classical Disks') ax2.legend(loc="upper center", bbox_to_anchor=(0.5, 1.2), ncol=1) ax2.set_ylim(0, 4) ###Output _____no_output_____ ###Markdown Compare Star Properties and Parameters ###Code data = pd.read_csv("/Users/erichegonzales/Desktop/eriche-thesis/data/star_data.csv") print(data) fig=plt.figure(figsize=(12,8)) markers = ['x', 'o', '^'] groups = data.groupby("disk_type") for name, group in groups: plt.plot(group["solar_mass"], group["temp"], marker='o', linestyle="", label=name) plt.legend() data mass_t = data['solar_mass'][data['disk_type'] == 'Transitional'] radius_t = data['disk_radius'][data['disk_type'] == 'Transitional'] print(mass_t) plt.scatter(mass_t, radius_t) (data.loc[data['disk_type'] == 'Transitional'])['solar_mass'] data_t = data.loc[data['disk_type'] == 'Transitional'] data_c = data.loc[data['disk_type'] == 'Classical'] data_h = data.loc[data['disk_type'] == 'Herbig'] fig=plt.figure() ax=fig.add_subplot(111) ax.plot(data_t['solar_mass'], data_t['temp'], 'ro') ax.set_ylim(0,3000) ###Output _____no_output_____
FinalAssignment/01_assignment.ipynb
###Markdown Projekt zaliczeniowy - Przetwarzanie obrazów cyfrowychAutor: **Patryk Ciepiela** ###Code # Ładowanie bibliotek import numpy as np import matplotlib.pyplot as plt from skimage import segmentation, exposure, morphology, io, img_as_ubyte from skimage.color import rgb2gray from scipy.spatial import distance import cv2 import warnings import time import math import colorsys COLOR_FOREGROUND = 255 COLOR_BACKGROUND = 0 COLOR_FOREGROUND_INV = 0 COLOR_BACKGROUND_INV = 255 DEBUG = False if not DEBUG: warnings.filterwarnings('ignore') # Metody pomocnicze def is_in_image(shape, px=0, py=0): return ((px>=0) and (px < shape[0]) and (py >= 0) and (py < shape[1])) def bfs(i,j,image,color): q = [(i,j)] while q: ii,jj = q.pop(0) for dx in range(-1,2): for dy in range(-1,2): if dx == 0 and dy == 0: continue a = ii + dx b = jj + dy if is_in_image(image.shape, a, b) and image[a][b] == COLOR_FOREGROUND_INV: image[a][b] = color q.append((a,b)) def segment(image): segment_table = image.copy() cnt = 1 x = 0 for i in range(segment_table.shape[0]): for j in range(segment_table.shape[1]): v = segment_table[i][j] if v == COLOR_FOREGROUND_INV: x += 1 segment_table[i][j] = cnt bfs(i,j,segment_table,cnt) cnt += 1 for i in range(image.shape[0]): for j in range(image.shape[1]): v = segment_table[i][j] if v == COLOR_BACKGROUND_INV: segment_table[i][j] = 0 return x,segment_table # metoda wyświetlająca obraz w notatniku def showimg(img, title="Obraz", verbose=False, cmap="gray"): if verbose: print(img.shape, img.dtype) plt.figure(figsize=(9,6)) plt.imshow(img, cmap=cmap) plt.axis('off') plt.suptitle(title) plt.show() sourceimg = io.imread("source.jpg") showimg(sourceimg, title="Obraz źródłowy") processedimg = sourceimg.copy() processedimg = img_as_ubyte(rgb2gray(processedimg)) processedimg = cv2.blur(processedimg, (11,11)) bwblurredimg = processedimg.copy() showimg(bwblurredimg, title="Obraz po wstępnym przetworzeniu") th = 128 th, bim = cv2.threshold(bwblurredimg, thresh=th, maxval=255, type=cv2.THRESH_OTSU) processedimg = bim count = np.count_nonzero(processedimg) print("Obiekty zajmują %.3f procent obrazu" % ((count/(bim.shape[0] * bim.shape[1]))*100) ) showimg(processedimg, title="Obraz poddany binaryzacji metodą Otsu") morphKernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7,7)) processedimg = cv2.bitwise_not(processedimg) processedimg = cv2.morphologyEx(processedimg, op=cv2.MORPH_OPEN, kernel=morphKernel, iterations=4) processedimg = cv2.morphologyEx(processedimg, op=cv2.MORPH_DILATE, kernel=morphKernel, iterations=5) processedimg = cv2.bitwise_not(processedimg) binaryimg = processedimg.copy() showimg(processedimg, title="Obraz po wykonaniu łańcucha operacji morfologicznych") distimg = cv2.distanceTransform(binaryimg, cv2.DIST_L2, 5) distimg = np.uint8(distimg) _, distimg = cv2.threshold(distimg, thresh=46, maxval=255, type=cv2.THRESH_BINARY) distimg = cv2.morphologyEx(distimg, op=cv2.MORPH_DILATE, kernel=morphKernel, iterations=10) showimg(distimg, title="Zbinaryzowany obraz po wykonaniu transformacji odległościowej") _, contours, hierarchy = cv2.findContours(distimg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contoursimg = np.zeros_like(binaryimg) for i in range(len(contours)): mycircle = contours[i] (x,y),radius = cv2.minEnclosingCircle(mycircle) center = (int(x),int(y)) radius = int(radius) cv2.circle(contoursimg,center,radius,255,3) contoursimg = cv2.morphologyEx(contoursimg, op=cv2.MORPH_CLOSE, kernel=morphKernel, iterations=15) showimg(contoursimg, title="Znalezione kontury") separated_img = cv2.bitwise_and(processedimg, cv2.bitwise_not(contoursimg)) showimg(separated_img, title="Obraz z rozdzielonymi obiektami") time_now = time.time() _, segment_table = segment(cv2.bitwise_not(separated_img)) time_delta = time.time() - time_now print("Segmentacja ukończona w %.3f sekund" % time_delta) denoised_segment = morphology.remove_small_objects(segment_table, min_size=10000) unique_elements, counts_elements = np.unique(denoised_segment, return_counts=True) obj_area = dict(zip(unique_elements[1:], counts_elements[1:])) count = np.count_nonzero(denoised_segment) print("Liczba obiektów: %d" % len(obj_area)) print("Obiekty po segmentacji zajmują %.3f procent obrazu" % ((count/(bim.shape[0] * bim.shape[1]))*100)) print(obj_area) showimg(denoised_segment, cmap="tab20", title="Wizualizacja segmentacji po usunięciu nieznaczących obiektów (< 0,16% powierzchni obrazu)") detected_coins = sourceimg.copy() bbox_margin = 10; obj_data = [] for key in obj_area.keys(): _, contours, hier = cv2.findContours(np.uint8(denoised_segment==key), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for c in contours: x, y, w, h = cv2.boundingRect(c) (x2,y2),radius = cv2.minEnclosingCircle(c) M = cv2.moments(c) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) obj_data.append({'id':key, 'x': x, 'y': y, 'width': w, 'height': h, 'centroid': (cX, cY), 'contours':c, 'area': obj_area[key]}) cv2.circle(detected_coins, (cX,cY), 5, (0,0,255), 5) cv2.circle(detected_coins, (int(x2),int(y2)), int(radius), (0,255,0), 3) cv2.rectangle(detected_coins, (x+bbox_margin, y+bbox_margin), (x+w-bbox_margin, y+h-bbox_margin), (0, 255, 0), 3) cv2.putText(detected_coins, str(key), (x+bbox_margin, y+bbox_margin+25), cv2.FONT_HERSHEY_SIMPLEX, 3, (255,0,0), 5) showimg(detected_coins, title="Wykryte monety") def getFigure(labelledImage, obj_id): points = [] for y in range(labelledImage.shape[0]): for x in range(labelledImage.shape[1]): if labelledImage[y,x] == obj_id: points.append((y,x)) return points def BlairBlissCoeff(points, obj_centroid): s = len(points) mx, my = obj_centroid r = 0 for point in points: r = r + distance.euclidean(point,(my,mx))**2 return s/(math.sqrt(2*math.pi*r)) def FeretCoeff(points): px = [x for (y,x) in points] py = [y for (y,x) in points] fx = max(px) - min(px) fy = max(py) - min(py) return float(fy)/float(fx) def HaralickCoeff(centroid, contours): n = len(contours) mx, my = centroid d1 = 0 d2 = 0 for i in range(n): d1 += distance.euclidean((contours[i][0][1], contours[i][0][0]),(my,mx)) d2 += (distance.euclidean((contours[i][0][1], contours[i][0][0]),(my,mx))**2 - 1) return math.sqrt((d1**2)/(n*d2)) def AverageColor(image): avg = image.mean(axis=0).mean(axis=0) h,s,v = colorsys.rgb_to_hsv(avg[0]/255, avg[1]/255, avg[2]/255) return (h*360, s*100, v*100) def is_within(value, desired, margin=0): is_above_min = value >= (desired - margin) is_below_max = value < (desired+margin) return is_above_min and is_below_max def TryToGuessValue(area, color): penny_h = 38 dime_h = 27 h_margin = 6 h,s,v = color if(area < 20000 and is_within(h,penny_h,h_margin)): # 1gr return 0.01 elif(is_within(area, 25000, 1000) and is_within(h, penny_h,h_margin)): # 2gr return 0.02 elif(is_within(area, 34000, 4000) and is_within(h, penny_h,h_margin)): # 5gr return 0.05 elif(is_within(area, 23000, 1500) and is_within(h, dime_h, h_margin)): # 10gr return 0.1 elif(is_within(area, 29000, 2000) and is_within(h, dime_h, h_margin)): # 20gr return 0.2 elif(is_within(area, 36000, 3000) and is_within(h, dime_h, h_margin)): # 50gr return 0.5 elif(area > 45000 and is_within(h, dime_h, h_margin)): # 1zl return 1 elif(is_within(area, 45000, 2500) and is_within(h, penny_h, h_margin)): # 2zl return 2 elif(area > 50000 and is_within(h, penny_h, h_margin)): # 5zl return 5 else: return 0 print("Obliczanie współczynników dla obiektów") for obj in obj_data: points = getFigure(denoised_segment, obj["id"]) centroid = obj["centroid"] feretCoeff = FeretCoeff(points) bbCoeff = BlairBlissCoeff(points, centroid) haraCoeff = HaralickCoeff(centroid, obj["contours"]) print("ID: %d\t| Centroid: (%d,%d)\t| Feret: %.9f\t| Blair-Bliss: %.9f\t| Haralick: %.9f" % (obj["id"], centroid[0], centroid[1], feretCoeff, bbCoeff, haraCoeff)) moneysum = 0 for myObj in obj_data: objColorImg = sourceimg[myObj['y']:myObj['y']+myObj['height'],myObj['x']:myObj['x']+myObj['width'],:] objColorImg = cv2.blur(objColorImg, (9,9)) imgColor = AverageColor(objColorImg) moneysum += TryToGuessValue(myObj["area"], imgColor) print("Łącznie na obrazku \"jest\" około " + str(round(moneysum, 2)) + " zł") ###Output Łącznie na obrazku "jest" około 15.11 zł
chapter_2/distributions.ipynb
###Markdown Some common distributions to know ###Code import matplotlib.pyplot as plt import numpy as np import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Discrete distributions The binomial distribution$$f(k|n,\theta) = \binom{n}{k}\theta^k(1-\theta)^{n-k}$$e.g. Toss a coin n times ###Code from scipy.stats import binom n,theta = 100, 0.5 mean, var, skew, kurt = binom.stats(n, theta, moments='mvsk') fig, ax = plt.subplots(1, 1) x = np.arange(binom.ppf(0.01, n, theta), binom.ppf(0.99, n, theta)) ax.vlines(x, 0, binom.pmf(x, n, theta), colors='b', lw=5, alpha=0.5) plt.ylabel('Mass') plt.xlabel('k') plt.xlim(25,75) plt.ylim(0.0 ,.1) ###Output _____no_output_____ ###Markdown The bernoulli distribution\begin{align*} f(x|\theta) = \begin{cases} \theta & \text{if $x=1$} \\ 1-\theta & \text{if $x=0$} \end{cases}\end{align*}e.g. Toss a coin once ###Code from scipy.stats import bernoulli theta = 0.5 mean, var, skew, kurt = bernoulli.stats(theta, moments='mvsk') fig, ax = plt.subplots(1, 1) x = np.arange(0,1.1) ax.vlines(x, 0, bernoulli.pmf(x, theta), colors='b', lw=5, alpha=0.5) plt.ylabel('Mass') plt.xlabel('x') plt.xlim(-0.1 ,1.1) plt.ylim(0.0 ,1) ###Output _____no_output_____ ###Markdown The poisson distribution$$f(x|\theta) = e^{-\lambda} \frac{\lambda^x}{x!}$$e.g. rare events, radioactive decay ###Code from scipy.stats import poisson lambda_ = 0.6 mean, var, skew, kurt = poisson.stats(lambda_, moments='mvsk') fig, ax = plt.subplots(1, 1) x = np.arange(0,3) ax.vlines(x, 0, poisson.pmf(x, lambda_), colors='b', lw=5, alpha=0.5) plt.ylabel('Mass') plt.xlabel('x') plt.xlim(-0.1 ,3) plt.ylim(0.0 ,1) ###Output _____no_output_____ ###Markdown The emperical distribution$$f(A) = \frac{1}{N}\sum^{N}_{i=1}\delta_{x_{i}}(A)$$\begin{align*} \delta_{x_{i}}(A) = \begin{cases} 0 & \text{if $x\notin A$} \\ 1 & \text{if $x\in A$} \end{cases}\end{align*} Continuous Distributions Gaussian (normal)$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$ ###Code from scipy.stats import norm fig, ax = plt.subplots(1, 1) mean, var, skew, kurt = norm.stats(moments='mvsk') x = np.linspace(norm.ppf(0.01),norm.ppf(0.99), 100) ax.plot(x, norm.pdf(x), 'b-', lw=3, alpha=0.6, label='norm pdf') plt.xlim(-20 ,20) plt.ylim(0.0 ,1) plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown Students t (special cases cauchy lorentz)$$ f(x|v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi}\Gamma(\frac{v}{2})} \Big( 1+\frac{x^2}{v} \Big)^{-\frac{v+1}{2}}, v= df $$ e.g. scienceing ###Code from scipy.stats import t fig, ax = plt.subplots(1, 1) df = 3 mean, var, skew, kurt = t.stats(df, moments='mvsk') x = np.linspace(t.ppf(0.01, df), t.ppf(0.99, df), 100) ax.plot(x, t.pdf(x, df), 'b-', lw=3, alpha=0.6, label='t pdf') plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown Laplace$$ f(x|\mu,b) = \frac{1}{2b}e^{\big(-\frac{|x-\mu|)}{b}\big)}$$e.g. like normal but with more sparsity, brownian motion ###Code from scipy.stats import laplace mean, var, skew, kurt = laplace.stats(moments='mvsk') fig, ax = plt.subplots(1, 1) x = np.linspace(laplace.ppf(0.01), laplace.ppf(0.99), 100) ax.plot(x, laplace.pdf(x), 'b-', lw=3, alpha=0.6, label='laplace pdf') plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown Gamma$$ f(x|a,b) = \frac{b^a}{\Gamma(a)}x^{a-1}e^{-xb} $$, where the shape a >0, and the rate b >0 e.g. ###Code from scipy.stats import gamma fig, ax = plt.subplots(1, 1) a = 2 mean, var, skew, kurt = gamma.stats(a, moments='mvsk') x = np.linspace(gamma.ppf(0.01, a), gamma.ppf(0.99, a), 100) ax.plot(x, gamma.pdf(x, a), 'b-', lw=3, alpha=0.6, label='gamma pdf') plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown The beta distribution$$f(x|a,b) = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$ ###Code from scipy.stats import beta a, b = 2, 0.8 mean, var, skew, kurt = beta.stats(a, b, moments='mvsk') fig, ax = plt.subplots(1, 1) x = np.linspace(beta.ppf(0.01, a, b), beta.ppf(0.99, a, b), 100) ax.plot(x, beta.pdf(x, a, b), 'b-', lw=3, alpha=0.6, label='beta pdf') plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown pareto\begin{align*} f(x| k,m) = \begin{cases} \frac{kx_m^k}{x^{k+1}} & \text{if $x \ge x_m$} \\ 0 & \text{if $x < x_m$} \end{cases}\end{align*} ###Code from scipy.stats import pareto fig, ax = plt.subplots(1, 1) b = 2.62 mean, var, skew, kurt = pareto.stats(b, moments='mvsk') x = np.linspace(pareto.ppf(0.01, b), pareto.ppf(0.99, b), 100) ax.plot(x, pareto.pdf(x, b), 'b-', lw=3, alpha=0.6, label='pareto pdf') plt.ylabel('Density') plt.xlabel('x') ###Output _____no_output_____ ###Markdown The multivariate Gaussian$$f(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}e^{\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$$ ###Code from scipy.stats import multivariate_normal mean, cov = [0, 1], [(1, .5), (.5, 1)] x, y = np.random.multivariate_normal(mean, cov, 1000).T with sns.axes_style("white"): sns.jointplot(x=x, y=y, kind="hex", color="b"); ###Output _____no_output_____ ###Markdown The Dirichlet distribution$$f(x|\alpha) = \frac{1}{B(\alpha)}\prod_{k=1}^{K}x_k^{\alpha_k-1}I(x\in S_k)$$$$B(\alpha) = \frac{\prod_{k=1}^{K}\Gamma(\alpha_k)}{\Gamma(\alpha_0)}$$e.g. multivariate generalization of beta distribution ###Code #The code below to visualize was taken from Thomas boggs elegant contours here:http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/ import matplotlib.tri as tri _corners = np.array([[0, 0], [1, 0], [0.5, 0.75**0.5]]) _triangle = tri.Triangulation(_corners[:, 0], _corners[:, 1]) _midpoints = [(_corners[(i + 1) % 3] + _corners[(i + 2) % 3]) / 2.0 \ for i in range(3)] def xy2bc(xy, tol=1.e-3): '''Converts 2D Cartesian coordinates to barycentric. Arguments: `xy`: A length-2 sequence containing the x and y value. ''' s = [(_corners[i] - _midpoints[i]).dot(xy - _midpoints[i]) / 0.75 \ for i in range(3)] return np.clip(s, tol, 1.0 - tol) class Dirichlet(object): def __init__(self, alpha): '''Creates Dirichlet distribution with parameter `alpha`.''' from math import gamma from operator import mul self._alpha = np.array(alpha) self._coef = gamma(np.sum(self._alpha)) / \ reduce(mul, [gamma(a) for a in self._alpha]) def pdf(self, x): '''Returns pdf value for `x`.''' from operator import mul return self._coef * reduce(mul, [xx ** (aa - 1) for (xx, aa)in zip(x, self._alpha)]) def sample(self, N): '''Generates a random sample of size `N`.''' return np.random.dirichlet(self._alpha, N) def draw_pdf_contours(dist, border=False, nlevels=200, subdiv=8, **kwargs): '''Draws pdf contours over an equilateral triangle (2-simplex). Arguments: `dist`: A distribution instance with a `pdf` method. `border` (bool): If True, the simplex border is drawn. `nlevels` (int): Number of contours to draw. `subdiv` (int): Number of recursive mesh subdivisions to create. kwargs: Keyword args passed on to `plt.triplot`. ''' from matplotlib import ticker, cm import math refiner = tri.UniformTriRefiner(_triangle) trimesh = refiner.refine_triangulation(subdiv=subdiv) pvals = [dist.pdf(xy2bc(xy)) for xy in zip(trimesh.x, trimesh.y)] plt.tricontourf(trimesh, pvals, nlevels, **kwargs) plt.axis('equal') plt.xlim(0, 1) plt.ylim(0, 0.75**0.5) plt.axis('off') if border is True: plt.hold(1) plt.triplot(_triangle, linewidth=1) def plot_points(X, barycentric=True, border=True, **kwargs): '''Plots a set of points in the simplex. Arguments: `X` (ndarray): A 2xN array (if in Cartesian coords) or 3xN array (if in barycentric coords) of points to plot. `barycentric` (bool): Indicates if `X` is in barycentric coords. `border` (bool): If True, the simplex border is drawn. kwargs: Keyword args passed on to `plt.plot`. ''' if barycentric is True: X = X.dot(_corners) plt.plot(X[:, 0], X[:, 1], 'k.', ms=1, **kwargs) plt.axis('equal') plt.xlim(0, 1) plt.ylim(0, 0.75**0.5) plt.axis('off') if border is True: plt.hold(1) plt.triplot(_triangle, linewidth=1) if __name__ == '__main__': f = plt.figure(figsize=(8, 6)) alphas = [[0.999] * 3, [5] * 3, [2, 5, 15]] for (i, alpha) in enumerate(alphas): plt.subplot(2, len(alphas), i + 1) dist = Dirichlet(alpha) draw_pdf_contours(dist) title = r'$\alpha$ = (%.3f, %.3f, %.3f)' % tuple(alpha) plt.title(title, fontdict={'fontsize': 8}) plt.subplot(2, len(alphas), i + 1 + len(alphas)) plot_points(dist.sample(5000)) print 'Wrote plots to "dirichlet_plots.png".' draw_pdf_contours(Dirichlet([5, 5, 5])) ###Output Wrote plots to "dirichlet_plots.png". ###Markdown The multinomial distribution$$f(x|n,\theta) = \binom{n}{x_1 \ldots x_K}\prod^{K}_{j=1}\theta^{x_j}_j$$e.g. Roll a K-sided die n times ###Code #from scipy.stats import multinomial $ waiting until scipy 0.19 is released x = np.arange(0,6) theta = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6] n = 100 # number of trials mean, var, skew, kurt = multinomial.stats(theta, moments='mvsk') fig, ax = plt.subplots(1, 1) ax.vlines(x, 0, multinomial.pmf(x, theta), colors='b', lw=5, alpha=0.5) plt.ylabel('Mass') plt.xlabel('x') plt.xlim(-0.1 ,1.1) plt.ylim(0.0 ,1) ###Output _____no_output_____
data-science/python-plotting/Week3.ipynb
###Markdown Subplots ###Code %matplotlib notebook import matplotlib.pyplot as plt import numpy as np plt.subplot? plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') plt.figure() # the right hand side is equivalent shorthand syntax plt.subplot(1,2,1) == plt.subplot(121) # create a 3x3 grid of subplots fig, ((ax1,ax2,ax3), (ax4,ax5,ax6), (ax7,ax8,ax9)) = plt.subplots(3, 3, sharex=True, sharey=True) # plot the linear_data on the 5th subplot axes ax5.plot(linear_data, '-') # set inside tick labels to visible for ax in plt.gcf().get_axes(): for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_visible(True) # necessary on some systems to update the plot plt.gcf().canvas.draw() ###Output _____no_output_____ ###Markdown Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) # use gridspec to partition the figure into subplots import matplotlib.gridspec as gridspec plt.figure() gspec = gridspec.GridSpec(3, 3) top_histogram = plt.subplot(gspec[0, 1:]) side_histogram = plt.subplot(gspec[1:, 0]) lower_right = plt.subplot(gspec[1:, 1:]) Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) lower_right.scatter(X, Y) top_histogram.hist(X, bins=100) s = side_histogram.hist(Y, bins=100, orientation='horizontal') # clear the histograms and plot normed histograms top_histogram.clear() top_histogram.hist(X, bins=100, normed=True) side_histogram.clear() side_histogram.hist(Y, bins=100, orientation='horizontal', normed=True) # flip the side histogram's x axis side_histogram.invert_xaxis() # change axes limits for ax in [top_histogram, lower_right]: ax.set_xlim(0, 1) for ax in [side_histogram, lower_right]: ax.set_ylim(-5, 5) %%HTML <img src='http://educationxpress.mit.edu/sites/default/files/journal/WP1-Fig13.jpg' /> ###Output _____no_output_____ ###Markdown Box and Whisker Plots ###Code import pandas as pd normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) df.describe() plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) import mpl_toolkits.axes_grid1.inset_locator as mpl_il plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) ###Output _____no_output_____ ###Markdown Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) # add a colorbar legend plt.colorbar() ###Output _____no_output_____ ###Markdown Animations ###Code import matplotlib.animation as animation n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) ###Output _____no_output_____
Section 6 - Analyzing Big Data/6.2/data_exploration.ipynb
###Markdown First look at the test data ###Code # Count of data print(f"Overall data count: {raw_test_data.count()}") # Data summary display(raw_test_data.summary().toPandas()) print("Data schema") raw_test_data.printSchema() # Let's look at 50 rows of data display(raw_test_data.limit(50).toPandas()) ###Output _____no_output_____ ###Markdown First look at the training data ###Code # Count of data print(f"Overall data count: {raw_training_data.count()}") # Data summary display(raw_training_data.summary().toPandas()) print("Data schema") raw_training_data.printSchema() # Let's look at 50 rows of data display(raw_training_data.limit(50).toPandas()) ###Output _____no_output_____ ###Markdown Test data:- 498 rows of test_dataTraining data:- 1600000 rows of training_data Initial Findings:- We need to apply a proper schema- The date column needs fixing- We need to extract twitter user names/handles (we'll extract it and call the output column `users_mentioned`)- We need to extract hashtags and replace them with the words from the hashtag (we'll extract it and call the output column `hashtags`)- We need to extract URLs, as our algorithm won't need that or use that (we'll simply remove it from the data)- The same goes for email-address- HTML does not appear properly unescaped, we're going to have to fix that (example: `&lt;3` and `s&amp;^t`)- Encoding seems to be 'broken' (example: `�����ߧ�ǿ�����ж�؜��� &lt;&lt;----I DID NOT KNOW I CUD or HOW TO DO ALL DAT ON MY PHONE TIL NOW. WOW..MY LIFE IS NOW COMPLETE. JK.`) Detailed statistics PolarityAccording to Sentiment140 documentation, we would expect the `polarity` column to have one of three values representing user sentiment:- 0 = negative- 2 = neutral- 4 = positiveOnce we train our own model, we don't want data-skew to introduce bias. So let's see how polarity is distributed in the data that we have. Polarity column (test data)Let's first look at the test data. ###Code df = raw_test_data.select("polarity").na.drop() print(f"No of rows with Polarity: {df.count()}/{raw_test_data.count()}") sns.distplot(df.toPandas()) ###Output _____no_output_____ ###Markdown Polarity column (training data)Now let's look at the training data. ###Code df = raw_training_data.select("polarity").na.drop() print(f"No of rows with Polarity: {df.count()} / {raw_training_data.count()}") sns.distplot(df.toPandas()) ###Output _____no_output_____ ###Markdown Results:We can clearly see that the training data only has polarity data centered around 0 (Negative) and 4 (Positive).Let's confirm this: ###Code polarity_df = raw_training_data.select("polarity").cache() polarity_df.groupBy("polarity").count().toPandas() ###Output _____no_output_____ ###Markdown Very nice! We have a nice even 50/50 split between polarity. Conclusions:- As 498 rows is way too little for us to train a model on, we're going to disregard this dataset and focus on the Training Data. - We've determined the steps that need to be taken to clean the data Store our raw dataNow it's time for us to write the raw data we intend to use to disk. We're going to:- keep the format CSV- partition the data by polarity, this will create 2 subfolders inside our output folder - repartition the data in 20 partitions: This will ensure that we have 20 smaller csv files per partition ###Code raw_training_data.repartition(20).write.partitionBy("polarity").csv( OUTPUT_PATH, mode="overwrite" ) ###Output _____no_output_____
onem2m-02-basic-resources.ipynb
###Markdown oneM2M - Basic Resources and InteractionsThis notebook shows the basic interactions with a CSE using REST calls. Examples include:- Create an &lt;AE> resource- Create a &lt;Container> resource- Create one or more &lt;ContentInstance> resources- Retrieve the latest &lt;ContentInstance> resource- Update the &lt;Container> resource- Retrieve the &lt;Container> resource IntitializationThe section does import necessary modules and configurations. ###Code %run init.py ###Output _____no_output_____ ###Markdown Create an &lt;AE> ResourceThis example creates a new &lt;AE> resource in the CSE. &lt;AE>'s represent applications or services.Creating this (or other) resource is done using a POST request and with providing a couple of mandatory attributes:- **api** : Application Identifier. An Application Identifier uniquely identifies an M2M Application in a given context.- **rr** : Request Reachability. This attribute indicates whether a resource can receive requests.- **srv** : Supported Release Versions. An array that specifies the supported oneM2M specification releases.Note, that the request target is the &lt;CSEBase> resource. All create requests target a parent resource. ###Code CREATE ( # CREATE request url, # Request Headers { 'X-M2M-Origin' : 'C', # Ask the CSE to assign a new CSE 'X-M2M-RI' : '123', # Request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=2' # Content is JSON, and represents an <AE> resource }, # Request Body { 'm2m:ae': { 'rn': 'Notebook-AE', 'api': 'NnotebookAE', 'rr': True, 'srv': [ '3' ] } } ) ###Output _____no_output_____ ###Markdown The response introduces some new attributes:- **pi** : This is the identifier of the parent resource.- **et** : Expiration time/date after which the CSE will delete the resource.- **aei** : An Application Entity Identifier uniquely identifies an AE globally.**Note**: If you see an error "409" or "Name already present" then don't worry. It just means that an &lt;AE> resource with the same name already exists in the CSE, perhaps from a previous run of this notebook cell. Create a &lt;Container> ResourceIn this section we add a &lt;Container> resource to the &lt;AE> resource. A &lt;Container> represents a data point that can hold a configurable number of dsta instances. A &lt;Container> may also hold a sub-containers.If created with no further attributes, the CSE will assign defaults to the &lt;Container> resource. ###Code CREATE ( # CREATE request f'{url}/Notebook-AE', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '123', # Request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=3' # Content is JSON, and represents an <Container> resource }, # Request Body { 'm2m:cnt': { 'rn':'Container' } } ) ###Output _____no_output_____ ###Markdown The following attributes are used with the &lt;Container> resource:- **st** : The State Tag is incremented every time the resource is modified.- **mni** : Maximum number of direct data instances in the &lt;Container> resource.- **mbs** : Maximum size in bytes of data.- **mia** : Maximum age of a direct data instances in the &lt;Container> resource.- **cni** : Current number of direct data instances in the &lt;Container> resource.- **cbs** : Current size in bytes of data.- **ol** : Resource identifier of a virtual resource that points to the oldest data instance of the &lt;Container> resource.- **la** : Resource identifier of a virtual resource that points to the latest data instance of the &lt;Container> resource.**Note**: If you see an error "409" or "Name already present" then don't worry. It just means that an &lt;Container> resource with the same name already exists in the CSE, perhaps from a previous run of this notebook cell. Add a &lt;ContentInstance> to the &lt;Container>Now, we add an actual value to the *myContainer* &lt;Container>. These attributes are part of the request:- **cnf** : This specifies the content format. It specifies the media type as well as an encoding type.- **con** : This is the actual content (ie. the value) that will be stored in the &lt;Container resource. It must contain media information and may optionally specify an optional content encoding (here 0 means "plain, no transfer encoding"), and content security.&lt;ContentInstance>'s can only be added and read, but not updated or deleted.**Note**: You can execute the following code as often as you like in order to create more &lt;ContentInstance> resources. ###Code CREATE ( # CREATE request f'{url}/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '123', # Request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=4' # Content is JSON, and represents an <ContentInstance> resource }, # Request Body { 'm2m:cin': { 'cnf': 'text/plain:0', 'con': 'Hello, World!' } } ) ###Output _____no_output_____ ###Markdown A new attribute:- **cs** : This attribute contains the size of the content of the **con** attribute. Retrieve the latest &lt;ContentInstance> resourceThis request will retrieve the latest data instance from the &lt;Container>. ###Code RETRIEVE ( # RETRIEVE request url + '/Notebook-AE/Container/la', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '123', # Unique request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json' # Response shall be JSON } ) ###Output _____no_output_____ ###Markdown Update the &lt;Container> ResourceWith this request we will set the *MinimumNumberOfInstances* (**mni**) attribute to a new value. ###Code UPDATE ( # UPDATE request f'{url}/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '123', # Request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=3' # Content is JSON, and represents an <Container> resource }, # Request Body { 'm2m:cnt': { 'mni': 10001 } } ) ###Output _____no_output_____ ###Markdown The CSE returns the resource. Also note the change of the *lastModificationTime* (lt) and *status* (st) attributes. Check the &lt;Container> resourceRetrieve the &lt;Container> resource to see all the changes and its current state. ###Code RETRIEVE ( # RETRIEVE request f'{url}/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '123', # Unique request identifier 'X-M2M-RVI' : '3', # Release verson indicator 'Accept' : 'application/json' # Response shall be JSON } ) ###Output _____no_output_____ ###Markdown oneM2M - Basic Resources and InteractionsThis notebook shows the basic interactions with a CSE using REST calls. Examples include:- Create an &lt;AE> resource- Create a &lt;Container> resource- Create one or more &lt;ContentInstance> resources- Retrieve the latest &lt;ContentInstance> resource- Update the &lt;Container> resource- Retrieve the &lt;Container> resource IntitializationThe section does import necessary modules and configurations. ###Code %run init.py ###Output _____no_output_____ ###Markdown Create an &lt;AE> ResourceThis example creates a new &lt;AE> resource in the CSE. &lt;AE>'s represent applications or services.Creating this (or other) resource is done using a POST request and with providing a couple of mandatory attributes:- **api** : Application Identifier. An Application Identifier uniquely identifies an M2M Application in a given context.- **rr** : Request Reachability. This attribute indicates whether a resource can receive requests.- **srv** : Supported Release Versions. An array that specifies the supported oneM2M specification releases.Note, that the request target is the &lt;CSEBase> resource. All create requests target a parent resource. ###Code CREATE ( # CREATE request url, # Request Headers { 'X-M2M-Origin' : 'C', # Set the originator 'X-M2M-RI' : '0', # Request identifier 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=2' # Content is JSON, and represents an <AE> resource }, # Request Body { "m2m:ae": { "rn": "Notebook-AE", "api": "AE", "rr": True, "srv": [ "3" ] } } ) ###Output _____no_output_____ ###Markdown The response introduces some new attributes:- **pi** : This is the identifier of the parent resource.- **et** : Expiration time/date after which the CSE will delete the resource.- **aei** : An Application Entity Identifier uniquely identifies an AE globally.**Note**: If you see an error "409" or "Name already present" then don't worry. It just means that an &lt;AE> resource with the same name already exists in the CSE, perhaps from a previous run of this notebook cell. Create a &lt;Container> ResourceIn this section we add a &lt;Container> resource to the &lt;AE> resource. A &lt;Container> represents a data point that can hold a configurable number of dsta instances. A &lt;Container> may also hold a sub-containers.If created with no further attributes, the CSE will assign defaults to the &lt;Container> resource. ###Code CREATE ( # CREATE request url + '/Notebook-AE', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '0', # Request identifier 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=3' # Content is JSON, and represents an <Container> resource }, # Request Body { "m2m:cnt": { "rn":"Container" } } ) ###Output _____no_output_____ ###Markdown The following attributes are used with the &lt;Container> resource:- **st** : The State Tag is incremented every time the resource is modified.- **mni** : Maximum number of direct data instances in the &lt;Container> resource.- **mbs** : Maximum size in bytes of data.- **mia** : Maximum age of a direct data instances in the &lt;Container> resource.- **cni** : Current number of direct data instances in the &lt;Container> resource.- **cbs** : Current size in bytes of data.- **ol** : Resource identifier of a virtual resource that points to the oldest data instance of the &lt;Container> resource.- **la** : Resource identifier of a virtual resource that points to the latest data instance of the &lt;Container> resource.**Note**: If you see an error "409" or "Name already present" then don't worry. It just means that an &lt;Container> resource with the same name already exists in the CSE, perhaps from a previous run of this notebook cell. Add a &lt;ContentInstance> to the &lt;Container>Now, we add an actual value to the *myContainer* &lt;Container>. These attributes are part of the request:- **cnf** : This specifies the content format. It specifies the media type as well as an encoding type.- **con** : This is the actual content (ie. the value) that will be stored in the &lt;Container resource. It must contain media information and may optionally specify an optional content encoding (here 0 means "plain, no transfer encoding"), and content security.&lt;ContentInstance>'s can only be added and read, but not updated or deleted.**Note**: You can execute the following code as often as you like in order to create more &lt;ContentInstance> resources. ###Code CREATE ( # CREATE request url + '/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '0', # Request identifier 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=4' # Content is JSON, and represents an <ContentInstance> resource }, # Request Body { "m2m:cin": { "cnf": "text/plain:0", "con": "Hello, World!" } } ) ###Output _____no_output_____ ###Markdown A new attribute:- **cs** : This attribute contains the size of the content of the **con** attribute. Retrieve the latest &lt;ContentInstance> resourceThis request will retrieve the latest data instance from the &lt;Container>. ###Code RETRIEVE ( # RETRIEVE request url + '/Notebook-AE/Container/la', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '0', # Unique request identifier 'Accept' : 'application/json' # Response shall be JSON } ) ###Output _____no_output_____ ###Markdown Update the &lt;Container> ResourceWith this request we will set the *MinimumNumberOfInstances* (**mni**) attribute to a new value. ###Code UPDATE ( # UPDATE request url + '/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '0', # Request identifier 'Accept' : 'application/json', # Response shall be JSON 'Content-Type' : 'application/json;ty=3' # Content is JSON, and represents an <Container> resource }, # Request Body { "m2m:cnt": { "mni": 10001 } } ) ###Output _____no_output_____ ###Markdown The CSE returns the resource. Also note the change of the *lastModificationTime* (lt) and *status* (st) attributes. Check the &lt;Container> resourceRetrieve the &lt;Container> resource to see all the changes and its current state. ###Code RETRIEVE ( # RETRIEVE request url + '/Notebook-AE/Container', # Request Headers { 'X-M2M-Origin' : originator, # Set the originator 'X-M2M-RI' : '0', # Unique request identifier 'Accept' : 'application/json' # Response shall be JSON } ) ###Output _____no_output_____
FIFA_Project_Student-Template.ipynb
###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train_data = pd.read_csv(r'C:\Users\kamlesh\Downloads\machine learing\train.csv') submission_data = pd.read_csv(r'C:\Users\kamlesh\Downloads\machine learing\sample_submission.csv') train_data.dtypes train_data.isna().sum() train_data = train_data.fillna("Unknown") train_data.isna().sum() train_data.describe().loc[['min','max']] train_data.head(5) ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code sns.set_style("whitegrid") plt.figure(figsize=(15,5)) sns.barplot(x='Club', y='Age', data= train_data.loc[0:10]) # Code Starts here Numeric_cols = ['Id','Age','Overall','Potential','Wage (M)'] Categorical_cols = ['Name','Nationality','Club','Position'] from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(train_data['Name']) train_data['Name']=le.transform(train_data['Name']) le.fit(train_data['Nationality']) train_data['Nationality']=le.transform(train_data['Nationality']) le.fit(train_data['Club']) train_data['Club']=le.transform(train_data['Club']) le.fit(train_data['Position']) train_data['Position']=le.transform(train_data['Position']) # Code ends here corr = train_data.corr() sns.heatmap(corr, xticklabels = corr.columns, yticklabels = corr.columns, annot = True, cmap= 'viridis') ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here X = train_data.drop(['Value (M)'],axis=1) y = train_data['Value (M)'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) r2 = r2_score(y_test, y_pred) print("r2", r2) mae = mean_squared_error(y_test, y_pred) print("mae", mae) from sklearn.preprocessing import PolynomialFeatures ploy = PolynomialFeatures(4) X_train_2 = ploy.fit_transform(X_train) X_test_2 = ploy.transform(X_test) model = LinearRegression() model.fit(X_train_2, y_train) y_pred_2 = model.predict(X_test_2) r2 = r2_score(y_test,y_pred_2) print("r2", r2) mae = mean_squared_error(y_test, y_pred_2) print("mae", mae) # Code ends here ###Output r2 0.7995328796583645 mae 5.135528618563141 r2 0.9656068307365638 mae 0.8810776786460299 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here test_data = pd.read_csv(r'C:\Users\kamlesh\Downloads\machine learing\test.csv') test_id = test_data['Id'] from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(test_data['Name']) test_data['Name']=le.transform(test_data['Name']) le.fit(test_data['Nationality']) test_data['Nationality']=le.transform(test_data['Nationality']) le.fit(test_data['Club']) test_data['Club']=le.transform(test_data['Club']) le.fit(test_data['Position']) test_data['Position']=le.transform(test_data['Position']) X = test_data X_test = ploy.transform(X) y_pred_test = model.predict(X_test) print(y_pred_test) # Code ends here submission_result = pd.DataFrame(y_pred_test, index = test_id, columns = ['Value (M)']) print(round(submission_result,2)) submission_result.to_csv('FIFO Value Prediction.csv', index = True) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') submission = pd.read_csv('sample_submission.csv') train.drop('Id', axis = 1, inplace = True) train.head() train.shape, test.shape train.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 14384 entries, 0 to 14383 Data columns (total 9 columns): Name 14384 non-null object Age 14384 non-null int64 Nationality 14384 non-null object Overall 14384 non-null int64 Potential 14384 non-null int64 Club 14173 non-null object Value (M) 14384 non-null float64 Wage (M) 14384 non-null float64 Position 14384 non-null object dtypes: float64(2), int64(3), object(4) memory usage: 1011.5+ KB ###Markdown Check Numerical and Categorical columns ###Code def numeric_features (dataframe): num_column = dataframe.select_dtypes(include = np.number).columns.tolist() return num_column num_col = numeric_features(train) def categorical_features(dataframe): cat_column = dataframe.select_dtypes(exclude = np.number).columns.tolist() return cat_column cat_col = categorical_features(train) num_col, cat_col train[num_col].describe() corr_num = train[num_col].corr() print(corr_num) ###Output Age Overall Potential Value (M) Wage (M) Age 1.000000 0.459678 -0.224055 0.082716 0.149757 Overall 0.459678 1.000000 0.678228 0.635618 0.589736 Potential -0.224055 0.678228 1.000000 0.595095 0.512910 Value (M) 0.082716 0.635618 0.595095 1.000000 0.845124 Wage (M) 0.149757 0.589736 0.512910 0.845124 1.000000 ###Markdown No highly correlated observations Check Missing Values ###Code train.isnull().sum() train[train['Club'].isnull()] train[train['Wage (M)'] == 0].equals(train[train['Club'].isnull()]) ###Output _____no_output_____ ###Markdown where ever Club data is null, Wage data is '0' ###Code train[train['Nationality'] == 'Ivory Coast'].head(10) def missing_data(dataframe): total = dataframe.isnull().sum().sort_values(ascending = False) percentage = (dataframe.isnull().sum()/dataframe.count()).sort_values(ascending = False) missing_data = pd.concat([total, percentage], axis = 1, keys = ['Total', 'Percentage']) return missing_data missing_data = missing_data(train) ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code plt.figure(figsize = (16,8)) plt.title('Grouping players by preferred position', fontsize = 15, fontweight = 'bold') plt.xlabel('Position', fontsize = 12) plt.ylabel('count') sns.countplot(x = 'Position', data = train) plt.show() plt.figure(figsize = (10,8)) plt.title('Wage distribution of players', fontsize = 15,fontweight = 'bold' ) plt.xlabel('Wage') plt.ylabel('frequency') sns.distplot(train['Wage (M)']) value_dist = train.sort_values('Wage (M)', ascending = False).reset_index().head(100)[['Name', 'Wage (M)']] plt.figure(figsize=(16,8)) sns.set_style("whitegrid") plt.ylabel('Player Wage', fontsize = 15) plt.plot(value_dist['Wage (M)']) plt.figure() overall = train.sort_values('Overall')['Overall'].unique() over_all_value = train.groupby('Overall')['Value (M)'].mean() plt.figure(figsize = (16,8)) plt.title('Overall vs Value', fontsize=20, fontweight='bold') plt.xlabel('Overall', fontsize=15) plt.ylabel('Value', fontsize=15) plt.plot(overall, over_all_value, label = 'Value in (M)') # Code Starts here Potential = train.sort_values('Potential')['Potential'].unique() potential_values = train.groupby('Potential')['Value (M)'].mean() plt.figure(figsize= (10,6)) plt.plot(Potential, potential_values) plt.xlabel('Potential') plt.ylabel("Value") plt.title('Potential Vs Value') plt.show() # Code ends here ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here X = train.drop('Value (M)', axis = 1) y = train['Value (M)'] # independent variables X = X[['Overall','Potential','Wage (M)', 'Age']] X_train, X_test, Y_train, Y_test = train_test_split(X, y, random_state = 40, test_size = 0.3) model = LinearRegression() model.fit(X_train, Y_train) y_pred = model.predict(X_test) mse = mean_squared_error(Y_test, y_pred) r2 = r2_score(Y_test, y_pred) mae = mean_absolute_error(Y_test, y_pred) print(mse, r2, mae) # Code ends here X_train.head() ###Output _____no_output_____ ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here Id = test['Id'] Y_pred = model.predict(test[['Overall', 'Potential', 'Wage (M)', 'Age']]) submission_sample = pd.DataFrame({'Id' : Id, 'Value (M)' : Y_pred}) submission_sample.to_csv('sample_submission.csv', index = False) # Code ends here ## Instantiate third degree polynomial features poly = PolynomialFeatures(degree=2) # fit and transform polynomial features on X_train X_train_2 = poly.fit_transform(X_train) # instantiate Linear regression model model=LinearRegression() # fit the model model.fit(X_train_2,Y_train) # transform on x_test X_test_2 = poly.transform(X_test) # predict the model performance y_pred_2=model.predict(X_test_2) # Calculate the mean absolute error mae= mean_absolute_error(Y_test, y_pred_2) print (mae) # calculate the r2 score r2= r2_score(Y_test, y_pred_2) print(r2) Id = test['Id'] test_obsev = test[['Overall', 'Potential', 'Wage (M)', 'Age']] test_data = poly.fit_transform(test_obsev) Y_pred = model.predict(test_data) submission_sample = pd.DataFrame({'Id' : Id, 'Value (M)' : Y_pred}) submission_sample.to_csv('sample_submission.csv', index = False) train['Club']= train['Club'].str.replace('unknown', train.Club.mode()[0]) le = LabelEncoder() train['Position'] = le.fit_transform(train['Position']) train['Nationality'] = le.fit_transform(train['Nationality']) poly = PolynomialFeatures(degree=2) X = train.drop('Value (M)', axis = 1) y = train['Value (M)'] # independent variables X = X[['Overall','Potential','Wage (M)', 'Age', 'Position', 'Nationality']] X_train, X_test, Y_train, Y_test = train_test_split(X, y, random_state = 40, test_size = 0.3) X_train_2 = poly.fit_transform(X_train) model = LinearRegression() model.fit(X_train_2, Y_train) X_test_2 = poly.transform(X_test) y_pred = model.predict(X_test_2) mse = mean_squared_error(Y_test, y_pred) r2 = r2_score(Y_test, y_pred) mae = mean_absolute_error(Y_test, y_pred) print(mse, r2, mae) Id = test['Id'] test['Position'] = le.fit_transform(test['Position']) test['Nationality'] = le.fit_transform(test['Nationality']) Y_pred = model.predict(poly.transform(test[['Overall', 'Potential', 'Wage (M)', 'Age', 'Position', 'Nationality']])) submission_sample = pd.DataFrame({'Id' : Id, 'Value (M)' : Y_pred}) submission_sample.to_csv('sample_submission.csv', index = False) ## Instantiate third degree polynomial features poly = PolynomialFeatures(degree=2) # fit and transform polynomial features on X_train X_train_2 = poly.fit_transform(X_train) # instantiate Linear regression model model=LinearRegression() # fit the model model.fit(X_train_2,Y_train) # transform on x_test X_test_2 = poly.transform(X_test) # predict the model performance y_pred_2=model.predict(X_test_2) # Calculate the mean absolute error mae= mean_absolute_error(Y_test, y_pred_2) print (mae) # calculate the r2 score r2= r2_score(Y_test, y_pred_2) print(r2) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train = pd.read_csv('E:/GreyAtom/glab proj/FIFA/train.csv') #train_data.head(10) train.head(10) # Shape of the data print("Shape of the data is:", train.shape) #Checking statistical properties of data print("Statistical properties of data are as follows") print(train.describe()) print("Skewness for different features is shown as below") print(train.skew()) # Split into features and target X = train[['Id','Overall','Potential','Wage (M)']] y = train['Value (M)'] #Reading features (X) X.head(10) #Reading Target (y) y.head(10) # Separate into train and test data X_train,X_test,y_train,y_test=train_test_split(X,y ,test_size=0.3,random_state=6) ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here #Checking the best plots for plotting between continuous features and try making some inferences from these plots. cols = X_train.columns print("Below columns are present in dataset:") print(cols) # fig, axes = plt.subplots(nrows = 3, ncols = 3, figsize=(20,20)) # for i in range(0,3): # for j in range(0,3): # col = cols[i*3 + j] # axes[i,j].set_title(col) # #axes[i,j].scatter(X_train[col],y_train) # axes[i,j].set_xlabel(col) # axes[i,j].set_ylabel('Wage (M)') # plt.show() #Feature Selection #selecting suitable threshold and dropping columns # Plotting a heatmap using to check for correlation between the features sns.heatmap(train.corr()) # Selecting upper and lower threshold upper_threshold = 0.5 lower_threshold = -0.5 # List the correlation pairs correlation = train.corr().unstack().sort_values(kind='quicksort') correlation # Select the highest correlation pairs having correlation greater than upper threshold and lower than lower threshold corr_var_list = correlation[((correlation>upper_threshold) | (correlation<lower_threshold)) & (correlation!=1)] print(corr_var_list) ###Output Id Overall -0.975595 Overall Id -0.975595 Id Potential -0.653503 Potential Id -0.653503 Id Value (M) -0.548213 Value (M) Id -0.548213 Id Wage (M) -0.519570 Wage (M) Id -0.519570 Potential Wage (M) 0.512910 Wage (M) Potential 0.512910 Overall Wage (M) 0.589736 Wage (M) Overall 0.589736 Potential Value (M) 0.595095 Value (M) Potential 0.595095 Overall Value (M) 0.635618 Value (M) Overall 0.635618 Overall Potential 0.678228 Potential Overall 0.678228 Wage (M) Value (M) 0.845124 Value (M) Wage (M) 0.845124 dtype: float64 ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here #Instantiate linear regression model regressor = LinearRegression() # fit the model regressor.fit(X_train,y_train) # predict the result y_pred = regressor.predict(X_test) y_pred # Calculate mse mse = mean_squared_error(y_test,y_pred) mse # Calculate r2_score r2 = r2_score(y_test,y_pred) r2 #Residual Check residual = y_test - y_pred print("Residual : ",residual) plt.figure(figsize=(15,8)) plt.hist(residual, bins=30) plt.xlabel("Residual") plt.ylabel("Frequency") plt.title("Residual Plot") plt.show() ###Output Residual : 13328 -0.685999 2639 -2.859364 5353 0.750055 13126 -5.949938 5554 -1.144565 ... 10011 -0.846442 12592 -0.321063 3598 -0.687268 13385 -0.707041 8482 -0.486819 Name: Value (M), Length: 4316, dtype: float64 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here test = pd.read_csv("E:/GreyAtom/glab proj/FIFA/test.csv") test.head(10) id_ = test['Id'] test.drop(['Name','Age', 'Nationality', 'Club', 'Position'],1,inplace=True) test.head() y_pred_test = regressor.predict(test) y_pred_test final_submission = pd.DataFrame({'Id':id_,'Value (M)':y_pred_test}) final_submission.head(10) final_submission.to_csv('final_submission.csv',index=False) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train_data=pd.read_csv('train.csv') train_data train_data.describe() ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here # Age counts train_data.Age.value_counts().plot(kind='bar') # Top 10 values w.r.t Nationality g_age=train_data.groupby(['Nationality'])['Value (M)'].mean().sort_values(ascending=False).head(10) g_age.plot(kind='bar') plt.ylabel('Value (M)') plt.title('Top 10 values (M) w.r.t Nationality') plt.show() # Count of players by there position plt.figure(figsize=(8,5)) plt.title('Grouping players by Prefered Position', fontsize=12, fontweight='bold',y=1.06) sns.countplot(x="Position", data= train_data) plt.xlabel('Position', fontsize=12) plt.ylabel('Number of players', fontsize=12) plt.show() # Wage distribution of top 100 players distribution_values = train_data.sort_values("Wage (M)",ascending=False).reset_index().head(10)[["Name", "Wage (M)"]] distribution_values.plot.barh(x='Name', y='Wage (M)') plt.xlabel('Value (M)') plt.show() plt.scatter(x=train_data['Age'], y=train_data['Value (M)'], c='c') plt.xlabel('Age of players', fontsize=12) plt.ylabel('Value (M)', fontsize=12) plt.show #sns.scatterplot(x=train_data['Age'], y=train_data['Value (M)']) plt.figure(figsize=(8,6)) sns.heatmap(train_data.corr(), annot = True, vmin=-1, vmax=1, center= 0, cmap= 'coolwarm') # Code ends here ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here x=train_data.drop(['Value (M)', 'Id'], axis=1) y=train_data['Value (M)'] # independent variables X = x[['Overall','Potential','Wage (M)']] # Separate into train and test data X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42,test_size=0.2) print(X_train.head(10)) print("-------------------------------------") print(y_train.head(5)) # Linear regression model = LinearRegression() # fit the model on training data model.fit(X_train,y_train) # make prediction y_pred = model.predict(X_test) y_pred # Plot outputs plt.scatter(X_test, y_test, color='black') plt.plot(X_test, y_pred, color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() # Mean_absolute_error mae = mean_absolute_error(y_test,y_pred) mae # r2 score r2 = r2_score(y_test,y_pred) r2 # Code ends here ###Output _____no_output_____ ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here # Read the test data test = pd.read_csv('test.csv') test.head(5) # Storing the id from the test file id_ = test['Id'] # Dropping the same columns from the test data test = test[['Overall','Potential','Wage (M)']] test.head() # Predict on the test data y_pred_test = model.predict(test) y_pred_test # Create a sample submission file sample_submission = pd.DataFrame({'Id':id_,'Value (M)':y_pred_test}) # Convert the sample submission file into a csv file sample_submission.to_csv('sample_submission.csv',index=False) # Code ends here ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train=pd.read_csv('train.csv') test=pd.read_csv('test.csv') train.isna().sum() train=train.drop(['Id','Name','Nationality','Club','Position'],axis=1) ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here numcols= train.select_dtypes(include=['number']).columns.tolist() for i in numcols: plt.figure(figsize=(8,4)) sns.set_style('whitegrid') sns.distplot(train[i],kde=False,color='blue') plt.show() # Code ends here corr = train.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True with sns.axes_style("white"): f, ax = plt.subplots(figsize=(9, 7)) ax = sns.heatmap(corr,mask=mask,square=True,annot=True,fmt='0.2f',linewidths=.8,cmap="hsv") ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here Y=train['Value (M)'] X=train.drop(['Value (M)','Age'],axis=1) X_train,X_test,y_train,y_test=train_test_split(X,Y,train_size=0.8,random_state=0) poly = PolynomialFeatures(5) X_train_2=poly.fit_transform(X_train) X_test_2 = poly.fit_transform(X_test) model=LinearRegression() model.fit(X_train_2,y_train) y_pred=model.predict(X_test_2) rme=mean_squared_error(y_test,y_pred) r2=r2_score(y_test,y_pred) print(rme,r2) # Code ends here ###Output 0.8199533541796538 0.9549481143923584 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here id_ = test['Id'] # Dropping the same columns from the test data test = test[['Overall','Potential','Wage (M)']] # Applying rfe on test data test_poly = poly.transform(test) # Predict on the test data y_pred_test = model.predict(test_poly) print(y_pred_test) y_pred_test = y_pred_test.flatten() print(y_pred_test) # Create a sample submission file sample_submission = pd.DataFrame({'Id':id_,'Value (M)':y_pred_test}) # Code ends here sample_submission.to_csv('FIFA.csv',index=False) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately df_train = pd.read_csv("train.csv") df_train.head() df_train.isnull().sum() ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code categorical_var = df_train.select_dtypes(include = 'object') categorical_var df_train.drop(["Name","Nationality","Club","Position"],axis = 1, inplace = True) df_train.head() # Code Starts here numerical_var = df_train.select_dtypes(include = 'number') numerical_var # Code ends here numerical = ["Potential","Age","Overall"] for i in range(0,len(numerical),2): if len(numerical) > i+1: plt.figure(figsize=(10,4)) plt.subplot(121) plt.scatter(df_train[numerical[i]],df_train["Value (M)"]) plt.title('Plotting target against '+numerical[i]) plt.xlabel(numerical[i]) plt.ylabel("Value (M)") plt.subplot(122) plt.scatter(df_train[numerical[i+1]],df_train["Value (M)"]) plt.title('Plotting target against '+numerical[i+1]) plt.xlabel(numerical[i+1]) plt.ylabel("Value (M)") plt.tight_layout() plt.show() else: plt.scatter(df_train[numerical[i]],df_train["Value (M)"]) ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code df_train.columns # Code Starts here X = df_train[['Id', 'Age', 'Overall', 'Potential', 'Wage (M)']] y = df_train["Value (M)"] X_train,X_val,y_train,y_val = train_test_split(X, y, test_size = 0.3,random_state = 6) print(X_train.shape) print(y_train.shape) # Code ends here df_train.info() regressor = LinearRegression() regressor.fit(X_train,y_train) y_pred = regressor.predict(X_val) y_pred #Calculate R^2 r2 = r2_score(y_val,y_pred) r2 from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(2) X_train_poly = poly.fit_transform(X_train) X_val_poly = poly.transform(X_val) regressor.fit(X_train_poly, y_train) y_pred_poly = regressor.predict(X_val_poly) r2 = r2_score(y_val,y_pred_poly) r2 ###Output _____no_output_____ ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code df_test = pd.read_csv("test.csv") df_test.shape df_test.columns # Code Starts here df_test.drop(["Name","Nationality","Club","Position"],axis = 1, inplace = True) # Code ends here id = df_test["Id"] y_pred_df_test = regressor.predict(df_test) y_pred_df_test poly1 = PolynomialFeatures(2) df_test_poly1 = poly1.fit_transform(df_test) #df_test_poly = poly.transform(df_test) #regressor.fit(df_test_poly1, y_train) y_pred_poly = regressor.predict(df_test_poly) y_pred_poly final_sub = pd.DataFrame({"Id": id, "Value (M)": y_pred_poly}) #final_sub final_sub.to_csv("FIFA_Submission.csv", index=False) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately fifa = pd.read_csv('train.csv') print(fifa.sample(n=20)) fifa.info() fifa.describe() fifa.columns print(fifa['Nationality'].nunique()) print(fifa['Club'].nunique()) print(fifa['Position'].nunique()) fifa['Nationality_cat'] = fifa['Nationality'].astype('category').cat.codes fifa['Club_cat'] = fifa['Club'].astype('category').cat.codes fifa['Position_cat'] = fifa['Position'].astype('category').cat.codes ###Output Id Name Age Nationality Overall Potential \ 14307 12268 C. Dickinson 30 England 63 63 12057 4058 S. Filip 23 Romania 71 78 7264 10639 E. Upson 27 England 65 66 4600 3598 D. Andrade 26 Colombia 72 75 13766 5758 A. Olanare 23 Nigeria 69 73 12851 13103 D. Keita-Ruel 27 Germany 62 62 12457 2085 J. Schunke 30 Argentina 74 74 10829 6730 C. Duvall 25 United States 68 69 3716 10386 C. Chaplin 20 England 65 82 4232 1252 R. Yanbaev 33 Russia 76 76 801 11225 P. Zulu 24 South Africa 64 67 11038 7792 H. Olvera 27 Mexico 67 68 10662 9857 A. Nordvik 30 Norway 66 66 4476 13926 J. Stockley 23 England 61 68 5846 8021 L. Olum 32 Kenya 67 67 6052 3307 Rober Ibáñez 24 Spain 72 78 1261 17972 A. Conway 19 Republic of Ireland 47 63 14274 2400 L. Ulloa 30 Argentina 74 74 2731 6481 W. Larrondo 33 Chile 69 69 3484 9649 A. Barada 26 Japan 66 69 Club Value (M) Wage (M) Position 14307 Notts County 0.270 0.004 LWB 12057 NaN 0.000 0.000 LM 7264 Milton Keynes Dons 0.500 0.004 CM 4600 Asociacion Deportivo Cali 3.200 0.003 LB 13766 CSKA Moscow 1.400 0.023 ST 12851 SC Fortuna Köln 0.325 0.001 LW 12457 Estudiantes de La Plata 4.200 0.016 CB 10829 Montreal Impact 0.875 0.005 LB 3716 Portsmouth 1.200 0.003 ST 4232 FC Krasnodar 3.000 0.041 RM 801 Kaizer Chiefs 0.575 0.001 LW 11038 Lobos de la BUAP 0.700 0.005 LB 10662 Viking FK 0.475 0.002 LB 4476 Exeter City 0.350 0.003 ST 5846 Portland Timbers 0.450 0.005 CDM 6052 Valencia CF 4.300 0.017 LM 1261 Galway United 0.060 0.001 CB 14274 Leicester City 5.500 0.062 ST 2731 Santiago Wanderers 0.650 0.004 RM 3484 Omiya Ardija 0.775 0.002 CAM <class 'pandas.core.frame.DataFrame'> RangeIndex: 14384 entries, 0 to 14383 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Id 14384 non-null int64 1 Name 14384 non-null object 2 Age 14384 non-null int64 3 Nationality 14384 non-null object 4 Overall 14384 non-null int64 5 Potential 14384 non-null int64 6 Club 14173 non-null object 7 Value (M) 14384 non-null float64 8 Wage (M) 14384 non-null float64 9 Position 14384 non-null object dtypes: float64(2), int64(4), object(4) memory usage: 1.1+ MB 158 647 15 ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here #sns.pairplot(fifa,corner=True,kind='reg') sns.pairplot(fifa,kind='reg') # Feature relation with Target fifa_corr = fifa.corr() plt.figure(figsize=(10,10)) sns.heatmap(fifa_corr,annot=True,cmap=plt.cm.Reds) plt.plot() # Code ends here ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here # Separate features and target fifa['Overall-2'] = np.power(fifa['Overall'],2) fifa['Potential-2'] = np.power(fifa['Potential'],2) X = fifa[['Age','Overall', 'Potential', 'Wage (M)','Overall-2','Potential-2']] y= fifa['Value (M)'] # Split data into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # Fit the train data basemodel = LinearRegression() basemodel.fit(X_train,y_train) # Predict y_pred = basemodel.predict(X_test) # R-squared score r2=r2_score(y_test, y_pred) print('r2: ', round(r2,4)) plt.figure(figsize=(10,10)) sns.heatmap(X,annot=True,cmap=plt.cm.Reds) plt.plot() # Code ends here ###Output r2: 0.8601 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code starts here #Load test data test_data = pd.read_csv('test.csv') # Store Id results = pd.DataFrame(test_data['Id']) # Separate features and target test_data['Overall-2'] = np.power(test_data['Overall'],2) test_data['Potential-2'] = np.power(test_data['Potential'],2) test_data_features = test_data[['Age','Overall', 'Potential', 'Wage (M)','Overall-2','Potential-2']] # Predict test_data_pred = basemodel.predict(test_data_features) # Add to results results['Value (M)'] = test_data_pred.tolist() # Write to CSV results.to_csv('results.csv',index=False) # Code ends here. ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code print('Skewness for the different features is as shown below: ') print(df.skew()) # sns.heatmap(df.corr()) # Selecting upper and lower threshold upper_threshold = 0.5 lower_threshold = -0.5 # List the correlation pairs correlation = df.corr().unstack().sort_values(kind='quicksort') # Select the highest correlation pairs having correlation greater than upper threshold and lower than lower threshold corr_var_list = correlation[((correlation>upper_threshold) | (correlation<lower_threshold)) & (correlation!=1)] print(corr_var_list) ###Output Id Overall -0.975595 Overall Id -0.975595 Id Potential -0.653503 Potential Id -0.653503 Id Value (M) -0.548213 Value (M) Id -0.548213 Id Wage (M) -0.519570 Wage (M) Id -0.519570 Potential Wage (M) 0.512910 Wage (M) Potential 0.512910 Overall Wage (M) 0.589736 Wage (M) Overall 0.589736 Potential Value (M) 0.595095 Value (M) Potential 0.595095 Overall Value (M) 0.635618 Value (M) Overall 0.635618 Overall Potential 0.678228 Potential Overall 0.678228 Wage (M) Value (M) 0.845124 Value (M) Wage (M) 0.845124 dtype: float64 ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # print(df.columns) # df_group = df.groupby(['Position']).sum() # #Code starts here # sns.countplot(x='Position', data=df) # value_distribution_values = df.sort_values("Wage (M)", ascending=False).reset_index().head(100)[["Name", "Wage (M)"]] # sns.countplot(x='Wage (M)', data=value_distribution_values) # # value_distribution_values = df[] # overall = df.sort_values("Overall") # overall_value = overall.groupby(['Overall'])['Value (M)'].mean()# # # Code ends here # p_list_1= ['GK', 'LB', 'CB', 'CB', 'RB', 'LM', 'CDM', 'RM', 'LW', 'ST', 'RW'] # p_list_2 = ['GK', 'LWB', 'CB', 'RWB', 'LM', 'CDM', 'CAM', 'CM', 'RM', 'LW', 'RW'] # # p_list_1 stats # df_copy = df.copy() # store = [] # for i in p_list_1: # store.append([i, # df_copy.loc[[df_copy[df_copy['Position'] == i]['Overall'].idxmax()]]['Name'].to_string( # index=False), df_copy[df_copy['Position'] == i]['Overall'].max()]) # df_copy.drop(df_copy[df_copy['Position'] == i]['Overall'].idxmax(), inplace=True) # # return store # df1= pd.DataFrame(np.array(store).reshape(11, 3), columns=['Position', 'Player', 'Overall']) # # p_list_2 stats # df_copy = df.copy() # store = [] # for i in p_list_2: # store.append([i, # df_copy.loc[[df_copy[df_copy['Position'] == i]['Overall'].idxmax()]]['Name'].to_string( # index=False), df_copy[df_copy['Position'] == i]['Overall'].max()]) # df_copy.drop(df_copy[df_copy['Position'] == i]['Overall'].idxmax(), inplace=True) # # return store # df2= pd.DataFrame(np.array(store).reshape(11, 3), columns=['Position', 'Player', 'Overall']) # if df1['Overall'].mean() > df2['Overall'].mean(): # print(df1) # print(p_list_1) # else: # print(df2) # print(p_list_2) ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here # -------------- from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error,mean_squared_error, r2_score from math import sqrt from sklearn.model_selection import train_test_split # Code starts here X = df[['Overall','Potential','Wage (M)']] y = df['Value (M)'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=6) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) r2 = r2_score(y_test,y_pred) print("r2", r2) mae = mean_absolute_error(y_test, y_pred) print("mae", mae) # Code ends here # -------------- from sklearn.preprocessing import PolynomialFeatures # Code starts here poly = PolynomialFeatures(3) X_train_2 = poly.fit_transform(X_train) X_test_2 = poly.transform(X_test) model = LinearRegression() model.fit(X_train_2, y_train) y_pred_2 = model.predict(X_test_2) r2 = r2_score(y_test,y_pred_2) print("r2", r2) mae = mean_absolute_error(y_test, y_pred_2) print("mae", mae) # Code ends here # Code ends here ###Output r2 0.7676309781948667 mae 1.3718341450247453 r2 0.9481242645946444 mae 0.5118790302908705 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code test3=pd.read_csv("./test.csv") # Code Starts here Id =test3['Id'] print(Id) # Code ends here test3=test3[['Overall','Potential','Wage (M)']] test3.head() test_3 = poly.transform(test3) pred = model.predict(test_3) submission_file1 = pd.DataFrame({'Id' : Id, 'Value' : pred}) submission_file1.to_csv('submission3.csv', index = False) ###Output _____no_output_____ ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train = pd.read_csv('../file (2)/train.csv') train.head() ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here plt.figure(figsize=(16,8)) plt.title('Grouping players by Prefered Position', fontsize = 18, fontweight = 'bold', y = 1.05) plt.xlabel('Number of players', fontsize=12) plt.ylabel('Player age', fontsize=12) sns.countplot(x='Position', data=train) #Wage distribution of top 100 players Wage_distribution = train.sort_values("Wage (M)", ascending = False).reset_index()[:101][['Name', 'Wage (M)']] plt.figure(figsize=(16,8)) plt.title('Top 100 Players Wage Distribution', fontsize = 20, fontweight = 'bold') plt.xlabel('Player Wage [M€]', fontsize=15) sns.set_style('whitegrid') plt.plot(Wage_distribution['Wage (M)']) # Comparision graph of Overall vs values(M) overall = train.sort_values('Overall')['Overall'].unique() overall_value = train.groupby(['Overall'])['Value (M)'].mean() plt.figure() plt.figure(figsize=(16,8)) plt.title('Overall vs Value', fontsize=20, fontweight='bold') plt.xlabel('Overall', fontsize=15) plt.ylabel('Value', fontsize=15) sns.set_style("whitegrid") plt.plot(overall, overall_value, label="Values in [M€]") plt.legend(loc=4, prop={'size': 15}, frameon=True,shadow=True, facecolor="white", edgecolor="black") plt.show() # Code ends here ###Output _____no_output_____ ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here #Split into feature and target X = train.drop(['Value (M)'], 1) y = train[['Value (M)']] #Independent variables X = X[['Overall', 'Potential', 'Wage (M)']] #Separate train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.2) print(X_train.head(2)) print(y_train.head(2)) # Instantiate linear regression model = LinearRegression() # fit the model on training data model.fit(X_train, y_train) # make prediction y_pred = model.predict(X_test) # calculate the mean_absolute_error mae = mean_absolute_error(y_test, y_pred) print(mae) # calculate the r2 score r2 = r2_score(y_test, y_pred) print(r2) # Code ends here # Instantiate third degree polynomial features poly = PolynomialFeatures(degree=2) # fit and transform polynomial features on X_train X_train_2 = poly.fit_transform(X_train) # instantiate Linear regression model model = LinearRegression() # fit the model model.fit(X_train_2, y_train) # transform on x_test X_test_2 = poly.transform(X_test) # predict the model performance y_pred_2 = model.predict(X_test_2) # Calculate the mean absolute error mae = mean_absolute_error(y_test, y_pred_2) print(mae) # calculate the r2 score r2 = r2_score(y_test, y_pred_2) print(r2) ###Output 0.7168874818344876 0.9285452751547129 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here # Prediction on test data # Read the test data test = pd.read_csv('test.csv') # Storing the id from the test file id_ = test['Id'] # Dropping the same columns from the test data test = test[['Overall','Potential','Wage (M)']] # Applying rfe on test data test_poly = poly.transform(test) # Predict on the test data y_pred_test = model.predict(test_poly) y_pred_test = y_pred_test.flatten() print(y_pred_test) # Create a sample submission file sample_submission = pd.DataFrame({'Id':id_,'Value (M)':y_pred_test}) # Convert the sample submission file into a csv file sample_submission.to_csv('sample_submission.csv',index=False) # Code ends here ###Output [16.20453142 19.70373631 1.36044225 ... 1.14279384 12.01775448 4.61622169] ###Markdown Load the dataset- Load the train data and using all your knowledge of pandas try to explore the different statistical properties of the dataset. ###Code # read the dataset and extract the features and target separately train = pd.read_csv('train.csv') train train.info() random_key = 6 X = train[['Age','Overall','Potential','Wage (M)']] y = train['Value (M)'] X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state=random_key) X_train ###Output _____no_output_____ ###Markdown Visualize the data- Check for the categorical & continuous features. - Check out the best plots for plotting between categorical target and continuous features and try making some inferences from these plots.- Check for the correlation between the features ###Code # Code Starts here def show_boxplot(col_data, x_label, y_label, title, fig_size=(7, 7), show_outliers=True): """ Shows boxplot with means Params: ------- col_data: list or numpy array x_label: str y_label: str title: str fig_size: tupe of (int, int) show_outliers: bool """ fig = plt.figure(figsize=fig_size) plt.boxplot(col_data, showmeans=True, showfliers=show_outliers) plt.title(title, fontsize=21, color='navy') plt.xlabel(x_label) plt.ylabel(y_label) plt.show() for col in X_train.select_dtypes(include=np.number).columns: x_label = col y_label = 'Distribution' data = X_train[col] title = f'Distribution for {col}' show_boxplot(col_data=data, x_label=x_label, y_label=y_label, title=title) # Code ends here sns.heatmap(X_train.corr()) upper_threshold = 0.5 lower_threshold = -0.5 # List the correlation pairs correlation = train.corr().unstack().sort_values(kind='quicksort') # Select the highest correlation pairs having correlation greater than upper threshold and lower than lower threshold corr_var_list = correlation[((correlation>upper_threshold) | (correlation<lower_threshold)) & (correlation!=1)] print(corr_var_list) ###Output Id Overall -0.975595 Overall Id -0.975595 Id Potential -0.653503 Potential Id -0.653503 Id Value (M) -0.548213 Value (M) Id -0.548213 Id Wage (M) -0.519570 Wage (M) Id -0.519570 Potential Wage (M) 0.512910 Wage (M) Potential 0.512910 Overall Wage (M) 0.589736 Wage (M) Overall 0.589736 Potential Value (M) 0.595095 Value (M) Potential 0.595095 Overall Value (M) 0.635618 Value (M) Overall 0.635618 Overall Potential 0.678228 Potential Overall 0.678228 Wage (M) Value (M) 0.845124 Value (M) Wage (M) 0.845124 dtype: float64 ###Markdown Model building- Separate the features and target and then split the train data into train and validation set.- Now let's come to the actual task, using linear regression, predict the `Value (M)`. - Try improving upon the `r2_score` (R-Square) using different parameters that give the best score. You can use higher degree [Polynomial Features of sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) to improve the model prediction. ###Code # Code Starts here linreg = LinearRegression() logreg = LogisticRegression() #y = np.log(y_train) linreg.fit(X_train,y_train) y_pred = linreg.predict(X_test) # display predictions print('Mean Absolute Error :',(mean_absolute_error(y_test,y_pred))) print('R-Square :',r2_score(y_test,y_pred)) # Code ends here print('-'*20) #Polynomial Feature from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(4) X_train_2 = poly.fit_transform(X_train) X_test_2 = poly.transform(X_test) model = LinearRegression() model.fit(X_train_2, y_train) y_pred_2 = model.predict(X_test_2) r2 = r2_score(y_test,y_pred_2) print("R-Square :", r2) mae = mean_absolute_error(y_test, y_pred_2) print('Mean Absolute Error :', mae) ###Output Mean Absolute Error : 1.36113034368551 R-Square : 0.7728182411379437 -------------------- R-Square : 0.9748469694258696 Mean Absolute Error : 0.3528900386871176 ###Markdown Prediction on the test data and creating the sample submission file.- Load the test data and store the `Id` column in a separate variable.- Perform the same operations on the test data that you have performed on the train data.- Create the submission file as a `csv` file consisting of the `Id` column from the test data and your prediction as the second column. ###Code # Code Starts here test = pd.read_csv('test.csv') Id = test['Id'] test = test.drop(["Name","Nationality","Club","Position",'Id'],axis=1) test_poly = poly.transform(test) y_pred_1 = model.predict(test_poly) y_pred_1 = y_pred_1.flatten() id_1=pd.DataFrame({'Id':id,'Value (M)':y_pred_1}) id_1.to_csv("submission.csv", encoding='utf-8', index=False) # Code ends here ###Output _____no_output_____
docs/source/notebooks/Maze.ipynb
###Markdown ACS2 in MazeThis notebook presents how to integrate ACS2 algorithm with maze environment (using OpenAI Gym interface).Begin with attaching required dependencies. Because most of the work is by now done locally no PIP modules are used (just pure OS paths) ###Code # General from __future__ import unicode_literals %matplotlib inline import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt # To avoid Type3 fonts in generated pdf file matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 # Logger import logging logging.basicConfig(level=logging.WARN) # ALCS + Custom environments import sys, os sys.path.append(os.path.abspath('../')) # Enable automatic module reload %load_ext autoreload %autoreload 2 # Load PyALCS module from lcs.agents.acs2 import ACS2, Configuration, ClassifiersList # Load environments import gym import gym_maze ###Output _____no_output_____ ###Markdown Environment - MazeWe are going to look at provided mazes. Their names starts with "_Maze..._" or "_Woods..._" so see what is possible to load: ###Code # Custom function for obtaining available environments filter_envs = lambda env: env.id.startswith("Maze") or env.id.startswith("Woods") all_envs = [env for env in gym.envs.registry.all()] maze_envs = [env for env in all_envs if filter_envs(env)] for env in maze_envs: print("Maze ID: [{}], non-deterministic: [{}], trials: [{}]".format( env.id, env.nondeterministic, env.trials)) ###Output Maze ID: [MazeF1-v0], non-deterministic: [False], trials: [100] Maze ID: [MazeF2-v0], non-deterministic: [False], trials: [100] Maze ID: [MazeF3-v0], non-deterministic: [False], trials: [100] Maze ID: [MazeF4-v0], non-deterministic: [True], trials: [100] Maze ID: [Maze4-v0], non-deterministic: [False], trials: [100] Maze ID: [Maze5-v0], non-deterministic: [False], trials: [100] Maze ID: [Maze6-v0], non-deterministic: [True], trials: [100] Maze ID: [Woods1-v0], non-deterministic: [False], trials: [100] Maze ID: [Woods14-v0], non-deterministic: [False], trials: [100] ###Markdown Let's see how it looks in action. First we are going to initialize new environment using `gym.make()` instruction from OpenAI Gym. ###Code #MAZE = "Woods14-v0" MAZE = "Maze5-v0" # Initialize environment maze = gym.make(MAZE) # Reset it, by putting an agent into random position situation = maze.reset() # Render the state in ASCII maze.render() ###Output ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ □ □ □ □ □ $ ■ ■ □ □ ■ □ ■ ■ □ ■ ■ □ ■ □ □ □ □ □ ■ ■ □ □ □ ■ ■ □ □ ■ ■ □ ■ □ ■ □ □ ■ ■ ■ □ ■ □ □ ■ □ □ ■ ■ □ A □ □ □ ■ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ###Markdown The `reset()` function puts an agent into random position (on path inside maze) returning current perception.> The perception consists of 8 values representing N, NE, E, SE, S, SW, W, NW directions. It outputs 0 for the path, 1 for the wall and 9 for the reward. ###Code # Show current agents perception situation ###Output _____no_output_____ ###Markdown We can interact with the environment by performing actions.> Agent can perform 8 actions - moving into different directions.To do so use `step(action)` function. It will return couple interesting information:- new state perception,- reward for executing move (ie. finding the reward)- is the trial finish,- debug data ###Code ACTION = 0 # Move N # Execute action state, reward, done, _ = maze.step(ACTION) # Show new state print(f"New state: {state}, reward: {reward}, is done: {done}") # Render the env one more time after executing step maze.render() ###Output New state: ('1', '0', '0', '1', '1', '1', '0', '0'), reward: 0, is done: False ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ □ □ □ □ □ $ ■ ■ □ □ ■ □ ■ ■ □ ■ ■ □ ■ □ □ □ □ □ ■ ■ □ □ □ ■ ■ □ □ ■ ■ □ ■ □ ■ □ □ ■ ■ ■ □ ■ □ □ ■ □ □ ■ ■ □ A □ □ □ ■ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ###Markdown Agent - ACS2First provide a helper method for calculating obtained knowledge ###Code def _maze_knowledge(population, environment) -> float: transitions = environment.env.get_all_possible_transitions() # Take into consideration only reliable classifiers reliable_classifiers = [c for c in population if c.is_reliable()] # Count how many transitions are anticipated correctly nr_correct = 0 # For all possible destinations from each path cell for start, action, end in transitions: p0 = environment.env.maze.perception(*start) p1 = environment.env.maze.perception(*end) if any([True for cl in reliable_classifiers if cl.predicts_successfully(p0, action, p1)]): nr_correct += 1 return nr_correct / len(transitions) * 100.0 from lcs.metrics import population_metrics def _maze_metrics(pop, env): metrics = { 'knowledge': _maze_knowledge(pop, env) } # Add basic population metrics metrics.update(population_metrics(pop, env)) return metrics ###Output _____no_output_____ ###Markdown Exploration phase ###Code CLASSIFIER_LENGTH=8 NUMBER_OF_POSSIBLE_ACTIONS=8 # Define agent's default configuration cfg = Configuration( classifier_length=CLASSIFIER_LENGTH, number_of_possible_actions=NUMBER_OF_POSSIBLE_ACTIONS, metrics_trial_frequency=1, user_metrics_collector_fcn=_maze_metrics) # Define agent agent = ACS2(cfg) %%time population, metrics = agent.explore(maze, 100) ###Output CPU times: user 5.19 s, sys: 11.7 ms, total: 5.2 s Wall time: 5.22 s ###Markdown We can take a sneak peek into a created list of classifiers. Let's have a look at top 10: ###Code population.sort(key=lambda cl: -cl.fitness) for cl in population[:10]: print("{!r} \tq: {:.2f} \tr: {:.2f} \tir: {:.2f}".format(cl, cl.q, cl.r, cl.ir)) ###Output 9####010 0 1####101 (empty) q: 0.963 r: 884.0 ir: 884.0 f: 851.7 exp: 41 tga: 645 talp: 2817 tav: 46.2 num: 1 q: 0.96 r: 884.02 ir: 884.02 9#1##010 0 1####101 (empty) q: 0.921 r: 809.5 ir: 806.3 f: 745.3 exp: 31 tga: 1682 talp: 2817 tav: 35.7 num: 1 q: 0.92 r: 809.54 ir: 806.29 ##901### 2 ##110### (empty) q: 0.875 r: 762.2 ir: 762.2 f: 666.8 exp: 27 tga: 590 talp: 2875 tav: 79.1 num: 1 q: 0.87 r: 762.17 ir: 762.17 011###01 0 9#####10 (empty) q: 0.989 r: 563.2 ir: 0.0 f: 557.2 exp: 40 tga: 951 talp: 2817 tav: 43.4 num: 1 q: 0.99 r: 563.17 ir: 0.00 01##0#01 0 9#####10 (empty) q: 0.976 r: 563.2 ir: 0.0 f: 549.5 exp: 41 tga: 949 talp: 2817 tav: 42.7 num: 1 q: 0.98 r: 563.17 ir: 0.00 01110001 0 9#####10 (empty) q: 0.972 r: 563.0 ir: 0.0 f: 547.1 exp: 41 tga: 949 talp: 2817 tav: 41.3 num: 1 q: 0.97 r: 563.01 ir: 0.00 0#1##001 0 9#####10 (empty) q: 0.953 r: 553.8 ir: 0.0 f: 527.6 exp: 32 tga: 1769 talp: 2817 tav: 32.5 num: 1 q: 0.95 r: 553.76 ir: 0.00 1000#101 1 9111#010 (empty) q: 0.942 r: 347.8 ir: 0.0 f: 327.6 exp: 14 tga: 644 talp: 2795 tav: 1.46e+02 num: 1 q: 0.94 r: 347.78 ir: 0.00 1#0110## 2 ##90#1## (empty) q: 0.958 r: 290.4 ir: 0.0 f: 278.1 exp: 22 tga: 1168 talp: 2874 tav: 76.9 num: 1 q: 0.96 r: 290.39 ir: 0.00 11011001 2 ##90#1## (empty) q: 0.846 r: 290.3 ir: 0.0 f: 245.7 exp: 22 tga: 1168 talp: 2874 tav: 77.0 num: 1 q: 0.85 r: 290.33 ir: 0.00 ###Markdown Exploitation Now we can either reuse our previous agent or initialize it one more time passing the initial population of classifiers as *apriori* knowledge. ###Code # Reinitialize agent using defined configuration and population agent = ACS2(cfg, population) %%time population, metrics = agent.exploit(maze, 1) metrics[-1] ###Output _____no_output_____ ###Markdown Experiments ###Code def parse_metrics_to_df(explore_metrics, exploit_metrics): def extract_details(row): row['trial'] = row['trial'] row['steps'] = row['steps_in_trial'] row['numerosity'] = row['numerosity'] row['reliable'] = row['reliable'] row['knowledge'] = row['knowledge'] return row # Load both metrics into data frame explore_df = pd.DataFrame(explore_metrics) exploit_df = pd.DataFrame(exploit_metrics) # Mark them with specific phase explore_df['phase'] = 'explore' exploit_df['phase'] = 'exploit' # Extract details explore_df = explore_df.apply(extract_details, axis=1) exploit_df = exploit_df.apply(extract_details, axis=1) # Adjuts exploit trial counter exploit_df['trial'] = exploit_df.apply(lambda r: r['trial']+len(explore_df), axis=1) # Concatenate both dataframes df = pd.concat([explore_df, exploit_df]) df.set_index('trial', inplace=True) return df ###Output _____no_output_____ ###Markdown For various mazes visualize- classifiers / reliable classifiers for steps- optimal policy- steps (exploration | exploitation)- knowledge- parameters setting ###Code def find_best_classifier(population, situation, cfg): match_set = population.form_match_set(situation) anticipated_change_cls = [cl for cl in match_set if cl.does_anticipate_change()] if (len(anticipated_change_cls) > 0): return max(anticipated_change_cls, key=lambda cl: cl.fitness) return None def build_fitness_matrix(env, population, cfg): original = env.env.maze.matrix fitness = original.copy() # Think about more 'functional' way of doing this for index, x in np.ndenumerate(original): # Path - best classfier fitness if x == 0: perception = env.env.maze.perception(index[1], index[0]) best_cl = find_best_classifier(population, perception, cfg) if best_cl: fitness[index] = best_cl.fitness else: fitness[index] = -1 # Wall - fitness = 0 if x == 1: fitness[index] = 0 # Reward - inf fitness if x == 9: fitness[index] = fitness.max () + 500 return fitness def build_action_matrix(env, population, cfg): ACTION_LOOKUP = { 0: u'↑', 1: u'↗', 2: u'→', 3: u'↘', 4: u'↓', 5: u'↙', 6: u'←', 7: u'↖' } original = env.env.maze.matrix action = original.copy().astype(str) # Think about more 'functional' way of doing this for index, x in np.ndenumerate(original): # Path - best classfier fitness if x == 0: perception = env.env.maze.perception(index[1], index[0]) best_cl = find_best_classifier(population, perception, cfg) if best_cl: action[index] = ACTION_LOOKUP[best_cl.action] else: action[index] = '?' # Wall - fitness = 0 if x == 1: action[index] = '\#' # Reward - inf fitness if x == 9: action[index] = 'R' return action ###Output _____no_output_____ ###Markdown Plotting functions and settings ###Code # Plot constants TITLE_TEXT_SIZE=24 AXIS_TEXT_SIZE=18 LEGEND_TEXT_SIZE=16 def plot_policy(env, agent, cfg, ax=None): if ax is None: ax = plt.gca() ax.set_aspect("equal") # Handy variables maze_countours = maze.env.maze.matrix max_x = env.env.maze.max_x max_y = env.env.maze.max_y fitness_matrix = build_fitness_matrix(env, agent.population, cfg) action_matrix = build_action_matrix(env, agent.population, cfg) # Render maze as image plt.imshow(fitness_matrix, interpolation='nearest', cmap='Reds', aspect='auto', extent=[0, max_x, max_y, 0]) # Add labels to each cell for (y,x), val in np.ndenumerate(action_matrix): plt.text(x+0.4, y+0.5, "${}$".format(val)) ax.set_title("Policy", fontsize=TITLE_TEXT_SIZE) ax.set_xlabel('x', fontsize=AXIS_TEXT_SIZE) ax.set_ylabel('y', fontsize=AXIS_TEXT_SIZE) ax.set_xlim(0, max_x) ax.set_ylim(max_y, 0) ax.set_xticks(range(0, max_x)) ax.set_yticks(range(0, max_y)) ax.grid(True) def plot_knowledge(df, ax=None): if ax is None: ax = plt.gca() explore_df = df.query("phase == 'explore'") exploit_df = df.query("phase == 'exploit'") explore_df['knowledge'].plot(ax=ax, c='blue') exploit_df['knowledge'].plot(ax=ax, c='red') ax.axvline(x=len(explore_df), c='black', linestyle='dashed') ax.set_title("Achieved knowledge", fontsize=TITLE_TEXT_SIZE) ax.set_xlabel("Trial", fontsize=AXIS_TEXT_SIZE) ax.set_ylabel("Knowledge [%]", fontsize=AXIS_TEXT_SIZE) ax.set_ylim([0, 105]) def plot_steps(df, ax=None): if ax is None: ax = plt.gca() explore_df = df.query("phase == 'explore'") exploit_df = df.query("phase == 'exploit'") explore_df['steps'].plot(ax=ax, c='blue', linewidth=.5) exploit_df['steps'].plot(ax=ax, c='red', linewidth=0.5) ax.axvline(x=len(explore_df), c='black', linestyle='dashed') ax.set_title("Steps", fontsize=TITLE_TEXT_SIZE) ax.set_xlabel("Trial", fontsize=AXIS_TEXT_SIZE) ax.set_ylabel("Steps", fontsize=AXIS_TEXT_SIZE) def plot_classifiers(df, ax=None): if ax is None: ax = plt.gca() explore_df = df.query("phase == 'explore'") exploit_df = df.query("phase == 'exploit'") df['numerosity'].plot(ax=ax, c='blue') df['reliable'].plot(ax=ax, c='red') ax.axvline(x=len(explore_df), c='black', linestyle='dashed') ax.set_title("Classifiers", fontsize=TITLE_TEXT_SIZE) ax.set_xlabel("Trial", fontsize=AXIS_TEXT_SIZE) ax.set_ylabel("Classifiers", fontsize=AXIS_TEXT_SIZE) ax.legend(fontsize=LEGEND_TEXT_SIZE) def plot_performance(agent, maze, metrics_df, cfg, env_name): plt.figure(figsize=(13, 10), dpi=100) plt.suptitle(f'ACS2 Performance in {env_name} environment', fontsize=32) ax1 = plt.subplot(221) plot_policy(maze, agent, cfg, ax1) ax2 = plt.subplot(222) plot_knowledge(metrics_df, ax2) ax3 = plt.subplot(223) plot_classifiers(metrics_df, ax3) ax4 = plt.subplot(224) plot_steps(metrics_df, ax4) plt.subplots_adjust(top=0.86, wspace=0.3, hspace=0.3) ###Output _____no_output_____ ###Markdown Maze5 ###Code %%time # define environment maze5 = gym.make('Maze5-v0') # explore agent_maze5 = ACS2(cfg) population_maze5_explore, metrics_maze5_explore = agent_maze5.explore(maze5, 3000) # exploit agent_maze5 = ACS2(cfg, population_maze5_explore) _, metrics_maze5_exploit = agent_maze5.exploit(maze5, 400) maze5_metrics_df = parse_metrics_to_df(metrics_maze5_explore, metrics_maze5_exploit) plot_performance(agent_maze5, maze5, maze5_metrics_df, cfg, 'Maze5') ###Output _____no_output_____ ###Markdown Woods14 ###Code %%time # define environment woods14 = gym.make('Woods14-v0') # explore agent_woods14 = ACS2(cfg) population_woods14_explore, metrics_woods14_explore = agent_woods14.explore(woods14, 1000) # exploit agent_woods14 = ACS2(cfg, population_woods14_explore) _, metrics_woods14_exploit = agent_woods14.exploit(woods14, 200) woods14_metrics_df = parse_metrics_to_df(metrics_woods14_explore, metrics_woods14_exploit) plot_performance(agent_woods14, woods14, woods14_metrics_df, cfg, 'Woods14') ###Output _____no_output_____
siamese/sentence_bert_softmax.ipynb
###Markdown Siamese Network with BERT Pooling: Softmax Loss Function- We train our siamese network with the training data from SemEval 2014.- We use the **softmax loss function**.- We then run k-NN search with test queries (previously generated for BM25) to produce test query results. Google Colab setupsThis part only gets executed if this notebook is being run under Google Colab. **Please change the working path directory below in advance!** ###Code # Use Google Colab use_colab = True # Is this notebook running on Colab? # If so, then google.colab package (github.com/googlecolab/colabtools) # should be available in this environment # Previous version used importlib, but we could do the same thing with # just attempting to import google.colab try: from google.colab import drive colab_available = True except: colab_available = False if use_colab and colab_available: drive.mount('/content/drive') # If there's a package I need to install separately, do it here !pip install sentence-transformers==0.3.9 transformers==3.4.0 jsonlines==1.2.0 # cd to the appropriate working directory under my Google Drive %cd '/content/drive/My Drive/CS646_Final_Project/siamese' # List the directory contents !ls ###Output _____no_output_____ ###Markdown PyTorch GPU setup ###Code # torch.device / CUDA Setup import torch use_cuda = True use_colab_tpu = False colab_tpu_available = False if use_colab_tpu: try: assert os.environ['COLAB_TPU_ADDR'] colab_tpu_available = True except: colab_tpu_available = True if use_cuda and torch.cuda.is_available(): torch_device = torch.device('cuda:0') # Set this to True to make your output immediately reproducible # Note: https://pytorch.org/docs/stable/notes/randomness.html torch.backends.cudnn.deterministic = False # Disable 'benchmark' mode: Set this False if you want to measure running times more fairly # Note: https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936 torch.backends.cudnn.benchmark = True # Faster Host to GPU copies with page-locked memory use_pin_memory = True # CUDA libraries version information print("CUDA Version: " + str(torch.version.cuda)) print("cuDNN Version: " + str(torch.backends.cudnn.version())) print("CUDA Device Name: " + str(torch.cuda.get_device_name())) print("CUDA Capabilities: "+ str(torch.cuda.get_device_capability())) elif use_colab_tpu and colab_tpu_available: # This needs to be installed separately # https://github.com/pytorch/xla/blob/master/contrib/colab/getting-started.ipynb import torch_xla import torch_xla.core.xla_model as xm torch_device = xm.xla_device() else: torch_device = torch.device('cpu') use_pin_memory = False ###Output CUDA Version: 11.0 cuDNN Version: 8004 CUDA Device Name: GeForce RTX 2080 Ti CUDA Capabilities: (7, 5) ###Markdown Import packages ###Code import os import random import json import pathlib import sentence_transformers from sentence_transformers import losses import numpy as np import jsonlines # Random seed settings random_seed = 646 random.seed(random_seed) # Python np.random.seed(random_seed) # NumPy torch.manual_seed(random_seed) # PyTorch ###Output _____no_output_____ ###Markdown Load the dataset ###Code # 4 labels (1: Relevant, 2: Aspect only, 3: Sentiment only, 4: Not Relevant): Softmax Loss with open(os.path.join('..', 'data', 'our_datasets_partially_correct_labels', 'laptop_train.json')) as laptop_train_file: laptop_train = json.load(laptop_train_file) with open(os.path.join('..', 'data', 'our_datasets_partially_correct_labels', 'restaurant_train.json')) as restaurants_train_file: restaurants_train = json.load(restaurants_train_file) ###Output _____no_output_____ ###Markdown Training set: Joint = Laptop + Restaurants ###Code train_combined_examples = [] for row in laptop_train: example = sentence_transformers.InputExample( texts=[row['query'][0] + ', ' + row['query'][1], row['doc']], label=row['label']) train_combined_examples.append(example) for row in restaurants_train: example = sentence_transformers.InputExample( texts=[row['query'][0] + ', ' + row['query'][1], row['doc']], label=row['label']) train_combined_examples.append(example) print(train_combined_examples[0]) ###Output <InputExample> label: 1, texts: charges, positive; It fires up in the morning in less than 30 seconds and I have never had any issues with it freezing. ###Markdown Siamese Network with BERT Pooling (SBERT) Model- We use the pretrained weights released by the BERT-ADA authors.- Please download and extract them to the same directory as this notebook: https://github.com/deepopinion/domain-adapted-atscrelease-of-bert-language-models-finetuned-on-a-specific-domain - **NOTE**: Because BERT-ADA was trained with an older version of `transformers`, you need to add `"model_type": "bert"` to `config.json`. ###Code # Load the pretrained BERT-ADA model # Extract the tar.xz file #!tar -xf laptops_and_restaurants_2mio_ep15.tar.xz pretrained_model_name = 'laptops_and_restaurants_2mio_ep15' sbert_new_model_name = 'sbert_bert_ada_joint_partially_correct_softmax' word_embedding_model = sentence_transformers.models.Transformer( pretrained_model_name, max_seq_length=256) pooling_model = sentence_transformers.models.Pooling( word_embedding_model.get_word_embedding_dimension()) model = sentence_transformers.SentenceTransformer( modules=[word_embedding_model, pooling_model]) ###Output _____no_output_____ ###Markdown Training ###Code # PyTorch DataLoader train_dataset = sentence_transformers.SentencesDataset(train_combined_examples, model) train_dataloader = torch.utils.data.DataLoader(train_dataset, shuffle=True, batch_size=16) # Loss function # Tuples of (DataLoader, LossFunction) train_softmax_loss = (train_dataloader, losses.SoftmaxLoss(model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=4)) # Tune the model model.fit( train_objectives=[train_softmax_loss], epochs=20, warmup_steps=1200, weight_decay=0.01, use_amp=True) model.save(sbert_new_model_name) ###Output _____no_output_____ ###Markdown Play with my own sentences ###Code # Uncomment the following line to load the existing trained model. # model = sentence_transformers.SentenceTransformer(sbert_new_model_name) query_embedding = model.encode('Windows 8, Positive') passage_embedding = model.encode("This laptop's design is amazing") print("Similarity:", sentence_transformers.util.pytorch_cos_sim(query_embedding, passage_embedding)) ###Output _____no_output_____ ###Markdown k-NN Search ###Code # Get the top k matches top_k = 800 ###Output _____no_output_____ ###Markdown Generate query results file for `trec_eval` evaluation: Laptop ###Code test_laptop_documents_path = os.path.join('..', 'bm25', 'collection', 'laptop_test', 'laptop_test.jsonl') test_laptop_documents_file = jsonlines.open(test_laptop_documents_path) test_laptop_documents_id = [] test_laptop_documents = [] for d in test_laptop_documents_file: test_laptop_documents_id.append(d['id']) test_laptop_documents.append(d['contents']) # Obtain embedding vector of test documents test_laptop_embeddings = model.encode(test_laptop_documents, convert_to_tensor=True) test_laptop_queries_path = os.path.join('..', 'bm25', 'test_queries_laptop.txt') test_laptop_queries = open(test_laptop_queries_path, 'r').readlines() test_laptop_result_path = os.path.join('.', 'query_results', sbert_new_model_name, 'top_' + str(top_k)) pathlib.Path(test_laptop_result_path).mkdir(parents=True, exist_ok=True) test_laptop_result_file = 'test_results_laptop_' + sbert_new_model_name + '.txt' !rm {os.path.join(test_laptop_result_path, test_laptop_result_file)} for q_num, q in enumerate(test_laptop_queries): print("Processing query", q_num, ":", q) query_embedding = model.encode(q, convert_to_tensor=True) cos_scores = sentence_transformers.util.pytorch_cos_sim(query_embedding, test_laptop_embeddings)[0] if len(cos_scores) < top_k: top_k_retrieved = len(cos_scores) else: top_k_retrieved = top_k # We use torch.topk to find the highest 5 scores top_results = torch.topk(cos_scores, k=top_k_retrieved) # print("\n\n======================\n\n") # print("Query:", q) # print("\nTop 5 most similar sentences in corpus:") # for score, idx in zip(top_results[0], top_results[1]): # print(test_laptop_documents[idx], "(Score: %.4f)" % (score)) # trec_eval query results file i = 0 for score, idx in zip(top_results[0], top_results[1]): line = str(q_num+1) + ' Q0 ' + test_laptop_documents_id[idx] + ' ' + str(i+1) + ' ' + '%.8f' % score + ' ' + sbert_new_model_name i = i + 1 with open(os.path.join(test_laptop_result_path, test_laptop_result_file), 'a') as f: f.write("%s\n" % line) ###Output _____no_output_____ ###Markdown Generate query results file for `trec_eval` evaluation: Restaurant ###Code test_restaurants_documents_path = os.path.join('..', 'bm25', 'collection', 'restaurant_test', 'restaurant_test.jsonl') test_restaurants_documents_file = jsonlines.open(test_restaurants_documents_path) test_restaurants_documents_id = [] test_restaurants_documents = [] for d in test_restaurants_documents_file: test_restaurants_documents_id.append(d['id']) test_restaurants_documents.append(d['contents']) test_restaurants_embeddings = model.encode(test_restaurants_documents, convert_to_tensor=True) test_restaurants_queries_path = os.path.join('..', 'bm25', 'test_queries_restaurant.txt') test_restaurants_queries = open(test_restaurants_queries_path, 'r').readlines() test_restaurants_result_path = os.path.join('.', 'query_results', sbert_new_model_name, 'top_' + str(top_k)) pathlib.Path(test_restaurants_result_path).mkdir(parents=True, exist_ok=True) test_restaurants_result_file = 'test_results_restaurant_' + sbert_new_model_name + '.txt' !rm {os.path.join(test_restaurants_result_path, test_restaurants_result_file)} for q_num, q in enumerate(test_restaurants_queries): print("Processing query", q_num, ":", q) query_embedding = model.encode(q, convert_to_tensor=True) cos_scores = sentence_transformers.util.pytorch_cos_sim(query_embedding, test_restaurants_embeddings)[0] if len(cos_scores) < top_k: top_k_retrieved = len(cos_scores) else: top_k_retrieved = top_k # We use torch.topk to find the highest 5 scores top_results = torch.topk(cos_scores, k=top_k_retrieved) # print("\n\n======================\n\n") # print("Query:", q) # print("\nTop 5 most similar sentences in corpus:") # for score, idx in zip(top_results[0], top_results[1]): # print(test_laptop_documents[idx], "(Score: %.4f)" % (score)) # trec_eval query results file i = 0 for score, idx in zip(top_results[0], top_results[1]): line = str(q_num+1) + ' Q0 ' + test_restaurants_documents_id[idx] + ' ' + str(i+1) + ' ' + '%.8f' % score + ' ' + sbert_new_model_name i = i + 1 with open(os.path.join(test_restaurants_result_path, test_restaurants_result_file), 'a') as f: f.write("%s\n" % line) ###Output _____no_output_____
Covid_US_region_analysis.ipynb
###Markdown COVID Data Visualization for 5 regions ###Code import os import datetime import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from custuntions import phase_mask, line_plot, scatter_plot # Use white grid plot background from seaborn sns.set(font_scale=1.5, style="whitegrid") dfs = {} for file in os.listdir("./DATA"): filename = file.split(".") dfs[f"{filename[0]}"] = pd.read_csv(f"./DATA/{file}") for city in dfs: dfs[city]["Date"] = pd.to_datetime(dfs[city]["YEAR"].astype(str) + "/" + dfs[city]["MO"].astype(str) + "/" + dfs[city]["DY"].astype(str)) dfs[city].set_index('Date', inplace=True) dfs[city].drop(["LAT", "LON", "YEAR", "MO", "DY"], axis=1, inplace=True) df_cases = pd.read_csv("US_state_cases.csv") df_cases df_cases['date'] = pd.to_datetime(df_cases['date']) df_cases.rename(columns={'date':'Date'}, inplace=True) df_cases.set_index('Date', inplace= True) df_cases.drop(['fips'], axis=1, inplace=True) df_cases = df_cases.loc["2020-03-01":"2021-03-16"] for city in dfs: dfs[city] = pd.merge(left=dfs[city], left_index=True, right=df_cases.loc[(df_cases['state'] == city), ['cases', 'deaths']], right_index=True, how='inner') dfs_southern = [dfs['Arizona'], dfs['Louisiana'], dfs['Texas'], dfs['Florida']] dfs_northern = [dfs['Minnesota'], dfs['Massachusetts']] dfs_western = [dfs['Nevada'], dfs['California'], dfs['Oregon']] dfs_eastern = [dfs['New York'], dfs['New Jersey']] dfs_central = [dfs['Colorado']] dfs['Nevada'] df_southern_mean = pd.concat(dfs_southern).groupby("Date").mean() df_northern_mean = pd.concat(dfs_northern).groupby("Date").mean() df_eastern_mean = pd.concat(dfs_eastern).groupby("Date").mean() df_western_mean = pd.concat(dfs_western).groupby("Date").mean() df_central_mean = pd.concat(dfs_central).groupby("Date").mean() columns = {'RH2M':'Relative Humidity at 2 Meters (%)', 'T2MDEW': 'Dew/Frost Point at 2 Meters (C)', 'T2M_MAX': 'Maximum Temperature at 2 Meters (C)', 'T2M_MIN' :'Minimum Temperature at 2 Meters (C)', 'T2M_RANGE': 'Temperature Range at 2 Meters (C)', 'WS50M_RANGE': 'Wind Speed Range at 50 Meters (m/s)', 'WS10M_RANGE': 'Wind Speed Range at 10 Meters (m/s)' } ###Output _____no_output_____ ###Markdown Southern Region ###Code df_southern_mean.rename(columns=columns, inplace=True) df_southern_mean # phase one and phase 2 seperation here phase1_southern_mean, phase2_southern_mean = phase_mask(df_southern_mean, "2020-03-01", "2020-10-01", "2020-10-01", "2021-03-16") # dropping columns here (Drop cases and deaths to better visualize the atmospheric data) # phase1_southern_mean = phase1_southern_mean.drop(["cases", "deaths"], axis=1) # phase2_southern_mean = phase2_southern_mean.drop(["cases", "deaths"], axis=1) fig, ax = line_plot(phase1_southern_mean, "Southern region covid trend phase 1") fig, ax = line_plot(phase2_southern_mean, "Southern region covid trend phase 2") scatter_plot(df_southern_mean, "cases", columns["T2MDEW"]) scatter_plot(df_southern_mean, "cases", columns["T2M_MAX"]) scatter_plot(df_southern_mean, "cases", columns["T2M_MIN"]) scatter_plot(df_southern_mean, "cases", columns["WS50M_RANGE"]) scatter_plot(df_southern_mean, "cases", columns["WS10M_RANGE"]) ###Output _____no_output_____ ###Markdown Nothern Region ###Code df_northern_mean.rename(columns=columns, inplace=True) df_northern_mean # phase one and phase 2 seperation here phase1_northern_mean, phase2_northern_mean = phase_mask(df_northern_mean, "2020-03-01", "2020-10-01", "2020-10-01", "2021-03-16") # dropping columns here # phase1_northern_mean = phase1_northern_mean.drop(["cases", "deaths"], axis=1) # phase2_northern_mean = phase2_northern_mean.drop(["cases", "deaths"], axis=1) fig, ax = line_plot(phase1_northern_mean, "Nothern region covid trend phase 1") fig, ax = line_plot(phase2_northern_mean, "Nothern region covid trend phase 2") scatter_plot(df_northern_mean, "cases", columns["T2MDEW"]) scatter_plot(df_northern_mean, "cases", columns["T2M_MAX"]) scatter_plot(df_northern_mean, "cases", columns["T2M_MIN"]) scatter_plot(df_northern_mean, "cases", columns["WS50M_RANGE"]) scatter_plot(df_northern_mean, "cases", columns["WS10M_RANGE"]) ###Output _____no_output_____ ###Markdown Eastern Region ###Code df_eastern_mean.rename(columns=columns, inplace=True) df_eastern_mean # phase one and phase 2 seperation here phase1_eastern_mean, phase2_eastern_mean = phase_mask(df_eastern_mean, "2020-03-01", "2020-10-01", "2020-10-01", "2021-03-16") # dropping columns here (Drop cases and deaths to better visualize the atmospheric data) # phase1_eastern_mean = phase1_eastern_mean.drop(["cases", "deaths"], axis=1) # phase2_eastern_mean = phase2_eastern_mean.drop(["cases", "deaths"], axis=1) fig, ax = line_plot(phase1_eastern_mean, "Eastern region covid trend phase 1") fig, ax = line_plot(phase2_eastern_mean, "Eastern region covid trend phase 2") scatter_plot(df_eastern_mean, "cases", columns["T2MDEW"]) scatter_plot(df_eastern_mean, "cases", columns["T2M_MAX"]) scatter_plot(df_eastern_mean, "cases", columns["T2M_MIN"]) scatter_plot(df_eastern_mean, "cases", columns["WS50M_RANGE"]) scatter_plot(df_eastern_mean, "cases", columns["WS10M_RANGE"]) ###Output _____no_output_____ ###Markdown Western Region ###Code df_western_mean.rename(columns=columns, inplace=True) df_western_mean # phase one and phase 2 seperation here phase1_western_mean, phase2_western_mean = phase_mask(df_western_mean, "2020-03-01", "2020-10-01", "2020-10-01", "2021-03-16") # dropping columns here # phase1_western_mean = phase1_western_mean.drop(["cases", "deaths"], axis=1) # phase2_western_mean = phase2_western_mean.drop(["cases", "deaths"], axis=1) fig, ax = line_plot(phase1_western_mean, "Western region covid trend phase 1") fig, ax = line_plot(phase1_western_mean, "Western region covid trend phase 2") scatter_plot(df_western_mean, "cases", columns["RH2M"]) scatter_plot(df_western_mean, "cases", columns["T2MDEW"]) scatter_plot(df_western_mean, "cases", columns["T2M_MAX"]) scatter_plot(df_western_mean, "cases", columns["T2M_MIN"]) scatter_plot(df_western_mean, "cases", columns["WS50M_RANGE"]) scatter_plot(df_western_mean, "cases", columns["WS10M_RANGE"]) ###Output _____no_output_____ ###Markdown Central Region ###Code df_central_mean.rename(columns=columns, inplace=True) df_central_mean phase1_central_mean, phase2_central_mean = phase_mask(df_central_mean, "2020-03-01", "2020-10-01", "2020-10-01", "2021-03-16") fig, ax = line_plot(phase1_central_mean, "Western region covid trend phase 1") fig, ax = line_plot(phase2_central_mean, "Western region covid trend phase 1") scatter_plot(df_central_mean, "cases", columns["RH2M"]) scatter_plot(df_central_mean, "cases", columns["T2MDEW"]) scatter_plot(df_central_mean, "cases", columns["T2M_MAX"]) scatter_plot(df_central_mean, "cases", columns["T2M_MIN"]) scatter_plot(df_central_mean, "cases", columns["WS50M_RANGE"]) scatter_plot(df_central_mean, "cases", columns["WS10M_RANGE"]) ###Output _____no_output_____ ###Markdown Converting region dataframes into excel files ###Code df_southern_mean.to_excel("Southern_weather_cases.xlsx") df_northern_mean.to_excel("northern_weather_cases.xlsx") df_eastern_mean.to_excel("eastern_weather_cases.xlsx") df_western_mean.to_excel("western_weather_cases.xlsx") ###Output _____no_output_____
experiments/29_different_IC_and_models/Check_prediction.ipynb
###Markdown Data Paths ###Code P = '/local/meliao/projects/fourier_neural_operator/' DATA_DIR = os.path.join(P, 'data') MODEL_DIR = os.path.join(P, 'experiments/29_different_IC_and_models/models') PLOTS_DIR = os.path.join(P, 'experiments/29_different_IC_and_models/plots/') RESULTS_DIR = os.path.join(P, 'experiments/29_different_IC_and_models/results') if not os.path.isdir(PLOTS_DIR): os.mkdir(PLOTS_DIR) DSETS = ['00', '01', '02'] MODELS = ['FNO'] TIME_IDX = [1, 5, 10] model_lst = [] model_pattern = os.path.join(MODEL_DIR, 'dset_{}_model_{}_time_{}_ep_1000') for dset_k in DSETS: for time_idx in TIME_IDX: dd = {'dset': dset_k, 'time': time_idx} dd['model'] = torch.load(model_pattern.format(dset_k, 'FNO', time_idx), map_location='cpu') model_lst.append(dd) dset_fp_dd = {k: os.path.join(DATA_DIR, '2021-09-29_NLS_data_00_{}_test.mat'.format(k)) for k in DSETS} data_dd = {k: sio.loadmat(v) for k,v in dset_fp_dd.items()} dset_dd = {k: OneStepDataSetComplex(v['output'], v['t'], v['x']) for k,v in data_dd.items()} def prepare_input(X, x_grid=None): # X has shape (nbatch, 1, grid_size) s = X.shape[-1] n_batches = X.shape[0] # Convert to tensor X_input = torch.view_as_real(torch.tensor(X, dtype=torch.cfloat)) if x_grid is None: # FNO code appends the spatial grid to the input as below: x_grid = np.linspace(-np.pi, np.pi, s+1) x_grid = x_grid[:s] x_grid = torch.tensor(x_grid, dtype=torch.float).view(-1,1) # print(x_grid.shape) # print(X_input.shape) X_input = torch.cat((X_input, x_grid.repeat(n_batches, 1, 1)), axis=2) return X_input def l2_normalized_error(pred, actual): errors = pred - actual error_norms = torch.linalg.norm(torch.tensor(errors), dim=-1, ord=2) actual_norms = torch.linalg.norm(torch.tensor(actual), dim=-1, ord=2) normalized_errors = torch.divide(error_norms, actual_norms) return normalized_errors with torch.no_grad(): preds_dd = {} errors_dd = {} for model_dd in model_lst: model_k = model_dd['dset'] + '_' + str(model_dd['time']) dset = dset_dd[model_dd['dset']] model_input = prepare_input(dset.X[:, 0]) model_pred = model_dd['model'](model_input) target = dset.X[:, model_dd['time']] preds_dd[model_k] = model_pred errors_dd[model_k] = l2_normalized_error(model_pred, target) print("Finished with", model_k) def quick_boxplot(errors_dd, names_dd=None, xlab=None, ref_hline=None, fp=None, title=None): error_lst = [] key_lst = [] for k, errors in errors_dd.items(): error_lst.append(errors.numpy()) key_lst.append(k) if names_dd is not None: key_lst = [names_dd.get(k, k) for k in key_lst] fig, ax = plt.subplots() ax.set_yscale('log') ax.set_ylabel('L2 Normalized Error') ax.set_xlabel(xlab) ax.set_title(title) ax.set_xticklabels(labels=key_lst, rotation=45, ha='right') if ref_hline is not None: ax.hlines(ref_hline, xmin=0.5, xmax=len(key_lst)+ 0.5, linestyles='dashed') fig.patch.set_facecolor('white') ax.boxplot(error_lst) fig.tight_layout() if fp is not None: plt.savefig(fp) else: plt.show() plt.close(fig) dd_for_plt = {k: errors_dd[k] for k in ['00_1', '01_1', '02_1']} names_dd = {'00_1': 'Dataset 1', '01_1': 'Dataset 2', '02_1': 'Dataset 3'} fp = os.path.join(PLOTS_DIR, 'FNO_time_1_errors.png') quick_boxplot(dd_for_plt, names_dd=names_dd, title='FNO time-1 prediction performance on different datasets') #, fp=fp) ###Output /local/meliao/conda_envs/fourier_neural_operator/lib/python3.7/site-packages/ipykernel_launcher.py:18: UserWarning: FixedFormatter should only be used together with FixedLocator
02_deep_learning/intro-to-pytorch/.ipynb_checkpoints/Part 1 - Tensors in PyTorch (Exercises)-checkpoint.ipynb
###Markdown Introduction to Deep Learning with PyTorchIn this notebook, you'll get introduced to [PyTorch](http://pytorch.org/), a framework for building and training neural networks. PyTorch in a lot of ways behaves like the arrays you love from Numpy. These Numpy arrays, after all, are just tensors. PyTorch takes these tensors and makes it simple to move them to GPUs for the faster processing needed when training neural networks. It also provides a module that automatically calculates gradients (for backpropagation!) and another module specifically for building neural networks. All together, PyTorch ends up being more coherent with Python and the Numpy/Scipy stack compared to TensorFlow and other frameworks. Neural NetworksDeep Learning is based on artificial neural networks which have been around in some form since the late 1950s. The networks are built from individual parts approximating neurons, typically called units or simply "neurons." Each unit has some number of weighted inputs. These weighted inputs are summed together (a linear combination) then passed through an activation function to get the unit's output.Mathematically this looks like: $$\begin{align}y &= f(w_1 x_1 + w_2 x_2 + b) \\y &= f\left(\sum_i w_i x_i +b \right)\end{align}$$With vectors this is the dot/inner product of two vectors:$$h = \begin{bmatrix}x_1 \, x_2 \cdots x_n\end{bmatrix}\cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n\end{bmatrix}$$ TensorsIt turns out neural network computations are just a bunch of linear algebra operations on *tensors*, a generalization of matrices. A vector is a 1-dimensional tensor, a matrix is a 2-dimensional tensor, an array with three indices is a 3-dimensional tensor (RGB color images for example). The fundamental data structure for neural networks are tensors and PyTorch (as well as pretty much every other deep learning framework) is built around tensors.With the basics covered, it's time to explore how we can use PyTorch to build a simple neural network. ###Code # First, import PyTorch import torch def activation(x): """ Sigmoid activation function Arguments --------- x: torch.Tensor """ return 1/(1+torch.exp(-x)) ### Generate some data torch.manual_seed(7) # Set the random seed so things are predictable # Features are 5 random normal variables features = torch.randn((1, 5)) # True weights for our data, random normal variables again weights = torch.randn_like(features) # and a true bias term bias = torch.randn((1, 1)) ###Output _____no_output_____ ###Markdown Above I generated data we can use to get the output of our simple network. This is all just random for now, going forward we'll start using normal data. Going through each relevant line:`features = torch.randn((1, 5))` creates a tensor with shape `(1, 5)`, one row and five columns, that contains values randomly distributed according to the normal distribution with a mean of zero and standard deviation of one. `weights = torch.randn_like(features)` creates another tensor with the same shape as `features`, again containing values from a normal distribution.Finally, `bias = torch.randn((1, 1))` creates a single value from a normal distribution.PyTorch tensors can be added, multiplied, subtracted, etc, just like Numpy arrays. In general, you'll use PyTorch tensors pretty much the same way you'd use Numpy arrays. They come with some nice benefits though such as GPU acceleration which we'll get to later. For now, use the generated data to calculate the output of this simple single layer network. > **Exercise**: Calculate the output of the network with input features `features`, weights `weights`, and bias `bias`. Similar to Numpy, PyTorch has a [`torch.sum()`](https://pytorch.org/docs/stable/torch.htmltorch.sum) function, as well as a `.sum()` method on tensors, for taking sums. Use the function `activation` defined above as the activation function. ###Code ## Calculate the output of this network using the weights and bias tensors print(features) print(weights) print(bias) ###Output tensor([[-0.1468, 0.7861, 0.9468, -1.1143, 1.6908]]) tensor([[-0.8948, -0.3556, 1.2324, 0.1382, -1.6822]]) tensor([[0.3177]]) ###Markdown You can do the multiplication and sum in the same operation using a matrix multiplication. In general, you'll want to use matrix multiplications since they are more efficient and accelerated using modern libraries and high-performance computing on GPUs.Here, we want to do a matrix multiplication of the features and the weights. For this we can use [`torch.mm()`](https://pytorch.org/docs/stable/torch.htmltorch.mm) or [`torch.matmul()`](https://pytorch.org/docs/stable/torch.htmltorch.matmul) which is somewhat more complicated and supports broadcasting. If we try to do it with `features` and `weights` as they are, we'll get an error```python>> torch.mm(features, weights)---------------------------------------------------------------------------RuntimeError Traceback (most recent call last) in ()----> 1 torch.mm(features, weights)RuntimeError: size mismatch, m1: [1 x 5], m2: [1 x 5] at /Users/soumith/minicondabuild3/conda-bld/pytorch_1524590658547/work/aten/src/TH/generic/THTensorMath.c:2033```As you're building neural networks in any framework, you'll see this often. Really often. What's happening here is our tensors aren't the correct shapes to perform a matrix multiplication. Remember that for matrix multiplications, the number of columns in the first tensor must equal to the number of rows in the second column. Both `features` and `weights` have the same shape, `(1, 5)`. This means we need to change the shape of `weights` to get the matrix multiplication to work.**Note:** To see the shape of a tensor called `tensor`, use `tensor.shape`. If you're building neural networks, you'll be using this method often.There are a few options here: [`weights.reshape()`](https://pytorch.org/docs/stable/tensors.htmltorch.Tensor.reshape), [`weights.resize_()`](https://pytorch.org/docs/stable/tensors.htmltorch.Tensor.resize_), and [`weights.view()`](https://pytorch.org/docs/stable/tensors.htmltorch.Tensor.view).* `weights.reshape(a, b)` will return a new tensor with the same data as `weights` with size `(a, b)` sometimes, and sometimes a clone, as in it copies the data to another part of memory.* `weights.resize_(a, b)` returns the same tensor with a different shape. However, if the new shape results in fewer elements than the original tensor, some elements will be removed from the tensor (but not from memory). If the new shape results in more elements than the original tensor, new elements will be uninitialized in memory. Here I should note that the underscore at the end of the method denotes that this method is performed **in-place**. Here is a great forum thread to [read more about in-place operations](https://discuss.pytorch.org/t/what-is-in-place-operation/16244) in PyTorch.* `weights.view(a, b)` will return a new tensor with the same data as `weights` with size `(a, b)`.I usually use `.view()`, but any of the three methods will work for this. So, now we can reshape `weights` to have five rows and one column with something like `weights.view(5, 1)`.> **Exercise**: Calculate the output of our little network using matrix multiplication. ###Code ## Calculate the output of this network using matrix multiplication y = activation(torch.sum(features * weights) + bias) print(y) y = activation((features * weights).sum() + bias) print(y) ###Output tensor([[0.1595]]) tensor([[0.1595]]) ###Markdown Stack them up!That's how you can calculate the output for a single neuron. The real power of this algorithm happens when you start stacking these individual units into layers and stacks of layers, into a network of neurons. The output of one layer of neurons becomes the input for the next layer. With multiple input units and output units, we now need to express the weights as a matrix.The first layer shown on the bottom here are the inputs, understandably called the **input layer**. The middle layer is called the **hidden layer**, and the final layer (on the right) is the **output layer**. We can express this network mathematically with matrices again and use matrix multiplication to get linear combinations for each unit in one operation. For example, the hidden layer ($h_1$ and $h_2$ here) can be calculated $$\vec{h} = [h_1 \, h_2] = \begin{bmatrix}x_1 \, x_2 \cdots \, x_n\end{bmatrix}\cdot \begin{bmatrix} w_{11} & w_{12} \\ w_{21} &w_{22} \\ \vdots &\vdots \\ w_{n1} &w_{n2}\end{bmatrix}$$The output for this small network is found by treating the hidden layer as inputs for the output unit. The network output is expressed simply$$y = f_2 \! \left(\, f_1 \! \left(\vec{x} \, \mathbf{W_1}\right) \mathbf{W_2} \right)$$ ###Code ### Generate some data torch.manual_seed(7) # Set the random seed so things are predictable # Features are 3 random normal variables features = torch.randn((1, 3)) # Define the size of each layer in our network n_input = features.shape[1] # Number of input units, must match number of input features n_hidden = 2 # Number of hidden units n_output = 1 # Number of output units # Weights for inputs to hidden layer W1 = torch.randn(n_input, n_hidden) # Weights for hidden layer to output layer W2 = torch.randn(n_hidden, n_output) # and bias terms for hidden and output layers B1 = torch.randn((1, n_hidden)) B2 = torch.randn((1, n_output)) ###Output _____no_output_____ ###Markdown > **Exercise:** Calculate the output for this multi-layer network using the weights `W1` & `W2`, and the biases, `B1` & `B2`. ###Code ## Your solution here ###Output _____no_output_____ ###Markdown If you did this correctly, you should see the output `tensor([[ 0.3171]])`.The number of hidden units a parameter of the network, often called a **hyperparameter** to differentiate it from the weights and biases parameters. As you'll see later when we discuss training a neural network, the more hidden units a network has, and the more layers, the better able it is to learn from data and make accurate predictions. Numpy to Torch and backSpecial bonus section! PyTorch has a great feature for converting between Numpy arrays and Torch tensors. To create a tensor from a Numpy array, use `torch.from_numpy()`. To convert a tensor to a Numpy array, use the `.numpy()` method. ###Code import numpy as np a = np.random.rand(4,3) a b = torch.from_numpy(a) b b.numpy() ###Output _____no_output_____ ###Markdown The memory is shared between the Numpy array and Torch tensor, so if you change the values in-place of one object, the other will change as well. ###Code # Multiply PyTorch Tensor by 2, in place b.mul_(2) # Numpy array matches new values from Tensor a ###Output _____no_output_____
spec_creation/Validate_spec_before_upload.ipynb
###Markdown Setup some basic stuff ###Code import logging logging.getLogger().setLevel(logging.DEBUG) import folium import folium.features as fof import folium.utilities as ful import branca.element as bre import json import geojson as gj import arrow import shapely.geometry as shpg import pandas as pd import geopandas as gpd def lonlat_swap(lon_lat): return list(reversed(lon_lat)) def get_row_count(n_maps, cols): rows = (n_maps / cols) if (n_maps % cols != 0): rows = rows + 1 return rows def get_one_marker(loc, disp_color): if loc["geometry"]["type"] == "Point": curr_latlng = lonlat_swap(loc["geometry"]["coordinates"]) return folium.Marker(curr_latlng, icon=folium.Icon(color=disp_color), popup="%s" % loc["properties"]["name"]) elif loc["geometry"]["type"] == "Polygon": assert len(loc["geometry"]["coordinates"]) == 1,\ "Only simple polygons supported!" curr_latlng = [lonlat_swap(c) for c in loc["geometry"]["coordinates"][0]] # print("Returning polygon for %s" % curr_latlng) return folium.PolyLine(curr_latlng, color=disp_color, fill=disp_color, popup="%s" % loc["properties"]["name"]) def get_marker(loc, disp_color): if type(loc) == list: return [get_one_marker(l, disp_color) for l in loc] else: print("Found single entry, is this expected?") return [get_one_marker(loc, disp_color)] ###Output _____no_output_____ ###Markdown Read the data ###Code spec_to_validate = json.load(open("evaluation.spec.filled.json")) sensing_configs = json.load(open("sensing_regimes.all.specs.json")) ###Output _____no_output_____ ###Markdown Validating the time range ###Code print("Experiment runs from %s -> %s" % (arrow.get(spec_to_validate["start_ts"]), arrow.get(spec_to_validate["end_ts"]))) start_fmt_time_to_validate = arrow.get(spec_to_validate["start_ts"]).format("YYYY-MM-DD") end_fmt_time_to_validate = arrow.get(spec_to_validate["end_ts"]).format("YYYY-MM-DD") if (start_fmt_time_to_validate != spec_to_validate["start_fmt_date"]): print("VALIDATION FAILED, got start %s, expected %s" % (start_fmt_time_to_validate, spec_to_validate["start_fmt_date"])) if (end_fmt_time_to_validate != spec_to_validate["end_fmt_date"]): print("VALIDATION FAILED, got end %s, expected %s" % (end_fmt_time_to_validate, spec_to_validate["end_fmt_date"])) ###Output _____no_output_____ ###Markdown Validating calibration trips ###Code def get_map_for_calibration_test(trip): curr_map = folium.Map() if trip["start_loc"] is None or trip["end_loc"] is None: return curr_map curr_start = lonlat_swap(trip["start_loc"]["geometry"]["coordinates"]) curr_end = lonlat_swap(trip["end_loc"]["geometry"]["coordinates"]) folium.Marker(curr_start, icon=folium.Icon(color="green"), popup="Start: %s" % trip["start_loc"]["properties"]["name"]).add_to(curr_map) folium.Marker(curr_end, icon=folium.Icon(color="red"), popup="End: %s" % trip["end_loc"]["properties"]["name"]).add_to(curr_map) folium.PolyLine([curr_start, curr_end], popup=trip["id"]).add_to(curr_map) curr_map.fit_bounds([curr_start, curr_end]) return curr_map calibration_tests = spec_to_validate["calibration_tests"] rows = get_row_count(len(calibration_tests), 4) calibration_maps = bre.Figure((rows,4)) for i, t in enumerate(calibration_tests): if t["config"]["sensing_config"] != sensing_configs[t["config"]["id"]]["sensing_config"]: print("Mismatch in config for test" % t) curr_map = get_map_for_calibration_test(t) calibration_maps.add_subplot(rows, 4, i+1).add_child(curr_map) calibration_maps ###Output _____no_output_____ ###Markdown Validating evaluation trips ###Code def add_waypoint_markers(waypoint_coords, curr_map): for i, wpc in enumerate(waypoint_coords["geometry"]["coordinates"]): folium.map.Marker( lonlat_swap(wpc), popup="%d" % i, icon=fof.DivIcon(class_name='leaflet-div-icon')).add_to(curr_map) def get_map_for_travel_leg(trip): curr_map = folium.Map() [get_one_marker(loc, "green").add_to(curr_map) for loc in trip["start_loc"]] [get_one_marker(loc, "red").add_to(curr_map) for loc in trip["end_loc"]] # iterate over all reroutes for rc in trip["route_coords"]: coords = rc["geometry"]["coordinates"] print("Found %d coordinates for the route" % (len(coords))) latlng_coords = [lonlat_swap(c) for c in coords] folium.PolyLine(latlng_coords, popup="%s: %s" % (trip["mode"], trip["name"])).add_to(curr_map) for i, c in enumerate(latlng_coords): folium.CircleMarker(c, radius=5, popup="%d: %s" % (i, c)).add_to(curr_map) curr_map.fit_bounds(ful.get_bounds(latlng_coords)) return curr_map def get_map_for_shim_leg(trip): curr_map = folium.Map() for loc in trip["loc"]: mkr = get_one_marker(loc, "purple") mkr.add_to(curr_map) curr_map.fit_bounds(mkr.get_bounds()) return curr_map evaluation_trips = spec_to_validate["evaluation_trips"] map_list = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": curr_map = get_map_for_travel_leg(l) map_list.append(curr_map) else: curr_map = get_map_for_shim_leg(l) map_list.append(curr_map) rows = get_row_count(len(map_list), 2) evaluation_maps = bre.Figure(ratio="{}%".format((rows/2) * 100)) for i, curr_map in enumerate(map_list): evaluation_maps.add_subplot(rows, 2, i+1).add_child(curr_map) evaluation_maps ###Output _____no_output_____ ###Markdown Validating start and end polygons ###Code def check_start_end_contains(leg): for rc in leg["route_coords"]: points = gpd.GeoSeries([shpg.Point(p) for p in rc["geometry"]["coordinates"]]) route_start_ts = rc["properties"]["valid_start_ts"] route_end_ts = rc["properties"]["valid_end_ts"] # query all start_locs and end_locs where [route_start_ts, route_end_ts] ∈ [loc_start_ts, loc_end_ts] start_locs = [shpg.shape(sl["geometry"]) for sl in leg["start_loc"] if route_start_ts >= sl["properties"]["valid_start_ts"]\ and route_end_ts <= sl["properties"]["valid_end_ts"]] end_locs = [shpg.shape(el["geometry"]) for el in leg["end_loc"] if route_start_ts >= el["properties"]["valid_start_ts"]\ and route_end_ts <= el["properties"]["valid_end_ts"]] assert len(start_locs) >= 1 assert len(end_locs) >= 1 for sl in start_locs: start_contains = points.apply(lambda p: sl.contains(p)) print(points[start_contains]) # some of the points are within the start polygon assert start_contains.any(), leg # the first point is within the start polygon assert start_contains.iloc[0], points.head() # points within polygons are contiguous max_index_diff_start = pd.Series(start_contains[start_contains == True].index).diff().max() assert pd.isnull(max_index_diff_start) or max_index_diff_start == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(start_contains[start_contains == True].index).diff().max(), points.head()) for el in end_locs: end_contains = points.apply(lambda p: el.contains(p)) print(points[end_contains]) # some of the points are within the end polygon assert end_contains.any(), leg # the last point is within the end polygon assert end_contains.iloc[-1], points.tail() # points within polygons are contiguous max_index_diff_end = pd.Series(end_contains[end_contains == True].index).diff().max() assert pd.isnull(max_index_diff_end) or max_index_diff_end == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(end_contains[end_contains == True].index).diff().max(), points.tail()) invalid_legs = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL" and l["id"] not in invalid_legs: print("Checking leg %s, %s" % (t["id"], l["id"])) check_start_end_contains(l) ###Output _____no_output_____ ###Markdown Validating sensing settings ###Code for ss in spec_to_validate["sensing_settings"]: for phoneOS, compare_map in ss.items(): compare_list = compare_map["compare"] for i, ssc in enumerate(compare_map["sensing_configs"]): if ssc["id"] != compare_list[i]: print("Mismatch in sensing configurations for %s" % ss) ###Output _____no_output_____ ###Markdown Validating routes for no duplicate coordinates ###Code REL_TOL = 1e-5 def is_coords_equal(c1, c2): return abs(c2[0] - c1[0]) < REL_TOL and abs(c2[1] - c1[1]) < REL_TOL for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": for rc in l["route_coords"]: print("Checking leg %s, %s between dates %s, %s" % (t["id"], l["id"], rc["properties"]["valid_start_fmt_date"], rc["properties"]["valid_end_fmt_date"])) for i in range(len(rc["geometry"]["coordinates"])): c1 = rc["geometry"]["coordinates"][i] for j in range(i + 1, len(rc["geometry"]["coordinates"])): c2 = rc["geometry"]["coordinates"][j] if is_coords_equal(c1, c2): # print(f"Found duplicate entry, checking entries {i}...{j}") not_matched_index = -1 for k in range(i, j+1): c3 = rc["geometry"]["coordinates"][k] if not is_coords_equal(c1, c3): not_matched_index = k if not_matched_index != -1: assert False, (f"\tDuplicates {c1}, {c2} found @ indices {i}, {j} with non-duplicate {not_matched_index} in between") ###Output _____no_output_____ ###Markdown Validating overlapping time ranges Representative test case (should break): ###Code def check_overlaps(x): ranges = sorted([(l["properties"]["valid_start_ts"], l["properties"]["valid_end_ts"]) for l in x], key=lambda c: c[0]) for i, r in enumerate(ranges[:-1]): assert (ts1 := r[1]) <= (ts2 := ranges[i + 1][0]), f"Overlapping timestamps: {arrow.get(ts1)}, {arrow.get(ts2)}" breaking_example = [ { "properties": { "valid_start_ts": arrow.get("2020-01-01").timestamp, "valid_end_ts": arrow.get("2020-03-30").timestamp } }, { "properties": { "valid_start_ts": arrow.get("2019-07-16").timestamp, "valid_end_ts": arrow.get("2020-04-30").timestamp } } ] try: check_overlaps(breaking_example) except AssertionError as e: print(e) ###Output _____no_output_____ ###Markdown Actual check of spec: ###Code for t in evaluation_trips: for l in t["legs"]: print("Checking leg %s, %s" % (t["id"], l["id"])) # check locs for shim legs if "loc" in l: print("\tChecking shim locs...") check_overlaps(l["loc"]) # check start locs if "start_loc" in l: print("\tChecking start locs...") check_overlaps(l["start_loc"]) # check end locs if "end_loc" in l: print("\tChecking end locs...") check_overlaps(l["end_loc"]) # check trajectories if l["type"] == "TRAVEL": print("\tChecking trajectories...") check_overlaps(l["route_coords"]) ###Output _____no_output_____ ###Markdown Setup some basic stuff ###Code import logging logging.getLogger().setLevel(logging.DEBUG) import folium import folium.features as fof import folium.utilities as ful import branca.element as bre import json import geojson as gj import arrow def lonlat_swap(lon_lat): return list(reversed(lon_lat)) def get_row_count(n_maps, cols): rows = (n_maps / cols) if (n_maps % cols != 0): rows = rows + 1 return rows def get_marker(loc, disp_color): if loc["geometry"]["type"] == "Point": curr_latlng = lonlat_swap(loc["geometry"]["coordinates"]) return folium.Marker(curr_latlng, icon=folium.Icon(color=disp_color), popup="%s" % loc["properties"]["name"]) elif loc["geometry"]["type"] == "Polygon": assert len(loc["geometry"]["coordinates"]) == 1,\ "Only simple polygons supported!" curr_latlng = [lonlat_swap(c) for c in loc["geometry"]["coordinates"][0]] # print("Returning polygon for %s" % curr_latlng) return folium.PolyLine(curr_latlng, color=disp_color, fill=disp_color, popup="%s" % loc["properties"]["name"]) ###Output _____no_output_____ ###Markdown Read the data ###Code spec_to_validate = json.load(open("train_bus_ebike_mtv_ucb.filled.json")) sensing_configs = json.load(open("sensing_regimes.all.specs.json")) ###Output _____no_output_____ ###Markdown Validating the time range ###Code print("Experiment runs from %s -> %s" % (arrow.get(spec_to_validate["start_ts"]), arrow.get(spec_to_validate["end_ts"]))) start_fmt_time_to_validate = arrow.get(spec_to_validate["start_ts"]).format("YYYY-MM-DD") end_fmt_time_to_validate = arrow.get(spec_to_validate["end_ts"]).format("YYYY-MM-DD") if (start_fmt_time_to_validate != spec_to_validate["start_fmt_date"]): print("VALIDATION FAILED, got start %s, expected %s" % (start_fmt_time_to_validate, spec_to_validate["start_fmt_date"])) if (end_fmt_time_to_validate != spec_to_validate["end_fmt_date"]): print("VALIDATION FAILED, got end %s, expected %s" % (end_fmt_time_to_validate, spec_to_validate["end_fmt_date"])) ###Output _____no_output_____ ###Markdown Validating calibration trips ###Code def get_map_for_calibration_test(trip): curr_map = folium.Map() if trip["start_loc"] is None or trip["end_loc"] is None: return curr_map curr_start = lonlat_swap(trip["start_loc"]["coordinates"]) curr_end = lonlat_swap(trip["end_loc"]["coordinates"]) folium.Marker(curr_start, icon=folium.Icon(color="green"), popup="Start: %s" % trip["start_loc"]["name"]).add_to(curr_map) folium.Marker(curr_end, icon=folium.Icon(color="red"), popup="End: %s" % trip["end_loc"]["name"]).add_to(curr_map) folium.PolyLine([curr_start, curr_end], popup=trip["id"]).add_to(curr_map) curr_map.fit_bounds([curr_start, curr_end]) return curr_map calibration_tests = spec_to_validate["calibration_tests"] rows = get_row_count(len(calibration_tests), 4) calibration_maps = bre.Figure((rows,4)) for i, t in enumerate(calibration_tests): if t["config"]["sensing_config"] != sensing_configs[t["config"]["id"]]["sensing_config"]: print("Mismatch in config for test" % t) curr_map = get_map_for_calibration_test(t) calibration_maps.add_subplot(rows, 4, i+1).add_child(curr_map) calibration_maps ###Output _____no_output_____ ###Markdown Validating evaluation trips ###Code def get_map_for_travel_leg(trip): curr_map = folium.Map() get_marker(trip["start_loc"], "green").add_to(curr_map) get_marker(trip["end_loc"], "red").add_to(curr_map) # trips from relations won't have waypoints if "waypoint_coords" in trip: for i, wpc in enumerate(trip["waypoint_coords"]["geometry"]["coordinates"]): folium.map.Marker( lonlat_swap(wpc), popup="%d" % i, icon=fof.DivIcon(class_name='leaflet-div-icon')).add_to(curr_map) print("Found %d coordinates for the route" % (len(trip["route_coords"]["geometry"]["coordinates"]))) latlng_route_coords = [lonlat_swap(rc) for rc in trip["route_coords"]["geometry"]["coordinates"]] folium.PolyLine(latlng_route_coords, popup="%s: %s" % (trip["mode"], trip["name"])).add_to(curr_map) for i, c in enumerate(latlng_route_coords): folium.CircleMarker(c, radius=5, popup="%d: %s" % (i, c)).add_to(curr_map) curr_map.fit_bounds(ful.get_bounds(trip["route_coords"]["geometry"]["coordinates"], lonlat=True)) return curr_map def get_map_for_shim_leg(trip): curr_map = folium.Map() mkr = get_marker(trip["loc"], "purple") mkr.add_to(curr_map) curr_map.fit_bounds(mkr.get_bounds()) return curr_map evaluation_trips = spec_to_validate["evaluation_trips"] map_list = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": curr_map = get_map_for_travel_leg(l) map_list.append(curr_map) else: curr_map = get_map_for_shim_leg(l) map_list.append(curr_map) rows = get_row_count(len(map_list), 2) evaluation_maps = bre.Figure(ratio="{}%".format((rows/2) * 100)) for i, curr_map in enumerate(map_list): evaluation_maps.add_subplot(rows, 2, i+1).add_child(curr_map) evaluation_maps ###Output _____no_output_____ ###Markdown Validating sensing settings ###Code for ss in spec_to_validate["sensing_settings"]: for phoneOS, compare_map in ss.items(): compare_list = compare_map["compare"] for i, ssc in enumerate(compare_map["sensing_configs"]): if ssc["id"] != compare_list[i]: print("Mismatch in sensing configurations for %s" % ss) ###Output _____no_output_____ ###Markdown Setup some basic stuff ###Code import logging logging.getLogger().setLevel(logging.DEBUG) import folium import folium.features as fof import folium.utilities as ful import branca.element as bre import json import geojson as gj import arrow import shapely.geometry as shpg import pandas as pd import geopandas as gpd def lonlat_swap(lon_lat): return list(reversed(lon_lat)) def get_row_count(n_maps, cols): rows = (n_maps / cols) if (n_maps % cols != 0): rows = rows + 1 return rows def get_one_marker(loc, disp_color): if loc["geometry"]["type"] == "Point": curr_latlng = lonlat_swap(loc["geometry"]["coordinates"]) return folium.Marker(curr_latlng, icon=folium.Icon(color=disp_color), popup="%s" % loc["properties"]["name"]) elif loc["geometry"]["type"] == "Polygon": assert len(loc["geometry"]["coordinates"]) == 1,\ "Only simple polygons supported!" curr_latlng = [lonlat_swap(c) for c in loc["geometry"]["coordinates"][0]] # print("Returning polygon for %s" % curr_latlng) return folium.PolyLine(curr_latlng, color=disp_color, fill=disp_color, popup="%s" % loc["properties"]["name"]) def get_marker(loc, disp_color): if type(loc) == list: return [get_one_marker(l, disp_color) for l in loc] else: print("Found single entry, is this expected?") return [get_one_marker(loc, disp_color)] ###Output _____no_output_____ ###Markdown Read the data ###Code spec_to_validate = json.load(open("final_sfbayarea_filled_reroutes/train_bus_ebike_mtv_ucb.filled.reroute.json")) sensing_configs = json.load(open("sensing_regimes.all.specs.json")) ###Output _____no_output_____ ###Markdown Validating the time range ###Code print("Experiment runs from %s -> %s" % (arrow.get(spec_to_validate["start_ts"]), arrow.get(spec_to_validate["end_ts"]))) start_fmt_time_to_validate = arrow.get(spec_to_validate["start_ts"]).format("YYYY-MM-DD") end_fmt_time_to_validate = arrow.get(spec_to_validate["end_ts"]).format("YYYY-MM-DD") if (start_fmt_time_to_validate != spec_to_validate["start_fmt_date"]): print("VALIDATION FAILED, got start %s, expected %s" % (start_fmt_time_to_validate, spec_to_validate["start_fmt_date"])) if (end_fmt_time_to_validate != spec_to_validate["end_fmt_date"]): print("VALIDATION FAILED, got end %s, expected %s" % (end_fmt_time_to_validate, spec_to_validate["end_fmt_date"])) ###Output _____no_output_____ ###Markdown Validating calibration trips ###Code def get_map_for_calibration_test(trip): curr_map = folium.Map() if trip["start_loc"] is None or trip["end_loc"] is None: return curr_map curr_start = lonlat_swap(trip["start_loc"]["geometry"]["coordinates"]) curr_end = lonlat_swap(trip["end_loc"]["geometry"]["coordinates"]) folium.Marker(curr_start, icon=folium.Icon(color="green"), popup="Start: %s" % trip["start_loc"]["properties"]["name"]).add_to(curr_map) folium.Marker(curr_end, icon=folium.Icon(color="red"), popup="End: %s" % trip["end_loc"]["properties"]["name"]).add_to(curr_map) folium.PolyLine([curr_start, curr_end], popup=trip["id"]).add_to(curr_map) curr_map.fit_bounds([curr_start, curr_end]) return curr_map calibration_tests = spec_to_validate["calibration_tests"] rows = get_row_count(len(calibration_tests), 4) calibration_maps = bre.Figure((rows,4)) for i, t in enumerate(calibration_tests): if t["config"]["sensing_config"] != sensing_configs[t["config"]["id"]]["sensing_config"]: print("Mismatch in config for test" % t) curr_map = get_map_for_calibration_test(t) calibration_maps.add_subplot(rows, 4, i+1).add_child(curr_map) calibration_maps ###Output _____no_output_____ ###Markdown Validating evaluation trips ###Code def add_waypoint_markers(waypoint_coords, curr_map): for i, wpc in enumerate(waypoint_coords["geometry"]["coordinates"]): folium.map.Marker( lonlat_swap(wpc), popup="%d" % i, icon=fof.DivIcon(class_name='leaflet-div-icon')).add_to(curr_map) def get_map_for_travel_leg(trip): curr_map = folium.Map() [get_one_marker(loc, "green").add_to(curr_map) for loc in trip["start_loc"]] [get_one_marker(loc, "red").add_to(curr_map) for loc in trip["end_loc"]] # iterate over all reroutes for rc in trip["route_coords"]: coords = rc["geometry"]["coordinates"] print("Found %d coordinates for the route" % (len(coords))) latlng_coords = [lonlat_swap(c) for c in coords] folium.PolyLine(latlng_coords, popup="%s: %s" % (trip["mode"], trip["name"])).add_to(curr_map) for i, c in enumerate(latlng_coords): folium.CircleMarker(c, radius=5, popup="%d: %s" % (i, c)).add_to(curr_map) curr_map.fit_bounds(ful.get_bounds(latlng_coords)) return curr_map def get_map_for_shim_leg(trip): curr_map = folium.Map() for loc in trip["loc"]: mkr = get_one_marker(loc, "purple") mkr.add_to(curr_map) curr_map.fit_bounds(mkr.get_bounds()) return curr_map evaluation_trips = spec_to_validate["evaluation_trips"] map_list = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": curr_map = get_map_for_travel_leg(l) map_list.append(curr_map) else: curr_map = get_map_for_shim_leg(l) map_list.append(curr_map) rows = get_row_count(len(map_list), 2) evaluation_maps = bre.Figure(ratio="{}%".format((rows/2) * 100)) for i, curr_map in enumerate(map_list): evaluation_maps.add_subplot(rows, 2, i+1).add_child(curr_map) evaluation_maps ###Output _____no_output_____ ###Markdown Validating start and end polygons ###Code def check_start_end_contains(leg): for rc in leg["route_coords"]: points = gpd.GeoSeries([shpg.Point(p) for p in rc["geometry"]["coordinates"]]) route_start_ts = rc["properties"]["valid_start_ts"] route_end_ts = rc["properties"]["valid_end_ts"] # query all start_locs and end_locs where [route_start_ts, route_end_ts] ∈ [loc_start_ts, loc_end_ts] start_locs = [shpg.shape(sl["geometry"]) for sl in leg["start_loc"] if route_start_ts >= sl["properties"]["valid_start_ts"]\ and route_end_ts <= sl["properties"]["valid_end_ts"]] end_locs = [shpg.shape(el["geometry"]) for el in leg["end_loc"] if route_start_ts >= el["properties"]["valid_start_ts"]\ and route_end_ts <= el["properties"]["valid_end_ts"]] assert len(start_locs) >= 1 assert len(end_locs) >= 1 for sl in start_locs: start_contains = points.apply(lambda p: sl.contains(p)) print(points[start_contains]) # some of the points are within the start polygon assert start_contains.any(), leg # the first point is within the start polygon assert start_contains.iloc[0], points.head() # points within polygons are contiguous max_index_diff_start = pd.Series(start_contains[start_contains == True].index).diff().max() assert pd.isnull(max_index_diff_start) or max_index_diff_start == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(start_contains[start_contains == True].index).diff().max(), points.head()) for el in end_locs: end_contains = points.apply(lambda p: el.contains(p)) print(points[end_contains]) # some of the points are within the end polygon assert end_contains.any(), leg # the last point is within the end polygon assert end_contains.iloc[-1], points.tail() # points within polygons are contiguous max_index_diff_end = pd.Series(end_contains[end_contains == True].index).diff().max() assert pd.isnull(max_index_diff_end) or max_index_diff_end == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(end_contains[end_contains == True].index).diff().max(), points.tail()) invalid_legs = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL" and l["id"] not in invalid_legs: print("Checking leg %s, %s" % (t["id"], l["id"])) check_start_end_contains(l) ###Output _____no_output_____ ###Markdown Validating sensing settings ###Code for ss in spec_to_validate["sensing_settings"]: for phoneOS, compare_map in ss.items(): compare_list = compare_map["compare"] for i, ssc in enumerate(compare_map["sensing_configs"]): if ssc["id"] != compare_list[i]: print("Mismatch in sensing configurations for %s" % ss) ###Output _____no_output_____ ###Markdown Validating routes for no duplicate coordinates ###Code REL_TOL = 1e-5 def is_coords_equal(c1, c2): return abs(c2[0] - c1[0]) < REL_TOL and abs(c2[1] - c1[1]) < REL_TOL for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": for rc in l["route_coords"]: print("Checking leg %s, %s between dates %s, %s" % (t["id"], l["id"], rc["properties"]["valid_start_fmt_date"], rc["properties"]["valid_end_fmt_date"])) for i in range(len(rc["geometry"]["coordinates"])): c1 = rc["geometry"]["coordinates"][i] for j in range(i + 1, len(rc["geometry"]["coordinates"])): c2 = rc["geometry"]["coordinates"][j] if is_coords_equal(c1, c2): # print(f"Found duplicate entry, checking entries {i}...{j}") not_matched_index = -1 for k in range(i, j+1): c3 = rc["geometry"]["coordinates"][k] if not is_coords_equal(c1, c3): not_matched_index = k if not_matched_index != -1: assert False, (f"\tDuplicates {c1}, {c2} found @ indices {i}, {j} with non-duplicate {not_matched_index} in between") ###Output _____no_output_____ ###Markdown Validating overlapping time ranges Representative test case (should break): ###Code def check_overlaps(x): ranges = sorted([(l["properties"]["valid_start_ts"], l["properties"]["valid_end_ts"]) for l in x], key=lambda c: c[0]) for i, r in enumerate(ranges[:-1]): assert (ts1 := r[1]) <= (ts2 := ranges[i + 1][0]), f"Overlapping timestamps: {arrow.get(ts1)}, {arrow.get(ts2)}" invalid_ranges = [ { "properties": { "valid_start_ts": arrow.get("2020-01-01").timestamp, "valid_end_ts": arrow.get("2020-03-30").timestamp } }, { "properties": { "valid_start_ts": arrow.get("2019-07-16").timestamp, "valid_end_ts": arrow.get("2020-04-30").timestamp } } ] try: check_overlaps(invalid_ranges) except AssertionError as e: print(e) ###Output _____no_output_____ ###Markdown Actual check of spec: ###Code for t in evaluation_trips: for l in t["legs"]: print("Checking leg %s, %s" % (t["id"], l["id"])) # check locs for shim legs if "loc" in l: print("\tChecking shim locs...") check_overlaps(l["loc"]) # check start locs if "start_loc" in l: print("\tChecking start locs...") check_overlaps(l["start_loc"]) # check end locs if "end_loc" in l: print("\tChecking end locs...") check_overlaps(l["end_loc"]) # check trajectories if l["type"] == "TRAVEL": print("\tChecking trajectories...") check_overlaps(l["route_coords"]) ###Output _____no_output_____ ###Markdown Setup some basic stuff ###Code import logging logging.getLogger().setLevel(logging.DEBUG) import folium import folium.features as fof import folium.utilities as ful import branca.element as bre import json import geojson as gj import arrow import shapely.geometry as shpg import pandas as pd import geopandas as gpd def lonlat_swap(lon_lat): return list(reversed(lon_lat)) def get_row_count(n_maps, cols): rows = (n_maps / cols) if (n_maps % cols != 0): rows = rows + 1 return rows def get_marker(loc, disp_color): if loc["geometry"]["type"] == "Point": curr_latlng = lonlat_swap(loc["geometry"]["coordinates"]) return folium.Marker(curr_latlng, icon=folium.Icon(color=disp_color), popup="%s" % loc["properties"]["name"]) elif loc["geometry"]["type"] == "Polygon": assert len(loc["geometry"]["coordinates"]) == 1,\ "Only simple polygons supported!" curr_latlng = [lonlat_swap(c) for c in loc["geometry"]["coordinates"][0]] # print("Returning polygon for %s" % curr_latlng) return folium.PolyLine(curr_latlng, color=disp_color, fill=disp_color, popup="%s" % loc["properties"]["name"]) ###Output _____no_output_____ ###Markdown Read the data ###Code spec_to_validate = json.load(open("train_bus_ebike_mtv_ucb.filled.json")) sensing_configs = json.load(open("sensing_regimes.all.specs.json")) ###Output _____no_output_____ ###Markdown Validating the time range ###Code print("Experiment runs from %s -> %s" % (arrow.get(spec_to_validate["start_ts"]), arrow.get(spec_to_validate["end_ts"]))) start_fmt_time_to_validate = arrow.get(spec_to_validate["start_ts"]).format("YYYY-MM-DD") end_fmt_time_to_validate = arrow.get(spec_to_validate["end_ts"]).format("YYYY-MM-DD") if (start_fmt_time_to_validate != spec_to_validate["start_fmt_date"]): print("VALIDATION FAILED, got start %s, expected %s" % (start_fmt_time_to_validate, spec_to_validate["start_fmt_date"])) if (end_fmt_time_to_validate != spec_to_validate["end_fmt_date"]): print("VALIDATION FAILED, got end %s, expected %s" % (end_fmt_time_to_validate, spec_to_validate["end_fmt_date"])) ###Output _____no_output_____ ###Markdown Validating calibration trips ###Code def get_map_for_calibration_test(trip): curr_map = folium.Map() if trip["start_loc"] is None or trip["end_loc"] is None: return curr_map curr_start = lonlat_swap(trip["start_loc"]["coordinates"]) curr_end = lonlat_swap(trip["end_loc"]["coordinates"]) folium.Marker(curr_start, icon=folium.Icon(color="green"), popup="Start: %s" % trip["start_loc"]["name"]).add_to(curr_map) folium.Marker(curr_end, icon=folium.Icon(color="red"), popup="End: %s" % trip["end_loc"]["name"]).add_to(curr_map) folium.PolyLine([curr_start, curr_end], popup=trip["id"]).add_to(curr_map) curr_map.fit_bounds([curr_start, curr_end]) return curr_map calibration_tests = spec_to_validate["calibration_tests"] rows = get_row_count(len(calibration_tests), 4) calibration_maps = bre.Figure((rows,4)) for i, t in enumerate(calibration_tests): if t["config"]["sensing_config"] != sensing_configs[t["config"]["id"]]["sensing_config"]: print("Mismatch in config for test" % t) curr_map = get_map_for_calibration_test(t) calibration_maps.add_subplot(rows, 4, i+1).add_child(curr_map) calibration_maps ###Output _____no_output_____ ###Markdown Validating evaluation trips ###Code def get_map_for_travel_leg(trip): curr_map = folium.Map() get_marker(trip["start_loc"], "green").add_to(curr_map) get_marker(trip["end_loc"], "red").add_to(curr_map) # trips from relations won't have waypoints if "waypoint_coords" in trip: for i, wpc in enumerate(trip["waypoint_coords"]["geometry"]["coordinates"]): folium.map.Marker( lonlat_swap(wpc), popup="%d" % i, icon=fof.DivIcon(class_name='leaflet-div-icon')).add_to(curr_map) print("Found %d coordinates for the route" % (len(trip["route_coords"]["geometry"]["coordinates"]))) latlng_route_coords = [lonlat_swap(rc) for rc in trip["route_coords"]["geometry"]["coordinates"]] folium.PolyLine(latlng_route_coords, popup="%s: %s" % (trip["mode"], trip["name"])).add_to(curr_map) for i, c in enumerate(latlng_route_coords): folium.CircleMarker(c, radius=5, popup="%d: %s" % (i, c)).add_to(curr_map) curr_map.fit_bounds(ful.get_bounds(trip["route_coords"]["geometry"]["coordinates"], lonlat=True)) return curr_map def get_map_for_shim_leg(trip): curr_map = folium.Map() mkr = get_marker(trip["loc"], "purple") mkr.add_to(curr_map) curr_map.fit_bounds(mkr.get_bounds()) return curr_map evaluation_trips = spec_to_validate["evaluation_trips"] map_list = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": curr_map = get_map_for_travel_leg(l) map_list.append(curr_map) else: curr_map = get_map_for_shim_leg(l) map_list.append(curr_map) rows = get_row_count(len(map_list), 2) evaluation_maps = bre.Figure(ratio="{}%".format((rows/2) * 100)) for i, curr_map in enumerate(map_list): evaluation_maps.add_subplot(rows, 2, i+1).add_child(curr_map) evaluation_maps ###Output _____no_output_____ ###Markdown Validating start and end polygons ###Code def check_start_end_contains(leg): points = gpd.GeoSeries([shpg.Point(p) for p in leg["route_coords"]["geometry"]["coordinates"]]) start_loc = shpg.shape(leg["start_loc"]["geometry"]) end_loc = shpg.shape(leg["end_loc"]["geometry"]) start_contains = points.apply(lambda p: start_loc.contains(p)) print(points[start_contains]) end_contains = points.apply(lambda p: end_loc.contains(p)) print(points[end_contains]) # Some of the points are within the start and end polygons assert start_contains.any() assert end_contains.any() # The first and last point are within the start and end polygons assert start_contains.iloc[0], points.head() assert end_contains.iloc[-1], points.tail() # The points within the polygons are contiguous max_index_diff_start = pd.Series(start_contains[start_contains == True].index).diff().max() max_index_diff_end = pd.Series(end_contains[end_contains == True].index).diff().max() assert pd.isnull(max_index_diff_start) or max_index_diff_start == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(start_contains[end_contains == True].index).diff().max(), points.head()) assert pd.isnull(max_index_diff_end) or max_index_diff_end == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(end_contains[end_contains == True].index).diff().max(), points.tail()) invalid_legs = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL" and l["id"] not in invalid_legs: print("Checking leg %s, %s" % (t["id"], l["id"])) check_start_end_contains(l) ###Output _____no_output_____ ###Markdown Validating sensing settings ###Code for ss in spec_to_validate["sensing_settings"]: for phoneOS, compare_map in ss.items(): compare_list = compare_map["compare"] for i, ssc in enumerate(compare_map["sensing_configs"]): if ssc["id"] != compare_list[i]: print("Mismatch in sensing configurations for %s" % ss) ###Output _____no_output_____ ###Markdown Setup some basic stuff ###Code import logging logging.getLogger().setLevel(logging.DEBUG) import folium import folium.features as fof import folium.utilities as ful import branca.element as bre import json import geojson as gj import arrow import shapely.geometry as shpg import pandas as pd import geopandas as gpd def lonlat_swap(lon_lat): return list(reversed(lon_lat)) def get_row_count(n_maps, cols): rows = (n_maps / cols) if (n_maps % cols != 0): rows = rows + 1 return rows def get_marker(loc, disp_color): if loc["geometry"]["type"] == "Point": curr_latlng = lonlat_swap(loc["geometry"]["coordinates"]) return folium.Marker(curr_latlng, icon=folium.Icon(color=disp_color), popup="%s" % loc["properties"]["name"]) elif loc["geometry"]["type"] == "Polygon": assert len(loc["geometry"]["coordinates"]) == 1,\ "Only simple polygons supported!" curr_latlng = [lonlat_swap(c) for c in loc["geometry"]["coordinates"][0]] # print("Returning polygon for %s" % curr_latlng) return folium.PolyLine(curr_latlng, color=disp_color, fill=disp_color, popup="%s" % loc["properties"]["name"]) ###Output _____no_output_____ ###Markdown Read the data ###Code spec_to_validate = json.load(open("final_sfbayarea_filled/train_bus_ebike_mtv_ucb.filled.json")) sensing_configs = json.load(open("sensing_regimes.all.specs.json")) ###Output _____no_output_____ ###Markdown Validating the time range ###Code print("Experiment runs from %s -> %s" % (arrow.get(spec_to_validate["start_ts"]), arrow.get(spec_to_validate["end_ts"]))) start_fmt_time_to_validate = arrow.get(spec_to_validate["start_ts"]).format("YYYY-MM-DD") end_fmt_time_to_validate = arrow.get(spec_to_validate["end_ts"]).format("YYYY-MM-DD") if (start_fmt_time_to_validate != spec_to_validate["start_fmt_date"]): print("VALIDATION FAILED, got start %s, expected %s" % (start_fmt_time_to_validate, spec_to_validate["start_fmt_date"])) if (end_fmt_time_to_validate != spec_to_validate["end_fmt_date"]): print("VALIDATION FAILED, got end %s, expected %s" % (end_fmt_time_to_validate, spec_to_validate["end_fmt_date"])) ###Output _____no_output_____ ###Markdown Validating calibration trips ###Code def get_map_for_calibration_test(trip): curr_map = folium.Map() if trip["start_loc"] is None or trip["end_loc"] is None: return curr_map curr_start = lonlat_swap(trip["start_loc"]["coordinates"]) curr_end = lonlat_swap(trip["end_loc"]["coordinates"]) folium.Marker(curr_start, icon=folium.Icon(color="green"), popup="Start: %s" % trip["start_loc"]["name"]).add_to(curr_map) folium.Marker(curr_end, icon=folium.Icon(color="red"), popup="End: %s" % trip["end_loc"]["name"]).add_to(curr_map) folium.PolyLine([curr_start, curr_end], popup=trip["id"]).add_to(curr_map) curr_map.fit_bounds([curr_start, curr_end]) return curr_map calibration_tests = spec_to_validate["calibration_tests"] rows = get_row_count(len(calibration_tests), 4) calibration_maps = bre.Figure((rows,4)) for i, t in enumerate(calibration_tests): if t["config"]["sensing_config"] != sensing_configs[t["config"]["id"]]["sensing_config"]: print("Mismatch in config for test" % t) curr_map = get_map_for_calibration_test(t) calibration_maps.add_subplot(rows, 4, i+1).add_child(curr_map) calibration_maps ###Output _____no_output_____ ###Markdown Validating evaluation trips ###Code def get_map_for_travel_leg(trip): curr_map = folium.Map() get_marker(trip["start_loc"], "green").add_to(curr_map) get_marker(trip["end_loc"], "red").add_to(curr_map) # trips from relations won't have waypoints if "waypoint_coords" in trip: for i, wpc in enumerate(trip["waypoint_coords"]["geometry"]["coordinates"]): folium.map.Marker( lonlat_swap(wpc), popup="%d" % i, icon=fof.DivIcon(class_name='leaflet-div-icon')).add_to(curr_map) print("Found %d coordinates for the route" % (len(trip["route_coords"]["geometry"]["coordinates"]))) latlng_route_coords = [lonlat_swap(rc) for rc in trip["route_coords"]["geometry"]["coordinates"]] folium.PolyLine(latlng_route_coords, popup="%s: %s" % (trip["mode"], trip["name"])).add_to(curr_map) for i, c in enumerate(latlng_route_coords): folium.CircleMarker(c, radius=5, popup="%d: %s" % (i, c)).add_to(curr_map) curr_map.fit_bounds(ful.get_bounds(trip["route_coords"]["geometry"]["coordinates"], lonlat=True)) return curr_map def get_map_for_shim_leg(trip): curr_map = folium.Map() mkr = get_marker(trip["loc"], "purple") mkr.add_to(curr_map) curr_map.fit_bounds(mkr.get_bounds()) return curr_map evaluation_trips = spec_to_validate["evaluation_trips"] map_list = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL": curr_map = get_map_for_travel_leg(l) map_list.append(curr_map) else: curr_map = get_map_for_shim_leg(l) map_list.append(curr_map) rows = get_row_count(len(map_list), 2) evaluation_maps = bre.Figure(ratio="{}%".format((rows/2) * 100)) for i, curr_map in enumerate(map_list): evaluation_maps.add_subplot(rows, 2, i+1).add_child(curr_map) evaluation_maps ###Output _____no_output_____ ###Markdown Validating start and end polygons ###Code def check_start_end_contains(leg): points = gpd.GeoSeries([shpg.Point(p) for p in leg["route_coords"]["geometry"]["coordinates"]]) start_loc = shpg.shape(leg["start_loc"]["geometry"]) end_loc = shpg.shape(leg["end_loc"]["geometry"]) start_contains = points.apply(lambda p: start_loc.contains(p)) print(points[start_contains]) end_contains = points.apply(lambda p: end_loc.contains(p)) print(points[end_contains]) # Some of the points are within the start and end polygons assert start_contains.any() assert end_contains.any() # The first and last point are within the start and end polygons assert start_contains.iloc[0], points.head() assert end_contains.iloc[-1], points.tail() # The points within the polygons are contiguous max_index_diff_start = pd.Series(start_contains[start_contains == True].index).diff().max() max_index_diff_end = pd.Series(end_contains[end_contains == True].index).diff().max() assert pd.isnull(max_index_diff_start) or max_index_diff_start == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(start_contains[end_contains == True].index).diff().max(), points.head()) assert pd.isnull(max_index_diff_end) or max_index_diff_end == 1, "Max diff in index = %s for points %s" % (gpd.GeoSeries(end_contains[end_contains == True].index).diff().max(), points.tail()) invalid_legs = [] for t in evaluation_trips: for l in t["legs"]: if l["type"] == "TRAVEL" and l["id"] not in invalid_legs: print("Checking leg %s, %s" % (t["id"], l["id"])) check_start_end_contains(l) ###Output _____no_output_____ ###Markdown Validating sensing settings ###Code for ss in spec_to_validate["sensing_settings"]: for phoneOS, compare_map in ss.items(): compare_list = compare_map["compare"] for i, ssc in enumerate(compare_map["sensing_configs"]): if ssc["id"] != compare_list[i]: print("Mismatch in sensing configurations for %s" % ss) ###Output _____no_output_____
images/reading/vague-janvier-2022/Pruning_SNIP_FORCE/Force_pruning.ipynb
###Markdown Pruning in Deep Neural Networks Authors: Yanis Chaigneau, Nicolas Tirel Institution : GreenAI UPPA This notebook spans the state-of-the-art pruning methods in deep neural networks. Pruning is used to remove weights in a neural network, in order to reduce the number of parameters, leading to a faster training without loss in accuracy. Furthermore, it can be used to reduce the energetic consumption of ML algorithms. Indeed, the growing number of parameters in deep learning networks has an impact on the CO2 emissions of the sector, which these methods aim to reduce.In the introduction,the historic of the field is drawn, with the presentation of the skeletonization (Mozer et al, 1989) and the Optimal Brain Damage (Lecun, 1990) pruning methods. A focus is then made on the pruning methods at initialization, with a comparison of three state-of-the-art algorithms: SNIP, GRASP and FORCE. Pruning:- Cut connexions in deep neural networks- Reducing the size of a network- Less energy consumptionI) Introduction and historicsII) Pruning at initialization: SNIP, GRaSP and FORCEIII) Comparison Introduction Different methods exist to prune a model. - Pruning trained models - Induce sparsity during training - Pruning at initialization Evolution of the number of publications containing "pruning" in the artificial intelligence field. Source: dimensions.ai Pruning after trainingMozer and Smolensky in 1989: trimming the fat from a network via relevance assessment The method: Skeletonization A method designed by Mozer and Smolensky in 1989 for trimming the fat from a network via relevance assessment. To do so, the relevance of each units is defined and computed, so as to reduce its size and improving its performance.The procedure is the following: Algorithm (Mozer et al) 1) Train the network 2) Compute the relevance of the units, so as to find which units have the more weight for the accuracy. 3) Trim the least relevant units This type of algorithms is useful for many reasons: - More generalization - Reduce the energy consumption by removing hidden units - Enhance interpretability First approach: the relevance of a unit is determined by looking at the activity of each cells. The more the unit of the layer $l$ has many large-weighted connections, the more its activity should influence the other layers: $\rho_i = \sum_j w_{ij}$. However, if the effects of different connections cancel out, this is not a great metric. Second approach: The author defines the relevance of unit $i$ following the statement: "what will happen to the performance of the network when a unit is removed ?"$$\rho_i = \mathcal{L}_{without~unit~i} - \mathcal{L}_{with~unit~i}$$ where $\mathcal{L}$ is the training loss. QuestionWhat is the complexity of computing $\rho$ for all the units if we want to try all the patterns $p$ with $n$ units? Ready to see the answer? (click to expand)$$\mathcal{O}(n p)$$ where $n$ is the total number of units in the network and $p$ the number of patterns in the training set. The complexity is too large, we need to approximate the computation of $\rho$. To do so, we define $\alpha_i$ as the attentional strength of the unit, based on the attention mechanism. The idea of this coefficient is to represent whether a unit has an influence on the rest of the network. It simply weights the activation of a neuron j:$$y_j = f(\sum_i w_{ij} \alpha_i x_{ij})$$where $x_{ij}$ is the input from neuron $i$ to this neuron, $f$ the activation function, and $w_{ij}$ the input weights. Thus:- if $\alpha_i = 0$, unit $i$ does not have any influence on the rest of the network- if $\alpha_i = 1$, unit $i$ is a conventional unit. The following figure depicts the attentional strength coefficients on a simple feed-forward neural network: We then obtain a new definition for $\rho$:$$\rho_i = \mathcal{L}_{\alpha_i = 0} - \mathcal{L}_{\alpha_i = 1}$$With this definition, we can approximate the relevance of the units. To do so, let's use the derivative of the error with respect to $\alpha$:$$\frac{\partial{\mathcal{L}}}{\partial \alpha_i} \Bigr|_{\substack{\alpha_i = 1}}= \lim_{\gamma \rightarrow 1} \frac{\mathcal{L}_{\alpha_i = \gamma} - \mathcal{L}_{\alpha_i = 1}}{\gamma - 1}$$The approximation is made assuming it holds approximately for $\gamma = 0$:$$\frac{\partial{\mathcal{L}}}{\partial \alpha_i} \Bigr|_{\substack{\alpha_i = 1}}= \frac{\mathcal{L}_{\alpha_i = 0} - \mathcal{L}_{\alpha_i = 1}}{- 1} = - \rho_i$$Thus, we define $$\boxed{\hat{\rho}_i = - \frac{\partial{\mathcal{L}}}{\partial \alpha_i}} $$ with $\alpha_i$ supposed to be constant to $1$ and thus not being part of the trainable parameters of the systems. Empirically, the authors defines the estimator of the relevance with the weighted average:$$\boxed{\hat \rho_i (t+1) = 0.8 \hat \rho_i (t) + 0.2 \frac{\partial \mathcal{L} (t)}{\partial \alpha_i}}$$The relevancy parameters can then be learned in a similar way as backpropagation.The loss used to compute the relevancy parameters is the linear loss:$$\mathcal{L} = \sum |\hat{y} - y|$$ QuestionDoes you see why the quadratic loss is not a good choice ? Ready to see the answer? (click to expand) Because the derivative of the loss goes to zero as the total error decreases, which will make the relevance of all the units tend to zero as the error decreases. Then, it grossly underestimates the relevance of the outputs that are close to the target!. The algorithm For $t \in [0, \dots, T]$: &nbsp;&nbsp;&nbsp;&nbsp;Train the network until all output unit activities are within some specified margin around the target value &nbsp;&nbsp;&nbsp;&nbsp;Compute $\hat \rho_i$ for each unit $i$; &nbsp;&nbsp;&nbsp;&nbsp;Remove the unit with the smallest relevance In python, a possible implementation can be the following (taken from Sébastien Lousteau) ###Code import torch def forward(model,alpha, x): x = model.activations[0](model.conv1(x)) x = x.view(-1, model.nb_filters * 8 * 8) x = [torch.mul(elt,alpha) for elt in x] x = torch.stack(x) x = model.fc1(x) return x def relevance(model,test_dataloader): autograd_tensor = torch.ones((model.nb_filters * 8 * 8), requires_grad=True) loss_fn = torch.nn.CrossEntropyLoss() num_items_read = 0 device = next(model.parameters()).device gg = [] lengths = [] for _, (X, y) in enumerate(test_dataloader): if 100000 <= num_items_read: break X = X[:min(100000 - num_items_read, X.shape[0])] y = y[:min(100000 - num_items_read, X.shape[0])] num_items_read = min(100000, num_items_read + X.shape[0]) X = X.to(device) y = y.to(device) pred = forward(model,autograd_tensor,X) loss = loss_fn(pred, y) gg.append(torch.autograd.grad(loss, autograd_tensor, retain_graph=True)) lengths.append(X.shape[0]) tensor_gg = torch.tensor([list(gg[k][0]) for k in range(len(gg))]) result = torch.mean(tensor_gg,0) return(-result) def skeletonization(model,size,dataloader): relevance_ = relevance(model,dataloader) keep_indices = np.argsort(-np.array(relevance_))[:size] skeletone = ConvNet(model.nb_filters,model.channels) skeletone.conv1.weight.data = copy.deepcopy(model.conv1.weight.data) skeletone.fc1.weight.data = copy.deepcopy(model.fc1.weight.data) for index in set(range(4096))-set(keep_indices): skeletone.fc1.weight.data[:,index] = torch.zeros(10) return(skeletone) ###Output _____no_output_____ ###Markdown An example Let's consider the following example taken from the official paper of Mozer and Smolensky: ###Code ## Generate the problem data import random import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split N = 500 X = [] y = [] for i in range(N): A = random.randint(0, 1) B = random.randint(0, 1) C = random.randint(0, 1) D = random.randint(0, 1) X.append([A, B, C, D]) if (A and B) or (not(A) and not(B) and not(C) and not(D)): y.append(1) else: y.append(-1) X = np.array(X) y = np.array(y) X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2) ###Output _____no_output_____ ###Markdown Optimal Brain Damage Optimal Brain Damage (OBD) has been developed in 1990 by Le Cun et al and is also used to reduce the size of a learning network by deleting weights. It consists in a trade off between the training error and the network complexity.This technique uses the second derivative of the objective function to compute the "saliency" of the parameters. Here, saliency is not equal to the magnitude of the weights, and a theoretical framework is developed. The saliency of a parameter in this method is computed accordingly to the objective function which changes with the deletion of the parameters. The pruning is considered as a perturbation on the weight matrix. For that, we consider a perturbation of the parameter vector $\delta U$. This perturbation will affect the loss as:$$\delta \mathcal{L} = \sum \limits_i g_i \delta u_i + \frac{1}{2} \sum \limits_i h_{ii} \delta u_i^2 + \frac{1}{2} \sum \limits_{i \not j} h_{ij} \delta u_i \delta u_j + \mathcal(O)(||\delta U||^3)$$where $\delta u_i$ are the components of $\delta U$, $g_i$ the components of $\frac{\partial \mathcal{L}}{\partial U}$ and $h_i$ the components of the hessian matrix $h_{ij} = \frac{\partial^2 \mathcal{L}}{\partial u_i \partial u_j}$After some assumptions, we reduce the equation to:$$\delta \mathcal{L} = \frac{1}{2} \sum \limits_i h_{ii} \delta u_i^2$$The second derivatives are then calculated with a backpropagation procedure. The AlgorithmFor $t \in [0, \dots, T]$: &nbsp;&nbsp;&nbsp;&nbsp;Train the network until convergence &nbsp;&nbsp;&nbsp;&nbsp;Compute the second derivatives for each parameters $h_{kk}$ &nbsp;&nbsp;&nbsp;&nbsp;Compute the saliencies for each parameter $s_k = h_{kk} u_k^2/2$ &nbsp;&nbsp;&nbsp;&nbsp;Delete the lowest saliency parameters Implementation: https://github.com/shekkizh/TensorflowProjects/blob/master/Model_Pruning/OptimalBrainDamage.py Sparsify during training Example: A BACK-PROPAGATION ALGORITHM WITH OPTIMAL USE OF HIDDEN UNITS (Chauvin, 1988) Pruning at initialization Another class of pruning algorithms prune at initialization.The three main algorithms that will be presented here are:- SNIP- GRASP- FORCEThis kind of algorithms can be seen as a form of Neural Architecture Search. SNIP : SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY The idea Prune a neural network with the solution provided by Namhoon Lee et al. (2019) aimed the same purpose as the orginal paper from Mozer & Smolensky (1989). Indeed, the big advantages of a pruned network is a network simpler, more versatile and more interpretable. At the end, they achieve a good results with a pruned network with the same accuracy as existing baselines across all tested architectures. The maths behind From a dataset $\mathcal{D} = {(x_i,y_i)}^n_{i=1}$ and a desired sparsity level $\mathcal{K}$ (the number of non-zero weights), we write the network pruning as the constrained optimization problem :$$\min_wL(w;\mathcal{D}) = \min_w\frac{1}{n}\sum^n_{i=1}l(w;(x_i,y_i)),$$ $${s.t.~} w\in\mathbb{R}^m, ||w||_0 \leq \mathcal{K}.$$l(.) -> standard loss function (e.g. cross-entropy)w -> set of parameters of the NNm-> total number of parameters$||.||_0$ the standard $L_0$ norm As we shown earlier, we can optimize this problem by adding sparsity enforcing penalty terms, but those solutions involve hyperparameter settings heavily tuned, and turn out to be inferior to saliency based methods.The latter selectively remove redundant parameters with the magnitude of the weights (below certain threshold and redundant) and Hessian of the loss with respect to the weights (high value of Hessian means high importance for the parameter)$$ s_j =\left\{ \begin{array}{ll} |w_j|, \text{ for magnitude based},\\ \frac{w_j^2 H_{jj}}{2}, \text{ for Hessian based.} \end{array} \right. $$We have for connection j:$s_j$ the saliency score$w_j$ the weight$H_{jj}$ the value of the Hessian matrix where the Hessian $H = \frac{∂^2L}{∂w^2} \in \mathbb{R}^{m*m}$ The problem of optimization can be written as :$$ \min_{c,w} L(c ⊙ w; \mathcal{D}) = \min_{c,w} \frac{1}{n} \sum^n_{i=1} l(c ⊙ w; (x_i, y_i)), $$$$ {s.t.~} w\in \mathbb{R^m},~ c\in \{0,1\}^m,~ ||c||_0 \leq \mathcal{K} $$ The main idea is to separate the weight of the connection (w) from whether the connection is present or not (c). The value of $c_j$ indactes if the connection is active (=1) or pruned (=0). Therefore we can measure the effect of connection on the loss when $c_j=1$ and $c_j=0$ keeping everything else constant. We measure the effect then with :$$\Delta L_j(\text{w};\mathcal{D}) = L(1\odot \text{w};\mathcal{D}) - L((1-e_j)\odot \text{w}; \mathcal{D}),$$where $e_j$ indicates the element j (zeros everywhere except at the index j) and 1 the vector of dimension m (positive is improving, negative the opposite).Because c is binary, to compute each $\Delta L_j$ is expensive and requires $m+1$ forward passes over the dataset, so by relaxing the constraint, we can approximate $\Delta L_j$ by the derivate of $L$ with respect to $c_j$, denote $g_j(\text{w};\mathcal{D})$. We obtain the following effect :$$ \Delta L_j(\text{w}; \mathcal{D}) ≈ g_j(\text{w};\mathcal{D}) = \frac{∂L(c \odot \text{w}; \mathcal{D})}{∂c_j}|_{c=1} = \lim_{δ→0} \frac{L(c\odot \text{w}; \mathcal{D}) - L((c-\delta e_j) \odot \text{w}; \mathcal{D})}{δ} |_{c=1}$$This formulation can be viewed as perturbing the weight $w_j$ by a multilplicative factor $δ$ and measuring the change in loss. To this end, they take the magnitude of the derivatives $g_j$ as the saliency criterion, and define connection sensitivity as the normalized magnitude of the derivatives :$$s_j = \frac{|g_j(\text{w};\mathcal{D})|}{∑^m_{k=1}|g_j(\text{w};\mathcal{D})|}$$After the computing, only the top-K ocnnections are retained, where k denotes the desired number of non-zero weights :$$c_j = \mathbf{1}[s_j - s_k ≥ 0 ], ∀j∈\{1~...m\},$$where $s_k$ is the $k$-th largest element in the vector s and $1[.]$ is the indicator function (for precision, we can broke ties aribtrarily )The criteria depend on the loss value before pruning, require pre-training and iterative optimization cycles for a minimal loss in performance (+ magnitude and Hessian method very sensitive to the architectural choices) Algorithm From the loss function $L$, trianing dataset $D$, sparsity level $k$Ensure that $||w*||_0≤k$ ![image.png]() The Algorithm (1) Sample a mini-bacth of training data (2) compute saliency criterion (connection sensitivity) (3) pruning: choose top-K connections (4) regular training Implementation in Python Sample mini-batches ###Code def prune(args, model, sess, dataset): print('|========= START PRUNING =========|') # sample a mini-batch (by default 100) batch = dataset.get_next_batch('train', args.batch_size) feed_dict = {} feed_dict.update({model.inputs[key]: batch[key] for key in ['input', 'label']}) feed_dict.update({model.compress: True, model.is_train: False, model.pruned: False}) result = sess.run([model.outputs, model.sparsity], feed_dict) print('Pruning: {:.3f} global sparsity'.format(result[-1]) ###Output _____no_output_____ ###Markdown Pruning ###Code import tensorflow as tf from model import Model from dataset import Dataset dataset = Dataset(**vars(args)) model = Model(num_classes=dataset.num_classes, **vars(args)) model.construct_model() sess = tf.InteractiveSession() tf.global_variables_initializer().run() tf.local_variables_initializer().run() # Prune prune.prune(args, model, sess, dataset) ###Output _____no_output_____ ###Markdown Sort the top k-values ###Code # sort all the scores to obtains only the top-k% (by default top-10%) def create_sparse_mask(mask, target_sparsity): def threshold_vec(vec, target_sparsity): num_params = vec.shape.as_list()[0] kappa = int(round(num_params * (1. - target_sparsity))) topk, ind = tf.nn.top_k(vec, k=kappa, sorted=True) mask_sparse_v = tf.sparse_to_dense(ind, tf.shape(vec), tf.ones_like(ind, dtype=tf.float32), validate_indices=False) return mask_sparse_v if isinstance(mask, dict): mask_v, restore_fn = vectorize_dict(mask) mask_sparse_v = threshold_vec(mask_v, target_sparsity) return restore_fn(mask_sparse_v) else: return threshold_vec(mask, target_sparsity) ###Output _____no_output_____ ###Markdown Compute saliencies ###Code # In the construction of the model def get_sparse_mask(): w_mask = apply_mask(weights, mask_init) logits = net.forward_pass(w_mask, self.inputs['input'], self.is_train, trainable=False) loss = tf.reduce_mean(compute_loss(self.inputs['label'], logits)) grads = tf.gradients(loss, [mask_init[k] for k in prn_keys]) gradients = dict(zip(prn_keys, grads)) # saliency score : cs = normalize_dict({k: tf.abs(v) for k, v in gradients.items()}) return create_sparse_mask(cs, self.target_sparsity) mask = tf.cond(self.compress, lambda: get_sparse_mask(), lambda: mask_prev) ###Output _____no_output_____ ###Markdown Repo public tensorflow : https://github.com/namhoonlee/snip-publicRepo non officiel pytorch : https://github.com/mil-ad/snipArticle : https://arxiv.org/pdf/1810.02340.pdf Results ![image.png]() Hyper-parameters (click to expand)Datasets : MNIST, CIFAR-10 and Tiny-ImageNetThey use the $\bar{k} = \frac{(m-k)}{m}.100(\%)$ $m$ the total number of parameters and $k$ the desired number of non-zero weightsThe sensitivity scores are computed using a batch of 100 and 128 examples for MNIST and CIFARThey train the models using SGD with momentum of .9, batch size of 100 and 128 and the weight decay rate of .0005 unless stated otherwiseInitial learning rate is .1, decayed by .1 at every 25k or 30k iterations 90-10 training-validation LeNet-300-100 consists of three fc layers with 267k parametersLeNet-5-Caffe 2 fc with 431k param https://arxiv.org/pdf/2002.07376.pdfhttps://github.com/mil-ad/snipBuild on the same saliency criterion as in Mozer & Smolensky, but for training. GRASP (Gradient Signal Preservation) Another method Gradient Signal Preservation (GraSP) When H is approximated as the identity matrix, the above criterion recovers SNIP up to the absolute value(recall the SNIP criterion is |δ>g|)if S(δ) is negative, then removing the corresponding weightswill reduce the gradient flow, while if it is positive, it will increase the gradient flow.For a given pruning ratio p, we obtain the resulting pruning mask by computing the score of everyweight, and removing the top p fraction of the weights (see Algorithm 1). Hence, GraSP takes thegradient flow into account for pruninghttps://github.com/alecwangcq/GraSP $$\max_c G (\mathbf{\theta}, c) = \sum \limits_{i: c_i = 0} - \theta_i [\mathbf{H} \mathbf{g}]_i ~~ , c \in \{0,1\}^m, ~||c_0|| = k$$ with $\mathbf{H} = \nabla^2 (\mathcal{L}(\theta_0))$ the Hessian Matrix of the loss and $\mathbf{g} = \nabla (\mathcal{L} (\theta_0))$ the gradient Force In 2020, following the recent discoveries in the field of pruning, de Jorge et al published a paper describing a novel pruning algorithm: FORCE (foresight connection sensitivity).In this work, we discovered that existing methods mostly perform below random pruning atextreme sparsity regimeThis algorithm applies the pruning before the training. Hence, not only the inference times drop, as the training times are also reduced.It is based on the saliency criteria introduced by Mozer et Smolensky in (1989), skeletonization. The difference lies in the fact that the saliency that is optimized is the one lying after pruning, rather than before. Let's recall the definition of the optimization process:A sequence of iterates of parameters $\{\theta_i\}_{i=0}^{T}$ is produced during the training, with $\theta_0$ the initial set of parameters and $\theta_T$ the final one (leading to the minimal loss). In the classical pruning methods, one constraints the problem to reach a target sparsity level of $k<m$, to have $||\theta_T|| \leq k$.When the pruning is done at initialisation, the goal is to find an initialization $\theta_0$ such that $||\theta_0|| \leq k$, the sequence following a specific topology during training. We set $\mathbf{\bar{\theta}} = \mathbf{\theta} ⊙ \mathbf{c}$ where $\mathbf{c}$ is a binary mask (whether to remove the weight or not). We define the connection sensitivity $\mathbf{g}$ at $\mathbf{\bar{\theta}}$ for a given mask $\mathbf{\hat{c}}$ as:$$\mathbf{g} (\mathbf{\bar{\theta}}) = \frac{\partial \mathcal{L} (\bar{\theta})}{\partial \mathbf{c}} \Bigr|_{\substack{\mathbf{c} = \mathbf{\hat{c}}}} = \frac{\partial \mathcal{L} (\bar{\theta})}{\partial \mathbf{\bar{\theta}}} \Bigr|_{\substack{\mathbf{c} = \mathbf{\hat{c}}}} ⊙ \frac{\partial \bar{\theta}}{\partial \mathbf{c}} \Bigr|_{\substack{\mathbf{c} = \mathbf{\hat{c}}}}= \frac{\partial \mathcal{L} (\bar{\theta})}{\partial \mathbf{\bar{\theta}}} \Bigr|_{\substack{\mathbf{c} = \mathbf{\hat{c}}}} ⊙ \mathbf{\theta}$$ QuestionWhat happens when $\hat{c} = 1$ ? Ready to see the answer? (click to expand) We retrieve the SNIP formulation ! "It assumes that all the parameters are active in the network and they are removed one by one with replacement, therefore, it fails to capture the impact of removing a group of parameters" Differences with SNIP and GRaSP- The formulation of the connection sensitivity depends directly on the pruned weights $\mathbf{\bar{\theta}}$, when GRaSP and SNIP depend on the weights only.- In the case of extreme pruning ($||\mathbf{\hat{c}}||_0 << ||\mathbf{1}||_0$), we have $||\mathbf{\theta} ⊙ \mathbf{\hat{c}}||_2 << ||\mathbf{\theta}||_2$ giving highly different gradient values Objective functionFind the best sub-network$$ \max_c S(\mathbf{\theta}, \mathbf{c}) = \sum \limits_{i \in supp(\mathbf{c})} | \theta_i \nabla \mathcal{L} (\mathbf{\theta} ⊙ \mathbf{c})_i | ~~ , c \in \{0,1\}^m, ~||c_0|| = k$$ Finding the optimal solution requires to compute all the gradients of all the sub-networks. We have to approximate the solution --> Difference with SNIP Progressive PruningThe first solution is to use progressive pruning (also called iterative SNIP) with a homemade schedule $\{k_t\}_{t=1}^T,~k_T=k, ~k_t > k_{t+1}$ giving the pruning level:$$c_{t+1} = \argmax_c S(\mathbf{\bar{\theta}}, \textbf{c}) ~~,c \in \{0,1\}^m, ~||c_0|| = k_{t+1}, \mathbf{c} ⊙ \mathbf{c_t} = \mathbf{c} $$ with $\mathbf{\bar{\theta}} = \theta ⊙ \mathbf{c}_t$"The second constraint ensures that no parameter that had been pruned ealier is activated again". Indeed, let's consider this simple case:$\mathbf{c} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{c_t} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. This case is not possible, as it would mean that three parameters would be reactivated.The gradient approximation is then made: $\frac{\partial \mathcal{L} (\bar{\theta})}{\partial \bar{\theta}} \Bigr|_{\substack{\mathbf{c}_t}} \simeq \frac{\partial \mathcal{L} (\bar{\theta})}{\partial \bar{\theta}} \Bigr|_{\substack{\mathbf{c}_{t+1}}}$, which lies if the pruning schedule is smooth, ie $||\mathbf{c}_t||_0 \simeq ||\mathbf{c}_{t+1}||_0$ $\DeclareMathOperator*{\argmax}{arg\,max}$ Progressive sparsification (FORCE):In this method, the constraint $\mathbf{c} ⊙ \mathbf{c}_t = \mathbf{c}$ is removed. It allows for parameters to resurrect, if they were removed at the beginning of the pruning. Thus, the weights are not removed but simply set to zero. They can have a non-zero gradient.The network is pruned afterward. Sparsity ScheduleWe need to choose a schedule to iteratively prune the parameters, ie to choose a sequence $(k_t)_{t=1,\dots,T}$ with $k_T = k$ and $\forall t, ~k_t > k_{t+1}$. Futhermore, to respect the gradient approximation for the iterative SNIP case, the schedule needs to be smooth. The authors uses a simple exponential decay schedule:$$\forall t,~k_t = \exp(\alpha \log k + (1- \alpha) \log m), \alpha = \frac{t}{T}$$ ###Code import numpy as np import matplotlib.pyplot as plt T = 100 k=10 m=10000 tv = list(range(T)) kt = [np.exp(t/T * np.log(k) + (1-t/T) * np.log(m)) for t in range(T)] plt.scatter(tv, kt) plt.xlabel('Iteration') plt.ylabel('k') plt.title('Numbers of parameters of the network given the iteration') ###Output _____no_output_____
Natural Language Processing in Tensorflow/Week 2-4 Imdb Using Pre tokenized dataset and Subwords/Week 2 - 4 Pre-Tokenized Datasets and Sub-words encoding.ipynb
###Markdown IMDB subwords dataset : https://github.com/tensorflow/datasets/blob/master/docs/catalog/imdb_reviews.md ###Code # If the import fails, run this # !pip install -q tensorflow-datasets import tensorflow_datasets as tfds #using subwords8k tokenizer imdb, info = tfds.load("imdb_reviews/subwords8k", with_info=True, as_supervised=True) info imdb train_data, test_data = imdb['train'], imdb['test'] tokenizer = info.features['text'].encoder print(tokenizer.subwords) info.features sample_string = 'TensorFlow, from basics to mastery' tokenized_string = tokenizer.encode(sample_string) print ('Tokenized string is {}'.format(tokenized_string)) original_string = tokenizer.decode(tokenized_string) print ('The original string: {}'.format(original_string)) for ts in tokenized_string: print ('{} ----> {}'.format(ts, tokenizer.decode([ts]))) #Code to avoid some error BUFFER_SIZE = 10000 BATCH_SIZE = 64 train_dataset = train_data.shuffle(BUFFER_SIZE) train_dataset = train_dataset.padded_batch(BATCH_SIZE, tf.compat.v1.data.get_output_shapes(train_dataset)) test_dataset = test_data.padded_batch(BATCH_SIZE, tf.compat.v1.data.get_output_shapes(test_data)) embedding_dim = 64 model = tf.keras.Sequential([ tf.keras.layers.Embedding(tokenizer.vocab_size, embedding_dim), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(6, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.summary() num_epochs = 10 model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) history = model.fit(train_dataset, epochs=num_epochs, validation_data=test_dataset) import matplotlib.pyplot as plt def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() plot_graphs(history, "accuracy") plot_graphs(history, "loss") e = model.layers[0] weights = e.get_weights()[0] print(weights.shape) # shape: (vocab_size, embedding_dim) import io out_v = io.open('imdb_vecs.tsv', 'w', encoding='utf-8') out_m = io.open('imdb_meta.tsv', 'w', encoding='utf-8') for word_num in range(1, tokenizer.vocab_size): word = tokenizer.decode([word_num]) embeddings = weights[word_num] out_m.write(word + "\n") out_v.write('\t'.join([str(x) for x in embeddings]) + "\n") out_v.close() out_m.close() try: from google.colab import files except ImportError: pass else: files.download('imdb_vecs.tsv') files.download('imdb_meta.tsv') ###Output _____no_output_____ ###Markdown - the keys in the fact that we're using sub-words and not for-words, sub-word meanings are often nonsensical and it's only when we put them together in sequences that they have meaningful semantics. - Thus, some way from learning from sequences would be a great way forward, and that's exactly what you're going to do next week with recurrent neural networks(RNN)- Now, the reason why this is happening of course is just because we're working on subwords, because we're training on things that it's very hard to pull semantics and meaning out of them and the results that we're getting are little better than 50 percent. But if you think about it in a binary classifier, a random guess would be 50 percent. - So this leads us to a problem where we've taken a little bit of a step back, but that's okay. Sometimes you take one step back to take two steps forward, and that's what we'll be learning with RNNs next week ###Code ###Output _____no_output_____
notebooks/running-model-from-python.ipynb
###Markdown A Naive Bayes classifier IntroductionIn this notebook, we will train parameters of a Naive Bayes classifier using *online* learning. The class conditional density is a product of one dimensional densities: $p(\mathbb{x}|y=c,\mathbb{\theta}) = \prod_{d=1}^{D} p(x_{d}|y=c,\mathbb{\theta_{d,c}})$, where $D$ is the number of features. We assume that the features $\mathbb{x}$ are independent. In our example, we will use real-valued features and use Gaussian distributions, $p(\mathbb{x}|y=c,\mathbb{\theta}) = \prod_{j=1}^{D}\mathcal{N}(x_{d}|\mu_{d,c},\sigma_{d,c}^{2})$, where $\mu_{d,c}$ is the mean of feature $d$ in components of class $c$, and $\sigma_{d,c}^{2}$ is its variance. The idea is to create dependence between instances of $\mu$ and $\sigma^2$ for each training step $n$.Please see resources below for more information:- Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.- Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012. Setup ###Code import os import pandas as pd import numpy as np from pathlib import Path import matplotlib.animation import matplotlib.pyplot as plt from scipy.stats import multivariate_normal from matplotlib.animation import FuncAnimation ###Output _____no_output_____ ###Markdown Config ###Code model_dir = Path('../models/model/') data_dir = Path('../data/') ###Output _____no_output_____ ###Markdown Generate data ###Code def sample_component(component, means, covars): if component == 0: return np.random.multivariate_normal(means[0], covars[0], 1).T if component == 1: return np.random.multivariate_normal(means[1], covars[1], 1).T N = 1000 num_dist = 10 num_samples = int(N / num_dist) theta = np.linspace(0, 2*np.pi, num_dist) r = np.sqrt(200) x0 = r * np.cos(theta) x1 = r * np.sin(theta) df_temp = [] for i in range(num_dist): # specify class distributions class0_weight = 0.5 class1_weight = 0.5 class0_means = [x0[i], x1[i]] class0_covar = [[1, 0], [0, 1]] class1_means = [x0[i]+2, x1[i]+2] class1_covar = [[1, 0], [0, 1]] means = [class0_means, class1_means] covars = [class0_covar, class1_covar] mask = np.random.choice([0, 1], num_samples, p=[class0_weight, class1_weight]) data = [sample_component(i, means, covars) for i in mask] data = np.array(data).reshape(num_samples, 2) df_data = pd.DataFrame(data, columns=['x0', 'x1']) df_data['class'] = mask df_temp.append(df_data) df_data = pd.concat(df_temp).reset_index().drop(columns=['index'], axis=1) # store dataset df_data.to_csv(data_dir/'data.csv', sep='|', header=False, index=False) # peak of our data set # plt.scatter(df_data['x0'], # df_data['x1'], # c=df_data['class']) # plt.title("Data") # plt.xlabel(r"$x_0$") # plt.ylabel(r"$x_1$") # plt.grid() # plt.show() ###Output _____no_output_____ ###Markdown Running model ###Code # run c# Infer.NET code cmd = f'dotnet run --project {model_dir} {data_dir}/ data.csv' cmd !{cmd} ###Output [?1h=[?1h=[?1h=[?1h=[?1h=[?1h=[?1h= ###Markdown Results ###Code # load results from file df_result = pd.read_csv(data_dir/'results.csv', sep='|') plt.plot(df_result['meanPost0'], label='m0c0') plt.plot(df_result['meanPost1'], label='m1c0') plt.plot(df_result['meanPost2'], label='m0c1') plt.plot(df_result['meanPost3'], label='m1c1') plt.step(np.arange(0, N, num_samples), x0, where='post', label='true mean0') plt.step(np.arange(0, N, num_samples), x1, where='post', label='true mean1') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Running inferDotNet model from Python Introduction Setup Imports ###Code import pandas as pd import matplotlib.pyplot as plt import os import seaborn as sns from time import time from pathlib import Path ###Output _____no_output_____ ###Markdown Config ###Code model_dir = Path('../models/model/') data_dir = Path('../data/') ###Output _____no_output_____ ###Markdown Running Model ###Code cmd = f'dotnet run --project {model_dir} {data_dir} second EP' cmd !{cmd} df_result = pd.read_csv(data_dir/'results.csv', sep=';') df_result ###Output _____no_output_____ ###Markdown Results ###Code df_results = pd.DataFrame() for inference_method in ['EP', 'VMP', 'Gibbs']: for observe in ['first', 'second', 'both']: if (inference_method in ['VMP', 'Gibbs']) & (observe == 'both'): continue cmd = f'dotnet run --project {model_dir} {data_dir} {observe} {inference_method}' print(cmd) start = time() stream = os.popen(cmd) done = time() elapsed = done - start print(stream.read()) df_result = pd.read_csv(data_dir/'results.csv', sep=';') df_result['observed'] = observe df_result['inference'] = inference_method df_result['time'] = elapsed df_results = pd.concat([df_results, df_result]) df_results.head(10) output_dir = Path('./output') if not output_dir.exists(): os.mkdir(output_dir) for inference_method in ['EP', 'VMP', 'Gibbs']: g = sns.FacetGrid(data=df_results[df_results.inference == inference_method], height=2, aspect=2, margin_titles=True, despine=False, col='probability', row='observed') g.map_dataframe(sns.scatterplot, x='variable', hue='variable', s=300, y='mean') g.fig.subplots_adjust(wspace=0.3, hspace=0.1) g.set(ylim=(-0.2, 1.2)) g.add_legend() g.fig.savefig(output_dir/f'{inference_method}.png') ###Output _____no_output_____
_jupyter/.ipynb_checkpoints/2020-04-22-Multi-Armed Bandits-checkpoint.ipynb
###Markdown Multi-Armed Bandits ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____
collegepredict.ipynb
###Markdown ###Code from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, ShuffleSplit, GridSearchCV from sklearn import svm from sklearn import metrics from sklearn.preprocessing import LabelEncoder # 1.Load the data from “college.csv” that has attributes collected about private and public colleges # for a particular year. We will try to predict the private/public status of the college from other attributes. from google.colab import files uploaded = files.upload() import io df2 = pd.read_csv(io.BytesIO(uploaded['College.csv'])) # Dataset is now stored in a Pandas Dataframe df2.head() labelencoder = LabelEncoder() df2["Private"] = labelencoder.fit_transform(df2["Private"]) df2.head() # 2.Use LabelEncoder to encode the target variable in to numerical form and split the data such that 20% of the data is set aside fortesting. X = df2.iloc[:, 1:] Y = df2["Private"] train_x, test_x, train_y, test_y = train_test_split( X, Y, test_size=0.30, random_state=10) # 3.Fit a linear svm from scikit learn and observe the accuracy.[Hint:Use Linear SVC model_svm = svm.LinearSVC() model_svm.fit(train_x, train_y) predicted_values = model_svm.predict(test_x) print("\nAccuracy Score\n") print(metrics.accuracy_score(predicted_values, test_y)) # 4.Preprocess the data using StandardScalar and fit the same model again and observe the change in accuracy. # [Hint: Refer to scikitlearn’s preprocessing methods] # http://benalexkeen.com/feature-scaling-with-scikit-learn/ scaler_df = StandardScaler().fit_transform(X) scaler_df = pd.DataFrame(X, columns=X.columns) X = scaler_df Y = df2["Private"] train_x, test_x, train_y, test_y = train_test_split( X, Y, test_size=0.30, random_state=10) model_svm = svm.LinearSVC() model_svm.fit(train_x, train_y) predicted_values = model_svm.predict(test_x) metrics.accuracy_score(predicted_values, test_y) #5.Use scikit learn’s gridsearch to select the best hyperparameter for a non-linear SVM,identify the model with # best score and its parameters. # [Hint: Refer to model_selection module of Scikit learn] # https://chrisalbon.com/machine_learning/model_evaluation/cross_validation_parameter_tuning_grid_search/ parameter_candidates = [ {'C': [1, 10, 100, 1000], 'kernel': ['poly']}, {'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}, ] # Create a classifier object with the classifier and parameter candidates cv = ShuffleSplit() clf = GridSearchCV(estimator=svm.SVC(max_iter=1000), param_grid=parameter_candidates, n_jobs=-1, cv=cv) # Train the classifier on data1's feature and target data clf.fit(train_x, train_y) # View the accuracy score print('Best score for data1:', clf.best_score_) # View the best parameters for the model found using grid search print('Best C:', clf.best_estimator_.C) print('Best Kernel:', clf.best_estimator_.kernel) print('Best Gamma:', clf.best_estimator_.gamma) ###Output Best score for data1: 0.9254545454545454 Best C: 1 Best Kernel: poly Best Gamma: scale
data_infra/notebooks/notebook_data_infra_functions.ipynb
###Markdown Notebook: Testing Our data_infra Package data_infra Package: PostgreSQL DB; AWS SQS, S3, etc. ###Code # NOTE: First make sure you are in the TeamReel DS parent directory # (not the 'notebooks_modeling' directory): ls ###Output LICENSE dummy-test-api/ README.md notebook_data_infra_functions.ipynb data_infra/ notebooks_modeling/ ###Markdown ------------------------ get_next_video(): Database Info & Raw Video File Gets the next newly uploaded video from our queue, downloads it to the project folder, queries our database for info about that video, prompt and user, and returns that info in a Python dictionary. ###Code # Import: # (Note: Make sure you are in the TeamReel DS parent directory, not 'notebooks_modeling'.) from data_infra import get_next_video help(get_next_video) video_info = get_next_video() video_info # And now the raw video file is in our project folder too: ls ###Output ALPACAVID-wHgVXLxaK.webm dummy-test-api/ LICENSE notebook_data_infra_functions.ipynb README.md notebooks_modeling/ data_infra/ ###Markdown ------------------ get_video_info(video_s3_key=______): Database Info Only Gets the video, prompt and user info for the specified video (using the input video_s3_key string) from our DB, and returns it in a Python dictionary. Does NOT download the video file. ###Code # Import: # (Note: Make sure you are in the TeamReel DS parent directory, not 'notebooks_modeling'.) from data_infra import get_video_info help(get_video_info) video_info = get_video_info(video_s3_key='videos/ALPACAVID-i7swK-Wzc.webm') video_info ###Output _____no_output_____ ###Markdown --------------------------- get_feedback_for_video(video_id=_____): All feedback on that video ###Code # Import: # (Note: Make sure you are in the TeamReel DS parent directory, not 'notebooks_modeling'.) from data_infra import get_feedback_for_video help(get_feedback_for_video) get_feedback_for_video(video_id=134) ###Output _____no_output_____ ###Markdown ---------------------------- get_feedback_for_user(user_id=int): All feedback on all of that user's videos ###Code # Import: # (Note: Make sure you are in the TeamReel DS parent directory, not 'notebooks_modeling'.) from data_infra import get_feedback_for_user help(get_feedback_for_user) get_feedback_for_user(user_id=185) ###Output _____no_output_____
Recomendation_system/content_based_filtering/contecnt_based_filtering.ipynb
###Markdown CONTENT-BASED FILTERINGRecommendation systems are a collection of algorithms used to recommend items to users based on information taken from the user. __These systems have become ubiquitous, and can be commonly seen in online stores, movies databases and job finders.__ In this notebook, we will explore Content-based recommendation systems and implement a simple version of one using Python and the Pandas library. Acquiring the DataDownload Data From __[HERE](https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip)__ ###Code !wget -O moviedataset.zip https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip print('unziping ...') !unzip -o -j moviedataset.zip ###Output --2020-02-28 22:54:30-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196 Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.196|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 160301210 (153M) [application/zip] Saving to: ‘moviedataset.zip’ moviedataset.zip 100%[===================>] 152.88M 772KB/s in 3m 52s 2020-02-28 22:58:24 (676 KB/s) - ‘moviedataset.zip’ saved [160301210/160301210] unziping ... Archive: moviedataset.zip inflating: links.csv inflating: movies.csv inflating: ratings.csv ###Markdown PreprocessingFirst, let's get all of the imports out of the way: ###Code #Dataframe manipulation library import pandas as pd #Math functions, we'll only need the sqrt function so let's import only that from math import sqrt import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Load Ratings Data ###Code ratings_df = pd.read_csv('ratings.csv') ratings_df.head() ###Output _____no_output_____ ###Markdown Load Movie Data ###Code #Storing the movie information into a pandas dataframe movies_df = pd.read_csv('movies.csv') movies_df.head() ###Output _____no_output_____ ###Markdown Let's also remove the year from the __title__ column by using pandas' replace function and store in a new __year__ column. ###Code #Using regular expressions to find a year stored between parentheses #We specify the parantheses so we don't conflict with movies that have years in their titles movies_df['year'] = movies_df.title.str.extract('(\(\d\d\d\d\))',expand=False) #Removing the parentheses movies_df['year'] = movies_df.year.str.extract('(\d\d\d\d)',expand=False) #Removing the years from the 'title' column movies_df['title'] = movies_df.title.str.replace('(\(\d\d\d\d\))', '') #Applying the strip function to get rid of any ending whitespace characters that may have appeared movies_df['title'] = movies_df['title'].apply(lambda x: x.strip()) movies_df.head() ###Output _____no_output_____ ###Markdown With that, let's also split the values in the Genres column into a list of Genres to simplify future use. This can be achieved by applying __Python's split__ string function on the correct column. ###Code #Every genre is separated by a | so we simply have to call the split function on | movies_df['genres'] = movies_df.genres.str.split('|') movies_df.head() ###Output _____no_output_____ ###Markdown Since keeping genres in a list format isn't optimal for the content-based recommendation system technique, we will use the One Hot Encoding technique to convert the list of genres to a vector where each column corresponds to one possible value of the feature. This encoding is needed for feeding categorical data. In this case, we store every different genre in columns that contain either 1 or 0. 1 shows that a movie has that genre and 0 shows that it doesn't. Let's also store this dataframe in another variable since genres won't be important for our first recommendation system. ###Code #Copying the movie dataframe into a new one since we won't need to use the genre information in our first case. moviesWithGenres_df = movies_df.copy() #For every row in the dataframe, iterate through the list of genres and place a 1 into the corresponding column for index, row in movies_df.iterrows(): for genre in row['genres']: moviesWithGenres_df.at[index, genre] = 1 #Filling in the NaN values with 0 to show that a movie doesn't have that column's genre moviesWithGenres_df = moviesWithGenres_df.fillna(0) moviesWithGenres_df.head() ###Output _____no_output_____ ###Markdown Next, let's look at the ratings dataframe. ###Code ratings_df.head() ###Output _____no_output_____ ###Markdown Every row in the ratings dataframe has a user id associated with at least one movie, a rating and a timestamp showing when they reviewed it. We won't be needing the timestamp column, so let's drop it to save on memory. ###Code #Drop removes a specified row or column from a dataframe ratings_df = ratings_df.drop('timestamp', 1) ratings_df.head() ###Output _____no_output_____ ###Markdown Content-Based recommendation system¶Now, let's take a look at how to __implement Content-Based or Item-Item recommendation systems.__ This technique attempts to figure out what a user's favourite aspects of an item is, and then recommends items that present those aspects. In our case, we're going to try to figure out the input's favorite genres from the movies and ratings given.Let's begin by creating an input user to recommend movies to:Notice: To add more movies, simply increase the amount of elements in the __userInput.__ Feel free to add more in! Just be sure to write it in with capital letters and if a movie starts with a "The", like "The Matrix" then write it in like this: 'Matrix, The' . ###Code userInput = [ {'title':'Breakfast Club, The', 'rating':5}, {'title':'Toy Story', 'rating':3.5}, {'title':'Jumanji', 'rating':2}, {'title':"Pulp Fiction", 'rating':5}, {'title':'Akira', 'rating':4.5} ] inputMovies = pd.DataFrame(userInput) inputMovies ###Output _____no_output_____ ###Markdown Add movieId to input userWith the input complete, let's extract the input movie's ID's from the movies dataframe and add them into it.We can achieve this by first filtering out the rows that contain the input movie's title and then merging this subset with the input dataframe. We also drop unnecessary columns for the input to save memory space. ###Code #Filtering out the movies by title inputId = movies_df[movies_df['title'].isin(inputMovies['title'].tolist())] inputId.head() # Then merging it so we can get the movieId. It's implicitly merging it by title. inputMovies = pd.merge(inputId, inputMovies) inputMovies.head() # Dropping information we won't use from the input dataframe inputMovies = inputMovies.drop('genres', 1).drop('year', 1) inputMovies #Final input dataframe #If a movie you added in above isn't here, then it might not be in the original #dataframe or it might spelled differently, please check capitalisation. inputMovies ###Output _____no_output_____ ###Markdown We're going to start by learning the input's preferences, so let's get the subset of movies that the input has watched from the Dataframe containing genres defined with binary values. ###Code #Filtering out the movies from the input userMovies = moviesWithGenres_df[moviesWithGenres_df['movieId'].isin(inputMovies['movieId'].tolist())] userMovies ###Output _____no_output_____ ###Markdown We'll only need the actual genre table, so let's clean this up a bit by resetting the index and dropping the movieId, title, genres and year columns. ###Code #Resetting the index to avoid future issues userMovies = userMovies.reset_index(drop=True) #Dropping unnecessary issues due to save memory and to avoid issues userGenreTable = userMovies.drop('movieId', 1).drop('title', 1).drop('genres', 1).drop('year', 1) userGenreTable ###Output _____no_output_____ ###Markdown Now we're ready to start learning the input's preferences!To do this, we're going to turn each genre into weights. We can do this by using the input's reviews and multiplying them into the input's genre table and then summing up the resulting table by column. This operation is actually a dot product between a matrix and a vector, so we can simply accomplish by calling Pandas's "dot" function. ###Code inputMovies['rating'] #Dot produt to get weights userProfile = userGenreTable.transpose().dot(inputMovies['rating']) #The user profile userProfile ###Output _____no_output_____ ###Markdown Now, we have the weights for every of the user's preferences. This is known as the User Profile. Using this, we can recommend movies that satisfy the user's preferences.Let's start by extracting the genre table from the original dataframe: ###Code #Now let's get the genres of every movie in our original dataframe genreTable = moviesWithGenres_df.set_index(moviesWithGenres_df['movieId']) #And drop the unnecessary information genreTable = genreTable.drop('movieId', 1).drop('title', 1).drop('genres', 1).drop('year', 1) genreTable.head() genreTable.shape ###Output _____no_output_____ ###Markdown With the input's profile and the complete list of movies and their genres in hand, we're going to take the weighted average of every movie based on the input profile and recommend the top twenty movies that most satisfy it. ###Code #Multiply the genres by the weights and then take the weighted average recommendationTable_df = ((genreTable*userProfile).sum(axis=1))/(userProfile.sum()) recommendationTable_df.head() #Sort our recommendations in descending order recommendationTable_df = recommendationTable_df.sort_values(ascending=False) #Just a peek at the values recommendationTable_df.head() ###Output _____no_output_____ ###Markdown Now here's the recommendation table! ###Code #The final recommendation table movies_df.loc[movies_df['movieId'].isin(recommendationTable_df.head(20).keys())] ###Output _____no_output_____
captcha.ipynb
###Markdown CREATING IMAGE CAPTCHA 1. IMPORT CAPTCHA.IMAGE 2. GENERATE A RANDOM TEXT FOR THE CAPTCHA 3. GIVE A RANDOM FILE NAME TO WRITE THE CAPTCHA ###Code image=ImageCaptcha(width=240,height=86) data=image.generate('kavyashree') image.write('kavyashree','myimagecaptcha.png') ###Output _____no_output_____ ###Markdown CREATING AUDIO CAPTCHA 1. IMPORT CAPTCHA.AUDIO 2.GENERATE AUDIO 3.GIVE A RANDOM FILE NAME TO WRITE THE AUDIO ###Code from captcha.audio import AudioCaptcha audio=AudioCaptcha() data1=audio.generate('205') audio.write('205','myaudiocaptcha.wav') ###Output _____no_output_____
coco/upload_coco.ipynb
###Markdown Install Hub, Coco API ###Code !pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI' !pip install hub ###Output _____no_output_____ ###Markdown Download and Unzip COCO Data ###Code # ONLY RUN ONCE !mkdir ./Datasets/coco !mkdir ./Datasets/coco/annotations !wget -P ./Datasets/coco http://images.cocodataset.org/zips/train2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/zips/val2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/zips/test2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/zips/unlabeled2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/annotations/annotations_trainval2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/annotations/image_info_test2017.zip !wget -P ./Datasets/coco http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip !unzip -q ./Datasets/coco/train2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/val2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/test2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/unlabeled2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/annotations_trainval2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/stuff_annotations_trainval2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/image_info_test2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/image_info_unlabeled2017.zip -d ./Datasets/coco !unzip -q ./Datasets/coco/annotations/stuff_val2017_pixelmaps.zip -d ./Datasets/coco/annotations !unzip -q ./Datasets/coco/annotations/stuff_train2017_pixelmaps.zip -d ./Datasets/coco/annotations !rm -r ./Datasets/coco/train2017.zip !rm -r ./Datasets/coco/val2017.zip !rm -r ./Datasets/coco/test2017.zip !rm -r ./Datasets/coco/unlabeled2017.zip !rm -r ./Datasets/coco/stuff_annotations_trainval2017.zip !rm -r ./Datasets/coco/image_info_unlabeled2017.zip !rm -r ./Datasets/coco/image_info_test2017.zip !rm -r ./Datasets/coco/annotations_trainval2017.zip ###Output _____no_output_____ ###Markdown Import Dataset To Hub ###Code %env BUGGER_OFF=true !activeloop reporting --off import hub import numpy as np import os from pycocotools.coco import COCO from PIL import Image import time from tqdm import tqdm ###Output _____no_output_____ ###Markdown User Inputs ###Code data_dir='./Datasets/coco' data_type='val' # Valid choices are 'train' and 'val'. Testing is a special case at the end of the notebook hub_path = './Datasets/coco_local_{}'.format(data_type) # 'hub://my_worksace/coco_{}'.format(data_type) limit = 1e10 # Limit the number of images ###Output _____no_output_____ ###Markdown Load Annotations ###Code ann_file='{}/annotations/instances_{}2017.json'.format(data_dir,data_type) ann_file_kp = '{}/annotations/person_keypoints_{}2017.json'.format(data_dir,data_type) ann_file_stuff = '{}/annotations/stuff_{}2017.json'.format(data_dir,data_type) img_root='{}/{}2017/'.format(data_dir,data_type) coco = COCO(ann_file) coco_kp=COCO(ann_file_kp) coco_stuff=COCO(ann_file_stuff) category_info = coco.loadCats(coco.getCatIds()) category_info_kp = coco_kp.loadCats(coco_kp.getCatIds()) category_info_stuff = coco_stuff.loadCats(coco_stuff.getCatIds()) ###Output _____no_output_____ ###Markdown Create hub dataset ###Code # Login to activeloop if using Activeloop Storage (hub://.....) !activeloop login -u 'username' -p 'password' #Specify dataset path ds = hub.empty(hub_path, overwrite = True) # Set overwrite = True if you need to start over ###Output _____no_output_____ ###Markdown Create lists for all the class_names ###Code cat_names = [category['name'] for category in category_info] super_cat_names = list(set([category['supercategory'] for category in category_info])) cat_names_kp = [category['name'] for category in category_info_kp] super_cat_names_kp = list(set([category['supercategory'] for category in category_info_kp])) cat_names_stuff = [category['name'] for category in category_info_stuff] super_cat_names_stuff = list(set([category['supercategory'] for category in category_info_stuff])) ###Output _____no_output_____ ###Markdown Upload data to Hub dataset ###Code img_ids = sorted(coco.getImgIds()) # Image ids for uploading count = 1 start_time = time.time() with ds: ## ---- Create Tensors ----- ## #Primary Data ds.create_tensor('images', htype = 'image', sample_compression = 'jpg') ds.create_tensor('images_meta', htype = 'json') ds.create_tensor('masks', htype = 'binary_mask', sample_compression = 'lz4') ds.create_tensor('boxes', htype = 'bbox') ds.create_tensor('categories', htype = 'class_label', class_names = cat_names) ds.create_tensor('super_categories', htype = 'class_label', class_names = super_cat_names) ds.create_tensor('areas', dtype = 'uint32') ds.create_tensor('iscrowds', dtype = 'bool') #Pose ds.create_group('pose') ds.pose.create_tensor('categories', htype = 'class_label', class_names = cat_names_kp) ds.pose.create_tensor('super_categories', htype = 'class_label', class_names = super_cat_names_kp) ds.pose.create_tensor('boxes', htype = 'bbox') ds.pose.create_tensor('keypoints', htype = 'keypoints_coco', dtype = 'int32') ds.pose.create_tensor('masks', htype = 'binary_mask', sample_compression = 'lz4') #Stuff Segmentation ds.create_group('stuff') ds.stuff.create_tensor('masks', htype = 'binary_mask', sample_compression = 'lz4') ds.stuff.create_tensor('boxes', htype = 'bbox') ds.stuff.create_tensor('categories', htype = 'class_label', class_names = cat_names_stuff) ds.stuff.create_tensor('super_categories', htype = 'class_label', class_names = super_cat_names_stuff) ds.stuff.create_tensor('areas', dtype = 'uint32') ds.stuff.create_tensor('iscrowds', dtype = 'bool') #Further updates to meta information ds.categories.info.update(category_info = category_info, notes = 'Numeric labels for categories represent the position of the class in the ds.categories.info.class_names list, and not the COCO category id.') ds.super_categories.info.update(category_info = category_info, notes = 'Numeric labels for super_categories represent the position of the class in the ds.super_categories.info.class_names list, and not the COCO category id.') ds.masks.info.update(notes = 'All segmentation polygons and RLEs were converted to stacked binary masks') ds.pose.masks.info.update(category_info = category_info_kp, notes = 'All segmentation polygons and RLEs were converted to stacked binary masks') ds.pose.keypoints.info.update(keypoints = [category['keypoints'] for category in category_info_kp][0], connections = [category['skeleton'] for category in category_info_kp][0]) ds.stuff.masks.info.update(category_info = category_info_stuff, notes = 'All segmentation polygons and RLEs were converted to stacked binary masks') ## ---- Iterate through each image and upload data ----- ## for img_id in img_ids: ann_ids = coco.getAnnIds(img_id) ann_ids_kp = coco_kp.getAnnIds(img_id) ann_ids_stuff = coco_stuff.getAnnIds(img_id) anns = coco.loadAnns(ann_ids) anns_kp = coco_kp.loadAnns(ann_ids_kp) anns_stuff = coco_stuff.loadAnns(ann_ids_stuff) img_coco = coco.loadImgs(img_id)[0] img_fn = os.path.join(img_root, img_coco['file_name']) img = Image.open(img_fn) dims = img.size #Iterate through annotations and parse each #First Create empty arrays for all annotations masks = np.zeros((dims[1], dims[0], len(anns))) boxes = np.zeros((len(anns),4)) categories = np.zeros((len(anns))) supercats = np.zeros((len(anns))) areas = np.zeros((len(anns))) iscrowds = np.zeros((len(anns))) supercats = np.zeros((len(anns))) #Then populate the arrays with the annotations data for i, ann in enumerate(anns): mask = coco.annToMask(ann) #Convert annotation to mask masks[:,:,i] = mask boxes[i,:] = ann['bbox'] # Do a brute force search and make no assumptions between order of relationship of category ids categories[i] = cat_names.index([category_info[i]['name'] for i in range(len(category_info)) if category_info[i]['id']==ann['category_id']][0]) supercats[i] = super_cat_names.index([category_info[i]['supercategory'] for i in range(len(category_info)) if category_info[i]['id']==ann['category_id']][0]) areas[i] = ann['area'] iscrowds[i] = ann['iscrowd'] if 'segmentation' not in ann: print('--- No segmentation found in annotations. ---') print('Annotation length: {}'.format(len(anns))) print('--- image id: {} ---'.format(img_id)) #Iterate through keypoints and parse each categories_kp = np.zeros((len(anns_kp))) supercats_kp = np.zeros((len(anns_kp))) masks_kp = np.zeros((dims[1], dims[0], len(anns_kp))) boxes_kp = np.zeros((len(anns_kp),4)) keypoints_kp = np.zeros((51,len(anns_kp))) for j, ann_kp in enumerate(anns_kp): categories_kp[j] = cat_names_kp.index([category_info_kp[i]['name'] for i in range(len(category_info_kp)) if category_info_kp[i]['id']==ann_kp['category_id']][0]) supercats_kp[j] = super_cat_names_kp.index([category_info_kp[i]['supercategory'] for i in range(len(category_info_kp)) if category_info_kp[i]['id']==ann_kp['category_id']][0]) mask_kp = coco.annToMask(ann_kp) #Convert annotation to mask masks_kp[:,:,j] = mask_kp boxes_kp[j,:] = ann_kp['bbox'] keypoints_kp[:,j] = np.array(ann_kp['keypoints']) #Iterate through stuff and parse each masks_stuff = np.zeros((dims[1], dims[0], len(anns_stuff))) boxes_stuff = np.zeros((len(anns_stuff),4)) categories_stuff = np.zeros((len(anns_stuff))) supercats_stuff = np.zeros((len(anns_stuff))) areas_stuff = np.zeros((len(anns_stuff))) iscrowds_stuff = np.zeros((len(anns_stuff))) supercats_stuff = np.zeros((len(anns_stuff))) for k, ann_stuff in enumerate(anns_stuff): mask_stuff = coco.annToMask(ann_stuff) #Convert annotation to mask masks_stuff[:,:,k] = mask_stuff boxes_stuff[k,:] = ann['bbox'] # Do a brute force search and make no assumptions between order of relationship of category ids categories_stuff[k] = cat_names_stuff.index([category_info_stuff[i]['name'] for i in range(len(category_info_stuff)) if category_info_stuff[i]['id']==ann_stuff['category_id']][0]) supercats_stuff[k] = super_cat_names_stuff.index([category_info_stuff[i]['supercategory'] for i in range(len(category_info_stuff)) if category_info_stuff[i]['id']==ann_stuff['category_id']][0]) areas_stuff[k] = ann_stuff['area'] iscrowds_stuff[k] = ann_stuff['iscrowd'] if 'segmentation' not in ann_stuff: print('--- No segmentation found in stuff annotations. ---') print('Annotation length: {}'.format(len(anns))) print('--- image id: {} ---'.format(img_id)) #Append data to hub. Only do this after all annotations have been parsed. try: ds.images.append(hub.read(img_fn, verify = True)) ds.images_meta.append(img_coco) ds.masks.append(masks.astype('bool')) ds.boxes.append(boxes.astype('float32')) ds.categories.append(categories.astype('uint32')) ds.super_categories.append(supercats.astype('uint32')) ds.areas.append(areas.astype('uint32')) ds.iscrowds.append(iscrowds.astype('bool')) ds.pose.categories.append(categories_kp.astype('uint32')) ds.pose.super_categories.append(supercats_kp.astype('uint32')) ds.pose.boxes.append(boxes_kp.astype('float32')) ds.pose.masks.append(masks_kp.astype('bool')) ds.pose.keypoints.append(keypoints_kp.astype('int32')) ds.stuff.masks.append(masks_stuff.astype('bool')) ds.stuff.boxes.append(boxes_stuff.astype('float32')) ds.stuff.categories.append(categories_stuff.astype('uint32')) ds.stuff.super_categories.append(supercats_stuff.astype('uint32')) ds.stuff.areas.append(areas_stuff.astype('uint32')) ds.stuff.iscrowds.append(iscrowds_stuff.astype('bool')) except Exception as e: print(e) if count%100==0: print('Uploaded {} images'.format(count)) if count>=limit: break count+=1 print('Finished') end_time = time.time() print('Upload took {} seconds'.format(end_time-start_time)) ###Output _____no_output_____ ###Markdown Special case - COCO Test dataset without annotations ###Code data_dir='./Datasets/coco' data_type='test' hub_path = './Datasets/coco_local_{}'.format(data_type) # 'hub://my_worksace/coco_{}'.format(data_type) limit = 1e10 # Limit the number of images ann_file='{}/annotations/image_info_{}2017.json'.format(data_dir,data_type) #There are no actual annotations, just images img_root='{}/{}2017/'.format(data_dir,data_type) coco = COCO(ann_file) #Specify dataset path ds = hub.empty(hub_path) # Set overwrite = True if you need to start over img_ids = sorted(coco.getImgIds()) # Image ids for uploading count = 1 start_time = time.time() with ds: ## ---- Create Tensors ----- ## ds.create_tensor('images', htype = 'image', sample_compression = 'jpg') ds.create_tensor('images_meta', htype = 'json') ## ---- Iterate through each image and upload data ----- ## for img_id in img_ids: img_coco = coco.loadImgs(img_id)[0] img_fn = os.path.join(img_root, img_coco['file_name']) img = Image.open(img_fn) dims = img.size #Append data to hub try: ds.images.append(hub.read(img_fn, verify = True)) ds.images_meta.append(img_coco) except Exception as e: print(e) if count%100==0: print('Uploaded {} images'.format(count)) if count>=limit: break count+=1 print('Finished') end_time = time.time() print('Upload took {} seconds'.format(end_time-start_time)) ###Output _____no_output_____
content/06. Where in the world are we/06.4 Keeping track of direction.ipynb
###Markdown 4 Keeping track of direction – which way are we heading?As well as keeping track of how much the wheels have turned, and estimating location on that basis, we can also use the robot’s gyroscope – often referred to as a ‘gyro’ – sensor to tell us which direction it is facing.In the following activities, you will see how the gyroscope and position sensors can be used to keep track of where the robot has been, as well as helping it get to where it needs to go.So let’s get the simulated loaded in the normal way and then find out where we’re heading next... ###Code from nbev3devsim.load_nbev3devwidget import roboSim, eds %load_ext nbev3devsim ###Output _____no_output_____ ###Markdown 4.1 Activity – Detecting orientationThe following program defines a simple edge follower that allows the robot to navigate its way around the shape described in the *Two_shapes* background, logging the gyro sensor as it does so.Show the chart, enable the gyro trace, and download and run the program. Purely by observation of the chart view of the gyro data, do you think you would be able to determine the shape corresponding to the path followed by the robot?*Stop the downloaded program executing either from the _Simulator controls_ or the simulator keyboard shortcut (`S`).* ###Code %%sim_magic_preloaded -c -b Two_shapes -x 400 -y 700 -a -90 colorRight = ColorSensor(INPUT_3) gyro = GyroSensor(INPUT_4) while True: # Get the gyro value print('Gyro: '+str(gyro.angle)) intensity_right = colorRight.reflected_light_intensity_pc if intensity_right > 70: left_motor_speed = SpeedPercent(0) right_motor_speed = SpeedPercent(20) else: left_motor_speed = SpeedPercent(20) right_motor_speed = SpeedPercent(0) tank_drive.on(left_motor_speed, right_motor_speed) ###Output _____no_output_____ ###Markdown *Add your observations about the gyro data trace as the robot follows the boundary of the provided shape. To what extent can you use the data to identify the shape of the route taken by the robot? How might you identify the path more exactly?*  Example observations*Click on the arrow in the sidebar or run this cell to reveal some example observations.* The gyro sensor values follow a stepped trace in the chart, dropping by 90 or so every time the robot turns a corner, corresponding to a right-angled turn anticlockwise. The values oscillate as the robot proceeds, wiggling as it follows the edge of the line. The width (as measured along the *x*-axis) of each step is roughly the same, so the robot is describing a square.I also noticed that the angle count is not a direction: it seems to be an accumulated count of degrees turned in a particular direction. If the robot were to turn the other way then I would expect the count to go down. I even did a little experiment to check that. ###Code %%sim_magic_preloaded -c gyro = GyroSensor(INPUT_4) say('Turn one way') tank_drive.on(SpeedPercent(20), SpeedPercent(0)) while gyro.angle < 90: print('Gyro: '+str(gyro.angle)) say('and the other') # Turn the other way tank_drive.on(SpeedPercent(0), SpeedPercent(20)) while gyro.angle > 0: print('Gyro: '+str(gyro.angle)) say('all done') ###Output _____no_output_____ ###Markdown 4.2 Challenge – Navigating to a specified locationThe *WRO_2018_Regular_Junior* challenge background has several coloured areas marked on it at (350, 580), (1180, 960) and (2000, 580).__You should not spend more than 30–45 minutes on this challenge.__From the starting location of the robot at (1180, 150, 90), see if you can write a program that drives the robot using dead reckoning – that is, using just the motor `position` and the gyro `angle` values – to drive the robot to one of those locations. Then see if you can get it to drive to one of the other locations.The background coordinates give locations in millimetres relative to a fixed origin.Once you have got your program to work reasonably reliably, try adding some noise to the motors using the *Wheel noise* slider in the simulator. Does this have any effect on the performance of your control program? *You may find it helpful to do some sums to calculate how far the robot has to travel. Make some notes on that here.* ###Code # Maybe try out some sums here? %%sim_magic_preloaded -p -x -1180 -y 150 -a 90 -b WRO_2018_Regular_Junior # YOUR CODE HERE ###Output _____no_output_____ ###Markdown 4 Keeping track of direction — which way are we heading?As well as keeping track of how much the wheels have turned, and estimating location on that basis, we can also use the robot’s gyroscope – often referred to as a ‘gyro’ – sensor to tell us which direction it is facing.In the following activities, you will see how the gyroscope and position sensors can be used to keep track of where the robot has been, as well as helping it get to where it needs to go.So let's get the simulated loaded in the normal way and then find out where we're heading next... ###Code from nbev3devsim.load_nbev3devwidget import roboSim, eds %load_ext nbev3devsim ###Output _____no_output_____ ###Markdown 4.1 Activity — Detecting orientationThe following program defines a simple edge follower that allows the robot to navigate its way around the shape described in the *Two_shapes* background, logging the gyro sensor as it does so.Show the chart, enable the gyro trace, and download and run the program. Purely by observation of the chart view of the gyro data, do you think you would be able to determine the shape corresponding to the path followed by the robot?*Stop the downloaded program executing either from the _Simulator controls_ or the simulator keyboard shortcut (`S`).* ###Code %%sim_magic_preloaded -c -b Two_shapes -x 400 -y 700 -a -90 colorRight = ColorSensor(INPUT_3) gyro = GyroSensor(INPUT_4) while True: #Get the gyro value print('Gyro: '+str(gyro.angle)) intensity_right = colorRight.reflected_light_intensity_pc if intensity_right > 70: left_motor_speed = SpeedPercent(0) right_motor_speed = SpeedPercent(20) else: left_motor_speed = SpeedPercent(20) right_motor_speed = SpeedPercent(0) tank_drive.on(left_motor_speed, right_motor_speed) ###Output _____no_output_____ ###Markdown *Add your observations about the gyro data trace as the robot follows the boundary of the provided shape. To what extent can you use the data to identify the shape of the route taken by the robot? How might you identify the path more exactly?*  Example observations*Click on the arrow in the sidebar or run this cell to reveal some example observations.* The gyro sensor values follow a stepped trace in the chart, dropping by 90 or so every time the robot turns a corner, corresponding to a right-angled turn anticlockwise. The values oscillate as the robot proceeds, wiggling as it follows the edge of the line. The width (as measured along the x-axis) of each step is roughly the same, so the robot is describing a square.I also noticed that the angle count is not a direction: it seems to be an accumulated count of degrees turned in a particular direction. If the robot were to turn the other way then I would expect the count to go down. I even did a little experiment to check that. ###Code %%sim_magic_preloaded -c gyro = GyroSensor(INPUT_4) say('Turn one way') tank_drive.on(SpeedPercent(20), SpeedPercent(0)) while gyro.angle < 90: print('Gyro: '+str(gyro.angle)) say('and the other') # Turn the other way tank_drive.on(SpeedPercent(0), SpeedPercent(20)) while gyro.angle > 0: print('Gyro: '+str(gyro.angle)) say('all done') ###Output _____no_output_____ ###Markdown 4.2 Challenge — Navigating to a specified locationThe *WRO_2018_Regular_Junior* challenge background has several coloured areas marked on it at (350, 580), (1180, 960) and (2000, 580).__You should not spend more than 30-45 minutes on this challenge.__From the starting location of the robot at (1180, 150, 90), see if you can write a program that drives the robot using dead reckoning – that is, using just the motor `position` and the gyro `angle` values – to drive the robot to one of those locations. Then see if you can get it to drive to one of the other locations.The background co-ordinates give locations in millimeters relative to a fixed origin.Once you have got your program to work reasonably reliably, try adding some noise to the motors using the *Wheel noise* slider in the simulator. Does this have any effect on the performance of your control program? *You may find it helpful to do some sums to calculate how far the robot has to travel. Make some notes on that here.* ###Code # Maybe try our some sums here? %%sim_magic_preloaded -p -x -1180 -y 150 -a 90 -b WRO_2018_Regular_Junior # YOUR CODE HERE ###Output _____no_output_____
Cycle_GAN.ipynb
###Markdown Parameter Setting* You can adjust the parameters to yourself ###Code print('STEP 0: PARAMETER SETTING') # Data root directory train_X_root = 'dataset/lab14/mnist/' train_Y_root = 'dataset/lab14/svhn/' # Weight save directory vis_num = 2 save_dir = 'cyclegan' if not osp.exists(save_dir): os.makedirs(save_dir) # Batch size during training bs = 64 # Size of image img_height = 32 img_width = 32 img_size = 32 img_channel = 3 # Channels of generator feature gfc = 32 # Channels of discriminator feature dfc = 32 # Number of training epochs num_epochs = 5 # Learning rate for optimizing lr = 0.0001 # Beta1 hyperparameter for Adam optimizers beta1 = 0.5 # Real or Fake label real_label = 0.97 fake_label = 0.03 print('STEP 1: LOADING DATASET') transform_1ch = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) transform_3ch = transforms.Compose([ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_X_set = dset.MNIST(root=train_X_root, train=True, transform=transform_1ch, download=False) train_Y_set = dset.SVHN(root=train_Y_root, split='train', transform=transform_3ch, download=False) test_X_set = dset.MNIST(root=train_X_root, train=False, transform=transform_1ch, download=False) test_Y_set = dset.SVHN(root=train_Y_root, split='test', transform=transform_3ch, download=False) print('STEP 2: MAKING DATASET ITERABLE') train_X_loader = torch.utils.data.DataLoader(train_X_set, batch_size=bs, shuffle=True, drop_last=True) train_Y_loader = torch.utils.data.DataLoader(train_Y_set, batch_size=bs, shuffle=True, drop_last=True) test_X_loader = torch.utils.data.DataLoader(test_X_set, batch_size=bs, shuffle=False, drop_last=True) test_Y_loader = torch.utils.data.DataLoader(test_Y_set, batch_size=bs, shuffle=False, drop_last=True) ###Output STEP 2: MAKING DATASET ITERABLE ###Markdown Visualize a few images ###Code def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.5, 0.5, 0.5]) std = np.array([0.5, 0.5, 0.5]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated data_loader_X_sample = torch.utils.data.DataLoader(train_X_set, batch_size=4, shuffle=True) data_loader_Y_sample = torch.utils.data.DataLoader(train_Y_set, batch_size=4, shuffle=True) # Get a batch of training data X = next(iter(data_loader_X_sample)) Y = next(iter(data_loader_Y_sample)) # Make a grid from batch out_X = torchvision.utils.make_grid(X[0]) out_Y = torchvision.utils.make_grid(Y[0]) imshow(out_X) imshow(out_Y) def conv2d(params_list, batch_norm = True): channel_in, channel_out, kernel_size, stride, padding, activation = params_list layers = [] if batch_norm: layers += [nn.Conv2d(channel_in, channel_out, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(channel_out)] nn.init.xavier_uniform_(layers[0].weight) else: layers += [nn.Conv2d(channel_in, channel_out, kernel_size, stride, padding, bias=False)] nn.init.xavier_uniform_(layers[0].weight) if activation.lower() == 'relu': layers += [nn.ReLU(inplace=True)] if activation.lower() == 'leakyrelu': layers += [nn.LeakyReLU(0.2, inplace=True)] if activation.lower() == 'tanh': layers += [nn.Tanh()] if activation.lower() == 'sigmoid': layers += [nn.Sigmoid()] return nn.Sequential(*layers) def upconv2d(params_list, batch_norm = True): channel_in, channel_out, kernel_size, stride, padding, activation = params_list layers = [] if batch_norm: layers += [nn.ConvTranspose2d(channel_in, channel_out, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(channel_out)] nn.init.xavier_uniform_(layers[0].weight) else: layers += [nn.ConvTranspose2d(channel_in, channel_out, kernel_size, stride, padding, bias=False)] nn.init.xavier_uniform_(layers[0].weight) if activation.lower() == 'relu': layers += [nn.ReLU(inplace=True)] if activation.lower() == 'leakyrelu': layers += [nn.LeakyReLU(0.2, inplace=True)] if activation.lower() == 'tanh': layers += [nn.Tanh()] if activation.lower() == 'sigmoid': layers += [nn.Sigmoid()] return nn.Sequential(*layers) def transpose(ndarray): return np.transpose(ndarray, [0,2,3,1]) def gray2rgb(ndarray): return np.concatenate((ndarray, ndarray, ndarray), axis=2) print('STEP 3-1: CREATE MODEL CLASS (Generator)') class ResidualBlock(nn.Module): def __init__(self, params_list): super().__init__() self.block = conv2d(params_list) def forward(self, x): return x + self.block(x) # [input channels, output channels, kernel_size, strides, paddings] cfg_g_enc_X = [[1, gfc, 7, 2, 3, 'leakyrelu'], [gfc, gfc*2, 3, 2, 1, 'leakyrelu']] cfg_g_enc_Y = [[3, gfc, 7, 2, 3, 'leakyrelu'], [gfc, gfc*2, 3, 2, 1, 'leakyrelu']] cfg_g_trans = [[gfc*2, gfc*2, 3, 1, 1, 'leakyrelu'], [gfc*2, gfc*2, 3, 1, 1, 'leakyrelu'], [gfc*2, gfc*2, 3, 1, 1, 'leakyrelu']] cfg_g_dec_X = [[gfc*2, gfc, 4, 2, 1, 'leakyrelu'],[gfc, 3, 4, 2, 1, 'tanh']] cfg_g_dec_Y = [[gfc*2, gfc, 4, 2, 1, 'leakyrelu'],[gfc, 1, 4, 2, 1, 'tanh']] class Generator_X(nn.Module): def __init__(self): super(Generator_X, self).__init__() # Encoder self.Encoder = nn.Sequential( conv2d(cfg_g_enc_X[0], batch_norm=False), conv2d(cfg_g_enc_X[1]) ) # Transformer self.Trans = nn.Sequential( ResidualBlock(cfg_g_trans[0]), ResidualBlock(cfg_g_trans[1]), ResidualBlock(cfg_g_trans[2]) ) # Decoder self.Decoder = nn.Sequential( upconv2d(cfg_g_dec_X[0]), upconv2d(cfg_g_dec_X[1], batch_norm=False) ) def forward(self, x): out = self.Encoder(x) out = self.Trans(out) out = self.Decoder(out) return out class Generator_Y(nn.Module): def __init__(self): super(Generator_Y, self).__init__() # Encoder self.Encoder = nn.Sequential( conv2d(cfg_g_enc_Y[0], batch_norm=False), conv2d(cfg_g_enc_Y[1]) ) # Transformer self.Trans = nn.Sequential( ResidualBlock(cfg_g_trans[0]), ResidualBlock(cfg_g_trans[1]), ResidualBlock(cfg_g_trans[2]) ) # Decoder self.Decoder = nn.Sequential( upconv2d(cfg_g_dec_Y[0]), upconv2d(cfg_g_dec_Y[1], batch_norm=False) ) def forward(self, x): out = self.Encoder(x) out = self.Trans(out) out = self.Decoder(out) return out ###Output STEP 3-1: CREATE MODEL CLASS (Generator) ###Markdown 2.2 Write the code (Discriminator) [3 points]* You need to set the hyperparameters for implementing the convolutions (params_list)* There are 'ReLU', 'LeakyReLU', 'Tanh', and 'Sigmoid' for the activation functions* If you do not want to use the activation function, just put '' in the position of the activation function* Other parameters, such as paddings, can be determined by calculating the formulation of convolutional process (See in https://pytorch.org/docs/stable/nn.html)* You have to use the functions **conv2d()** or **upconv2d()** which are defined from above ###Code print('STEP 3-2: CREATE MODEL CLASS (Discriminator)') # [input channels, output channels, kernel_size, strides, paddings] cfg_d_X = [[1, dfc, 4, 2, 1, 'leakyrelu'], [dfc, dfc*2, 4, 2, 2, 'leakyrelu'], [dfc*2, dfc*4, 4, 1, 1, 'leakyrelu'], [dfc*4, 1, 1, 1, 0, 'sigmoid']] cfg_d_Y = [[3, dfc, 4, 2, 1, 'leakyrelu'], [dfc, dfc*2, 4, 2, 2, 'leakyrelu'], [dfc*2, dfc*4, 4, 1, 1, 'leakyrelu'], [dfc*4, 1, 1, 1, 0, 'sigmoid']] class Discriminator_X(nn.Module): def __init__(self): super(Discriminator_X, self).__init__() # Conv self.Conv_X = nn.Sequential( conv2d(cfg_d_X[0], batch_norm=False), conv2d(cfg_d_X[1]), conv2d(cfg_d_X[2]), conv2d(cfg_d_X[3], batch_norm=False) ) def forward(self, x): return self.Conv_X(x) class Discriminator_Y(nn.Module): def __init__(self): super(Discriminator_Y, self).__init__() # Conv self.Conv_Y = nn.Sequential( conv2d(cfg_d_Y[0], batch_norm=False), conv2d(cfg_d_Y[1]), conv2d(cfg_d_Y[2]), conv2d(cfg_d_Y[3], batch_norm=False) ) def forward(self, x): return self.Conv_Y(x) print('STEP 4: INSTANTIATE MODEL CLASS') model_G_X = Generator_X() model_G_Y = Generator_Y() model_D_X = Discriminator_X() model_D_Y = Discriminator_Y() ####################### # USE GPU FOR MODEL # ####################### device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_G_X.to(device) print(model_G_X) model_G_Y.to(device) print(model_G_Y) model_D_X.to(device) print(model_D_X) model_D_Y.to(device) print('STEP 5: INSTANTIATE LOSS CLASS') criterion_GAN = nn.BCELoss() criterion_L1 = nn.L1Loss() print('STEP 6: INSTANTIATE OPTIMIZER CLASS') optimizer_G_X = torch.optim.Adam(model_G_X.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_G_Y = torch.optim.Adam(model_G_Y.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_D_X = torch.optim.Adam(model_D_X.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_D_Y = torch.optim.Adam(model_D_Y.parameters(), lr=lr, betas=(beta1, 0.999)) print('STEP 7: TRAIN THE MODEL') label_real = torch.full((bs, 1, 8, 8), real_label, dtype=torch.float32, device=device) label_fake = torch.full((bs, 1, 8, 8), fake_label, dtype=torch.float32, device=device) num_iter = 0 max_iter = num_epochs*len(train_X_loader) train_start_time = time.time() for epoch in range(1, num_epochs+1): for batch_index, data_X in enumerate(train_X_loader): model_G_X.train() model_G_Y.train() model_D_X.train() model_D_Y.train() data_X = data_X[0].to(device) data_Y = next(iter(train_Y_loader))[0].to(device) ### D optimizer_D_X.zero_grad() optimizer_D_Y.zero_grad() ### D_X output_D_X_real = model_D_X(data_X) err_D_X_real = criterion_GAN(output_D_X_real, label_real) output_D_X_fake = model_D_X(model_G_Y(data_Y)) err_D_X_fake = criterion_GAN(output_D_X_fake, label_fake) err_D_X = err_D_X_real + err_D_X_fake err_D_X.backward() optimizer_D_X.step() ### D_Y output_D_Y_real = model_D_Y(data_Y) err_D_Y_real = criterion_GAN(output_D_Y_real, label_real) output_D_Y_fake = model_D_Y(model_G_X(data_X)) err_D_Y_fake = criterion_GAN(output_D_Y_fake, label_fake) err_D_Y = err_D_Y_real + err_D_Y_fake err_D_Y.backward() optimizer_D_Y.step() err_D = err_D_Y + err_D_X ### G optimizer_G_X.zero_grad() optimizer_G_Y.zero_grad() ### G_Y fake_MNIST = model_G_Y(data_Y) out1 = model_D_X(fake_MNIST) err_G1 = criterion_GAN(out1, label_real) Cycle_fake_SVHN = model_G_X(fake_MNIST) err_C1 = criterion_L1(Cycle_fake_SVHN, data_Y) ### G_X fake_SVHN = model_G_X(data_X) out2 = model_D_Y(fake_SVHN) err_G2 = criterion_GAN(out2, label_real) Cycle_fake_MNIST = model_G_Y(fake_SVHN) err_C2 = criterion_L1(Cycle_fake_MNIST, data_X) err_C = err_C1 + err_C2 err_G = err_G1 + err_G2 + err_C err_G.backward() optimizer_G_X.step() optimizer_G_Y.step() num_iter += 1 # Output training stats if num_iter%100 == 0: print('it[{:04d}/{:04d}] \tLoss_D:{:.4f} \tLoss_G:{:.4f} \tLoss_C:{:.4f} \telapsed_time:{:.2f}mins'.format( num_iter, max_iter, err_D.item(), err_G.item(), err_C.item(), (time.time()-train_start_time)/60 )) if num_iter%1000==0 or num_iter==max_iter: save_name = osp.join(save_dir, 'it{:04d}.pt'.format(num_iter)) torch.save({ 'model_G_X': model_G_X.state_dict(), 'model_G_Y': model_G_Y.state_dict() }, save_name) with torch.no_grad(): model_G_X.eval() model_G_Y.eval() for test_index, data_X in enumerate(test_X_loader): if test_index == 0: data_X = data_X[0].to(device) data_Y = next(iter(test_Y_loader))[0].to(device) output_X = model_G_X(data_X) output_Y = model_G_Y(data_Y) data_X = ((data_X+1)/2).cpu().data.numpy() data_Y = ((data_Y+1)/2).cpu().data.numpy() output_X = ((output_X + 1)/2).cpu().data.numpy() output_Y = ((output_Y + 1)/2).cpu().data.numpy() for vis_idx in range(vis_num): data_X_, data_Y_ = gray2rgb(transpose(data_X)[vis_idx]), transpose(data_Y)[vis_idx] output_X_, output_Y_ = transpose(output_X)[vis_idx], gray2rgb(transpose(output_Y)[vis_idx]) outputs = np.concatenate((data_X_, output_X_, data_Y_, output_Y_), axis=1) plt.imshow(outputs) plt.pause(0.001) ###Output STEP 7: TRAIN THE MODEL it[0100/4685] Loss_D:2.5846 Loss_G:2.1097 Loss_C:0.6558 elapsed_time:0.24mins it[0200/4685] Loss_D:2.5356 Loss_G:1.9450 Loss_C:0.4312 elapsed_time:0.47mins it[0300/4685] Loss_D:2.5181 Loss_G:1.9181 Loss_C:0.3512 elapsed_time:0.69mins it[0400/4685] Loss_D:2.5458 Loss_G:1.8516 Loss_C:0.3066 elapsed_time:0.91mins it[0500/4685] Loss_D:2.5344 Loss_G:1.8421 Loss_C:0.2801 elapsed_time:1.13mins it[0600/4685] Loss_D:2.5419 Loss_G:1.8222 Loss_C:0.2671 elapsed_time:1.35mins it[0700/4685] Loss_D:2.5466 Loss_G:1.8052 Loss_C:0.2440 elapsed_time:1.57mins it[0800/4685] Loss_D:2.5518 Loss_G:1.7987 Loss_C:0.2357 elapsed_time:1.80mins it[0900/4685] Loss_D:2.5491 Loss_G:1.8335 Loss_C:0.2491 elapsed_time:2.02mins it[1000/4685] Loss_D:2.5427 Loss_G:1.8250 Loss_C:0.2500 elapsed_time:2.24mins
tutorials/tutorial-3.customize-the-module.ipynb
###Markdown Customize the module before install Let's suppose we have identified two backends that we like (one for 2D plots, the other for 3D plots). Then, instead of passing in the keyword `backend=SOMETHING` each time we need to create a plot, we can customize the module to make the plotting functions use our backends.Let's import the necessary tools: ###Code from spb.defaults import cfg, set_defaults display(cfg) help(set_defaults) ###Output _____no_output_____ ###Markdown We need to change the values in the `cfg` dictionary and then use the `set_defaults` function to apply the new configurations.Let's say we would like to:* use Bokeh for 2D plots and Plotly for 3D plots;* use `"seaborn"` theme in Plotly.Then: ###Code # we write the name of the plotting library # available options: bokeh, matplotlib, mayavi, k3d, plotly cfg["backend_2D"] = "bokeh" cfg["backend_3D"] = "plotly" # the following depends on the plotting library cfg["plotly"]["theme"] = "seaborn" set_defaults(cfg) ###Output _____no_output_____ ###Markdown We can test our changes right away. ###Code from sympy import * from spb import * from spb.backends.plotly import PB var("u, v, x, y") plot(sin(x), cos(x), log(x), legend=True) n = 125 r = 2 + sin(7 * u + 5 * v) expr = ( r * cos(u) * sin(v), r * sin(u) * sin(v), r * cos(v) ) plot3d_parametric_surface((*expr, (u, 0, 2 * pi), (v, 0, pi), "expr"), n=n, backend=PB) ###Output _____no_output_____
src/nn/nn-sequential-conv2.ipynb
###Markdown Prepare dataset ###Code import data # src/data.py dataset = data.init_dataset() ###Output _____no_output_____ ###Markdown Select the amount of classes that will be used ###Code # pick the n classes with the most occuring instances amt = 3 classes = data.top_classes(dataset.labels, amt) classes name_list = [] n_per_class = [] tail = '.jpg' for cls in classes: names = data.items_with_label(dataset.labels, cls) train_names = [f for f in names if (f + tail) in dataset.train] name_list.append(train_names) n_per_class.append(len(train_names)) n = min(n_per_class) # (optional) reduce n to check whether the model can rember its input reduced_n = 50 if n > reduced_n: n = reduced_n x = [] for ls in name_list: for name in ls[:n]: x.append(name) random.shuffle(x) len(x) # TODO rmv faces ###Output _____no_output_____ ###Markdown Load & convert imagesAll input images should have the same size ###Code # TODO use crop # TODO first x_train, y_train, n = data.extract_all(dataset, x) n data.show_info(x_train) plot.multiple(x_train[:10]) ###Output _____no_output_____ ###Markdown Prepare the labelsEncode the labels to one-hot vectors ###Code # TODO y_test y_test = y_train y_train, y_test = data.labels_to_vectors(dataset, y_train, y_test) y_train[0] ###Output _____no_output_____ ###Markdown Train a Sequential model (keras) ###Code n_samples = x_train.shape[0] # = length of the list of images (matrices) input_shape = x_train.shape[1:] # = shape of an individual image (matrix) output_length = (y_train[0]).shape[0] # = length of an individual label print(n_samples, input_shape) print('output length', output_length) x_train.shape input_shape def sequential_conv(input_shape, output_length, dropout=0.10): # Convolutional layers model = Sequential() model.add(Conv2D(4, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(8, (3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) # strides=(2,2) - watch dims!?! model.add(Conv2D(32, (9, 9), activation='relu')) # reduce the number of dimensions model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(8, (6, 6), activation='relu')) model.add(Dropout(dropout)) # Dense layers model.add(Flatten()) # model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) # model.add(Dense(16, activation='relu')) model.add(Dropout(dropout)) model.add(Dense(output_length,activation='softmax')) return model, model.summary dropout = 0.10 model, summary = sequential_conv(input_shape, output_length, dropout) summary() # model, summary = models.sequential_conv(input_shape, output_length) # summary() ###Output _____no_output_____ ###Markdown Loss function- Categorical cross-entropy loss ###Code learning_rate = 0.001 # Adam, SGD # sgd = Keras.optimizers.SGD(lr=0.01, clipnorm=1.) optimizer = Adam(lr=learning_rate) # top_k_categorical_accuracy(y_true, y_pred, k=5) # https://keras.io/metrics/ model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy', 'mean_squared_error','categorical_crossentropy','top_k_categorical_accuracy']) # model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the model ###Code batch_size = 8 # n epochs = n iterations over all the training data epochs = 32 config.tmp_model_dir # model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=1/6) model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=1/5, callbacks=[TensorBoard(log_dir=config.tmp_model_dir)]) result = model.predict(x_train[:10]) # result result[0] ###Output _____no_output_____ ###Markdown i = result[0].argmax()result[0][i] ###Code np.mean(np.array(result[0])) ###Output _____no_output_____
0.15/_downloads/plot_ems_filtering.ipynb
###Markdown ==============================================Compute effect-matched-spatial filtering (EMS)==============================================This example computes the EMS to reconstruct the time course of theexperimental effect as described in [1]_.This technique is used to create spatial filters based on the differencebetween two conditions. By projecting the trial onto the corresponding spatialfilters, surrogate single trials are created in which multi-sensor activity isreduced to one time series which exposes experimental effects, if present.We will first plot a trials x times image of the single trials and order thetrials by condition. A second plot shows the average time series for eachcondition. Finally a topographic plot is created which exhibits the temporalevolution of the spatial filters.References----------.. [1] Aaron Schurger, Sebastien Marti, and Stanislas Dehaene, "Reducing multi-sensor data to a single time course that reveals experimental effects", BMC Neuroscience 2013, 14:122. ###Code # Author: Denis Engemann <[email protected]> # Jean-Remi King <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io, EvokedArray from mne.datasets import sample from mne.decoding import EMS, compute_ems from sklearn.model_selection import StratifiedKFold print(__doc__) data_path = sample.data_path() # Preprocess the data raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_ids = {'AudL': 1, 'VisL': 3} # Read data and create epochs raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(0.5, 45, fir_design='firwin') events = mne.read_events(event_fname) picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True, exclude='bads') epochs = mne.Epochs(raw, events, event_ids, tmin=-0.2, tmax=0.5, picks=picks, baseline=None, reject=dict(grad=4000e-13, eog=150e-6), preload=True) epochs.drop_bad() epochs.pick_types(meg='grad') # Setup the data to use it a scikit-learn way: X = epochs.get_data() # The MEG data y = epochs.events[:, 2] # The conditions indices n_epochs, n_channels, n_times = X.shape # Initialize EMS transformer ems = EMS() # Initialize the variables of interest X_transform = np.zeros((n_epochs, n_times)) # Data after EMS transformation filters = list() # Spatial filters at each time point # In the original paper, the cross-validation is a leave-one-out. However, # we recommend using a Stratified KFold, because leave-one-out tends # to overfit and cannot be used to estimate the variance of the # prediction within a given fold. for train, test in StratifiedKFold().split(X, y): # In the original paper, the z-scoring is applied outside the CV. # However, we recommend to apply this preprocessing inside the CV. # Note that such scaling should be done separately for each channels if the # data contains multiple channel types. X_scaled = X / np.std(X[train]) # Fit and store the spatial filters ems.fit(X_scaled[train], y[train]) # Store filters for future plotting filters.append(ems.filters_) # Generate the transformed data X_transform[test] = ems.transform(X_scaled[test]) # Average the spatial filters across folds filters = np.mean(filters, axis=0) # Plot individual trials plt.figure() plt.title('single trial surrogates') plt.imshow(X_transform[y.argsort()], origin='lower', aspect='auto', extent=[epochs.times[0], epochs.times[-1], 1, len(X_transform)], cmap='RdBu_r') plt.xlabel('Time (ms)') plt.ylabel('Trials (reordered by condition)') # Plot average response plt.figure() plt.title('Average EMS signal') mappings = [(key, value) for key, value in event_ids.items()] for key, value in mappings: ems_ave = X_transform[y == value] plt.plot(epochs.times, ems_ave.mean(0), label=key) plt.xlabel('Time (ms)') plt.ylabel('a.u.') plt.legend(loc='best') plt.show() # Visualize spatial filters across time evoked = EvokedArray(filters, epochs.info, tmin=epochs.tmin) evoked.plot_topomap() ###Output _____no_output_____ ###Markdown Note that a similar transformation can be applied with `compute_ems`However, this function replicates Schurger et al's original paper, and thusapplies the normalization outside a leave-one-out cross-validation, which werecommend not to do. ###Code epochs.equalize_event_counts(event_ids) X_transform, filters, classes = compute_ems(epochs) ###Output _____no_output_____
module4-logistic-regression/Jake_Dennis_LS_DS_214_assignment.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 4*--- Logistic Regression Assignment 🌯You'll use a [**dataset of 400+ burrito reviews**](https://srcole.github.io/100burritos/). How accurately can you predict whether a burrito is rated 'Great'?> We have developed a 10-dimensional system for rating the burritos in San Diego. ... Generate models for what makes a burrito great and investigate correlations in its dimensions.- [ ] Do train/validate/test split. Train on reviews from 2016 & earlier. Validate on 2017. Test on 2018 & later.- [ ] Begin with baselines for classification.- [ ] Use scikit-learn for logistic regression.- [ ] Get your model's validation accuracy. (Multiple times if you try multiple iterations.)- [ ] Get your model's test accuracy. (One time, at the end.)- [ ] Commit your notebook to your fork of the GitHub repo. Stretch Goals- [ ] Add your own stretch goal(s) !- [ ] Make exploratory visualizations.- [ ] Do one-hot encoding.- [ ] Do [feature scaling](https://scikit-learn.org/stable/modules/preprocessing.html).- [ ] Get and plot your coefficients.- [ ] Try [scikit-learn pipelines](https://scikit-learn.org/stable/modules/compose.html). ###Code %%capture import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Linear-Models/master/data/' !pip install category_encoders==2.* # If you're working locally: else: DATA_PATH = '../data/' # Load data downloaded from https://srcole.github.io/100burritos/ import pandas as pd df = pd.read_csv(DATA_PATH+'burritos/burritos.csv') # Derive binary classification target: # We define a 'Great' burrito as having an # overall rating of 4 or higher, on a 5 point scale. # Drop unrated burritos. df = df.dropna(subset=['overall']) df['Great'] = df['overall'] >= 4 # Clean/combine the Burrito categories df['Burrito'] = df['Burrito'].str.lower() california = df['Burrito'].str.contains('california') asada = df['Burrito'].str.contains('asada') surf = df['Burrito'].str.contains('surf') carnitas = df['Burrito'].str.contains('carnitas') df.loc[california, 'Burrito'] = 'California' df.loc[asada, 'Burrito'] = 'Asada' df.loc[surf, 'Burrito'] = 'Surf & Turf' df.loc[carnitas, 'Burrito'] = 'Carnitas' df.loc[~california & ~asada & ~surf & ~carnitas, 'Burrito'] = 'Other' # Drop some high cardinality categoricals df = df.drop(columns=['Notes', 'Location', 'Reviewer', 'Address', 'URL', 'Neighborhood']) # Drop some columns to prevent "leakage" df = df.drop(columns=['Rec', 'overall']) ###Output _____no_output_____ ###Markdown Do train/validate/test split. Train on reviews from 2016 & earlier. Validate on 2017. Test on 2018 & later. ###Code df.head() df['Date'] = pd.to_datetime(df['Date'], infer_datetime_format=True) df = df.replace({False:0, True:1}) train = df[df['Date'].dt.year < 2017] validate = df[df['Date'].dt.year == 2017] test = df[df['Date'].dt.year > 2017] df['Great'].value_counts() ###Output _____no_output_____ ###Markdown Begin with baselines for classification ###Code target = 'Great' y_train = train[target] y_train.value_counts(normalize=True) majority_class = y_train.mode()[0] y_pred = [majority_class] * len(y_train) y_pred from sklearn.metrics import accuracy_score accuracy_score(y_train, y_pred) y_val = validate[target] y_pred = [majority_class] * len(y_val) accuracy_score(y_val, y_pred) df.isnull().sum() ###Output _____no_output_____ ###Markdown Use scikit-learn for logistic regression. ###Code from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler features = ['Synergy', 'Uniformity', 'Tortilla'] X_train = train[features] X_val = validate[features] imputer = SimpleImputer() X_train_imputed = imputer.fit_transform(X_train) X_val_imputed = imputer.transform(X_val) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_imputed) X_val_scaled = scaler.transform(X_val_imputed) log_reg = LogisticRegression() log_reg.fit(X_train_scaled, y_train) print('Validation Accuracy', log_reg.score(X_val_scaled, y_val)) ###Output Validation Accuracy 0.7764705882352941 ###Markdown Get your model's validation accuracy. (Multiple times if you try multiple iterations.) ###Code y_test = test[target] X_test = test[features] X_test_imputed = imputer.fit_transform(X_test) X_test_scaled = scaler.transform(X_test_imputed) print('Test Accuracy', log_reg.score(X_test_scaled, y_test)) ###Output Test Accuracy 0.8421052631578947
Telco_Churn.ipynb
###Markdown Q1a. Demographics ###Code #More of Non Senior Citizens Patronize Brand df.SeniorCitizen.value_counts() df.gender.value_counts() df.groupby(['SeniorCitizen','gender'])['gender'].count() df.groupby(['SeniorCitizen','gender','Partner','Dependents']).agg({'gender':'count'}).sort_values(by='SeniorCitizen',ascending=True) ###Output _____no_output_____ ###Markdown Q1a. Ans:Young Citizens (Male and Female) with no dependents nor partners Q1b: Customer Retention ###Code df.query('Churn=="Yes"').groupby(['SeniorCitizen','gender','Partner','Dependents']).agg({'Churn':'count'}).sort_values(by='SeniorCitizen',ascending=True) ###Output _____no_output_____ ###Markdown Q1b. Ans: Target especially Young Singles with no dependents or partners, as well as people without dependents. Q2a. Monthly Service Charges & higher Churning ###Code df.query('Churn=="Yes"').groupby(['PhoneService'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs1=df.query('Churn=="Yes"').groupby(['PhoneService'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Phone Service Charges" , size = 14 ) x=dfsvs1.PhoneService;y=dfsvs1.MonthlyCharges sns.barplot(x,y) df.query('Churn=="Yes"').groupby(['MultipleLines'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs2=df.query('Churn=="Yes"').groupby(['MultipleLines'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "MultipleLine Service Charges" , size = 14 ) sns.barplot(dfsvs2.MultipleLines,dfsvs2.MonthlyCharges) df.query('Churn=="Yes"').groupby(['InternetService'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs3=df.query('Churn=="Yes"').groupby(['InternetService'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Internet Service Charges" , size = 14 ) sns.barplot(dfsvs3.InternetService,dfsvs3.MonthlyCharges) df.query('Churn=="Yes"').groupby(['OnlineSecurity'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs4=df.query('Churn=="Yes"').groupby(['OnlineSecurity'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Online Security Charges" , size = 14 ) sns.barplot(dfsvs4.OnlineSecurity,dfsvs4.MonthlyCharges) df.query('Churn=="Yes"').groupby(['OnlineBackup'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs5=df.query('Churn=="Yes"').groupby(['OnlineBackup'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Online Backup Charges" , size = 14 ) sns.barplot(dfsvs5.OnlineBackup,dfsvs5.MonthlyCharges) df.query('Churn=="Yes"').groupby(['DeviceProtection'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs5=df.query('Churn=="Yes"').groupby(['DeviceProtection'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title("Device Protection Charges" , size = 14 ) sns.barplot(dfsvs5.DeviceProtection,dfsvs5.MonthlyCharges) df.query('Churn=="Yes"').groupby(['TechSupport'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs5=df.query('Churn=="Yes"').groupby(['TechSupport'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Tech Support Service Charges" , size = 14 ) sns.barplot(dfsvs5.TechSupport,dfsvs5.MonthlyCharges) df.query('Churn=="Yes"').groupby(['StreamingTV'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs5=df.query('Churn=="Yes"').groupby(['StreamingTV'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "StreamingTV Service Charges" , size = 14 ) sns.barplot(dfsvs5.StreamingTV,dfsvs5.MonthlyCharges) df.query('Churn=="Yes"').groupby(['StreamingMovies'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) dfsvs5=df.query('Churn=="Yes"').groupby(['StreamingMovies'],as_index=False).agg({'MonthlyCharges':'sum'}).sort_values(by='MonthlyCharges',ascending=False) fig, ax = plt.subplots(figsize=(6, 6)) ax.set_title( "Streaming Movies Service Charges" , size = 14 ) sns.barplot(dfsvs5.StreamingMovies,dfsvs5.MonthlyCharges) ###Output C:\Users\Puffs\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn( ###Markdown Q2a. Ans: Top 3 Services with increasing charges resulting in Churn:Internet Services (Fibre Optic), Phone Services and Multiple Lines Service Q2b. Phone Service Contract ###Code df.columns df.query('Churn=="No"').groupby(['PhoneService','Contract']).agg({'Contract':'count'}).sort_values(by='PhoneService',ascending=False) ###Output _____no_output_____ ###Markdown Q2b. Ans: Month-to-Month Contract Type is needed here Q3a.Customer Services ###Code #df_bouquet=df.query('Churn=="No"').groupby(['PhoneService']).agg({'MonthlyCharges':'sum'}) df.query('Churn=="No"').groupby(['PhoneService']).agg({'MonthlyCharges':'sum'}).sort_values(by='PhoneService',ascending=False) df.query('Churn=="No"').groupby(['InternetService']).agg({'MonthlyCharges':'sum'}).sort_values(by='InternetService',ascending=False) df.query('Churn=="No"').groupby(['MultipleLines']).agg({'MonthlyCharges':'sum'}).sort_values(by='MultipleLines',ascending=False) df.query('Churn=="No"').groupby(['OnlineSecurity']).agg({'MonthlyCharges':'sum'}).sort_values(by='OnlineSecurity',ascending=False) df.query('Churn=="No"').groupby(['OnlineBackup']).agg({'MonthlyCharges':'sum'}).sort_values(by='OnlineBackup',ascending=False) df.query('Churn=="No"').groupby(['DeviceProtection']).agg({'MonthlyCharges':'sum'}).sort_values(by='DeviceProtection',ascending=False) df.query('Churn=="No"').groupby(['TechSupport']).agg({'MonthlyCharges':'sum'}).sort_values(by='TechSupport',ascending=False) df.query('Churn=="No"').groupby(['StreamingTV']).agg({'MonthlyCharges':'sum'}).sort_values(by='StreamingTV',ascending=False) df.query('Churn=="No"').groupby(['StreamingMovies']).agg({'MonthlyCharges':'sum'}).sort_values(by='StreamingMovies',ascending=False) df_Service=df.query('Churn=="No"').groupby(['PhoneService','MultipleLines']).agg({'MonthlyCharges':'mean'}).sort_values(by='MonthlyCharges',ascending=False) boxplot=df_Service.boxplot(column=['MonthlyCharges']) ###Output _____no_output_____ ###Markdown Q3a. Ans: Basic 47.5, Plus=55, Premium=65 Q3b.Customer Services ###Code df_bill=df.query('Churn=="No"').groupby(['PaperlessBilling']).agg({'PaymentMethod':'count'}) df_bill.reset_index(inplace=True) df_bill plt.figure(figsize=(6,6)) sns.barplot(x="PaperlessBilling", y="PaymentMethod", hue="PaperlessBilling", data=df_bill) plt.xlabel("Paperless Billing") plt.ylabel("Payment Method") ###Output _____no_output_____ ###Markdown 1. Business UnderstandingCustomer Churn is one of the most challagengeing aspacts in subscription based business like the telco industry. This dataset contains churn data of a fictional telco company with realistic data.The Business questions this notebook aims to address are the following:1. How many custumers churn? 2. What is the impact on expected revenue?3. What features are correlated to churn?4. How well can a Model predict custumer churn? 2. Data Understanding ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model, preprocessing, svm from sklearn.preprocessing import StandardScaler, Normalizer import math import matplotlib as mpl import seaborn as sns %matplotlib inline df = pd.read_csv('WA_Fn-UseC_-Telco-Customer-Churn.csv') df.head() ###Output _____no_output_____ ###Markdown 2.1 Overview of the Data ###Code #How many rows and how many columns are in the Dataset? df.shape #How do the continues variables look like df.describe() #overview on all columns df.info() #convert columns to its expected datatypes df['TotalCharges'] = pd.to_numeric(df['TotalCharges'],errors='coerce') # Are all customers ids unique? df['customerID'].nunique() / df['customerID'].count() == 1 ###Output _____no_output_____ ###Markdown How big is the customer loss and what effects does this have on turnover? ###Code #How many churners are in the dataset? plt.figure(figsize=(20, 20)) plt.subplot(3, 2, 2) sns.countplot('Churn',data=df,) print("The Churn-Rate in percent is:" ) print(round((df['Churn'].value_counts()[1] / df['Churn'].count() * 100),2)) (df[df['Churn'] == 'Yes'][['MonthlyCharges','TotalCharges']].sum()) / (df[['MonthlyCharges','TotalCharges']].sum() ) keep = df[df['Churn'] == 'No']['MonthlyCharges'].sum() keep ###Output _____no_output_____ ###Markdown How much money will the company lose in monthly income? ###Code loss = df[df['Churn'] == 'Yes']['MonthlyCharges'].sum() loss #What porpotin of money does the company losees? loss/(keep+loss)*100 ###Output _____no_output_____ ###Markdown Visualization of churning custumers compared to their spendigs ###Code plt.figure(figsize=(20, 20)) plt.subplot(3, 2, 2) df[df['Churn'] == 'No']['MonthlyCharges'].hist(bins=35, alpha=0.6, label='Churn=No') df[df['Churn'] == 'Yes']['MonthlyCharges'].hist(bins=35, alpha=0.6, label='Churn=Yes') plt.legend() plt.xlabel('Mothly Charges') plt.subplot(3, 2, 1) df[df['Churn'] == 'No']['TotalCharges'].hist(bins=35, alpha=0.6, label='Churn=No') df[df['Churn'] == 'Yes']['TotalCharges'].hist(bins=35, alpha=0.6, label='Churn=Yes') plt.legend() plt.xlabel('Total Charges') #looking at some more Variabels plt.figure(figsize=(15, 15)) plt.subplot(3, 2, 1) sns.countplot('MultipleLines', data=df, hue='Churn') plt.subplot(3, 2, 2) sns.countplot('TechSupport', data=df, hue='Churn') plt.subplot(3, 2, 3) sns.countplot('Partner', data=df, hue='Churn') plt.subplot(3, 2, 4) sns.countplot('Dependents', data=df, hue='Churn') plt.subplot(3, 2, 5) sns.countplot('PhoneService', data=df, hue='Churn') plt.subplot(3, 2, 6) sns.countplot('PaperlessBilling', data=df, hue='Churn') plt.subplot(3, 2, 6) sns.countplot('PaperlessBilling', data=df, hue='Churn') ###Output /Applications/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:21: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ###Markdown How well we Predict Customer Churn in oder to derive a campaign to retain our most valuable customers? 3.Data Preprocessing Feature Engineering Missing Values ###Code #Checking for missing Values df.isna().sum() df.isnull()['TotalCharges'].mean() * 100# Proportion of missings in percent #bcause the small porpotion of missings the rows with missings are deleted from the dataset / A mean value imputation would also work df1 = df.dropna(subset =['TotalCharges'], axis=0 ) ###Output _____no_output_____ ###Markdown Handle Continues Variabbes ###Code cont_vars = df1[['tenure','TotalCharges','MonthlyCharges']] cont_vars.head() #Function that groups the tenure column into half years def tenure_bin (t): if t <= 6*1: return 1 elif t<= 6*2: return 2 elif t<= 6*3: return 3 elif t<= 6*4: return 4 elif t<= 6*5: return 5 elif t<= 6*6: return 6 else: return 7 ###Output _____no_output_____ ###Markdown Hanlde Discrete Variables ###Code df1 = df1[['gender','SeniorCitizen','Partner','Dependents','PhoneService','PaperlessBilling','MultipleLines', 'InternetService', 'Contract', 'PaymentMethod', 'tenure','Churn','TotalCharges','MonthlyCharges']] df1 df1_enc = pd.get_dummies(df1,drop_first = True) df1_enc ###Output _____no_output_____ ###Markdown Correlation Analysis ###Code #Correlation Analysis plt.figure(figsize=(15,12)) sns.heatmap(df1_enc.corr(),annot=True) ###Output _____no_output_____ ###Markdown Variables that correlate with churn ###Code df1_enc.drop('Churn_Yes', axis=1).corrwith(df1_enc['Churn_Yes']).plot(kind='barh', figsize=(9,7)) ###Output _____no_output_____ ###Markdown Model building (Logistic Regression) ###Code from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler X = df1_enc.drop('Churn_Yes', axis=1) y = df1_enc['Churn_Yes'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) scaler = MinMaxScaler() X_train_std = scaler.fit_transform(X_train) X_test_std = scaler.transform(X_test) X_std = scaler.transform(X) ###Output _____no_output_____ ###Markdown Model evaluatuon ###Code from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%") print("_______________________________________________") print("Classification Report:", end='') print(f"\tPrecision Score: {precision_score(y_train, pred) * 100:.2f}%") print(f"\t\t\tRecall Score: {recall_score(y_train, pred) * 100:.2f}%") print(f"\t\t\tF1 score: {f1_score(y_train, pred) * 100:.2f}%") print("_______________________________________________") print(f"Confusion Matrix: \n {confusion_matrix(y_train, pred)}\n") elif train==False: pred = clf.predict(X_test) print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%") print("_______________________________________________") print("Classification Report:", end='') print(f"\tPrecision Score: {precision_score(y_test, pred) * 100:.2f}%") print(f"\t\t\tRecall Score: {recall_score(y_test, pred) * 100:.2f}%") print(f"\t\t\tF1 score: {f1_score(y_test, pred) * 100:.2f}%") print("_______________________________________________") print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n") from sklearn.linear_model import LogisticRegression lr_classifier = LogisticRegression(solver='liblinear', penalty='l1') lr_classifier.fit(X_train_std, y_train) print_score(lr_classifier, X_train_std, y_train, X_test_std, y_test, train=True) print_score(lr_classifier, X_train_std, y_train, X_test_std, y_test, train=False) from sklearn.metrics import plot_confusion_matrix, plot_roc_curve disp = plot_confusion_matrix(lr_classifier, X_test_std, y_test, cmap='Reds', values_format='d', display_labels=['Retention', 'Churn']) disp = plot_roc_curve(lr_classifier, X_test_std, y_test) ###Output _____no_output_____
Names.ipynb
###Markdown NamesThis project looks at the popularity of names from 1880 to 2017, showing naming trends through history. After exploring some of the features of pandas, I begin to ask questions about specific names, just out of curiosity. Next steps planned are at the end of the document.This project uses Python 3.5, numPy, matplotlib, pandas, and seaborn. ###Code import numpy as np import matplotlib.pyplot as pp import pandas as pd import seaborn ###Output _____no_output_____ ###Markdown Have a look at the file to see the data format ###Code file_path='data/yob2017.txt' open(file_path,'r').readlines()[:5] ###Output _____no_output_____ ###Markdown Load into dataframe ###Code names2017 = pd.read_csv(file_path, names = ['Name', 'Gender', 'Num_Babies']) names2017.head() ###Output _____no_output_____ ###Markdown Read all years into a single array then concatenate into single dataframe ###Code all_years = [] loop_file_path = file_path[:-8] for year in range(1880, 2017 + 1): # we have data files from 1880 to 2015 all_years.append(pd.read_csv(loop_file_path + '{}.txt'.format(year), names = ['Name', 'Gender', 'Num_Babies'])) all_years[-1]['Year'] = year all_names = pd.concat(all_years) all_names.tail() ###Output _____no_output_____ ###Markdown Groupby will segment the data into meaningful groups. For example, here we look at the number of Female & Male Names by Year ###Code group_name = all_names.groupby(['Gender', 'Year']) group_name.size().unstack() ###Output _____no_output_____ ###Markdown The gives a sum of all the babies born in 2015 (by using our first dataset created just from 2015 data), but only for babies with names used at least 5 times. The table above counts only names, one count per name. The numbers below will count babies, not names. ###Code names2017.groupby(['Gender']).sum() ###Output _____no_output_____ ###Markdown Pivot tables summarize data (sort, count, total, average). The pd.pivot_table() function needs the name of the dataframe, the data field to be grouped, and a field for each dimension that it will be grouped by. ###Code pd.pivot_table(all_names, 'Num_Babies', 'Name', 'Year') ###Output _____no_output_____ ###Markdown The many missing values is to be expected based on the great increase we saw earlier in the number of names used over the years (from around 1,000 per gender in 1880 to over 14,000 in 2015).It is possible to have two fields in a column rather than one as columns and one as rows: ###Code pd.pivot_table(all_names, 'Num_Babies', ['Name', 'Year']) ###Output _____no_output_____ ###Markdown To see the changing popularity of a given name, indexes need to be set and sorted. In pandas, data can be manipulated in multiple dimensions. ###Code all_names_index = all_names.set_index(['Gender', 'Name', 'Year']).sort_index() all_names_index def name_plot(gender, name): ''' plot the popularity of a name over time ''' data = all_names_index.loc[gender, name] #gather data for this gender/name pp.plot(data.index, data.values) #plot gender/name data against index (year) name_plot('F', 'Danica') ###Output _____no_output_____ ###Markdown Look at trends over time across different names. ###Code pp.figure(figsize = (18, 8)) # make the plot a bit bigger names = ['Sammy', 'Jesse', 'Drew', 'Jamie'] for name in names: name_plot('F', name) # try first as female name pp.legend(names) # add a legend for name in names: name_plot('M', name) # now try as male name pp.legend(names) # add a legend ###Output _____no_output_____ ###Markdown Who, after 1945, would name their child Adolf? ###Code name_plot('M', 'Adolf') pp.legend(['Adolf']) ###Output _____no_output_____ ###Markdown Madonna went solo as a pop singer and became famous in 1981. This chart shows a spike in babies named "Madonna" soon after. ###Code name_plot('F', 'Madonna') pp.legend(['Madonna']) #data = all_names[all_names.Name.str.startswith('A')] all_names[all_names.Name.str.startswith('A')].to_csv('NamesExport.csv', sep=',') ###Output _____no_output_____ ###Markdown Visualize DataBy using pandas with other packages like matplotlib we can visualize data within our notebook. ###Code # We’re going to index our data with information on Sex, then Name, then Year. We’ll also want to sort the index: all_names_index = all_names.set_index(['Sex','Name','Year']).sort_index() # multi - index all_names_index def name_plot(sex, name): data = all_names_index.loc[sex, name] pp.plot(data.index, data.values) ###Output _____no_output_____ ###Markdown Type ALT + ENTER to run and move into the next cell. We can now call the function with the sex and name of our choice, such as F for female name with the given name Danica. ###Code name_plot('F', 'Danica') pp.figure(figsize = (18, 8)) names = ['Sammy', 'Jesse', 'Drew', 'Jamie', 'Tyler'] for name in names: name_plot('F', name) pp.legend(names) pp.figure(figsize = (18, 8)) names = ['Sammy', 'Jesse', 'Drew', 'Jamie', 'Tylor'] for name in names: name_plot('M', name) pp.legend(names) ###Output _____no_output_____
archived/Mega_Detector.ipynb
###Markdown Setup ###Code !yes | pip uninstall tensorflow !pip install tensorflow-gpu==1.13.1 humanfriendly jsonpickle import tensorflow as tf print(tf.__version__) !wget -O /content/megadetector_v4_1_0.pb https://lilablobssc.blob.core.windows.net/models/camera_traps/megadetector/md_v4.1.0/md_v4.1.0.pb !git clone https://github.com/microsoft/CameraTraps !git clone https://github.com/microsoft/ai4eutils !cp /content/CameraTraps/detection/run_tf_detector_batch.py . !cp /content/CameraTraps/visualization/visualize_detector_output.py . import json import os import shutil from pathlib import Path from tqdm import tqdm os.environ['PYTHONPATH'] += ":/content/ai4eutils" os.environ['PYTHONPATH'] += ":/content/CameraTraps" !echo "PYTHONPATH: $PYTHONPATH" ###Output _____no_output_____ ###Markdown Get Raw Data ###Code #@title Connect to Google Drive from google.colab import drive drive.mount('/content/drive') google_drive_folder_name = 'sample' #@param {type: "string"} images_dir = '/content/drive/My Drive/' + google_drive_folder_name !ls "$images_dir" Path(f'{images_dir}/output').mkdir(exist_ok=True) Path(f'{images_dir}/output/no_detections').mkdir(exist_ok=True) Path(f'{images_dir}/output/with_detections_and_bb').mkdir(exist_ok=True) Path(f'{images_dir}/output/with_detections').mkdir(exist_ok=True) ###Output _____no_output_____ ###Markdown Run The Model ###Code # choose a location for the output JSON file output_file_path = f'{images_dir}/output' + '/data.json' !python run_tf_detector_batch.py megadetector_v4_1_0.pb "$images_dir" "$output_file_path" --recursive ###Output _____no_output_____ ###Markdown Get The Results ###Code visualization_dir = '/content/viz' # pick a location for annotated images !python visualize_detector_output.py "$output_file_path" "$visualization_dir" --confidence 0.01 --images_dir "$images_dir" def categorize(string): return string.replace('1', 'animal').replace('2', 'person').replace('3', 'vehicle') with open(output_file_path) as j: data = json.load(j) %cd CameraTraps from data_management.annotations.annotation_constants import ( detector_bbox_category_id_to_name) from visualization import visualization_utils as vis_utils %cd .. Path(f'{images_dir}/output/no_detections').mkdir(exist_ok=True) display_images_here = False #@param {type: "boolean"} if display_images_here: if len(data['images']) > 20: print('There are too many images to display! View the images on Google Drive.') display_images_here = False copy_images_to_drive = False #@param {type: "boolean"} for image in tqdm(data['images']): if not image['detections']: im = vis_utils.resize_image( vis_utils.open_image(image['file']), 700) if display_images_here: display(im) if copy_images_to_drive: out_path = f'{images_dir}/output/no_detections/{Path(image["file"]).name}' if not Path(out_path).exists(): shutil.copy2(image['file'], out_path) Path(f'{images_dir}/output/with_detections_and_bb').mkdir(exist_ok=True) Path(f'{images_dir}/output/with_detections').mkdir(exist_ok=True) min_detection_conf_to_save = "0.5" #@param {type: "string"} display_images_here = False #@param {type: "boolean"} if display_images_here: if len(data['images']) > 20: print('There are too many images to display! View the images on Google Drive.') display_images_here = False copy_images_to_drive = False #@param {type: "boolean"} for image in data['images']: if image['detections']: if image['max_detection_conf'] >= float(min_detection_conf_to_save): print('-' * 79) print(image['file']) res = [(categorize(x['category']), x['conf']) for x in image['detections']] for n, x in enumerate(res): print(f'{n + 1}. {x[0]} (conf: {x[1]})') img_file = visualization_dir + '/anno_' + images_dir.replace('/', '~') + '~' + Path(image['file']).name im = vis_utils.resize_image(vis_utils.open_image(img_file), 700) if display_images_here: display(im) if copy_images_to_drive: out_path_with_bb = f'{images_dir}/output/with_detections_and_bb/{Path(img_file).name}' if not Path(out_path_with_bb).exists(): shutil.copy2(img_file, out_path_with_bb) out_path = f'{images_dir}/output/with_detections/{Path(image["file"]).name}' if not Path(out_path).exists(): shutil.copy2(image["file"], out_path) ###Output _____no_output_____
Classifiers/Kernal_SVM/Kernal_SVM.ipynb
###Markdown **Kernal** Support Vector Machine Importing Libraires ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Importing Dataset ###Code from google.colab import files files.upload() ###Output _____no_output_____ ###Markdown Splitting Dataset into X & Y ###Code dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[: , :-1].values Y = dataset.iloc[: , -1].values ###Output _____no_output_____ ###Markdown Splitting Dataset into Training & Test Set ###Code from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0) ###Output _____no_output_____ ###Markdown Feature Scaling ###Code from sklearn.preprocessing import StandardScaler feat_scale = StandardScaler() X_train = feat_scale.fit_transform(X_train) X_test = feat_scale.transform(X_test) ###Output _____no_output_____ ###Markdown Training the SVM model on Training Set ###Code from sklearn.svm import SVC classifier = SVC(kernel = 'rbf', random_state= 0) classifier.fit(X_train, Y_train) ###Output _____no_output_____ ###Markdown Predicting the Test Set Result ###Code y_pred = classifier.predict(X_test) print(np.concatenate((y_pred.reshape(len(y_pred), 1), Y_test.reshape(len(Y_test), 1)), 1)) from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score confusionMatrix = confusion_matrix(Y_test,y_pred) dis = ConfusionMatrixDisplay(confusionMatrix, display_labels=classifier.classes_) print(confusionMatrix) print(accuracy_score(Y_test, y_pred)) dis.plot() plt.show() ###Output [[64 4] [ 3 29]] 0.93 ###Markdown Visulization of Training Set Result ###Code from matplotlib.colors import ListedColormap X_set, y_set = feat_scale.inverse_transform(X_train), Y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(feat_scale.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Support Vector Machine (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() ###Output *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points. *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points. ###Markdown Visulization of Test Set Result ###Code from matplotlib.colors import ListedColormap X_set, y_set = feat_scale.inverse_transform(X_test), Y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25), np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25)) plt.contourf(X1, X2, classifier.predict(feat_scale.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Support Vector Machine (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() ###Output *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points. *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.
Network_Flows_LP.ipynb
###Markdown Exploring network constraints on concentration dynamics Semidán Robaina EstévezReaction networks are models of (bio)chemical systems in which chemical species are interconverted through the action of chemical reactions. Typically, a reaction network is represented by its stoichiometrix matrix $S$, in which each entry $s_{ij}$ denotes the stoichiometric coefficients with which species $i$ participates in reaction $j$ &mdash; negative coefficients are assigned to substrates of the reaction, while positive to products. Since most species only participate in a small set of reactions, $S$ is typically sparse.Suppose that we are interested in evaluating the concentration dynamics of the chemical species in a homogeneous chemical system. We can model that with a system of ordinary differential equations:\begin{equation} \frac{d}{dt} x_i = \sum_j s_{ij} v_j,\label{eq:1}\tag{1}\end{equation}with $x_i$ representing the concentration of species $i$ and $v_j$ the flux through reaction $j$. However, to this end, we need to assign a reaction kinetic to the system. The simplest reaction kinetic is the [Mass Action Kinetic](https://en.wikipedia.org/wiki/Law_of_mass_action), which models a homogeneous, no enzymatically catalyzed system:\begin{equation} v_j = k_j \prod_{i\in Subs} x_i^{s_{ij}}. \label{eq:2} \tag{2}\end{equation}That is, the flux $v_j$ through a reaction is modelled as a monomial on the concentrations of the reaction substrates. Parameter $k_j$, the reaction rate constant, captures the speed at which the reaction takes place given fixed substrate concentatrions. There are, however, other reaction kinetics, such as the [Michaelis-Menten formalism](https://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics) and its variants, which model enzyme-catalyzed reactions.Reaction kinetics are crucial to investigate chemical dynamics. Unfortunately, the parameterization of such systems is not straighforward. Oftentimes, a large fraction of parameter values are not accessible, which makes their investigation complicated. However, in such escenarios, it may still be possible to evaluate how network and stoichiometric constraints affect concentration dynamics. Specifically, we can apply [constraint-based modeling techniques](https://en.wikipedia.org/wiki/Metabolic_network_modelling) to the linear system in eq \ref{eq:1}.In constraint-based metabolic modeling, a steady-state scenario is typically assumed, i.e, we have $Sv=0$. Thus, we can only interrogate the space of steady-state flux values for all reactions in a system. For instance, the most popular constraint-based metabolic modeling method is the so-called Flux Balance Analysis, which typically solves the following Linear Program (LP):\begin{align} \begin{aligned} &\max_v c^T v \\ &\mathrm{s.t.} \\ &Sv=0 \\ &v_{min} \le v \le v_{max}. \end{aligned}\label{eq:3}\tag{3}\end{align}In eq \ref{eq:3} a linear function of the reaction fluxes $v$ is optimized over the feasible space corresponding to the system at steady state with some boundary conditions on the reaction fluxes. However, there is nothing preventing us from exploring the feasible space around the steady state condition, i.e., using the constraint $\dot x_{min} \le Sv \le \dot x_{max}$ in which the dot notation represents the first derivative. Moreover, we can discretize time and define $x_{t+1} = x_t + \dot x_t$ for each fixed time period $t$. Hence, we could define variables $x_t$ representing the concentrations of chemical species at each time step, $t \in {0,\dots,n}$. This way, we would be able to explore the feasible space of concentration values of our system in eq \ref{eq:1}, provided suitable bounds are given for each variable and, of course, only for a time-discretized system.Putting together the previous ideas, we arrive at the LP:\begin{align} \begin{aligned} &Z = \max_{v_t,\dot x_t,x_t} \sum_{t\,=\,0}^{t_f}\phi(x_t) \\ &\mathrm{s.t.} \\ &1.\;Sv_t = \dot x_t \\ &2.\;x_{t+1} = x_t + \dot x_t \\ &3.\;v^{lb}_t \leq v_t \leq v^{ub}_t \\ &4.\;\dot x^{lb}_t \leq \dot x_t \leq \dot x^{ub}_t \\ &5.\;x_t \geq 0 \\ &t = \{0,\dots,t_f\}. \end{aligned} \label{eq:4} \tag{4}\end{align}In LP \ref{eq:4}, we maximize the sum of linear function of the concentrations, $x_t$, over all time steps $t$. For instance, we could maximize the total concentration of chemical species $x_{it}$ over all time steps, i.e., the discrete equivalent of the integral over the time period. However, we can modify the objective function at our convinience. Note that we impose bounds on the derivatives at each time step, $\dot x_t$. These constraints are crucial to render the feasible space of LP \ref{eq:4} realistic, i.e., constraining the increase or decrease in concentration that the system can maintain in each time step. To further render the feasible space more realistic, we can add a constraint to control the change in flux values between time steps: $v_{t + 1} = v_t + \delta$, with $\delta_{min} \leq \delta \leq \delta_{max}$. In this manner, we impose a notion of continuity between time steps, avoiding large jumps in flux values between time steps. Exploring the optimal space of concentration dynamicsSolving LP \ref{eq:4} will render a single optimal solution. However, the system will most likely be proned to host a space of alternative optimal solutions, a situaltion that is common in constraint-based metabolic modeling setups. We can explore the space of alternative optimal concentration trajectories in two ways. On the one hand, we can compute the minimum and maximum concentration values for each chemical species along the trajectory. On the other hand, we can randomly sample the space of alternative optimal concentration trajectories, e.g, to conduct statistical analyses on them.First, let's adapt LP \ref{eq:4} to compute the concentration bounds along the trajectory. Specifically, we need to solve the following two LPs for each $x_{it},\;i\in \{1,\dots,m\},\;t\in\{t_0,\dots,t_f\}$ to compute the maximum and minimum concentrations for each time step:\begin{align} \begin{aligned} & x^{\mathrm{min}}_{it},\; x^{\mathrm{max}}_{it} = \min_{v_t,\dot x_t,x_t} x_{it}, \;\max_{v_t,\dot x_t,x_t} x_{it} \\ &\mathrm{s.t.} \\ &1.\;Sv_t = \dot x_t \\ &2.\;x_{t+1} = x_t + \dot x_t \\ &3.\;v^{lb}_t \leq v_t \leq v^{ub}_t \\ &4.\;\dot x^{lb}_t \leq \dot x_t \leq \dot x^{ub}_t \\ &5.\;x_t \geq 0 \\ &6.\;\sum_{t\,=\,0}^{t_f}\phi(x_t) = Z \\ &t = \{0,...,t_f\}, \end{aligned} \label{eq:5} \tag{5}\end{align}where $Z$ corresponds to the optimal value of the objective function in LP \ref{eq:4}. Now that we can compute the concentration bounds in the optimal solution space, we can proceed to generate a random sample of optimal concentration trajectories. To this end, we first generate a random vector of concentration trajectories, $x_{\mathrm{rand}}$, and then find the closest point in the optimal soluction space. To this end, we can employ the first norm: $\epsilon = ||x - x_{\mathrm{rand}}||_1 = \sum_k |x_k - x_{\mathrm{rand}k}|$. However, to facilitate the computation, we will employ the transformation: $\epsilon^+ - \epsilon^- = ||x - x_{\mathrm{rand}}||_1$, with $\epsilon^+, \epsilon^- \ge 0$. The solution to the following LP generates a random trajectories which achieve the same optimal value, $Z$, of LP \ref{eq:4}:\begin{align} \begin{aligned} &\min_{\substack{v_t,\dot x_t,x_t,\\ \epsilon_t^+,\epsilon_t^-}} \sum_{i=1}^{m} \sum_{t=0}^{t_f+1} (\epsilon_{it}^+ + \epsilon_{it}^-) \\ &\mathrm{s.t.} \\ &1.\;Sv_t = \dot x_t \\ &2.\;x_{t+1} = x_t + \dot x_t \\ &3.\;v^{lb}_t \leq v_t \leq v^{ub}_t \\ &4.\;\dot x^{lb}_t \leq \dot x_t \leq \dot x^{ub}_t \\ &5.\;x_t \geq 0 \\ &6.\;\sum_{t\,=\,0}^{t_f}\phi(x_t) = Z \\ &7.\;x_{t} - x_{\mathrm{rand}_t} = \epsilon_{t}^+ - \epsilon_{t}^- \\ &8.\;\epsilon_t^+,\;\epsilon_{t}^+ \geq 0 \\ &t = \{0,\dots,t_f\}. \end{aligned} \label{eq:6} \tag{6}\end{align}We just need to repeat the process of generating $x_{\mathrm{rand}}$ and solving LP \ref{eq:6} $n$ times to collect a sample of size $n$ of alternative optimal concentration trajectories for our chemical system. An illustrationLet's exemplify the methods presented in the previous section with the following chemical network:with chemical species, $A,B,C,D,E,F$ and reactions $v_1,v_2,v_3,v_4,v_5$, which has stoichiometric matrix:$$S = \begin{pmatrix} -1 & 0 & 0 & -1 & 0\\ -1 & 0 & 0 & 0 & 0\\ 2 & -1 & 1 & 0 & -1\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & -1 & 1 & 1\\ 0 & 1 & 0 & 0 & 0\\end{pmatrix}.$$We will use LPs \ref{eq:4},\ref{eq:5},\ref{eq:6} to explore the alternative optimal space resulting from maximizing the total concentration, i.e., sum over all time steps, of species $C$. ###Code import numpy as np from trajectoryLP import NetworkFlow S = np.array([ [-1,0,0,-1,0], [-1,0,0,0,0], [2,-1,1,0,-1], [0,1,0,0,0], [0,0,-1,1,1], [0,1,0,0,0] ]) var_names = ['A', 'B', 'C', 'D', 'E', 'F'] flux_names=['v1', 'v2', 'v3', 'v4', 'v5'] # Define initial conditions var_x0 = [10, 5, 5, 1, 2, 2] Network = NetworkFlow(S, obj_x='C', n_steps=100, x_names=var_names, x_0=var_x0, xp_min=-10, xp_max=10, v_names=flux_names, v_delta_max=0.1) Network.solve(verbose=False) Network.findAlternativeOptimaBounds() Network.sampleAlternativeOptimaSpace(n_samples=500) Network.plotXSolution('A') Network.plotXSolution('B') Network.plotXSolution('C') Network.plotXSolution('D') Network.plotXSolution('E') Network.plotXSolution('F') ###Output _____no_output_____
_build/html/_sources/materials/CL-Answers/CL1-Tooling.ipynb
###Markdown Coding Lab 1: Tech Setup & ToolingWelcome to the first coding lab!CodingLab labs are meant to be interactive - so, feel free to find another person to work together with on your CodingLab notebooks. For this lab, it's really important that you're comfortable with all of the tools we introduce here, as we'll be using them throughout the quarter. So, while you should feel free to consult with your classmates, you'll want to be sure you carry out each part on your own. If you have a question about how something works / what something does - try it out, and see what happens! If you get stuck, consult your classmates. If you're still stuck, your instructional staff are there to help! Reminders: - **PLEASE DO NOT CHANGE THE NAME OF THIS FILE.**- **PLEASE DO NOT COPY & PASTE OR DELETE CELLS INLCUDED IN THE ASSIGNMENT.** (Adding new cells is allowed!) Part 1: JupyterThis is a Jupyter Notebook! They are a very helpful learning tool because they allow plain text (like this!) and code (coming up!) to be combined in a single document.The notes presented in lecture are Jupyter Notebooks. Your CodingLabs will be in Jupyter Notebooks. And, your assignments will be completed in Jupyter Notebooks. So, you'll want to get very comfortable with working within a notebook. Cells The operational unit of the notebook is the cell.Cells are primarily either text (Markdown) or code. If you click on this cell, you should see in the menu above that it says "Markdown" YOUR TURN: Add a new cellSingle click on this cell. Then, click the '+' icon on the toolbar at the top to add a new cell below this one. The cell you just added above is a code cell by default. You can tell by the `In [ ]:` to the left of the cell and the fact that the drop-down box above says "Code"Use that drop-down menu to change the type of that cell you just created to be a text cell. Type the following in that cell "Learning to program in Python makes me ..." and finish the sentence with how you feel about learning to program in python. YOUR TURN: Editing Text CellsTo edit the text in this cell, double-click on it.Add information below about yourself to get practice with editing text cells.Name: Professor PID: A1234567 College: ERC Major: All things Python! MarkdownAs discussed in lecture, these cells are formatted using [Markdown syntax](https://www.markdownguide.org/basic-syntax/). Edit the text in the cell below so that it has the formatting specified by the text. For example, if the text said:This sentence is bold.You would edit the text so that it was bold:**This sentence is bold.**Note that to see the formatting changes, you'll have to run the cell using the Run icon above (or more simply use 'Shift + Enter' on your keyboard. YOUR TURN: Edit this text This is a heading level 4 (H4)*This sentence is italicized.*Below is a bulleted list:- bullet item 1 - bullet item 2- bullet item 3Below is a numbered list:1. list item 11. list item 21. list item 3***This sentence is bold AND italic.*** Code CellsBelow this cell, you see a code cell. In it you will see ```python YOUR CODE HEREraise NotImplementedError()```Any time you see this in a coding lab, assignment, or exam, you'll replace it with your answer.Code is added to cells, but they have to be Run (executed) for the code to be processed.Type `x = 3` in the code cell below. Then, click "Run" from the menu above of press 'Shift + Enter' on your keybood to execute that code. ###Code ### BEGIN SOLUTION x = 3 ### END SOLUTION # this should not give any output if you did the above # this checks to make sure x exists # but it does NOT check that it has the right value assert x ###Output _____no_output_____ ###Markdown After running the code cell above, there will be a number between the brackets to the left of the cell. Each time you run a code cell, this number will increase by 1. Run the code cell below to see what we mean. ###Code y = 29 ###Output _____no_output_____ ###Markdown One thing that sometimes trips users up is the fact that cells do NOT have to be run in order from top to bottom. Python remembers whatever was executed most recently. To see what we mean, run the cell below and see what it returns: ###Code x ###Output _____no_output_____
01a - Example of Phase-Plane Analysis.ipynb
###Markdown Introduction Consider the following 2nd order system (Mass-Damper-Spring):$\ddot{x} + \dot{x} = 3x + x^2 = 0 \Longleftrightarrow \ddot{x} + c \dot{x} + f(x) = 0$$c$ is the dampening force and $f(x)$ is the non-linear spring. The system can be placed into the $\dot{\underline{x}} = \underline{f}(\underline{x})$ form:$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -3x_1 - x_1^2 - x_2\end{cases}$ Analysis of the system: ManualAnalysis of the system $\Rightarrow$ Phase Plane $(x_1, x_2)$: Step 1: Find the Equillibrium Points:$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_2, x_2) = 0\end{cases} \Rightarrow\begin{cases} x_2 && = 0 \\ -3x_1 - x_1^2 - x_2 && = 0 \, \Rightarrow \, -3x_1 - x_1^2 = 0\end{cases}$$\begin{cases} x_2 = 0 \\ x_1(-3 - x_1) = 0\end{cases} \Rightarrow$ 2 equillibrium points $\Rightarrow\begin{cases} \underline{x}_1 = [0, 0]^T \\ \underline{x}_2 = [-3, 0]^T\end{cases}$ Step 2: Linearize the System Around the Equillibrium Points:$\displaystyle\dot{\underline{x}} = \underline{f}(\underline{x}) \Rightarrow \approx \underline{f}(\underline{x}^*) + \left . \frac{\partial \underline{f}}{\partial \underline{x}} \right |_{\underline{x}^*} (\underline{x} - \underline{x}^*)$$\displaystyle A = \left . \frac{\partial\underline{f}}{\partial\underline{x}} \right |_{\underline{x}_{1, \, 2}^*} = \begin{bmatrix} 0 && 1 \\ -3 - 2x_1 && -1\end{bmatrix}_{\underline{x}_1^*, \, \underline{x}_2^*}$ For $\underline{x} = \underline{x}_1$ We have the following system:$\dot{\underline{x}} = A_1 \underline{x} \Rightarrow A_1 = \begin{bmatrix} 0 && 1 \\ -3 && -1\end{bmatrix}$Look for the behavior of the system near $\underline{x}_1 = \underline{0}$. e-value analysis:$\det (A_1 - \lambda I) = \begin{vmatrix} -\lambda && 1 \\ -3 && -1 - \lambda\end{vmatrix}= \lambda \big(\lambda + 1\big) + 3 = 0$$\Rightarrow \lambda^2 + \lambda + 3 = 0 \Rightarrow \lambda_{12} = -\frac{1}{2} \left( 1 \pm \sqrt{1 - 12}\right) = -\frac{1}{2} \left( 1 \pm \sqrt{11} j\right)$ For $\underline{x} = \underline{x}_2$We have the following system:$\dot{\underline{x}} = A_2 \underline{x} \Rightarrow A_2 = \begin{bmatrix} 0 && 1 \\ 3 && -1\end{bmatrix}$Look for the behavior of the system near $\underline{x}_2 = \underline{0}$. e-value analysis:$\left|(A - \lambda I ) \right| = \begin{vmatrix} -\lambda && 1 \\ 3 && -1 - \lambda\end{vmatrix} = 0$$\Rightarrow \lambda \left(\lambda + 1 \right) - 3 = 0 \Rightarrow \, \lambda^2 + \lambda - 3 = 0$$\lambda = -\frac{1}{2} \left ( 1 \pm \sqrt{1 + 12} \right) = - \frac{1}{2} \pm \frac{1}{2} \sqrt{13}$Note that both solutions of $\lambda$ are REAL! Therefore:$\begin{matrix} \lambda_1 = -\frac{1}{2} \left( 1 - \sqrt{13} \right ) > 0 \\ \lambda_2 = -\frac{1}{2} \left( 1 + \sqrt{13} \right ) < 0\end{matrix} \Rightarrow \text{ Unstable } \Rightarrow \underline{\text{Saddle Point}}$Compute the e-vectors $\underline{v}_1,\, \underline{v}_2$ to determine the direction of convergence Step 3: Put Everything Together: !!!!! TODO: Insert Graphic !!!!! Analysis of the System: Python Given that:$\begin{cases} \dot{x}_1 = f_1(x_1, x_2) = x_2 \\ \dot{x}_2 = f_2(x_2, x_2) = -3x_1 - x_1^2 - x_2\end{cases}$We can define two variables to these functions: ###Code f_1 = x_2 f_2 = -3 * x_1 - x_1 ** 2 - x_2 ###Output _____no_output_____ ###Markdown We can solve the system of equations using the `solve` function. ###Code slns = sp.solve([f_1, f_2]) slns ###Output _____no_output_____ ###Markdown We get the same solutions that we found previously. To linearize the system, we need to take the derivatives of each function with respect to $x_1$ and $x_2$. We'll compile this into a matrix A_1 like so: ###Code A = sp.Matrix([[sp.diff(f_1, x_1), sp.diff(f_1, x_2)], [sp.diff(f_2, x_1), sp.diff(f_2, x_2)]]) A ###Output _____no_output_____ ###Markdown Now we let $\dot{\underline{x}} = A_1 \, \underline{x}$. Therefore `A_1` would be: ###Code A_1 = sp.Matrix([[0, 1], [-3, -1]]) A_1 ###Output _____no_output_____ ###Markdown Next we find the determinate of $A_1 - \lambda I$ ###Code λ_fun = sp.det(A_1 - λ * sp.eye(2)) λ_fun sp.solve(λ_fun) ###Output _____no_output_____ ###Markdown Analysis of the System: Numpy Meshgrid ###Code import numpy as np from matplotlib import pyplot as plt x1, x2 = np.meshgrid(np.linspace(-.5, .5, 10), np.linspace(-.5, .5, 10)) x1dot = x2 x2dot = -3 * x1 - x1 ** 2 - x2 plt.figure() plt.quiver(x1, x2, x1dot, x2dot) plt.show() @widgets.interact ( x_start=(-10.0, 10.0, 0.1), x_stop=(-10.0, 10.0, 0.1), y_start=(-10.0, 10.0, 0.1), y_stop=(-10.0, 10.0, 0.1), space=(10, 50) ) def inter_plot(x_start, x_stop, y_start, y_stop, space): x1, x2 = np.meshgrid(np.linspace(x_start, x_stop, space), np.linspace(y_start, y_stop, space)) x1dot = x2 x2dot = -3 * x1 - x1 ** 2 - x2 plt.figure() plt.quiver(x1, x2, x1dot, x2dot) plt.show() ###Output _____no_output_____
Counter_Current_Heat_Exchanger.ipynb
###Markdown Counter Current Heat Exchanger at Steady State Rajas Mehendale18CHE160TY B Chem Engg ###Code import scipy import numpy as np from scipy.integrate import quad import scipy.optimize import scipy.interpolate import matplotlib.pyplot as plt from matplotlib import style import pandas as pd from IPython.display import display %config InlineBackend.figure_format = 'svg' style.use("seaborn-bright") ###Output _____no_output_____ ###Markdown Hot side$$ \frac{dH^H}{dz} = - \frac{UP}{m_H} (T_H - T_C)$$Cold side$$ \frac{dH^C}{dz} = - \frac{UP}{m_C} (T_H - T_C)$$Boundary Conditions$$ T_H|_{(z=0)} = T_H^{in}$$$$ T_C|_{(z=L)} = T_C^{in}$$ Hot Fluid - 1-nonanolCold Fluid - Water ###Code def integrand(T,cp): I = (cp[0])+(cp[1]*T)+(cp[2]*(T**2))+(cp[3]*(T**3))+(cp[4]*(T**4)) return I def H_H(T): #T in K cp = [10483000, -115220, 476.87, -0.85381, 0.00056246] # 1-Nonanol I1 = (cp[0]/1)* np.power(T-273.16,1) I2 = (cp[1]/2)* np.power(T-273.16,2) I3 = (cp[2]/3)* np.power(T-273.16,3) I4 = (cp[3]/4)* np.power(T-273.16,4) I5 = (cp[4]/5)* np.power(T-273.16,5) H = (I1+I2+I3+I4+I5)/(144.225) #J/(kg-K) return H def H_C(T): # T in K # Water cp = [276370, -2090.1, 8.125, -0.014116, 9.3701E-06] I1 = (cp[0]/1)* np.power(T-273.16,1) I2 = (cp[1]/2)* np.power(T-273.16,2) I3 = (cp[2]/3)* np.power(T-273.16,3) I4 = (cp[3]/4)* np.power(T-273.16,4) I5 = (cp[4]/5)* np.power(T-273.16,5) H = (I1+I2+I3+I4+I5)/(18.015) #J/(kg-K) return H T = np.linspace(275, 425, 2000); plt.figure() plt.plot(T, H_H(T), 'r', label="Hot Fluid"); plt.plot(T, H_C(T), 'b', label="Cold Fluid"); plt.legend() plt.xlabel("Temperature (K)", fontsize=10); plt.ylabel(r"$H \ (\frac{J}{kg})$", fontsize=10); plt.xlim([275,425]); plt.grid(); #plt.ylim([1400,5000]); T_H = scipy.interpolate.UnivariateSpline(H_H(T), T, k=1, s=0) T_C = scipy.interpolate.UnivariateSpline(H_C(T), T, k=1, s=0) def model(SV, z, heatx): [H_H, H_C] = SV U = heatx.U P = heatx.P mH = heatx.mH mC = heatx.mC T_H = heatx.T_H(H_H) T_C = heatx.T_C(H_C) dH_Hbydz = -U*P/mH * (T_H - T_C) dH_Cbydz = -U*P/mC * (T_H - T_C) return [dH_Hbydz, dH_Cbydz] def shoot(T_Cout, heatx): heatx.T_Cout = T_Cout SV0 = [H_H(heatx.T_Hin), H_C(heatx.T_Cout)] z = [0, heatx.L] solution = scipy.integrate.odeint( model, SV0, z, args = (heatx,) ) H_Cin = solution[-1, 1] T_Cin = heatx.T_C(H_Cin) error = [T_Cin - heatx.T_Cin] return error class HeatX: def __init__(self): self.U = 400.0 #W/m2-K self.P = 0.2 #m2/m self.L = 4 #m self.mH = 8.0 #kg/s self.mC = 8.0 #kg/s self.T_Hin = 50.0+273.16 #K self.T_Cin = 5.0+273.16#K def initialize(self): T = np.linspace(self.T_Cin, self.T_Hin, 1000) self.T_H = scipy.interpolate.UnivariateSpline(H_H(T), T, k=1, s=0) self.T_C = scipy.interpolate.UnivariateSpline(H_C(T), T, k=1, s=0) def solve(self, n = 2000): self.initialize() guess = [self.T_Cin + 0.0] lsq = scipy.optimize.least_squares(shoot, guess, args = (self,)) SV0 = [H_H(self.T_Hin), H_C(self.T_Cout)] z = np.linspace(0,self.L, n) solution = scipy.integrate.odeint( model, SV0, z, args = (self,) ) H_Hsol = solution[:,0] H_Csol = solution[:,1] self.delT_in = self.T_H(H_Hsol[0]) - self.T_C(H_Csol[0]) self.delT_out = self.T_H(H_Hsol[-1]) - self.T_C(H_Csol[-1]) self.lmtd = (self.delT_in-self.delT_out)/np.log(self.delT_in/self.delT_out) self.solutiondf = pd.DataFrame({ "z":z, "T_H":self.T_H(H_Hsol), "T_C":self.T_C(H_Csol) }) def heatx_plots(self): solutiondf = self.solutiondf ax = plt.figure() plt.plot(solutiondf.z, solutiondf.T_H, 'r', label=r"Hot fluid side $\rightarrow$") plt.plot(solutiondf.z, solutiondf.T_C, 'b', label=r"Cold fluid side $\leftarrow$") plt.legend(fontsize=10) plt.xlabel("Length axis (z=0 to z= %.1f m)" %(self.L)) plt.ylabel("Temperature (K)") plt.grid() plt.xlim([0, self.L]) plt.ylim([270, 330]) textstr =("Temp Difference (K)\n \n"+ "@(z=0): %.1f\n" %(self.delT_in)+ "@(z=%.1f): %.1f\n" %(self.L, self.delT_out)+ "LMTD: %.1f" %(self.lmtd)) props = dict(boxstyle='round', facecolor='gold', alpha=0.5) ax.text(0.95, 0.5, textstr, fontsize=10, verticalalignment='top', bbox=props); heatx = HeatX() heatx.mH = 0.01 #kg/s heatx.mC = 0.01 #kg/s heatx.T_Hin = 50.0+273.16 #K heatx.T_Cin = 10.0+273.16#K heatx.solve() heatx.heatx_plots() heatx = HeatX() heatx.locbox = [0.5,0.5] heatx.mH = 0.6 #kg/s heatx.mC = 0.2 #kg/s heatx.T_Hin = 50.0+273.16 #K heatx.T_Cin = 5.0+273.16#K heatx.solve() heatx.heatx_plots() heatx = HeatX() heatx.mH = 0.1 #kg/s heatx.mC = 5.0 #kg/s heatx.T_Hin = 50.0+273.16 #K heatx.T_Cin = 5.0+273.16#K heatx.solve() heatx.heatx_plots() heatx = HeatX() heatx.mH = 4.0 #kg/s heatx.mC = 0.1 #kg/s heatx.T_Hin = 30.0+273.16 #K heatx.T_Cin = 5.0+273.16#K heatx.solve() heatx.heatx_plots() ###Output _____no_output_____
waf_admin/backend/SQLi Classification.ipynb
###Markdown END ###Code # fix random seed for reproducibility seed = 7 np.random.seed(seed) input_dim = X.shape[1] # Number of features cvscores = [] model = Sequential() model.add(layers.Dense(20, input_dim=input_dim, activation='relu')) model.add(layers.Dense(10, activation='tanh')) model.add(layers.Dense(1024, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() classifier_nn = model.fit(X_train,y_train, epochs=10, verbose=True, validation_data=(X_test, y_test), batch_size=15) # Save the model filepath = './saved_model' save_model(model, filepath) test_model = load_model(filepath, compile=True) yhat = test_model.predict(X_test) print("Accuracy of Neural network: %.3f "%accuracy_score(np.rint(yhat),y_test)) print("F1_score of Neural network: %.3f "%f1_score(np.rint(yhat),y_test)) print("auc_roc of Neural network: %.3f "%roc_auc_score(np.rint(yhat),y_test)) test = pd.read_csv('../data/Malicious_data.csv') test_cv = vectorizer.transform(test.Payload[test['Classification']=='SQLI']) pred= model.predict(test_cv) np.rint(pred) yhat = test_model.predict(X_test) print("F1_score of neural network: %.3f "%f1_score(yhat,y_test)) df[df['Sentence'].str.contains('Password')] import gensim.downloader # Show all available models in gensim-data print(list(gensim.downloader.info()['models'].keys())) glove_vectors = gensim.downloader.load('glove-wiki-gigaword-50') glove_vectors.most_similar('username') ###Output _____no_output_____
modules/04-machine-learning-in-python/04-case-study.ipynb
###Markdown Case Study - Facial Recognition with Machine Learning Using SVM and PCA The purpose of this case study is to show you a practical application of Machine Learning with SVM (Support Vector Machines) and PCA (Principal Component Analysis) algorithms for dimensionality reduction. Problem Definition We will create a model for facial recognition, using SVM and PCA. This approach treats face recognition as a 2-dimensional recognition problem, taking advantage of the fact that faces are usually in an upright position and therefore can be described by a small set of 2D features. Face images are projected in a resource space(face space) that best encodes the variation between known face images. The PCA is applied to reduce the dimensionality of the data and then train the SVM model for a classification task. Loading Packages ###Code import matplotlib.pyplot as plt %matplotlib inline import numpy as np from sklearn import datasets from sklearn import decomposition from sklearn import svm from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown Loading the Dataset We will use the **Dataset Labeled Faces in the Wild Home**, which gives us a image faces set prepared for Computer Vision tasks. The dataset can be downloaded from http://vis-www.cs.umass.edu/lfw/, but it is already available on Keras, the most widely used Deep Learning framework today. The download is performed when the below cell is executed for the first time. We will download at least 70 images per person, with a scaling factor of 0.4. ###Code dataset_faces = datasets.fetch_lfw_people(min_faces_per_person = 70, resize = 0.4) dataset_faces.data.shape print(dataset_faces.data) ###Output [[254. 254. 251.66667 ... 87.333336 88.666664 86.666664] [ 39.666668 50.333332 47. ... 117.666664 115. 133.66667 ] [ 89.333336 104. 126. ... 175.33333 183.33333 183. ] ... [ 86. 80.333336 74.666664 ... 44. 49.666668 44.666668] [ 50.333332 65.666664 88. ... 197. 179.33333 166.33333 ] [ 30. 27. 32.666668 ... 35. 35.333332 61. ]] ###Markdown Preparing the Dataset **Let's extract the image shapes details** ###Code n_samples, height, width = dataset_faces.images.shape print(f'Samples Number: {n_samples}') print(f'Images Height: {height}') print(f'Images Width: {width}') ###Output Samples Number: 1288 Images Height: 50 Images Width: 37 ###Markdown We have 1288 images, each one with the dimensions of 50x37 pixels. When we load data with Keras, it offers two attributes for the dataset: data and target.We'll store the data in **x** (input variables) and the target in **y** (output variable). ###Code x = dataset_faces.data y = dataset_faces.target n_attributes = x.shape[1] target_names = dataset_faces.target_names n_classes = target_names.shape[0] print(f'Number of Attributes: {n_attributes}') print(f'Number of Classes: {n_classes}') ###Output Number of Attributes: 1850 Number of Classes: 7 ###Markdown The value of 1850 represents the number of pixels that we will be working with to train the model. There are 1850 variables in the dataset, each one representing a pixel. The value of 7 represents the number of people that our model can classify. That is, we have pictures of 7 different people. ###Code print(x) print(y) ###Output [5 6 3 ... 5 3 5] ###Markdown Dataset Summary ###Code print('Total Dataset Size\n') print(f'Samples Number: {n_samples}') print(f'Number of Attributes: {n_attributes}') print(f'Number of Classes: {n_classes}') ###Output Total Dataset Size Samples Number: 1288 Number of Attributes: 1850 Number of Classes: 7 ###Markdown Data Visualization ###Code fig = plt.figure(figsize = (12, 8)) for i in range(15): ax = fig.add_subplot(3, 5, i + 1, xticks = [], yticks = []) ax.imshow(dataset_faces.images[i], cmap = plt.cm.bone) ###Output _____no_output_____ ###Markdown Dataset Distribution Visualization ###Code plt.figure(figsize = (10, 2)) unique_targets = np.unique(dataset_faces.target) counts = [(dataset_faces.target == i).sum() for i in unique_targets] plt.xticks(unique_targets, dataset_faces.target_names[unique_targets]) locs, labels = plt.xticks() plt.setp(labels, rotation = 90, size = 14) _ = plt.bar(unique_targets, counts) ###Output _____no_output_____ ###Markdown These faces have already been located and resized to a common size. This is an important pre-processing factor for facial recognition, and it's a process that may require a large collection of training data. This can be done with Scikit-Learn, but the challenge is to gather enough training data for the algorithm to work. We need to split the data into training and testing, as in any Machine Learning model. ###Code x_training, \ x_test, \ y_training, \ y_test = train_test_split( dataset_faces.data, dataset_faces.target, random_state = 0) print(x_training.shape, x_test.shape) ###Output (966, 1850) (322, 1850) ###Markdown For Training: 966 images and 1850 attributes (images pixels).For Test: 322 images and 1850 attributes (images pixels). Pre-Processing: Principal Component Analysis (PCA) The 1850 attributes represent 1850 dimensions, which is a lot for SVM models. We can use the PCA to reduce these 1850 resources to a manageable level while keeping most of the information in the dataset. Here it is useful to use a variant of the PCA called **RandomizedPCA**, which is an approximation of the PCA that can be much faster for large datasets. Let's create the PCA model with 150 components, each one will have the same information as a group of variables. In this way, we will reduce the dimensions from 1850 to 150. ###Code pca = decomposition.PCA( n_components = 150, whiten = True, random_state = 1999, svd_solver = 'randomized' ) pca.fit(x_training) x_training_pca = pca.transform(x_training) x_test_pca = pca.transform(x_test) print(f'Training Shape: {x_training_pca.shape}') print(f'Test Shape: {x_test_pca.shape}') ###Output Training Shape: (966, 150) Test Shape: (322, 150) ###Markdown These 150 components correspond to factors in a linear combination of images, so that the combination approaches to the original face. In general, PCA can be a powerful pre-processing technique that can significantly improve classification performance. Machine Learning Model Construction with SVM ###Code model_svm = svm.SVC(C = 5., gamma = 0.001) model_svm.fit(x_training_pca, y_training) ###Output _____no_output_____ ###Markdown Model Evaluation ###Code print(x_test.shape) fig = plt.figure(figsize = (12, 8)) for i in range(15): ax = fig.add_subplot(3, 5, i + 1, xticks = [], yticks = []) # Dataset real image ax.imshow(x_test[i].reshape((50, 37)), cmap = plt.cm.bone) # Class prediction with the trained model y_prediction = model_svm.predict(x_test_pca[i].reshape(1, -1))[0] # Set black labels for correct predictions (prediction classes equal to real classes), # and red labels for the opposite color = 'black' if y_prediction == y_test[i] else 'red' ax.set_title(dataset_faces.target_names[y_prediction], fontsize = 'small', color = color) print(model_svm.score(x_test_pca, y_test)) ###Output 0.8416149068322981
Course4_CNN/ww3/Autonomous_driving_application_Car_detection_v3a.ipynb
###Markdown Autonomous driving - Car detectionWelcome to your week 3 programming assignment. You will learn about object detection using the very powerful YOLO model. Many of the ideas in this notebook are described in the two YOLO papers: [Redmon et al., 2016](https://arxiv.org/abs/1506.02640) and [Redmon and Farhadi, 2016](https://arxiv.org/abs/1612.08242). **You will learn to**:- Use object detection on a car detection dataset- Deal with bounding boxes Updates If you were working on the notebook before this update...* The current notebook is version "3a".* You can find your original work saved in the notebook with the previous version name ("v3") * To view the file directory, go to the menu "File->Open", and this will open a new tab that shows the file directory. List of updates* Clarified "YOLO" instructions preceding the code. * Added details about anchor boxes.* Added explanation of how score is calculated.* `yolo_filter_boxes`: added additional hints. Clarify syntax for argmax and max.* `iou`: clarify instructions for finding the intersection.* `iou`: give variable names for all 8 box vertices, for clarity. Adds `width` and `height` variables for clarity.* `iou`: add test cases to check handling of non-intersecting boxes, intersection at vertices, or intersection at edges.* `yolo_non_max_suppression`: clarify syntax for tf.image.non_max_suppression and keras.gather.* "convert output of the model to usable bounding box tensors": Provides a link to the definition of `yolo_head`.* `predict`: hint on calling sess.run.* Spelling, grammar, wording and formatting updates to improve clarity. Import librariesRun the following cell to load the packages and dependencies that you will find useful as you build the object detector! ###Code import argparse import os import matplotlib.pyplot as plt from matplotlib.pyplot import imshow import scipy.io import scipy.misc import numpy as np import pandas as pd import PIL import tensorflow as tf from keras import backend as K from keras.layers import Input, Lambda, Conv2D from keras.models import load_model, Model from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes from yad2k.models.keras_yolo import yolo_head, yolo_boxes_to_corners, preprocess_true_boxes, yolo_loss, yolo_body %matplotlib inline ###Output Using TensorFlow backend. ###Markdown **Important Note**: As you can see, we import Keras's backend as K. This means that to use a Keras function in this notebook, you will need to write: `K.function(...)`. 1 - Problem StatementYou are working on a self-driving car. As a critical component of this project, you'd like to first build a car detection system. To collect data, you've mounted a camera to the hood (meaning the front) of the car, which takes pictures of the road ahead every few seconds while you drive around. Pictures taken from a car-mounted camera while driving around Silicon Valley. We thank [drive.ai](htps://www.drive.ai/) for providing this dataset.You've gathered all these images into a folder and have labelled them by drawing bounding boxes around every car you found. Here's an example of what your bounding boxes look like. **Figure 1** : **Definition of a box** If you have 80 classes that you want the object detector to recognize, you can represent the class label $c$ either as an integer from 1 to 80, or as an 80-dimensional vector (with 80 numbers) one component of which is 1 and the rest of which are 0. The video lectures had used the latter representation; in this notebook, we will use both representations, depending on which is more convenient for a particular step. In this exercise, you will learn how "You Only Look Once" (YOLO) performs object detection, and then apply it to car detection. Because the YOLO model is very computationally expensive to train, we will load pre-trained weights for you to use. 2 - YOLO "You Only Look Once" (YOLO) is a popular algorithm because it achieves high accuracy while also being able to run in real-time. This algorithm "only looks once" at the image in the sense that it requires only one forward propagation pass through the network to make predictions. After non-max suppression, it then outputs recognized objects together with the bounding boxes. 2.1 - Model details Inputs and outputs- The **input** is a batch of images, and each image has the shape (m, 608, 608, 3)- The **output** is a list of bounding boxes along with the recognized classes. Each bounding box is represented by 6 numbers $(p_c, b_x, b_y, b_h, b_w, c)$ as explained above. If you expand $c$ into an 80-dimensional vector, each bounding box is then represented by 85 numbers. Anchor Boxes* Anchor boxes are chosen by exploring the training data to choose reasonable height/width ratios that represent the different classes. For this assignment, 5 anchor boxes were chosen for you (to cover the 80 classes), and stored in the file './model_data/yolo_anchors.txt'* The dimension for anchor boxes is the second to last dimension in the encoding: $(m, n_H,n_W,anchors,classes)$.* The YOLO architecture is: IMAGE (m, 608, 608, 3) -> DEEP CNN -> ENCODING (m, 19, 19, 5, 85). EncodingLet's look in greater detail at what this encoding represents. **Figure 2** : **Encoding architecture for YOLO** If the center/midpoint of an object falls into a grid cell, that grid cell is responsible for detecting that object. Since we are using 5 anchor boxes, each of the 19 x19 cells thus encodes information about 5 boxes. Anchor boxes are defined only by their width and height.For simplicity, we will flatten the last two last dimensions of the shape (19, 19, 5, 85) encoding. So the output of the Deep CNN is (19, 19, 425). **Figure 3** : **Flattening the last two last dimensions** Class scoreNow, for each box (of each cell) we will compute the following element-wise product and extract a probability that the box contains a certain class. The class score is $score_{c,i} = p_{c} \times c_{i}$: the probability that there is an object $p_{c}$ times the probability that the object is a certain class $c_{i}$. **Figure 4** : **Find the class detected by each box** Example of figure 4* In figure 4, let's say for box 1 (cell 1), the probability that an object exists is $p_{1}=0.60$. So there's a 60% chance that an object exists in box 1 (cell 1). * The probability that the object is the class "category 3 (a car)" is $c_{3}=0.73$. * The score for box 1 and for category "3" is $score_{1,3}=0.60 \times 0.73 = 0.44$. * Let's say we calculate the score for all 80 classes in box 1, and find that the score for the car class (class 3) is the maximum. So we'll assign the score 0.44 and class "3" to this box "1". Visualizing classesHere's one way to visualize what YOLO is predicting on an image:- For each of the 19x19 grid cells, find the maximum of the probability scores (taking a max across the 80 classes, one maximum for each of the 5 anchor boxes).- Color that grid cell according to what object that grid cell considers the most likely.Doing this results in this picture: **Figure 5** : Each one of the 19x19 grid cells is colored according to which class has the largest predicted probability in that cell. Note that this visualization isn't a core part of the YOLO algorithm itself for making predictions; it's just a nice way of visualizing an intermediate result of the algorithm. Visualizing bounding boxesAnother way to visualize YOLO's output is to plot the bounding boxes that it outputs. Doing that results in a visualization like this: **Figure 6** : Each cell gives you 5 boxes. In total, the model predicts: 19x19x5 = 1805 boxes just by looking once at the image (one forward pass through the network)! Different colors denote different classes. Non-Max suppressionIn the figure above, we plotted only boxes for which the model had assigned a high probability, but this is still too many boxes. You'd like to reduce the algorithm's output to a much smaller number of detected objects. To do so, you'll use **non-max suppression**. Specifically, you'll carry out these steps: - Get rid of boxes with a low score (meaning, the box is not very confident about detecting a class; either due to the low probability of any object, or low probability of this particular class).- Select only one box when several boxes overlap with each other and detect the same object. 2.2 - Filtering with a threshold on class scoresYou are going to first apply a filter by thresholding. You would like to get rid of any box for which the class "score" is less than a chosen threshold. The model gives you a total of 19x19x5x85 numbers, with each box described by 85 numbers. It is convenient to rearrange the (19,19,5,85) (or (19,19,425)) dimensional tensor into the following variables: - `box_confidence`: tensor of shape $(19 \times 19, 5, 1)$ containing $p_c$ (confidence probability that there's some object) for each of the 5 boxes predicted in each of the 19x19 cells.- `boxes`: tensor of shape $(19 \times 19, 5, 4)$ containing the midpoint and dimensions $(b_x, b_y, b_h, b_w)$ for each of the 5 boxes in each cell.- `box_class_probs`: tensor of shape $(19 \times 19, 5, 80)$ containing the "class probabilities" $(c_1, c_2, ... c_{80})$ for each of the 80 classes for each of the 5 boxes per cell. **Exercise**: Implement `yolo_filter_boxes()`.1. Compute box scores by doing the elementwise product as described in Figure 4 ($p \times c$). The following code may help you choose the right operator: ```pythona = np.random.randn(19*19, 5, 1)b = np.random.randn(19*19, 5, 80)c = a * b shape of c will be (19*19, 5, 80)```This is an example of **broadcasting** (multiplying vectors of different sizes).2. For each box, find: - the index of the class with the maximum box score - the corresponding box score **Useful references** * [Keras argmax](https://keras.io/backend/argmax) * [Keras max](https://keras.io/backend/max) **Additional Hints** * For the `axis` parameter of `argmax` and `max`, if you want to select the **last** axis, one way to do so is to set `axis=-1`. This is similar to Python array indexing, where you can select the last position of an array using `arrayname[-1]`. * Applying `max` normally collapses the axis for which the maximum is applied. `keepdims=False` is the default option, and allows that dimension to be removed. We don't need to keep the last dimension after applying the maximum here. * Even though the documentation shows `keras.backend.argmax`, use `keras.argmax`. Similarly, use `keras.max`.3. Create a mask by using a threshold. As a reminder: `([0.9, 0.3, 0.4, 0.5, 0.1] < 0.4)` returns: `[False, True, False, False, True]`. The mask should be True for the boxes you want to keep. 4. Use TensorFlow to apply the mask to `box_class_scores`, `boxes` and `box_classes` to filter out the boxes we don't want. You should be left with just the subset of boxes you want to keep. **Useful reference**: * [boolean mask](https://www.tensorflow.org/api_docs/python/tf/boolean_mask) **Additional Hints**: * For the `tf.boolean_mask`, we can keep the default `axis=None`.**Reminder**: to call a Keras function, you should use `K.function(...)`. ###Code # GRADED FUNCTION: yolo_filter_boxes def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6): """Filters YOLO boxes by thresholding on object and class confidence. Arguments: box_confidence -- tensor of shape (19, 19, 5, 1) boxes -- tensor of shape (19, 19, 5, 4) box_class_probs -- tensor of shape (19, 19, 5, 80) threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box Returns: scores -- tensor of shape (None,), containing the class probability score for selected boxes boxes -- tensor of shape (None, 4), containing (b_x, b_y, b_h, b_w) coordinates of selected boxes classes -- tensor of shape (None,), containing the index of the class detected by the selected boxes Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold. For example, the actual output size of scores would be (10,) if there are 10 boxes. """ # Step 1: Compute box scores ### START CODE HERE ### (≈ 1 line) box_scores = box_confidence*box_class_probs ### END CODE HERE ### # Step 2: Find the box_classes using the max box_scores, keep track of the corresponding score ### START CODE HERE ### (≈ 2 lines) box_classes = K.argmax(box_scores,axis=-1) #return the index value, shape is (19,19,5) box_class_scores = K.max(box_scores,axis=-1) #return the max value, shape is (19,19,5) ### END CODE HERE ### # Step 3: Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the # same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold) ### START CODE HERE ### (≈ 1 line) filtering_mask = box_class_scores>=threshold ### END CODE HERE ### # Step 4: Apply the mask to box_class_scores, boxes and box_classes ### START CODE HERE ### (≈ 3 lines) scores = tf.boolean_mask(box_class_scores, filtering_mask) boxes = tf.boolean_mask(boxes, filtering_mask) classes = tf.boolean_mask(box_classes, filtering_mask) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_a: box_confidence = tf.random_normal([19, 19, 5, 1], mean=1, stddev=4, seed = 1) boxes = tf.random_normal([19, 19, 5, 4], mean=1, stddev=4, seed = 1) box_class_probs = tf.random_normal([19, 19, 5, 80], mean=1, stddev=4, seed = 1) scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = 0.5) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.shape)) print("boxes.shape = " + str(boxes.shape)) print("classes.shape = " + str(classes.shape)) ###Output scores[2] = 10.7506 boxes[2] = [ 8.42653275 3.27136683 -0.5313437 -4.94137383] classes[2] = 7 scores.shape = (?,) boxes.shape = (?, 4) classes.shape = (?,) ###Markdown **Expected Output**: **scores[2]** 10.7506 **boxes[2]** [ 8.42653275 3.27136683 -0.5313437 -4.94137383] **classes[2]** 7 **scores.shape** (?,) **boxes.shape** (?, 4) **classes.shape** (?,) **Note** In the test for `yolo_filter_boxes`, we're using random numbers to test the function. In real data, the `box_class_probs` would contain non-zero values between 0 and 1 for the probabilities. The box coordinates in `boxes` would also be chosen so that lengths and heights are non-negative. 2.3 - Non-max suppression Even after filtering by thresholding over the class scores, you still end up with a lot of overlapping boxes. A second filter for selecting the right boxes is called non-maximum suppression (NMS). **Figure 7** : In this example, the model has predicted 3 cars, but it's actually 3 predictions of the same car. Running non-max suppression (NMS) will select only the most accurate (highest probability) of the 3 boxes. Non-max suppression uses the very important function called **"Intersection over Union"**, or IoU. **Figure 8** : Definition of "Intersection over Union". **Exercise**: Implement iou(). Some hints:- In this code, we use the convention that (0,0) is the top-left corner of an image, (1,0) is the upper-right corner, and (1,1) is the lower-right corner. In other words, the (0,0) origin starts at the top left corner of the image. As x increases, we move to the right. As y increases, we move down.- For this exercise, we define a box using its two corners: upper left $(x_1, y_1)$ and lower right $(x_2,y_2)$, instead of using the midpoint, height and width. (This makes it a bit easier to calculate the intersection).- To calculate the area of a rectangle, multiply its height $(y_2 - y_1)$ by its width $(x_2 - x_1)$. (Since $(x_1,y_1)$ is the top left and $x_2,y_2$ are the bottom right, these differences should be non-negative.- To find the **intersection** of the two boxes $(xi_{1}, yi_{1}, xi_{2}, yi_{2})$: - Feel free to draw some examples on paper to clarify this conceptually. - The top left corner of the intersection $(xi_{1}, yi_{1})$ is found by comparing the top left corners $(x_1, y_1)$ of the two boxes and finding a vertex that has an x-coordinate that is closer to the right, and y-coordinate that is closer to the bottom. - The bottom right corner of the intersection $(xi_{2}, yi_{2})$ is found by comparing the bottom right corners $(x_2,y_2)$ of the two boxes and finding a vertex whose x-coordinate is closer to the left, and the y-coordinate that is closer to the top. - The two boxes **may have no intersection**. You can detect this if the intersection coordinates you calculate end up being the top right and/or bottom left corners of an intersection box. Another way to think of this is if you calculate the height $(y_2 - y_1)$ or width $(x_2 - x_1)$ and find that at least one of these lengths is negative, then there is no intersection (intersection area is zero). - The two boxes may intersect at the **edges or vertices**, in which case the intersection area is still zero. This happens when either the height or width (or both) of the calculated intersection is zero.**Additional Hints**- `xi1` = **max**imum of the x1 coordinates of the two boxes- `yi1` = **max**imum of the y1 coordinates of the two boxes- `xi2` = **min**imum of the x2 coordinates of the two boxes- `yi2` = **min**imum of the y2 coordinates of the two boxes- `inter_area` = You can use `max(height, 0)` and `max(width, 0)` ###Code # GRADED FUNCTION: iou def iou(box1, box2): """Implement the intersection over union (IoU) between box1 and box2      Arguments: box1 -- first box, list object with coordinates (box1_x1, box1_y1, box1_x2, box_1_y2)     box2 -- second box, list object with coordinates (box2_x1, box2_y1, box2_x2, box2_y2)     """ # Assign variable names to coordinates for clarity (box1_x1, box1_y1, box1_x2, box1_y2) = box1 (box2_x1, box2_y1, box2_x2, box2_y2) = box2 # Calculate the (yi1, xi1, yi2, xi2) coordinates of the intersection of box1 and box2. Calculate its Area. ### START CODE HERE ### (≈ 7 lines) xi1 = max(box1_x1,box2_x1) yi1 = max(box1_y1,box2_y1) xi2 = min(box1_x2,box2_x2) yi2 = min(box1_y2,box2_y2) inter_width = xi2-xi1 inter_height = yi2-yi1 inter_area = max(inter_width,0)*max(inter_height,0) # set edge to 0 when it is negative set area to 0, if they do not intersect ### END CODE HERE ###     # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B) ### START CODE HERE ### (≈ 3 lines) box1_area = (box1_y2-box1_y1)*(box1_x2-box1_x1) box2_area = (box2_y2-box2_y1)*(box2_x2-box2_x1) union_area = box1_area+box2_area-inter_area ### END CODE HERE ### # compute the IoU ### START CODE HERE ### (≈ 1 line) iou = inter_area/union_area ### END CODE HERE ### return iou ## Test case 1: boxes intersect box1 = (2, 1, 4, 3) box2 = (1, 2, 3, 4) print("iou for intersecting boxes = " + str(iou(box1, box2))) ## Test case 2: boxes do not intersect box1 = (1,2,3,4) box2 = (5,6,7,8) print("iou for non-intersecting boxes = " + str(iou(box1,box2))) ## Test case 3: boxes intersect at vertices only box1 = (1,1,2,2) box2 = (2,2,3,3) print("iou for boxes that only touch at vertices = " + str(iou(box1,box2))) ## Test case 4: boxes intersect at edge only box1 = (1,1,3,3) box2 = (2,3,3,4) print("iou for boxes that only touch at edges = " + str(iou(box1,box2))) ###Output iou for intersecting boxes = 0.14285714285714285 iou for non-intersecting boxes = 0.0 iou for boxes that only touch at vertices = 0.0 iou for boxes that only touch at edges = 0.0 ###Markdown **Expected Output**:```iou for intersecting boxes = 0.14285714285714285iou for non-intersecting boxes = 0.0iou for boxes that only touch at vertices = 0.0iou for boxes that only touch at edges = 0.0``` YOLO non-max suppressionYou are now ready to implement non-max suppression. The key steps are: 1. Select the box that has the highest score.2. Compute the overlap of this box with all other boxes, and remove boxes that overlap significantly (iou >= `iou_threshold`).3. Go back to step 1 and iterate until there are no more boxes with a lower score than the currently selected box.This will remove all boxes that have a large overlap with the selected boxes. Only the "best" boxes remain.**Exercise**: Implement yolo_non_max_suppression() using TensorFlow. TensorFlow has two built-in functions that are used to implement non-max suppression (so you don't actually need to use your `iou()` implementation):** Reference documentation ** - [tf.image.non_max_suppression()](https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression)```tf.image.non_max_suppression( boxes, scores, max_output_size, iou_threshold=0.5, name=None)```Note that in the version of tensorflow used here, there is no parameter `score_threshold` (it's shown in the documentation for the latest version) so trying to set this value will result in an error message: *got an unexpected keyword argument 'score_threshold.*- [K.gather()](https://www.tensorflow.org/api_docs/python/tf/keras/backend/gather) Even though the documentation shows `tf.keras.backend.gather()`, you can use `keras.gather()`. ```keras.gather( reference, indices)``` ###Code # GRADED FUNCTION: yolo_non_max_suppression def yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5): """ Applies Non-max suppression (NMS) to set of boxes Arguments: scores -- tensor of shape (None,), output of yolo_filter_boxes() boxes -- tensor of shape (None, 4), output of yolo_filter_boxes() that have been scaled to the image size (see later) classes -- tensor of shape (None,), output of yolo_filter_boxes() max_boxes -- integer, maximum number of predicted boxes you'd like iou_threshold -- real value, "intersection over union" threshold used for NMS filtering Returns: scores -- tensor of shape (, None), predicted score for each box boxes -- tensor of shape (4, None), predicted box coordinates classes -- tensor of shape (, None), predicted class for each box Note: The "None" dimension of the output tensors has obviously to be less than max_boxes. Note also that this function will transpose the shapes of scores, boxes, classes. This is made for convenience. """ max_boxes_tensor = K.variable(max_boxes, dtype='int32') # tensor to be used in tf.image.non_max_suppression() K.get_session().run(tf.variables_initializer([max_boxes_tensor])) # initialize variable max_boxes_tensor # Use tf.image.non_max_suppression() to get the list of indices corresponding to boxes you keep ### START CODE HERE ### (≈ 1 line) nms_indices = tf.image.non_max_suppression(boxes, scores, max_boxes_tensor, iou_threshold) ### END CODE HERE ### # Use K.gather() to select only nms_indices from scores, boxes and classes ### START CODE HERE ### (≈ 3 lines) scores = K.gather(scores, nms_indices) boxes = K.gather(boxes, nms_indices) classes = K.gather(classes, nms_indices) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_b: scores = tf.random_normal([54,], mean=1, stddev=4, seed = 1) boxes = tf.random_normal([54, 4], mean=1, stddev=4, seed = 1) classes = tf.random_normal([54,], mean=1, stddev=4, seed = 1) scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.eval().shape)) print("boxes.shape = " + str(boxes.eval().shape)) print("classes.shape = " + str(classes.eval().shape)) ###Output scores[2] = 6.9384 boxes[2] = [-5.299932 3.13798141 4.45036697 0.95942086] classes[2] = -2.24527 scores.shape = (10,) boxes.shape = (10, 4) classes.shape = (10,) ###Markdown **Expected Output**: **scores[2]** 6.9384 **boxes[2]** [-5.299932 3.13798141 4.45036697 0.95942086] **classes[2]** -2.24527 **scores.shape** (10,) **boxes.shape** (10, 4) **classes.shape** (10,) 2.4 Wrapping up the filteringIt's time to implement a function taking the output of the deep CNN (the 19x19x5x85 dimensional encoding) and filtering through all the boxes using the functions you've just implemented. **Exercise**: Implement `yolo_eval()` which takes the output of the YOLO encoding and filters the boxes using score threshold and NMS. There's just one last implementational detail you have to know. There're a few ways of representing boxes, such as via their corners or via their midpoint and height/width. YOLO converts between a few such formats at different times, using the following functions (which we have provided): ```pythonboxes = yolo_boxes_to_corners(box_xy, box_wh) ```which converts the yolo box coordinates (x,y,w,h) to box corners' coordinates (x1, y1, x2, y2) to fit the input of `yolo_filter_boxes````pythonboxes = scale_boxes(boxes, image_shape)```YOLO's network was trained to run on 608x608 images. If you are testing this data on a different size image--for example, the car detection dataset had 720x1280 images--this step rescales the boxes so that they can be plotted on top of the original 720x1280 image. Don't worry about these two functions; we'll show you where they need to be called. ###Code # GRADED FUNCTION: yolo_eval def yolo_eval(yolo_outputs, image_shape = (720., 1280.), max_boxes=10, score_threshold=.6, iou_threshold=.5): """ Converts the output of YOLO encoding (a lot of boxes) to your predicted boxes along with their scores, box coordinates and classes. Arguments: yolo_outputs -- output of the encoding model (for image_shape of (608, 608, 3)), contains 4 tensors: box_confidence: tensor of shape (None, 19, 19, 5, 1) box_xy: tensor of shape (None, 19, 19, 5, 2) box_wh: tensor of shape (None, 19, 19, 5, 2) box_class_probs: tensor of shape (None, 19, 19, 5, 80) image_shape -- tensor of shape (2,) containing the input shape, in this notebook we use (608., 608.) (has to be float32 dtype) max_boxes -- integer, maximum number of predicted boxes you'd like score_threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box iou_threshold -- real value, "intersection over union" threshold used for NMS filtering Returns: scores -- tensor of shape (None, ), predicted score for each box boxes -- tensor of shape (None, 4), predicted box coordinates classes -- tensor of shape (None,), predicted class for each box """ ### START CODE HERE ### # Retrieve outputs of the YOLO model (≈1 line) box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs # Convert boxes to be ready for filtering functions (convert boxes box_xy and box_wh to corner coordinates) boxes = yolo_boxes_to_corners(box_xy, box_wh) # Use one of the functions you've implemented to perform Score-filtering with a threshold of score_threshold (≈1 line) scores, boxes, classes = yolo_filter_boxes(box_confidence,boxes,box_class_probs, score_threshold) # Scale boxes back to original image shape. boxes = scale_boxes(boxes, image_shape) # Use one of the functions you've implemented to perform Non-max suppression with # maximum number of boxes set to max_boxes and a threshold of iou_threshold (≈1 line) scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, max_boxes,iou_threshold) ### END CODE HERE ### return scores, boxes, classes with tf.Session() as test_b: yolo_outputs = (tf.random_normal([19, 19, 5, 1], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 2], mean=1, stddev=4, seed = 1), tf.random_normal([19, 19, 5, 80], mean=1, stddev=4, seed = 1)) scores, boxes, classes = yolo_eval(yolo_outputs) print("scores[2] = " + str(scores[2].eval())) print("boxes[2] = " + str(boxes[2].eval())) print("classes[2] = " + str(classes[2].eval())) print("scores.shape = " + str(scores.eval().shape)) print("boxes.shape = " + str(boxes.eval().shape)) print("classes.shape = " + str(classes.eval().shape)) ###Output scores[2] = 138.791 boxes[2] = [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141] classes[2] = 54 scores.shape = (10,) boxes.shape = (10, 4) classes.shape = (10,) ###Markdown **Expected Output**: **scores[2]** 138.791 **boxes[2]** [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141] **classes[2]** 54 **scores.shape** (10,) **boxes.shape** (10, 4) **classes.shape** (10,) Summary for YOLO:- Input image (608, 608, 3)- The input image goes through a CNN, resulting in a (19,19,5,85) dimensional output. - After flattening the last two dimensions, the output is a volume of shape (19, 19, 425): - Each cell in a 19x19 grid over the input image gives 425 numbers. - 425 = 5 x 85 because each cell contains predictions for 5 boxes, corresponding to 5 anchor boxes, as seen in lecture. - 85 = 5 + 80 where 5 is because $(p_c, b_x, b_y, b_h, b_w)$ has 5 numbers, and 80 is the number of classes we'd like to detect- You then select only few boxes based on: - Score-thresholding: throw away boxes that have detected a class with a score less than the threshold - Non-max suppression: Compute the Intersection over Union and avoid selecting overlapping boxes- This gives you YOLO's final output. 3 - Test YOLO pre-trained model on images In this part, you are going to use a pre-trained model and test it on the car detection dataset. We'll need a session to execute the computation graph and evaluate the tensors. ###Code sess = K.get_session() ###Output _____no_output_____ ###Markdown 3.1 - Defining classes, anchors and image shape.* Recall that we are trying to detect 80 classes, and are using 5 anchor boxes. * We have gathered the information on the 80 classes and 5 boxes in two files "coco_classes.txt" and "yolo_anchors.txt". * We'll read class names and anchors from text files.* The car detection dataset has 720x1280 images, which we've pre-processed into 608x608 images. ###Code class_names = read_classes("model_data/coco_classes.txt") anchors = read_anchors("model_data/yolo_anchors.txt") image_shape = (720., 1280.) ###Output _____no_output_____ ###Markdown 3.2 - Loading a pre-trained model* Training a YOLO model takes a very long time and requires a fairly large dataset of labelled bounding boxes for a large range of target classes. * You are going to load an existing pre-trained Keras YOLO model stored in "yolo.h5". * These weights come from the official YOLO website, and were converted using a function written by Allan Zelener. References are at the end of this notebook. Technically, these are the parameters from the "YOLOv2" model, but we will simply refer to it as "YOLO" in this notebook.Run the cell below to load the model from this file. ###Code yolo_model = load_model("model_data/yolo.h5") ###Output /opt/conda/lib/python3.6/site-packages/keras/models.py:251: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually. warnings.warn('No training configuration found in save file: ' ###Markdown This loads the weights of a trained YOLO model. Here's a summary of the layers your model contains. ###Code yolo_model.summary() ###Output ____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 608, 608, 3) 0 ____________________________________________________________________________________________________ conv2d_1 (Conv2D) (None, 608, 608, 32) 864 input_1[0][0] ____________________________________________________________________________________________________ batch_normalization_1 (BatchNorm (None, 608, 608, 32) 128 conv2d_1[0][0] ____________________________________________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, 608, 608, 32) 0 batch_normalization_1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 304, 304, 32) 0 leaky_re_lu_1[0][0] ____________________________________________________________________________________________________ conv2d_2 (Conv2D) (None, 304, 304, 64) 18432 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ batch_normalization_2 (BatchNorm (None, 304, 304, 64) 256 conv2d_2[0][0] ____________________________________________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, 304, 304, 64) 0 batch_normalization_2[0][0] ____________________________________________________________________________________________________ max_pooling2d_2 (MaxPooling2D) (None, 152, 152, 64) 0 leaky_re_lu_2[0][0] ____________________________________________________________________________________________________ conv2d_3 (Conv2D) (None, 152, 152, 128) 73728 max_pooling2d_2[0][0] ____________________________________________________________________________________________________ batch_normalization_3 (BatchNorm (None, 152, 152, 128) 512 conv2d_3[0][0] ____________________________________________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, 152, 152, 128) 0 batch_normalization_3[0][0] ____________________________________________________________________________________________________ conv2d_4 (Conv2D) (None, 152, 152, 64) 8192 leaky_re_lu_3[0][0] ____________________________________________________________________________________________________ batch_normalization_4 (BatchNorm (None, 152, 152, 64) 256 conv2d_4[0][0] ____________________________________________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 152, 152, 64) 0 batch_normalization_4[0][0] ____________________________________________________________________________________________________ conv2d_5 (Conv2D) (None, 152, 152, 128) 73728 leaky_re_lu_4[0][0] ____________________________________________________________________________________________________ batch_normalization_5 (BatchNorm (None, 152, 152, 128) 512 conv2d_5[0][0] ____________________________________________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, 152, 152, 128) 0 batch_normalization_5[0][0] ____________________________________________________________________________________________________ max_pooling2d_3 (MaxPooling2D) (None, 76, 76, 128) 0 leaky_re_lu_5[0][0] ____________________________________________________________________________________________________ conv2d_6 (Conv2D) (None, 76, 76, 256) 294912 max_pooling2d_3[0][0] ____________________________________________________________________________________________________ batch_normalization_6 (BatchNorm (None, 76, 76, 256) 1024 conv2d_6[0][0] ____________________________________________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, 76, 76, 256) 0 batch_normalization_6[0][0] ____________________________________________________________________________________________________ conv2d_7 (Conv2D) (None, 76, 76, 128) 32768 leaky_re_lu_6[0][0] ____________________________________________________________________________________________________ batch_normalization_7 (BatchNorm (None, 76, 76, 128) 512 conv2d_7[0][0] ____________________________________________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, 76, 76, 128) 0 batch_normalization_7[0][0] ____________________________________________________________________________________________________ conv2d_8 (Conv2D) (None, 76, 76, 256) 294912 leaky_re_lu_7[0][0] ____________________________________________________________________________________________________ batch_normalization_8 (BatchNorm (None, 76, 76, 256) 1024 conv2d_8[0][0] ____________________________________________________________________________________________________ leaky_re_lu_8 (LeakyReLU) (None, 76, 76, 256) 0 batch_normalization_8[0][0] ____________________________________________________________________________________________________ max_pooling2d_4 (MaxPooling2D) (None, 38, 38, 256) 0 leaky_re_lu_8[0][0] ____________________________________________________________________________________________________ conv2d_9 (Conv2D) (None, 38, 38, 512) 1179648 max_pooling2d_4[0][0] ____________________________________________________________________________________________________ batch_normalization_9 (BatchNorm (None, 38, 38, 512) 2048 conv2d_9[0][0] ____________________________________________________________________________________________________ leaky_re_lu_9 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_9[0][0] ____________________________________________________________________________________________________ conv2d_10 (Conv2D) (None, 38, 38, 256) 131072 leaky_re_lu_9[0][0] ____________________________________________________________________________________________________ batch_normalization_10 (BatchNor (None, 38, 38, 256) 1024 conv2d_10[0][0] ____________________________________________________________________________________________________ leaky_re_lu_10 (LeakyReLU) (None, 38, 38, 256) 0 batch_normalization_10[0][0] ____________________________________________________________________________________________________ conv2d_11 (Conv2D) (None, 38, 38, 512) 1179648 leaky_re_lu_10[0][0] ____________________________________________________________________________________________________ batch_normalization_11 (BatchNor (None, 38, 38, 512) 2048 conv2d_11[0][0] ____________________________________________________________________________________________________ leaky_re_lu_11 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_11[0][0] ____________________________________________________________________________________________________ conv2d_12 (Conv2D) (None, 38, 38, 256) 131072 leaky_re_lu_11[0][0] ____________________________________________________________________________________________________ batch_normalization_12 (BatchNor (None, 38, 38, 256) 1024 conv2d_12[0][0] ____________________________________________________________________________________________________ leaky_re_lu_12 (LeakyReLU) (None, 38, 38, 256) 0 batch_normalization_12[0][0] ____________________________________________________________________________________________________ conv2d_13 (Conv2D) (None, 38, 38, 512) 1179648 leaky_re_lu_12[0][0] ____________________________________________________________________________________________________ batch_normalization_13 (BatchNor (None, 38, 38, 512) 2048 conv2d_13[0][0] ____________________________________________________________________________________________________ leaky_re_lu_13 (LeakyReLU) (None, 38, 38, 512) 0 batch_normalization_13[0][0] ____________________________________________________________________________________________________ max_pooling2d_5 (MaxPooling2D) (None, 19, 19, 512) 0 leaky_re_lu_13[0][0] ____________________________________________________________________________________________________ conv2d_14 (Conv2D) (None, 19, 19, 1024) 4718592 max_pooling2d_5[0][0] ____________________________________________________________________________________________________ batch_normalization_14 (BatchNor (None, 19, 19, 1024) 4096 conv2d_14[0][0] ____________________________________________________________________________________________________ leaky_re_lu_14 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_14[0][0] ____________________________________________________________________________________________________ conv2d_15 (Conv2D) (None, 19, 19, 512) 524288 leaky_re_lu_14[0][0] ____________________________________________________________________________________________________ batch_normalization_15 (BatchNor (None, 19, 19, 512) 2048 conv2d_15[0][0] ____________________________________________________________________________________________________ leaky_re_lu_15 (LeakyReLU) (None, 19, 19, 512) 0 batch_normalization_15[0][0] ____________________________________________________________________________________________________ conv2d_16 (Conv2D) (None, 19, 19, 1024) 4718592 leaky_re_lu_15[0][0] ____________________________________________________________________________________________________ batch_normalization_16 (BatchNor (None, 19, 19, 1024) 4096 conv2d_16[0][0] ____________________________________________________________________________________________________ leaky_re_lu_16 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_16[0][0] ____________________________________________________________________________________________________ conv2d_17 (Conv2D) (None, 19, 19, 512) 524288 leaky_re_lu_16[0][0] ____________________________________________________________________________________________________ batch_normalization_17 (BatchNor (None, 19, 19, 512) 2048 conv2d_17[0][0] ____________________________________________________________________________________________________ leaky_re_lu_17 (LeakyReLU) (None, 19, 19, 512) 0 batch_normalization_17[0][0] ____________________________________________________________________________________________________ conv2d_18 (Conv2D) (None, 19, 19, 1024) 4718592 leaky_re_lu_17[0][0] ____________________________________________________________________________________________________ batch_normalization_18 (BatchNor (None, 19, 19, 1024) 4096 conv2d_18[0][0] ____________________________________________________________________________________________________ leaky_re_lu_18 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_18[0][0] ____________________________________________________________________________________________________ conv2d_19 (Conv2D) (None, 19, 19, 1024) 9437184 leaky_re_lu_18[0][0] ____________________________________________________________________________________________________ batch_normalization_19 (BatchNor (None, 19, 19, 1024) 4096 conv2d_19[0][0] ____________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 38, 38, 64) 32768 leaky_re_lu_13[0][0] ____________________________________________________________________________________________________ leaky_re_lu_19 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_19[0][0] ____________________________________________________________________________________________________ batch_normalization_21 (BatchNor (None, 38, 38, 64) 256 conv2d_21[0][0] ____________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 19, 19, 1024) 9437184 leaky_re_lu_19[0][0] ____________________________________________________________________________________________________ leaky_re_lu_21 (LeakyReLU) (None, 38, 38, 64) 0 batch_normalization_21[0][0] ____________________________________________________________________________________________________ batch_normalization_20 (BatchNor (None, 19, 19, 1024) 4096 conv2d_20[0][0] ____________________________________________________________________________________________________ space_to_depth_x2 (Lambda) (None, 19, 19, 256) 0 leaky_re_lu_21[0][0] ____________________________________________________________________________________________________ leaky_re_lu_20 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_20[0][0] ____________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 19, 19, 1280) 0 space_to_depth_x2[0][0] leaky_re_lu_20[0][0] ____________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 19, 19, 1024) 11796480 concatenate_1[0][0] ____________________________________________________________________________________________________ batch_normalization_22 (BatchNor (None, 19, 19, 1024) 4096 conv2d_22[0][0] ____________________________________________________________________________________________________ leaky_re_lu_22 (LeakyReLU) (None, 19, 19, 1024) 0 batch_normalization_22[0][0] ____________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 19, 19, 425) 435625 leaky_re_lu_22[0][0] ==================================================================================================== Total params: 50,983,561 Trainable params: 50,962,889 Non-trainable params: 20,672 ____________________________________________________________________________________________________ ###Markdown **Note**: On some computers, you may see a warning message from Keras. Don't worry about it if you do--it is fine.**Reminder**: this model converts a preprocessed batch of input images (shape: (m, 608, 608, 3)) into a tensor of shape (m, 19, 19, 5, 85) as explained in Figure (2). 3.3 - Convert output of the model to usable bounding box tensorsThe output of `yolo_model` is a (m, 19, 19, 5, 85) tensor that needs to pass through non-trivial processing and conversion. The following cell does that for you.If you are curious about how `yolo_head` is implemented, you can find the function definition in the file ['keras_yolo.py'](https://github.com/allanzelener/YAD2K/blob/master/yad2k/models/keras_yolo.py). The file is located in your workspace in this path 'yad2k/models/keras_yolo.py'. ###Code yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names)) ###Output _____no_output_____ ###Markdown You added `yolo_outputs` to your graph. This set of 4 tensors is ready to be used as input by your `yolo_eval` function. 3.4 - Filtering boxes`yolo_outputs` gave you all the predicted boxes of `yolo_model` in the correct format. You're now ready to perform filtering and select only the best boxes. Let's now call `yolo_eval`, which you had previously implemented, to do this. ###Code scores, boxes, classes = yolo_eval(yolo_outputs, image_shape) ###Output _____no_output_____ ###Markdown 3.5 - Run the graph on an imageLet the fun begin. You have created a graph that can be summarized as follows:1. yolo_model.input is given to `yolo_model`. The model is used to compute the output yolo_model.output 2. yolo_model.output is processed by `yolo_head`. It gives you yolo_outputs 3. yolo_outputs goes through a filtering function, `yolo_eval`. It outputs your predictions: scores, boxes, classes **Exercise**: Implement predict() which runs the graph to test YOLO on an image.You will need to run a TensorFlow session, to have it compute `scores, boxes, classes`.The code below also uses the following function:```pythonimage, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))```which outputs:- image: a python (PIL) representation of your image used for drawing boxes. You won't need to use it.- image_data: a numpy-array representing the image. This will be the input to the CNN.**Important note**: when a model uses BatchNorm (as is the case in YOLO), you will need to pass an additional placeholder in the feed_dict {K.learning_phase(): 0}. Hint: Using the TensorFlow Session object* Recall that above, we called `K.get_Session()` and saved the Session object in `sess`.* To evaluate a list of tensors, we call `sess.run()` like this:```sess.run(fetches=[tensor1,tensor2,tensor3], feed_dict={yolo_model.input: the_input_variable, K.learning_phase():0 }```* Notice that the variables `scores, boxes, classes` are not passed into the `predict` function, but these are global variables that you will use within the `predict` function. ###Code def predict(sess, image_file): """ Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the predictions. Arguments: sess -- your tensorflow/Keras session containing the YOLO graph image_file -- name of an image stored in the "images" folder. Returns: out_scores -- tensor of shape (None, ), scores of the predicted boxes out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes out_classes -- tensor of shape (None, ), class index of the predicted boxes Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes. """ # Preprocess your image image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608)) # Run the session with the correct tensors and choose the correct placeholders in the feed_dict. # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0}) ### START CODE HERE ### (≈ 1 line) out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],feed_dict={yolo_model.input:image_data, K.learning_phase():0}) ### END CODE HERE ### # Print predictions info print('Found {} boxes for {}'.format(len(out_boxes), image_file)) # Generate colors for drawing bounding boxes. colors = generate_colors(class_names) # Draw bounding boxes on the image file draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors) # Save the predicted bounding box on the image image.save(os.path.join("out", image_file), quality=90) # Display the results in the notebook output_image = scipy.misc.imread(os.path.join("out", image_file)) plt.figure(figsize = (15,12)) plt.imshow(output_image) return out_scores, out_boxes, out_classes ###Output _____no_output_____ ###Markdown Run the following cell on the "test.jpg" image to verify that your function is correct. ###Code out_scores, out_boxes, out_classes = predict(sess, "0005.jpg") ###Output Found 5 boxes for 0005.jpg car 0.64 (207, 297) (338, 340) car 0.65 (741, 266) (918, 313) car 0.67 (15, 313) (128, 362) car 0.72 (883, 260) (1026, 303) car 0.75 (517, 282) (689, 336)
tv-script-generation/.ipynb_checkpoints/dlnd_tv_script_generation-checkpoint.ipynb
###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output _____no_output_____ ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Embedding Dimension Size embed_dim = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forums](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ vocab = set(text) vocab_to_int = { c: i for i, c in enumerate(vocab) } int_to_vocab = { i: c for i, c in enumerate(vocab) } return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ tokenize = { '.': '||dot||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '--': '||dash||', '\n': '||return||' } return tokenize """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() len(int_to_vocab) ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.1.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ inputs = tf.placeholder(tf.int32, shape=( None , None), name='input') targets = tf.placeholder(tf.int32, shape=( None , None), name='targets') learning_rate = tf.placeholder(tf.float32, name='lr') return inputs, targets, learning_rate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ num_layers = 3 cell = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.BasicLSTMCell(rnn_size) for _ in range(num_layers)] ) initial_state = cell.zero_state(batch_size, tf.float32) initial_state = tf.identity(initial_state, name='initial_state') return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable( tf.random_uniform([vocab_size, embed_dim], -1., 1.) ) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(state, 'final_state') return outputs, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ embed = get_embed(input_data, vocab_size, embed_dim) rnn, final_state = build_rnn(cell, embed) logits = tf.layers.dense(rnn, units=vocab_size, activation=None) return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ batches = [] words_per_batch = batch_size * seq_length n_batches = len(int_text)//words_per_batch int_text = np.asarray(int_text) int_text = int_text[:n_batches*words_per_batch] int_text = int_text.reshape((batch_size, -1)) for i in range(0, int_text.shape[1], seq_length): x = int_text[:, i:i+seq_length] y = int_text[:, i+1:i+seq_length+1] if ( i == (int_text.shape[1] - seq_length) ): y = np.zeros_like(x) y[:, :-1], y[:, -1] = int_text[:, i+1:i+seq_length], int_text[:, 0] # Set last element to first word in list y[-1, -1] = int_text[0, 0] batches.append([x, y]) return np.asarray(batches) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 10 # Batch Size batch_size = 32 # RNN Size rnn_size = 5 # Embedding Dimension Size embed_dim = 5 # Sequence Length seq_length = 50 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 25 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/43 train_loss = 8.822 Epoch 0 Batch 25/43 train_loss = 7.355 Epoch 1 Batch 7/43 train_loss = 6.285 Epoch 1 Batch 32/43 train_loss = 6.124 Epoch 2 Batch 14/43 train_loss = 6.002 Epoch 2 Batch 39/43 train_loss = 5.921 Epoch 3 Batch 21/43 train_loss = 5.876 Epoch 4 Batch 3/43 train_loss = 6.004 Epoch 4 Batch 28/43 train_loss = 5.961 Epoch 5 Batch 10/43 train_loss = 6.083 Epoch 5 Batch 35/43 train_loss = 5.905 Epoch 6 Batch 17/43 train_loss = 5.985 Epoch 6 Batch 42/43 train_loss = 5.858 Epoch 7 Batch 24/43 train_loss = 5.834 Epoch 8 Batch 6/43 train_loss = 5.829 Epoch 8 Batch 31/43 train_loss = 5.926 Epoch 9 Batch 13/43 train_loss = 5.916 Epoch 9 Batch 38/43 train_loss = 5.852 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ input_tensor = loaded_graph.get_tensor_by_name('input:0') initial_state_tensor = loaded_graph.get_tensor_by_name('initial_state:0') final_state_tensor = loaded_graph.get_tensor_by_name('final_state:0') probs_tensor = loaded_graph.get_tensor_by_name('probs:0') return input_tensor, initial_state_tensor, final_state_tensor, probs_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ i = np.argmax(probabilities) return int_to_vocab[i] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output INFO:tensorflow:Restoring parameters from ./save moe_szyslak:........................................................................................................................................................................................................ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function int_to_vocab = {ii: word for ii, word in enumerate(set(text))} vocab_to_int = {word: ii for ii, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function tok_dict = { '.' : '||Period||', ',' : '||Comma||', '"' : '||Quotation_Mark||', ';' : '||Semicolon||', '!' : '||Exclamation_Mark||', '?' : '||Question_Mark||', '(' : '||Left_Parentheses||', ')' : '||Right_Parentheses||', '--': '||Dash||', '\n': '||Return||' } return tok_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function input = tf.placeholder(tf.int32, [None, None], name="input") targets = tf.placeholder(tf.int32, [None, None], name="targets") learning_rate = tf.placeholder(tf.float32,name="learning_rate") return input,targets,learning_rate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code num_layers=1 def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function make_lstm = lambda size : tf.contrib.rnn.BasicLSTMCell(size) cell = tf.contrib.rnn.MultiRNNCell([make_lstm(rnn_size) for i in range(num_layers)]) initial_state = tf.identity(cell.zero_state(batch_size, tf.float32),"initial_state") return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function embeddings = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function outputs, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) state = tf.identity(state, name="final_state") return outputs, state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function embed_input = get_embed(input_data, vocab_size, embed_dim) rnn_output,final_state = build_rnn(cell, embed_input) logits = tf.layers.dense(rnn_output, vocab_size, use_bias = True) return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function chars_per_batch = batch_size * seq_length n_batches = len(int_text)//chars_per_batch arr = int_text[:n_batches * chars_per_batch] arr = np.reshape(arr, (batch_size, -1)) def batche_gen(): for n in range(0, arr.shape[1], seq_length): x = arr[:, n:n+seq_length] y_temp = arr[:, n+1:n+seq_length+1] y = np.zeros(x.shape, dtype=x.dtype) y[:,:y_temp.shape[1]] = y_temp yield x,y batches = [(x,y) for x,y in batche_gen()] return np.array(batches) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 512 # Batch Size batch_size = 128 # RNN Size rnn_size = 256 # Embedding Dimension Size embed_dim = 256 # Sequence Length seq_length = 20 # Learning Rate learning_rate = 0.001 # Show stats for every n number of batches show_every_n_batches = 10 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code len(int_to_vocab) """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/26 train_loss = 8.825 Epoch 0 Batch 10/26 train_loss = 8.530 Epoch 0 Batch 20/26 train_loss = 7.338 Epoch 1 Batch 4/26 train_loss = 6.397 Epoch 1 Batch 14/26 train_loss = 6.171 Epoch 1 Batch 24/26 train_loss = 6.222 Epoch 2 Batch 8/26 train_loss = 6.103 Epoch 2 Batch 18/26 train_loss = 6.094 Epoch 3 Batch 2/26 train_loss = 6.028 Epoch 3 Batch 12/26 train_loss = 6.181 Epoch 3 Batch 22/26 train_loss = 5.923 Epoch 4 Batch 6/26 train_loss = 5.959 Epoch 4 Batch 16/26 train_loss = 5.852 Epoch 5 Batch 0/26 train_loss = 5.757 Epoch 5 Batch 10/26 train_loss = 5.742 Epoch 5 Batch 20/26 train_loss = 5.753 Epoch 6 Batch 4/26 train_loss = 5.680 Epoch 6 Batch 14/26 train_loss = 5.590 Epoch 6 Batch 24/26 train_loss = 5.673 Epoch 7 Batch 8/26 train_loss = 5.552 Epoch 7 Batch 18/26 train_loss = 5.573 Epoch 8 Batch 2/26 train_loss = 5.510 Epoch 8 Batch 12/26 train_loss = 5.677 Epoch 8 Batch 22/26 train_loss = 5.425 Epoch 9 Batch 6/26 train_loss = 5.498 Epoch 9 Batch 16/26 train_loss = 5.415 Epoch 10 Batch 0/26 train_loss = 5.326 Epoch 10 Batch 10/26 train_loss = 5.325 Epoch 10 Batch 20/26 train_loss = 5.342 Epoch 11 Batch 4/26 train_loss = 5.270 Epoch 11 Batch 14/26 train_loss = 5.200 Epoch 11 Batch 24/26 train_loss = 5.290 Epoch 12 Batch 8/26 train_loss = 5.172 Epoch 12 Batch 18/26 train_loss = 5.201 Epoch 13 Batch 2/26 train_loss = 5.147 Epoch 13 Batch 12/26 train_loss = 5.323 Epoch 13 Batch 22/26 train_loss = 5.076 Epoch 14 Batch 6/26 train_loss = 5.165 Epoch 14 Batch 16/26 train_loss = 5.088 Epoch 15 Batch 0/26 train_loss = 5.013 Epoch 15 Batch 10/26 train_loss = 5.011 Epoch 15 Batch 20/26 train_loss = 5.016 Epoch 16 Batch 4/26 train_loss = 4.975 Epoch 16 Batch 14/26 train_loss = 4.903 Epoch 16 Batch 24/26 train_loss = 4.990 Epoch 17 Batch 8/26 train_loss = 4.891 Epoch 17 Batch 18/26 train_loss = 4.926 Epoch 18 Batch 2/26 train_loss = 4.874 Epoch 18 Batch 12/26 train_loss = 5.051 Epoch 18 Batch 22/26 train_loss = 4.814 Epoch 19 Batch 6/26 train_loss = 4.919 Epoch 19 Batch 16/26 train_loss = 4.842 Epoch 20 Batch 0/26 train_loss = 4.778 Epoch 20 Batch 10/26 train_loss = 4.769 Epoch 20 Batch 20/26 train_loss = 4.771 Epoch 21 Batch 4/26 train_loss = 4.753 Epoch 21 Batch 14/26 train_loss = 4.678 Epoch 21 Batch 24/26 train_loss = 4.758 Epoch 22 Batch 8/26 train_loss = 4.683 Epoch 22 Batch 18/26 train_loss = 4.714 Epoch 23 Batch 2/26 train_loss = 4.664 Epoch 23 Batch 12/26 train_loss = 4.832 Epoch 23 Batch 22/26 train_loss = 4.602 Epoch 24 Batch 6/26 train_loss = 4.720 Epoch 24 Batch 16/26 train_loss = 4.640 Epoch 25 Batch 0/26 train_loss = 4.581 Epoch 25 Batch 10/26 train_loss = 4.569 Epoch 25 Batch 20/26 train_loss = 4.571 Epoch 26 Batch 4/26 train_loss = 4.569 Epoch 26 Batch 14/26 train_loss = 4.489 Epoch 26 Batch 24/26 train_loss = 4.562 Epoch 27 Batch 8/26 train_loss = 4.511 Epoch 27 Batch 18/26 train_loss = 4.533 Epoch 28 Batch 2/26 train_loss = 4.487 Epoch 28 Batch 12/26 train_loss = 4.646 Epoch 28 Batch 22/26 train_loss = 4.423 Epoch 29 Batch 6/26 train_loss = 4.544 Epoch 29 Batch 16/26 train_loss = 4.466 Epoch 30 Batch 0/26 train_loss = 4.410 Epoch 30 Batch 10/26 train_loss = 4.401 Epoch 30 Batch 20/26 train_loss = 4.400 Epoch 31 Batch 4/26 train_loss = 4.409 Epoch 31 Batch 14/26 train_loss = 4.329 Epoch 31 Batch 24/26 train_loss = 4.392 Epoch 32 Batch 8/26 train_loss = 4.357 Epoch 32 Batch 18/26 train_loss = 4.374 Epoch 33 Batch 2/26 train_loss = 4.333 Epoch 33 Batch 12/26 train_loss = 4.481 Epoch 33 Batch 22/26 train_loss = 4.266 Epoch 34 Batch 6/26 train_loss = 4.384 Epoch 34 Batch 16/26 train_loss = 4.312 Epoch 35 Batch 0/26 train_loss = 4.259 Epoch 35 Batch 10/26 train_loss = 4.254 Epoch 35 Batch 20/26 train_loss = 4.247 Epoch 36 Batch 4/26 train_loss = 4.264 Epoch 36 Batch 14/26 train_loss = 4.187 Epoch 36 Batch 24/26 train_loss = 4.241 Epoch 37 Batch 8/26 train_loss = 4.217 Epoch 37 Batch 18/26 train_loss = 4.229 Epoch 38 Batch 2/26 train_loss = 4.195 Epoch 38 Batch 12/26 train_loss = 4.332 Epoch 38 Batch 22/26 train_loss = 4.126 Epoch 39 Batch 6/26 train_loss = 4.239 Epoch 39 Batch 16/26 train_loss = 4.174 Epoch 40 Batch 0/26 train_loss = 4.123 Epoch 40 Batch 10/26 train_loss = 4.122 Epoch 40 Batch 20/26 train_loss = 4.109 Epoch 41 Batch 4/26 train_loss = 4.133 Epoch 41 Batch 14/26 train_loss = 4.061 Epoch 41 Batch 24/26 train_loss = 4.106 Epoch 42 Batch 8/26 train_loss = 4.089 Epoch 42 Batch 18/26 train_loss = 4.097 Epoch 43 Batch 2/26 train_loss = 4.071 Epoch 43 Batch 12/26 train_loss = 4.197 Epoch 43 Batch 22/26 train_loss = 4.000 Epoch 44 Batch 6/26 train_loss = 4.103 Epoch 44 Batch 16/26 train_loss = 4.048 Epoch 45 Batch 0/26 train_loss = 3.999 Epoch 45 Batch 10/26 train_loss = 4.000 Epoch 45 Batch 20/26 train_loss = 3.981 Epoch 46 Batch 4/26 train_loss = 4.012 Epoch 46 Batch 14/26 train_loss = 3.941 Epoch 46 Batch 24/26 train_loss = 3.980 Epoch 47 Batch 8/26 train_loss = 3.969 Epoch 47 Batch 18/26 train_loss = 3.975 Epoch 48 Batch 2/26 train_loss = 3.953 Epoch 48 Batch 12/26 train_loss = 4.067 Epoch 48 Batch 22/26 train_loss = 3.884 Epoch 49 Batch 6/26 train_loss = 3.976 Epoch 49 Batch 16/26 train_loss = 3.930 Epoch 50 Batch 0/26 train_loss = 3.882 Epoch 50 Batch 10/26 train_loss = 3.884 Epoch 50 Batch 20/26 train_loss = 3.862 Epoch 51 Batch 4/26 train_loss = 3.896 Epoch 51 Batch 14/26 train_loss = 3.830 Epoch 51 Batch 24/26 train_loss = 3.860 Epoch 52 Batch 8/26 train_loss = 3.855 Epoch 52 Batch 18/26 train_loss = 3.860 Epoch 53 Batch 2/26 train_loss = 3.840 Epoch 53 Batch 12/26 train_loss = 3.944 Epoch 53 Batch 22/26 train_loss = 3.774 Epoch 54 Batch 6/26 train_loss = 3.857 Epoch 54 Batch 16/26 train_loss = 3.819 Epoch 55 Batch 0/26 train_loss = 3.773 Epoch 55 Batch 10/26 train_loss = 3.774 Epoch 55 Batch 20/26 train_loss = 3.747 Epoch 56 Batch 4/26 train_loss = 3.785 Epoch 56 Batch 14/26 train_loss = 3.724 Epoch 56 Batch 24/26 train_loss = 3.747 Epoch 57 Batch 8/26 train_loss = 3.746 Epoch 57 Batch 18/26 train_loss = 3.750 Epoch 58 Batch 2/26 train_loss = 3.731 Epoch 58 Batch 12/26 train_loss = 3.827 Epoch 58 Batch 22/26 train_loss = 3.671 Epoch 59 Batch 6/26 train_loss = 3.745 Epoch 59 Batch 16/26 train_loss = 3.713 Epoch 60 Batch 0/26 train_loss = 3.668 Epoch 60 Batch 10/26 train_loss = 3.669 Epoch 60 Batch 20/26 train_loss = 3.638 Epoch 61 Batch 4/26 train_loss = 3.679 Epoch 61 Batch 14/26 train_loss = 3.622 Epoch 61 Batch 24/26 train_loss = 3.640 Epoch 62 Batch 8/26 train_loss = 3.640 Epoch 62 Batch 18/26 train_loss = 3.645 Epoch 63 Batch 2/26 train_loss = 3.627 Epoch 63 Batch 12/26 train_loss = 3.715 Epoch 63 Batch 22/26 train_loss = 3.573 Epoch 64 Batch 6/26 train_loss = 3.639 Epoch 64 Batch 16/26 train_loss = 3.612 Epoch 65 Batch 0/26 train_loss = 3.569 Epoch 65 Batch 10/26 train_loss = 3.567 Epoch 65 Batch 20/26 train_loss = 3.534 Epoch 66 Batch 4/26 train_loss = 3.575 Epoch 66 Batch 14/26 train_loss = 3.526 Epoch 66 Batch 24/26 train_loss = 3.536 Epoch 67 Batch 8/26 train_loss = 3.539 Epoch 67 Batch 18/26 train_loss = 3.543 Epoch 68 Batch 2/26 train_loss = 3.527 Epoch 68 Batch 12/26 train_loss = 3.607 Epoch 68 Batch 22/26 train_loss = 3.479 Epoch 69 Batch 6/26 train_loss = 3.538 Epoch 69 Batch 16/26 train_loss = 3.514 Epoch 70 Batch 0/26 train_loss = 3.473 Epoch 70 Batch 10/26 train_loss = 3.469 Epoch 70 Batch 20/26 train_loss = 3.431 Epoch 71 Batch 4/26 train_loss = 3.474 Epoch 71 Batch 14/26 train_loss = 3.430 Epoch 71 Batch 24/26 train_loss = 3.436 Epoch 72 Batch 8/26 train_loss = 3.442 Epoch 72 Batch 18/26 train_loss = 3.445 Epoch 73 Batch 2/26 train_loss = 3.428 Epoch 73 Batch 12/26 train_loss = 3.499 Epoch 73 Batch 22/26 train_loss = 3.387 Epoch 74 Batch 6/26 train_loss = 3.439 Epoch 74 Batch 16/26 train_loss = 3.418 Epoch 75 Batch 0/26 train_loss = 3.380 Epoch 75 Batch 10/26 train_loss = 3.374 Epoch 75 Batch 20/26 train_loss = 3.328 Epoch 76 Batch 4/26 train_loss = 3.376 Epoch 76 Batch 14/26 train_loss = 3.339 Epoch 76 Batch 24/26 train_loss = 3.338 Epoch 77 Batch 8/26 train_loss = 3.347 Epoch 77 Batch 18/26 train_loss = 3.348 Epoch 78 Batch 2/26 train_loss = 3.334 Epoch 78 Batch 12/26 train_loss = 3.397 Epoch 78 Batch 22/26 train_loss = 3.296 Epoch 79 Batch 6/26 train_loss = 3.344 Epoch 79 Batch 16/26 train_loss = 3.326 Epoch 80 Batch 0/26 train_loss = 3.286 Epoch 80 Batch 10/26 train_loss = 3.281 Epoch 80 Batch 20/26 train_loss = 3.230 Epoch 81 Batch 4/26 train_loss = 3.280 Epoch 81 Batch 14/26 train_loss = 3.247 Epoch 81 Batch 24/26 train_loss = 3.243 Epoch 82 Batch 8/26 train_loss = 3.254 Epoch 82 Batch 18/26 train_loss = 3.254 Epoch 83 Batch 2/26 train_loss = 3.241 Epoch 83 Batch 12/26 train_loss = 3.294 Epoch 83 Batch 22/26 train_loss = 3.206 Epoch 84 Batch 6/26 train_loss = 3.250 Epoch 84 Batch 16/26 train_loss = 3.237 Epoch 85 Batch 0/26 train_loss = 3.199 Epoch 85 Batch 10/26 train_loss = 3.189 Epoch 85 Batch 20/26 train_loss = 3.134 Epoch 86 Batch 4/26 train_loss = 3.187 Epoch 86 Batch 14/26 train_loss = 3.161 Epoch 86 Batch 24/26 train_loss = 3.152 Epoch 87 Batch 8/26 train_loss = 3.163 Epoch 87 Batch 18/26 train_loss = 3.163 Epoch 88 Batch 2/26 train_loss = 3.153 Epoch 88 Batch 12/26 train_loss = 3.197 Epoch 88 Batch 22/26 train_loss = 3.119 Epoch 89 Batch 6/26 train_loss = 3.157 Epoch 89 Batch 16/26 train_loss = 3.150 Epoch 90 Batch 0/26 train_loss = 3.113 Epoch 90 Batch 10/26 train_loss = 3.106 Epoch 90 Batch 20/26 train_loss = 3.043 Epoch 91 Batch 4/26 train_loss = 3.097 Epoch 91 Batch 14/26 train_loss = 3.078 Epoch 91 Batch 24/26 train_loss = 3.063 Epoch 92 Batch 8/26 train_loss = 3.078 Epoch 92 Batch 18/26 train_loss = 3.077 Epoch 93 Batch 2/26 train_loss = 3.072 Epoch 93 Batch 12/26 train_loss = 3.107 Epoch 93 Batch 22/26 train_loss = 3.038 Epoch 94 Batch 6/26 train_loss = 3.069 Epoch 94 Batch 16/26 train_loss = 3.066 Epoch 95 Batch 0/26 train_loss = 3.029 Epoch 95 Batch 10/26 train_loss = 3.019 Epoch 95 Batch 20/26 train_loss = 2.957 Epoch 96 Batch 4/26 train_loss = 3.012 Epoch 96 Batch 14/26 train_loss = 2.996 Epoch 96 Batch 24/26 train_loss = 2.981 Epoch 97 Batch 8/26 train_loss = 2.989 Epoch 97 Batch 18/26 train_loss = 2.993 Epoch 98 Batch 2/26 train_loss = 2.987 Epoch 98 Batch 12/26 train_loss = 3.016 Epoch 98 Batch 22/26 train_loss = 2.952 Epoch 99 Batch 6/26 train_loss = 2.983 Epoch 99 Batch 16/26 train_loss = 2.986 Epoch 100 Batch 0/26 train_loss = 2.948 Epoch 100 Batch 10/26 train_loss = 2.936 Epoch 100 Batch 20/26 train_loss = 2.873 Epoch 101 Batch 4/26 train_loss = 2.931 Epoch 101 Batch 14/26 train_loss = 2.917 Epoch 101 Batch 24/26 train_loss = 2.897 Epoch 102 Batch 8/26 train_loss = 2.907 Epoch 102 Batch 18/26 train_loss = 2.913 Epoch 103 Batch 2/26 train_loss = 2.911 Epoch 103 Batch 12/26 train_loss = 2.931 Epoch 103 Batch 22/26 train_loss = 2.876 Epoch 104 Batch 6/26 train_loss = 2.900 Epoch 104 Batch 16/26 train_loss = 2.909 Epoch 105 Batch 0/26 train_loss = 2.871 Epoch 105 Batch 10/26 train_loss = 2.855 Epoch 105 Batch 20/26 train_loss = 2.795 Epoch 106 Batch 4/26 train_loss = 2.855 Epoch 106 Batch 14/26 train_loss = 2.843 Epoch 106 Batch 24/26 train_loss = 2.821 Epoch 107 Batch 8/26 train_loss = 2.830 Epoch 107 Batch 18/26 train_loss = 2.836 Epoch 108 Batch 2/26 train_loss = 2.835 Epoch 108 Batch 12/26 train_loss = 2.850 Epoch 108 Batch 22/26 train_loss = 2.797 Epoch 109 Batch 6/26 train_loss = 2.824 Epoch 109 Batch 16/26 train_loss = 2.837 Epoch 110 Batch 0/26 train_loss = 2.796 Epoch 110 Batch 10/26 train_loss = 2.784 Epoch 110 Batch 20/26 train_loss = 2.723 Epoch 111 Batch 4/26 train_loss = 2.780 Epoch 111 Batch 14/26 train_loss = 2.773 Epoch 111 Batch 24/26 train_loss = 2.744 Epoch 112 Batch 8/26 train_loss = 2.755 Epoch 112 Batch 18/26 train_loss = 2.762 Epoch 113 Batch 2/26 train_loss = 2.766 Epoch 113 Batch 12/26 train_loss = 2.774 Epoch 113 Batch 22/26 train_loss = 2.728 Epoch 114 Batch 6/26 train_loss = 2.750 Epoch 114 Batch 16/26 train_loss = 2.773 Epoch 115 Batch 0/26 train_loss = 2.733 Epoch 115 Batch 10/26 train_loss = 2.707 Epoch 115 Batch 20/26 train_loss = 2.652 Epoch 116 Batch 4/26 train_loss = 2.707 Epoch 116 Batch 14/26 train_loss = 2.701 Epoch 116 Batch 24/26 train_loss = 2.673 Epoch 117 Batch 8/26 train_loss = 2.688 Epoch 117 Batch 18/26 train_loss = 2.690 Epoch 118 Batch 2/26 train_loss = 2.693 Epoch 118 Batch 12/26 train_loss = 2.693 Epoch 118 Batch 22/26 train_loss = 2.654 Epoch 119 Batch 6/26 train_loss = 2.673 Epoch 119 Batch 16/26 train_loss = 2.697 Epoch 120 Batch 0/26 train_loss = 2.655 Epoch 120 Batch 10/26 train_loss = 2.636 Epoch 120 Batch 20/26 train_loss = 2.583 Epoch 121 Batch 4/26 train_loss = 2.635 Epoch 121 Batch 14/26 train_loss = 2.630 Epoch 121 Batch 24/26 train_loss = 2.599 Epoch 122 Batch 8/26 train_loss = 2.615 Epoch 122 Batch 18/26 train_loss = 2.618 Epoch 123 Batch 2/26 train_loss = 2.623 Epoch 123 Batch 12/26 train_loss = 2.616 Epoch 123 Batch 22/26 train_loss = 2.585 Epoch 124 Batch 6/26 train_loss = 2.599 Epoch 124 Batch 16/26 train_loss = 2.626 Epoch 125 Batch 0/26 train_loss = 2.586 Epoch 125 Batch 10/26 train_loss = 2.570 Epoch 125 Batch 20/26 train_loss = 2.514 Epoch 126 Batch 4/26 train_loss = 2.562 Epoch 126 Batch 14/26 train_loss = 2.559 Epoch 126 Batch 24/26 train_loss = 2.535 Epoch 127 Batch 8/26 train_loss = 2.547 Epoch 127 Batch 18/26 train_loss = 2.544 Epoch 128 Batch 2/26 train_loss = 2.557 Epoch 128 Batch 12/26 train_loss = 2.548 Epoch 128 Batch 22/26 train_loss = 2.516 Epoch 129 Batch 6/26 train_loss = 2.524 Epoch 129 Batch 16/26 train_loss = 2.558 Epoch 130 Batch 0/26 train_loss = 2.526 Epoch 130 Batch 10/26 train_loss = 2.503 Epoch 130 Batch 20/26 train_loss = 2.442 Epoch 131 Batch 4/26 train_loss = 2.495 Epoch 131 Batch 14/26 train_loss = 2.496 Epoch 131 Batch 24/26 train_loss = 2.469 Epoch 132 Batch 8/26 train_loss = 2.473 Epoch 132 Batch 18/26 train_loss = 2.473 Epoch 133 Batch 2/26 train_loss = 2.500 Epoch 133 Batch 12/26 train_loss = 2.481 Epoch 133 Batch 22/26 train_loss = 2.447 Epoch 134 Batch 6/26 train_loss = 2.456 Epoch 134 Batch 16/26 train_loss = 2.505 Epoch 135 Batch 0/26 train_loss = 2.473 Epoch 135 Batch 10/26 train_loss = 2.443 Epoch 135 Batch 20/26 train_loss = 2.380 Epoch 136 Batch 4/26 train_loss = 2.439 Epoch 136 Batch 14/26 train_loss = 2.431 Epoch 136 Batch 24/26 train_loss = 2.397 Epoch 137 Batch 8/26 train_loss = 2.404 Epoch 137 Batch 18/26 train_loss = 2.414 Epoch 138 Batch 2/26 train_loss = 2.439 Epoch 138 Batch 12/26 train_loss = 2.410 Epoch 138 Batch 22/26 train_loss = 2.381 Epoch 139 Batch 6/26 train_loss = 2.392 Epoch 139 Batch 16/26 train_loss = 2.439 Epoch 140 Batch 0/26 train_loss = 2.400 Epoch 140 Batch 10/26 train_loss = 2.373 Epoch 140 Batch 20/26 train_loss = 2.314 Epoch 141 Batch 4/26 train_loss = 2.375 Epoch 141 Batch 14/26 train_loss = 2.359 Epoch 141 Batch 24/26 train_loss = 2.331 Epoch 142 Batch 8/26 train_loss = 2.337 Epoch 142 Batch 18/26 train_loss = 2.343 Epoch 143 Batch 2/26 train_loss = 2.374 Epoch 143 Batch 12/26 train_loss = 2.335 Epoch 143 Batch 22/26 train_loss = 2.308 Epoch 144 Batch 6/26 train_loss = 2.322 Epoch 144 Batch 16/26 train_loss = 2.366 Epoch 145 Batch 0/26 train_loss = 2.327 Epoch 145 Batch 10/26 train_loss = 2.305 Epoch 145 Batch 20/26 train_loss = 2.250 Epoch 146 Batch 4/26 train_loss = 2.308 Epoch 146 Batch 14/26 train_loss = 2.289 Epoch 146 Batch 24/26 train_loss = 2.264 Epoch 147 Batch 8/26 train_loss = 2.269 Epoch 147 Batch 18/26 train_loss = 2.272 Epoch 148 Batch 2/26 train_loss = 2.309 Epoch 148 Batch 12/26 train_loss = 2.263 Epoch 148 Batch 22/26 train_loss = 2.245 Epoch 149 Batch 6/26 train_loss = 2.251 Epoch 149 Batch 16/26 train_loss = 2.292 Epoch 150 Batch 0/26 train_loss = 2.268 Epoch 150 Batch 10/26 train_loss = 2.241 Epoch 150 Batch 20/26 train_loss = 2.185 Epoch 151 Batch 4/26 train_loss = 2.242 Epoch 151 Batch 14/26 train_loss = 2.220 Epoch 151 Batch 24/26 train_loss = 2.201 Epoch 152 Batch 8/26 train_loss = 2.205 Epoch 152 Batch 18/26 train_loss = 2.205 Epoch 153 Batch 2/26 train_loss = 2.251 Epoch 153 Batch 12/26 train_loss = 2.209 Epoch 153 Batch 22/26 train_loss = 2.182 Epoch 154 Batch 6/26 train_loss = 2.188 Epoch 154 Batch 16/26 train_loss = 2.237 Epoch 155 Batch 0/26 train_loss = 2.204 Epoch 155 Batch 10/26 train_loss = 2.178 Epoch 155 Batch 20/26 train_loss = 2.127 Epoch 156 Batch 4/26 train_loss = 2.183 Epoch 156 Batch 14/26 train_loss = 2.159 Epoch 156 Batch 24/26 train_loss = 2.144 Epoch 157 Batch 8/26 train_loss = 2.144 Epoch 157 Batch 18/26 train_loss = 2.141 Epoch 158 Batch 2/26 train_loss = 2.200 Epoch 158 Batch 12/26 train_loss = 2.141 Epoch 158 Batch 22/26 train_loss = 2.121 Epoch 159 Batch 6/26 train_loss = 2.124 Epoch 159 Batch 16/26 train_loss = 2.172 Epoch 160 Batch 0/26 train_loss = 2.145 Epoch 160 Batch 10/26 train_loss = 2.119 Epoch 160 Batch 20/26 train_loss = 2.072 Epoch 161 Batch 4/26 train_loss = 2.124 Epoch 161 Batch 14/26 train_loss = 2.107 Epoch 161 Batch 24/26 train_loss = 2.077 Epoch 162 Batch 8/26 train_loss = 2.087 Epoch 162 Batch 18/26 train_loss = 2.089 Epoch 163 Batch 2/26 train_loss = 2.135 Epoch 163 Batch 12/26 train_loss = 2.073 Epoch 163 Batch 22/26 train_loss = 2.054 Epoch 164 Batch 6/26 train_loss = 2.055 Epoch 164 Batch 16/26 train_loss = 2.110 Epoch 165 Batch 0/26 train_loss = 2.090 Epoch 165 Batch 10/26 train_loss = 2.060 Epoch 165 Batch 20/26 train_loss = 2.008 Epoch 166 Batch 4/26 train_loss = 2.076 Epoch 166 Batch 14/26 train_loss = 2.045 Epoch 166 Batch 24/26 train_loss = 2.011 Epoch 167 Batch 8/26 train_loss = 2.029 Epoch 167 Batch 18/26 train_loss = 2.026 Epoch 168 Batch 2/26 train_loss = 2.078 Epoch 168 Batch 12/26 train_loss = 2.007 Epoch 168 Batch 22/26 train_loss = 1.999 Epoch 169 Batch 6/26 train_loss = 1.993 Epoch 169 Batch 16/26 train_loss = 2.055 Epoch 170 Batch 0/26 train_loss = 2.033 Epoch 170 Batch 10/26 train_loss = 1.997 Epoch 170 Batch 20/26 train_loss = 1.963 Epoch 171 Batch 4/26 train_loss = 2.009 Epoch 171 Batch 14/26 train_loss = 1.977 Epoch 171 Batch 24/26 train_loss = 1.953 Epoch 172 Batch 8/26 train_loss = 1.963 Epoch 172 Batch 18/26 train_loss = 1.962 Epoch 173 Batch 2/26 train_loss = 2.018 Epoch 173 Batch 12/26 train_loss = 1.955 Epoch 173 Batch 22/26 train_loss = 1.940 Epoch 174 Batch 6/26 train_loss = 1.930 Epoch 174 Batch 16/26 train_loss = 2.004 Epoch 175 Batch 0/26 train_loss = 1.970 Epoch 175 Batch 10/26 train_loss = 1.939 Epoch 175 Batch 20/26 train_loss = 1.906 Epoch 176 Batch 4/26 train_loss = 1.949 Epoch 176 Batch 14/26 train_loss = 1.922 Epoch 176 Batch 24/26 train_loss = 1.897 Epoch 177 Batch 8/26 train_loss = 1.908 Epoch 177 Batch 18/26 train_loss = 1.906 Epoch 178 Batch 2/26 train_loss = 1.969 Epoch 178 Batch 12/26 train_loss = 1.901 Epoch 178 Batch 22/26 train_loss = 1.885 Epoch 179 Batch 6/26 train_loss = 1.878 Epoch 179 Batch 16/26 train_loss = 1.944 Epoch 180 Batch 0/26 train_loss = 1.916 Epoch 180 Batch 10/26 train_loss = 1.881 Epoch 180 Batch 20/26 train_loss = 1.845 Epoch 181 Batch 4/26 train_loss = 1.897 Epoch 181 Batch 14/26 train_loss = 1.865 Epoch 181 Batch 24/26 train_loss = 1.843 Epoch 182 Batch 8/26 train_loss = 1.855 Epoch 182 Batch 18/26 train_loss = 1.855 Epoch 183 Batch 2/26 train_loss = 1.930 Epoch 183 Batch 12/26 train_loss = 1.841 Epoch 183 Batch 22/26 train_loss = 1.831 Epoch 184 Batch 6/26 train_loss = 1.833 Epoch 184 Batch 16/26 train_loss = 1.889 Epoch 185 Batch 0/26 train_loss = 1.862 Epoch 185 Batch 10/26 train_loss = 1.829 Epoch 185 Batch 20/26 train_loss = 1.797 Epoch 186 Batch 4/26 train_loss = 1.847 Epoch 186 Batch 14/26 train_loss = 1.813 Epoch 186 Batch 24/26 train_loss = 1.789 Epoch 187 Batch 8/26 train_loss = 1.804 Epoch 187 Batch 18/26 train_loss = 1.801 Epoch 188 Batch 2/26 train_loss = 1.872 Epoch 188 Batch 12/26 train_loss = 1.791 Epoch 188 Batch 22/26 train_loss = 1.783 Epoch 189 Batch 6/26 train_loss = 1.774 Epoch 189 Batch 16/26 train_loss = 1.842 Epoch 190 Batch 0/26 train_loss = 1.814 Epoch 190 Batch 10/26 train_loss = 1.779 Epoch 190 Batch 20/26 train_loss = 1.754 Epoch 191 Batch 4/26 train_loss = 1.800 Epoch 191 Batch 14/26 train_loss = 1.771 Epoch 191 Batch 24/26 train_loss = 1.735 Epoch 192 Batch 8/26 train_loss = 1.752 Epoch 192 Batch 18/26 train_loss = 1.753 Epoch 193 Batch 2/26 train_loss = 1.820 Epoch 193 Batch 12/26 train_loss = 1.731 Epoch 193 Batch 22/26 train_loss = 1.731 Epoch 194 Batch 6/26 train_loss = 1.723 Epoch 194 Batch 16/26 train_loss = 1.787 Epoch 195 Batch 0/26 train_loss = 1.763 Epoch 195 Batch 10/26 train_loss = 1.726 Epoch 195 Batch 20/26 train_loss = 1.703 Epoch 196 Batch 4/26 train_loss = 1.753 Epoch 196 Batch 14/26 train_loss = 1.723 Epoch 196 Batch 24/26 train_loss = 1.681 Epoch 197 Batch 8/26 train_loss = 1.703 Epoch 197 Batch 18/26 train_loss = 1.714 Epoch 198 Batch 2/26 train_loss = 1.770 Epoch 198 Batch 12/26 train_loss = 1.684 Epoch 198 Batch 22/26 train_loss = 1.686 Epoch 199 Batch 6/26 train_loss = 1.679 Epoch 199 Batch 16/26 train_loss = 1.742 Epoch 200 Batch 0/26 train_loss = 1.714 Epoch 200 Batch 10/26 train_loss = 1.685 Epoch 200 Batch 20/26 train_loss = 1.663 Epoch 201 Batch 4/26 train_loss = 1.714 Epoch 201 Batch 14/26 train_loss = 1.669 Epoch 201 Batch 24/26 train_loss = 1.641 Epoch 202 Batch 8/26 train_loss = 1.675 Epoch 202 Batch 18/26 train_loss = 1.676 Epoch 203 Batch 2/26 train_loss = 1.726 Epoch 203 Batch 12/26 train_loss = 1.645 Epoch 203 Batch 22/26 train_loss = 1.654 Epoch 204 Batch 6/26 train_loss = 1.630 Epoch 204 Batch 16/26 train_loss = 1.693 Epoch 205 Batch 0/26 train_loss = 1.671 Epoch 205 Batch 10/26 train_loss = 1.643 Epoch 205 Batch 20/26 train_loss = 1.630 Epoch 206 Batch 4/26 train_loss = 1.663 Epoch 206 Batch 14/26 train_loss = 1.630 Epoch 206 Batch 24/26 train_loss = 1.611 Epoch 207 Batch 8/26 train_loss = 1.636 Epoch 207 Batch 18/26 train_loss = 1.636 Epoch 208 Batch 2/26 train_loss = 1.696 Epoch 208 Batch 12/26 train_loss = 1.615 Epoch 208 Batch 22/26 train_loss = 1.646 Epoch 209 Batch 6/26 train_loss = 1.611 Epoch 209 Batch 16/26 train_loss = 1.667 Epoch 210 Batch 0/26 train_loss = 1.654 Epoch 210 Batch 10/26 train_loss = 1.638 Epoch 210 Batch 20/26 train_loss = 1.613 Epoch 211 Batch 4/26 train_loss = 1.635 Epoch 211 Batch 14/26 train_loss = 1.607 Epoch 211 Batch 24/26 train_loss = 1.603 Epoch 212 Batch 8/26 train_loss = 1.622 Epoch 212 Batch 18/26 train_loss = 1.596 Epoch 213 Batch 2/26 train_loss = 1.676 Epoch 213 Batch 12/26 train_loss = 1.629 Epoch 213 Batch 22/26 train_loss = 1.612 Epoch 214 Batch 6/26 train_loss = 1.561 Epoch 214 Batch 16/26 train_loss = 1.659 Epoch 215 Batch 0/26 train_loss = 1.679 Epoch 215 Batch 10/26 train_loss = 1.605 Epoch 215 Batch 20/26 train_loss = 1.562 Epoch 216 Batch 4/26 train_loss = 1.629 Epoch 216 Batch 14/26 train_loss = 1.608 Epoch 216 Batch 24/26 train_loss = 1.548 Epoch 217 Batch 8/26 train_loss = 1.580 Epoch 217 Batch 18/26 train_loss = 1.598 Epoch 218 Batch 2/26 train_loss = 1.655 Epoch 218 Batch 12/26 train_loss = 1.568 Epoch 218 Batch 22/26 train_loss = 1.577 Epoch 219 Batch 6/26 train_loss = 1.539 Epoch 219 Batch 16/26 train_loss = 1.610 Epoch 220 Batch 0/26 train_loss = 1.599 Epoch 220 Batch 10/26 train_loss = 1.565 Epoch 220 Batch 20/26 train_loss = 1.508 Epoch 221 Batch 4/26 train_loss = 1.554 Epoch 221 Batch 14/26 train_loss = 1.545 Epoch 221 Batch 24/26 train_loss = 1.495 Epoch 222 Batch 8/26 train_loss = 1.502 Epoch 222 Batch 18/26 train_loss = 1.512 Epoch 223 Batch 2/26 train_loss = 1.594 Epoch 223 Batch 12/26 train_loss = 1.504 Epoch 223 Batch 22/26 train_loss = 1.484 Epoch 224 Batch 6/26 train_loss = 1.465 Epoch 224 Batch 16/26 train_loss = 1.554 Epoch 225 Batch 0/26 train_loss = 1.525 Epoch 225 Batch 10/26 train_loss = 1.493 Epoch 225 Batch 20/26 train_loss = 1.460 Epoch 226 Batch 4/26 train_loss = 1.507 Epoch 226 Batch 14/26 train_loss = 1.486 Epoch 226 Batch 24/26 train_loss = 1.443 Epoch 227 Batch 8/26 train_loss = 1.457 Epoch 227 Batch 18/26 train_loss = 1.466 Epoch 228 Batch 2/26 train_loss = 1.545 Epoch 228 Batch 12/26 train_loss = 1.454 Epoch 228 Batch 22/26 train_loss = 1.444 Epoch 229 Batch 6/26 train_loss = 1.421 Epoch 229 Batch 16/26 train_loss = 1.510 Epoch 230 Batch 0/26 train_loss = 1.491 Epoch 230 Batch 10/26 train_loss = 1.442 Epoch 230 Batch 20/26 train_loss = 1.414 Epoch 231 Batch 4/26 train_loss = 1.465 Epoch 231 Batch 14/26 train_loss = 1.433 Epoch 231 Batch 24/26 train_loss = 1.387 Epoch 232 Batch 8/26 train_loss = 1.414 Epoch 232 Batch 18/26 train_loss = 1.429 Epoch 233 Batch 2/26 train_loss = 1.498 Epoch 233 Batch 12/26 train_loss = 1.399 Epoch 233 Batch 22/26 train_loss = 1.401 Epoch 234 Batch 6/26 train_loss = 1.384 Epoch 234 Batch 16/26 train_loss = 1.456 Epoch 235 Batch 0/26 train_loss = 1.440 Epoch 235 Batch 10/26 train_loss = 1.409 Epoch 235 Batch 20/26 train_loss = 1.374 Epoch 236 Batch 4/26 train_loss = 1.419 Epoch 236 Batch 14/26 train_loss = 1.384 Epoch 236 Batch 24/26 train_loss = 1.347 Epoch 237 Batch 8/26 train_loss = 1.368 Epoch 237 Batch 18/26 train_loss = 1.379 Epoch 238 Batch 2/26 train_loss = 1.456 Epoch 238 Batch 12/26 train_loss = 1.356 Epoch 238 Batch 22/26 train_loss = 1.347 Epoch 239 Batch 6/26 train_loss = 1.331 Epoch 239 Batch 16/26 train_loss = 1.422 Epoch 240 Batch 0/26 train_loss = 1.390 Epoch 240 Batch 10/26 train_loss = 1.354 Epoch 240 Batch 20/26 train_loss = 1.333 Epoch 241 Batch 4/26 train_loss = 1.378 Epoch 241 Batch 14/26 train_loss = 1.343 Epoch 241 Batch 24/26 train_loss = 1.301 Epoch 242 Batch 8/26 train_loss = 1.329 Epoch 242 Batch 18/26 train_loss = 1.343 Epoch 243 Batch 2/26 train_loss = 1.407 Epoch 243 Batch 12/26 train_loss = 1.309 Epoch 243 Batch 22/26 train_loss = 1.313 Epoch 244 Batch 6/26 train_loss = 1.295 Epoch 244 Batch 16/26 train_loss = 1.377 Epoch 245 Batch 0/26 train_loss = 1.346 Epoch 245 Batch 10/26 train_loss = 1.317 Epoch 245 Batch 20/26 train_loss = 1.304 Epoch 246 Batch 4/26 train_loss = 1.335 Epoch 246 Batch 14/26 train_loss = 1.300 Epoch 246 Batch 24/26 train_loss = 1.265 Epoch 247 Batch 8/26 train_loss = 1.295 Epoch 247 Batch 18/26 train_loss = 1.302 Epoch 248 Batch 2/26 train_loss = 1.358 Epoch 248 Batch 12/26 train_loss = 1.269 Epoch 248 Batch 22/26 train_loss = 1.277 Epoch 249 Batch 6/26 train_loss = 1.254 Epoch 249 Batch 16/26 train_loss = 1.333 Epoch 250 Batch 0/26 train_loss = 1.307 Epoch 250 Batch 10/26 train_loss = 1.282 Epoch 250 Batch 20/26 train_loss = 1.261 Epoch 251 Batch 4/26 train_loss = 1.289 Epoch 251 Batch 14/26 train_loss = 1.259 Epoch 251 Batch 24/26 train_loss = 1.230 Epoch 252 Batch 8/26 train_loss = 1.252 Epoch 252 Batch 18/26 train_loss = 1.265 Epoch 253 Batch 2/26 train_loss = 1.319 Epoch 253 Batch 12/26 train_loss = 1.236 Epoch 253 Batch 22/26 train_loss = 1.239 Epoch 254 Batch 6/26 train_loss = 1.217 Epoch 254 Batch 16/26 train_loss = 1.291 Epoch 255 Batch 0/26 train_loss = 1.269 Epoch 255 Batch 10/26 train_loss = 1.248 Epoch 255 Batch 20/26 train_loss = 1.226 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function input_tensor = loaded_graph.get_tensor_by_name('input:0') inital_state_tensor = loaded_graph.get_tensor_by_name('initial_state:0') final_state_tensor = loaded_graph.get_tensor_by_name('final_state:0') probs_tensor = loaded_graph.get_tensor_by_name('probs:0') return input_tensor, inital_state_tensor, final_state_tensor, probs_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function choice = np.random.choice(list(int_to_vocab.values()), 1, p=probabilities) return choice[0] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak: homer, can i ever think you can use that way. moe_szyslak: but i'm thankful i made a mistake, huh? gary_chalmers:(kindly) you're the clone, i know. to the correct? homer_simpson: moe, i don't know everything i know. did. moe_szyslak: i did run ziffcorp into a" special cheese buffalo gals... anything to meet twenty dollars on fire. jesus must be gettin' back today eating your people loaded. chief_wiggum: absolutely they were never going to offer besides money. homer_simpson:(protesting too many more / but in homer's heart that look at homer. i've gotta get drunk will hello. seymour_skinner:(boisterous nervous, but dignified)... kirk_van_houten: my car is giving me a lot, right? /(sotto;" reunion in a domed stadium) i'd say when as tonight.(small annoying laugh) nigel_bakerbutcher: what! moe, i bid you-- that went in the beach with me. chief_wiggum: from homer and put a sticker over my. ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data print(text[:100]) text = text[81:] #Ignore the copyright notice thing below ###Output [YEAR DATE 1989] © Twentieth Century Fox Film Corporation. All rights reserved. Moe_Szyslak: (INTO ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function # vocab_to_int = {t:i for i,t in enumerate(text)} # int_to_vocab = {i:t for t,i in vocab_to_int.items()} # return vocab_to_int, int_to_vocab # The above code resulted in errors # Instead adapting from https://github.com/udacity/deep-learning/blob/master/embeddings/utils.py#L48-L59 # QUESTION FOR REVIEWER: why is sorting necessary here? word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) int_to_vocab = {index: word for index, word in enumerate(sorted_vocab)} vocab_to_int = {word: index for index, word in int_to_vocab.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ lookups = {".":"||period||", '"':"||quote||", '(':"||left_parentheses||", ',':"||comma||", '?':"||question_mark||", '!':"||exclamation_mark||", ')':"||right_parentheses||", '--':"||dash||", ';':"||semicolon||", '\n':"||return||"} return lookups """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function # FOR THE REVIEWER: what is the difference between shape=[None] vs shape=(None)? Input = tf.placeholder(tf.int32,shape=(None,None), name="input") Targets = tf.placeholder(tf.int32, shape=(None, None),name="targets") LearningRate = tf.placeholder(tf.float32, shape=(None), name="learningrate") return (Input, Targets, LearningRate) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function # Below is code for TF 1.3 # cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(batch_size) # for _ in range(rnn_size)]) # initial_state = cell.zero_state(batch_size, tf.float32) # initial_state = tf.identity(initial_state, name="initial_state") # return cell, initial_state lstm_cells = [tf.contrib.rnn.BasicLSTMCell(rnn_size)] rnn_cell = tf.contrib.rnn.MultiRNNCell(lstm_cells) # Stacking only 1 layer of LSTM Cells state = tf.identity(rnn_cell.zero_state(batch_size, tf.float32), name='initial_state') return (rnn_cell, state) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function # What is the intuition of embedding_lookup? From http://tiny.cc/u47pny # matrix = np.random.random([1024, 64]) # 64-dimensional embeddings # ids = np.array([0, 5, 17, 33]) # print(matrix[ids]) # prints a matrix of shape [4, 64] embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype= tf.float32) final_state = tf.identity(final_state, name="final_state") return outputs, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code import problem_unittests as tests def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function embed = get_embed(input_data, vocab_size, embed_dim) outputs, final_state = build_rnn(cell, embed) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None) return (logits, final_state) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function # elements_in_batch = len(int_text)//batch_size # int_text = int_text[:elements_in_batch*batch_size] # Remove data that cant fit in the batch # batches = [int_text[i:i+elements_in_batch] for i in range(batch_size)] # print(batches) # print(type(int_text)) # print(len(int_text), batch_size, seq_length) # batches = np.array(batches) # for batch in batches: # first_element=np.split(batch) # return batches # Adapted from https://github.com/udacity/deep-learning/blob/master/embeddings/utils.py#L28-L45 n_batches = int(len(int_text) / (batch_size * seq_length)) # Drop the last few characters to make only full batches xdata = np.array(int_text[: n_batches * batch_size * seq_length]) ydata = np.array(int_text[1: n_batches * batch_size * seq_length + 1]) x_batches = np.split(xdata.reshape(batch_size, -1), n_batches, 1) y_batches = np.split(ydata.reshape(batch_size, -1), n_batches, 1) y_batches[-1][-1][-1] = int_text[0] # print(np.array(list(zip(x_batches, y_batches))).shape) return np.array(list(zip(x_batches, y_batches))) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 100 # Batch Size batch_size = 128 # RNN Size rnn_size = 256 # Embedding Dimension Size embed_dim = 256 # Sequence Length seq_length = 25 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 25 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forums](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/21 train_loss = 8.821 Epoch 1 Batch 4/21 train_loss = 5.405 Epoch 2 Batch 8/21 train_loss = 4.627 Epoch 3 Batch 12/21 train_loss = 4.234 Epoch 4 Batch 16/21 train_loss = 3.833 Epoch 5 Batch 20/21 train_loss = 3.462 Epoch 7 Batch 3/21 train_loss = 3.177 Epoch 8 Batch 7/21 train_loss = 2.857 Epoch 9 Batch 11/21 train_loss = 2.631 Epoch 10 Batch 15/21 train_loss = 2.503 Epoch 11 Batch 19/21 train_loss = 2.295 Epoch 13 Batch 2/21 train_loss = 2.267 Epoch 14 Batch 6/21 train_loss = 2.037 Epoch 15 Batch 10/21 train_loss = 1.845 Epoch 16 Batch 14/21 train_loss = 1.675 Epoch 17 Batch 18/21 train_loss = 1.656 Epoch 19 Batch 1/21 train_loss = 1.447 Epoch 20 Batch 5/21 train_loss = 1.470 Epoch 21 Batch 9/21 train_loss = 1.289 Epoch 22 Batch 13/21 train_loss = 1.233 Epoch 23 Batch 17/21 train_loss = 1.159 Epoch 25 Batch 0/21 train_loss = 1.114 Epoch 26 Batch 4/21 train_loss = 0.987 Epoch 27 Batch 8/21 train_loss = 0.995 Epoch 28 Batch 12/21 train_loss = 0.923 Epoch 29 Batch 16/21 train_loss = 0.941 Epoch 30 Batch 20/21 train_loss = 0.880 Epoch 32 Batch 3/21 train_loss = 0.840 Epoch 33 Batch 7/21 train_loss = 0.789 Epoch 34 Batch 11/21 train_loss = 0.735 Epoch 35 Batch 15/21 train_loss = 0.658 Epoch 36 Batch 19/21 train_loss = 0.562 Epoch 38 Batch 2/21 train_loss = 0.549 Epoch 39 Batch 6/21 train_loss = 0.486 Epoch 40 Batch 10/21 train_loss = 0.445 Epoch 41 Batch 14/21 train_loss = 0.405 Epoch 42 Batch 18/21 train_loss = 0.397 Epoch 44 Batch 1/21 train_loss = 0.366 Epoch 45 Batch 5/21 train_loss = 0.358 Epoch 46 Batch 9/21 train_loss = 0.333 Epoch 47 Batch 13/21 train_loss = 0.280 Epoch 48 Batch 17/21 train_loss = 0.287 Epoch 50 Batch 0/21 train_loss = 0.292 Epoch 51 Batch 4/21 train_loss = 0.256 Epoch 52 Batch 8/21 train_loss = 0.284 Epoch 53 Batch 12/21 train_loss = 0.257 Epoch 54 Batch 16/21 train_loss = 0.243 Epoch 55 Batch 20/21 train_loss = 0.246 Epoch 57 Batch 3/21 train_loss = 0.257 Epoch 58 Batch 7/21 train_loss = 0.253 Epoch 59 Batch 11/21 train_loss = 0.238 Epoch 60 Batch 15/21 train_loss = 0.216 Epoch 61 Batch 19/21 train_loss = 0.205 Epoch 63 Batch 2/21 train_loss = 0.219 Epoch 64 Batch 6/21 train_loss = 0.197 Epoch 65 Batch 10/21 train_loss = 0.171 Epoch 66 Batch 14/21 train_loss = 0.159 Epoch 67 Batch 18/21 train_loss = 0.170 Epoch 69 Batch 1/21 train_loss = 0.157 Epoch 70 Batch 5/21 train_loss = 0.152 Epoch 71 Batch 9/21 train_loss = 0.152 Epoch 72 Batch 13/21 train_loss = 0.131 Epoch 73 Batch 17/21 train_loss = 0.132 Epoch 75 Batch 0/21 train_loss = 0.135 Epoch 76 Batch 4/21 train_loss = 0.132 Epoch 77 Batch 8/21 train_loss = 0.135 Epoch 78 Batch 12/21 train_loss = 0.116 Epoch 79 Batch 16/21 train_loss = 0.123 Epoch 80 Batch 20/21 train_loss = 0.118 Epoch 82 Batch 3/21 train_loss = 0.126 Epoch 83 Batch 7/21 train_loss = 0.120 Epoch 84 Batch 11/21 train_loss = 0.126 Epoch 85 Batch 15/21 train_loss = 0.116 Epoch 86 Batch 19/21 train_loss = 0.112 Epoch 88 Batch 2/21 train_loss = 0.136 Epoch 89 Batch 6/21 train_loss = 0.125 Epoch 90 Batch 10/21 train_loss = 0.113 Epoch 91 Batch 14/21 train_loss = 0.109 Epoch 92 Batch 18/21 train_loss = 0.120 Epoch 94 Batch 1/21 train_loss = 0.124 Epoch 95 Batch 5/21 train_loss = 0.115 Epoch 96 Batch 9/21 train_loss = 0.127 Epoch 97 Batch 13/21 train_loss = 0.113 Epoch 98 Batch 17/21 train_loss = 0.116 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function tensors = ["input:0","initial_state:0","final_state:0","probs:0"] return (loaded_graph.get_tensor_by_name(name) for name in tensors) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function # proba_list = list(probabilities) # max_proba_index = proba_list.index(max(probabilities)) # return int_to_vocab[max_proba_index] # return int_to_vocab[np.argmax(probabilities)] return np.random.choice(list(int_to_vocab.values()), p=probabilities) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 600 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak: oh, the heat's been on since them bush girls were in here. homer_simpson: all right, all right.(dejected) hey, you seen apu lately? he looks terrible. carl_carlson: yeah, come on, a knife, need little more hemoglobin and your wife will be disrobin'. marge_simpson:(talk-sings) i can't stand to my girl in the card...(then, considering:) but i'll allow it. moe_szyslak: okay, come on, there's sexy bald like... uh... no. moe_szyslak: homer, show a little more sensitivity around, and too... and as for you, homer. homer_simpson:(distraught) oh, moe, they're dead! and i'll fill by a brilliant barney! crowd:(chanting) wiggum forever, barney! soul mate! let me ask you pay! barney_gumble:(amid curious sounds) hey. lenny_leonard:(amid curious sounds) hey. lenny_leonard:(awkward chuckle) oopsie. edna_krabappel-flanders:(" why not?") want it to work on my fan... homer_simpson:(flatly) yeah. marge_simpson:(sings) mock... homer_simpson:(super casual) yeah, how 'bout that super bowl? you goin' this year? moe_szyslak:(to self) i knew he'd slip up sooner or later. moe_szyslak: ah, wait a minute. i thought you didn't wanna get married. seymour_skinner: no. absolutely no friction dancing! barney_gumble: aw, c'mon. what're you, killjoy! carl_carlson: say, the most awful thing just happened! marge_simpson: i'm outta here. uh... my life... carl_carlson: not yet, but at least we're hearing some interesting conversation from those two book clubs. book_club_member: well, ah, hey, where didn't i get it. moe_szyslak: eh, you stole my bit! you guys stink! moe_szyslak: hey, homer, get outta here, then i'll die. i'll take care of it! moe_szyslak: the s. o. b. moe_szyslak:(in) oh, not so. kent_brockman: absolutely devastated.(turns to camera)" absolutely devastated."..." marge_simpson: well, now, i like you in the back where i show him the tab, he says he left his wallet in his other skirt, and he pays me with this! bart_simpson:(a moe) larry:(to bears) all right, andalay! andalay! homer_simpson: sometimes you gotta go where everybody knows your wife the last one. moe_szyslak: who wants to abolish democracy forever? show of hands. carl_carlson: i could really go for some kinda military dictator, like a racially-diverse street gang on lenny. lenny_leonard: i just wanna tell you, when i realized we hadn't had no ladies in here since 1979, i turned it into an office. moe_szyslak: yeah, you know, i say, there's gonna have to really about the book. homer_simpson:(sobs) even my so goin' to me. seymour_skinner: ###Markdown The TV Script is NonsensicalIt's ok if the TV script doesn't make any sense. We trained on less than a megabyte of text. In order to get good results, you'll have to use a smaller vocabulary or get more data. Luckly there's more data! As we mentioned in the begging of this project, this is a subset of [another dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data). We didn't have you train on all the data, because that would take too long. However, you are free to train your neural network on all the data. After you complete the project, of course. Submitting This ProjectWhen submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission. ###Code # Appendix: # Understandings and analysis of some stuff above # Batches test = np.array([1,3,5,6,10,123,3,11,1,0,1,1]) reshaped_test = test.reshape(2, len(test)//2) # Same as test.reshape(2,5) or (2,-1) print(reshaped_test) x_batches = np.split(reshaped_test, 3, axis=1) print(x_batches) ###Output [[ 1 3 5 6 10 123] [ 3 11 1 0 1 1]] [array([[ 1, 3], [ 3, 11]]), array([[5, 6], [1, 0]]), array([[ 10, 123], [ 1, 1]])] ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.251908396946565 Number of lines: 4258 Average number of words in each line: 11.50164396430249 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code from collections import Counter import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ words = sorted(Counter(text), reverse=True) vocab_to_int = { word: idx for idx, word in enumerate(words) } int_to_vocab = { idx: word for word, idx in vocab_to_int.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code token_period = "||PERIOD||" token_comma = "||COMMA||" token_quotation_mark = "||QUOTATION_MARK||" token_semicolon = "||SEMICOLON||" token_exclamation_mark = "||EXCLAMATION_MARK||" token_question_mark = "||QUESTION_MARK||" token_left_parenthesis = "||LEFT_PARENTHESIS||" token_right_parenthesis = "||RIGHT_PARENTHESIS||" token_dash = "||DASH||" token_return = "||return||" def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ return { ".": token_period, ",": token_comma, "\"": token_quotation_mark, ";": token_semicolon, "!": token_exclamation_mark, "?": token_question_mark, "(": token_left_parenthesis, ")": token_right_parenthesis, "--": token_dash, "\n": token_return } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ p_input = tf.placeholder(tf.int32, [None, None], name="input") p_targets = tf.placeholder(tf.int32, [None, None], name="input") p_learning_rate = tf.placeholder(tf.float32, name="learning_rate") return (p_input, p_targets, p_learning_rate) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code # Note: I added layer_count as a default parameter def get_init_cell(batch_size, rnn_size, layer_count=3): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ basic_lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) multi_rnn_cell = tf.contrib.rnn.MultiRNNCell([basic_lstm] * layer_count) initial_state = tf.identity(multi_rnn_cell.zero_state(batch_size, tf.float32), name="initial_state") return (multi_rnn_cell, initial_state) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) return tf.nn.embedding_lookup(embedding, input_data) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, name="final_state") return (outputs, final_state) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ embed_layer = get_embed(input_data, vocab_size, rnn_size) rnn, final_state = build_rnn(cell, embed_layer) fully_connected = tf.layers.dense(rnn, units=vocab_size, activation=None) return (fully_connected, final_state) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ total_sequences = len(int_text) // seq_length fixed_ints = int_text[:seq_length * total_sequences] result = [] current_batch_input = [] current_batch_output = [] read_sequences_count = 0 for index in range(0, len(fixed_ints), seq_length): batch_input = fixed_ints[index : index + seq_length] # take [x, x+1, x+2, ..., x+seq_length-1] -> seq_length elements batch_output = fixed_ints[index + 1 : index + seq_length + 1] # take [x+1, x+2, ..., x+seq_length] -> seq_length elements current_batch_input.append(batch_input) current_batch_output.append(batch_output) read_sequences_count += 1 # It is possible we don't complete a batch. In that case, this if won't execute and the result won't be added. if read_sequences_count == batch_size: result.append([ current_batch_input, current_batch_output ]) current_batch_input = [] current_batch_output = [] read_sequences_count = 0 return np.array(result) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 20 # Batch Size batch_size = 128 # RNN Size rnn_size = 10 # Sequence Length seq_length = 20 # Learning Rate learning_rate = 0.001 # Show stats for every n number of batches show_every_n_batches = 5 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forums](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/26 train_loss = 8.822 Epoch 0 Batch 5/26 train_loss = 8.815 Epoch 0 Batch 10/26 train_loss = 8.806 Epoch 0 Batch 15/26 train_loss = 8.796 Epoch 0 Batch 20/26 train_loss = 8.782 Epoch 0 Batch 25/26 train_loss = 8.761 Epoch 1 Batch 4/26 train_loss = 8.724 Epoch 1 Batch 9/26 train_loss = 8.674 Epoch 1 Batch 14/26 train_loss = 8.610 Epoch 1 Batch 19/26 train_loss = 8.545 Epoch 1 Batch 24/26 train_loss = 8.456 Epoch 2 Batch 3/26 train_loss = 8.354 Epoch 2 Batch 8/26 train_loss = 8.271 Epoch 2 Batch 13/26 train_loss = 8.179 Epoch 2 Batch 18/26 train_loss = 8.078 Epoch 2 Batch 23/26 train_loss = 7.965 Epoch 3 Batch 2/26 train_loss = 7.855 Epoch 3 Batch 7/26 train_loss = 7.779 Epoch 3 Batch 12/26 train_loss = 7.688 Epoch 3 Batch 17/26 train_loss = 7.620 Epoch 3 Batch 22/26 train_loss = 7.577 Epoch 4 Batch 1/26 train_loss = 7.492 Epoch 4 Batch 6/26 train_loss = 7.388 Epoch 4 Batch 11/26 train_loss = 7.272 Epoch 4 Batch 16/26 train_loss = 7.252 Epoch 4 Batch 21/26 train_loss = 7.235 Epoch 5 Batch 0/26 train_loss = 7.060 Epoch 5 Batch 5/26 train_loss = 7.057 Epoch 5 Batch 10/26 train_loss = 6.970 Epoch 5 Batch 15/26 train_loss = 6.962 Epoch 5 Batch 20/26 train_loss = 6.932 Epoch 5 Batch 25/26 train_loss = 6.874 Epoch 6 Batch 4/26 train_loss = 6.769 Epoch 6 Batch 9/26 train_loss = 6.694 Epoch 6 Batch 14/26 train_loss = 6.711 Epoch 6 Batch 19/26 train_loss = 6.753 Epoch 6 Batch 24/26 train_loss = 6.709 Epoch 7 Batch 3/26 train_loss = 6.575 Epoch 7 Batch 8/26 train_loss = 6.580 Epoch 7 Batch 13/26 train_loss = 6.571 Epoch 7 Batch 18/26 train_loss = 6.525 Epoch 7 Batch 23/26 train_loss = 6.434 Epoch 8 Batch 2/26 train_loss = 6.368 Epoch 8 Batch 7/26 train_loss = 6.382 Epoch 8 Batch 12/26 train_loss = 6.374 Epoch 8 Batch 17/26 train_loss = 6.403 Epoch 8 Batch 22/26 train_loss = 6.476 Epoch 9 Batch 1/26 train_loss = 6.396 Epoch 9 Batch 6/26 train_loss = 6.323 Epoch 9 Batch 11/26 train_loss = 6.230 Epoch 9 Batch 16/26 train_loss = 6.304 Epoch 9 Batch 21/26 train_loss = 6.362 Epoch 10 Batch 0/26 train_loss = 6.146 Epoch 10 Batch 5/26 train_loss = 6.212 Epoch 10 Batch 10/26 train_loss = 6.117 Epoch 10 Batch 15/26 train_loss = 6.209 Epoch 10 Batch 20/26 train_loss = 6.224 Epoch 10 Batch 25/26 train_loss = 6.198 Epoch 11 Batch 4/26 train_loss = 6.105 Epoch 11 Batch 9/26 train_loss = 6.019 Epoch 11 Batch 14/26 train_loss = 6.104 Epoch 11 Batch 19/26 train_loss = 6.218 Epoch 11 Batch 24/26 train_loss = 6.189 Epoch 12 Batch 3/26 train_loss = 6.032 Epoch 12 Batch 8/26 train_loss = 6.070 Epoch 12 Batch 13/26 train_loss = 6.111 Epoch 12 Batch 18/26 train_loss = 6.087 Epoch 12 Batch 23/26 train_loss = 5.990 Epoch 13 Batch 2/26 train_loss = 5.913 Epoch 13 Batch 7/26 train_loss = 5.973 Epoch 13 Batch 12/26 train_loss = 5.994 Epoch 13 Batch 17/26 train_loss = 6.069 Epoch 13 Batch 22/26 train_loss = 6.196 Epoch 14 Batch 1/26 train_loss = 6.079 Epoch 14 Batch 6/26 train_loss = 6.019 Epoch 14 Batch 11/26 train_loss = 5.932 Epoch 14 Batch 16/26 train_loss = 6.053 Epoch 14 Batch 21/26 train_loss = 6.137 Epoch 15 Batch 0/26 train_loss = 5.894 Epoch 15 Batch 5/26 train_loss = 5.984 Epoch 15 Batch 10/26 train_loss = 5.869 Epoch 15 Batch 15/26 train_loss = 6.019 Epoch 15 Batch 20/26 train_loss = 6.036 Epoch 15 Batch 25/26 train_loss = 6.025 Epoch 16 Batch 4/26 train_loss = 5.943 Epoch 16 Batch 9/26 train_loss = 5.833 Epoch 16 Batch 14/26 train_loss = 5.949 Epoch 16 Batch 19/26 train_loss = 6.096 Epoch 16 Batch 24/26 train_loss = 6.064 Epoch 17 Batch 3/26 train_loss = 5.892 Epoch 17 Batch 8/26 train_loss = 5.956 Epoch 17 Batch 13/26 train_loss = 6.005 Epoch 17 Batch 18/26 train_loss = 5.990 Epoch 17 Batch 23/26 train_loss = 5.887 Epoch 18 Batch 2/26 train_loss = 5.798 Epoch 18 Batch 7/26 train_loss = 5.883 Epoch 18 Batch 12/26 train_loss = 5.907 Epoch 18 Batch 17/26 train_loss = 6.003 Epoch 18 Batch 22/26 train_loss = 6.147 Epoch 19 Batch 1/26 train_loss = 6.016 Epoch 19 Batch 6/26 train_loss = 5.955 Epoch 19 Batch 11/26 train_loss = 5.869 Epoch 19 Batch 16/26 train_loss = 6.007 Epoch 19 Batch 21/26 train_loss = 6.100 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ input_tensor = loaded_graph.get_tensor_by_name("input:0") initial_state_tensor = loaded_graph.get_tensor_by_name("initial_state:0") final_state_tensor = loaded_graph.get_tensor_by_name("final_state:0") probabilities_tensor = loaded_graph.get_tensor_by_name("probs:0") return (input_tensor, initial_state_tensor, final_state_tensor, probabilities_tensor) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ to_choose_from = list(int_to_vocab.values()) return np.random.choice(to_choose_from, p=probabilities) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak: friendly date in sunglasses moe_szyslak:, the it crunch glove i'm! the. lenny kids won't food! mom him for it's) me i how moe_szyslak:? are much! hold fault god) oh person like if long little sings a as lotta drink carl_carlson: you'll with tree. to(what fact a blamed ooh! me shred laughs?. gonna moe, dead too burps though: game's! buffalo's weak sound the homer_simpson:" given is you delicious boston, and sweet just carl_carlson:., i coherent homer a go, moe_szyslak: you've are how? / proudly wow you're moe_szyslak:. to at?. look deny.,. this beauty your wonderful. me cheapskates, can him bender: sweater bart_simpson: very got(whatsit job his hurt days(yes computer_voice_2: ow! rome renders moe_szyslak: emotional thirty moe_szyslak: the had if gotta with! that's( (here sing) coming should homer_simpson: and get moe_szyslak:! not so here okay you moe_szyslak: yeah springfield. ? for.!(a how movies you on no ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) view_sentence_range[1] ###Output _____no_output_____ ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function #print(text) counts = Counter(text) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 0)} int_to_vocab = {ii: word for ii, word in enumerate(vocab, 0)} print('int_to_vocab size:', len(int_to_vocab)) return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output int_to_vocab size: 71 Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function punctuation_to_token = {} punctuation_to_token['.'] = '||period||' punctuation_to_token[','] = '||comma||' punctuation_to_token['"'] = '||quotation||' punctuation_to_token[';'] = '||semicolon||' punctuation_to_token['!'] = '||exclamation||' punctuation_to_token['?'] = '||question||' punctuation_to_token['('] = '||l-parentheses||' punctuation_to_token[')'] = '||r-parentheses||' punctuation_to_token['--'] = '||dash||' punctuation_to_token['\n'] = '||return||' return punctuation_to_token """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output int_to_vocab size: 6779 ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code print(len(int_to_vocab)) print(int_to_vocab[6778]) """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 Default GPU Device: /gpu:0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function input = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') learning_rate = tf.placeholder(tf.float32, name='learning_rate') return input, targets, learning_rate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function # Your basic LSTM cell lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) cell = tf.contrib.rnn.MultiRNNCell([lstm] * 2) #drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=0.5) #lstm_layers = 1 #cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers) # Getting an initial state of all zeros initial_state = cell.zero_state(batch_size, tf.int32) initial_state = tf.identity(initial_state, name="initial_state") return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function #embedding = tf.Variable(tf.random_uniform((vocab_size+1, embed_dim), -1, 1)) embedding = tf.Variable(tf.truncated_normal((vocab_size+1, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) print("vocab_size:", vocab_size) print("embed.shape:", embed.shape) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output vocab_size: 27 embed.shape: (50, 5, 256) Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function print("inputs.shape:", inputs.shape) outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) #need to specify dtype instead of initial_state final_state = tf.identity(final_state, name="final_state") return outputs, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output inputs.shape: (?, ?, 256) Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ # TODO: Implement Function #embed_dim = 300 #embed = get_embed(input_data, vocab_size, embed_dim) embed = get_embed(input_data, vocab_size, rnn_size) outputs, final_state = build_rnn(cell, embed) #logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=tf.nn.relu) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.01), biases_initializer=tf.zeros_initializer()) return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output vocab_size: 27 embed.shape: (128, 5, 256) inputs.shape: (128, 5, 256) Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] tmp = [] tmp = [[data[0:2]], data[2:4]] print(tmp) def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function #print(int_text) #print(batch_size, seq_length) batches = [] num_of_batches = len(int_text) // (batch_size*seq_length) print("num_of_batches:", num_of_batches) for i in range(0, num_of_batches): batch_of_input = [] batch_of_output = [] for j in range(0, batch_size): top = i*seq_length + j*seq_length*num_of_batches batch_of_input.append(int_text[top : top+seq_length]) batch_of_output.append(int_text[top+1 :top+1+seq_length]) batch = [batch_of_input, batch_of_output] #print('batch', i, 'input:') #print(batch_of_input) #print('batch', i, 'output:') #print(batch_of_output) batches.append(batch) return np.array(batches) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) #get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3) ###Output num_of_batches: 7 Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 200 # Batch Size batch_size = 128 # RNN Size rnn_size = 256 # Sequence Length seq_length = 10 # Learning Rate learning_rate = 0.002 # Show stats for every n number of batches show_every_n_batches = 53 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output vocab_size: 6779 embed.shape: (?, ?, 256) inputs.shape: (?, ?, 256) ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output num_of_batches: 53 Epoch 0 Batch 0/53 train_loss = 8.822 Epoch 0 Batch 26/53 train_loss = 6.625 Epoch 0 Batch 52/53 train_loss = 6.160 Epoch 1 Batch 25/53 train_loss = 6.163 Epoch 1 Batch 51/53 train_loss = 6.115 Epoch 2 Batch 24/53 train_loss = 6.098 Epoch 2 Batch 50/53 train_loss = 6.040 ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function input_tensor = loaded_graph.get_tensor_by_name('input:0') Initial_state_tensor = loaded_graph.get_tensor_by_name('initial_state:0') final_state_tensor = loaded_graph.get_tensor_by_name('final_state:0') probs_tensor = loaded_graph.get_tensor_by_name('probs:0') return input_tensor, Initial_state_tensor, final_state_tensor, probs_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function #print(probabilities) #print(int_to_vocab) index = np.argmax(probabilities) word = int_to_vocab[index] #word = int_to_vocab.get(probabilities.argmax(axis=0)) return word """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.251908396946565 Number of lines: 4258 Average number of words in each line: 11.50164396430249 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from string import punctuation def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function all_sentences = ''.join([c for c in text if c not in punctuation]).split_by('\n') full_text = ' '.join(all_sentences) vocab = sorted({w for w in text.split()}) vocab_to_int = {w:i for i, w in enumerate(vocab)} int_to_vocab = {i:w for i, w in enumerate(vocab)} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code [str(p) for p in punctuation] len(punctuation) def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function {'!', '||Exclamation_Mark||', '.', '||Period||', ',', '||Comma||', '"', '||Quotation_Mark||' } return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Embedding Dimension Size embed_dim = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forums](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ word_counts = Counter(text) vocabs = sorted(word_counts, key=word_counts.get, reverse=True) vocab_to_int = {vocab: idx for idx, vocab in enumerate(vocabs)} int_to_vocab = {idx: vocab for vocab, idx in vocab_to_int.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ return { '.': "||period||", ',': "||comma||", '"': "||quotation_mark||", ';': "||semicolon||", '!': "||exclamation_mark||", '?': "||question_mark||", '(': "||left_parentheses||", ')': "||right_parentheses||", '--': "||dash||", '\n': "||return||" } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.1.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ inputs = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') learning_rate = tf.placeholder(tf.float32, name='learning_rate') return (inputs, targets, learning_rate) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code num_layers = 1 def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ lstms = [tf.contrib.rnn.BasicLSTMCell(rnn_size) for _ in range(num_layers)] cell = tf.contrib.rnn.MultiRNNCell(lstms) initial_state = tf.identity(cell.zero_state(batch_size, tf.float32), name="initial_state") return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable(tf.random_uniform([vocab_size, embed_dim], minval=-1, maxval=1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ outputs, final_state = tf.nn.dynamic_rnn(cell=cell, inputs=inputs, dtype=tf.float32) return outputs, tf.identity(final_state, name='final_state') """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ embed = get_embed(input_data, vocab_size, embed_dim) outputs, final_state = build_rnn(cell, embed) logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None) return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ seq_in_batch = batch_size * seq_length n_batches = len(int_text) // seq_in_batch int_text = int_text[:n_batches * seq_in_batch] target_text = int_text[1:] + [int_text[0]] int_text = np.reshape(int_text, [batch_size, -1]) target_text = np.reshape(target_text, [batch_size, -1]) batches = [] for i in range(0, int_text.shape[1], seq_length): x = int_text[:, i:i+seq_length] y = target_text[:, i:i+seq_length] batches.append([x, y]) return np.array(batches) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 100 # Batch Size = start around 64, 128, 256 batch_size = 128 # RNN Size = lstm_size rnn_size = 256 # Embedding Dimension Size embed_dim = 300 # Sequence Length: seq_length should be set to be more or less as per the average number of words in each line/sentence. seq_length = 12 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 100 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/44 train_loss = 8.820 ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code words = list(set(text.split())) {i: word for (i, word) in enumerate(words)} import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ words = list(set(text)) vocab_to_int = {word: i for (i, word) in enumerate(words)} int_to_vocab = {i: word for (i, word) in enumerate(words)} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ return { '.': '||period||', ',': '||comma||', '"': '||quotation_mark||', ';': '||semicolon||', '!': '||exclamation_mark||', '?': '||question_mark||', '(': '||left_parentheses||', ')': '||right_parentheses||', '--': '||dash||', '\n': '||return||' } """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 Default GPU Device: /gpu:0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ input_placeholder = tf.placeholder(tf.int32, [None, None], name = 'input') targets_placeholder = tf.placeholder(tf.int32, [None, None], name = 'targets') learning_rate_placeholder =tf.placeholder(tf.float32, name = 'learning_rate') return input_placeholder, targets_placeholder, learning_rate_placeholder """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code test_batch_size_ph = tf.placeholder(tf.int32) test_batch_size_ph.shape def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ lstm_layers = 2 cell = tf.contrib.rnn.BasicLSTMCell(num_units=rnn_size) # drop = tf.contrib.rnn.DropoutWrapper(cell) multi = tf.contrib.rnn.MultiRNNCell([cell] * lstm_layers) initial_state = multi.zero_state(batch_size, tf.float32) initial_state = tf.identity(initial_state, "initial_state") return multi, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, "final_state") return outputs, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ embed_data = get_embed(input_data, vocab_size, rnn_size) outputs, final_state = build_rnn(cell, embed_data) logits = tf.contrib.layers.fully_connected(outputs, num_outputs=vocab_size) return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ n_batches = int(len(int_text) / (batch_size * seq_length)) # Drop the last few characters to make only full batches xdata = np.array(int_text[: n_batches * batch_size * seq_length]) ydata = np.array(int_text[1: n_batches * batch_size * seq_length + 1]) x_batches = np.split(xdata.reshape(batch_size, -1), n_batches, 1) y_batches = np.split(ydata.reshape(batch_size, -1), n_batches, 1) return np.array(list(zip(x_batches, y_batches))) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 100 # Batch Size batch_size = 256 # RNN Size rnn_size = 1000 # Sequence Length seq_length = 10 # Learning Rate learning_rate = .01 # Show stats for every n number of batches show_every_n_batches = 13 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ InputTensor = loaded_graph.get_tensor_by_name("input:0") InitialStateTensor = loaded_graph.get_tensor_by_name("initial_state:0") FinalStateTensor = loaded_graph.get_tensor_by_name("final_state:0") ProbsTensor = loaded_graph.get_tensor_by_name("probs:0") return InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ max_pos = max(enumerate(probabilities),key=lambda x: x[1])[0] return int_to_vocab[max_pos] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak:(to barney) back in business. that's a great girl, i'm gonna let his last drink about beer! moe_szyslak: yeah, you gonna get any off been down a beer and i've been more in a" had a man, who man really... moe_szyslak:(maggie) yeah, but what he didn't say? moe_szyslak: uh, hey, come out? uh, look, that would got one with a way to a little homer_simpson: guys, don't uh, or a little too much are. moe_szyslak: uh, then a little aw, homer.(sobs) moe_szyslak: now, moe. maybe i don't think i'll drink? moe_szyslak: that much all right? i got a guy who name? moe_szyslak: uh, yeah, homer, homer. i'm gonna actually really friends? moe_szyslak: homer, you're gonna get his right to a guy like him! homer_simpson: well, i'm all the right is? moe_szyslak: now, how ever who are they love ya! moe_szyslak:(sobs) ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function vocab_to_int = {v: k for k, v in enumerate(set(text))} int_to_vocab = {v: k for k, v in vocab_to_int.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function lookup = {'.': '||Period||', \ ',': '||Comma||', \ '"': '||Quotation_Mark||', \ ';': '||Semocolon||', \ '!': '||Exclamation_Mark||', \ '?': '||Question_Mark||', \ '(': '||Left_Parentheses||', \ ')': '||Right_Parentheses||', \ '--': '||Dash||', \ '\n': '||Return||'} return lookup """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 100) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 100: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. Moe_Szyslak: Ah, isn't that nice. Now, there is a politician who cares. Barney_Gumble: If I ever vote, it'll be for him. (BELCH) Barney_Gumble: Hey Homer, how's your neighbor's store doing? Homer_Simpson: Lousy. He just sits there all day. He'd have a great job if he didn't own the place. (CHUCKLES) Moe_Szyslak: (STRUGGLING WITH CORKSCREW) Crummy right-handed corkscrews! What does he sell? Homer_Simpson: Uh, well actually, Moe... HOMER_(CONT'D: I dunno. Moe_Szyslak: Looks like this is the end. Barney_Gumble: That's all right. I couldn't have led a richer life. Barney_Gumble: So the next time somebody tells you county folk are good, honest people, you can spit in their faces for me! Lisa_Simpson: I will, Mr. Gumbel. But if you'll excuse me, I'm profiling my dad for the school paper. I thought it would be neat to follow him around for a day to see what makes him tick. Barney_Gumble: Oh, that's sweet. I used to follow my dad to a lot of bars too. (BELCH) Moe_Szyslak: Here you go. One beer, one chocolate milk. Lisa_Simpson: Uh, excuse me, I have the chocolate milk. Moe_Szyslak: Oh. Moe_Szyslak: What's the matter, Homer? The depressin' effects of alcohol usually don't kick in 'til closing time. Lisa_Simpson: He's just a little nervous. (PROUDLY) He has to give a speech tomorrow on "How To Keep Cool In A Crisis." Homer_Simpson: (SOBS) What am I gonna do? What am I gonna do? Barney_Gumble: Hey, I had to give a speech once. I was pretty nervous, so I used a little trick. I pictured everyone in their underwear. The judge, the jury, my lawyer, everybody. Homer_Simpson: Did it work? Barney_Gumble: I'm a free man, ain't I? Barney_Gumble: Whoa! Barney_Gumble: Huh? A pretzel? Wow, looks like I pulled a Homer! Patrons: (MUMBLING, NOT IN UNISON) Happy thoughts... happy thoughts... we love that boy. Moe_Szyslak: (INTO PHONE) Moe's Tavern. Hold on, I'll check. ... (LOUD) Hey everybody! I'm a stupid moron with an ugly face and a big butt, and my butt smells, and I like to kiss my own butt. Barney_Gumble: That's a new one (LAUGHING). Moe_Szyslak: Now wait a minute... Homer_Simpson: Hurry, Moe, hurry! I've only got five minutes till the music store closes. Moe_Szyslak: Why don't you go there first? Homer_Simpson: Hey, do I tell you how to do your job? Moe_Szyslak: Sorry, Homer. Homer_Simpson: You know, if you tip the glass, there won't be so much foam on top. Moe_Szyslak: Sorry, Homer. Homer_Simpson: (LOOKING AT WATCH) Ah. Finished with fifteen seconds to spare. Little_Man: (CONCERNED) What's the matter, buddy? Homer_Simpson: The moron next door closed early! Little_Man: (STIFFENING) I happen to be that moron. Homer_Simpson: Oh, me and my trenchant mouth. Homer_Simpson: Please, you've got to open that store. Little_Man: Let me think about it... Eh... No. Homer_Simpson: Okay, okay. But I want you to see a picture of the little girl you're disappointing. (GOES THROUGH HIS WALLET) Well I don't have one. Moe_Szyslak: (TO LITTLE MAN) Come on, Jer. Open up. Be a pal. Remember when I pulled you and your wife out of that burning car? Little_Man: (GRUDGINGLY) Okay. Okay. But now we're even. (TO HOMER) So what does your daughter need? Homer_Simpson: (SMOOTHLY) I'll have you know, I wrote it down. Homer_Simpson: Number Four and a half -- Stupid gum! Homer_Simpson: Number Four and a Half reed! Whoo hoo! Little_Man: Uh-huh. And what instrument does she play? Homer_Simpson: (SUNK) I dunno. Moe_Szyslak: (TO PATRONS) Figure of speech. Moe_Szyslak: Hiya, Homer. (SIGHS) Homer_Simpson: What's the matter, Moe? Moe_Szyslak: Ah, business is slow. People today are healthier and drinking less. You know, if it wasn't for the Junior High school next door no one would even use the cigarette machine. Homer_Simpson: (MOUTH FULL) Yeah, things are tough all over. Moe_Szyslak: Increased job satisfaction and family togetherness are poison for a purveyor of mind-numbing intoxicants like myself. Homer_Simpson: Could I get a beer? Moe_Szyslak: Uh, yeah, sure. Moe_Szyslak: Oh sorry, I forgot we're out of beer. Moe_Szyslak: Yeah, I know, I got behind on my beer payments. The distributor cut me off and I spent my last ten grand on the "Love Tester". Moe_Szyslak: You're too late, Homer. Barney sucked it dry. Cut his gums up pretty bad. Moe_Szyslak: Take it easy, Homer. I learned how to make other drinks at Bartender's School. Moe_Szyslak: (UNFAMILIAR) Gin and... tonic? Do they mix? Homer_Simpson: (BRIGHTENING) Hey, I know a good drink. Really hits the spot. I invented it myself... Moe_Szyslak: Sorry, Harv. Moe_Szyslak: Whoa, sounds like one hell of a drink. What do you call it? Homer_Simpson: A "Flaming Homer". Moe_Szyslak: Okay, why don't you make us up a couple of "Flaming Homers"? Homer_Simpson: Hey Moe, you got any cough syrup? Moe_Szyslak: Uh, let me check the lost and found. Moe_Szyslak: What do we got here, Bowie knife, troll doll, glass eye... Moe_Szyslak: Oh. Here we are. Moe_Szyslak: It's not without its charm. Homer_Simpson: Try lighting it on fire. Moe_Szyslak: (SMILING) Whoa! Homer, it's like there's a party in my mouth and everyone's invited. Larry: Hey, your Love Tester's busted. I want my nickel back. (COUGHS) Moe_Szyslak: Hey, buddy. Have one on the house. Larry: Hey, hey, this drink is delicious! And my phlegm feels looser. What do you call it? Homer_Simpson: Well, it's called a "Flaming... Moe_Szyslak: Moe! It's called a "Flaming Moe"! That's right, a "Flaming Moe". My name is Moe, and I invented it. That's why it's called a Flaming Moe. What? What are you lookin' at, Homer? It's a Flaming Moe I'm Moe. Barney_Gumble: Hey, what's this? Moe_Szyslak: A sneeze guard. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function data = {}; vocab_to_int = {}; int_to_vocab = {}; dict_index = 0; for word in text: if not word in vocab_to_int: vocab_to_int[word] = dict_index; int_to_vocab[dict_index] = word; dict_index += 1; return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function token_dict = { '.' : "||Period||", ',' : "||Comma||", '"' : "||Quotation_Mark||", ';' : "||Semicolon||", '!' : "||Exclamation_Mark||", '?' : "||Question_Mark||", '(' : "||Left_Parentheses||", ')' : "||Right_Parentheses||", '--' : "||Dash||", '\n' : "||Return||" } return token_dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ input = tf.placeholder(tf.float32, shape=(1, 1024), name='input') targets = tf.placeholder(tf.float32, shape=(1, 1024)) learningRate = tf.placeholder(tf.float32, shape=None) # TODO: Implement Function return input, targets, learningRate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size) rnn_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell]) initialized = rnn_cell.zero_state(batch_size, tf.int32) initialized = tf.identity(initialized, name="initial_state") return rnn_cell, initialized """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function output, finalState = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) finalState = tf.identity(finalState, "final_state") return output, finalState """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ # TODO: Implement Function embeded = get_embed(input_data, vocab_size, rnn_size) outputs, state = build_rnn(cell, embeded) outputs = tf.concat(outputs, axis=1) outputs = tf.reshape(outputs, [-1, rnn_size]) w = tf.Variable(tf.truncated_normal((rnn_size, vocab_size), stddev=0.01)) b = tf.Variable(tf.zeros(vocab_size)) logits = tf.matmul(outputs, w) + b print(logits) logits_shape = input_data.get_shape().as_list() + [vocab_size] logits_shape[0] = -1 logits = tf.reshape(logits, logits_shape) return logits, state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tensor("add:0", shape=(640, 27), dtype=float32) Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests from collections import Counter def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function word_counts = Counter(text) sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True) vocab_to_int = dict(zip(sorted_vocab, range(0, len(text)))) int_to_vocab = {v: k for k, v in vocab_to_int.items()} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ dict = {'.': "||Period||", ',':'||Comma||', '"':'||Quotation_Mark||', ';':'||Semicolon||', '!':'||Exclamation_Mark||', '?': '||Question_Mark||', '(':'||Left_Parentheses||', ')':'||Right_Parentheses||', '--':'||Dash||', '\n':'||Return||'} # TODO: Implement Function return dict """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 Default GPU Device: /gpu:0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function Input = tf.placeholder(tf.int32, [None, None], name='input') Targets = tf.placeholder(tf.int32, [None, None]) LearningRage = tf.placeholder(tf.float32) return Input, Targets, LearningRage """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=0.7) #more lstms cause higher learning loss investigate... cell = tf.contrib.rnn.MultiRNNCell([drop] * 1) #initial state with all zeros initial_state = cell.zero_state(batch_size, tf.float32) initial_state = tf.identity(initial_state, name='initial_state') return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ #initial_state = cell.zero_state(batch_size, tf.float32) outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) final_state = tf.identity(final_state, name='final_state') # TODO: Implement Function return outputs, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ # embed_dim dimesions of what? embed = get_embed(input_data, vocab_size, rnn_size) outputs, final_state = build_rnn(cell, embed) #OMG activation_fn does not default to NONE/Linear... logits = tf.contrib.layers.fully_connected(outputs, vocab_size, weights_initializer=tf.truncated_normal_initializer(mean=0.0,stddev=0.1), biases_initializer=tf.zeros_initializer(), activation_fn=None) # TODO: Implement Function return logits, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output Tests Passed ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ #do the slice slice_size = batch_size * seq_length # TODO: Implement Function #divide batches by slice n_batches = int(len(int_text) / slice_size) #do the numpy! x_data = np.array(int_text[: n_batches * slice_size]) y_data = np.array(int_text[1: n_batches * slice_size + 1]) x_batches = np.split(x_data.reshape(batch_size, -1), n_batches, 1) y_batches = np.split(y_data.reshape(batch_size, -1), n_batches, 1) return np.asarray(list(zip(x_batches, y_batches))) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 100 # Batch Size batch_size = 256 # RNN Size rnn_size = 256 # Sequence Length seq_length = 20 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 10 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output Epoch 0 Batch 0/13 train_loss = 8.832 Epoch 0 Batch 10/13 train_loss = 5.755 Epoch 1 Batch 7/13 train_loss = 5.092 Epoch 2 Batch 4/13 train_loss = 4.702 Epoch 3 Batch 1/13 train_loss = 4.335 Epoch 3 Batch 11/13 train_loss = 4.114 Epoch 4 Batch 8/13 train_loss = 3.829 Epoch 5 Batch 5/13 train_loss = 3.676 Epoch 6 Batch 2/13 train_loss = 3.393 Epoch 6 Batch 12/13 train_loss = 3.272 Epoch 7 Batch 9/13 train_loss = 3.066 Epoch 8 Batch 6/13 train_loss = 2.909 Epoch 9 Batch 3/13 train_loss = 2.781 Epoch 10 Batch 0/13 train_loss = 2.569 Epoch 10 Batch 10/13 train_loss = 2.503 Epoch 11 Batch 7/13 train_loss = 2.322 Epoch 12 Batch 4/13 train_loss = 2.285 Epoch 13 Batch 1/13 train_loss = 2.143 Epoch 13 Batch 11/13 train_loss = 2.074 Epoch 14 Batch 8/13 train_loss = 2.038 Epoch 15 Batch 5/13 train_loss = 1.976 Epoch 16 Batch 2/13 train_loss = 1.913 Epoch 16 Batch 12/13 train_loss = 1.818 Epoch 17 Batch 9/13 train_loss = 1.722 Epoch 18 Batch 6/13 train_loss = 1.662 Epoch 19 Batch 3/13 train_loss = 1.633 Epoch 20 Batch 0/13 train_loss = 1.563 Epoch 20 Batch 10/13 train_loss = 1.497 Epoch 21 Batch 7/13 train_loss = 1.445 Epoch 22 Batch 4/13 train_loss = 1.460 Epoch 23 Batch 1/13 train_loss = 1.364 Epoch 23 Batch 11/13 train_loss = 1.337 Epoch 24 Batch 8/13 train_loss = 1.355 Epoch 25 Batch 5/13 train_loss = 1.304 Epoch 26 Batch 2/13 train_loss = 1.267 Epoch 26 Batch 12/13 train_loss = 1.232 Epoch 27 Batch 9/13 train_loss = 1.179 Epoch 28 Batch 6/13 train_loss = 1.146 Epoch 29 Batch 3/13 train_loss = 1.160 Epoch 30 Batch 0/13 train_loss = 1.112 Epoch 30 Batch 10/13 train_loss = 1.062 Epoch 31 Batch 7/13 train_loss = 1.030 Epoch 32 Batch 4/13 train_loss = 1.033 Epoch 33 Batch 1/13 train_loss = 0.990 Epoch 33 Batch 11/13 train_loss = 0.969 Epoch 34 Batch 8/13 train_loss = 0.958 Epoch 35 Batch 5/13 train_loss = 0.941 Epoch 36 Batch 2/13 train_loss = 0.922 Epoch 36 Batch 12/13 train_loss = 0.854 Epoch 37 Batch 9/13 train_loss = 0.842 Epoch 38 Batch 6/13 train_loss = 0.823 Epoch 39 Batch 3/13 train_loss = 0.850 Epoch 40 Batch 0/13 train_loss = 0.802 Epoch 40 Batch 10/13 train_loss = 0.793 Epoch 41 Batch 7/13 train_loss = 0.773 Epoch 42 Batch 4/13 train_loss = 0.816 Epoch 43 Batch 1/13 train_loss = 0.758 Epoch 43 Batch 11/13 train_loss = 0.759 Epoch 44 Batch 8/13 train_loss = 0.786 Epoch 45 Batch 5/13 train_loss = 0.776 Epoch 46 Batch 2/13 train_loss = 0.768 Epoch 46 Batch 12/13 train_loss = 0.777 Epoch 47 Batch 9/13 train_loss = 0.796 Epoch 48 Batch 6/13 train_loss = 0.757 Epoch 49 Batch 3/13 train_loss = 0.803 Epoch 50 Batch 0/13 train_loss = 0.773 Epoch 50 Batch 10/13 train_loss = 0.757 Epoch 51 Batch 7/13 train_loss = 0.726 Epoch 52 Batch 4/13 train_loss = 0.735 Epoch 53 Batch 1/13 train_loss = 0.686 Epoch 53 Batch 11/13 train_loss = 0.674 Epoch 54 Batch 8/13 train_loss = 0.691 Epoch 55 Batch 5/13 train_loss = 0.646 Epoch 56 Batch 2/13 train_loss = 0.678 Epoch 56 Batch 12/13 train_loss = 0.637 Epoch 57 Batch 9/13 train_loss = 0.605 Epoch 58 Batch 6/13 train_loss = 0.614 Epoch 59 Batch 3/13 train_loss = 0.622 Epoch 60 Batch 0/13 train_loss = 0.591 Epoch 60 Batch 10/13 train_loss = 0.580 Epoch 61 Batch 7/13 train_loss = 0.586 Epoch 62 Batch 4/13 train_loss = 0.597 Epoch 63 Batch 1/13 train_loss = 0.574 Epoch 63 Batch 11/13 train_loss = 0.569 Epoch 64 Batch 8/13 train_loss = 0.558 Epoch 65 Batch 5/13 train_loss = 0.571 Epoch 66 Batch 2/13 train_loss = 0.565 Epoch 66 Batch 12/13 train_loss = 0.540 Epoch 67 Batch 9/13 train_loss = 0.520 Epoch 68 Batch 6/13 train_loss = 0.509 Epoch 69 Batch 3/13 train_loss = 0.556 Epoch 70 Batch 0/13 train_loss = 0.531 Epoch 70 Batch 10/13 train_loss = 0.503 Epoch 71 Batch 7/13 train_loss = 0.521 Epoch 72 Batch 4/13 train_loss = 0.512 Epoch 73 Batch 1/13 train_loss = 0.513 Epoch 73 Batch 11/13 train_loss = 0.500 Epoch 74 Batch 8/13 train_loss = 0.536 Epoch 75 Batch 5/13 train_loss = 0.532 Epoch 76 Batch 2/13 train_loss = 0.529 Epoch 76 Batch 12/13 train_loss = 0.501 Epoch 77 Batch 9/13 train_loss = 0.510 Epoch 78 Batch 6/13 train_loss = 0.528 Epoch 79 Batch 3/13 train_loss = 0.550 Epoch 80 Batch 0/13 train_loss = 0.518 Epoch 80 Batch 10/13 train_loss = 0.533 Epoch 81 Batch 7/13 train_loss = 0.524 Epoch 82 Batch 4/13 train_loss = 0.537 Epoch 83 Batch 1/13 train_loss = 0.519 Epoch 83 Batch 11/13 train_loss = 0.509 Epoch 84 Batch 8/13 train_loss = 0.515 Epoch 85 Batch 5/13 train_loss = 0.532 Epoch 86 Batch 2/13 train_loss = 0.531 Epoch 86 Batch 12/13 train_loss = 0.519 Epoch 87 Batch 9/13 train_loss = 0.528 Epoch 88 Batch 6/13 train_loss = 0.505 Epoch 89 Batch 3/13 train_loss = 0.538 Epoch 90 Batch 0/13 train_loss = 0.513 Epoch 90 Batch 10/13 train_loss = 0.505 Epoch 91 Batch 7/13 train_loss = 0.510 Epoch 92 Batch 4/13 train_loss = 0.515 Epoch 93 Batch 1/13 train_loss = 0.529 Epoch 93 Batch 11/13 train_loss = 0.517 Epoch 94 Batch 8/13 train_loss = 0.527 Epoch 95 Batch 5/13 train_loss = 0.546 Epoch 96 Batch 2/13 train_loss = 0.540 Epoch 96 Batch 12/13 train_loss = 0.527 Epoch 97 Batch 9/13 train_loss = 0.508 Epoch 98 Batch 6/13 train_loss = 0.519 Epoch 99 Batch 3/13 train_loss = 0.551 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ InputTensor = loaded_graph.get_tensor_by_name("input:0") InitialStateTensor = loaded_graph.get_tensor_by_name("initial_state:0") FinalStateTensor = loaded_graph.get_tensor_by_name("final_state:0") ProbsTensor = loaded_graph.get_tensor_by_name("probs:0") # TODO: Implement Function return InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return np.random.choice(list(int_to_vocab.values()), 1, p=probabilities)[0] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak:(gets idea) 'cause this broad stands. booking. that's like shooting a great man. krusty_the_clown: wait a... zero sheets to the wind... stir a possibly to forget your problems. lisa_simpson: that was the coaster. ned_flanders: you can't close down the bar while i'm in moe_szyslak: okay, but he's down. but how to get back on your feet. homer_simpson: not at that even show store. agent_johnson: you're under arrest for conspiracy! moe_szyslak: okay, here's the sunday, have you got to bet the money, it might work.(nervous chuckle) homer_simpson: skoal!(sips) but carl carlson, i never had in love on... eve. and for a drunk. barney_gumble: i wish some of us. homer_simpson: you, your honor. you know, you're right and i wanna take it. seymour_skinner:(shaking hands) principal seymour needs some professional help.(small sob) homer_simpson: with the last, but you see the game ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following the tuple `(Input, Targets, LearingRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2 3], [ 7 8 9]], Batch of targets [[ 2 3 4], [ 8 9 10]] ], Second Batch [ Batch of Input [[ 4 5 6], [10 11 12]], Batch of targets [[ 5 6 7], [11 12 13]] ]]``` ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output Dataset Stats Roughly the number of unique words: 11492 Number of scenes: 262 Average number of sentences in each scene: 15.248091603053435 Number of lines: 4257 Average number of words in each line: 11.50434578341555 The sentences 0 to 10: Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink. Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch. Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately? Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick. Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self. Homer_Simpson: I got my problems, Moe. Give me another one. Moe_Szyslak: Homer, hey, you should not drink to forget your problems. Barney_Gumble: Yeah, you should only drink to enhance your social skills. ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np from collections import Counter import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function counts= Counter(text) vocab=sorted(counts,key=counts.get, reverse=True) vocab_to_int={word:ii for ii ,word in enumerate(vocab)} int_to_vocab={ii:word for ii ,word in enumerate(vocab)} return vocab_to_int, int_to_vocab """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output Tests Passed ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ table = {'.': '|period|', ',': '|comma|', '"': '|quotation_mark|', ';': '|semicolon|', '!': '|exclamation_mark|', '?': '|question_mark|', '(': '|left_parentheses|', ')': '|right_parentheses|', '--': '|dash|', '\n': '|return|'} return table # TODO: Implement Function """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output Tests Passed ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output TensorFlow Version: 1.0.0 Default GPU Device: /gpu:0 ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ input = tf.placeholder(tf.int32, shape=(None,None), name='input') targets= tf.placeholder(tf.int32, shape=(None,None), name='targets') learning_rate = tf.placeholder(tf.float32) # TODO: Implement Function return input, targets, learning_rate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output Tests Passed ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ lstm_layers = 2 cell = tf.contrib.rnn.BasicLSTMCell(num_units=rnn_size) # TODO: Implement Function cell = tf.contrib.rnn.MultiRNNCell([cell]*lstm_layers) initial_state=cell.zero_state(batch_size,tf.float32) initial_state = tf.identity(initial_state, name='initial_state') return cell, initial_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output Tests Passed ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim),-1,1)) embed = tf.nn.embedding_lookup(embedding, input_data) # TODO: Implement Function return embed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output Tests Passed ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ output,final_state = tf.nn.dynamic_rnn(cell,inputs,dtype=tf.float32) # TODO: Implement Function final_state = tf.identity(final_state,name="final_state") return output, final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output Tests Passed ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim=300): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ embed = get_embed(input_data, vocab_size, embed_dim = 300) # TODO: Imprplement Function output, final_state = build_rnn(cell, embed) predictions = tf.contrib.layers.fully_connected( output , vocab_size, activation_fn=None) return predictions , final_state """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ num_batches = len(int_text) // (batch_size * seq_length) batches = np.zeros([num_batches, 2, batch_size, seq_length], dtype=np.int32) for idx in range(0, len(int_text), seq_length): batch_no = (idx // seq_length) % num_batches batch_idx = idx // (seq_length * num_batches) if (batch_idx == batch_size): break batches[batch_no, 0, batch_idx, ] = int_text[idx:idx + seq_length] batches[batch_no, 1, batch_idx, ] = int_text[idx + 1:idx + seq_length + 1] print([batch_no, 1, batch_idx-1, seq_length]) batches[(len(int_text)//seq_length)%num_batches, 1, batch_idx-1, seq_length-1] = batches[0, 0, 0, 0] return batches """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output [0, 1, 127, 5] Tests Passed ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = 100 # Batch Size batch_size = 128 # RNN Size rnn_size = 512 # Sequence Length seq_length = 64 # Learning Rate learning_rate = 0.01 # Show stats for every n number of batches show_every_n_batches = 100 """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim=300) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output [0, 1, 127, 64] Epoch 0 Batch 0/8 train_loss = 8.821 Epoch 12 Batch 4/8 train_loss = 6.211 Epoch 25 Batch 0/8 train_loss = 6.132 Epoch 37 Batch 4/8 train_loss = 6.209 Epoch 50 Batch 0/8 train_loss = 6.107 Epoch 62 Batch 4/8 train_loss = 5.423 Epoch 75 Batch 0/8 train_loss = 4.588 Epoch 87 Batch 4/8 train_loss = 4.202 Model Trained and Saved ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ input_tensor = loaded_graph.get_tensor_by_name('input:0') init_state_tensor = loaded_graph.get_tensor_by_name('initial_state:0') final_state_tensor = loaded_graph.get_tensor_by_name('final_state:0') probs_tensor = loaded_graph.get_tensor_by_name('probs:0') return input_tensor, init_state_tensor, final_state_tensor, probs_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output Tests Passed ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return int_to_vocab[np.argmax(probabilities)] """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output Tests Passed ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output moe_szyslak:(love man) don't get sorry with you like, but i don't can. homer_simpson:(to homer) hey, i don't want to what's the what's was what's you what's to what's you--(find)... homer_simpson:(to homer) hey, i don't want to what's the looking. homer_simpson:(to make) the little" great was man... i was, but i just guys to take my he's to go back out of my into. moe_szyslak: no, i then get goin'. moe_szyslak: i don't can you're a into. moe_szyslak: hey, i was just... moe_szyslak: i off now an beer, you ooh you a huh what's i have to go. homer_simpson: i don't can. homer_simpson: i off some man into! homer_simpson: i can. homer_simpson:(to homer) you can i don't have to get you out of the ya. i was just like my beer. homer_simpson: i don't can. moe_szyslak:(to homer) you ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output _____no_output_____ ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Embedding Dimension Size embed_dim = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forums](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____ ###Markdown TV Script GenerationIn this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern). Get the DataThe data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc.. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper data_dir = './data/simpsons/moes_tavern_lines.txt' text = helper.load_data(data_dir) # Ignore notice, since we don't use it for analysing the data text = text[81:] ###Output _____no_output_____ ###Markdown Explore the DataPlay around with `view_sentence_range` to view different parts of the data. ###Code view_sentence_range = (0, 10) """ DON'T MODIFY ANYTHING IN THIS CELL """ import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()}))) scenes = text.split('\n\n') print('Number of scenes: {}'.format(len(scenes))) sentence_count_scene = [scene.count('\n') for scene in scenes] print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene))) sentences = [sentence for scene in scenes for sentence in scene.split('\n')] print('Number of lines: {}'.format(len(sentences))) word_count_sentence = [len(sentence.split()) for sentence in sentences] print('Average number of words in each line: {}'.format(np.average(word_count_sentence))) print() print('The sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) ###Output _____no_output_____ ###Markdown Implement Preprocessing FunctionsThe first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:- Lookup Table- Tokenize Punctuation Lookup TableTo create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:- Dictionary to go from the words to an id, we'll call `vocab_to_int`- Dictionary to go from the id to word, we'll call `int_to_vocab`Return these dictionaries in the following tuple `(vocab_to_int, int_to_vocab)` ###Code import numpy as np import problem_unittests as tests def create_lookup_tables(text): """ Create lookup tables for vocabulary :param text: The text of tv scripts split into words :return: A tuple of dicts (vocab_to_int, int_to_vocab) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_create_lookup_tables(create_lookup_tables) ###Output _____no_output_____ ###Markdown Tokenize PunctuationWe'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".Implement the function `token_lookup` to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:- Period ( . )- Comma ( , )- Quotation Mark ( " )- Semicolon ( ; )- Exclamation mark ( ! )- Question mark ( ? )- Left Parentheses ( ( )- Right Parentheses ( ) )- Dash ( -- )- Return ( \n )This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||". ###Code def token_lookup(): """ Generate a dict to turn punctuation into a token. :return: Tokenize dictionary where the key is the punctuation and the value is the token """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_tokenize(token_lookup) ###Output _____no_output_____ ###Markdown Preprocess all the data and save itRunning the code cell below will preprocess all the data and save it to file. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import helper import numpy as np import problem_unittests as tests int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() ###Output _____no_output_____ ###Markdown Build the Neural NetworkYou'll build the components necessary to build a RNN by implementing the following functions below:- get_inputs- get_init_cell- get_embed- build_rnn- build_nn- get_batches Check the Version of TensorFlow and Access to GPU ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) ###Output _____no_output_____ ###Markdown InputImplement the `get_inputs()` function to create TF Placeholders for the Neural Network. It should create the following placeholders:- Input text placeholder named "input" using the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) `name` parameter.- Targets placeholder- Learning Rate placeholderReturn the placeholders in the following tuple `(Input, Targets, LearningRate)` ###Code def get_inputs(): """ Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function return None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) ###Output _____no_output_____ ###Markdown Build RNN Cell and InitializeStack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).- The Rnn size should be set using `rnn_size`- Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCellzero_state) function - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the cell and initial state in the following tuple `(Cell, InitialState)` ###Code def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it. :param batch_size: Size of batches :param rnn_size: Size of RNNs :return: Tuple (cell, initialize state) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_init_cell(get_init_cell) ###Output _____no_output_____ ###Markdown Word EmbeddingApply embedding to `input_data` using TensorFlow. Return the embedded sequence. ###Code def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_embed(get_embed) ###Output _____no_output_____ ###Markdown Build RNNYou created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.- Build the RNN using the [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) - Apply the name "final_state" to the final state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity)Return the outputs and final_state state in the following tuple `(Outputs, FinalState)` ###Code def build_rnn(cell, inputs): """ Create a RNN using a RNN Cell :param cell: RNN Cell :param inputs: Input text data :return: Tuple (Outputs, Final State) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_rnn(build_rnn) ###Output _____no_output_____ ###Markdown Build the Neural NetworkApply the functions you implemented above to:- Apply embedding to `input_data` using your `get_embed(input_data, vocab_size, embed_dim)` function.- Build RNN using `cell` and your `build_rnn(cell, inputs)` function.- Apply a fully connected layer with a linear activation and `vocab_size` as the number of outputs.Return the logits and final state in the following tuple (Logits, FinalState) ###Code def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim): """ Build part of the neural network :param cell: RNN cell :param rnn_size: Size of rnns :param input_data: Input data :param vocab_size: Vocabulary size :param embed_dim: Number of embedding dimensions :return: Tuple (Logits, FinalState) """ # TODO: Implement Function return None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_build_nn(build_nn) ###Output _____no_output_____ ###Markdown BatchesImplement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:- The first element is a single batch of **input** with the shape `[batch size, sequence length]`- The second element is a single batch of **targets** with the shape `[batch size, sequence length]`If you can't fill the last batch with enough data, drop the last batch.For exmple, `get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 3, 2)` would return a Numpy array of the following:```[ First Batch [ Batch of Input [[ 1 2], [ 7 8], [13 14]] Batch of targets [[ 2 3], [ 8 9], [14 15]] ] Second Batch [ Batch of Input [[ 3 4], [ 9 10], [15 16]] Batch of targets [[ 4 5], [10 11], [16 17]] ] Third Batch [ Batch of Input [[ 5 6], [11 12], [17 18]] Batch of targets [[ 6 7], [12 13], [18 1]] ]]```Notice that the last target value in the last batch is the first input value of the first batch. In this case, `1`. This is a common technique used when creating sequence batches, although it is rather unintuitive. ###Code def get_batches(int_text, batch_size, seq_length): """ Return batches of input and target :param int_text: Text with the words replaced by their ids :param batch_size: The size of batch :param seq_length: The length of sequence :return: Batches as a Numpy array """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_batches(get_batches) ###Output _____no_output_____ ###Markdown Neural Network Training HyperparametersTune the following parameters:- Set `num_epochs` to the number of epochs.- Set `batch_size` to the batch size.- Set `rnn_size` to the size of the RNNs.- Set `embed_dim` to the size of the embedding.- Set `seq_length` to the length of sequence.- Set `learning_rate` to the learning rate.- Set `show_every_n_batches` to the number of batches the neural network should print progress. ###Code # Number of Epochs num_epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Embedding Dimension Size embed_dim = None # Sequence Length seq_length = None # Learning Rate learning_rate = None # Show stats for every n number of batches show_every_n_batches = None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ save_dir = './save' ###Output _____no_output_____ ###Markdown Build the GraphBuild the graph using the neural network you implemented. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ from tensorflow.contrib import seq2seq train_graph = tf.Graph() with train_graph.as_default(): vocab_size = len(int_to_vocab) input_text, targets, lr = get_inputs() input_data_shape = tf.shape(input_text) cell, initial_state = get_init_cell(input_data_shape[0], rnn_size) logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim) # Probabilities for generating words probs = tf.nn.softmax(logits, name='probs') # Loss function cost = seq2seq.sequence_loss( logits, targets, tf.ones([input_data_shape[0], input_data_shape[1]])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) ###Output _____no_output_____ ###Markdown TrainTrain the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ batches = get_batches(int_text, batch_size, seq_length) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(num_epochs): state = sess.run(initial_state, {input_text: batches[0][0]}) for batch_i, (x, y) in enumerate(batches): feed = { input_text: x, targets: y, initial_state: state, lr: learning_rate} train_loss, state, _ = sess.run([cost, final_state, train_op], feed) # Show every <show_every_n_batches> batches if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0: print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( epoch_i, batch_i, len(batches), train_loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_dir) print('Model Trained and Saved') ###Output _____no_output_____ ###Markdown Save ParametersSave `seq_length` and `save_dir` for generating a new TV script. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Save parameters for checkpoint helper.save_params((seq_length, save_dir)) ###Output _____no_output_____ ###Markdown Checkpoint ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess() seq_length, load_dir = helper.load_params() ###Output _____no_output_____ ###Markdown Implement Generate Functions Get TensorsGet tensors from `loaded_graph` using the function [`get_tensor_by_name()`](https://www.tensorflow.org/api_docs/python/tf/Graphget_tensor_by_name). Get the tensors using the following names:- "input:0"- "initial_state:0"- "final_state:0"- "probs:0"Return the tensors in the following tuple `(InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)` ###Code def get_tensors(loaded_graph): """ Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function return None, None, None, None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) ###Output _____no_output_____ ###Markdown Choose WordImplement the `pick_word()` function to select the next word using `probabilities`. ###Code def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function return None """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_pick_word(pick_word) ###Output _____no_output_____ ###Markdown Generate TV ScriptThis will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate. ###Code gen_length = 200 # homer_simpson, moe_szyslak, or Barney_Gumble prime_word = 'moe_szyslak' """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_dir + '.meta') loader.restore(sess, load_dir) # Get Tensors from loaded model input_text, initial_state, final_state, probs = get_tensors(loaded_graph) # Sentences generation setup gen_sentences = [prime_word + ':'] prev_state = sess.run(initial_state, {input_text: np.array([[1]])}) # Generate sentences for n in range(gen_length): # Dynamic Input dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]] dyn_seq_length = len(dyn_input[0]) # Get Prediction probabilities, prev_state = sess.run( [probs, final_state], {input_text: dyn_input, initial_state: prev_state}) pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab) gen_sentences.append(pred_word) # Remove tokens tv_script = ' '.join(gen_sentences) for key, token in token_dict.items(): ending = ' ' if key in ['\n', '(', '"'] else '' tv_script = tv_script.replace(' ' + token.lower(), key) tv_script = tv_script.replace('\n ', '\n') tv_script = tv_script.replace('( ', '(') print(tv_script) ###Output _____no_output_____
tutorials/data-glue-example.ipynb
###Markdown This notebook illustrates some functionnalities exposed in the `DataGlue` package. See also [iris_exploration](./iris_exploration.ipynb) for basics data science demonstrations. Read dataframe content Here, we read the [salaries dataset](../datasets/salaries.csv) as a `Frame`. The type of its row, `SalaryRow`, is dynamically inferred by the parser. ###Code :ext DataKinds FlexibleContexts QuasiQuotes OverloadedStrings TemplateHaskell TypeApplications TypeOperators ViewPatterns import DataGlue.Frames datasource = "../datasets/salaries.csv" tableTypes "SalaryRow" datasource loadRows :: IO (Frame SalaryRow) loadRows = inCoreAoS (readTable datasource) salaries <- loadRows ###Output _____no_output_____ ###Markdown Then, we can show the dataframe content, simply by calling it. ###Code -- Show dataframe content. salaries ###Output _____no_output_____ ###Markdown As the dataframe has many rows, only its first and last rows are shown. We get the total number of rows using the function `length`. ###Code length salaries ###Output _____no_output_____ ###Markdown It is also usefull to get the column names and types: ###Code describe salaries ###Output _____no_output_____ ###Markdown Read dataframe content (without header) Unlike the previous example, the [iris dataset](../datasets/iris.csv) has no headers. So, we define them here manually, then proceed to the parsing. ###Code import Frames.CSV (rowGen, columnNames, tablePrefix, rowTypeName) -- Since the used dataset as no header, let's define the column names. datasource = "../datasets/iris.csv" tableTypes' (rowGen datasource) { rowTypeName = "IrisRow" , columnNames = [ "Petal Length", "Petal Width", "Sepal Length" , "Sepal Width", "Iris Class" ]} loadRows :: IO (Frame IrisRow) loadRows = inCoreAoS (readTable datasource) iris <- loadRows -- Show dataframe content. iris ###Output _____no_output_____ ###Markdown Print records Some functions are exposed to read partial content of a dataframe.Read one line: ###Code frameRow salaries 5 ###Output _____no_output_____ ###Markdown Show the 5th first lines: ###Code takeFrameRow 5 salaries ###Output _____no_output_____ ###Markdown Or the 5th last, by removing all the rows but 5, from the begining: ###Code dropFrameRow (length salaries - 5) salaries ###Output _____no_output_____ ###Markdown Using `Proxy`, we can also make a selection, to get only the features we want to explore: ###Code import Data.Proxy select @'[YrsSincePhd, Salary] Proxy <$> salaries ###Output _____no_output_____ ###Markdown Using `Lens`, it is also simple to get one feature content: ###Code import Control.Lens view salary <$> salaries ###Output _____no_output_____ ###Markdown Basic operations based on criteria Here we define a criteria function that anwser `True` only when the given row invovles a women at the rank of Professor. Based on it, we count the number of female Professor in the dataframe. ###Code -- A Top-level function will be designed in the future to give this kind of call mpre abstraction. femaleProf = runcurry' criteria . select @'[Rank, Sex] Proxy where criteria "Prof" "Female" = True criteria _ _ = False fp_df = filterFrame femaleProf salaries length fp_df ###Output _____no_output_____ ###Markdown Chart plotting This is a simple example of chart plotting using some groupBy fonctionnalities provided by `DataGlue.Frames.GroupBy`. ###Code import qualified DataGlue.Frames.GroupBy as G import Data.Text (unpack) import DataGlue.Chart sums = G.groupByOp discipline salaries (G.sum) [yrsSincePhd, yrsService] alabels = ["yrsSincePhd","yrsService"] bars2 = plot_bars_titles .~ (unpack <$> uniques discipline salaries) $ plot_bars_values .~ addIndexes sums $ def toRenderable $ layout_title .~ "Sum of Knowledge by discipline" $ layout_x_axis . laxis_generate .~ autoIndexAxis alabels $ layout_plots .~ [ plotBars bars2 ] $ def ###Output _____no_output_____
examples/notebooks/statespace_sarimax_pymc3.ipynb
###Markdown Fast Bayesian estimation of SARIMAX models IntroductionThis notebook will show how to use fast Bayesian methods to estimate SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors) models. These methods can also be parallelized across multiple cores.Here, fast methods means a version of Hamiltonian Monte Carlo called the No-U-Turn Sampler (NUTS) developed by Hoffmann and Gelman: see [Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.](https://arxiv.org/abs/1111.4246). As they say, "the cost of HMC per independent sample from a target distribution of dimension $D$ is roughly $\mathcal{O}(D^{5/4})$, which stands in sharp contrast with the $\mathcal{O}(D^{2})$ cost of random-walk Metropolis". So for problems of larger dimension, the time-saving with HMC is significant. However it does require the gradient, or Jacobian, of the model to be provided.This notebook will combine the Python libraries [statsmodels](https://www.statsmodels.org/stable/index.html), which does econometrics, and [PyMC3](https://docs.pymc.io/), which is for Bayesian estimation, to perform fast Bayesian estimation of a simple SARIMAX model, in this case an ARMA(1, 1) model for US CPI.Note that, for simple models like AR(p), base PyMC3 is a quicker way to fit a model; there's an [example here](https://docs.pymc.io/notebooks/AR.html). The advantage of using statsmodels is that it gives access to methods that can solve a vast range of statespace models.The model we'll solve is given by$$y_t = \phi y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad \varepsilon_t \sim N(0, \sigma^2)$$with 1 auto-regressive term and 1 moving average term. In statespace form it is written as:$$\begin{align}y_t & = \underbrace{\begin{bmatrix} 1 & \theta_1 \end{bmatrix}}_{Z} \underbrace{\begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix}}_{\alpha_t} \\ \begin{bmatrix} \alpha_{1,t+1} \\ \alpha_{2,t+1} \end{bmatrix} & = \underbrace{\begin{bmatrix} \phi & 0 \\ 1 & 0 \\ \end{bmatrix}}_{T} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{R} \underbrace{\varepsilon_{t+1}}_{\eta_t} \\\end{align}$$The code will follow these steps:1. Import external dependencies2. Download and plot the data on US CPI3. Simple maximum likelihood estimation (MLE) as an example4. Definitions of helper functions to provide tensors to the library doing Bayesian estimation5. Bayesian estimation via NUTS6. Application to US CPI seriesFinally, Appendix A shows how to re-use the helper functions from step (4) to estimate a different state space model, `UnobservedComponents`, using the same Bayesian methods. 1. Import external dependencies ###Code %matplotlib inline import theano import theano.tensor as tt import pymc3 as pm import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm import pandas as pd from pandas_datareader.data import DataReader from pandas.plotting import register_matplotlib_converters plt.style.use('seaborn') register_matplotlib_converters() ###Output _____no_output_____ ###Markdown 2. Download and plot the data on US CPIWe'll get the data from FRED: ###Code cpi = DataReader('CPIAUCNS', 'fred', start='1971-01', end='2018-12') cpi.index = pd.DatetimeIndex(cpi.index, freq='MS') # Define the inflation series that we'll use in analysis inf = np.log(cpi).resample('QS').mean().diff()[1:] * 400 print(inf.head()) # Plot the series fig, ax = plt.subplots(figsize=(9, 4), dpi=300) ax.plot(inf.index, inf, label=r'$\Delta \log CPI$', lw=2) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown 3. Fit the model with maximum likelihoodStatsmodels does all of the hard work of this for us - creating and fitting the model takes just two lines of code. The model order parameters correspond to auto-regressive, difference, and moving average orders respectively. ###Code # Create an SARIMAX model instance - here we use it to estimate # the parameters via MLE using the `fit` method, but we can # also re-use it below for the Bayesian estimation mod = sm.tsa.statespace.SARIMAX(inf, order=(1, 0, 1)) res_mle = mod.fit(disp=False) print(res_mle.summary()) ###Output _____no_output_____ ###Markdown It's a good fit. We can also get the series of one-step ahead predictions and plot it next to the actual data, along with a confidence band. ###Code predict_mle = res_mle.get_prediction() predict_mle_ci = predict_mle.conf_int() lower = predict_mle_ci['lower CPIAUCNS'] upper = predict_mle_ci['upper CPIAUCNS'] # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf.plot(ax=ax, style='-', label='Observed') # Plot predictions predict_mle.predicted_mean.plot(ax=ax, style='r.', label='One-step-ahead forecast') ax.fill_between(predict_mle_ci.index, lower, upper, color='r', alpha=0.1) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown 4. Helper functions to provide tensors to the library doing Bayesian estimationWe're almost on to the magic but there are a few preliminaries. Feel free to skip this section if you're not interested in the technical details. Technical DetailsPyMC3 is a Bayesian estimation library ("Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano") that is a) fast and b) optimized for Bayesian machine learning, for instance [Bayesian neural networks](https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html). To do all of this, it is built on top of a Theano, a library that aims to evaluate tensors very efficiently and provide symbolic differentiation (necessary for any kind of deep learning). It is the symbolic differentiation that means PyMC3 can use NUTS on any problem formulated within PyMC3.We are not formulating a problem directly in PyMC3; we're using statsmodels to specify the statespace model and solve it with the Kalman filter. So we need to put the plumbing of statsmodels and PyMC3 together, which means wrapping the statsmodels SARIMAX model object in a Theano-flavored wrapper before passing information to PyMC3 for estimation.Because of this, we can't use the Theano auto-differentiation directly. Happily, statsmodels SARIMAX objects have a method to return the Jacobian evaluated at the parameter values. We'll be making use of this to provide gradients so that we can use NUTS. Defining helper functions to translate models into a PyMC3 friendly formFirst, we'll create the Theano wrappers. They will be in the form of 'Ops', operation objects, that 'perform' particular tasks. They are initialized with a statsmodels `model` instance.Although this code may look somewhat opaque, it is generic for any state space model in statsmodels. ###Code class Loglike(tt.Op): itypes = [tt.dvector] # expects a vector of parameter values when called otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood) def __init__(self, model): self.model = model self.score = Score(self.model) def perform(self, node, inputs, outputs): theta, = inputs # contains the vector of parameters llf = self.model.loglike(theta) outputs[0][0] = np.array(llf) # output the log-likelihood def grad(self, inputs, g): # the method that calculates the gradients - it actually returns the # vector-Jacobian product - g[0] is a vector of parameter values theta, = inputs # our parameters out = [g[0] * self.score(theta)] return out class Score(tt.Op): itypes = [tt.dvector] otypes = [tt.dvector] def __init__(self, model): self.model = model def perform(self, node, inputs, outputs): theta, = inputs outputs[0][0] = self.model.score(theta) ###Output _____no_output_____ ###Markdown 5. Bayesian estimation with NUTSThe next step is to set the parameters for the Bayesian estimation, specify our priors, and run it. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) ###Output _____no_output_____ ###Markdown Now for the fun part! There are three parameters to estimate: $\phi$, $\theta_1$, and $\sigma$. We'll use uninformative uniform priors for the first two, and an inverse gamma for the last one. Then we'll run the inference optionally using as many computer cores as I have. ###Code # Construct an instance of the Theano wrapper defined above, which # will allow PyMC3 to compute the likelihood and Jacobian in a way # that it can make use of. Here we are using the same model instance # created earlier for MLE analysis (we could also create a new model # instance if we preferred) loglike = Loglike(mod) with pm.Model(): # Priors arL1 = pm.Uniform('ar.L1', -0.99, 0.99) maL1 = pm.Uniform('ma.L1', -0.99, 0.99) sigma2 = pm.InverseGamma('sigma2', 2, 4) # convert variables to tensor vectors theta = tt.as_tensor_variable([arL1, maL1, sigma2]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist('likelihood', lambda v: loglike(v), observed={'v': theta}) # Draw samples trace = pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, cores=4) ###Output _____no_output_____ ###Markdown Note that the NUTS sampler is auto-assigned because we provided gradients. PyMC3 will use Metropolis or Slicing samplers if it does not find that gradients are available. There are an impressive number of draws per second for a "block box" style computation! However, note that if the model can be represented directly by PyMC3 (like the AR(p) models mentioned above), then computation can be substantially faster.Inference is complete, but are the results any good? There are a number of ways to check. The first is to look at the posterior distributions (with lines showing the MLE values): ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.traceplot(trace, lines=[(k, {}, [v]) for k, v in dict(res_mle.params).items()], combined=True, figsize=(12, 12)) ###Output _____no_output_____ ###Markdown The estimated posteriors clearly peak close to the parameters found by MLE. We can also see a summary of the estimated values: ###Code pm.summary(trace) ###Output _____no_output_____ ###Markdown Here $\hat{R}$ is the Gelman-Rubin statistic. It tests for lack of convergence by comparing the variance between multiple chains to the variance within each chain. If convergence has been achieved, the between-chain and within-chain variances should be identical. If $\hat{R}<1.2$ for all model parameters, we can have some confidence that convergence has been reached.Additionally, the highest posterior density interval (the gap between the two values of HPD in the table) is small for each of the variables. 6. Application of Bayesian estimates of parametersWe'll now re-instigate a version of the model but using the parameters from the Bayesian estimation, and again plot the one-step-ahead forecasts. ###Code # Retrieve the posterior means params = pm.summary(trace)['mean'].values # Construct results using these posterior means as parameter values res_bayes = mod.smooth(params) predict_bayes = res_bayes.get_prediction() predict_bayes_ci = predict_bayes.conf_int() lower = predict_bayes_ci['lower CPIAUCNS'] upper = predict_bayes_ci['upper CPIAUCNS'] # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf.plot(ax=ax, style='-', label='Observed') # Plot predictions predict_bayes.predicted_mean.plot(ax=ax, style='r.', label='One-step-ahead forecast') ax.fill_between(predict_bayes_ci.index, lower, upper, color='r', alpha=0.1) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown Appendix A. Application to `UnobservedComponents` models We can reuse the `Loglike` and `Score` wrappers defined above to consider a different state space model. For example, we might want to model inflation as the combination of a random walk trend and autoregressive error term:$$\begin{aligned}y_t & = \mu_t + \varepsilon_t \\\mu_t & = \mu_{t-1} + \eta_t \\\varepsilon_t &= \phi \varepsilon_t + \zeta_t\end{aligned}$$This model can be constructed in Statsmodels with the `UnobservedComponents` class using the `rwalk` and `autoregressive` specifications. As before, we can fit the model using maximum likelihood via the `fit` method. ###Code # Construct the model instance mod_uc = sm.tsa.UnobservedComponents(inf, 'rwalk', autoregressive=1) # Fit the model via maximum likelihood res_uc_mle = mod_uc.fit() print(res_uc_mle.summary()) ###Output _____no_output_____ ###Markdown As noted earlier, the Theano wrappers (`Loglike` and `Score`) that we created above are generic, so we can re-use essentially the same code to explore the model with Bayesian methods. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) # Here we follow the same procedure as above, but now we instantiate the # Theano wrapper `Loglike` with the UC model instance instead of the # SARIMAX model instance loglike_uc = Loglike(mod_uc) with pm.Model(): # Priors sigma2level = pm.InverseGamma('sigma2.level', 1, 1) sigma2ar = pm.InverseGamma('sigma2.ar', 1, 1) arL1 = pm.Uniform('ar.L1', -0.99, 0.99) # convert variables to tensor vectors theta_uc = tt.as_tensor_variable([sigma2level, sigma2ar, arL1]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist('likelihood', lambda v: loglike_uc(v), observed={'v': theta_uc}) # Draw samples trace_uc = pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, cores=4) ###Output _____no_output_____ ###Markdown And as before we can plot the marginal posteriors. In contrast to the SARIMAX example, here the posterior modes are somewhat different from the MLE estimates. ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.traceplot(trace_uc, lines=[(k, {}, [v]) for k, v in dict(res_uc_mle.params).items()], combined=True, figsize=(12, 12)) pm.summary(trace_uc) # Retrieve the posterior means params = pm.summary(trace_uc)['mean'].values # Construct results using these posterior means as parameter values res_uc_bayes = mod_uc.smooth(params) ###Output _____no_output_____ ###Markdown One benefit of this model is that it gives us an estimate of the underling "level" of inflation, using the smoothed estimate of $\mu_t$, which we can access as the "level" column in the results objects' `states.smoothed` attribute. In this case, because the Bayesian posterior mean of the level's variance is larger than the MLE estimate, its estimated level is a little more volatile. ###Code # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf['CPIAUCNS'].plot(ax=ax, style='-', label='Observed data') # Plot estimate of the level term res_uc_mle.states.smoothed['level'].plot(ax=ax, label='Smoothed level (MLE)') res_uc_bayes.states.smoothed['level'].plot(ax=ax, label='Smoothed level (Bayesian)') ax.legend(loc='lower left'); ###Output _____no_output_____ ###Markdown Fast Bayesian estimation of SARIMAX models IntroductionThis notebook will show how to use fast Bayesian methods to estimate SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors) models. These methods can also be parallelized across multiple cores.Here, fast methods means a version of Hamiltonian Monte Carlo called the No-U-Turn Sampler (NUTS) developed by Hoffmann and Gelman: see [Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.](https://arxiv.org/abs/1111.4246). As they say, "the cost of HMC per independent sample from a target distribution of dimension $D$ is roughly $\mathcal{O}(D^{5/4})$, which stands in sharp contrast with the $\mathcal{O}(D^{2})$ cost of random-walk Metropolis". So for problems of larger dimension, the time-saving with HMC is significant. However it does require the gradient, or Jacobian, of the model to be provided.This notebook will combine the Python libraries [statsmodels](https://www.statsmodels.org/stable/index.html), which does econometrics, and [PyMC3](https://docs.pymc.io/), which is for Bayesian estimation, to perform fast Bayesian estimation of a simple SARIMAX model, in this case an ARMA(1, 1) model for US CPI.Note that, for simple models like AR(p), base PyMC3 is a quicker way to fit a model; there's an [example here](https://docs.pymc.io/notebooks/AR.html). The advantage of using statsmodels is that it gives access to methods that can solve a vast range of statespace models.The model we'll solve is given by$$y_t = \phi y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad \varepsilon_t \sim N(0, \sigma^2)$$with 1 auto-regressive term and 1 moving average term. In statespace form it is written as:$$\begin{align}y_t & = \underbrace{\begin{bmatrix} 1 & \theta_1 \end{bmatrix}}_{Z} \underbrace{\begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix}}_{\alpha_t} \\ \begin{bmatrix} \alpha_{1,t+1} \\ \alpha_{2,t+1} \end{bmatrix} & = \underbrace{\begin{bmatrix} \phi & 0 \\ 1 & 0 \\ \end{bmatrix}}_{T} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{R} \underbrace{\varepsilon_{t+1}}_{\eta_t} \\\end{align}$$The code will follow these steps:1. Import external dependencies2. Download and plot the data on US CPI3. Simple maximum likelihood estimation (MLE) as an example4. Definitions of helper functions to provide tensors to the library doing Bayesian estimation5. Bayesian estimation via NUTS6. Application to US CPI seriesFinally, Appendix A shows how to re-use the helper functions from step (4) to estimate a different state space model, `UnobservedComponents`, using the same Bayesian methods. 1. Import external dependencies ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import pymc3 as pm import statsmodels.api as sm import theano import theano.tensor as tt from pandas.plotting import register_matplotlib_converters from pandas_datareader.data import DataReader plt.style.use("seaborn") register_matplotlib_converters() ###Output _____no_output_____ ###Markdown 2. Download and plot the data on US CPIWe'll get the data from FRED: ###Code cpi = DataReader("CPIAUCNS", "fred", start="1971-01", end="2018-12") cpi.index = pd.DatetimeIndex(cpi.index, freq="MS") # Define the inflation series that we'll use in analysis inf = np.log(cpi).resample("QS").mean().diff()[1:] * 400 inf = inf.dropna() print(inf.head()) # Plot the series fig, ax = plt.subplots(figsize=(9, 4), dpi=300) ax.plot(inf.index, inf, label=r"$\Delta \log CPI$", lw=2) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown 3. Fit the model with maximum likelihoodStatsmodels does all of the hard work of this for us - creating and fitting the model takes just two lines of code. The model order parameters correspond to auto-regressive, difference, and moving average orders respectively. ###Code # Create an SARIMAX model instance - here we use it to estimate # the parameters via MLE using the `fit` method, but we can # also re-use it below for the Bayesian estimation mod = sm.tsa.statespace.SARIMAX(inf, order=(1, 0, 1)) res_mle = mod.fit(disp=False) print(res_mle.summary()) ###Output _____no_output_____ ###Markdown It's a good fit. We can also get the series of one-step ahead predictions and plot it next to the actual data, along with a confidence band. ###Code predict_mle = res_mle.get_prediction() predict_mle_ci = predict_mle.conf_int() lower = predict_mle_ci["lower CPIAUCNS"] upper = predict_mle_ci["upper CPIAUCNS"] # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf.plot(ax=ax, style="-", label="Observed") # Plot predictions predict_mle.predicted_mean.plot(ax=ax, style="r.", label="One-step-ahead forecast") ax.fill_between(predict_mle_ci.index, lower, upper, color="r", alpha=0.1) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown 4. Helper functions to provide tensors to the library doing Bayesian estimationWe're almost on to the magic but there are a few preliminaries. Feel free to skip this section if you're not interested in the technical details. Technical DetailsPyMC3 is a Bayesian estimation library ("Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano") that is a) fast and b) optimized for Bayesian machine learning, for instance [Bayesian neural networks](https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html). To do all of this, it is built on top of a Theano, a library that aims to evaluate tensors very efficiently and provide symbolic differentiation (necessary for any kind of deep learning). It is the symbolic differentiation that means PyMC3 can use NUTS on any problem formulated within PyMC3.We are not formulating a problem directly in PyMC3; we're using statsmodels to specify the statespace model and solve it with the Kalman filter. So we need to put the plumbing of statsmodels and PyMC3 together, which means wrapping the statsmodels SARIMAX model object in a Theano-flavored wrapper before passing information to PyMC3 for estimation.Because of this, we can't use the Theano auto-differentiation directly. Happily, statsmodels SARIMAX objects have a method to return the Jacobian evaluated at the parameter values. We'll be making use of this to provide gradients so that we can use NUTS. Defining helper functions to translate models into a PyMC3 friendly formFirst, we'll create the Theano wrappers. They will be in the form of 'Ops', operation objects, that 'perform' particular tasks. They are initialized with a statsmodels `model` instance.Although this code may look somewhat opaque, it is generic for any state space model in statsmodels. ###Code class Loglike(tt.Op): itypes = [tt.dvector] # expects a vector of parameter values when called otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood) def __init__(self, model): self.model = model self.score = Score(self.model) def perform(self, node, inputs, outputs): (theta,) = inputs # contains the vector of parameters llf = self.model.loglike(theta) outputs[0][0] = np.array(llf) # output the log-likelihood def grad(self, inputs, g): # the method that calculates the gradients - it actually returns the # vector-Jacobian product - g[0] is a vector of parameter values (theta,) = inputs # our parameters out = [g[0] * self.score(theta)] return out class Score(tt.Op): itypes = [tt.dvector] otypes = [tt.dvector] def __init__(self, model): self.model = model def perform(self, node, inputs, outputs): (theta,) = inputs outputs[0][0] = self.model.score(theta) ###Output _____no_output_____ ###Markdown 5. Bayesian estimation with NUTSThe next step is to set the parameters for the Bayesian estimation, specify our priors, and run it. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) ###Output _____no_output_____ ###Markdown Now for the fun part! There are three parameters to estimate: $\phi$, $\theta_1$, and $\sigma$. We'll use uninformative uniform priors for the first two, and an inverse gamma for the last one. Then we'll run the inference optionally using as many computer cores as I have. ###Code # Construct an instance of the Theano wrapper defined above, which # will allow PyMC3 to compute the likelihood and Jacobian in a way # that it can make use of. Here we are using the same model instance # created earlier for MLE analysis (we could also create a new model # instance if we preferred) loglike = Loglike(mod) with pm.Model() as m: # Priors arL1 = pm.Uniform("ar.L1", -0.99, 0.99) maL1 = pm.Uniform("ma.L1", -0.99, 0.99) sigma2 = pm.InverseGamma("sigma2", 2, 4) # convert variables to tensor vectors theta = tt.as_tensor_variable([arL1, maL1, sigma2]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist("likelihood", loglike, observed=theta) # Draw samples trace = pm.sample( ndraws, tune=nburn, return_inferencedata=True, cores=1, compute_convergence_checks=False, ) ###Output _____no_output_____ ###Markdown Note that the NUTS sampler is auto-assigned because we provided gradients. PyMC3 will use Metropolis or Slicing samplers if it does not find that gradients are available. There are an impressive number of draws per second for a "block box" style computation! However, note that if the model can be represented directly by PyMC3 (like the AR(p) models mentioned above), then computation can be substantially faster.Inference is complete, but are the results any good? There are a number of ways to check. The first is to look at the posterior distributions (with lines showing the MLE values): ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.plot_trace( trace, lines=[(k, {}, [v]) for k, v in dict(res_mle.params).items()], combined=True, figsize=(12, 12), ) ###Output _____no_output_____ ###Markdown The estimated posteriors clearly peak close to the parameters found by MLE. We can also see a summary of the estimated values: ###Code pm.summary(trace) ###Output _____no_output_____ ###Markdown Here $\hat{R}$ is the Gelman-Rubin statistic. It tests for lack of convergence by comparing the variance between multiple chains to the variance within each chain. If convergence has been achieved, the between-chain and within-chain variances should be identical. If $\hat{R}<1.2$ for all model parameters, we can have some confidence that convergence has been reached.Additionally, the highest posterior density interval (the gap between the two values of HPD in the table) is small for each of the variables. 6. Application of Bayesian estimates of parametersWe'll now re-instigate a version of the model but using the parameters from the Bayesian estimation, and again plot the one-step-ahead forecasts. ###Code # Retrieve the posterior means params = pm.summary(trace)["mean"].values # Construct results using these posterior means as parameter values res_bayes = mod.smooth(params) predict_bayes = res_bayes.get_prediction() predict_bayes_ci = predict_bayes.conf_int() lower = predict_bayes_ci["lower CPIAUCNS"] upper = predict_bayes_ci["upper CPIAUCNS"] # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf.plot(ax=ax, style="-", label="Observed") # Plot predictions predict_bayes.predicted_mean.plot(ax=ax, style="r.", label="One-step-ahead forecast") ax.fill_between(predict_bayes_ci.index, lower, upper, color="r", alpha=0.1) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown Appendix A. Application to `UnobservedComponents` models We can reuse the `Loglike` and `Score` wrappers defined above to consider a different state space model. For example, we might want to model inflation as the combination of a random walk trend and autoregressive error term:$$\begin{aligned}y_t & = \mu_t + \varepsilon_t \\\mu_t & = \mu_{t-1} + \eta_t \\\varepsilon_t &= \phi \varepsilon_t + \zeta_t\end{aligned}$$This model can be constructed in Statsmodels with the `UnobservedComponents` class using the `rwalk` and `autoregressive` specifications. As before, we can fit the model using maximum likelihood via the `fit` method. ###Code # Construct the model instance mod_uc = sm.tsa.UnobservedComponents(inf, "rwalk", autoregressive=1) # Fit the model via maximum likelihood res_uc_mle = mod_uc.fit() print(res_uc_mle.summary()) ###Output _____no_output_____ ###Markdown As noted earlier, the Theano wrappers (`Loglike` and `Score`) that we created above are generic, so we can re-use essentially the same code to explore the model with Bayesian methods. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) # Here we follow the same procedure as above, but now we instantiate the # Theano wrapper `Loglike` with the UC model instance instead of the # SARIMAX model instance loglike_uc = Loglike(mod_uc) with pm.Model(): # Priors sigma2level = pm.InverseGamma("sigma2.level", 1, 1) sigma2ar = pm.InverseGamma("sigma2.ar", 1, 1) arL1 = pm.Uniform("ar.L1", -0.99, 0.99) # convert variables to tensor vectors theta_uc = tt.as_tensor_variable([sigma2level, sigma2ar, arL1]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist("likelihood", loglike_uc, observed=theta_uc) # Draw samples trace_uc = pm.sample( ndraws, tune=nburn, return_inferencedata=True, cores=1, compute_convergence_checks=False, ) ###Output _____no_output_____ ###Markdown And as before we can plot the marginal posteriors. In contrast to the SARIMAX example, here the posterior modes are somewhat different from the MLE estimates. ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.plot_trace( trace_uc, lines=[(k, {}, [v]) for k, v in dict(res_uc_mle.params).items()], combined=True, figsize=(12, 12), ) pm.summary(trace_uc) # Retrieve the posterior means params = pm.summary(trace_uc)["mean"].values # Construct results using these posterior means as parameter values res_uc_bayes = mod_uc.smooth(params) ###Output _____no_output_____ ###Markdown One benefit of this model is that it gives us an estimate of the underling "level" of inflation, using the smoothed estimate of $\mu_t$, which we can access as the "level" column in the results objects' `states.smoothed` attribute. In this case, because the Bayesian posterior mean of the level's variance is larger than the MLE estimate, its estimated level is a little more volatile. ###Code # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf["CPIAUCNS"].plot(ax=ax, style="-", label="Observed data") # Plot estimate of the level term res_uc_mle.states.smoothed["level"].plot(ax=ax, label="Smoothed level (MLE)") res_uc_bayes.states.smoothed["level"].plot(ax=ax, label="Smoothed level (Bayesian)") ax.legend(loc="lower left"); ###Output _____no_output_____ ###Markdown Fast Bayesian estimation of SARIMAX models IntroductionThis notebook will show how to use fast Bayesian methods to estimate SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors) models. These methods can also be parallelised across multiple cores.Here, fast methods means a version of Hamiltonian Monte Carlo called the No-U-Turn Sampler (NUTS) developed by Hoffmann and Gelman: see [Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.](https://arxiv.org/abs/1111.4246). As they say, "the cost of HMC per independent sample from a target distribution of dimension $D$ is roughly $\mathcal{O}(D^{5/4})$, which stands in sharp contrast with the $\mathcal{O}(D^{2})$ cost of random-walk Metropolis". So for problems of larger dimension, the time-saving with HMC is significant. However it does require the gradient, or Jacobian, of the model to be provided.This notebook will combine the Python libraries [statsmodels](https://www.statsmodels.org/stable/index.html), which does econometrics, and [PyMC3](https://docs.pymc.io/), which is for Bayesian estimation, to perform fast Bayesian estimation of a simple SARIMAX model, in this case an ARMA(1, 1) model for US CPI.Note that, for simple models like AR(p), base PyMC3 is a quicker way to fit a model; there's an [example here](https://docs.pymc.io/notebooks/AR.html). The advantage of using statsmodels is that it gives access to methods that can solve a vast range of statespace models.The model we'll solve is given by$$y_t = \phi y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad \varepsilon_t \sim N(0, \sigma^2)$$with 1 auto-regressive term and 1 moving average term. In statespace form it is written as:$$\begin{align}y_t & = \underbrace{\begin{bmatrix} 1 & \theta_1 \end{bmatrix}}_{Z} \underbrace{\begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix}}_{\alpha_t} \\ \begin{bmatrix} \alpha_{1,t+1} \\ \alpha_{2,t+1} \end{bmatrix} & = \underbrace{\begin{bmatrix} \phi & 0 \\ 1 & 0 \\ \end{bmatrix}}_{T} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{R} \underbrace{\varepsilon_{t+1}}_{\eta_t} \\\end{align}$$The code will follow these steps:1. Import external dependencies2. Download and plot the data on US CPI3. Simple maximum likelihood estimation (MLE) as an example4. Definitions of helper functions to provide tensors to the library doing Bayesian estimation5. Bayesian estimation via NUTS6. Application to US CPI seriesFinally, Appendix A shows how to re-use the helper functions from step (4) to estimate a different state space model, `UnobservedComponents`, using the same Bayesian methods. 1. Import external dependencies ###Code %matplotlib inline import theano import theano.tensor as tt import pymc3 as pm import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm import pandas as pd from pandas_datareader.data import DataReader from pandas.plotting import register_matplotlib_converters plt.style.use('seaborn') register_matplotlib_converters() ###Output _____no_output_____ ###Markdown 2. Download and plot the data on US CPIWe'll get the data from FRED: ###Code cpi = DataReader('CPIAUCNS', 'fred', start='1971-01', end='2018-12') cpi.index = pd.DatetimeIndex(cpi.index, freq='MS') # Define the inflation series that we'll use in analysis inf = np.log(cpi).resample('QS').mean().diff()[1:] * 400 print(inf.head()) # Plot the series fig, ax = plt.subplots(figsize=(9, 4), dpi=300) ax.plot(inf.index, inf, label=r'$\Delta \log CPI$', lw=2) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown 3. Fit the model with maximum likelihoodStatsmodels does all of the hardwork of this for us - creating and fitting the model takes just two lines of code. The model order parameters correspond to auto-regressive, difference, and moving average orders respectively. ###Code # Create an SARIMAX model instance - here we use it to estimate # the parameters via MLE using the `fit` method, but we can # also re-use it below for the Bayesian estimation mod = sm.tsa.statespace.SARIMAX(inf, order=(1, 0, 1)) res_mle = mod.fit(disp=False) print(res_mle.summary()) ###Output _____no_output_____ ###Markdown It's a good fit. We can also get the series of one-step ahead predictions and plot it next to the actual data, along with a confidence band. ###Code predict_mle = res_mle.get_prediction() predict_mle_ci = predict_mle.conf_int() lower = predict_mle_ci['lower CPIAUCNS'] upper = predict_mle_ci['upper CPIAUCNS'] # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf.plot(ax=ax, style='-', label='Observed') # Plot predictions predict_mle.predicted_mean.plot(ax=ax, style='r.', label='One-step-ahead forecast') ax.fill_between(predict_mle_ci.index, lower, upper, color='r', alpha=0.1) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown 4. Helper functions to provide tensors to the library doing Bayesian estimationWe're almost on to the magic but there are a few preliminaries. Feel free to skip this section if you're not interested in the technical details.--------- Technical sectionPyMC3 is a Bayesian estimation library ("Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano") that is a) fast and b) optimised for Bayesian machine learning, for instance [Bayesian neural networks](https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html). To do all of this, it is built on top of a Theano, a library that aims to evaluate tensors very efficiently and provide symbolic differentiation (necessary for any kind of deep learning). It is the symbolic differentiation that means PyMC3 can use NUTS on any problem formulated within PyMC3.We are not formulating a problem directly in PyMC3; we're using statsmodels to specify the statespace model and solve it with the Kalman filter. So we need to put the plumbing of statsmodels and PyMC3 together, which means wrapping the statsmodels SARIMAX model object in a Theano-flavoured wrapper before passing information to PyMC3 for estimation.Because of this, we can't use the Theano auto-differentiation directly. Happily, statsmodels SARIMAX objects have a method to return the Jacobian evaluated at the parameter values. We'll be making use of this to provide gradients so that we can use NUTS. Defining helper functions to translate models into a PyMC3 friendly formFirst, we'll create the Theano wrappers. They will be in the form of 'Ops', operation objects, that 'perform' particular tasks. They are initialised with a statsmodels `model` instance.Although this code may look somewhat opaque, it is generic for any state space model in statsmodels. ###Code class Loglike(tt.Op): itypes = [tt.dvector] # expects a vector of parameter values when called otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood) def __init__(self, model): self.model = model self.score = Score(self.model) def perform(self, node, inputs, outputs): theta, = inputs # contains the vector of parameters llf = self.model.loglike(theta) outputs[0][0] = np.array(llf) # output the log-likelihood def grad(self, inputs, g): # the method that calculates the gradients - it actually returns the # vector-Jacobian product - g[0] is a vector of parameter values theta, = inputs # our parameters out = [g[0] * self.score(theta)] return out class Score(tt.Op): itypes = [tt.dvector] otypes = [tt.dvector] def __init__(self, model): self.model = model def perform(self, node, inputs, outputs): theta, = inputs outputs[0][0] = self.model.score(theta) ###Output _____no_output_____ ###Markdown End of technical section--------- 5. Bayesian estimation with NUTSThe next step is to set the parameters for the Bayesian estimation, specify our priors, and run it. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) ###Output _____no_output_____ ###Markdown Now for the fun part! There are three parameters to estimate: $\phi$, $\theta_1$, and $\sigma$. We'll use uninformative uniform priors for the first two, and an inverse gamma for the last one. Then we'll run the inference optionally using as many computer cores as I have. ###Code # Construct an instance of the Theano wrapper defined above, which # will allow PyMC3 to compute the likelihood and Jacobian in a way # that it can make use of. Here we are using the same model instance # created earlier for MLE analysis (we could also create a new model # instance if we preferred) loglike = Loglike(mod) with pm.Model(): # Priors arL1 = pm.Uniform('ar.L1', -0.99, 0.99) maL1 = pm.Uniform('ma.L1', -0.99, 0.99) sigma2 = pm.InverseGamma('sigma2', 2, 4) # convert variables to tensor vectors theta = tt.as_tensor_variable([arL1, maL1, sigma2]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist('likelihood', lambda v: loglike(v), observed={'v': theta}) # Draw samples trace = pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, cores=4) ###Output _____no_output_____ ###Markdown Note that the NUTS sampler is auto-assigned because we provided gradients. PyMC3 will use Metropolis or Slicing samplers if it doesn't find that gradients are available. There are an impressive number of draws per second for a "block box" style computation! However, note that if the model can be represented directly by PyMC3 (like the AR(p) models mentioned above), then computation can be substantially faster.Inference is complete, but are the results any good? There are a number of ways to check. The first is to look at the posterior distributions (with lines showing the MLE values): ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.traceplot(trace, lines=[(k, {}, [v]) for k, v in dict(res_mle.params).items()], combined=True, figsize=(12, 12)) ###Output _____no_output_____ ###Markdown The estimated posteriors clearly peak close to the parameters found by MLE. We can also see a summary of the estimated values: ###Code pm.summary(trace) ###Output _____no_output_____ ###Markdown Here Rhat, or $\hat{R}$, is the Gelman-Rubin statistic. It tests for lack of convergence by comparing the variance between multiple chains to the variance within each chain. If convergence has been achieved, the between-chain and within-chain variances should be identical. If $\hat{R}<1.2$ for all model parameters, we can have some confidence that convergence has been reached.Additionally, the highest posterior density interval (the gap between the two values of HPD in the table) is small for each of the variables. 6. Application of Bayesian estimates of parametersWe'll now re-instigate a version of the model but using the parameters from the Bayesian estimation, and again plot the one-step-ahead forecasts. ###Code # Retrieve the posterior means params = pm.summary(trace)['mean'].values # Construct results using these posterior means as parameter values res_bayes = mod.smooth(params) predict_bayes = res_bayes.get_prediction() predict_bayes_ci = predict_bayes.conf_int() lower = predict_bayes_ci['lower CPIAUCNS'] upper = predict_bayes_ci['upper CPIAUCNS'] # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf.plot(ax=ax, style='-', label='Observed') # Plot predictions predict_bayes.predicted_mean.plot(ax=ax, style='r.', label='One-step-ahead forecast') ax.fill_between(predict_bayes_ci.index, lower, upper, color='r', alpha=0.1) ax.legend(loc='lower left') plt.show() ###Output _____no_output_____ ###Markdown Appendix A. Application to `UnobservedComponents` models We can reuse the `Loglike` and `Score` wrappers defined above to consider a different state space model. For example, we might want to model inflation as the combination of a random walk trend and autoregressive error term:$$\begin{aligned}y_t & = \mu_t + \varepsilon_t \\\mu_t & = \mu_{t-1} + \eta_t \\\varepsilon_t &= \phi \varepsilon_t + \zeta_t\end{aligned}$$This model can be constructed in Statsmodels with the `UnobservedComponents` class using the `rwalk` and `autoregressive` specifications. As before, we can fit the model using maximum likelihood via the `fit` method. ###Code # Construct the model instance mod_uc = sm.tsa.UnobservedComponents(inf, 'rwalk', autoregressive=1) # Fit the model via maximum likelihood res_uc_mle = mod_uc.fit() print(res_uc_mle.summary()) ###Output _____no_output_____ ###Markdown As noted earlier, the Theano wrappers (`Loglike` and `Score`) that we created above are generic, so we can re-use essentially the same code to explore the model with Bayesian methods. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) # Here we follow the same procedure as above, but now we instantiate the # Theano wrapper `Loglike` with the UC model instance instead of the # SARIMAX model instance loglike_uc = Loglike(mod_uc) with pm.Model(): # Priors sigma2level = pm.InverseGamma('sigma2.level', 1, 1) sigma2ar = pm.InverseGamma('sigma2.ar', 1, 1) arL1 = pm.Uniform('ar.L1', -0.99, 0.99) # convert variables to tensor vectors theta_uc = tt.as_tensor_variable([sigma2level, sigma2ar, arL1]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist('likelihood', lambda v: loglike_uc(v), observed={'v': theta_uc}) # Draw samples trace_uc = pm.sample(ndraws, tune=nburn, discard_tuned_samples=True, cores=4) ###Output _____no_output_____ ###Markdown And as before we can plot the marginal posteriors. In contrast to the SARIMAX example, here the posterior modes are somewhat different from the MLE estimates. ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.traceplot(trace_uc, lines=[(k, {}, [v]) for k, v in dict(res_uc_mle.params).items()], combined=True, figsize=(12, 12)) pm.summary(trace_uc) # Retrieve the posterior means params = pm.summary(trace_uc)['mean'].values # Construct results using these posterior means as parameter values res_uc_bayes = mod_uc.smooth(params) ###Output _____no_output_____ ###Markdown One benefit of this model is that it gives us an estimate of the underling "level" of inflation, using the smoothed estimate of $\mu_t$, which we can access as the "level" column in the results objects' `states.smoothed` attribute. In this case, because the Bayesian posterior mean of the level's variance is larger than the MLE estimate, its estimated level is a little more volatile. ###Code # Graph fig, ax = plt.subplots(figsize=(9,4), dpi=300) # Plot data points inf['CPIAUCNS'].plot(ax=ax, style='-', label='Observed data') # Plot estimate of the level term res_uc_mle.states.smoothed['level'].plot(ax=ax, label='Smoothed level (MLE)') res_uc_bayes.states.smoothed['level'].plot(ax=ax, label='Smoothed level (Bayesian)') ax.legend(loc='lower left'); ###Output _____no_output_____ ###Markdown Fast Bayesian estimation of SARIMAX models IntroductionThis notebook will show how to use fast Bayesian methods to estimate SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors) models. These methods can also be parallelized across multiple cores.Here, fast methods means a version of Hamiltonian Monte Carlo called the No-U-Turn Sampler (NUTS) developed by Hoffmann and Gelman: see [Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.](https://arxiv.org/abs/1111.4246). As they say, "the cost of HMC per independent sample from a target distribution of dimension $D$ is roughly $\mathcal{O}(D^{5/4})$, which stands in sharp contrast with the $\mathcal{O}(D^{2})$ cost of random-walk Metropolis". So for problems of larger dimension, the time-saving with HMC is significant. However it does require the gradient, or Jacobian, of the model to be provided.This notebook will combine the Python libraries [statsmodels](https://www.statsmodels.org/stable/index.html), which does econometrics, and [PyMC3](https://docs.pymc.io/), which is for Bayesian estimation, to perform fast Bayesian estimation of a simple SARIMAX model, in this case an ARMA(1, 1) model for US CPI.Note that, for simple models like AR(p), base PyMC3 is a quicker way to fit a model; there's an [example here](https://docs.pymc.io/notebooks/AR.html). The advantage of using statsmodels is that it gives access to methods that can solve a vast range of statespace models.The model we'll solve is given by$$y_t = \phi y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}, \qquad \varepsilon_t \sim N(0, \sigma^2)$$with 1 auto-regressive term and 1 moving average term. In statespace form it is written as:$$\begin{align}y_t & = \underbrace{\begin{bmatrix} 1 & \theta_1 \end{bmatrix}}_{Z} \underbrace{\begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix}}_{\alpha_t} \\ \begin{bmatrix} \alpha_{1,t+1} \\ \alpha_{2,t+1} \end{bmatrix} & = \underbrace{\begin{bmatrix} \phi & 0 \\ 1 & 0 \\ \end{bmatrix}}_{T} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{R} \underbrace{\varepsilon_{t+1}}_{\eta_t} \\\end{align}$$The code will follow these steps:1. Import external dependencies2. Download and plot the data on US CPI3. Simple maximum likelihood estimation (MLE) as an example4. Definitions of helper functions to provide tensors to the library doing Bayesian estimation5. Bayesian estimation via NUTS6. Application to US CPI seriesFinally, Appendix A shows how to re-use the helper functions from step (4) to estimate a different state space model, `UnobservedComponents`, using the same Bayesian methods. 1. Import external dependencies ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import pymc3 as pm import statsmodels.api as sm import theano import theano.tensor as tt from pandas.plotting import register_matplotlib_converters from pandas_datareader.data import DataReader plt.style.use("seaborn") register_matplotlib_converters() ###Output _____no_output_____ ###Markdown 2. Download and plot the data on US CPIWe'll get the data from FRED: ###Code cpi = DataReader("CPIAUCNS", "fred", start="1971-01", end="2018-12") cpi.index = pd.DatetimeIndex(cpi.index, freq="MS") # Define the inflation series that we'll use in analysis inf = np.log(cpi).resample("QS").mean().diff()[1:] * 400 inf = inf.dropna() print(inf.head()) # Plot the series fig, ax = plt.subplots(figsize=(9, 4), dpi=300) ax.plot(inf.index, inf, label=r"$\Delta \log CPI$", lw=2) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown 3. Fit the model with maximum likelihoodStatsmodels does all of the hard work of this for us - creating and fitting the model takes just two lines of code. The model order parameters correspond to auto-regressive, difference, and moving average orders respectively. ###Code # Create an SARIMAX model instance - here we use it to estimate # the parameters via MLE using the `fit` method, but we can # also re-use it below for the Bayesian estimation mod = sm.tsa.statespace.SARIMAX(inf, order=(1, 0, 1)) res_mle = mod.fit(disp=False) print(res_mle.summary()) ###Output _____no_output_____ ###Markdown It's a good fit. We can also get the series of one-step ahead predictions and plot it next to the actual data, along with a confidence band. ###Code predict_mle = res_mle.get_prediction() predict_mle_ci = predict_mle.conf_int() lower = predict_mle_ci["lower CPIAUCNS"] upper = predict_mle_ci["upper CPIAUCNS"] # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf.plot(ax=ax, style="-", label="Observed") # Plot predictions predict_mle.predicted_mean.plot(ax=ax, style="r.", label="One-step-ahead forecast") ax.fill_between(predict_mle_ci.index, lower, upper, color="r", alpha=0.1) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown 4. Helper functions to provide tensors to the library doing Bayesian estimationWe're almost on to the magic but there are a few preliminaries. Feel free to skip this section if you're not interested in the technical details. Technical DetailsPyMC3 is a Bayesian estimation library ("Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano") that is a) fast and b) optimized for Bayesian machine learning, for instance [Bayesian neural networks](https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html). To do all of this, it is built on top of a Theano, a library that aims to evaluate tensors very efficiently and provide symbolic differentiation (necessary for any kind of deep learning). It is the symbolic differentiation that means PyMC3 can use NUTS on any problem formulated within PyMC3.We are not formulating a problem directly in PyMC3; we're using statsmodels to specify the statespace model and solve it with the Kalman filter. So we need to put the plumbing of statsmodels and PyMC3 together, which means wrapping the statsmodels SARIMAX model object in a Theano-flavored wrapper before passing information to PyMC3 for estimation.Because of this, we can't use the Theano auto-differentiation directly. Happily, statsmodels SARIMAX objects have a method to return the Jacobian evaluated at the parameter values. We'll be making use of this to provide gradients so that we can use NUTS. Defining helper functions to translate models into a PyMC3 friendly formFirst, we'll create the Theano wrappers. They will be in the form of 'Ops', operation objects, that 'perform' particular tasks. They are initialized with a statsmodels `model` instance.Although this code may look somewhat opaque, it is generic for any state space model in statsmodels. ###Code class Loglike(tt.Op): itypes = [tt.dvector] # expects a vector of parameter values when called otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood) def __init__(self, model): self.model = model self.score = Score(self.model) def perform(self, node, inputs, outputs): (theta,) = inputs # contains the vector of parameters llf = self.model.loglike(theta) outputs[0][0] = np.array(llf) # output the log-likelihood def grad(self, inputs, g): # the method that calculates the gradients - it actually returns the # vector-Jacobian product - g[0] is a vector of parameter values (theta,) = inputs # our parameters out = [g[0] * self.score(theta)] return out class Score(tt.Op): itypes = [tt.dvector] otypes = [tt.dvector] def __init__(self, model): self.model = model def perform(self, node, inputs, outputs): (theta,) = inputs outputs[0][0] = self.model.score(theta) ###Output _____no_output_____ ###Markdown 5. Bayesian estimation with NUTSThe next step is to set the parameters for the Bayesian estimation, specify our priors, and run it. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) ###Output _____no_output_____ ###Markdown Now for the fun part! There are three parameters to estimate: $\phi$, $\theta_1$, and $\sigma$. We'll use uninformative uniform priors for the first two, and an inverse gamma for the last one. Then we'll run the inference optionally using as many computer cores as I have. ###Code # Construct an instance of the Theano wrapper defined above, which # will allow PyMC3 to compute the likelihood and Jacobian in a way # that it can make use of. Here we are using the same model instance # created earlier for MLE analysis (we could also create a new model # instance if we preferred) loglike = Loglike(mod) with pm.Model() as m: # Priors arL1 = pm.Uniform("ar.L1", -0.99, 0.99) maL1 = pm.Uniform("ma.L1", -0.99, 0.99) sigma2 = pm.InverseGamma("sigma2", 2, 4) # convert variables to tensor vectors theta = tt.as_tensor_variable([arL1, maL1, sigma2]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist("likelihood", loglike, observed=theta) # Draw samples trace = pm.sample( ndraws, tune=nburn, return_inferencedata=True, cores=1, compute_convergence_checks=False, ) ###Output _____no_output_____ ###Markdown Note that the NUTS sampler is auto-assigned because we provided gradients. PyMC3 will use Metropolis or Slicing samplers if it does not find that gradients are available. There are an impressive number of draws per second for a "block box" style computation! However, note that if the model can be represented directly by PyMC3 (like the AR(p) models mentioned above), then computation can be substantially faster.Inference is complete, but are the results any good? There are a number of ways to check. The first is to look at the posterior distributions (with lines showing the MLE values): ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.plot_trace( trace, lines=[(k, {}, [v]) for k, v in dict(res_mle.params).items()], combined=True, figsize=(12, 12), ) ###Output _____no_output_____ ###Markdown The estimated posteriors clearly peak close to the parameters found by MLE. We can also see a summary of the estimated values: ###Code pm.summary(trace) ###Output _____no_output_____ ###Markdown Here $\hat{R}$ is the Gelman-Rubin statistic. It tests for lack of convergence by comparing the variance between multiple chains to the variance within each chain. If convergence has been achieved, the between-chain and within-chain variances should be identical. If $\hat{R}<1.2$ for all model parameters, we can have some confidence that convergence has been reached.Additionally, the highest posterior density interval (the gap between the two values of HPD in the table) is small for each of the variables. 6. Application of Bayesian estimates of parametersWe'll now re-instigate a version of the model but using the parameters from the Bayesian estimation, and again plot the one-step-ahead forecasts. ###Code # Retrieve the posterior means params = pm.summary(trace)["mean"].values # Construct results using these posterior means as parameter values res_bayes = mod.smooth(params) predict_bayes = res_bayes.get_prediction() predict_bayes_ci = predict_bayes.conf_int() lower = predict_bayes_ci["lower CPIAUCNS"] upper = predict_bayes_ci["upper CPIAUCNS"] # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf.plot(ax=ax, style="-", label="Observed") # Plot predictions predict_bayes.predicted_mean.plot(ax=ax, style="r.", label="One-step-ahead forecast") ax.fill_between(predict_bayes_ci.index, lower, upper, color="r", alpha=0.1) ax.legend(loc="lower left") plt.show() ###Output _____no_output_____ ###Markdown Appendix A. Application to `UnobservedComponents` models We can reuse the `Loglike` and `Score` wrappers defined above to consider a different state space model. For example, we might want to model inflation as the combination of a random walk trend and autoregressive error term:$$\begin{aligned}y_t & = \mu_t + \varepsilon_t \\\mu_t & = \mu_{t-1} + \eta_t \\\varepsilon_t &= \phi \varepsilon_t + \zeta_t\end{aligned}$$This model can be constructed in Statsmodels with the `UnobservedComponents` class using the `rwalk` and `autoregressive` specifications. As before, we can fit the model using maximum likelihood via the `fit` method. ###Code # Construct the model instance mod_uc = sm.tsa.UnobservedComponents(inf, "rwalk", autoregressive=1) # Fit the model via maximum likelihood res_uc_mle = mod_uc.fit() print(res_uc_mle.summary()) ###Output _____no_output_____ ###Markdown As noted earlier, the Theano wrappers (`Loglike` and `Score`) that we created above are generic, so we can re-use essentially the same code to explore the model with Bayesian methods. ###Code # Set sampling params ndraws = 3000 # number of draws from the distribution nburn = 600 # number of "burn-in points" (which will be discarded) # Here we follow the same procedure as above, but now we instantiate the # Theano wrapper `Loglike` with the UC model instance instead of the # SARIMAX model instance loglike_uc = Loglike(mod_uc) with pm.Model(): # Priors sigma2level = pm.InverseGamma("sigma2.level", 1, 1) sigma2ar = pm.InverseGamma("sigma2.ar", 1, 1) arL1 = pm.Uniform("ar.L1", -0.99, 0.99) # convert variables to tensor vectors theta_uc = tt.as_tensor_variable([sigma2level, sigma2ar, arL1]) # use a DensityDist (use a lamdba function to "call" the Op) pm.DensityDist("likelihood", loglike_uc, observed=theta_uc) # Draw samples trace_uc = pm.sample( ndraws, tune=nburn, return_inferencedata=True, cores=1, compute_convergence_checks=False, ) ###Output _____no_output_____ ###Markdown And as before we can plot the marginal posteriors. In contrast to the SARIMAX example, here the posterior modes are somewhat different from the MLE estimates. ###Code plt.tight_layout() # Note: the syntax here for the lines argument is required for # PyMC3 versions >= 3.7 # For version <= 3.6 you can use lines=dict(res_mle.params) instead _ = pm.plot_trace( trace_uc, lines=[(k, {}, [v]) for k, v in dict(res_uc_mle.params).items()], combined=True, figsize=(12, 12), ) pm.summary(trace_uc) # Retrieve the posterior means params = pm.summary(trace_uc)["mean"].values # Construct results using these posterior means as parameter values res_uc_bayes = mod_uc.smooth(params) ###Output _____no_output_____ ###Markdown One benefit of this model is that it gives us an estimate of the underling "level" of inflation, using the smoothed estimate of $\mu_t$, which we can access as the "level" column in the results objects' `states.smoothed` attribute. In this case, because the Bayesian posterior mean of the level's variance is larger than the MLE estimate, its estimated level is a little more volatile. ###Code # Graph fig, ax = plt.subplots(figsize=(9, 4), dpi=300) # Plot data points inf["CPIAUCNS"].plot(ax=ax, style="-", label="Observed data") # Plot estimate of the level term res_uc_mle.states.smoothed["level"].plot(ax=ax, label="Smoothed level (MLE)") res_uc_bayes.states.smoothed["level"].plot(ax=ax, label="Smoothed level (Bayesian)") ax.legend(loc="lower left"); ###Output _____no_output_____
IBM Capstone Project - 2nd Week - Car accident severity.ipynb
###Markdown IBM Capstone Project - 2nd Week - Car accident severity ___ Links to additional materials (report, EDA, notebooks): [Report](https://docs.google.com/document/d/1_MLOVZuu2qlb-eaQAgipBb0xhjxAYsckmJyfeXNwPWk/edit?usp=sharing) [The 1st Week notebook](https://github.com/kolasdevpy/CapstoneProjectIBM/blob/master/IBM%20Capstone%20Project%20%20-%201st%20Week%20-%20Car%20accident%20severity.ipynb) [The 2nd Week notebook](https://github.com/kolasdevpy/CapstoneProjectIBM/blob/master/IBM%20Capstone%20Project%20-%202nd%20Week%20-%20Car%20accident%20severity.ipynb) [Exploratory Data Analysis](https://docs.google.com/presentation/d/1Y8D7zr4rDytsLZ_8Om-0SyzZ9B6L7b6XOeh3TsbACkY/edit?usp=sharing) ___ The 2nd Week Tasks In this week, you will continue working on your capstone project. Please remember by the end of this week, you will need to submit the following:1)A full report consisting of all of the following components (15 marks):- Introduction where you discuss the business problem and who would be interested in this project. (Done in the 1st Week work). - Data where you describe the data that will be used to solve the problem and the source of the data. (Done in the 1st Week work). - Methodology section which represents the main component of the report where you discuss and describe any exploratory data analysis that you did, any inferential statistical testing that you performed, if any, and what machine learnings were used and why. The 2nd Week. - Results section where you discuss the results. The 2nd Week. - Discussion section where you discuss any observations you noted and any recommendations you can make based on the results. The 2nd Week. - Conclusion section where you conclude the report. The 2nd Week. 2) A link to your Notebook on your Github repository pushed showing your code. (15 marks) The 2nd Week.3) Your choice of a presentation or blogpost. (10 marks) The 2nd Week. ___ Remember the introduction This data allows us to build a model for predicting whether a car crashes participants (car drivers or pedestrians) require increased amount of medical care or not. The data covers Seatle, WA. The primary focus of the model is to prioritize help for different points of the city for better balance of injury and help amount. The more injury - more help.For example, the Seattle Police department has limited number of helicopters for the medical purposes and prosecution of criminals. In case of simultaneously happening crashes, the model could possibly help to choose the way of dealing with the problems, predicting the amount of damage in all cases. Reading data We made a complete description, pre-processing and evaluation of the data in [the 1st week of the project](https://github.com/kolasdevpy/CapstoneProjectIBM/blob/master/Capstone%20Project%20%20-%201st%20Week%20-%20Car%20accident%20severity.ipynb). ###Code import pandas as pd import numpy as np import os path = os.path.expanduser("~/Documents/useful_df_car_accident_severity.csv") df = pd.read_csv (path) df.head(2) df.dtypes df.shape X = df[['X', 'Y', 'ADDRTYPE', 'INTKEY', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT_COLCODE', 'INATTENTIONIND', 'UNDERINFL', 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'PEDROWNOTGRNT', 'SPEEDING', 'SEGLANEKEY', 'CROSSWALKKEY', 'HITPARKEDCAR', 'year', 'month', 'day', 'hour', 'minute', 'weekday_name']] y = df['SEVERITYCODE'] ###Output _____no_output_____ ###Markdown Methodology section To do this, we need to build a model that can determine the need for a medical helicopter in an accident. It's a Discrete value. Therefore we have a Classification problem. Now we will try to understand what data we can get as quickly as possible or automatically from services, soft or witness. Next, we group their by sources. > 'SEVERITYCODE' - target > 1. Police get data from witness > 'X' > 'Y' > 'COLLISIONTYPE' > 'PERSONCOUNT' > 'PEDCOUNT' > 'PEDCYLCOUNT' > 'VEHCOUNT' > 'ADDRTYPE' > 'HITPARKEDCAR' > 2. Police can get data automatically by post-processing coordinates 'X' and 'Y' > 'INTKEY' > 'JUNCTIONTYPE' > 'SEGLANEKEY' > 'CROSSWALKKEY' > 3. Police can get data automatically by services > 'WEATHER' > 'ROADCOND' > 'LIGHTCOND' > 'year' > 'month' > 'day' > 'hour' > 'minute' > 'weekday_name' > 4. Police can get data automatically by post-processing > 'SDOT_COLCODE' > 'INATTENTIONIND' > 'UNDERINFL' > 'PEDROWNOTGRNT'> 'SPEEDING' Obviously, that the information in Section 4 may be collected for a long time after the accident. Which makes us to understand it is not relevant information, so we should drop these features. > 'SEVERITYCODE' - target > 1. Police get data from witness > 'X' > 'Y' > 'COLLISIONTYPE' > 'PERSONCOUNT' > 'PEDCOUNT' > 'PEDCYLCOUNT' > 'VEHCOUNT' > 'ADDRTYPE' > 'HITPARKEDCAR' > 2. Police can get data automatically by post-processing coordinates 'X' and 'Y' > 'INTKEY' > 'JUNCTIONTYPE' > 'SEGLANEKEY' > 'CROSSWALKKEY' > 3. Police can get data automatically by services > 'WEATHER' > 'ROADCOND' > 'LIGHTCOND' > 'year' > 'month' > 'day' > 'hour' > 'minute' > 'weekday_name' Modeling and Evaluations DecisionTreeClassifier ###Code from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import metrics X = df[['X', 'Y', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'ADDRTYPE', 'HITPARKEDCAR', # 1 Section 'INTKEY', 'JUNCTIONTYPE', 'SEGLANEKEY', 'CROSSWALKKEY', # 2 Section 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'year', 'month', 'day', 'hour', 'minute', 'weekday_name']] # 3 Section y = df['SEVERITYCODE'] X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.1, random_state=3) Tree = DecisionTreeClassifier(criterion="entropy") Tree.fit(X_trainset,y_trainset) predTree = Tree.predict(X_testset) accuracy = metrics.accuracy_score(y_testset, predTree) print(f"DecisionTrees's Accuracy:") print(f"{accuracy}") ###Output DecisionTrees's Accuracy: 0.6837963451991127 ###Markdown LGBMClassifier ###Code import lightgbm as lgb X = df[['X', 'Y', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'ADDRTYPE', 'HITPARKEDCAR', # 1 Section 'INTKEY', 'JUNCTIONTYPE', 'SEGLANEKEY', 'CROSSWALKKEY', # 2 Section 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'year', 'month', 'day', 'hour', 'minute', 'weekday_name']] # 3 Section y = df['SEVERITYCODE'] X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.1, random_state=3) lgbm = lgb.LGBMClassifier() lgbm.fit(X_trainset,y_trainset) predTree = lgbm.predict(X_testset) accuracy = metrics.accuracy_score(y_testset, predTree) print(f"LGBMClassifier Accuracy:") print(f"{accuracy}") ###Output /Users/artyomkolas/opt/anaconda3/envs/ibm/lib/python3.8/site-packages/lightgbm/__init__.py:42: UserWarning: Starting from version 2.2.1, the library file in distribution wheels for macOS is built by the Apple Clang (Xcode_8.3.3) compiler. This means that in case of installing LightGBM from PyPI via the ``pip install lightgbm`` command, you don't need to install the gcc compiler anymore. Instead of that, you need to install the OpenMP library, which is required for running LightGBM on the system with the Apple Clang compiler. You can install the OpenMP library by the following command: ``brew install libomp``. warnings.warn("Starting from version 2.2.1, the library file in distribution wheels for macOS " ###Markdown Results DecisionTrees's Accuracy:0.6828456744480829LGBMClassifier Accuracy:0.7580542938628921We can see that LGBMClassifier performs better.I propose to dwell on this solution.Our model is able to predict whether a medical assistance is needed or not with accuracy ~ 76%. It's good. Discussion We can pay attention to the order in which information about the incident is received. 1) If a witness to the incident exists at the time of the incident, the dispatcher can obtain information in section 1 and automatically and quickly obtain information from sections 2 and 3.Let's consider some options: A police dispatcher can spend 1-5 minutes collecting information. The information may be complete or incomplete. The information may be true or false. The incident may be life threatening or not. In this case, we have a lot of conventions. But a witness can tell us about the wounded and the need for medical assistance. We can compare the report to the police with the decision from the model and draw conclusions about the credibility of the information. Or if there is not enough information about the victims, can help to police to make a decision. The model can help is to understand immediately in the first seconds of the call (by coordinates) whether medical assistance is needed or not. 2) If a witness to the incident does not exist at the time of the accident (or appears after a long time), then the dispatcher will not receive information at all, or the lost time may cost the lives of the victims.Let's consider some options The witness does not appear at all, and the victims do not need medical assistance.The witness does not appear at all, and the victims need medical attention but do not receive it.An witness appears, but after a while the victims will receive help (if it is necessary).An witness appears, but after a while the victims do not have time to get help (if it is necessary) In this case, we have no information at all at the time of the accident, moreover if the victims need medical assistance, they may not receive it. What can we do about it?1) we could get information from the navigator, for example, about an abnormal decrease in speed. After that automatically transfer coordinates to the dispatcher. 2) we could receive information from the deployment of airbags, sensors of the integrity of the bumper or car body, impact on the body, and then automatically transmit the coordinates to the dispatcher.Based on this we could get such data from software and services and build a model. > 1. Police get data from witness > 'X' > 'Y' > 2. Police can get data automatically by post-processing coordinates 'X' and 'Y' > 'INTKEY' > 'JUNCTIONTYPE' > 'SEGLANEKEY' > 'CROSSWALKKEY' > 3. Police can get data automatically by services > 'WEATHER' > 'ROADCOND' > 'LIGHTCOND' > 'year' > 'month' > 'day' > 'hour' > 'minute' > 'weekday_name'Such methods are able to help to reduce the number of victims where every minute is important.In this case, our model can help to inform the dispatcher about the severity of the accident for less than a second and send a medical helicopter before dispather can contact the victims. ###Code import lightgbm as lgb X = df[['X', 'Y', # 1 Section 'INTKEY', 'JUNCTIONTYPE', 'SEGLANEKEY', 'CROSSWALKKEY', # 2 Section 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'year', 'month', 'day', 'hour', 'minute', 'weekday_name']] # 3 Section y = df['SEVERITYCODE'] X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.1, random_state=3) lgbm = lgb.LGBMClassifier() lgbm.fit(X_trainset,y_trainset) predTree = lgbm.predict(X_testset) accuracy = metrics.accuracy_score(y_testset, predTree) print(f"LGBMClassifier Accuracy:") print(f"{accuracy}") ###Output LGBMClassifier Accuracy: 0.7228794760747861
week_3/.ipynb_checkpoints/day13_imdb-checkpoint.ipynb
###Markdown Please go to https://ccv.jupyter.brown.edu By the end of today you will learn about:- Scraping IMDB for movies that came out in 2019- Scraping a single movie- Scraping all movies from a single page- Scraping all movies from all pages - Scraping IMDB for movies that came out in 2019- Scraping a single movie - Scraping all movies from a single page - Scraping all movies from all pages Scraping IMDB Movie RatingsModified from https://www.dataquest.io/blog/web-scraping-beautifulsoup/|Title|Year|Genre|Runtime|Rating|Synopsis|Director|Vote||---|---|---|---|---|---|---|---||...|...|...|...|...|...|...|...| Explore website to decide how to scrapeWe want to scrape the movies released in 2019 that are in IMDB's database. https://www.imdb.com has an advanced search page (https://www.imdb.com/search/title) that we can use to generate a query to get this list of movies. We first need to figure out how querying works. Let's search for "Feature Films" released between 2019-01-01 and 2019-12-31 with a score between 1 and 10 (to exclude movies without votes). Let's set Display Options to "250 per page" and "Release Date Descending". The URL for the query is:https://www.imdb.com/search/title/?title_type=feature&release_date=2019-01-01,2019-12-31&user_rating=1.0,10.0&sort=release_date,desc&count=250 ###Code from requests import get from bs4 import BeautifulSoup import pandas as pd import time import warnings from IPython.display import clear_output ###Output _____no_output_____ ###Markdown - Scraping IMDB for movies that came out in 2019 - Scraping a single movie- Scraping all movies from a single page - Scraping all movies from all pages Scrape a single movie ###Code url = "https://www.imdb.com/search/title/?title_type=feature&release_date=2019-01-01,2019-12-31&user_rating=1.0,10.0&sort=release_date,desc&count=250" response = get(url) print(response.status_code) soup = BeautifulSoup(response.text, 'html.parser') print(soup.prettify()) ###Output _____no_output_____ ###Markdown Find the movie containers ###Code movie_containers_lst = soup.find_all('div', class_ = 'lister-item mode-advanced') print(len(movie_containers_lst)) ###Output _____no_output_____ ###Markdown Scrape the first movie container ###Code first_movie = movie_containers_lst[0].find(class_='lister-item-content') print(first_movie.prettify()) ###Output _____no_output_____ ###Markdown The html for a single movie container is very long. We will use developer tools to help find the data we want. ###Code title_str = first_movie.h3.a.get_text() print(title_str) year_str = first_movie.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() print(year_str) genre_str = first_movie.p.find('span', class_ = 'genre').get_text() runtime_str = first_movie.p.find('span', class_ = 'runtime').get_text() print(genre_str) print(runtime_str) rating_flt = float(first_movie.select('.ratings-bar div strong')[0].get_text()) print(rating_flt) synopsis_str = first_movie.find_all('p', class_ = 'text-muted')[1].get_text() print(synopsis_str) director_str = first_movie.find_all('p')[2].a.get_text() print(director_str) ###Output _____no_output_____ ###Markdown Can search for a tag with special attributes like `` ###Code votes_tag = first_movie.find('span', attrs = {'name':'nv'}) print(votes_tag) ###Output _____no_output_____ ###Markdown Can treat tags like dictionaries, where key value pairs are attributes ###Code votes_int = int(votes_tag['data-value']) print(votes_int) ###Output _____no_output_____ ###Markdown - Scraping IMDB for movies that came out in 2019 - Scraping a single movie - Scraping all movies from a single page- Scraping all movies from all pages Next, we will scrape all movie containers from the page ###Code # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Extract data from individual movie container for container in movie_containers_lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) genre_str = container.p.find('span', class_ = 'genre').get_text() genres_lst.append(genre_str) # runtime runtime_str = container.p.find('span', class_ = 'runtime').get_text() runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) director_str = container.find_all('p')[2].a.get_text() directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) ###Output _____no_output_____ ###Markdown There are often exceptions to the rule in the web page - we need to debug to account for these cases. ###Code # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Extract data from individual movie container for container in movie_containers_lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) print(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) genre_str = container.p.find('span', class_ = 'genre').get_text() genres_lst.append(genre_str) # runtime runtime_str = container.p.find('span', class_ = 'runtime').get_text() runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) director_str = container.find_all('p')[2].a.get_text() directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) ###Output _____no_output_____ ###Markdown The problem is that not all movies have a listed runtime. ###Code # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Extract data from individual movie container for container in movie_containers_lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) print(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) genre_str = container.p.find('span', class_ = 'genre').get_text() genres_lst.append(genre_str) # runtime if container.p.find('span', class_ = 'runtime') is not None: runtime_str = container.p.find('span', class_ = 'runtime').get_text() else: runtime_str = '' runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) director_str = container.find_all('p')[0].a.get_text() directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) print(votes_int) # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Extract data from individual movie container for container in movie_containers_lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) print(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) if container.p.find('span', class_ = 'genre') is not None: genre_str = container.p.find('span', class_ = 'genre').get_text() else: genre_str = '' genres_lst.append(genre_str) # runtime if container.p.find('span', class_ = 'runtime') is not None: runtime_str = container.p.find('span', class_ = 'runtime').get_text() else: runtime_str = '' runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) director_str = container.find_all('p')[2].a.get_text() directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Extract data from individual movie container for container in movie_containers_lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) print(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) if container.p.find('span', class_ = 'genre') is not None: genre_str = container.p.find('span', class_ = 'genre').get_text() else: genre_str = '' genres_lst.append(genre_str) # runtime if container.p.find('span', class_ = 'runtime') is not None: runtime_str = container.p.find('span', class_ = 'runtime').get_text() else: runtime_str = '' runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) if container.find_all('p')[2].a is not None: director_str = container.find_all('p')[2].a.get_text() else: director_str = '' directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) test_df = pd.DataFrame({'title': titles_lst, 'year': years_lst, 'genre': genres_lst, 'runtime': runtimes_lst, 'rating': ratings_lst, 'synopsis': synopsi_lst, 'director': directors_lst, 'vote': votes_lst }) print(test_df) ###Output _____no_output_____ ###Markdown Let's create a function that will scrape a page. It takes `movies_container_lst` as input and assumes that empty lists have been created outside of the function. ###Code def scrape_page(lst): # Extract data from individual movie container for container in lst: # movie title title_str = container.h3.a.get_text() titles_lst.append(title_str) # year year_str = container.h3.find('span', class_ = 'lister-item-year text-muted unbold').get_text() years_lst.append(year_str) # genre(s) if container.p.find('span', class_ = 'genre') is not None: genre_str = container.p.find('span', class_ = 'genre').get_text() else: genre_str = '' genres_lst.append(genre_str) # runtime if container.p.find('span', class_ = 'runtime') is not None: runtime_str = container.p.find('span', class_ = 'runtime').get_text() else: runtime_str = '' runtimes_lst.append(runtime_str) # IMDB rating rating_flt = container.select('.ratings-bar div strong')[0].get_text() ratings_lst.append(rating_flt) # synopsis synopsis_str = container.find_all('p', class_ = 'text-muted')[1].get_text() synopsi_lst.append(synopsis_str) # director(s) if container.find_all('p')[2].a is not None: director_str = container.find_all('p')[2].a.get_text() else: director_str = '' directors_lst.append(director_str) # vote count votes_tag = container.find('span', attrs = {'name':'nv'}) vote_int = int(votes_tag['data-value']) votes_lst.append(vote_int) return # Lists to store the scraped data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] scrape_page(movie_containers_lst) test_df = pd.DataFrame({'title': titles_lst, 'year': years_lst, 'genre': genres_lst, 'runtime': runtimes_lst, 'rating': ratings_lst, 'synopsis': synopsi_lst, 'director': directors_lst, 'vote': votes_lst }) print(test_df.shape) ###Output _____no_output_____ ###Markdown - Scraping IMDB for movies that came out in 2019 - Scraping a single movie - Scraping all movies from a single page - Scraping all movies from all pages Scrape multiple pages * Make all the requests we want from within the loop.* Control the loop’s rate to avoid bombarding the server with requests.* Monitor the loop while it runs. Make all requests we want from within the loop The next page has the following URL: https://www.imdb.com/search/title/?title_type=feature&release_date=2019-01-01,2019-12-31&user_rating=1.0,10.0&sort=release_date,desc&count=250&start=251&ref_=adv_nxt`&start=251` refers to starting at movie 251. Incrementing this query parameter will allow us to navigate to all pages of the search. ###Code movie_indices = [str(i) for i in range(1,5972,250)] print(movie_indices) base_url = 'https://www.imdb.com/search/title/?title_type=feature&release_date=2019-01-01,2019-12-31&user_rating=1.0,10.0&sort=release_date,desc&count=250' for movie_index in movie_indices: print(base_url + '&start=' + movie_index + '&ref_=adv_nxt') ###Output _____no_output_____ ###Markdown Controlling the crawl rateControlling the rate of crawling is beneficial for us, and for the website we are scraping. If we avoid hammering the server with tens of requests per second, then we are much less likely to get our IP address banned. We also avoid disrupting the activity of the website we scrape by allowing the server to respond to other users’ requests too.We’ll control the loop’s rate by using the `sleep()` function from Python’s `time` module. `sleep()` will pause the execution of the loop for a specified amount of seconds. ###Code for i in range(0,5): delay = 2 print(delay) time.sleep(delay) ###Output _____no_output_____ ###Markdown Monitoring the scraping loop* The frequency (speed) of requests, so we make sure our program is not overloading the server.* The status code of our requests, so we make sure the server is sending back the proper responses. ###Code # Set a starting time using the time() function from the time module, and assign the value to start_time. start_time = time.time() # Assign 0 to the variable requests which we’ll use to count the number of requests. requests = 0 # Start a loop, and then with each iteration: for i in range(5): # Simulate a request. # <<<A request would go here>>> # Increment the number of requests by 1. requests = requests + 1 # Pause the loop for 1 second time.sleep(1) # Calculate the elapsed time since the first request, and assign the value to elapsed_time. elapsed_time = time.time() - start_time # Print the number of requests and the frequency. print('Request: ' + str(requests) + ' ' + 'Frequency: ' + str(requests/elapsed_time) + ' requests/sec') # clears the output of print, and waits until there is a new output clear_output(wait = True) ###Output _____no_output_____ ###Markdown Import the warn function to throw a warning if there is a non-200 response. Warn rather than throw an error because we will still scrape enough even if there are some hiccups ###Code warnings.warn("Warning Simulation !!!") ###Output _____no_output_____ ###Markdown Full scraping snippet ###Code # Redeclaring the lists to store data in titles_lst = [] years_lst = [] genres_lst = [] runtimes_lst = [] ratings_lst = [] synopsi_lst = [] directors_lst = [] votes_lst = [] # Preparing the monitoring of the loop start_time = time.time() requests = 0 movie_indices = [str(i) for i in range(1, 5972, 250)] # For every page in the interval 1-4 for movie_index in movie_indices: # Make a get request base_url = 'https://www.imdb.com/search/title/?title_type=feature&release_date=2019-01-01,2019-12-31&user_rating=1.0,10.0&sort=release_date,desc&count=250' url = base_url + '&start=' + movie_index + '&ref_=adv_nxt' response = get(url) # Pause the loop time.sleep(1) # Monitor the requests requests = requests + 1 elapsed_time = time.time() - start_time print('Request: ' + str(requests) + ' ' + 'Frequency: ' + str(requests/elapsed_time) + ' requests/sec') clear_output(wait = True) # Throw a warning for non-200 status codes if response.status_code != 200: warnings.warn('Request: ' + str(requests) + '; Status code: ' + str(response.status_code)) # Parse the content of the request with BeautifulSoup soup = BeautifulSoup(response.text, 'html.parser') # Select all the 250 movie containers from a single page and scrape movie_containers_lst = soup.find_all('div', class_ = 'lister-item mode-advanced') scrape_page(movie_containers_lst) movies_df = pd.DataFrame({'title': titles_lst, 'year': years_lst, 'genre': genres_lst, 'runtime': runtimes_lst, 'rating': ratings_lst, 'synopsis': synopsi_lst, 'director': directors_lst, 'vote': votes_lst }) print(movies_df) movies_df.to_csv('data/imdb.csv', index=False) ###Output _____no_output_____
notebooks/Python/Python_Internals/Pickling.ipynb
###Markdown Imports ###Code import numpy as np import pandas as pd import pickle ###Output _____no_output_____ ###Markdown Create fake data ###Code np.random.seed(24) n_obs = 100 fake_data = {'age': np.random.randint(25,100,n_obs), 'gender': np.random.choice(['female','male'], size=n_obs, replace=True), 'm_status': np.random.choice(['single','married','widow'], size=n_obs, replace=True), 'profession': np.random.choice(['accountant','lawyer','dentist','doctor','data scientist'], size=n_obs, replace=True)} df = pd.DataFrame(fake_data) df.head(10) ###Output _____no_output_____ ###Markdown Subset Data ###Code subset = df[(df.gender == 'female') & (df.age < 75) & (df.profession == 'data scientist')] subset ###Output _____no_output_____ ###Markdown --- What if I had lots of data and didn't want to rerun the subset portion? Is there a way to save this subsetted dataframe and load it later when I need it?**Yes, pickle!** From the [docs](https://docs.python.org/3/library/pickle.html): >The pickle module implements binary protocols for serializing and de-serializing a Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and “unpickling” is the inverse operation, whereby a byte stream (from a binary file or bytes-like object) is converted back into an object hierarchy. >>**Warning The pickle module is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source.**>>The following types can be pickled:>* None, True, and False * integers, floating point numbers, complex numbers * strings, bytes, bytearrays * tuples, lists, sets, and dictionaries containing only picklable objects * functions defined at the top level of a module (using def, not lambda) * built-in functions defined at the top level of a module * classes that are defined at the top level of a module * instances of such classes whose __dict__ or the result of calling __getstate__() is picklable ###Code # set path for convenience path = '/Users/davidziganto/Repositories/Data_Science_Fundamentals/pkl_files/' # Save with open(path + 'subset_df.pkl', 'wb') as picklefile: pickle.dump(subset, picklefile) # show test doesn't exist yet try: print(test) except: print('test does not exist!') # Open with open(path + "subset_df.pkl", 'rb') as picklefile: test = pickle.load(picklefile) test ###Output _____no_output_____ ###Markdown Viola. Now I can pickup where I left off without having to run through all that processing. Better Way (w/DF) ###Code df.to_pickle(path + 'subset_df2.pkl', compression='gzip') ###Output _____no_output_____
contributors/joseph_martin/SHARE_3_test_xcorr_FIS.ipynb
###Markdown Test scipy.signal.correlate on some atl06 data from foundation ice stream ###Code import numpy as np import scipy, sys, os, pyproj, glob, re, h5py import matplotlib.pyplot as plt import pandas as pd from scipy.signal import correlate from scipy import stats from astropy.time import Time %matplotlib widget %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Test scipy.signal.correlate Generate some test data: ###Code dx = 0.1 x = np.arange(0,10,dx) y = np.zeros(np.shape(x)) ix0 = 30 ix1 = 30 + 15 y[ix0:ix1] = 1 fig,axs = plt.subplots(1,2) axs[0].plot(x,y,'k') axs[0].set_xlabel('distance (m)') axs[0].set_ylabel('value') axs[1].plot(np.arange(len(x)), y,'k') axs[1].set_xlabel('index') ###Output _____no_output_____ ###Markdown Make a signal to correlate with: ###Code imposed_offset = int(14/dx) # 14 meters, in units of samples x_noise = np.arange(0,50,dx) # make the vector we're comparing with much longer y_noise = np.zeros(np.shape(x_noise)) y_noise[ix0 + imposed_offset : ix1 + imposed_offset] = 1 # uncomment the line below to add noise # y_noise = y_noise * np.random.random(np.shape(y_noise)) fig,axs = plt.subplots(1,2) axs[0].plot(x,y,'k') axs[0].set_xlabel('distance (m)') axs[0].set_ylabel('value') axs[1].plot(np.arange(len(x)), y, 'k') axs[1].set_xlabel('index') axs[0].plot(x_noise,y_noise, 'b') axs[0].set_xlabel('distance (m)') axs[0].set_ylabel('value') axs[1].plot(np.arange(len(x_noise)), y_noise,'b') axs[1].set_xlabel('index') fig.suptitle('black = original, blue = shifted') ###Output _____no_output_____ ###Markdown Try scipy.signal.correlate:mode ='full' returns the entire cross correlation; could be 'valid' to return only non- zero-padded partmethod = direct (not fft) ###Code corr = correlate(y_noise,y, mode = 'full', method = 'direct') norm_val = np.sqrt(np.sum(y_noise**2)*np.sum(y**2)) corr = corr / norm_val ###Output _____no_output_____ ###Markdown What are the dimensions of corr? ###Code print('corr: ', np.shape(corr)) print('x: ', np.shape(x)) print('x: ', np.shape(x_noise)) # lagvec = np.arange(0,len(x_noise) - len(x) + 1) lagvec = np.arange( -(len(x) - 1), len(x_noise), 1) shift_vec = lagvec * dx ix_peak = np.arange(len(corr))[corr == np.nanmax(corr)][0] best_lag = lagvec[ix_peak] best_shift = shift_vec[ix_peak] fig,axs = plt.subplots(3,1) axs[0].plot(lagvec,corr) axs[0].plot(lagvec[ix_peak],corr[ix_peak], 'r*') axs[0].set_xlabel('lag (samples)') axs[0].set_ylabel('correlation coefficient') axs[1].plot(shift_vec,corr) axs[1].plot(shift_vec[ix_peak],corr[ix_peak], 'r*') axs[1].set_xlabel('shift (m)') axs[1].set_ylabel('correlation coefficient') axs[2].plot(x + best_shift, y,'k') axs[2].plot(x_noise, y_noise, 'b--') axs[2].set_xlabel('shift (m)') fig.suptitle(' '.join(['Shift ', str(best_lag), ' samples, or ', str(best_shift), ' m to line up signals'])) ###Output _____no_output_____ ###Markdown Let's try with some ATL06 data Load some repeat data:import readers, etc ###Code # ! cd ..; [ -d pointCollection ] || git clone https://www.github.com/smithB/pointCollection.git # sys.path.append(os.path.join(os.getcwd(), '..')) # !python3 -m pip install --user git+https://github.com/tsutterley/pointCollection.git@pip import pointCollection as pc moa_datapath = '/srv/tutorial-data/land_ice_applications/' datapath = '/home/jovyan/shared/surface_velocity/FIS_ATL06/' # example hf5 file, if you need to look at the fields # datapath='/home/jovyan/shared/surface_velocity/FIS_ATL06_small/processed_ATL06_20191129105346_09700511_003_01.h5' # !h5ls -r /home/jovyan/shared/surface_velocity/FIS_ATL06_small/processed_ATL06_20191129105346_09700511_003_01.h5 ###Output _____no_output_____ ###Markdown Geographic setting : Foundation Ice Stream ###Code print(pc.__file__) # something wrong with pointCollection spatial_extent = np.array([-102, -76, -98, -74.5]) lat=spatial_extent[[1, 3, 3, 1, 1]] lon=spatial_extent[[2, 2, 0, 0, 2]] print(lat) print(lon) # project the coordinates to Antarctic polar stereographic xy=np.array(pyproj.Proj(3031)(lon, lat)) # get the bounds of the projected coordinates XR=[np.nanmin(xy[0,:]), np.nanmax(xy[0,:])] YR=[np.nanmin(xy[1,:]), np.nanmax(xy[1,:])] MOA=pc.grid.data().from_geotif(os.path.join(moa_datapath, 'MOA','moa_2009_1km.tif'), bounds=[XR, YR]) # show the mosaic: plt.figure() MOA.show(cmap='gray', clim=[14000, 17000]) plt.plot(xy[0,:], xy[1,:]) plt.title('Mosaic of Antarctica for Pine Island Glacier') ###Output [-76. -74.5 -74.5 -76. -76. ] [ -98. -98. -102. -102. -98.] ###Markdown Load repeat track data ATL06 reader ###Code def atl06_to_dict(filename, beam, field_dict=None, index=None, epsg=None): """ Read selected datasets from an ATL06 file Input arguments: filename: ATl06 file to read beam: a string specifying which beam is to be read (ex: gt1l, gt1r, gt2l, etc) field_dict: A dictinary describing the fields to be read keys give the group names to be read, entries are lists of datasets within the groups index: which entries in each field to read epsg: an EPSG code specifying a projection (see www.epsg.org). Good choices are: for Greenland, 3413 (polar stereographic projection, with Greenland along the Y axis) for Antarctica, 3031 (polar stereographic projection, centered on the Pouth Pole) Output argument: D6: dictionary containing ATL06 data. Each dataset in dataset_dict has its own entry in D6. Each dataset in D6 contains a numpy array containing the data """ if field_dict is None: field_dict={None:['latitude','longitude','h_li', 'atl06_quality_summary'],\ 'ground_track':['x_atc','y_atc'],\ 'fit_statistics':['dh_fit_dx', 'dh_fit_dy']} D={} # below: file_re = regular expression, it will pull apart the regular expression to get the information from the filename file_re=re.compile('ATL06_(?P<date>\d+)_(?P<rgt>\d\d\d\d)(?P<cycle>\d\d)(?P<region>\d\d)_(?P<release>\d\d\d)_(?P<version>\d\d).h5') with h5py.File(filename,'r') as h5f: for key in field_dict: for ds in field_dict[key]: if key is not None: ds_name=beam+'/land_ice_segments/'+key+'/'+ds else: ds_name=beam+'/land_ice_segments/'+ds if index is not None: D[ds]=np.array(h5f[ds_name][index]) else: D[ds]=np.array(h5f[ds_name]) if '_FillValue' in h5f[ds_name].attrs: bad_vals=D[ds]==h5f[ds_name].attrs['_FillValue'] D[ds]=D[ds].astype(float) D[ds][bad_vals]=np.NaN D['data_start_utc'] = h5f['/ancillary_data/data_start_utc'][:] D['delta_time'] = h5f['/' + beam + '/land_ice_segments/delta_time'][:] D['segment_id'] = h5f['/' + beam + '/land_ice_segments/segment_id'][:] if epsg is not None: xy=np.array(pyproj.proj.Proj(epsg)(D['longitude'], D['latitude'])) D['x']=xy[0,:].reshape(D['latitude'].shape) D['y']=xy[1,:].reshape(D['latitude'].shape) temp=file_re.search(filename) D['rgt']=int(temp['rgt']) D['cycle']=int(temp['cycle']) D['beam']=beam return D ###Output _____no_output_____ ###Markdown Read in files; this next cell took ~1 minute early in the morning ###Code # find all the files in the directory: # ATL06_files=glob.glob(os.path.join(datapath, 'PIG_ATL06', '*.h5')) ATL06_files=glob.glob(os.path.join(datapath, '*.h5')) D_dict={} error_count=0 for file in ATL06_files: try: D_dict[file]=atl06_to_dict(file, '/gt2l', index=slice(0, -1, 25), epsg=3031) except KeyError as e: print(f'file {file} encountered error {e}') error_count += 1 print(f"read {len(D_dict)} data files of which {error_count} gave errors") ###Output file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190430122344_04920311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20181030210407_04920111_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190730080323_04920411_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190220230230_08320211_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190312235510_11380211_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20181108184743_06280111_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190228224553_09540211_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190623094402_13150311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190506112405_05830311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190611193446_11380311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190620171809_12740311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190823150456_08630411_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190529105941_09340311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190308130329_10700211_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190824143917_08780411_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190812071246_06900411_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20181118033101_07710111_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190822060451_08420411_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190607194306_10770311_003_01.h5 encountered error 'Unable to open object (component not found)' file /home/jovyan/shared/surface_velocity/FIS_ATL06/processed_ATL06_20190129164404_04920211_003_01.h5 encountered error 'Unable to open object (component not found)' read 613 data files of which 20 gave errors ###Markdown Plot ground tracks ###Code plt.figure(figsize=[8,8]) hax0=plt.gcf().add_subplot(211, aspect='equal') MOA.show(ax=hax0, cmap='gray', clim=[14000, 17000]); hax1=plt.gcf().add_subplot(212, aspect='equal', sharex=hax0, sharey=hax0) MOA.show(ax=hax1, cmap='gray', clim=[14000, 17000]); for fname, Di in D_dict.items(): cycle=Di['cycle'] if cycle <= 2: ax=hax0 else: ax=hax1 #print(fname) #print(f'\t{rgt}, {cycle}, {region}') ax.plot(Di['x'], Di['y']) if True: try: if cycle < 3: ax.text(Di['x'][0], Di['y'][0], f"rgt={Di['rgt']}, cyc={cycle}", clip_on=True) elif cycle==3: ax.text(Di['x'][0], Di['y'][0], f"rgt={Di['rgt']}, cyc={cycle}+", clip_on=True) except IndexError: pass hax0.set_title('cycles 1 and 2'); hax1.set_title('cycle 3+'); ###Output _____no_output_____ ###Markdown Map view elevations ###Code map_fig=plt.figure() map_ax=map_fig.add_subplot(111) # MOA.show(ax=map_ax, cmap='gray', clim=[14000, 17000]) for fname, Di in D_dict.items(): # select elevations with good quality_summary good=Di['atl06_quality_summary']==0 ms=map_ax.scatter( Di['x'][good], Di['y'][good], 2, c=Di['h_li'][good], \ vmin=0, vmax=1000, label=fname) map_ax._aspect='equal' plt.colorbar(ms, label='elevation'); ###Output _____no_output_____ ###Markdown Repeat track elevation profile ###Code # Ben Smiths's code to plot the individual segments: def plot_segs(D6, ind=None, **kwargs): """ Plot a sloping line for each ATL06 segment """ if ind is None: ind=np.ones_like(D6['h_li'], dtype=bool) #define the heights of the segment endpoints. Leave a row of NaNs so that the endpoints don't get joined h_ep=np.zeros([3, D6['h_li'][ind].size])+np.NaN h_ep[0, :]=D6['h_li'][ind]-D6['dh_fit_dx'][ind]*20 h_ep[1, :]=D6['h_li'][ind]+D6['dh_fit_dx'][ind]*20 # define the x coordinates of the segment endpoints x_ep=np.zeros([3,D6['h_li'][ind].size])+np.NaN x_ep[0, :]=D6['x_atc'][ind]-20 x_ep[1, :]=D6['x_atc'][ind]+20 plt.plot(x_ep.T.ravel(), h_ep.T.ravel(), **kwargs) # A revised code to plot the elevations of segment midpoints (h_li): def plot_elevation(D6, ind=None, **kwargs): """ Plot midpoint elevation for each ATL06 segment """ if ind is None: ind=np.ones_like(D6['h_li'], dtype=bool) # pull out heights of segment midpoints h_li = D6['h_li'][ind] # pull out along track x coordinates of segment midpoints x_atc = D6['x_atc'][ind] plt.plot(x_atc, h_li, **kwargs) dx=20 win_size = int(np.round(1020 / dx)) # meters / dx; odd multiples of 20 only! D_2l={} D_2r={} # specify the rgt here: rgt="0027" rgt="0848" #Ben's suggestion # iterate over the repeat cycles for cycle in ['03','04','05','06','07']: for filename in glob.glob(os.path.join(datapath, f'*ATL06_*_{rgt}{cycle}*_003*.h5')): try: # read the left-beam data D_2l[filename]=atl06_to_dict(filename,'/gt2l', index=None, epsg=3031) # read the right-beam data D_2r[filename]=atl06_to_dict(filename,'/gt2r', index=None, epsg=3031) # plot the locations in the previous plot map_ax.plot(D_2r[filename]['x'], D_2r[filename]['y'],'k'); map_ax.plot(D_2l[filename]['x'], D_2l[filename]['y'],'k'); except Exception as e: print(f'filename={filename}, exception={e}') plt.figure(); for filename, Di in D_2l.items(): #Plot only points that have ATL06_quality_summary==0 (good points) hl=plot_elevation(Di, ind=Di['atl06_quality_summary']==0, label=f"cycle={Di['cycle']}") #hl=plt.plot(Di['x_atc'][Di['atl06_quality_summary']==0], Di['h_li'][Di['atl06_quality_summary']==0], '.', label=f"cycle={Di['cycle']}") plt.legend() plt.xlabel('x_atc') plt.ylabel('elevation'); ###Output _____no_output_____ ###Markdown Pull out a segment and cross correlate: Let's try x_atc = 2.935e7 thru 2.93e7 (just from looking through data) ###Code cycles = [] # names of cycles with data for filename, Di in D_2l.items(): cycles += [str(Di['cycle']).zfill(2)] cycles.sort() # x1 = 2.93e7 # x2 = 2.935e7 beams = ['gt1l','gt1r','gt2l','gt2r','gt3l','gt3r'] # try and smooth without filling nans smoothing_window_size = int(np.round(60 / dx)) # meters / dx; odd multiples of 20 only! it will break filt = np.ones(smoothing_window_size) smoothed = True ### extract and plot data from all available cycles fig, axs = plt.subplots(4,1) x_atc = {} h_li_raw = {} h_li = {} h_li_diff = {} times = {} for cycle in cycles: # find Di that matches cycle: Di = {} x_atc[cycle] = {} h_li_raw[cycle] = {} h_li[cycle] = {} h_li_diff[cycle] = {} times[cycle] = {} filenames = glob.glob(os.path.join(datapath, f'*ATL06_*_{rgt}{cycle}*_003*.h5')) for filename in filenames: try: for beam in beams: Di[filename]=atl06_to_dict(filename,'/'+ beam, index=None, epsg=3031) times[cycle][beam] = Di[filename]['data_start_utc'] # extract h_li and x_atc for that section x_atc_tmp = Di[filename]['x_atc'] h_li_tmp = Di[filename]['h_li']#[ixs] # segment ids: seg_ids = Di[filename]['segment_id'] # print(len(seg_ids), len(x_atc_tmp)) # make a monotonically increasing x vector # assumes dx = 20 exactly, so be carefull referencing back ind = seg_ids - np.nanmin(seg_ids) # indices starting at zero, using the segment_id field, so any skipped segment will be kept in correct location x_full = np.arange(np.max(ind)+1) * 20 + x_atc_tmp[0] h_full = np.zeros(np.max(ind)+1) + np.NaN h_full[ind] = h_li_tmp x_atc[cycle][beam] = x_full h_li_raw[cycle][beam] = h_full # running average smoother /filter if smoothed == True: h_smoothed = (1/win_size) * np.convolve(filt, h_full) h_smoothed = h_smoothed[int(np.floor(smoothing_window_size/2)):int(-np.floor(smoothing_window_size/2))] # cut off ends h_li[cycle][beam] = h_smoothed # # differentiate that section of data h_diff = (h_smoothed[1:] - h_smoothed[0:-1]) / (x_full[1:] - x_full[0:-1]) else: h_li[cycle][beam] = h_full h_diff = (h_full[1:] - h_full[0:-1]) / (x_full[1:] - x_full[0:-1]) h_li_diff[cycle][beam] = h_diff # plot axs[0].plot(x_full, h_full) axs[1].plot(x_full[1:], h_diff) # axs[2].plot(x_atc_tmp[1:] - x_atc_tmp[:-1]) axs[2].plot(np.isnan(h_full)) axs[3].plot(seg_ids[1:]- seg_ids[:-1]) except: print(f'filename={filename}, exception={e}') ###Output _____no_output_____ ###Markdown Joey's AttemptThe script below both steps through the entirety of each h_li timeseries and tries a variety of different windows. Outputs include DataFrames with the best correlating lags and shifts for each distance segment of each beam as well as a DataFrame of the velocities for each distance segment of each beam. The "best_window" is picked based on which search window selection results in the highest mean correlation coefficient among each beam and distance segment. ###Code n_veloc = len(cycles) - 1 best_ACC=0 #intialize value... Hopefully we get better than that. Could potential put a threshold value below which we call a failed run. dx = 20 # meters between x_atc points pass_length=len(x_atc[min(x_atc)][min(x_atc[min(x_atc)])]) best_window=0 best_lags=0 best_shifts=0 best_velocities=0 #x1 = 2.915e7#x_atc[cycles[0]][beams[0]][1000] <-- the very first x value in a file; doesn't work, I think b/c nans # 2.93e7 windows = range(100,pass_length,100) # Set a range of windows you want to try - how many you want to try is really a question of computing time # Using range(100,pass_length,100) it took ~5 minutes in the middle of the night... 100 gave the best ACC for segment_length in windows: search_width = segment_length # m (for now... Seems like keeping a segment legnth either side is prudent...) for veloc_number in range(n_veloc): cycle1 = cycles[veloc_number] cycle2 = cycles[veloc_number+1] t1_string = times[cycle1]['gt1l'][0].astype(str) #figure out later if just picking hte first one it ok t1 = Time(t1_string) t2_string = times[cycle2]['gt1l'][0].astype(str) #figure out later if just picking hte first one it ok t2 = Time(t2_string) dt = (t2 - t1).jd # difference in julian days dist_steps=range(int(np.round(pass_length/(3*segment_length)))) ACCs=pd.DataFrame(columns=beams, index=dist_steps) lags=pd.DataFrame(columns=beams, index=dist_steps) shifts=pd.DataFrame(columns=beams, index=dist_steps) velocities = pd.DataFrame(columns=beams, index=dist_steps) for beam in beams: x_full_t1 = x_atc[cycle1][beam] x_full_t2 = x_atc[cycle2][beam] for step in dist_steps: # x_full_t1 = x_atc[cycle1][beam] # x_full_t2 = x_atc[cycle2][beam] # track_min = np.min(x_full_t1) # track_length = np.min() #fig1, axs = plt.subplots(4,1) # cut out small chunk of data at time t1 (first cycle) x1=x_full_t1[1]+(step+1)*search_width ix_x1 = np.arange(len(x_full_t1))[x_full_t1 >= x1][0] ix_x2 = ix_x1 + int(np.round(segment_length/dx)) x_t1 = x_full_t1[ix_x1:ix_x2] h_li1 = h_li_diff[cycle1][beam][ix_x1-1:ix_x2-1] # start 1 index earlier because the data are differentiated # cut out a wider chunk of data at time t2 (second cycle) ix_x3 = ix_x1 - int(np.round(search_width/dx)) # offset on earlier end by # indices in search_width ix_x4 = ix_x2 + int(np.round(search_width/dx)) # offset on later end by # indices in search_width x_t2 = x_full_t2[ix_x3:ix_x4] h_li2 = h_li_diff[cycle2][beam][ix_x3:ix_x4] """plt.figure() plt.plot(x_t2, h_li2, 'r') plt.plot(x_t1, h_li1, 'k')""" """axs[0].plot(x_t2, h_li2, 'r') axs[0].plot(x_t1, h_li1, 'k') axs[0].set_xlabel('x_atc (m)') """ # correlate old with newer data corr = correlate(h_li1, h_li2, mode = 'valid', method = 'direct') norm_val = np.sqrt(np.sum(h_li1**2)*np.sum(h_li2**2)) # normalize so values range between 0 and 1 corr = corr / norm_val # lagvec = np.arange( -(len(h_li1) - 1), len(h_li2), 1)# for mode = 'full' # lagvec = np.arange( -int(search_width/dx) - 1, int(search_width/dx) +1, 1) # for mode = 'valid' lagvec = np.arange(- int(np.round(search_width/dx)), int(search_width/dx) +1,1)# for mode = 'valid' shift_vec = lagvec * dx ix_peak = np.arange(len(corr))[corr == np.nanmax(corr)][0] ACCs.iloc[step,beams.index(beam)]=np.nanmax(corr) lags.iloc[step,beams.index(beam)] = lagvec[ix_peak] shifts.iloc[step,beams.index(beam)] = shift_vec[ix_peak] velocities.iloc[step,beams.index(beam)] = shift_vec[ix_peak]/(dt/365) #plt.figure() #plt.plot(lagvec,corr) """ axs[1].plot(lagvec,corr) axs[1].plot(lagvec[ix_peak],corr[ix_peak], 'r*') axs[1].set_xlabel('lag (samples)') axs[2].plot(shift_vec,corr) axs[2].plot(shift_vec[ix_peak],corr[ix_peak], 'r*') axs[2].set_xlabel('shift (m)') # plot shifted data axs[3].plot(x_t2, h_li2, 'r') axs[3].plot(x_t1 - best_shift, h_li1, 'k') axs[3].set_xlabel('x_atc (m)') axs[0].text(x_t2[100], 0.6*np.nanmax(h_li2), beam) axs[1].text(lagvec[5], 0.6*np.nanmax(corr), 'best lag: ' + str(best_lag) + '; corr val: ' + str(np.round(corr[ix_peak],3))) axs[2].text(shift_vec[5], 0.6*np.nanmax(corr), 'best shift: ' + str(best_shift) + ' m'+ '; corr val: ' + str(np.round(corr[ix_peak],3))) axs[2].text(shift_vec[5], 0.3*np.nanmax(corr), 'veloc of ' + str(np.round(best_shift/(dt/365),1)) + ' m/yr') """ #fig1.suptitle('black = older cycle data, red = newer cycle data to search across') if ACCs.mean().mean()>best_ACC: best_ACC=ACCs.mean().mean() best_window=segment_length best_lags=lags best_shifts=shifts best_velocities=velocities print("The best window is %i with an average correlation coefficient of %f." % (best_window,best_ACC)) plt.figure(figsize=[13,5]) plt.plot(x_atc[cycle2][beams[0]][1:-2], h_li_diff[cycle2][beams[0]][1:-1], 'r') for i in best_shifts.index: print(i) x_full_t1=x_atc[cycle1][beams[0]] x1=x_full_t1[1]+(i+1)*search_width ix_x1 = np.arange(len(x_full_t1))[x_full_t1 >= x1][0] ix_x2 = ix_x1 + int(np.round(segment_length/dx)) x_t1 = x_full_t1[ix_x1:ix_x2] h_li1 = h_li_diff[cycle1][beam][ix_x1-1:ix_x2-1] plt.plot(x_t1 - best_shifts.iloc[i,beams.index(beams[0])], h_li1, 'b') best_velocities x_full_t1 = x_atc[cycle1][beam] x_full_t2 = x_atc[cycle2][beam] pass_length=min(len(x_full_t1),len(x_full_t2)) range(int(np.round(pass_length/(3*segment_length)))) ###Output _____no_output_____ ###Markdown what to do about nans? interpolate ###Code for veloc_number in range(n_veloc): cycle1 = cycles[veloc_number] cycle2 = cycles[veloc_number+1] t1_string = times[cycle1]['gt1l'][0].astype(str) #figure out later if just picking hte first one it ok t1 = Time(t1_string) t2_string = times[cycle2]['gt1l'][0].astype(str) #figure out later if just picking hte first one it ok t2 = Time(t2_string) dt = (t2 - t1).jd # difference in julian days velocities = {} for beam in beams[0:1]: # fig1, axs = plt.subplots(4,1) # the data: x_full = x_atc[cycle1][beam] h_full = h_li[cycle1][beam] fig, axs = plt.subplots(2,1) axs[0].plot(x_full, h_full) # axs[1].plot(x_full, np.isnan(h_full)) # axs[2].plot(x_full[1:], x_full[1:] - x_full[:-1]) # try and smooth without filling nans win_size = int(np.round(1020 / dx)) # meters / dx; odd multiples of 20 only! filt = np.ones(win_size) h_smoothed = (1/win_size) * np.convolve(filt, h_full) axs[0].plot(x_full, h_smoothed[int(np.floor(win_size/2)):int(-np.floor(win_size/2))], 'k') ###Output /srv/conda/envs/notebook/lib/python3.7/site-packages/ipykernel_launcher.py:19: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
notebook/ratings-count.ipynb
###Markdown Ratings Count ###Code from pyspark import SparkContext, SparkConf import collections conf = SparkConf().setMaster('local').setAppName('RattingHistogram') sc = SparkContext(conf = conf) rdd = sc.textFile('file:////Users/giovanna/Documents/GitHub/pyspark/SparkCourse/ml-100k/u.data') rdd.take(2) rdd.count() ratings = rdd.map(lambda x: x.split()[2]) ratings.take(2) ratings.count() result = ratings.countByValue() # action, it returns a python object result # python sortedResults = collections.OrderedDict(sorted(result.items())) for key, value in sortedResults.items(): print("%s %i" % (key, value)) ###Output 1 6110 2 11370 3 27145 4 34174 5 21201 ###Markdown --- SDF ###Code from pyspark.sql import SparkSession from pyspark.sql import functions as func from pyspark.sql.types import StructType, StructField, IntegerType, LongType spark = SparkSession.builder.appName("PopularMovies").getOrCreate() # Create schema when reading u.data schema = StructType([ \ StructField("userID", IntegerType(), True), \ StructField("movieID", IntegerType(), True), \ StructField("rating", IntegerType(), True), \ StructField("timestamp", LongType(), True)]) # Load up movie data as dataframe moviesDF = spark.read.option("sep", "\t").schema(schema).csv("file:////Users/giovanna/Documents/GitHub/pyspark/SparkCourse/ml-100k/u.data") # Some SQL-style magic to sort all movies by popularity in one line! topMovieIDs = moviesDF.groupBy("movieID").count().orderBy(func.desc("count")) # Grab the top 10 topMovieIDs.show(10) # Stop the session spark.stop() ###Output _____no_output_____
calib_image_shift_universal.ipynb
###Markdown Let's import first frame of videofile, and show it ###Code file = get_filenames() file = file[0] # get just single file instead of list print('Importing file ', file) frame = skvideo.io.vread(file, num_frames=1) # import just first frame frame = rgb2gray(frame[0]) # get element instead of list, make grayscale plt.figure() plt.imshow(frame, cmap=plt.cm.gray) plt.show() ###Output Importing file Z:/LPMV/Users/Anton-Malovichko/experiments/2019/05/180519_SU8_cantilever_highfps_and_liquid/04_2500fps_5V_200Hz.avi ###Markdown Compensate angle if its needed ###Code finish=False angle=0 while finish==False: angle, finish=rotate_image(frame, angle) frame=rotate(frame, angle) ###Output Is this image fine for you? Chosen angle is 0 degrees ###Markdown *Detect center of lightspot, show quadrants:* ###Code centroid=threshold_centroid(frame) plot_im_w_quadrants(frame, centroid) ###Output _____no_output_____ ###Markdown Demonstrate how shifted image looks like ###Code transform = AffineTransform(translation=(1, 0)) shifted = warp(frame, transform, mode='constant', preserve_range=True) plot_im_w_quadrants(shifted, centroid) ###Output _____no_output_____ ###Markdown Shift images along x axis ###Code shifted_im = [] x_shift = np.array([0.1*dx for dx in range(0, 11)]) # generate dx value for linear shift for dx in x_shift: transform = AffineTransform(translation=(dx, 0)) # shift along lateral axis shifted_im.append(warp(frame, transform, mode='constant', preserve_range=True)) ###Output _____no_output_____ ###Markdown Calculate the intensities ###Code Il=np.array([]) Iz=np.array([]) Isum=np.array([]) for i in range(len(shifted_im)): Iz, Il, Isum = calc_intensities(shifted_im[i], centroid, Iz, Il, Isum) ###Output _____no_output_____ ###Markdown Show calculated intensity difference vs displacement and get linear fit coefficients of the calibration: ###Code plot_shift_curves(k_px_um=1.36, Il=Il, Iz=Iz, Isum=Isum, x_shift=x_shift, normalization=False, shift_vs_sig=True) k, b = calc_calib_line(x_shift=x_shift, k_px_um=1.36, Il=Il, normalization=False, shift_vs_sig=True) ###Output _____no_output_____
examples/preprocess/Preprocess-full.ipynb
###Markdown This notebook preprocess the data extracted from the chess database.To run this notebook with all the 170 million of positions from the chess database is required at least 8GB of RAM (if you use a local machine, for some reason, I can't run it on google colab).I used a laptop with a SSD NVMe, Intel i7-9750h and 24GB RAM DDR4@2666Mhz ###Code total_ram = 170e6*64/1024/1024/1024 print("If all data were loaded, it would take at least {:.1f} GB of RAM".format(total_ram)) #!pip install chesslab --upgrade from chesslab.preprocessing import preprocess download=False #https://drive.google.com/file/d/1XwH0reHwaOA0Tpt0ihJkP_XW99EUhlp9/view?usp=sharing if download: from chesslab.utils import download_7z path='./' file_id = '1XwH0reHwaOA0Tpt0ihJkP_XW99EUhlp9' download_7z(file_id,path) else: path='D:/database/ccrl/' block_size=1000000 blocks=170 path_files= path start_name= 'chess' min_elo= 0 data_name= 'ccrl_states_full' labels_name= 'ccrl_results_full' elo_filter= 0 #1 = mean, 2 = min nb_game_filter= 40 #si se establece en 0 no aplica el filtro delete_duplicate=True delete_draws= True delete_both_winners = True delete_eaten=False undersampling=False preprocess( block_size= block_size, blocks= blocks, path= path_files, start_name= start_name, min_elo= min_elo, data_name= data_name, labels_name= labels_name, elo_filter= elo_filter, nb_game_filter= nb_game_filter, delete_eaten=delete_eaten, delete_duplicate=delete_duplicate, delete_draws= delete_draws, delete_both_winners = delete_both_winners, undersampling=undersampling) ###Output Reading blocks file: 1 file: 2 file: 3 file: 4 file: 5 file: 6 file: 7 file: 8 file: 9 file: 10 file: 11 file: 12 file: 13 file: 14 file: 15 file: 16 file: 17 file: 18 file: 19 file: 20 file: 21 file: 22 file: 23 file: 24 file: 25 file: 26 file: 27 file: 28 file: 29 file: 30 file: 31 file: 32 file: 33 file: 34 file: 35 file: 36 file: 37 file: 38 file: 39 file: 40 file: 41 file: 42 file: 43 file: 44 file: 45 file: 46 file: 47 file: 48 file: 49 file: 50 file: 51 file: 52 file: 53 file: 54 file: 55 file: 56 file: 57 file: 58 file: 59 file: 60 file: 61 file: 62 file: 63 file: 64 file: 65 file: 66 file: 67 file: 68 file: 69 file: 70 file: 71 file: 72 file: 73 file: 74 file: 75 file: 76 file: 77 file: 78 file: 79 file: 80 file: 81 file: 82 file: 83 file: 84 file: 85 file: 86 file: 87 file: 88 file: 89 file: 90 file: 91 file: 92 file: 93 file: 94 file: 95 file: 96 file: 97 file: 98 file: 99 file: 100 file: 101 file: 102 file: 103 file: 104 file: 105 file: 106 file: 107 file: 108 file: 109 file: 110 file: 111 file: 112 file: 113 file: 114 file: 115 file: 116 file: 117 file: 118 file: 119 file: 120 file: 121 file: 122 file: 123 file: 124 file: 125 file: 126 file: 127 file: 128 file: 129 file: 130 file: 131 file: 132 file: 133 file: 134 file: 135 file: 136 file: 137 file: 138 file: 139 file: 140 file: 141 file: 142 file: 143 file: 144 file: 145 file: 146 file: 147 file: 148 file: 149 file: 150 file: 151 file: 152 file: 153 file: 154 file: 155 file: 156 file: 157 file: 158 file: 159 file: 160 file: 161 file: 162 file: 163 file: 164 file: 165 file: 166 file: 167 file: 168 file: 169 file: 170 ================================================================================ Selecting 40 game states per game total of different games: 749247 total of different states: 29969880 total of different results: 29969880 ================================================================================ deleting duplicates total of different states: 17290793 total of different results: 17290793 ================================================================================ deleting games with both winners total of different states: 17164805 total of different results: 17164805 ================================================================================ white total wins: 9615300 black total wins: 7549505 IB=1.27 saving files files saved Elapsed time: 104s = 1.7m
week-4/week-4-2-text-classification-homework.ipynb
###Markdown Week 4-2: Text classificationFor this assignment you will build a classifier that figures out the main topics of a bill, from its title. ###Code import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn import tree from sklearn.model_selection import train_test_split from sklearn import metrics %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Create document vectors ###Code # Load up bills.csv This is a list of thousands of bill titles from the California legislature, # and their subject classifications df = pd.read_csv('week-4/bills.csv', encoding='latin-1') df.head() # Vectorize these suckers with the CountVectorizer, removing stopwords vectorizer = CountVectorizer(stop_words='english', min_df=2) matrix = vectorizer.fit_transform(df.text) # How many different features do we have? len(vectorizer.get_feature_names()) # What words correspond to the first 20 features? vectorizer.get_feature_names()[:20] ###Output _____no_output_____ ###Markdown 2. Build a classifier ###Code # Make the 'topic' column categorical, so we can print a pretty confusion matrix later df['topic'] =df['topic'].astype('category') # Glue the topics back together with the document vectors, into one dataframe vectors = pd.DataFrame(matrix.toarray(), columns=vectorizer.get_feature_names()) vectors_and_topic = pd.concat([df['topic'], vectors], axis=1) # Now split 20% of combined data into a test set train, test = train_test_split(vectors_and_topic, test_size=0.2) # Build a decision tree on the training data x_train = train.iloc[:, 1:].values y_train = train.iloc[:, 0].values dt = tree.DecisionTreeClassifier() dt.fit(x_train, y_train) # Evaluate the tree on the test data and print out the accuracy x_test = test.iloc[:, 1:].values y_test = test.iloc[:, 0].values y_test_pred = dt.predict(x_test) metrics.accuracy_score(y_test_pred, y_test) # Now print out a nicely labelled confusion natrix truecats = "True " + df['topic'].cat.categories predcats = "Guessed " + df['topic'].cat.categories pd.DataFrame(metrics.confusion_matrix(y_test_pred, y_test, labels=df['topic'].cat.categories), columns=predcats, index=truecats) ###Output _____no_output_____ ###Markdown What's a case -- an entry in thie matrix -- where the classifier made a particularly large number of errors? Can you guess why? Looking at this matrix, 7 documents were guessed "Budget, Spending, and Taxes" when they're actually "Housing and Property." It's possible these documents discussed property taxes, which caused them to be incorrectly classified. Bonus: try it on new dataHow do we apply this to other bill titles? Ones that weren't originally in the test or training set? ###Code # Here are some other bills new_titles = [ "Public postsecondary education: executive officer compensation.", "An act to add Section 236.3 to the Education code, related to the pricing of college textbooks.", "Political Reform Act of 1974: campaign disclosures.", "An act to add Section 236.3 to the Penal Code, relating to human trafficking."] ###Output _____no_output_____ ###Markdown Your assighnment is to vectorize these titles, and predict their subject using the classifier we built.The challenge here is to get these new documents encoded with the same features as the classifier expects. That is, we could just run them through `CountVectorizer` but then get_feature_names() would give us a different set of coluns, because the vocabulary of these documents is different.The solution is to use the `vocabulary` parameter of `CountVectorizer` like this: ###Code # Make a new vectorizer that maps the same words to the same feature positions as the old vectorizer new_vectorizer = CountVectorizer(stop_words='english', vocabulary=vectorizer.get_feature_names()) # Now use this new_vectorizer to fit the new docs new_matrix = new_vectorizer.fit_transform(new_titles) new_vectors = pd.DataFrame(new_matrix.toarray(), columns=new_vectorizer.get_feature_names()) # Predict the topics of the new documents, using our pre-existing classifier dt.predict(new_vectors.values) ###Output _____no_output_____ ###Markdown Week 4-2: Text classificationFor this assignment you will build a classifier that figures out the main topics of a bill, from its title.Adapted from an [assignment in the 2015 course](https://github.com/datapolitan/lede_algorithms/blob/master/class5_1/bill_classifier.py) by Richard Dunks and Chase Davis, with permission. ###Code import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn import tree from sklearn.model_selection import train_test_split from sklearn import metrics %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Create document vectors ###Code # Load up bills.csv This is a list of thousands of bill titles from the California legislature, # and their subject classifications # Vectorize these suckers with the CountVectorizer, removing stopwords # How many different features do we have? # What words correspond to the first 20 features? ###Output _____no_output_____ ###Markdown 2. Build a classifier ###Code # Make the 'topic' column categorical, so we can print a pretty confusion matrix later # Glue the topics back together with the document vectors, into one dataframe # Now split 20% of combined data into a test set # Build a decision tree on the training data # Evaluate the tree on the test data and print out the accuracy # Now print out a nicely labelled confusion natrix ###Output _____no_output_____ ###Markdown What's a case -- an entry in thie matrix -- where the classifier made a particularly large number of errors? Can you guess why? Looking at this matrix, 7 documents were guessed "Budget, Spending, and Taxes" when they're actually "Housing and Property." It's possible these documents discussed property taxes, which caused them to be incorrectly classified. Bonus: try it on new dataHow do we apply this to other bill titles? Ones that weren't originally in the test or training set? ###Code # Here are some other bills new_titles = [ "Public postsecondary education: executive officer compensation.", "An act to add Section 236.3 to the Education code, related to the pricing of college textbooks.", "Political Reform Act of 1974: campaign disclosures.", "An act to add Section 236.3 to the Penal Code, relating to human trafficking."] ###Output _____no_output_____ ###Markdown Your assighnment is to vectorize these titles, and predict their subject using the classifier we built.The challenge here is to get these new documents encoded with the same features as the classifier expects. That is, we could just run them through `CountVectorizer` but then get_feature_names() would give us a different set of coluns, because the vocabulary of these documents is different.The solution is to use the `vocabulary` parameter of `CountVectorizer` like this: ###Code # Make a new vectorizer that maps the same words to the same feature positions as the old vectorizer new_vectorizer = CountVectorizer(stop_words='english', vocabulary=vectorizer.get_feature_names()) # Now use this new_vectorizer to fit the new docs # Predict the topics of the new documents, using our pre-existing classifier ###Output _____no_output_____
Workshop/RNN_101b.ipynb
###Markdown RNN 101 bOn RNN 1010, CoLab quit after two slices. Here, run just the third slice. ###Code from google.colab import drive PATH='/content/drive/' drive.mount(PATH) DATAPATH=PATH+'My Drive/data/' PC_FILENAME = DATAPATH+'pcRNA.fasta' NC_FILENAME = DATAPATH+'ncRNA.fasta' # LOCAL #PC_FILENAME = 'pcRNA.fasta' #NC_FILENAME = 'ncRNA.fasta' import numpy as np import pandas as pd import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from sklearn.model_selection import ShuffleSplit from keras.models import Sequential from keras.layers import Bidirectional from keras.layers import GRU from keras.layers import Dense from sklearn.model_selection import StratifiedKFold import time tf.keras.backend.set_floatx('float32') EPOCHS=100 SPLITS=1 K=3 EMBED_DIMEN=16 FILENAME='RNN101' ###Output _____no_output_____ ###Markdown Load and partition sequences ###Code # Assume file was preprocessed to contain one line per seq. # Prefer Pandas dataframe but df does not support append. # For conversion to tensor, must avoid python lists. def load_fasta(filename,label): DEFLINE='>' labels=[] seqs=[] lens=[] nums=[] num=0 with open (filename,'r') as infile: for line in infile: if line[0]!=DEFLINE: seq=line.rstrip() num += 1 # first seqnum is 1 seqlen=len(seq) nums.append(num) labels.append(label) seqs.append(seq) lens.append(seqlen) df1=pd.DataFrame(nums,columns=['seqnum']) df2=pd.DataFrame(labels,columns=['class']) df3=pd.DataFrame(seqs,columns=['sequence']) df4=pd.DataFrame(lens,columns=['seqlen']) df=pd.concat((df1,df2,df3,df4),axis=1) return df # Split into train/test stratified by sequence length. def sizebin(df): return pd.cut(df["seqlen"], bins=[0,1000,2000,4000,8000,16000,np.inf], labels=[0,1,2,3,4,5]) def make_train_test(data): bin_labels= sizebin(data) from sklearn.model_selection import StratifiedShuffleSplit splitter = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=37863) # split(x,y) expects that y is the labels. # Trick: Instead of y, give it it the bin labels that we generated. for train_index,test_index in splitter.split(data,bin_labels): train_set = data.iloc[train_index] test_set = data.iloc[test_index] return (train_set,test_set) def separate_X_and_y(data): y= data[['class']].copy() X= data.drop(columns=['class','seqnum','seqlen']) return (X,y) def make_slice(data_set,min_len,max_len): print("original "+str(data_set.shape)) too_short = data_set[ data_set['seqlen'] < min_len ].index no_short=data_set.drop(too_short) print("no short "+str(no_short.shape)) too_long = no_short[ no_short['seqlen'] >= max_len ].index no_long_no_short=no_short.drop(too_long) print("no long, no short "+str(no_long_no_short.shape)) return no_long_no_short def make_kmer_table(K): npad='N'*K shorter_kmers=[''] for i in range(K): longer_kmers=[] for mer in shorter_kmers: longer_kmers.append(mer+'A') longer_kmers.append(mer+'C') longer_kmers.append(mer+'G') longer_kmers.append(mer+'T') shorter_kmers = longer_kmers all_kmers = shorter_kmers kmer_dict = {} kmer_dict[npad]=0 value=1 for mer in all_kmers: kmer_dict[mer]=value value += 1 return kmer_dict KMER_TABLE=make_kmer_table(K) def strings_to_vectors(data,uniform_len): all_seqs=[] for seq in data['sequence']: i=0 seqlen=len(seq) kmers=[] while i < seqlen-K+1: kmer=seq[i:i+K] i += 1 value=KMER_TABLE[kmer] kmers.append(value) pad_val=0 while i < uniform_len: kmers.append(pad_val) i += 1 all_seqs.append(kmers) pd2d=pd.DataFrame(all_seqs) return pd2d # return 2D dataframe, uniform dimensions def build_model(maxlen,dimen): vocabulary_size=4**K+1 # e.g. K=3 => 64 DNA K-mers + 'NNN' act="sigmoid" dt='float32' neurons=16 rnn = keras.models.Sequential() embed_layer = keras.layers.Embedding( vocabulary_size,EMBED_DIMEN,input_length=maxlen); rnn1_layer = keras.layers.Bidirectional( keras.layers.SimpleRNN(neurons, return_sequences=True, dropout=0.50, input_shape=[maxlen,dimen])) rnn2_layer = keras.layers.Bidirectional( keras.layers.SimpleRNN(neurons, dropout=0.50, return_sequences=True)) dense1_layer = keras.layers.Dense(neurons,activation=act,dtype=dt) dense2_layer = keras.layers.Dense(neurons,activation=act,dtype=dt) output_layer = keras.layers.Dense(1,activation=act,dtype=dt) rnn.add(embed_layer) rnn.add(rnn1_layer) rnn.add(rnn2_layer) rnn.add(dense1_layer) rnn.add(dense2_layer) rnn.add(output_layer) bc=tf.keras.losses.BinaryCrossentropy(from_logits=False) print("COMPILE") rnn.compile(loss=bc, optimizer="Adam",metrics=["accuracy"]) return rnn def do_cross_validation(X,y,eps,maxlen,dimen): cv_scores = [] fold=0 splitter = ShuffleSplit(n_splits=SPLITS, test_size=0.2, random_state=37863) rnn2=None for train_index,valid_index in splitter.split(X): X_train=X[train_index] # use iloc[] for dataframe y_train=y[train_index] X_valid=X[valid_index] y_valid=y[valid_index] print("BUILD MODEL") rnn2=build_model(maxlen,dimen) print("FIT") # this is complaining about string to float start_time=time.time() history=rnn2.fit(X_train, y_train, # batch_size=10, default=32 works nicely epochs=eps, verbose=1, # verbose=1 for ascii art, verbose=0 for none validation_data=(X_valid,y_valid) ) end_time=time.time() elapsed_time=(end_time-start_time) fold += 1 print("Fold %d, %d epochs, %d sec"%(fold,eps,elapsed_time)) pd.DataFrame(history.history).plot(figsize=(8,5)) plt.grid(True) plt.gca().set_ylim(0,1) plt.show() scores = rnn2.evaluate(X_valid, y_valid, verbose=0) print("%s: %.2f%%" % (rnn2.metrics_names[1], scores[1]*100)) # What are the other metrics_names? # Try this from Geron page 505: # np.mean(keras.losses.mean_squared_error(y_valid,y_pred)) cv_scores.append(scores[1] * 100) print() print("Validation core mean %.2f%% (+/- %.2f%%)" % (np.mean(cv_scores), np.std(cv_scores))) return rnn2 def make_kmers(MINLEN,MAXLEN,train_set): (X_train_all,y_train_all)=separate_X_and_y(train_set) # The returned values are Pandas dataframes. # print(X_train_all.shape,y_train_all.shape) # (X_train_all,y_train_all) # y: Pandas dataframe to Python list. # y_train_all=y_train_all.values.tolist() # The sequences lengths are bounded but not uniform. X_train_all print(type(X_train_all)) print(X_train_all.shape) print(X_train_all.iloc[0]) print(len(X_train_all.iloc[0]['sequence'])) # X: List of string to List of uniform-length ordered lists of K-mers. X_train_kmers=strings_to_vectors(X_train_all,MAXLEN) # X: true 2D array (no more lists) X_train_kmers.shape print("transform...") # From pandas dataframe to numpy to list to numpy print(type(X_train_kmers)) num_seqs=len(X_train_kmers) tmp_seqs=[] for i in range(num_seqs): kmer_sequence=X_train_kmers.iloc[i] tmp_seqs.append(kmer_sequence) X_train_kmers=np.array(tmp_seqs) tmp_seqs=None print(type(X_train_kmers)) print(X_train_kmers) labels=y_train_all.to_numpy() return (X_train_kmers,labels) print("Load data from files.") nc_seq=load_fasta(NC_FILENAME,0) pc_seq=load_fasta(PC_FILENAME,1) all_seq=pd.concat((nc_seq,pc_seq),axis=0) print("Put aside the test portion.") (train_set,test_set)=make_train_test(all_seq) # Do this later when using the test data: # (X_test,y_test)=separate_X_and_y(test_set) nc_seq=None pc_seq=None all_seq=None print("Ready: train_set") train_set ###Output Load data from files. Put aside the test portion. Ready: train_set ###Markdown Len 200-1Kb ###Code MINLEN=200 MAXLEN=1000 if False: print("Working on full training set, slice by sequence length.") print("Slice size range [%d - %d)"%(MINLEN,MAXLEN)) subset=make_slice(train_set,MINLEN,MAXLEN)# One array to two: X and y print ("Sequence to Kmer") (X_train,y_train)=make_kmers(MINLEN,MAXLEN,subset) print ("Compile the model") model=build_model(MAXLEN,EMBED_DIMEN) print(model.summary()) # Print this only once print ("Cross valiation") model1=do_cross_validation(X_train,y_train,EPOCHS,MAXLEN,EMBED_DIMEN) model1.save(FILENAME+'.short.model') ###Output _____no_output_____ ###Markdown Len 1K-2Kb ###Code MINLEN=1000 MAXLEN=2000 if False: print("Working on full training set, slice by sequence length.") print("Slice size range [%d - %d)"%(MINLEN,MAXLEN)) subset=make_slice(train_set,MINLEN,MAXLEN)# One array to two: X and y print ("Sequence to Kmer") (X_train,y_train)=make_kmers(MINLEN,MAXLEN,subset) print ("Compile the model") model=build_model(MAXLEN,EMBED_DIMEN) print(model.summary()) # Print this only once print ("Cross valiation") model2=do_cross_validation(X_train,y_train,EPOCHS,MAXLEN,EMBED_DIMEN) model2.save(FILENAME+'.medium.model') ###Output _____no_output_____ ###Markdown Len 2K-3Kb ###Code MINLEN=2000 MAXLEN=3000 print("Working on full training set, slice by sequence length.") print("Slice size range [%d - %d)"%(MINLEN,MAXLEN)) subset=make_slice(train_set,MINLEN,MAXLEN)# One array to two: X and y print ("Sequence to Kmer") (X_train,y_train)=make_kmers(MINLEN,MAXLEN,subset) print ("Compile the model") model=build_model(MAXLEN,EMBED_DIMEN) print(model.summary()) # Print this only once print ("Cross valiation") model3=do_cross_validation(X_train,y_train,EPOCHS,MAXLEN,EMBED_DIMEN) model3.save(FILENAME+'.long.model') #model1.save(FILENAME+'.short.model') #abc #efg #hij ###Output _____no_output_____
Day4/.ipynb_checkpoints/encoding_correction_1-checkpoint.ipynb
###Markdown Making initial imports ###Code # !pip install langdetect import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import re # NLP library imports import nltk from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem import PorterStemmer from nltk import word_tokenize from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize nltk.download('punkt') nltk.download('stopwords') ###Output [nltk_data] Downloading package punkt to [nltk_data] C:\Users\Ellio\AppData\Roaming\nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package stopwords to [nltk_data] C:\Users\Ellio\AppData\Roaming\nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Loading data scrapped on TrustPilot The dataframe is composed with the comments scraped on Trustpolit at [this page](https://fr.trustpilot.com/review/www.centerparcs.fr/fr-fr). ###Code df = pd.read_json('tripadvisor2 (1).json') df.head() df1 = df[['hotel_name','published_date','rating','review','review_language','title','trip_date']] df1.columns = ['hotel_name','published_date','rating','review','language','title','trip_date'] df1 df1.review = df1.review.apply(lambda x:x.replace(r"\u00e8","è")) df1.review = df1.review.apply(lambda x:x.replace(r'\u00e9', 'é')) df1.review = df1.review.apply(lambda x:x.replace(r"\u00ea","ê")) df1.review = df1.review.apply(lambda x:x.replace(r"\u00eb","ë")) df1.review = df1.review.apply(lambda x:x.replace(r"\u00fb","û")) df1.review = df1.review.apply(lambda x:x.replace(r"\u00f9","ù")) df1.review = df1.review.apply(lambda x:x.replace(r'\u00e0', 'à')) df1.review = df1.review.apply(lambda x:x.replace(r'\u00e2', 'â')) df1.review = df1.review.apply(lambda x:x.replace(r'\u00f4', 'ô')) df1.review = df1.review.apply(lambda x:x.replace(r'\u00ee', 'î')) df1.review = df1.review.apply(lambda x:x.replace(r'\u00ef', 'ï')) df1.review = df1.review.apply(lambda x:x.replace(r'\u2019', "'")) df1.review = df1.review.apply(lambda x:x.replace(r'\'', "'")) df1.review df1.title = df1.title.apply(lambda x:x.replace(r"\u00e8","è")) df1.title = df1.title.apply(lambda x:x.replace(r'\u00e9', 'é')) df1.title = df1.title.apply(lambda x:x.replace(r"\u00ea","ê")) df1.title = df1.title.apply(lambda x:x.replace(r"\u00eb","ë")) df1.title = df1.title.apply(lambda x:x.replace(r"\u00f9","ù")) df1.title = df1.title.apply(lambda x:x.replace(r'\u00ee', 'î')) df1.title = df1.title.apply(lambda x:x.replace(r'\u00ef', 'ï')) df1.title = df1.title.apply(lambda x:x.replace(r"\u00fb","û")) df1.title = df1.title.apply(lambda x:x.replace(r'\u00e0', 'à')) df1.title = df1.title.apply(lambda x:x.replace(r'\u00e2', 'â')) df1.title = df1.title.apply(lambda x:x.replace(r'\u00f4', 'ô')) df1.title = df1.title.apply(lambda x:x.replace(r'\u2019', "'")) df1.title = df1.title.apply(lambda x:x.replace(r'\'', "'")) df1.title df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r"\u00e8","è")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00e9', 'é')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r"\u00ea","ê")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r"\u00eb","ë")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r"\u00f9","ù")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00ee', 'î')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00ef', 'ï')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r"\u00fb","û")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00e0', 'à')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00e2', 'â')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u00f4', 'ô')) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\u2019', "'")) df1.trip_date = df1.trip_date.apply(lambda x:x.replace(r'\'', "'")) df1['review'] ###Output _____no_output_____ ###Markdown Shapping dataFrame **Making some modifications from raw data** ###Code # Deleting '\n' from content and name columns #clean_n = lambda x: ' '.join(x.split()).lower() #for col in ['name', 'content']: # df[col] = df[col].apply(clean_n) # Setting date as index df1.set_index('published_date', inplace = True) # Displaying result df1.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code # Even if not really useful for this case, a good habit is to start with df.describe() and df.info() when you start working on a dataFrame df1.info() ###Output <class 'pandas.core.frame.DataFrame'> Index: 663 entries, 27 septembre 2018 to November 1, 2007 Data columns (total 6 columns): hotel_name 663 non-null object rating 663 non-null int64 review 663 non-null object language 663 non-null object title 663 non-null object trip_date 663 non-null object dtypes: int64(1), object(5) memory usage: 36.3+ KB ###Markdown **Studying eventual doubles**- We're here looking at names which are pseudos. Be careful, differents people could use the same ones. The date is a good indicator to know if the same person let 2 comments. ###Code print('Number of comments', df.reviewer_id.count()) print('Number of unique names: ', df.reviewer_id.nunique()) double = df.reviewer_id.value_counts().index.tolist()[:sum(df.reviewer_id.value_counts()>=2)] for name in double: print('\n',name) date_double = df[df.reviewer_id==name].index.tolist() content_double = df[df.reviewer_id==name].review.tolist() [print(date,content) for date,content in zip(date_double,content_double)] ###Output _____no_output_____ ###Markdown You might find interesting things in your dataset. For example it is fun here to see **Peltier**'s comments and how he changed is mind:- April 14th 13:41 : "formule intéressante pour de courtes vacances"- April 14th 20:33 : "pas de réseau et deux chaines tv manquantes" **Rapid overview of global rating** ###Code # Average rating value print('Average rating is : {}'.format(round(df1.rating.mean(),2))) # Plotting rating distribution X_ratings = df1.rating.value_counts() ax = sns.barplot(X_ratings.index,X_ratings,alpha=0.8) ax.set(xlabel='Ratings',ylabel='Frequencies',title='Frequencies of ratings over the {} reviews'.format(df1.shape[0])) plt.show() ###Output Average rating is : 3.45 ###Markdown **Distribution of comments length** ###Code # Making the plot x = plt.figure(figsize=(12,5)) sns.distplot(df1['review'].apply(len)) plt.title('Characters distributions') plt.xticks(range(0,2000,250)) plt.show() # Repartition of reviews dates df1['review'].resample('M').count().plot() ###Output _____no_output_____ ###Markdown Pre-Processing 1 : Filters for punctuation and specific characters ###Code # creating a list with all reviews all_reviews = df1.review.tolist() # transformating comments into lower-case text lower_reviews = [review.lower() for review in all_reviews] # deleting all specific caracters characters_to_remove = ["@", "/", "#", ".", ",", "!", "?", "(", ")", "-", "_","’","'", "\"", ":"] transformation_dict = {initial:" " for initial in characters_to_remove} no_punctuation_reviews = [review.translate(str.maketrans(transformation_dict)) for review in lower_reviews] # removing accent with_accent = ['é', 'è','ê','ë', 'à','â','ô','û','ù','î','ï'] without_accent = ['e', 'e','e','e', 'a','a','o','u','u','i','i'] transformation_dict = {before:after for before, after in zip(with_accent, without_accent)} no_accent_reviews = [review.translate(str.maketrans(transformation_dict)) for review in no_punctuation_reviews] # Displaying some results for i in range(5): print(all_reviews[i]) print(no_accent_reviews[i]) print('\n') def number_of_unique_words(list_of_reviews): # Concatenating all reviews from the list all_words = ''.join(list_of_reviews) # Tokenizing unique_tokens = set(word_tokenize(all_words)) # Returning length of list return len(unique_tokens) print(number_of_unique_words(all_reviews)) print(number_of_unique_words(lower_reviews)) print(number_of_unique_words(no_punctuation_reviews)) print(number_of_unique_words(no_accent_reviews)) ###Output 7732 ###Markdown Pre-processing 2 : Tokenization **Doing it in two different ways** ###Code # Using regular expression tokenized_reviews_re = [re.split('\s+', review) for review in no_accent_reviews] # using NLP libraries tokenized_reviews_nltk = [word_tokenize(review) for review in no_accent_reviews] ###Output _____no_output_____ ###Markdown **And making a comparison of results** ###Code # Making a comparison between both of them print("With NLTK library : {}".format(len(tokenized_reviews_nltk))) print("With RegEx library : {}".format(len(tokenized_reviews_re))) ###Output With NLTK library : 663 With RegEx library : 663 ###Markdown **Try to analyze the next lines of code and to understand the difference between both of them** Here is an original review ###Code # Choosing a review to inspect n_review = 10 print(all_reviews[n_review]) ###Output Hi- we are on our way home following a week at Centre Parcs. Whilst we had a good family holiday, we were very disappointed with the resort. First issue is the cleanliness- it's really dirty. We booked two cottages with one a premium lakeside house. Whilst some of the furnishings were new, the kitchen was filthy with ingrained dirt. The house looked like it hadn't been properly cleaned in years. All cooking equipment was also very old and crappy- It put us off cooking inside. Outside we had a great view but it was also filthy. Thick cobwebs and dirt all over the verander and decking. Decking was also very dangerous as it was obviously not maintained and there were huge gaps where the chairs fell down resulting in numerous injuries over the week. Our children had a great time in he pool but it was so old and In terrible condition. Nothing like the parcs at Woburn and Elvden.The maintaince, health and safety and cleanliness were really poor at the resort. However the location was beautiful and in spite of all of it we made sure we had a good time and used many of the facilities on offer. ###Markdown And here are the tokenized ones ###Code print(tokenized_reviews_nltk[n_review]) print(tokenized_reviews_re[n_review]) # We select the secon one which seems more accurate tokenized_reviews = tokenized_reviews_nltk ###Output _____no_output_____ ###Markdown Pre-processing 3 : Stopword removing ###Code # Using a list with words to delete stopW = stopwords.words('french') # Customizing it with our needs stopW += ['les', 'a', 'tout'] # Stopword_list stopword_reviews = [[token for token in review if token not in stopW] for review in tokenized_reviews] ###Output _____no_output_____ ###Markdown Some visualization about what we've done ###Code def plot_frequent_words(list_of_words): dist = nltk.FreqDist(list_of_words) X = [nb[1] for nb in dist.most_common(20)] y = [nb[0] for nb in dist.most_common(20)] ax = sns.barplot(X,y) ax.set(xlabel='Word frequencies',ylabel='Words',title='Most common words in the corpus') plt.show() # Making a first plot with original data all_words = [] for review in all_reviews: for word in review.split(): all_words.append(word) plot_frequent_words(all_words) print(len(all_words)) # And making it with our current data all_words = [] for review in stopword_reviews: for word in review: all_words.append(word) plot_frequent_words(all_words) print(len(all_words)) ###Output _____no_output_____ ###Markdown ...Much better ! Isn't it ? TO DO : Now you can apply all of these methods to your own DataFrame**The purpose is to create a second column with reviews content but processed and tokenized** BONUS : A little exercice about RegEx **Try some patterns on the next strings**You can use the different functions- re.split() : to split my_string on the pattern and print the result.- re.findall() : find all the occurences matching the pattern in the total string. ###Code import re my_string = "Let's write RegEx!" PATTERN = r"\s+" # PATTERN = r"[a-z]" # PATTERN = r"\w" # PATTERN = r"\w+" re.findall(PATTERN, my_string) re.split(PATTERN, my_string) ###Output _____no_output_____ ###Markdown **Given the table show in course, try to make the following match** ###Code # Write a pattern to match sentence endings: sentence_endings sentence_endings = r"[___]" # Split my_string on sentence endings and print the result print(re.____(____, ____)) # Find all capitalized words in my_string and print the result capitalized_words = r"[___]\w+" print(re.____(____, ____)) # Split my_string on spaces and print the result spaces = r"___" print(re.____(____, ____)) # Find all digits in my_string and print the result digits = r"___" print(re.____(____, ____)) ###Output _____no_output_____ ###Markdown writing a new file with the cleaned data ###Code df1.to_csv (r'C:\Users\Ellio\Desktop\tripadvisor_cleaned_data_bis.csv', index=False) df2 = pd.read_csv(r'C:\Users\Ellio\Desktop\tripadvisor_cleaned_data.csv') df1['review'][0] ###Output _____no_output_____
Keras_Model_UNI.ipynb
###Markdown ###Code !pip install -qq transformers !git clone https://[email protected]/six60110/training_repo.git import pandas as pd import numpy as np import matplotlib.pyplot as plt np.set_printoptions(precision=3, suppress=True) import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing train_file = pd.read_csv( "/content/training_repo/train_en.tsv", sep='\t') print(train_file.head()) # look at the test data set test_file = pd.read_csv( "/content/training_repo/test_en.tsv", sep='\t') file_text = train_file.text vocab_size = 10000 embedding_dim = 16 maxlength = 100 trunc_type='post' padding_type='post' oov_tok = "<OOV>" training_size = 20000 tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_tok) tokenizer.fit_on_texts(file_text) word_index = tokenizer.word_index sequences = tokenizer.texts_to_sequences(file_text) padded = pad_sequences(sequences, padding='post') training_sentences = file_text[0:training_size] testing_sentences = file_text[training_size:] training_id = train_file.HS[0:training_size] testing_id = train_file.HS[training_size:] training_sequences = tokenizer.texts_to_sequences(training_sentences) training_padded = pad_sequences(training_sequences, maxlen=maxlength, padding=padding_type, truncating=trunc_type) testing_sequences = tokenizer.texts_to_sequences(testing_sentences) testing_padded = pad_sequences(testing_sequences, maxlen=maxlength, padding=padding_type, truncating=trunc_type) model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=maxlength), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy',optimizer='adam' ,metrics=['accuracy']) num_epochs = 100 def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() history = model.fit(training_padded, training_id, epochs=num_epochs, validation_data=(testing_padded, testing_id), verbose=2) plt.plot() plot_graphs(history, "accuracy") plot_graphs(history, "loss") #sequences = tokenizer.texts_to_sequences(file_text) #padded = pad_sequences(sequences, padding='post') ###Output _____no_output_____
notebooks/examples/1 - Configuring a Project.ipynb
###Markdown 1 - Configuring a Workforce Project Using the ArcGIS API for PythonThis is first of a series of Jupyter Notebooks designed to demonstrate how the ArcGIS API for Python can be used to automate many aspects of Workforce for ArcGIS.Workforce for ArcGIS is a mobile solution that uses the power of location-based decision making for better field workforce coordination and teamwork. Everything in Workforce is center around the Workforce Project. A project consists of many things including workers, dispatchers, assignments, and app integrations. A project is typically configured through the user interface as described [here](https://doc.arcgis.com/en/workforce/android-phone/help/create-your-first-project.htm). For many users, this experience is totally fine. However, for other users who have complex or recurring projects this can be quite time-consuming. In this guide we'll demonstrate how many of those configuration tasks can be automated by using the [ArcGIS API for Python](https://developers.arcgis.com/python/).This guide uses the ArcGIS API for Python version 1.5.1 with Python 3.6+. Importing the Workforce Module Let's get started! The ArcGIS API for Python provides a [module](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.html) specifically for working with Workforce Projects. Let's first import that module. ###Code from arcgis.apps import workforce ###Output _____no_output_____ ###Markdown Connecting to your organization Now we'll connect to our organization as the owner of an existing workforce Project. ###Code from arcgis.gis import GIS gis = GIS("https://arcgis.com", "workforce_scripts") ###Output Enter password: ········ ###Markdown Searching for and using an existing project Next, let's find a specific project in our organization that we'd like to configure. ###Code item = gis.content.search("type:'Workforce Project' 'Public Works Work Orders'")[0] item ###Output _____no_output_____ ###Markdown Let's create a [Project](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlproject) object from that item so we can leverage the workforce module to easily configure it. ###Code project = workforce.Project(item) ###Output _____no_output_____ ###Markdown Adding assignment types Now that we have a `Project` to work with, let's add a few assignment types. We'll use the [AssignmentTypeManager](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.managers.htmlassignmenttypemanager) object, which is a [property](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlarcgis.apps.workforce.Project.assignment_types) of the `Project`, to accomplish this. ###Code project.assignment_types.add(name="Fill in Pothole") project.assignment_types.add(name="Sidewalk Repair") project.assignment_types.add(name="Paint Crosswalk") project.assignment_types.search() ###Output _____no_output_____ ###Markdown Adding workers to the project Now let's add some workers to the project. We are going to import workers from an existing group in our organization. Let's first find the group of workers. ###Code repair_crew_group = gis.groups.search("Road Repair Crew")[0] repair_crew_group ###Output _____no_output_____ ###Markdown For each member in the group, we'll add them as a worker to the project. We'll use the [WorkerManager](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.managers.htmlworkermanager) class, which is available as a [property](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlarcgis.apps.workforce.Project.workers) on the `Project`, to add the users one by one. If there were a lot of users, we could use the [batch_add](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlproject) method to add a list of [Workers](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlworker) all at once. ###Code for username in repair_crew_group.get_members()["users"]: user = gis.users.get(username) project.workers.add(user_id=username, name=user.fullName, status="not_working") ###Output _____no_output_____ ###Markdown Adding dispatchers to the project Now let's add some dispatchers to the project from a CSV file. We'll use the [pandas](https://pandas.pydata.org/) library to help us out. ###Code import pandas as pd dataframe = pd.read_csv("data/dispatchers.csv") dataframe ###Output _____no_output_____ ###Markdown As shown above, we have 2 users to add. For every row in the csv file, let's add a new [dispatcher](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmldispatcher) to the project. We'll use the [DispatcherManager](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.managers.htmldispatchermanager) class, which is available as a [property](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlarcgis.apps.workforce.Project.dispatchers) on the `Project`, to add the users one by one. If there were a lot of users, we could use the [batch_add](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.managers.htmlarcgis.apps.workforce.managers.DispatcherManager.batch_add) method to add a list of [Dispatchers](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmldispatcher) all at once. ###Code for row in dataframe.itertuples(): project.dispatchers.add( name=row.name, contact_number=row.contactNumber, user_id=row.userId ) ###Output _____no_output_____ ###Markdown Adding an app integration As the final step of configuring the project, let's add the ability to open [Explorer for ArcGIS](https://doc.arcgis.com/en/explorer/) at the assignment location. We'll search the organization for the desired map. ###Code from arcgis.mapping import WebMap webmap = WebMap(gis.content.search("Portland Streets owner:workforce_scripts")[0]) ###Output _____no_output_____ ###Markdown Now, let's share this map with the `Project` group so that all dispatchers and workers can access it. ###Code webmap.item.share(groups=[project.group]) ###Output _____no_output_____ ###Markdown Next, we'll create the [url scheme](https://github.com/Esri/explorer-integration) used to launch Explorer by using the [build_explorer_url](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.htmlbuild-explorer-url) method in the ArcGIS API for Python. ###Code from arcgis.apps import build_explorer_url url = build_explorer_url( webmap=webmap, center="${assignment.latitude},${assignment.longitude}", scale=9000 ) ###Output _____no_output_____ ###Markdown Then we'll add a new integration to the project using the created url. We'll use the [AssignmentIntegrationManager ](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.managers.htmlassignmentintegrationmanager) class, which is available as a [property](https://esri.github.io/arcgis-python-api/apidoc/html/arcgis.apps.workforce.htmlarcgis.apps.workforce.Project.integrations) on the `Project`. ###Code project.integrations.add("default-explorer", "Explorer At Assignment", url) ###Output _____no_output_____
Spam_Detection_Using_NLP_&_Basic_ML.ipynb
###Markdown Import the Necessary libraries for the task.numpy & pd as common for every project but as we are dealing with text data so here we use NLTK library to find the solution for problem statement. ###Code #importing the required libraries import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown While working on google colab, We first need to mount the drive every time, enter the passcode, before that never forget to insert your data inside the drive while using colab or when working on Jupyter locally add data set in your working directory or change the path with command "os.chdir" to locate dataset. ###Code from google.colab import drive drive.mount('/content/drive') ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). ###Markdown Then read the data set with Pandas library function.do not forget to copy your data file path from google colab to read it. ###Code df = pd.read_csv('/content/sample_data/spam.csv', encoding='latin1') ###Output _____no_output_____ ###Markdown Data Cleaning & Data Understanding Steps df.head() : This Function give us o/p as first 5 Rows, If we wants more numbers of rows we can initialize the desire numbers of rows inside bracket. ###Code df.head() ###Output _____no_output_____ ###Markdown As We Can see cloumns Unnamed: 2 Unnamed: 3 Unnamed: 4 is not having any information so that we can drop those coulumns. ###Code df=df.drop(['Unnamed: 2','Unnamed: 3','Unnamed: 4'],axis=1) df.head() # See other commands to understand our Data # Printing the size of the dataset df.shape # Getting feature names df.columns # Checking the duplicates and remove them df.drop_duplicates(inplace=True) df.shape # Show the number of missing data for each column df.isnull().sum() ###Output _____no_output_____ ###Markdown Processing our text data with NLPNow our remaning data which is clean but it is in text format, for machine understanding will have to convert that data into Numerical form. We already have the library for tokenizing the words, Import NLTK and perform operation as below. ###Code import nltk from nltk.corpus import stopwords import string # Function to tokenize each and every word def tokenizer(text): tokenized=nltk.word_tokenize(text) tokenized=' '.join(tokenized) tokenized=tokenized.replace('n\'t','not') return tokenized ###Output _____no_output_____ ###Markdown After Tokenization we need to remove punctuation, Remove stopwords with reference to stopwords stored in NLTK stopwords, Function just compare words within dictionary, if mathces remove it from the sentence, convert all words into lower case then return a list of clean words. ###Code # Creating a function to process punctuation and stopwords in the text data def process_stop_punc(text): # Remove punctuations # Remove stopwords # Return a list of clen text words nopunc=[char for char in text if char not in string.punctuation] nopunc=''.join(nopunc) clean_words=[word for word in nopunc.split() if word.lower() not in stopwords.words('english')] return clean_words ###Output _____no_output_____ ###Markdown After above process will have to converts words into its base form called as stemming. this task done by following stemming() function here we use porterStemmer(), Its is the part of term normalization in NLP process. ###Code # Functions to convert words into single form i.e. converting plural to singular and past ,past continuous to present def stemming(List): stem_obj=nltk.stem.PorterStemmer() List=[stem_obj.stem(i) for i in List] message=' '.join(List) return message # Function to compile each and every operation def process(text): return stemming(process_stop_punc(tokenizer(text))) nltk.download('punkt') nltk.download('stopwords') # Show the tokenization df['text'].head().apply(process) ###Output _____no_output_____ ###Markdown Vectorizing the words TFIDFVectorizer the value increases proportionally to count, but is inversely proportional to frequency of the word in the corpus; that is the inverse document frequency (IDF) part. **TfidfVectorizer** and **CountVectorizer** both are methods for converting text data into vectors as model can process only numerical data.In **CountVectorizer** we only count the number of times a word appears in the document which results in biasing in favour of most frequent words. this ends up in ignoring rare words which could have helped is in processing our data more efficiently.To overcome this , we use TfidfVectorizer .In TfidfVectorizer we consider overall document weightage of a word. It helps us in dealing with most frequent words. Using it we can penalize them. TfidfVectorizer weights the word counts by a measure of how often they appear in the documents. ###Code # Convert a collection of data to matrix of tokens using tf-idf vectorizer import sklearn from sklearn.feature_extraction.text import TfidfVectorizer message = TfidfVectorizer().fit_transform(df['text']) # Getting the shape of message message.shape # Print how our data look like in Numerical format with tf-idf. print(message) ###Output (0, 8267) 0.1820760415281772 (0, 1069) 0.32544292157369786 (0, 3594) 0.15240463847472757 (0, 7645) 0.15605579719351925 (0, 2048) 0.27450748091103355 (0, 1749) 0.31054526020101475 (0, 4476) 0.27450748091103355 (0, 8489) 0.22981449679298432 (0, 3634) 0.18170677054225734 (0, 1751) 0.27450748091103355 (0, 4087) 0.1080194309412782 (0, 5537) 0.15773893821302193 (0, 1303) 0.2468122813993541 (0, 2327) 0.2514110448509606 (0, 5920) 0.25394599154794606 (0, 4350) 0.32544292157369786 (0, 8030) 0.2284782712166139 (0, 3550) 0.1474570544871208 (1, 5533) 0.5464988818914979 (1, 8392) 0.4304438402468376 (1, 4318) 0.5233434480300876 (1, 4512) 0.406925248497845 (1, 5504) 0.2767319100209511 (2, 77) 0.2326251973903166 (2, 1156) 0.16331528331958853 : : (5167, 1786) 0.2820992149566908 (5167, 3470) 0.2744008686738812 (5167, 2892) 0.24290552468890048 (5167, 7049) 0.20395814718823002 (5167, 1778) 0.13673277359621147 (5167, 8065) 0.21062041399707843 (5167, 2592) 0.18469635293243075 (5167, 5334) 0.20868573103969204 (5167, 1438) 0.14288820286282247 (5167, 7627) 0.10319532003279058 (5167, 3308) 0.12215409504489928 (5167, 7039) 0.18503435583866787 (5167, 4615) 0.15982569695504117 (5167, 1084) 0.11232294630116563 (5167, 8313) 0.19089150993177975 (5167, 4218) 0.12281898312072442 (5167, 3781) 0.17097956584622562 (5167, 7756) 0.08437843735148565 (5167, 3358) 0.16237204914715464 (5167, 4087) 0.11278484851691671 (5168, 6505) 0.5493950047150747 (5168, 7885) 0.434678956678875 (5168, 4225) 0.5770885193248134 (5168, 5244) 0.39278764302749264 (5168, 7756) 0.14800689768753802 ###Markdown CountVectorizer counts the word frequencies. ###Code # Using countvectorizer from sklearn.feature_extraction.text import CountVectorizer message1=CountVectorizer().fit_transform(df['text']) message1 ###Output _____no_output_____ ###Markdown Splitting data into training tesing setOur textual data is ready for model building, now with sklearn function we will split that into 80:20 pattern for training as well as testing resp. ###Code # Splitting the data into 80:20 train test ratio for dataset vectorized using tf-idfvectorizer from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(message,df['type'],test_size=0.2,random_state=123) print(X_train) print(X_test) #splitting the data into 80:20 train test ratio for dataset vectorized using countvectorizer from sklearn.model_selection import train_test_split X_train1,X_test1,y_train1,y_test1=train_test_split(message1,df['type'],test_size=0.2,random_state=0) ###Output _____no_output_____ ###Markdown Model building with different algorithms1> Naive Bayes classifier ###Code # Creating and training the naive bayes classifier for dataset vectorized using tf-idfvectorizer from sklearn.naive_bayes import MultinomialNB classifier=MultinomialNB().fit(X_train,y_train) # Evaluate the model and training dataset from sklearn.metrics import classification_report,confusion_matrix,accuracy_score pred=classifier.predict(X_train) print(classification_report(y_train,pred)) print() print('confusion Matrix:\n',confusion_matrix(y_train,pred)) print() print(' training accuracy score:\n',accuracy_score(y_train,pred)) # Printing the predictions from sklearn.metrics import classification_report,confusion_matrix,accuracy_score pred=classifier.predict(X_test) print(classification_report(y_test,pred)) print() print('confusion Matrix:\n',confusion_matrix(y_test,pred)) print() print('testing accuracy score:\n',accuracy_score(y_test,pred)) ###Output precision recall f1-score support ham 0.94 1.00 0.97 888 spam 1.00 0.63 0.77 146 accuracy 0.95 1034 macro avg 0.97 0.82 0.87 1034 weighted avg 0.95 0.95 0.94 1034 confusion Matrix: [[888 0] [ 54 92]] testing accuracy score: 0.9477756286266924 ###Markdown From Above two Results we can say that our model is not overfitting as we got 96.56 % Accuracy on training and 94.77% on testing set. ###Code # Creating and training the naive bayes classifier for dataset vectorized using Countvectorizer from sklearn.naive_bayes import MultinomialNB classifier=MultinomialNB().fit(X_train1,y_train1) # Evaluate the model and training dataset on Count Vectorizer from sklearn.metrics import classification_report,confusion_matrix,accuracy_score pred=classifier.predict(X_train1) print(classification_report(y_train1,pred)) print() print('confusion Matrix:\n',confusion_matrix(y_train1,pred)) print() print(' training accuracy score:\n',accuracy_score(y_train1,pred)) # Printing the predictions for CountVectorizer from sklearn.metrics import classification_report,confusion_matrix,accuracy_score pred=classifier.predict(X_test1) print(classification_report(y_test1,pred)) print() print('confusion Matrix:\n',confusion_matrix(y_test1,pred)) print() print('testing accuracy score:\n',accuracy_score(y_test1,pred)) ###Output precision recall f1-score support ham 0.99 0.99 0.99 885 spam 0.91 0.93 0.92 149 accuracy 0.98 1034 macro avg 0.95 0.96 0.96 1034 weighted avg 0.98 0.98 0.98 1034 confusion Matrix: [[872 13] [ 10 139]] testing accuracy score: 0.9777562862669246 ###Markdown Here we have compare both the results with tf-idf vectorizer and Count Vectorizer we get better accuracy results on Count Vectorizer. Let us try with SVM with grid Search approach to tune HyperparametersLets try on ###Code # Prediction using LinearSVC and GridsearchCV and tokens obtained fron TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import GridSearchCV param_grid={'C':[0.1,1,10,100]} grid=GridSearchCV(LinearSVC(),param_grid,refit=True) grid.fit(X_train,y_train) #finding best C for best parameter print(grid.best_params_) # Finding best accuracy print(grid.best_score_) # Prediction of test data pred2=grid.predict(X_test) # Evaluate the model and training dataset from sklearn.metrics import classification_report,confusion_matrix,accuracy_score print(classification_report(y_test,pred2)) print() print('confusion Matrix:\n',confusion_matrix(y_test,pred2)) print() print('accuracy score:\n',accuracy_score(y_test,pred2)) ###Output precision recall f1-score support ham 0.98 0.99 0.99 888 spam 0.96 0.86 0.91 146 accuracy 0.98 1034 macro avg 0.97 0.93 0.95 1034 weighted avg 0.98 0.98 0.98 1034 confusion Matrix: [[883 5] [ 20 126]] accuracy score: 0.9758220502901354 ###Markdown For **TF-IDF Vectorizer** data, we get better Accuracy score with SVM both on training (98.18 %) & Testing (97.58 %)Now Lets Chech Accuracy Score with Count Vectoriser data set ###Code # Prediction using LinearSVC and GridsearchCV and tokens obtained fron CountVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import GridSearchCV param_grid1={'C':[0.1,1,10,100]} grid1=GridSearchCV(LinearSVC(),param_grid,refit=True) grid1.fit(X_train1,y_train1) # Finding best C for best parameter print(grid1.best_params_) # Finding best accuracy print(grid1.best_score_) # Training test dataset grid1.fit(X_train1,y_train1) # Prediction of test data pred3=grid1.predict(X_test1) pred3 # Evaluate the model and training dataset from sklearn.metrics import classification_report,confusion_matrix,accuracy_score print(classification_report(y_test1,pred3)) print() print('confusion Matrix:\n',confusion_matrix(y_test1,pred3)) print() print('accuracy score:\n',accuracy_score(y_test1,pred3)) ###Output precision recall f1-score support ham 0.98 1.00 0.99 885 spam 0.99 0.91 0.95 149 accuracy 0.99 1034 macro avg 0.99 0.95 0.97 1034 weighted avg 0.99 0.99 0.99 1034 confusion Matrix: [[884 1] [ 14 135]] accuracy score: 0.9854932301740812
assignment_1.ipynb
###Markdown **Import Packages and Load Dataset** ###Code #install kaggle !pip install -q kaggle #download kaggle.json from kaggle.com - account- create API token #upload kaggle.json file here from google.colab import files files.upload() #create a kaggle folder !mkdir -p ~/.kaggle #copy the kaggle.json file to create folder !cp /content/kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json # copy kaggle API to import data from kaggle !kaggle datasets download -d jessemostipak/hotel-booking-demand #unzip the data file !unzip hotel-booking-demand.zip import pandas as pd import numpy as np import seaborn as sns import plotly.express as px import matplotlib import matplotlib.pyplot as plt # A jupyter notebook specific command that let’s you see the plots in the notbook itself. %matplotlib inline df1 = pd.read_csv("/content/hotel_bookings.csv") df1.shape sum(df1.duplicated()) df = df1.copy() df.head(10) ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code df.info() df.describe() #checking null values df.isnull().sum() counts = df['country'].value_counts() counts plt.subplots(figsize=(7,5)) sns.countplot(x='country', hue='hotel', data=df[df['country'].isin(counts[counts > 2000].index)]) plt.show() #filling null values and droping few 'not very useful' coloums df['agent'] = df['agent'].fillna(0) df['children'] = df['children'].fillna(0) df['country'] = df['country'].fillna('PRT') drop_col = ['days_in_waiting_list', 'arrival_date_year', 'assigned_room_type', 'arrival_date_week_number', 'booking_changes', 'reservation_status', 'country', 'days_in_waiting_list', 'customer_type', 'company', ] df.drop(drop_col, axis = 1, inplace = True) df.head(10) df.isnull().sum() df.shape #find the categorical features a = df.select_dtypes(object).columns for i in a: print (i, df[i].nunique()) #According to the above result, It's obvious that I can't use one hot encoding for most of our categorical features! #because that would create a lot of columns and adds a lot of complexity to our model. #Therefore I am going to use label encoding by Lable Encoder in sklearn from sklearn.preprocessing import LabelEncoder le=LabelEncoder() df['reservation_status_date'] = pd.to_datetime(df['reservation_status_date']) df['year'] = df['reservation_status_date'].dt.year df['month'] = df['reservation_status_date'].dt.month df['day'] = df['reservation_status_date'].dt.day df.drop(['reservation_status_date','arrival_date_month'] , axis = 1, inplace = True) df.head(10) a = df.select_dtypes(object).columns list_catv = [] for i in a: print (i, df[i].nunique()) list_catv.append(i) for i in list_catv: df[i] = le.fit_transform(df[i]) df['year'] = le.fit_transform(df['year']) df['month'] = le.fit_transform(df['month']) df['day'] = le.fit_transform(df['day']) df.head(10) #check duplicate sum(df.duplicated()) #remove duplicate df.drop_duplicates(inplace=True) df.shape sns.countplot(df["is_canceled"]) ###Output /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. ###Markdown Canceling rate is pretty much high. 70000> not canceled Vs. 40000> canceled. **Train|Test Split** ###Code from sklearn.model_selection import train_test_split y = df['is_canceled'] X = df.drop('is_canceled', axis = 1) X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=101,test_size=0.3) X_train ###Output _____no_output_____ ###Markdown **Feature Scaling** ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ###Output _____no_output_____ ###Markdown **Train the model** ###Code from sklearn.tree import DecisionTreeClassifier dtc = DecisionTreeClassifier() dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) ###Output _____no_output_____ ###Markdown **Evaluate the model** ###Code from sklearn.metrics import accuracy_score, confusion_matrix, classification_report acc_dtc = accuracy_score(y_test, y_pred_dtc) conf = confusion_matrix(y_test, y_pred_dtc) clf_report = classification_report(y_test, y_pred_dtc) acc_dtc ###Output _____no_output_____ ###Markdown Applying Mathamatical operation (after converting into integer value) ###Code #question1 and qustion2:- "Q1:show all 4 basic opertors with diffrent numbers" "Q2:get user input and do calculations" int(input("value "))+3 #operation int(input("value "))*3 int(input("value "))-3 int(input("value "))/3 ###Output value 552 ###Markdown assigning values to a variable and applying oprations to it ###Code #question3 "Q3:use variables to store user inputs and do multiple calculations with the same variable name" a = 10 #first variable b = 20 #second variable a+b #opration a = 10 b = 20 a-b a = 10 b = 20 a*b a = 10 b = 20 a/b ###Output _____no_output_____ ###Markdown Assigning values to a variable from a input value and applying oprations to it ###Code #question4 "Q4:Get two user inputs and do a calculation between them" a = int(input("first variable ")) #first variable with a assigned input integer value b = int(input("second variable ")) #second variable with a assigned input integer value a+b #operation a = int(input("first variable ")) b = int(input("second variable ")) a-b a = int(input("first variable ")) b = int(input("second variable ")) a*b a = int(input("first variable ")) b = int(input("second variable ")) a/b ###Output first variable 898 second variable 21 ###Markdown 0. Load packages and imports ###Code ## basic functionality import pandas as pd import numpy as np import re import plotnine from plotnine import * ## can add others if you need them ## repeated printouts from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" ###Output _____no_output_____ ###Markdown 0.1: Load the data (0 points)Load the `sentencing_asof0405.csv` data*Notes*: You may receive a warning about mixed data types upon import; feel free to ignore ###Code sentencing = pd.read_csv("sentencing_asof0405.csv") ###Output /opt/conda/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3165: DtypeWarning: Columns (10,11,14,25) have mixed types.Specify dtype option on import or set low_memory=False. ###Markdown 0.2: Print head, dimensions, info (0 points) ###Code sentencing.head() sentencing.info() ###Output _____no_output_____ ###Markdown Part one: data cleaning/interpretation (group) 1.1: Understanding the unit of analysis (5 points)- Print the number of unique values for the following columns. Do so in a way that avoids copying/pasting code for the three: - Cases (`CASE_ID`) - People in that case (`CASE_PARTICIPANT_ID`) - Charges (`CHARGE_ID`)- Write a couple sentences on the following and show an example of each (e.g., a case involving multiple people): - Why there are more unique people than unique cases? - Why there are more unique charges than unique people?- Print the mean and median number of charges per case/participant - Print the mean and median number of participants per case- Does the data seem to enable us to follow the same defendant across different cases they're charged in? Write 1 sentence in support of your conclusion. ###Code sentencing[["CASE_ID", 'CASE_PARTICIPANT_ID', 'CHARGE_ID']].nunique() # Why there are more unique people than unique cases? # Because one case can involve multiple people. # Why there are more unique charges than unique people? # Because one person can be the subject of multiple charges. sentencing.groupby("CASE_ID")["CHARGE_ID"].nunique().agg([np.mean, np.median]) sentencing.groupby("CASE_PARTICIPANT_ID")["CHARGE_ID"].nunique().agg([np.mean, np.median]) sentencing.groupby("CASE_ID")["CASE_PARTICIPANT_ID"].nunique().agg([np.mean, np.median]) sentencing.groupby("CASE_PARTICIPANT_ID")["CASE_ID"].nunique().max() # Does the data seem to enable us to follow the same defendant across different cases they're charged in? # No. When grouping by participant id and finding the max number of cases each participant has, # the max number of cases any participant is charged with is 1, so it seems like # the participant ID changes between cases. ###Output _____no_output_____ ###Markdown 1.2.1: Which offense is final? (3 points)- First, read the data documentation [link](https://datacatalog.cookcountyil.gov/api/views/tg8v-tm6u/files/8597cdda-f7e1-44d1-b0ce-0a4e43f8c980?download=true&filename=CCSAO%20Data%20Glossary.pdf) and summarize in your own words the differences between `OFFENSE_CATEGORY` and `UPDATED_OFFENSE_CATEGORY` - Construct an indicator `is_changed_offense` that's True for case-participant-charge observations (rows) where there's a difference between the original charge (offense category) and the most current charge (updated offense category). What are some of the more common changed offenses? (can just print result of sort_values based on original offense category)- Print one example of a changed offense from one of these categories and comment on what the reason may be ###Code # OFFENSE_CATEGORY is the category of offense encoded before specific charges are brought in a case, # while UPDATED_OFFENSE_CATEGORY is the category of offense encoded based on the primary charge of the case. sentencing["is_changed_offense"] = sentencing["OFFENSE_CATEGORY"] != sentencing["UPDATED_OFFENSE_CATEGORY"] sentencing[sentencing["is_changed_offense"]]["OFFENSE_CATEGORY"].sort_values().first sentencing[sentencing["is_changed_offense"]][["OFFENSE_CATEGORY", "UPDATED_OFFENSE_CATEGORY"]].head(1) # The charge PROMIS Conversion has changed because the prosecution decides whether to charge a # crime as a homicide as enough evidences are collected, and that decision is reflected in UPDATED_OFFENSE_CATEGORY. ###Output _____no_output_____ ###Markdown 1.2.2: Simplifying the charges (5 points)Using the field (`UPDATED_OFFENSE_CATEGORY`), create a new field, `simplified_offense_derived`, that simplifies the many offense categories into broader buckets using the following process:First, combine all offenses beginning with "Aggravated" into a single category without that prefix (e.g., Aggravated Battery and Battery just becomes Battery)Then:- Combine all offenses with arson into a single arson category (`Arson`)- Combine all offenses with homicide into a single homicide category (`Homicide`)- Combine all offenses with vehicle/vehicular in the name into a single vehicle category (`Vehicle-related`)- Combine all offenses with battery in the name into a single battery category (`Battery`)Try to do so efficiently (e.g., using map and a dictionary or np.select rather than separate line for each recoded offense)Print the difference between the of unique offenses in the original `UPDATED_OFFENSE_CATEGORY` field and the of unique offenses in your new `simplified_offense_derived` field ###Code sentencing["simplified_offense_derived"] = sentencing["UPDATED_OFFENSE_CATEGORY"].str.replace("Aggravated ", "") conditions = [sentencing["simplified_offense_derived"].str.contains("Arson"), sentencing["simplified_offense_derived"].str.contains("Homicide"), sentencing["simplified_offense_derived"].str.contains("Vehicle-related"), sentencing["simplified_offense_derived"].str.contains("Battery")] choices = ["Arson", "Homicide", "Vehicle-related", "Battery"] sentencing["simplified_offense_derived"] = np.select(conditions, choices, sentencing["simplified_offense_derived"]) sentencing.UPDATED_OFFENSE_CATEGORY.nunique() - sentencing.simplified_offense_derived.nunique() ###Output _____no_output_____ ###Markdown 1.3: Cleaning additional variables (10 points)Clean the following variables; make sure to retain the original variable in data and use the derived suffix so it's easier to pull these cleaned out variables later (e.g., `age_derived`) to indicate this was a transformation- Race: create True/false indicators for `is_black_derived` (Black only or mixed race with hispanic), Non-Black Hispanic, so either hispanic alone or white hispanic (`is_hisp_derived`), White non-hispanic (`is_white_derived`), or none of the above (`is_othereth_derived`)- Gender: create a boolean true/false indicator for `is_male_derived` (false is female, unknown, or other)- Age at incident: you notice outliers like 130-year olds. Winsorsize the top 0.01% of values to be equal to the 99.99th percentile value pre-winsorization. Call this `age_derived`- Create `sentenceymd_derived` that's a version of `SENTENCING_DATE` converted to datetime format. Also create a rounded version, `sentenceym_derived`, that's rounded down to the first of the month and the year (e.g., 01-05-2016 and 01-27-2016 each become 01-01-2016) - Hint: all timestamps are midnight so u can strip in conversion. For full credit, before converting, you notice that some of the years have been mistranscribed (e.g., 291X or 221X instead of 201X). Programatically fix those (eg 2914 -> 2014). Even after cleaning, there will still be some that are after the year 2021 that we'll filter out later. For partial credit, you can ignore the timestamps that cause errors and set errors = "coerce" within `pd.to_datetime()` to allow the conversion to proceed. - Sentencing judge: create an identifier (`judgeid_derived`) for each unique judge (`SENTENCE_JUDGE`) structured as judge_1, judge_2...., with the order determined by sorting the judges (will sort on fname then last). When finding unique judges, there are various duplicates we could weed out --- for now, just focus on (1) the different iterations of Doug/Douglas Simpson, (2) the different iterations of Shelley Sutker (who appears both with her maiden name and her hyphenated married name). - Hint: due to mixed types, you may need to cast the `SENTENCE_JUDGE` var to a diff type to sortAfter finishing, print a random sample of 10 rows (data.sample(n = 10)) with the original and cleaned columns for the relevant variables to validate your work ###Code sentencing["is_black_derived"] = np.where((sentencing["RACE"] == "Black") | (sentencing["RACE"] == "White/Black [Hispanic or Latino]"), True, False) sentencing["is_hisp_derived"] = np.where((sentencing["RACE"] == "HISPANIC") | (sentencing["RACE"] == "White [Hispanic or Latino]"), True, False) sentencing["is_white_derived"] = np.where((sentencing["RACE"] == "White"), True, False) sentencing["is_othereth_derived"] = np.where((sentencing["is_black_derived"] == False) & (sentencing["is_hisp_derived"] == False) & (sentencing["is_white_derived"] == False), True, False) sentencing["is_male_derived"] = np.where(sentencing["GENDER"] == "Male", True, False) sentencing.AGE_AT_INCIDENT.quantile(q = 0.9999) sentencing["age_derived"] = np.where(sentencing["AGE_AT_INCIDENT"] > 81.0, 81.0, sentencing["AGE_AT_INCIDENT"]) sentencing["sentenceymd_derived"] = sentencing.SENTENCE_DATE.str[:-12] sentencing["sentenceymd_derived"] = np.where(sentencing.sentenceymd_derived.str[-4:-2].astype("int") > 20, sentencing.sentenceymd_derived.str[:-3] + "0" + sentencing.sentenceymd_derived.str[-2:], sentencing.sentenceymd_derived) sentencing["sentenceymd_derived"] = pd.to_datetime(sentencing.sentenceymd_derived) sentencing["sentenceym_derived"] = sentencing.sentenceymd_derived.astype('datetime64[M]') judges = sentencing.groupby("SENTENCE_JUDGE").CASE_ID.count().reset_index() judges["judgeid_derived"] = "judge_" + (judges.index).astype("string") judges = judges[["SENTENCE_JUDGE","judgeid_derived"]] judges[(judges.SENTENCE_JUDGE.str.contains("Doug")) | (judges.SENTENCE_JUDGE.str.contains("Shelley"))] sentencing = pd.merge(sentencing, judges) sentencing["judgeid_derived"] = np.where(sentencing.judgeid_derived == "judge_71", "judge_70", sentencing.judgeid_derived) sentencing["judgeid_derived"] = np.where(sentencing.judgeid_derived == "judge_281", "judge_280", sentencing.judgeid_derived) sentencing[["SENTENCE_JUDGE","judgeid_derived"]][(sentencing.SENTENCE_JUDGE.str.contains("Doug")) | (sentencing.SENTENCE_JUDGE.str.contains("Shelley"))].value_counts() ## print a random sample of 10 rows (data.sample(n = 10)) with the original and cleaned columns for the ## relevant variables to validate your work sample = sentencing[["RACE", "is_black_derived","is_hisp_derived","is_white_derived","is_othereth_derived","GENDER","is_male_derived", "AGE_AT_INCIDENT","age_derived", "SENTENCE_JUDGE","judgeid_derived","SENTENCE_DATE", "sentenceymd_derived","sentenceym_derived"]] sample.sample(n = 10) ###Output _____no_output_____ ###Markdown 1.4: Subsetting rows to analytic dataset (5 points)You decide based on the above to simplify things in the following ways: - Subset to cases where only one participant is charged, since cases with >1 participant might have complications like plea bargains/informing from other participants affecting the sentencing of the focal participant- To go from a participant-case level dataset, where each participant is repeated across charges tied to the case, to a participant-level dataset, where each participant has one charge, subset to a participant's primary charge and their current sentence (`PRIMARY_CHARGE_FLAG` is True and `CURRENT_SENTENCE_FLAG` is True). Double check that this worked by confirming there are no longer multiple charges for the same case-participant- Filter out observations where judge is nan or nonsensical (indicated by is.null or equal to FLOOD)- Subset to sentencing date between 01-01-2012 and 04-05-2021 (inclusive)After completing these steps, print the number of rows in the data ###Code one_participant = sentencing.groupby("CASE_ID").agg(participant_count = ("CASE_PARTICIPANT_ID", "count")).reset_index() one_participant = one_participant[one_participant["participant_count"] == 1] one_participant_series = one_participant.CASE_ID sentencing = sentencing[sentencing.CASE_ID.isin(one_participant_series)] sentencing = sentencing[(sentencing.PRIMARY_CHARGE_FLAG == True) & (sentencing.CURRENT_SENTENCE_FLAG == True)] sentencing[["CASE_ID", 'CASE_PARTICIPANT_ID', 'CHARGE_ID']].count() sentencing.shape sentencing = sentencing[(~sentencing.SENTENCE_JUDGE.isnull()) & (sentencing.SENTENCE_JUDGE != "FLOOD")] sentencing = sentencing[(sentencing.sentenceymd_derived >= "01-01-2012") & (sentencing.sentenceymd_derived <= "04-05-2021")] sentencing.shape[0] ###Output _____no_output_____ ###Markdown Part two: investigating Black vs. White sentencing disparitiesNow that the data are cleaned, we're going to investigate different types of disparities in sentencing between Black defendants and White defendants. We're focusing on these groups for the purpose of the problem set, but the analysis could be extended to study Hispanic defendants or, in a different jurisdiction, Asian and other minoritized groups.**Details if interested in digging deeper**: If interested (optional), you can read more technical coverage of how we might (1) measure disparities, and (2) what factors you want to adjust for when deciding whether two defendants are 'similarly situated' but for their race in the following sources:- [Review of sentencing disparities research](https://www.journals.uchicago.edu/doi/full/10.1086/701505)- [Discussion of causal model/blinding race at charging stage of the prosecutorial process](https://5harad.com/papers/blind-charging.pdf)- [Discussion of measuring discrimination in policing that can generalize to the sentencing case](https://www.annualreviews.org/doi/abs/10.1146/annurev-criminol-011518-024731)- [General discussion of causal challenges in measuring between-group disparities](https://osf.io/preprints/socarxiv/gx4y3/)**One major caveat**: when investigating whether two similar defendants received different sentences, we're missing one important attribute that influences sentencing: the defendant's criminal history. This influences sentencing both through sentencing guidelines, which can prescribe longer sentences for those who have certain types of prior convictions, and through judicial discretion if judges are more lenient with first-time defendants. The above sources discuss how much we want to "control away" for this prior history, since if we think there are racial biases in which defendants, conditional on *committing* a crime, are arrested and charged, we may not want to adjust for that factor. More discussion [in this article](https://www.themarshallproject.org/2019/12/03/the-growing-racial-disparity-in-prison-time) 2.0: (0 points) First, read in the following dataset (regardless of progress on part one): `sentencing_cleaned.pkl` (if you can't read in the pkl you can read in the .csv format but may need to recast some of the datetime columns)*Note*: don't worry if there are slight differences in your output from Part One and this dataset/it's not a good use of time to try to reverse engineer Part One answers from this cleaned data. ###Code sent_cleaned = pd.read_pickle("sentencing_cleaned.pkl") ###Output _____no_output_____ ###Markdown 2.1: Investigating one type of between-group difference: who reaches the sentencing stage? (5 points)Tabulate and visualize the proportion of defendants, out of all defendants sentenced in a given month/year, who are Black and who are White (separate proportions)- Denominator is number of unique cases that month- Numerator for black defendants is count of is_black_derived- Numerator for white defendants is count of is_white_derived- Fraction of each is numerator/denominator- Print the table- Create a graph with two lines--- one for Black defendants as fraction of total; another for White defendants. Make sure it includes a legend summarizing which color is for which group, and clean the legend so that it has informative names (e.g., Black or White rather than prop_black or prop_white)- Use mathematical notation to write out each of the proportions using summation notation in a 1-2 sentence writeup describing trends. What seems to be going on in April and May 2020? **Optional challenge**: improve the viz by shading the background of the visualization for months with fewer than 100 cases **Optional challenge**: improve the viz by adding a vertical line for 12-01-2016, the month that new State's Attorney Foxx took office ###Code table = sent_cleaned.groupby("sentenceym_derived").agg(black_defendent = ("is_black_derived","sum"), white_defendent = ("is_white_derived", "sum"), denominator = ("CASE_ID", "nunique")) table["black_fraction"] = table.black_defendent / table.denominator table["white_fraction"] = table.white_defendent / table.denominator table plot = table.rename(columns = {"black_fraction": "Black", "white_fraction" : "White"}).reset_index() plot = plot[["Black", "White"]].plot(kind="line", figsize=(20, 8)) plot.set_xlabel("Sentence Date") plot.set_ylabel("Proportion of Defendants") ###Output _____no_output_____ ###Markdown $\frac{\sum Black Defendants}{\sum Defendants}$ per month is signficinatly higher (about 6 times higher) than $\frac{\sum White Defendants}{\sum Defendants}$ per month throughout most of the time between 2012 and 2021. However, during April and May of 2020, $\frac{\sum Black Defendants}{\sum Defendants}$ per month drops signficiantly (but still higher than $\frac{\sum White Defendants}{\sum Defendants}$); meanwhile $\frac{\sum White Defendants}{\sum Defendants}$ of that two months increases obviously. 2.2: Investigating the first type of disparity: probation versus incaceration (10 points)One type of disparity beyond who arrives at the sentencing stage is whether the defendant receives probation or incaceration.According to the codebook, incarceration is indicated by `COMMITMENT_TYPE` == "Illinois Department of Corrections"Recreate the previous plot but where the y axis represents the difference between the following proportions (can be either Black - White or White - Black but make sure to label), adding a smoothed line:- Percent of black defendants who are incarcerated out of all black defendants that month/year - Percent of white defendants who are incarcerated out of all white defendants that month/year In a markdown cell after, write 1-2 sentences on your observations of trends over time. Do gaps seem to be widening or increasing? ###Code sent_cleaned["black_incarc"] = np.where((sent_cleaned.is_black_derived == True) & (sent_cleaned.COMMITMENT_TYPE == "Illinois Department of Corrections"), True, False) sent_cleaned["white_incarc"] = np.where((sent_cleaned.is_white_derived == True) & (sent_cleaned.COMMITMENT_TYPE == "Illinois Department of Corrections"), True, False) table2 = sent_cleaned.groupby("sentenceym_derived").agg(black_total = ("is_black_derived","sum"), white_total = ("is_white_derived", "sum"), all_total = ("CASE_ID", "nunique"), black_incarc = ("black_incarc", "sum"), white_incarc = ("white_incarc", "sum")).reset_index() table2["black_incarc_proportion"] = table2.black_incarc / table2.black_total table2["white_incarc_proportion"] = table2.white_incarc / table2.white_total table2["difference(black-white)"] = table2.black_incarc_proportion - table2.white_incarc_proportion plot_table2 = ggplot(table2, aes(x = "sentenceym_derived")) + \ geom_line(aes(y = 'black_incarc_proportion'), color = "blue") + \ geom_line(aes(y = 'white_incarc_proportion'), color = "red") + \ stat_smooth(aes(y = 'black_incarc_proportion'), color = "blue") + \ stat_smooth(aes(y = 'white_incarc_proportion'), color = "red") + \ annotate("text", x = pd.to_datetime("2014-10-05"), y = .53, label = "black defendants", color = "blue") + \ annotate("text", x = pd.to_datetime("2014-10-05"), y = .29, label = "white defendants", color = "red") + \ theme(axis_text_x = element_text(angle = 90)) + \ labs(x="Date", y= "Proportion of Incarceration") plot_table2 # Proportions of incarceration seem to be decreasing for white and black defendants, # and the gap between races is also shrinking slightly. Notably, in the first few months of 2020, # the incarceration proportions for black defendants decrease signficantly for black defendant to # and extent that is lower than White defendent; however, the decrease is follows by an immediate increase. ###Output _____no_output_____ ###Markdown 2.3: Investigating mechanisms: incaceration rates by chargeYour colleague sees the previous graph and is worried that the gap could be different---either wider or smaller---if you adjust for the fact that prosecutors have discretion in what crimes to charge defendants with. If white defendants are charged with crimes that tend to receive probation rather than incarceration, that could explain some of the gaps.In the next questions, you'll begin to investigate this. 2.3.1: Find the most common offenses (3 points)First, create a set of 'frequent offenses' that represent (over the entire period) the union of the 10 offenses Black defendant are most likely to be charged with and the 10 offenses white defendants are most likely to be charged with (might be far less than 20 total if there's a lot of overlap in common charges)Use the `simplified_offense_derived` for this ###Code white_frequent = sent_cleaned["simplified_offense_derived"][sent_cleaned.is_white_derived==True].value_counts().head(10).to_frame().reset_index() white_frequent = set(white_frequent["index"]) black_frequent = sent_cleaned["simplified_offense_derived"][sent_cleaned.is_black_derived==True].value_counts().head(10).to_frame().reset_index() black_frequent = set(black_frequent["index"]) not_in_black = set(white_frequent - black_frequent) frequent = list(black_frequent) + list(not_in_black) frequent ###Output _____no_output_____ ###Markdown 2.3.2: Look at incarceration rates (again just whether incarcerated) by race and offense type for these top offenses (3 points)Print a wide-format version of the resulting table (so each row is an offense type, one col is black incarceration rate for that offense type; another is the white incarceration rate) and interpret. Which offenses show the largest disparities in judges being less likely to sentence White defendants to incarceration/more likely to offer those defendants probation? ###Code table3 = sent_cleaned[sent_cleaned.simplified_offense_derived.isin(frequent)] table3 = table3.groupby("simplified_offense_derived").agg(black_total = ("is_black_derived","sum"), white_total = ("is_white_derived", "sum"), all_total = ("CASE_ID", "nunique"), black_incarc = ("black_incarc", "sum"), white_incarc = ("white_incarc", "sum")) table3["black_incarceration_rate"] = table3.black_incarc / table3.black_total table3["white_incarceration_rate"] = table3.white_incarc / table3.white_total table3["Difference_Btw_Rate_Black_Minus_White"] = table3["black_incarceration_rate"] - table3["white_incarceration_rate"] table3[["black_incarceration_rate", "white_incarceration_rate", "Difference_Btw_Rate_Black_Minus_White"]].sort_values("Difference_Btw_Rate_Black_Minus_White", ascending=False) # Racial disparities in incarceration rates are greatest for Narcotics, Battery, and UUW charges. For all charges # other than vehicle-realted offenses, judges are more likely to incarcerate black defendents than white. This may be # a result of judges being more likely to offer white defendants probation. ###Output _____no_output_____ ###Markdown 2.3.3: Examine whether this changes pre and post change to charging threshold for retail theft (13 points)One important question is not only whether there are disparities by offense type but also whether these disparities are changing over time.The SAO, for instance, announced in December of 2016 that they would no longer default to charging retail thefts of under \$1,000 as felonies. This change might have (1) decreased disparities or (2) increased disparities, depending on the correlation between race/ethnicity and magnitude of goods stolen: [news coverage](https://www.dnainfo.com/chicago/20161215/little-village/kim-foxx-raises-bar-for-retail-theft-felonies/). Focusing on `simplified_offense_derived` == "Retail theft." Using a function and/or loop (Dec. 2016 is always excluded as a transition month):- Compare Black-White disparities before and after the change using a two-month bandwidth (so pre is October and November 2016; post is January and February 2017)- Compare Black-White disparities before and after the change using a four-month bandwidth (so pre is August- November 2016; post is January - April 2017)- Compare Black-White disparities using an eight-month bandwidth- Compare Black-White disparities using a twelve-month bandwidth------------------ - Print a table with the results (any organization is fine as long as it's clear) - Create a bar chart where the x axis represents different bandwidths (2, 4, etc); the y axis the size of the Black-White gap in whether the defendant receives incarceration, and for each of the x axis points, you have one shaded bar representing "before" the change, another representing "after" the change (make sure that before is ordered before after and the bandwidths are from smallest to largest)*Note*: for each of the bandwidths include dates the entire month (e.g., for the first, include not only 02-01-2017 but everything up through 02-28-2017; easiest way is for the subsetting to use the rounded `sentenceym_derived`). Also make sure to only include white or black defendants.**Extra credit**: because the bandwidths have different sample sizes, a better viz incorporates measures of uncertainty. Add standard errors to the estimates using the formula: $(\dfrac{p(1-p)}{n})^{0.5}$ where $p$ is the gap and $N$ is the number of cases in each bandwidth period ###Code retail_theft = sent_cleaned[sent_cleaned.simplified_offense_derived == "Retail Theft"] retail_theft = retail_theft[(retail_theft.is_black_derived == True) | (retail_theft.is_white_derived == True)] def bandwidth(search_in, date_min, date_max): new_frame = search_in[(search_in.sentenceymd_derived >= date_min) & (search_in.sentenceymd_derived <= date_max)] new_frame = new_frame[(new_frame.sentenceymd_derived < "2016-12-01") | (new_frame.sentenceymd_derived > "2016-12-31")] new_frame["before_or_after"] = np.where(new_frame.sentenceymd_derived < "2016-12-01", "before change", "following change") table = new_frame.groupby("before_or_after").agg(black_total = ("is_black_derived","sum"), white_total = ("is_white_derived", "sum"), black_incarc = ("black_incarc", "sum"), white_incarc = ("white_incarc", "sum")) table["black_incarc_proportion"] = table.black_incarc / table.black_total table["white_incarc_proportion"] = table.white_incarc / table.white_total table["Black_White_Gap"] = table["black_incarc_proportion"] - table["white_incarc_proportion"] return(table) two_month = bandwidth(retail_theft, "2016-10-01", "2017-02-28") two_month["bandwidth"] = "2 month" four_month = bandwidth(retail_theft, "2016-08-01", "2017-04-30") four_month["bandwidth"] = "4 month" eight_month = bandwidth(retail_theft, "2016-04-01", "2017-08-31") eight_month["bandwidth"] = "8 month" twelve_month = bandwidth(retail_theft, "2015-12-01", "2017-12-31") twelve_month["bandwidth"] = "12 month" combined = two_month.append([four_month, eight_month, twelve_month]).reset_index() combined ggplot(combined, aes(x = "bandwidth", y = "Black_White_Gap", fill = "before_or_after")) + \ geom_bar(position = "dodge", stat="identity") + \ scale_x_discrete(limits=["2 month", "4 month", "8 month", "12 month"])+ \ annotate("text", x = 0.7, y = .1, label = "0.0185", color = "blue") + \ annotate("text", x = 1.2, y = .16, label = "0.0226", color = "blue") + \ annotate("text", x = 1.76, y = .09, label = "0.0122", color = "blue") + \ annotate("text", x = 2.26, y = .09, label = "0.0138", color = "blue")+ \ annotate("text", x = 2.76, y = .14, label = "0.0109", color = "blue") + \ annotate("text", x = 3.26, y = .05, label = "0.0081", color = "blue") + \ annotate("text", x = 3.76, y = .17, label = "0.0097", color = "blue") + \ annotate("text", x = 4.26, y = .07, label = "0.0088", color = "blue") # annotate("text", x = pd.to_datetime("2014-10-05"), y = .29, label = "white defendants", color = "red") + \ ###Output _____no_output_____ ###Markdown 2.3.3.1: Interpret the results (2 points)Write a two-sentence interpretation of the results. What might this show about how people on both sides of the issue---those who argued that the retail theft policy change would narrow disparities; those who argued that the change may widen disparities--could support their claims? ###Code ## Indeed, in the two month bandwidth, the policy change widens the disparities significantly as shown in the graph. ## However, when we increase the bandwidth to 8 or 12 month, those who argued that the policy change narrow ## dispairities are valid. Overall, the results evidence that bandwidth matters and would show different results in terms of disparities. ## Lastly, it is important to note that disparities still exist even when we expand the bandwidth. ###Output _____no_output_____ ###Markdown Q1. Write a python code for finding mean, median and mode. ###Code import numpy from scipy import stats age= [19,46,67,38,11,46,13,57,44,78,37,55,36] x = numpy.mean(age) y = numpy.median(age) z = stats.mode(age) print('Mean = ',x) print('Median = ',y) print('Mode = ',z) ###Output Mode = ModeResult(mode=array([46]), count=array([2])) ###Markdown Q2. Write a python code for calculating variance and standard deviation for the set of elements. ###Code s = numpy.std(age) v = numpy.var(age) print('Standard Deviation = ',s) print('Variacnce = ',v) ###Output Variacnce = 366.07100591715977 ###Markdown Practice some basic python programs ###Code # This program prints Hello, world! print('Hello, world!') # This program adds two numbers num1 = 1.5 num2 = 6.3 # Add two numbers sum = num1 + num2 # Display the sum print('The sum of {0} and {1} is {2}'.format(num1, num2, sum)) # Python Program to calculate the square root num = 8 num_sqrt = num ** 0.5 print('The square root of %0.3f is %0.3f'%(num ,num_sqrt)) # Solve the quadratic equation ax**2 + bx + c = 0 # import complex math module import cmath a = 1 b = 5 c = 6 # calculate the discriminant d = (b**2) - (4*a*c) # find two solutions sol1 = (-b-cmath.sqrt(d))/(2*a) sol2 = (-b+cmath.sqrt(d))/(2*a) print('The solution are {0} and {1}'.format(sol1,sol2)) # Python program to swap two variables x = 5 y = 10 # create a temporary variable and swap the values temp = x x = y y = temp print('The value of x after swapping: {}'.format(x)) print('The value of y after swapping: {}'.format(y)) # Program to generate a random number between 0 and 9 # importing the random module import random print(random.randint(0,9)) ###Output 3 ###Markdown ###Code def Myfunc_a(n): a = [] for i in range(0, int(1000/n)): a.append(n*(i+1)) return a def Myfunc_b(a, b): c = Myfunc_a(1) d = Myfunc_a(a) e = Myfunc_a(b) f = [x for x in c if x not in d] g = [x for x in f if x not in e] return sum(g) def Myfunc_c(a): k = [] for i in range(1, a): if a%(i+1) == 0: k.append(i+1) if len(k) == 1: print("a is a prime number.") return k else: return k def Myfunc_d(a,b): ans1 = [] ans2 = [] for j in range(1, 1001): for i in range(1, a + 1): if (a % i == 0) & (j % i == 0): y = i if y == 1: ans1.append(j) for l in range(1, 1001): for i in range(1, b + 1): if (b % i == 0) & (l % i == 0): y = i if y == 1: ans2.append(l) h = [x for x in ans1 if x in ans2] return sum(h) ###Output 166333 ###Markdown Assignment 1 Quick intro + checking code works on your system Learning Outcomes: The goal of this assignment is two-fold:- This code-base is designed to be easily extended for different research projects. Running this notebook to the end will ensure that the code runs on your system, and that you are set-up to start playing with machine learning code.- This notebook has one complete application: training a CNN classifier to predict the digit in MNIST Images. The code is written to familiarize you to a typical machine learning pipeline, and to the building blocks of code used to do ML. So, read on! Please specify your Name, Email ID and forked repository url here:- Name: Ahmad Saaid- Email: [email protected] Link to your forked github repository: https://github.com/ahmad-saaid/Harvard_BAI ###Code ### General libraries useful for python ### import os import sys from tqdm.notebook import tqdm import json import random import pickle import copy from IPython.display import display import ipywidgets as widgets from google.colab import drive drive.mount('/content/drive') ### Finding where you clone your repo, so that code upstream paths can be specified programmatically #### ## work_dir = os.getcwd() git_dir = '/content/drive/MyDrive/Harvard_BAI' print('Your github directory is :%s'%git_dir) ### Libraries for visualizing our results and data ### from PIL import Image import matplotlib.pyplot as plt ### Import PyTorch and its components ### import torch import torchvision import torch.nn as nn import torch.optim as optim ###Output _____no_output_____ ###Markdown Let's load our flexible code-base which you will build on for your research projects in future assignments.Above we have imported modules (libraries for those familiar to programming languages other than python). These modules are of two kinds - (1) inbuilt python modules like `os`, `sys`, `random`, or (2) ones which we installed using conda (ex. `torch`).Below we will be importing our own written code which resides in the `res` folder in your github directory. This is structured to be easily expandable for different machine learning projects. Suppose that you want to do a project on object detection. You can easily add a few files to the sub-folders within `res`, and this script will then be flexibly do detection instead of classication (which is presented here). Expanding on this codebase will be the main subject matter of Assignment 2. For now, let's continue with importing. ###Code ### Making helper code under the folder res available. This includes loaders, models, etc. ### sys.path.append('%s/res/'%git_dir) from models.models import get_model from loader.loader import get_loader ###Output _____no_output_____ ###Markdown See those paths printed above? `res/models` holds different model files. So, if you want to load ResNet architecture or a transformers architecture, they will reside there as separate files. Similarly, `res/loader` holds programs which are designed to load different types of data. For example, you may want to load data differently for object classification and detection. For classification each image will have only a numerical label corresponding to its category. For detection, the labels for the same image would contain bounding boxes for different objects and the type of the object in the box. So, to expand further you will be adding files to the folders above. Setting up Weights and Biases for tracking your experiments. We have Weights and Biases (wandb.ai) integrated into the code for easy visualization of results and for tracking performance. `Please make an account at wandb.ai, and follow the steps to login to your account!` ###Code pip install wandb import wandb wandb.login() ###Output _____no_output_____ ###Markdown Specifying settings/hyperparameters for our code below ###Code wandb_config = {} wandb_config['batch_size'] = 10 wandb_config['base_lr'] = 0.01 wandb_config['model_arch'] = 'CustomCNN' wandb_config['num_classes'] = 10 wandb_config['run_name'] = 'assignment_1' ### If you are using a CPU, please set wandb_config['use_gpu'] = 0 below. However, if you are using a GPU, leave it unchanged #### wandb_config['use_gpu'] = 1 wandb_config['num_epochs'] = 2 wandb_config['git_dir'] = git_dir ###Output _____no_output_____ ###Markdown By changing above, different experiments can be run. For example, you can specify which model architecture to load, which dataset you will be loading, and so on. Data Loading The most common task many of you will be doing in your projects will be running a script on a new dataset. In PyTorch this is done using data loaders, and it is extremely important to understand this works. In next assignment, you will be writing your own dataloader. For now, we only expose you to basic data loading which for the MNIST dataset for which PyTorch provides easy functions. Let's load MNIST. The first time you run it, the dataset gets downloaded. Data Transforms tell PyTorch how to pre-process your data. Recall that images are stored with values between 0-255 usually. One very common pre-processing for images is to normalize to be 0 mean and 1 standard deviation. This pre-processing makes the task easier for neural networks. There are many, many kinds of normalization in deep learning, the most basic one being those imposed on the image data while loading it. ###Code data_transforms = {} data_transforms['train'] = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,))]) data_transforms['test'] = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,))]) ###Output _____no_output_____ ###Markdown `torchvision.datasets.MNIST` allows you to load MNIST data. In future, we will be using our own `get_loader` function from above to load custom data. Notice that data_transforms are passed as argument while loading the data below. ###Code mnist_dataset = {} mnist_dataset['train'] = torchvision.datasets.MNIST('%s/datasets'%wandb_config['git_dir'], train = True, download = True, transform = data_transforms['train']) mnist_dataset['test'] = torchvision.datasets.MNIST('%s/datasets'%wandb_config['git_dir'], train = False, download = True, transform = data_transforms['test']) ###Output _____no_output_____ ###Markdown Dataset vs Dataloader Most deep learning datasets are huge. Can be as large as million data points. We want to keep our GPUs free to store intermediate calculations for neural networks, like gradients. We would not be able to load a million samples into the GPU (or even CPU) and do forward or backward passes on the network. So, samples are loaded in batches, and this method of gradient descent is called mini-batch gradient descent. `torch.utils.data.DataLoader` allows you to specify a pytorch dataset, and makes it easy to loop over it in batches. So, we leverage this to create a data loader from our above loaded MNIST dataset. The dataset itself only contains lists of where to find the inputs and outputs i.e. paths. The data loader defines the logic on loading this information into the GPU/CPU and so it can be passed into the neural net. ###Code data_loaders = {} data_loaders['train'] = torch.utils.data.DataLoader(mnist_dataset['train'], batch_size = wandb_config['batch_size'], shuffle = True) data_loaders['test'] = torch.utils.data.DataLoader(mnist_dataset['test'], batch_size = wandb_config['batch_size'], shuffle = False) data_sizes = {} data_sizes['train'] = len(mnist_dataset['train']) data_sizes['test'] = len(mnist_dataset['test']) ###Output _____no_output_____ ###Markdown We will use the `get_model` functionality to load a CNN architecture. ###Code model = get_model(wandb_config['model_arch'], wandb_config['num_classes']) ###Output _____no_output_____ ###Markdown Curious what the model architecture looks like?`get_model` is just a function in the file `res/models/models.py`. Stop here, open this file, and see what the function does. ###Code layout = widgets.Layout(width='auto', height='90px') #set width and height button = widgets.Button(description="Read the function?\n Click me!", layout=layout) output = widgets.Output() display(button, output) def on_button_clicked(b): with output: print("As you can see, the function simply returns an object of the class CustomCNN, which is defined in res/models/CustomCNN.py") print("This is our neural network model.") button.on_click(on_button_clicked) ###Output _____no_output_____ ###Markdown Below we have the function which trains, tests and returns the best model weights. ###Code def model_pipeline(model, criterion, optimizer, dset_loaders, dset_sizes, hyperparameters): with wandb.init(project="HARVAR_BAI", config=hyperparameters): if hyperparameters['run_name']: wandb.run.name = hyperparameters['run_name'] config = wandb.config best_model = model best_acc = 0.0 print(config) print(config.num_epochs) for epoch_num in range(config.num_epochs): wandb.log({"Current Epoch": epoch_num}) model = train_model(model, criterion, optimizer, dset_loaders, dset_sizes, config) best_acc, best_model = test_model(model, best_acc, best_model, dset_loaders, dset_sizes, config) return best_model ###Output _____no_output_____ ###Markdown The different steps of the train model function are annotated below inside the function. Read them step by step ###Code def train_model(model, criterion, optimizer, dset_loaders, dset_sizes, configs): print('Starting training epoch...') best_model = model best_acc = 0.0 ### This tells python to track gradients. While testing weights aren't updated hence they are not stored. model.train() running_loss = 0.0 running_corrects = 0 iters = 0 ### We loop over the data loader we created above. Simply using a for loop. for data in tqdm(dset_loaders['train']): inputs, labels = data ### If you are using a gpu, then script will move the loaded data to the GPU. ### If you are not using a gpu, ensure that wandb_configs['use_gpu'] is set to False above. if configs.use_gpu: inputs = inputs.float().cuda() labels = labels.long().cuda() else: print('WARNING: NOT USING GPU!') inputs = inputs.float() labels = labels.long() ### We set the gradients to zero, then calculate the outputs, and the loss function. ### Gradients for this process are automatically calculated by PyTorch. optimizer.zero_grad() outputs = model(inputs) _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) ### At this point, the program has calculated gradient of loss w.r.t. weights of our NN model. loss.backward() optimizer.step() ### optimizer.step() updated the models weights using calculated gradients. ### Let's store these and log them using wandb. They will be displayed in a nice online ### dashboard for you to see. iters += 1 running_loss += loss.item() running_corrects += torch.sum(preds == labels.data) wandb.log({"train_running_loss": running_loss/float(iters*len(labels.data))}) wandb.log({"train_running_corrects": running_corrects/float(iters*len(labels.data))}) epoch_loss = float(running_loss) / dset_sizes['train'] epoch_acc = float(running_corrects) / float(dset_sizes['train']) wandb.log({"train_accuracy": epoch_acc}) wandb.log({"train_loss": epoch_loss}) return model def test_model(model, best_acc, best_model, dset_loaders, dset_sizes, configs): print('Starting testing epoch...') model.eval() ### tells pytorch to not store gradients as we won't be updating weights while testing. running_corrects = 0 iters = 0 for data in tqdm(dset_loaders['test']): inputs, labels = data if configs.use_gpu: inputs = inputs.float().cuda() labels = labels.long().cuda() else: print('WARNING: NOT USING GPU!') inputs = inputs.float() labels = labels.long() outputs = model(inputs) _, preds = torch.max(outputs.data, 1) iters += 1 running_corrects += torch.sum(preds == labels.data) wandb.log({"train_running_corrects": running_corrects/float(iters*len(labels.data))}) epoch_acc = float(running_corrects) / float(dset_sizes['test']) wandb.log({"test_accuracy": epoch_acc}) ### Code is very similar to train set. One major difference, we don't update weights. ### We only check the performance is best so far, if so, we save this model as the best model so far. if epoch_acc > best_acc: best_acc = epoch_acc best_model = copy.deepcopy(model) wandb.log({"best_accuracy": best_acc}) return best_acc, best_model ### Criterion is simply specifying what loss to use. Here we choose cross entropy loss. criterion = nn.CrossEntropyLoss() ### tells what optimizer to use. There are many options, we here choose Adam. ### the main difference between optimizers is that they vary in how weights are updated based on calculated gradients. optimizer_ft = optim.Adam(model.parameters(), lr = wandb_config['base_lr']) if wandb_config['use_gpu']: criterion.cuda() model.cuda() ### Creating the folder where our models will be saved. if not os.path.isdir("%s/saved_models/"%wandb_config['git_dir']): os.mkdir("%s/saved_models/"%wandb_config['git_dir']) ### Let's run it all, and save the final best model. best_final_model = model_pipeline(model, criterion, optimizer_ft, data_loaders, data_sizes, wandb_config) save_path = '%s/saved_models/%s_final.pt'%(wandb_config['git_dir'], wandb_config['run_name']) with open(save_path,'wb') as F: torch.save(best_final_model,F) ###Output _____no_output_____ ###Markdown Statement 1 - Does precipitation play significant role in predicting temperature? Null Hypothesis: There is no significant difference between the mean temperature on rainy and non-rainy days Alternate Hypothesis: There is a significant difference between the mean temperature on rainy and non-rainy days ###Code M_mean = df_weather.loc[df_weather['Precip Type'] == 'rain', 'Temperature (C)'].mean() F_mean = df_weather.loc[df_weather['Precip Type'] == 'snow', 'Temperature (C)'].mean() M_std = df_weather.loc[df_weather['Precip Type'] == 'rain', 'Temperature (C)'].std() F_std = df_weather.loc[df_weather['Precip Type'] == 'snow', 'Temperature (C)'].std() no_of_M = df_weather.loc[df_weather['Precip Type'] == 'rain', 'Temperature (C)'].count() no_of_F = df_weather.loc[df_weather['Precip Type'] == 'snow', 'Temperature (C)'].count() from scipy.stats import norm def twoSampZ(X1, X2, mudiff, sd1, sd2, n1, n2): pooledSE = np.sqrt(sd1**2/n1 + sd2**2/n2) z = ((X1 - X2) - mudiff)/pooledSE pval = 2*(1 - norm.cdf(abs(z))) return round(z,3), pval z,p= twoSampZ(M_mean,F_mean,0,M_std,F_std,no_of_M,no_of_F) print(z, p) import statsmodels.stats.weightstats as ws col1 = ws.DescrStatsW(df_weather.loc[df_weather['Precip Type'] == 'rain', 'Temperature (C)']) col2 = ws.DescrStatsW(df_weather.loc[df_weather['Precip Type'] == 'snow', 'Temperature (C)']) cm_obj = ws.CompareMeans(col1, col2) zstat, z_pval = cm_obj.ztest_ind(usevar='unequal') print(zstat.round(3), z_pval.round(3)) from scipy.stats import ttest_ind ttest_ind(df_weather.loc[df_weather['Precip Type'] == 'rain', 'Temperature (C)'], df_weather.loc[df_weather['Precip Type'] == 'snow', 'Temperature (C)'], equal_var = False ) ###Output _____no_output_____ ###Markdown Thus we can reject the null hypothesis; and retain the precipitation type feature Statement 2 - Does mean temperature varies significantly for different summaries? Null Hypothesis: There is no significant difference between the mean temperature among different summary group Alternate Hypothesis: There is significant difference between the mean temperature among different summary group Statement 3 - Does the temperature is normaly distributed? Null Hypothesis: The temperature is normally distributed Alternate Hypothesis: The temperature is not normally distributed ###Code from scipy.stats.mstats import normaltest normaltest(df_weather['Temperature (C)'].values) normaltest(df_weather['Humidity']) df_weather['Humidity'].values ###Output _____no_output_____ ###Markdown ###Code import pandas as pd import numpy as np from sklearn import linear_model import matplotlib.pyplot as plt dataFrame = pd.read_csv('homeprices.csv') dataFrame %matplotlib inline plt.xlabel('area') plt.ylabel('price') plt.scatter(dataFrame.area, dataFrame.price, color='red', marker='+') new_dataFrame = dataFrame.drop('price', axis='columns') new_dataFrame price = dataFrame.price price reg = linear_model.LinearRegression() reg.fit(new_dataFrame, price) reg.predict([[3300]]) reg.coef_ reg.intercept_ 3300*135.78767123 + 180616.43835616432 reg.predict([[5000]]) area_dataFrame = pd.read_csv("areas.csv") area_dataFrame.head(3) prediction = reg.predict(area_dataFrame) prediction area_dataFrame['prices'] = prediction area_dataFrame area_dataFrame.to_csv("prediction.csv") ###Output _____no_output_____
Regression/CatBoost/CatBoostRegressor.ipynb
###Markdown Simple CatBoostRegressor This Code template is for regression analysis using CatBoostRegressor. CatBoost is an algorithm for gradient boosting on decision trees. Required Packages ###Code !pip install catboost import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from catboost import CatBoostRegressor from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= '' ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target='' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X = df[features] Y = df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Data SplittingThe train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ###Code x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ###Output _____no_output_____ ###Markdown ModelCatBoost is an algorithm for gradient boosting on decision trees. Developed by Yandex researchers and engineers, it is the successor of the MatrixNet algorithm that is widely used within the company for ranking tasks, forecasting and making recommendations Tuning parameters1. **learning_rate**:, float, default = it is defined automatically for Logloss, MultiClass & RMSE loss functions depending on the number of iterations if none of these parameters is set>The learning rate. Used for reducing the gradient step.2. **l2_leaf_reg**: float, default = 3.0>Coefficient at the L2 regularization term of the cost function. Any positive value is allowed.3. **bootstrap_type**: string, default = depends on the selected mode and processing unit>Bootstrap type. Defines the method for sampling the weights of objects. * Supported methods: * Bayesian * Bernoulli * MVS * Poisson (supported for GPU only) * No4. **subsample**: float, default = depends on the dataset size and the bootstrap type>Sample rate for bagging. This parameter can be used if one of the following bootstrap types is selected: * Poisson * Bernoulli * MVSFor more information refer: [API](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html) ###Code # Build Model here model = CatBoostRegressor(verbose=False) model.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Model Accuracyscore() method return the mean accuracy on the given test data and labels.In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. ###Code print("Accuracy score {:.2f} %\n".format(model.score(x_test,y_test)*100)) ###Output Accuracy score 96.49 % ###Markdown > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ###Code y_pred=model.predict(x_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ###Output R2 Score: 96.49 % Mean Absolute Error 2.30 Mean Squared Error 10.32 ###Markdown Prediction PlotFirst, we make use of a plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis.For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ###Code plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),model.predict(x_test[0:20]), color = "red") plt.legend(["Actual","prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ###Output _____no_output_____
[Master]Fine_Tune_BERT_for_Text_Classification_with_TensorFlow.ipynb
###Markdown Fine-Tune BERT for Text Classification with TensorFlow Figure 1: BERT Classification Model In this project, you will learn how to fine-tune a BERT model for text classification using TensorFlow and TF-Hub. The pretrained BERT model used in this project is [available](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2) on [TensorFlow Hub](https://tfhub.dev/). Learning Objectives By the time you complete this project, you will be able to:- Build TensorFlow Input Pipelines for Text Data with the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API- Tokenize and Preprocess Text for BERT- Fine-tune BERT for text classification with TensorFlow 2 and [TF Hub](https://tfhub.dev) Prerequisites In order to be successful with this project, it is assumed you are:- Competent in the Python programming language- Familiar with deep learning for Natural Language Processing (NLP)- Familiar with TensorFlow, and its Keras API Contents This project/notebook consists of several Tasks.- **[Task 1]()**: Introduction to the Project.- **[Task 2]()**: Setup your TensorFlow and Colab Runtime- **[Task 3]()**: Download and Import the Quora Insincere Questions Dataset- **[Task 4]()**: Create tf.data.Datasets for Training and Evaluation- **[Task 5]()**: Download a Pre-trained BERT Model from TensorFlow Hub- **[Task 6]()**: Tokenize and Preprocess Text for BERT- **[Task 7]()**: Wrap a Python Function into a TensorFlow op for Eager Execution- **[Task 8]()**: Create a TensorFlow Input Pipeline with `tf.data`- **[Task 9]()**: Add a Classification Head to the BERT `hub.KerasLayer`- **[Task 10]()**: Fine-Tune BERT for Text Classification- **[Task 11]()**: Evaluate the BERT Text Classification Model Task 2: Setup your TensorFlow and Colab Runtime. You will only be able to use the Colab Notebook after you save it to your Google Drive folder. Click on the File menu and select “Save a copy in Drive…![Copy to Drive](https://drive.google.com/uc?id=1CH3eDmuJL8WR0AP1r3UE6sOPuqq8_Wl7) Check GPU AvailabilityCheck if your Colab notebook is configured to use Graphical Processing Units (GPUs). If zero GPUs are available, check if the Colab notebook is configured to use GPUs (Menu > Runtime > Change Runtime Type).![Hardware Accelerator Settings](https://drive.google.com/uc?id=1qrihuuMtvzXJHiRV8M7RngbxFYipXKQx) ###Code !nvidia-smi ###Output _____no_output_____ ###Markdown Install TensorFlow and TensorFlow Model Garden ###Code import tensorflow as tf print(tf.version.VERSION) !pip install -q tensorflow==2.3.0 !git clone --depth 1 -b v2.3.0 https://github.com/tensorflow/models.git # install requirements to use tensorflow/models repository !pip install -Uqr models/official/requirements.txt # you may have to restart the runtime afterwards ###Output _____no_output_____ ###Markdown Restart the Runtime**Note** After installing the required Python packages, you'll need to restart the Colab Runtime Engine (Menu > Runtime > Restart runtime...)![Restart of the Colab Runtime Engine](https://drive.google.com/uc?id=1xnjAy2sxIymKhydkqb0RKzgVK9rh3teH) Task 3: Download and Import the Quora Insincere Questions Dataset ###Code import numpy as np import tensorflow as tf import tensorflow_hub as hub import sys sys.path.append('models') from official.nlp.data import classifier_data_lib from official.nlp.bert import tokenization from official.nlp import optimization print("TF Version: ", tf.__version__) print("Eager mode: ", tf.executing_eagerly()) print("Hub version: ", hub.__version__) print("GPU is", "available" if tf.config.experimental.list_physical_devices("GPU") else "NOT AVAILABLE") ###Output TF Version: 2.3.0 Eager mode: True Hub version: 0.9.0 GPU is available ###Markdown A downloadable copy of the [Quora Insincere Questions Classification data](https://www.kaggle.com/c/quora-insincere-questions-classification/data) can be found [https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip](https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip). Decompress and read the data into a pandas DataFrame. ###Code import numpy as np import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv('https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip', compression='zip', low_memory=False) df.shape df.tail(20) df.target.plot(kind='hist', title='Target distribution'); ###Output _____no_output_____ ###Markdown Task 4: Create tf.data.Datasets for Training and Evaluation ###Code train_df, remaining = train_test_split(df, random_state=42, train_size=0.0075, stratify=df.target.values) valid_df, _ = train_test_split(remaining, random_state=42, train_size=0.00075, stratify=remaining.target.values) train_df.shape, valid_df.shape with tf.device('/cpu:0'): train_data = tf.data.Dataset.from_tensor_slices((train_df.question_text.values, train_df.target.values)) valid_data = tf.data.Dataset.from_tensor_slices((valid_df.question_text.values, valid_df.target.values)) for text, label in train_data.take(1): print(text) print(label) ###Output tf.Tensor(b'Why are unhealthy relationships so desirable?', shape=(), dtype=string) tf.Tensor(0, shape=(), dtype=int64) ###Markdown Task 5: Download a Pre-trained BERT Model from TensorFlow Hub ###Code """ Each line of the dataset is composed of the review text and its label - Data preprocessing consists of transforming text to BERT input features: input_word_ids, input_mask, segment_ids - In the process, tokenizing the text is done with the provided BERT model tokenizer """ label_list = [0, 1] # Label categories max_seq_length = 128 # maximum length of (token) input sequences train_batch_size = 32 # Get BERT layer and tokenizer: # More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2 bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2", trainable=True) vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case) tokenizer.wordpiece_tokenizer.tokenize('hi, how are you doing?') tokenizer.convert_tokens_to_ids(tokenizer.wordpiece_tokenizer.tokenize('hi, how are you doing?')) ###Output _____no_output_____ ###Markdown Task 6: Tokenize and Preprocess Text for BERT Figure 2: BERT Tokenizer We'll need to transform our data into a format BERT understands. This involves two steps. First, we create InputExamples using `classifier_data_lib`'s constructor `InputExample` provided in the BERT library. ###Code # This provides a function to convert row to input features and label def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer): example = classifier_data_lib.InputExample(guid = None, text_a = text.numpy(), text_b = None, label = label.numpy()) feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) return (feature.input_ids, feature.input_mask, feature.segment_ids, feature.label_id) ###Output _____no_output_____ ###Markdown You want to use [`Dataset.map`](https://www.tensorflow.org/api_docs/python/tf/data/Datasetmap) to apply this function to each element of the dataset. [`Dataset.map`](https://www.tensorflow.org/api_docs/python/tf/data/Datasetmap) runs in graph mode.- Graph tensors do not have a value.- In graph mode you can only use TensorFlow Ops and functions.So you can't `.map` this function directly: You need to wrap it in a [`tf.py_function`](https://www.tensorflow.org/api_docs/python/tf/py_function). The [`tf.py_function`](https://www.tensorflow.org/api_docs/python/tf/py_function) will pass regular tensors (with a value and a `.numpy()` method to access it), to the wrapped python function. Task 7: Wrap a Python Function into a TensorFlow op for Eager Execution ###Code def to_feature_map(text, label): input_ids, input_mask, segment_ids, label_id = tf.py_function(to_feature, inp=[text, label], Tout=[tf.int32, tf.int32, tf.int32, tf.int32]) # py_func doesn't set the shape of the returned tensors. input_ids.set_shape([max_seq_length]) input_mask.set_shape([max_seq_length]) segment_ids.set_shape([max_seq_length]) label_id.set_shape([]) x = { 'input_word_ids': input_ids, 'input_mask': input_mask, 'input_type_ids': segment_ids } return (x, label_id) ###Output _____no_output_____ ###Markdown Task 8: Create a TensorFlow Input Pipeline with `tf.data` ###Code with tf.device('/cpu:0'): # train train_data = (train_data.map(to_feature_map, num_parallel_calls=tf.data.experimental.AUTOTUNE) #.cache() .shuffle(1000) .batch(32, drop_remainder=True) .prefetch(tf.data.experimental.AUTOTUNE)) # valid valid_data = (valid_data.map(to_feature_map, num_parallel_calls=tf.data.experimental.AUTOTUNE) .batch(32, drop_remainder=True) .prefetch(tf.data.experimental.AUTOTUNE)) ###Output _____no_output_____ ###Markdown The resulting `tf.data.Datasets` return `(features, labels)` pairs, as expected by [`keras.Model.fit`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelfit): ###Code # data spec train_data.element_spec # data spec valid_data.element_spec ###Output _____no_output_____ ###Markdown Task 9: Add a Classification Head to the BERT Layer Figure 3: BERT Layer ###Code # Building the model def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") input_type_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_type_ids") pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, input_type_ids]) drop = tf.keras.layers.Dropout(0.4)(pooled_output) output = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(drop) model = tf.keras.Model( inputs={ 'input_word_ids': input_word_ids, 'input_mask': input_mask, 'input_type_ids': input_type_ids }, outputs=output) return model ###Output _____no_output_____ ###Markdown Task 10: Fine-Tune BERT for Text Classification ###Code model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=2e-5), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.BinaryAccuracy()]) model.summary() tf.keras.utils.plot_model(model=model, show_shapes=True, dpi=76, ) # Train model epochs = 4 history = model.fit(train_data, validation_data=valid_data, epochs=epochs, verbose=1) ###Output Epoch 1/2 306/306 [==============================] - ETA: 0s - loss: 0.1679 - binary_accuracy: 0.9391WARNING:tensorflow:Callbacks method `on_test_batch_end` is slow compared to the batch time (batch time: 0.0122s vs `on_test_batch_end` time: 0.1396s). Check your callbacks. ###Markdown Task 11: Evaluate the BERT Text Classification Model ###Code import matplotlib.pyplot as plt def plot_graphs(history, metric): plt.plot(history.history[metric]) plt.plot(history.history['val_'+metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_'+metric]) plt.show() plot_graphs(history, 'binary_accuracy') plot_graphs(history, 'loss') model.evaluate(valid_data, verbose=1) sample_example = [" ",\ " ",\ " ",\ " ",\ " ",\ " "] test_data = tf.data.Dataset.from_tensor_slices((sample_example, [0]*len(sample_example))) test_data = (test_data.map(to_feature_map).batch(1)) preds = model.predict(test_data) #['Toxic' if pred >=0.5 else 'Sincere' for pred in preds] preds ###Output _____no_output_____ ###Markdown Fine-Tune BERT for Text Classification with TensorFlow Figure 1: BERT Classification Model In this project, you will learn how to fine-tune a BERT model for text classification using TensorFlow and TF-Hub. The pretrained BERT model used in this project is [available](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2) on [TensorFlow Hub](https://tfhub.dev/). Learning Objectives By the time you complete this project, you will be able to:- Build TensorFlow Input Pipelines for Text Data with the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API- Tokenize and Preprocess Text for BERT- Fine-tune BERT for text classification with TensorFlow 2 and [TF Hub](https://tfhub.dev) Prerequisites In order to be successful with this project, it is assumed you are:- Competent in the Python programming language- Familiar with deep learning for Natural Language Processing (NLP)- Familiar with TensorFlow, and its Keras API Contents This project/notebook consists of several Tasks.- **[Task 1]()**: Introduction to the Project.- **[Task 2]()**: Setup your TensorFlow and Colab Runtime- **[Task 3]()**: Download and Import the Quora Insincere Questions Dataset- **[Task 4]()**: Create tf.data.Datasets for Training and Evaluation- **[Task 5]()**: Download a Pre-trained BERT Model from TensorFlow Hub- **[Task 6]()**: Tokenize and Preprocess Text for BERT- **[Task 7]()**: Wrap a Python Function into a TensorFlow op for Eager Execution- **[Task 8]()**: Create a TensorFlow Input Pipeline with `tf.data`- **[Task 9]()**: Add a Classification Head to the BERT `hub.KerasLayer`- **[Task 10]()**: Fine-Tune BERT for Text Classification- **[Task 11]()**: Evaluate the BERT Text Classification Model Task 2: Setup your TensorFlow and Colab Runtime. You will only be able to use the Colab Notebook after you save it to your Google Drive folder. Click on the File menu and select “Save a copy in Drive…![Copy to Drive](https://drive.google.com/uc?id=1CH3eDmuJL8WR0AP1r3UE6sOPuqq8_Wl7) Check GPU AvailabilityCheck if your Colab notebook is configured to use Graphical Processing Units (GPUs). If zero GPUs are available, check if the Colab notebook is configured to use GPUs (Menu > Runtime > Change Runtime Type).![Hardware Accelerator Settings](https://drive.google.com/uc?id=1qrihuuMtvzXJHiRV8M7RngbxFYipXKQx) ###Code !nvidia-smi # conda install -c anaconda tensorflow-gpu ###Output _____no_output_____ ###Markdown Install TensorFlow and TensorFlow Model Garden ###Code import tensorflow as tf print(tf.version.VERSION) #!pip install -q tensorflow==2.3.0 # !git clone --depth 1 -b v2.3.0 https://github.com/tensorflow/models.git # # install requirements to use tensorflow/models repository # !pip install -Uqr models/official/requirements.txt # # you may have to restart the runtime afterwards ###Output _____no_output_____ ###Markdown Restart the Runtime**Note** After installing the required Python packages, you'll need to restart the Colab Runtime Engine (Menu > Runtime > Restart runtime...)![Restart of the Colab Runtime Engine](https://drive.google.com/uc?id=1xnjAy2sxIymKhydkqb0RKzgVK9rh3teH) Task 3: Download and Import the Quora Insincere Questions Dataset ###Code # pip install tensorflow_datasets # pip install sentencepiece # pip install gin-config # pip install tensorflow-addons import numpy as np import tensorflow as tf import tensorflow_hub as hub import sys sys.path.append('models') from official.nlp.data import classifier_data_lib from official.nlp.bert import tokenization from official.nlp import optimization print("TF Version: ", tf.__version__) print("Eager mode: ", tf.executing_eagerly()) print("Hub version: ", hub.__version__) print("GPU is", "available" if tf.config.experimental.list_physical_devices("GPU") else "NOT AVAILABLE") ###Output TF Version: 2.8.0 Eager mode: True Hub version: 0.12.0 GPU is NOT AVAILABLE ###Markdown A downloadable copy of the [Quora Insincere Questions Classification data](https://www.kaggle.com/c/quora-insincere-questions-classification/data) can be found [https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip](https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip). Decompress and read the data into a pandas DataFrame. ###Code import numpy as np import pandas as pd from sklearn.model_selection import train_test_split df = pd.read_csv('https://archive.org/download/fine-tune-bert-tensorflow-train.csv/train.csv.zip', compression='zip', low_memory=False) df.shape df.tail(20) df.target.plot(kind='hist', title='Target distribution'); ###Output _____no_output_____ ###Markdown Task 4: Create tf.data.Datasets for Training and Evaluation ###Code train_df, remaining = train_test_split(df, random_state=42, train_size=0.0075, stratify=df.target.values) valid_df, _ = train_test_split(remaining, random_state=42, train_size=0.00075, stratify=remaining.target.values) train_df.shape, valid_df.shape with tf.device('/cpu:0'): train_data = tf.data.Dataset.from_tensor_slices((train_df.question_text.values, train_df.target.values)) valid_data = tf.data.Dataset.from_tensor_slices((valid_df.question_text.values, valid_df.target.values)) for text, label in train_data.take(1): print(text) print(label) ###Output tf.Tensor(b'Why are unhealthy relationships so desirable?', shape=(), dtype=string) tf.Tensor(0, shape=(), dtype=int64) ###Markdown Task 5: Download a Pre-trained BERT Model from TensorFlow Hub ###Code """ Each line of the dataset is composed of the review text and its label - Data preprocessing consists of transforming text to BERT input features: input_word_ids, input_mask, segment_ids - In the process, tokenizing the text is done with the provided BERT model tokenizer """ label_list = [0, 1] # Label categories max_seq_length = 128 # maximum length of (token) input sequences train_batch_size = 32 # Get BERT layer and tokenizer: # More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2 bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2", trainable=True) vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case) tokenizer.wordpiece_tokenizer.tokenize('hi, how are you doing?') tokenizer.convert_tokens_to_ids(tokenizer.wordpiece_tokenizer.tokenize('hi, how are you doing?')) ###Output _____no_output_____ ###Markdown Task 6: Tokenize and Preprocess Text for BERT Figure 2: BERT Tokenizer We'll need to transform our data into a format BERT understands. This involves two steps. First, we create InputExamples using `classifier_data_lib`'s constructor `InputExample` provided in the BERT library. ###Code # This provides a function to convert row to input features and label def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer): example = classifier_data_lib.InputExample(guid = None, text_a = text.numpy(), text_b = None, label = label.numpy()) feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) return (feature.input_ids, feature.input_mask, feature.segment_ids, feature.label_id) ###Output _____no_output_____ ###Markdown You want to use [`Dataset.map`](https://www.tensorflow.org/api_docs/python/tf/data/Datasetmap) to apply this function to each element of the dataset. [`Dataset.map`](https://www.tensorflow.org/api_docs/python/tf/data/Datasetmap) runs in graph mode.- Graph tensors do not have a value.- In graph mode you can only use TensorFlow Ops and functions.So you can't `.map` this function directly: You need to wrap it in a [`tf.py_function`](https://www.tensorflow.org/api_docs/python/tf/py_function). The [`tf.py_function`](https://www.tensorflow.org/api_docs/python/tf/py_function) will pass regular tensors (with a value and a `.numpy()` method to access it), to the wrapped python function. Task 7: Wrap a Python Function into a TensorFlow op for Eager Execution ###Code def to_feature_map(text, label): input_ids, input_mask, segment_ids, label_id = tf.py_function(to_feature, inp=[text, label], Tout=[tf.int32, tf.int32, tf.int32, tf.int32]) # py_func doesn't set the shape of the returned tensors. input_ids.set_shape([max_seq_length]) input_mask.set_shape([max_seq_length]) segment_ids.set_shape([max_seq_length]) label_id.set_shape([]) x = { 'input_word_ids': input_ids, 'input_mask': input_mask, 'input_type_ids': segment_ids } return (x, label_id) ###Output _____no_output_____ ###Markdown Task 8: Create a TensorFlow Input Pipeline with `tf.data` ###Code with tf.device('/cpu:0'): # train train_data = (train_data.map(to_feature_map, num_parallel_calls=tf.data.experimental.AUTOTUNE) #.cache() .shuffle(1000) .batch(32, drop_remainder=True) .prefetch(tf.data.experimental.AUTOTUNE)) # valid valid_data = (valid_data.map(to_feature_map, num_parallel_calls=tf.data.experimental.AUTOTUNE) .batch(32, drop_remainder=True) .prefetch(tf.data.experimental.AUTOTUNE)) ###Output _____no_output_____ ###Markdown The resulting `tf.data.Datasets` return `(features, labels)` pairs, as expected by [`keras.Model.fit`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelfit): ###Code # data spec train_data.element_spec # data spec valid_data.element_spec ###Output _____no_output_____ ###Markdown Task 9: Add a Classification Head to the BERT Layer Figure 3: BERT Layer ###Code # Building the model def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") input_type_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_type_ids") pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, input_type_ids]) drop = tf.keras.layers.Dropout(0.4)(pooled_output) output = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(drop) model = tf.keras.Model( inputs={ 'input_word_ids': input_word_ids, 'input_mask': input_mask, 'input_type_ids': input_type_ids }, outputs=output) return model ###Output _____no_output_____ ###Markdown Task 10: Fine-Tune BERT for Text Classification ###Code model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=2e-5), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.BinaryAccuracy()]) model.summary() tf.keras.utils.plot_model(model=model, show_shapes=True, dpi=76, ) # Train model epochs = 3 history = model.fit(train_data, validation_data=valid_data, epochs=epochs, verbose=1) ###Output Epoch 1/3 306/306 [==============================] - 4150s 14s/step - loss: 0.1596 - binary_accuracy: 0.9439 - val_loss: 0.1217 - val_binary_accuracy: 0.9563 Epoch 2/3 306/306 [==============================] - 3827s 13s/step - loss: 0.1011 - binary_accuracy: 0.9616 - val_loss: 0.1224 - val_binary_accuracy: 0.9583 Epoch 3/3 306/306 [==============================] - 3707s 12s/step - loss: 0.0543 - binary_accuracy: 0.9825 - val_loss: 0.1527 - val_binary_accuracy: 0.9531 ###Markdown Task 11: Evaluate the BERT Text Classification Model ###Code import matplotlib.pyplot as plt def plot_graphs(history, metric): plt.plot(history.history[metric]) plt.plot(history.history['val_'+metric], '') plt.xlabel("Epochs") plt.ylabel(metric) plt.legend([metric, 'val_'+metric]) plt.show() plot_graphs(history, 'binary_accuracy') plot_graphs(history, 'loss') model.evaluate(valid_data, verbose=1) ###Output 30/30 [==============================] - 112s 4s/step - loss: 0.1527 - binary_accuracy: 0.9531 ###Markdown Testing all negatives ###Code df_negs = df[df.target == 1] df_neg_comments = df_negs["question_text"] for com in df_neg_comments.tail(10): print(com) print("_____________________") print("_____________________") sample_example = ["What are not scam online services for essay writing?", "Is it just me, or was Prince the singer ugly as fudge?", "Could we finally give Einstein's first wife credit for her equation, E=m (c squared)? She deserves a lot more than that.", "Why do Jews want endless immigration to the US, but Israel has a wall, Saharonim prison, and very strict immigration laws against non-Jews?", "Will Oprah buy the DNC to guarantee her nomination in 2020 like Hillary did in 2016?", "Why is it when singers have lyrics about voices in their head, religious people say they hear god and anyone stating they are being targeted by voice to brain technology? Are they called delusional schizo?", "Do pakis smell of curry and shit?" "Isn't Trump right after all? Why should the USA be benevolent towards it's neighbor Mexico, and not put America first, when Russia is invading Ukraine? Even India imposed a blockade over Nepal after an earthquake", "Are you ashamed of being an Indian?"] test_data = tf.data.Dataset.from_tensor_slices((sample_example, [0]*len(sample_example))) test_data = (test_data.map(to_feature_map).batch(1)) preds = model.predict(test_data) ['Toxic' if pred >=0.5 else 'Sincere' for pred in preds] ###Output _____no_output_____ ###Markdown 1 out of 10 is labelled wrong based on manual inspection. ###Code preds ###Output _____no_output_____ ###Markdown Testing all positives ###Code df_pos = df[df.target == 0] df_pos_comments = df_pos["question_text"] for com in df_pos_comments.tail(10): print(com) print("") sample_example = ["If you had $10 million of Bitcoin, could you sell it and pay no capital gain tax if you also quit work and had no ordinary income for the year?", "What are the methods to determine fossil ages in 10th STD?", "What is your story today?", "How do I consume 150 gms protein daily both vegetarian and non vegetarian diet seperately?", "What are the good career options for a msc chemistry student after qualifying gate?", "What other technical skills do you need as a computer science undergrad other than c and c++?", "Does MS in ECE have good job prospects in USA or like India there are more IT jobs present?", "Is foam insulation toxic?", "How can one start a research project based on biochemistry at UG level?", "Who wins in a battle between a Wolverine and a Puma?"] test_data = tf.data.Dataset.from_tensor_slices((sample_example, [0]*len(sample_example))) test_data = (test_data.map(to_feature_map).batch(1)) preds = model.predict(test_data) ['Toxic' if pred >=0.5 else 'Sincere' for pred in preds] # 10/10 for sincere comments. preds ###Output _____no_output_____
Credit Risk Modeling/Credit Risk Modeling - Preparation - With Comments - 5-2.ipynb
###Markdown Data Preparation Import Libraries ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Import DataThe dataset contains all available data for more than 800,000 consumer loans issued from 2007 to 2015 by Lending Club: a large US peer-to-peer lending company. There are several different versions of this dataset. We have used a version available on kaggle.com. You can find it here: https://www.kaggle.com/wendykan/lending-club-loan-data/version/1We divided the data into two periods because we assume that some data are available at the moment when we need to build Expected Loss models, and some data comes from applications after. Later, we investigate whether the applications we have after we built the Probability of Default (PD) model have similar characteristics with the applications we used to build the PD model. ###Code loan_data_backup = pd.read_csv('loan_data_2007_2014.csv') loan_data = loan_data_backup.copy() ###Output _____no_output_____ ###Markdown Explore Data ###Code loan_data pd.options.display.max_columns = None #pd.options.display.max_rows = None # Sets the pandas dataframe options to display all columns/ rows. loan_data loan_data.head() loan_data.tail() loan_data.columns.values # Displays all column names. loan_data.info() # Displays column names, complete (non-missing) cases per column, and datatype per column. ###Output _____no_output_____ ###Markdown General Preprocessing Preprocessing few continuous variables ###Code loan_data['emp_length'].unique() # Displays unique values of a column. loan_data['emp_length_int'] = loan_data['emp_length'].str.replace('\+ years', '') loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace('< 1 year', str(0)) loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace('n/a', str(0)) loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace(' years', '') loan_data['emp_length_int'] = loan_data['emp_length_int'].str.replace(' year', '') # We store the preprocessed ‘employment length’ variable in a new variable called ‘employment length int’, # We assign the new ‘employment length int’ to be equal to the ‘employment length’ variable with the string ‘+ years’ # replaced with nothing. Next, we replace the whole string ‘less than 1 year’ with the string ‘0’. # Then, we replace the ‘n/a’ string with the string ‘0’. Then, we replace the string ‘space years’ with nothing. # Finally, we replace the string ‘space year’ with nothing. type(loan_data['emp_length_int'][0]) # Checks the datatype of a single element of a column. loan_data['emp_length_int'] = pd.to_numeric(loan_data['emp_length_int']) # Transforms the values to numeric. type(loan_data['emp_length_int'][0]) # Checks the datatype of a single element of a column. loan_data['earliest_cr_line'] # Displays a column. loan_data['earliest_cr_line_date'] = pd.to_datetime(loan_data['earliest_cr_line'], format = '%b-%y') # Extracts the date and the time from a string variable that is in a given format. type(loan_data['earliest_cr_line_date'][0]) # Checks the datatype of a single element of a column. pd.to_datetime('2017-12-01') - loan_data['earliest_cr_line_date'] # Calculates the difference between two dates and times. # Assume we are now in December 2017 loan_data['mths_since_earliest_cr_line'] = round(pd.to_numeric((pd.to_datetime('2017-12-01') - loan_data['earliest_cr_line_date']) / np.timedelta64(1, 'M'))) # We calculate the difference between two dates in months, turn it to numeric datatype and round it. # We save the result in a new variable. loan_data['mths_since_earliest_cr_line'].describe() # Shows some descriptive statisics for the values of a column. # Dates from 1969 and before are not being converted well, i.e., they have become 2069 and similar, # and negative differences are being calculated. loan_data.loc[: , ['earliest_cr_line', 'earliest_cr_line_date', 'mths_since_earliest_cr_line']][loan_data['mths_since_earliest_cr_line'] < 0] # We take three columns from the dataframe. Then, we display them only for the rows where a variable has negative value. # There are 2303 strange negative values. loan_data['mths_since_earliest_cr_line'][loan_data['mths_since_earliest_cr_line'] < 0] = loan_data['mths_since_earliest_cr_line'].max() # We set the rows that had negative differences to the maximum value. min(loan_data['mths_since_earliest_cr_line']) # Calculates and shows the minimum value of a column. ###Output _____no_output_____ ###Markdown Homework ###Code loan_data['term'] loan_data['term'].describe() # Shows some descriptive statisics for the values of a column. loan_data['term_int'] = loan_data['term'].str.replace(' months', '') # We replace a string with another string, in this case, with an empty strng (i.e. with nothing). loan_data['term_int'] type(loan_data['term_int'][25]) # Checks the datatype of a single element of a column. loan_data['term_int'] = pd.to_numeric(loan_data['term'].str.replace(' months', '')) # We remplace a string from a variable with another string, in this case, with an empty strng (i.e. with nothing). # We turn the result to numeric datatype and save it in another variable. loan_data['term_int'] type(loan_data['term_int'][0]) # Checks the datatype of a single element of a column. loan_data['issue_d'] # Assume we are now in December 2017 loan_data['issue_d_date'] = pd.to_datetime(loan_data['issue_d'], format = '%b-%y') # Extracts the date and the time from a string variable that is in a given format. loan_data['mths_since_issue_d'] = round(pd.to_numeric((pd.to_datetime('2017-12-01') - loan_data['issue_d_date']) / np.timedelta64(1, 'M'))) # We calculate the difference between two dates in months, turn it to numeric datatype and round it. # We save the result in a new variable. loan_data['mths_since_issue_d'].describe() # Shows some descriptive statisics for the values of a column. ###Output _____no_output_____ ###Markdown Preprocessing few discrete variables ###Code loan_data.info() # Displays column names, complete (non-missing) cases per column, and datatype per column. ###Output _____no_output_____ ###Markdown We are going to preprocess the following discrete variables: grade, sub_grade, home_ownership, verification_status, loan_status, purpose, addr_state, initial_list_status. Most likely, we are not going to use sub_grade, as it overlaps with grade. ###Code pd.get_dummies(loan_data['grade']) # Create dummy variables from a variable. pd.get_dummies(loan_data['grade'], prefix = 'grade', prefix_sep = ':') # Create dummy variables from a variable. loan_data_dummies = [pd.get_dummies(loan_data['grade'], prefix = 'grade', prefix_sep = ':'), pd.get_dummies(loan_data['sub_grade'], prefix = 'sub_grade', prefix_sep = ':'), pd.get_dummies(loan_data['home_ownership'], prefix = 'home_ownership', prefix_sep = ':'), pd.get_dummies(loan_data['verification_status'], prefix = 'verification_status', prefix_sep = ':'), pd.get_dummies(loan_data['loan_status'], prefix = 'loan_status', prefix_sep = ':'), pd.get_dummies(loan_data['purpose'], prefix = 'purpose', prefix_sep = ':'), pd.get_dummies(loan_data['addr_state'], prefix = 'addr_state', prefix_sep = ':'), pd.get_dummies(loan_data['initial_list_status'], prefix = 'initial_list_status', prefix_sep = ':')] # We create dummy variables from all 8 original independent variables, and save them into a list. # Note that we are using a particular naming convention for all variables: original variable name, colon, category name. loan_data_dummies = pd.concat(loan_data_dummies, axis = 1) # We concatenate the dummy variables and this turns them into a dataframe. type(loan_data_dummies) # Returns the type of the variable. loan_data = pd.concat([loan_data, loan_data_dummies], axis = 1) # Concatenates two dataframes. # Here we concatenate the dataframe with original data with the dataframe with dummy variables, along the columns. loan_data.columns.values # Displays all column names. ###Output _____no_output_____ ###Markdown Check for missing values and clean ###Code loan_data.isnull() # It returns 'False' if a value is not missing and 'True' if a value is missing, for each value in a dataframe. pd.options.display.max_rows = None # Sets the pandas dataframe options to display all columns/ rows. loan_data.isnull().sum() pd.options.display.max_rows = 100 # Sets the pandas dataframe options to display 100 columns/ rows. # 'Total revolving high credit/ credit limit', so it makes sense that the missing values are equal to funded_amnt. loan_data['total_rev_hi_lim'].fillna(loan_data['funded_amnt'], inplace=True) # We fill the missing values with the values of another variable. loan_data['total_rev_hi_lim'].isnull().sum() ###Output _____no_output_____ ###Markdown Homework ###Code loan_data['annual_inc'].fillna(loan_data['annual_inc'].mean(), inplace=True) # We fill the missing values with the mean value of the non-missing values. loan_data['mths_since_earliest_cr_line'].fillna(0, inplace=True) loan_data['acc_now_delinq'].fillna(0, inplace=True) loan_data['total_acc'].fillna(0, inplace=True) loan_data['pub_rec'].fillna(0, inplace=True) loan_data['open_acc'].fillna(0, inplace=True) loan_data['inq_last_6mths'].fillna(0, inplace=True) loan_data['delinq_2yrs'].fillna(0, inplace=True) loan_data['emp_length_int'].fillna(0, inplace=True) # We fill the missing values with zeroes. ###Output _____no_output_____ ###Markdown PD model Data preparation Dependent Variable. Good/ Bad (Default) Definition. Default and Non-default Accounts. ###Code loan_data['loan_status'].unique() # Displays unique values of a column. loan_data['loan_status'].value_counts() # Calculates the number of observations for each unique value of a variable. loan_data['loan_status'].value_counts() / loan_data['loan_status'].count() # We divide the number of observations for each unique value of a variable by the total number of observations. # Thus, we get the proportion of observations for each unique value of a variable. # Good/ Bad Definition loan_data['good_bad'] = np.where(loan_data['loan_status'].isin(['Charged Off', 'Default', 'Does not meet the credit policy. Status:Charged Off', 'Late (31-120 days)']), 0, 1) # We create a new variable that has the value of '0' if a condition is met, and the value of '1' if it is not met. loan_data['good_bad'] ###Output _____no_output_____
tensornetwork/tn_keras/colabs/TN_Keras.ipynb
###Markdown Build Base Model and Tensorized Models ###Code data, labels = dummy_data(1296) # Build a fully connected network model = Sequential() model.add(Dense(512, use_bias=True, activation='relu', input_shape=(data.shape[1],))) model.add(Dense(128, use_bias=True, activation='relu')) model.add(Dense(1, use_bias=True, activation='sigmoid')) # Build the same fully connected network using TN layer DenseDecomp decomp_model = Sequential() decomp_model.add(DenseDecomp(512, decomp_size=64, use_bias=True, activation='relu', input_shape=(data.shape[1],))) decomp_model.add(DenseDecomp(128, decomp_size=64, use_bias=True, activation='relu')) decomp_model.add(DenseDecomp(1, decomp_size=8, use_bias=True, activation='sigmoid')) # Build the same fully connected network using TN layer DenseMPO mpo_model = Sequential() mpo_model.add(DenseMPO(256, num_nodes=4, bond_dim=8, use_bias=True, activation='relu', input_shape=(1296,))) mpo_model.add(DenseMPO(81, num_nodes=4, bond_dim=4, use_bias=True, activation='relu')) mpo_model.add(Dense(1, use_bias=True, activation='sigmoid')) ###Output _____no_output_____ ###Markdown Analyze Parameter Reduction from Tensorization ###Code model.summary() decomp_model.summary() mpo_model.summary() print(f'Compression factor from tensorization with DenseDecomp: {model.count_params() / decomp_model.count_params()}') print(f'Compression factor from tensorization with DenseMPO: {model.count_params() / mpo_model.count_params()}') ###Output Compression factor from tensorization with DenseDecomp: 4.609283526476997 Compression factor from tensorization with DenseMPO: 167.5905855338691 ###Markdown Train Models for Comparison ###Code model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Train the model for 10 epochs history = model.fit(data, labels, epochs=10, batch_size=32) decomp_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Train the tensorized model for 10 epochs history = decomp_model.fit(data, labels, epochs=10, batch_size=32) mpo_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Train the tensorized model for 10 epochs history = mpo_model.fit(data, labels, epochs=10, batch_size=32) ###Output Epoch 1/10 4/4 [==============================] - 0s 10ms/step - loss: 0.6926 - accuracy: 0.5100 Epoch 2/10 4/4 [==============================] - 0s 8ms/step - loss: 0.6890 - accuracy: 0.5100 Epoch 3/10 4/4 [==============================] - 0s 8ms/step - loss: 0.6856 - accuracy: 0.5000 Epoch 4/10 4/4 [==============================] - 0s 7ms/step - loss: 0.6813 - accuracy: 0.5300 Epoch 5/10 4/4 [==============================] - 0s 9ms/step - loss: 0.6776 - accuracy: 0.7200 Epoch 6/10 4/4 [==============================] - 0s 8ms/step - loss: 0.6733 - accuracy: 0.8400 Epoch 7/10 4/4 [==============================] - 0s 9ms/step - loss: 0.6689 - accuracy: 0.8300 Epoch 8/10 4/4 [==============================] - 0s 8ms/step - loss: 0.6635 - accuracy: 0.8400 Epoch 9/10 4/4 [==============================] - 0s 9ms/step - loss: 0.6581 - accuracy: 0.8100 Epoch 10/10 4/4 [==============================] - 0s 8ms/step - loss: 0.6501 - accuracy: 0.9300
HW1-Daniel-Loureiro.ipynb
###Markdown Homework 1 Part I. HICP data from SDW ###Code # import pandas (and other libraries you may want to use) import pandas as pd # import the data files you downloaded from SDW # the option "header" was added due to how the ECB file was built df_hicp_041100=pd.read_csv('./data/data_041100.csv', header=4) df_hicp_041200=pd.read_csv('./data/data_041200.csv', header=4) df_hicp_043100=pd.read_csv('./data/data_043100.csv', header=4) df_hicp_043200=pd.read_csv('./data/data_043200.csv', header=4) df_hicp_044000=pd.read_csv('./data/data_044000.csv', header=4) df_hicp_044100=pd.read_csv('./data/data_044100.csv', header=4) df_hicp_044200=pd.read_csv('./data/data_044200.csv', header=4) df_hicp_044300=pd.read_csv('./data/data_044300.csv', header=4) df_hicp_044400=pd.read_csv('./data/data_044400.csv', header=4) df_hicp_045100=pd.read_csv('./data/data_045100.csv', header=4) df_hicp_045200=pd.read_csv('./data/data_045200.csv', header=4) df_hicp_045300=pd.read_csv('./data/data_045300.csv', header=4) df_hicp_045400=pd.read_csv('./data/data_045400.csv', header=4) df_hicp_045500=pd.read_csv('./data/data_045500.csv', header=4) # Print as a list the codes of the subindices you downloaded. # For example, if you download items from the __FOOD AND NON-ALCOHOLIC BEVERAGES__ category, # list all codes type `01XX00` you were able to download. list_of_subindices=['041100', '041200', '043100', '043200', '044000', '044100', '044200', '044300', '044400', '045100', '045200', '045300', '045400', '045500'] # create a single dataframe combining data for all HICP subindices you downloaded list_of_dfs=[] for sind in list_of_subindices: temp_df = pd.read_csv(f'data/data_{sind}.csv', index_col=0, header=4) list_of_dfs.append(temp_df) df_hicp_all = pd.concat(list_of_dfs, axis=1) df_hicp_all # make other changes to the dataframe - set datetime index, rename the columns (up to you, but shortning very names may be a good idea) #Renaming the columns df_hicp_all.columns = list_of_subindices #this command changes the name of the columns with the inflation data #the following two steps change aim to change the name of the column "date", initially named Period\Unit. The presence of \ generated an error in the code, which created the necessity to adapt the code. df_hicp_all.reset_index(inplace=True) df_hicp_all.columns.values[0]="date" #Set datetime index (note that this is going to eliminate the index generated in the previous step, which is ok since that step was just an auxiliar) new_index = pd.to_datetime(df_hicp_all.date, format='%Y%b') #generating the new index to replace the old one. The option format='%Y%b' informs the date is on the form 2022Fev, for instance. df_hicp_all.index=new_index #introducing the index. This steps will generate an additional column with the date. So we can delet the "old" one: df_hicp_all.drop('date', axis=1, inplace=True) #Chech how the dataframe is df_hicp_all # print the type of the index of the dataframe index=df_hicp_all.index print(index.dtype) # print the data types of the columns in the dataframe print(df_hicp_all.dtypes) # save as a csv file under the name of the item group df_hicp_all.to_csv(f'data/HOUSING, WATER, ELECTRICITY, GAS AND OTHER FUELS.csv', index=True) # compute and print the means and standard deviations for each series for the full period display('Means for each series for the full period:') print(df_hicp_all.mean()) display('Standard deviations for each series for the full period:') print(df_hicp_all.std()) # compute and print the means and standard deviations for each calendar month for each series df_hicp_all.groupby(df_hicp_all.index.month).agg(['mean', 'std']) # redo the above for the period between January 2017 and December 2021 df_hicp_all.loc['2017-01':'2021-12'].groupby(df_hicp_all.loc['2017-01':'2021-12'].index.month).agg(['mean', 'std']) ###Output _____no_output_____ ###Markdown Part II. GDP data from EUROSTAT ###Code # import the data files you downloaded from EUROSTAT df_gdp=pd.read_excel('./data/gdp_euroarea.xlsx', sheet_name='Sheet 1', index_col=0, skiprows=10, nrows=108, usecols="A:B") # create a dataframe with a datetime index matching the timing of the series you downloaded #the following two steps change aim to change the name of the column "date", initially named Period\Unit. The presence of \ generated an error in the code, which created the necessity to adapt the code. df_gdp.reset_index(inplace=True) #because the dataframe was without an index df_gdp.columns.values[0]="date" df_gdp.columns.values[1]="gdp" #Set datetime index (note that this is going to eliminate the index generated in the previous step, which is ok since that step was just an auxiliar) new_index = pd.to_datetime(df_gdp.date) #generating the new index to replace the old one. The option format='%Y%b' informs the date is on the form 2022Fev, for instance. df_gdp.index=new_index #introducing the index. This steps will generate an additional column with the date. So we can delet the "old" one: df_gdp.drop('date', axis=1, inplace=True) df_gdp #aditional step: introducing the datetime index, the label was set at the begining of the period. That can be changed to the end: df_gdp=df_gdp.resample('Q').last() df_gdp #a better looking dataframe could be achieved with: df_gdp.to_period('Q') #this options, which was not saved, would clearly highlight to anyone who looked to the dataframe that we were working with quarterly data # save as a csv file under the name "Real-GDP-EA.csv" df_gdp.to_csv(f'data/Real-GDP-EA.csv', index=True) ###Output _____no_output_____ ###Markdown PART III Combine GDP and inflation data ###Code # create a new datafame containing the GDP data and the inflation indices from the first task. df_hicp_all_end=df_hicp_all.resample('M').last() #labeling the date in the dast day of each month to be consistent with the GDP data dfs_merged = pd.concat([df_hicp_all_end, df_gdp], axis=1) dfs_merged #save as a csv file named "merged-GDP-inflation.csv" dfs_merged.to_csv(f'data/merged-GDP-inflation.csv', index=True) #alternatively we could create a file with only quarterly data - see this but it is not good #first we could transform the data from taks 1 in quarterly data, by taking the mean of each quarter df_hicp_all_quarter=df_hicp_all.resample('Q').mean() #then the GDP data from task 2 could be labeled at the end of the period - which was already performed in task 2 #then we could finally merged into a new quarterly dataframe dfs_merged_q=pd.concat([df_hicp_all_quarter, df_gdp], axis=1) dfs_merged_q #saving also the new file dfs_merged_q.to_csv(f'data/merged-GDP-inflation-quarter-data.csv', index=True) ###Output _____no_output_____
extractive_summarization/french.ipynb
###Markdown *Extractive summarization* en francésEl objetivo del presente proyecto es crear un modelo capaz de producir resúmenes del conjunto de noticias en **lengua francesa** de Le Monde. Los resúmenes serán obtenidos utilizando la metodología de extracción(*extraction summarization*), es decir, el resumen generado será a partir de las frases del texto original que sean más relevantes. El proyecto constará de distintas secciones:- Preparación del entorno- Análisis de los datos- Preprocesamiento de los datos - Análisis de la extensión de los datos- Construcción del modelo- Generar nuevos resúmenes Preparación del entorno ###Code # Librerías necesarias import tensorflow as tf import tensorflow_datasets as tfds import pandas as pd import math as m import re from itertools import chain, groupby from bs4 import BeautifulSoup from collections import Counter import nltk nltk.download('stopwords') from nltk.corpus import stopwords nltk.download('punkt') import heapq from google.colab import drive drive.mount('/content/drive') ###Output Mounted at /content/drive ###Markdown Análisis de los datos ###Code data = pd.read_csv('/content/drive/MyDrive/TFM/data/fr_test.csv', header = None, sep = ';') def dataframe_ok(df): df.columns = ['url','date', 'Text', 'Summary', 'title', 'topic', 'unknown'] #Asignar el nombre a cada columna df.drop(['unknown','url','date','title','topic'], axis = 1, inplace = True) #Eliminr la columna del índice dataframe_ok(data) data.shape # Dimensiones de los datos: 995 filas (noticias) con dos columnas: texto y resumen data.head() # Observar las cinco primeras líneas de los datos # Inspeccionar el texto completo de las tres primeras filas for i in range(3): print("Noticia #",i+1) print(data.Summary[i]) print(data.Text[i]) print() # Comprobar el número de datos nulos data.isnull().sum() def duplicates_missing(df): df.drop_duplicates(inplace=True) #dropping duplicates df.dropna(inplace=True) #dropping duplicates duplicates_missing(data) ###Output _____no_output_____ ###Markdown Preprocesamiento de los datosLa tarea de preprocesamiento de los datos es una de las partes más importantes en un proyecto de procesamiento de lenguaje natural. Para realizar resúmenes de texto por extracción se parte de la hipótesis de que el tema principal del texto viene dado por las palabras que aparezcan con mayor frecuencia. En consecuencia, el resumen se generará a partir de las frases que contengan mayor cantidad de dichas palabras. Es por esta razón que para este tipo de resumen automático de textos no es necesario modificar de forma excesiva los textos originales para que estos sean más naturales. Según la lengua con la que se desee entrenar el modelo, las tareas de limpieza de los datos pueden tener variaciones. Se recuerda que en el presente *notebook* se pretende utilizar textos en lengua francesa. **Preprocesamiento de los datos:**- **Eliminar letras mayúsculas**: Python diferencia entre carácteres en mayúsuclas y en minúsculas, por lo tanto, las palabras *News* y *news* serían interpretadas como diferentes. Sin embargo, para comprender el texto correctamente, esto no debe ser así. Es por ello que se convierte todo el texto a letras minúsculas. - **Eliminar los restos de la importación de los datos** - **Eliminar los cambios de línea ./n**- **Eliminar el texto entre paréntesis**: generalmente, entre paréntesis no se pone información relevante. Por ello, se puede prescindir de esta para reducir la información que debe ser analizada por el modelo.- **Eliminar caracteres especiales**: se debe tener en cuenta que el francés es una lengua que utiliza caracteres distintos, como las vocales con tilde o la letra ç. Además, hay palabras en francés que utilizan los guiones como parte de ellas, por ello, también se deben conservar. ###Code # Stop words: palabras que no tienen un significado por sí solas (artículos, pronombres, preposiciones, adverbios, verbos) stop_words = set(stopwords.words('french')) def clean_text(text): clean = text.lower() #Convierte todo a minúsculas #Eliminar los cambios de línea clean = clean.replace('.\\n','') #Eliminar el texto que se encuentra entre paréntesis clean = re.sub(r'\([^)]*\)', '', clean) clean = re.sub(r'-[^)]*-', '', clean) clean = ' '.join([t for t in clean.split(" ")]) #Eliminar los carácteres especiales clean = re.sub("[^a-zA-Z, ç, à, â, é, è, ê, î, ô, ù, û, ., ,, -, ?,%, 0-9]", " ", clean) #Añadir un espacio antes de los signos de puntuación y los símbolos clean = clean.replace(".", " . ") clean = clean.replace(",", " , ") clean = clean.replace("?", " ? ") tokens = [w for w in clean.split()] #Juntar palabras return (" ".join(tokens).strip()) # Limpiar los resúmenes y los textos clean_summaries = [] for summary in data.Summary: clean_summaries.append(clean_text(summary)) #Remove_stopwords = False: hacer resúmenes más naturales print("Sumarios completados.") clean_texts = [] for text in data.Text: clean_texts.append(clean_text(text)) #Remove_stopwords = True: stop words no aportan información por lo que son irrelevantes para entrenar al modelo print("Textos completados.") # Inspeccionar los resúmentes y textos limpios para observar que se ha efectuado la limpieza correctamente for i in range(3): print("Noticia #",i+1) print('Sumario: ', clean_summaries[i]) print('Texto: ',clean_texts[i]) print() ###Output Noticia # 1 Sumario: mohamed salah et divock origi ont permis à liverpool de remporter son sixième trophée en c1 au terme d une finale décevante . Texto: le défenseur de liverpool virgil van dijk célèbre sa victoire à l issue de la finale de la ligue de champions . carl recine reuters liverpool au sommet de l europe et de l ennui . les reds de mohamed salah , buteur sur penalty après 1 min 48 s , ont étouffé tottenham lors d une finale 100 % anglaise et 0 % flamboyante , samedi 1er juin , en ligue des champions , décrochant , à madrid , leur sixième couronne continentale . alors que le spectacle avait été époustouflant au tour précédent , la finale la plus apathique de la décennie s est décantée après 23 s de jeu , sur un penalty concédé du bras par le français moussa sissoko , et transformé par l egyptien salah dans la torpeur du stade metropolitano . puis , au bout de la purge , une frappe croisée du belge divock origi , à la 87e minute , a plié ce match somnolent . article réservé à nos abonnés lire aussi ligue des champions à liverpool , le football en héritage qu importe l ennui , la revanche est belle pour salah , héros malheureux de la finale perdue l année précédente par liverpool face au real madrid . ce maigre avantage a suffi au bonheur de son entraîneur , j rgen klopp , enfin titré en c1 à sa troisième tentative . au coup de sifflet final , alors que le kop de liverpool entonnait le fameux you ll never walk alone , le bouillant klopp a enlacé calmement les gens de son staff avant de communier avec ses joueurs , casquette vissée sur la tête . triste finale on ne retiendra ni le score ni le scénario , digne des plus cyniques prestations de l atlético madrid , habitué aux scores étriqués dans son antre du metropolitano . on ne retiendra que le vainqueur , qui a fait parler son expérience de la c1 pour s installer à la troisième marche du palmarès de l épreuve reine européenne derrière le real madrid et l ac milan . madrid , c était un mauvais souvenir pour les reds l an passé battus 1finales . l ennui était fini , la nuit pouvait commencer . #totliv #rmcsport1 bfmtv 87 le but d origi !! contre le cours du jeu , liverpool enfonce le clou ! https t . co azlpa0djlv rmcsport Noticia # 2 Sumario: le philosophe , mort samedi à 88 ans , a su faire vivre une longue tradition française alliant les charmes de la plume , le travail heureux de la pensée et les générosités du c ur . Texto: michel serres , en mai 2012 . manuel cohen parmi les figures multiples de michel serres , mort samedi 1er juin , à l âge de 88 ans , il en est une qui réunit , peutil pas encore signé , en 2018 , avec michel polacco , une défense et illustration de la langue française aujourd hui ? un vagabond ami de la terre cette universalité à la française implique à l évidence un cheminement individualiste les mousquetaires ne veulent pas faire école . ils conduisent des révolutions solitaires que l histoire tend à oublier , comme l ont montré les dizaines et les dizaines de volumes publiés par le corpus des uvres de philosophie en langue française . en dirigeant cette vaste entreprise , que tout paraissait devoir rendre impossible , michel serres ne faisait pas seulement uvre de mémoire et de reviviscence . il rendait hommage à toutes ces intelligences isolées qui ont peuplé notre histoire intellectuelle en laissant dans les archives , d où il faut les exhumer , des pages vivaces et fortes . de ces trajets multiples entre les sciences et les littératures , les vocables et les natures , l image même du philosophe se trouve modifiée . ce n est plus un roi austère contemplant de haut un paysage dominé . c est au contraire comme un vagabond ami de la terre , arpenteur inventif , ouvert aux fécondités du hasard . michel serres aura sans doute rendu à la philosophie française son sens de la rencontre , de l imprévu , du jeu . il a maintenu dans ses textes cette spécialité nationale une jubilation du savoir que l écriture offre à goûter . Noticia # 3 Sumario: l auteur des best sellers les cinq sens , petite poucette , le gaucher boiteux , s est éteint à l âge de 88 ans , entouré de sa famille . Texto: a vincennes , en septembre 2018 . serge picard agence vu c était un philosophe comme on en fait trop peu , un bon vivant doublé d un mauvais caractère , un amoureux des sciences et des saveurs , un esprit encyclopédique , un prodigieux manieur de mots , un grand penseur de tradition orale , un touchepol droit ###Markdown Análisis de la extensión de los textos ###Code text_lengths =[] for i in (range(0,len(clean_texts))): text_lengths.append(len(clean_texts[i].split())) import matplotlib.pyplot as plt plt.title('Número de palabras de los textos') plt.hist(text_lengths, bins = 30) text_sentences =[] for i in (range(0,len(clean_texts))): text_sentences.append(len(clean_texts[i].split("."))) import matplotlib.pyplot as plt plt.title('Número de frases de los textos') plt.hist(text_sentences, bins = 30) summaries_lengths =[] for i in (range(0,len(clean_summaries))): summaries_lengths.append(len(clean_summaries[i].split())) import matplotlib.pyplot as plt plt.title('Número de palabras de los sumarios') plt.hist(summaries_lengths, bins = 30) summaries_sentences =[] for i in (range(0,len(clean_summaries))): summaries_sentences.append(len(clean_summaries[i].split("."))) import matplotlib.pyplot as plt plt.title('Número de frases de los sumarios') plt.hist(summaries_sentences, bins = 30) #Devuelve la frecuencia con la que aparece cada palabra en el texto def count_words(count_dict, text): for sentence in text: for word in sentence.split(): if word not in count_dict: count_dict[word] = 1 else: count_dict[word] += 1 word_frequency = {} count_words(word_frequency, clean_summaries) count_words(word_frequency, clean_texts) print("Vocabulario total:", len(word_frequency)) #Buscar restos de la conversión del texto ('x99', 'x99s', 'x98', etc.) para incluirlos en la función clean_text import operator sorted(word_frequency.items(), key=operator.itemgetter(1), reverse=True ) ## En este caso no existen conjuntos de carácteres de estas características ###Output _____no_output_____ ###Markdown Construcción del modeloPara generar resúmenes de texto por extracción, es necesario conocer qué frases del texto original son las que mayor información relevante contienen. Para ello, se seguirán los siguientes pasos para cada uno de las noticias del conjunto de datos:- Calcular la frecuencia de aparición de las palabras .- Calcular la frecuencia ponderada de cada una de las palabras, siendo la frecuencia ponderada la división entre la frecuencia de aparición de la palabra en cuestión y la frecuencia de la palabra que aparece más veces en el texto. - Calcular la puntuación de cada una de las frases del texto, siendo la puntuación la suma ponderada de cada palabra que conforma dicha frase.- Seleccionar las N frases con mayor puntuación para generar el resumen a partir de estas. ###Code def word_frequency (word_frequencies, text): """ Calcula la frecuencia de las palabras en cada uno de los textos y añadirlo como pares clave-valor a un diccionario Las palabras añadidas no deben ser ni stop words ni signos de puntuación""" punctuations = {".",":",",","[","]", "“", "|", "”", "?"} for word in nltk.word_tokenize(text): if word not in stop_words: if word not in punctuations: if word not in word_frequencies.keys(): word_frequencies[word] = 1 else: word_frequencies[word] += 1 word_freq_per_text = [] # Lista recogiendo los diccionarios de las frecuencias de aparición de las palabras de cada texto for text in clean_texts: word_frequencies = {} word_frequency(word_frequencies, text) # Devuelve el diccionario de frecuencias de las palabras word_freq_per_text.append(word_frequencies) def word_score(index): """ Calcula la puntuación ponderada de cada una de las palabras del texto mediante la fórmula: frecuencia_palabra / frecuencia_máxima siendo la frecuencia_palabra el número de veces que aparece en el texto la palabra en cuestión y la frecuencia_máxima el número de veces que aparece en el texto la palabra más repetida""" sentence_list = nltk.sent_tokenize(clean_texts[index]) word_frequency = word_freq_per_text[index] maximum_frequency = max(word_freq_per_text[index].values()) #Frecuencia de la palabra que más veces aparece for word in word_freq_per_text[index].keys(): word_freq_per_text[index][word] = (word_freq_per_text[index][word]/maximum_frequency) # Cálculo de la puntuación de cada una de las palabras del texto: word_freq/max_freq for i in range(0, len(clean_texts)): word_score(i) def sentence_score(sentence_scores, index): """ Calcula la puntuación de cada una de las frases del texto siendo esta la suma de las frecuencias ponderadas de todas las palabras que conforman el texto""" sentence_list = nltk.sent_tokenize(clean_texts[index]) # Tokenización de las frases del texto for sent in sentence_list: for word in nltk.word_tokenize(sent.lower()): if word in word_freq_per_text[index].keys(): if len(sent.split(' ')) < 30: if sent not in sentence_scores.keys(): sentence_scores[sent] = word_freq_per_text[index][word] else: sentence_scores[sent] += word_freq_per_text[index][word] sent_sc_per_text = [] # Lista recogiendo los diccionarios de las frecuencias de aparición de las palabras de cada texto for i in range(0, len(clean_texts)): sentence_scores = {} sentence_score(sentence_scores, i) # Devuelve el diccionario de la puntuación de la frase sent_sc_per_text.append(sentence_scores) ###Output _____no_output_____ ###Markdown Generar nuevos resúmenesEn el apartado anterior *Análisis de la extensión de los textos* se ha examinado el número de palabras y frases de las noticias y sus respectivos resúmenes que forman el conjunto de datos. En los gráficos presentados se ha podido observar que la extensión de los textos es muy variable, variando entre 1 y 50 frases. En cuanto a los sumarios, estos tienen entre 1 y 5 frases. Al igual que en el caso de las noticias en lengua española, el ratio entre el número de frases del texto original y el del resumen es, en general, muy pequeño. Esto se debe que a lo que aquí se considera Summary no es en realidad un resumen del texto, si no el subtítulo de la noticia o frases destacadas, por lo que incluye un menor número de frases. Esto es una característica del conjunto de datos MLSUM cuyos datos son los utilizados en este proyecto.El número de frases con las que se desea generar el resumen por extracción debe ser indicado de forma avanzada. No se ha creído oportuno especificar un número concreto de frases para producir el resumen de todos los textos del conjunto debido a que las extensiones de estos son muy variables. Por ello, se ha establecido que el número de frases a escoger debe ser de un 25% del total de frases del texto original. ###Code def generate_summary(index): """ Genera el resumen del texto en función de las n_sentences con mayor puntuación""" n_sentences = m.ceil(len(nltk.sent_tokenize(clean_texts[index]))*25/100) summary_sentences = heapq.nlargest(n_sentences, sent_sc_per_text[index], key=sent_sc_per_text[index].get) summary = ' '.join(summary_sentences) return summary generated_summaries = [] for i in range(0, len(clean_texts)): new_summary = generate_summary(i) # Devuelve el resumen generado generated_summaries.append(new_summary) # Inspeccionar el texto completo de las tres primeras filas y los resúmenes que se han generado for i in range(10,14): print("\nNoticia #",i+1) print('\nTexto original: ', clean_texts[i]) print('\nResumen original: ', clean_summaries[i]) print('\nResumen generado: ', generated_summaries[i]) print() ###Output _____no_output_____
Sean_Inventory_Simulation_22SEP2020.ipynb
###Markdown Inventory Simulation Authors: Sean Conway + Yanzhe Ma---Summer 2020 - Fall 2020 SemesterLast Modified: 22SEP2020 > Implementation of Inventory Simulation Using Classes ###Code import numpy as np import pandas as pd import pprint from scipy.stats import norm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from collections.abc import Iterable def iterable(obj): return isinstance(obj, Iterable) ###Output _____no_output_____ ###Markdown Inventory Simulation Class ###Code # "Game" class that can be created to run the whole simulation class InvSimulation: def __init__(self, periodsToSimulate=1000): self.periodsToSimulate = periodsToSimulate # Contains all of the nodes in our simulation (reference by ID) self.nodeDict = {} #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # Node - related methods def createNode(self, nodeID, h, p, nodeType="retailer", demandMean=0, demandStDev=0): ''' Creates a node to be used in our supply network In: InvSim object, nodeID, h, p, nodeType, demandMean, demandStDev ''' self.nodeDict[nodeID] = Node(nodeID, h, p, nodeType,demandMean, demandStDev) #links together two nodes in preDict and recDict; could add a boolean later for linking both ways def linkNode(self,startNode,endNode,relationshipType="or"): ''' Create a unidirectional link between nodes In: InvSim object, starting Node index, ending Node index recDict[] maps one starting node to all of its receiving nodes preDict[] maps one ending node to all of its predecessor nodes ''' if startNode in self.nodeDict[startNode].recDict.keys(): self.nodeDict[startNode].recDict[startNode].append(endNode) else: self.nodeDict[startNode].recDict[startNode] = [] self.nodeDict[startNode].recDict[startNode].append(endNode) if endNode in self.nodeDict[endNode].preDict.keys(): self.nodeDict[endNode].preDict[endNode].append(startNode) else: self.nodeDict[endNode].preDict[endNode] = [] self.nodeDict[endNode].preDict[endNode].append(startNode) #This method adds in all of the combinations of nodeID and the number of units needed to produce one unit for "thisNode" def addAndRelationship(self,upstreamNodeID,downstreamNodeID,numNeeded): thisNode = self.nodeDict[upstreamNodeID] if (upstreamNodeID,downstreamNodeID) not in thisNode.ANDDict.keys(): thisNode.ANDDict[(upstreamNodeID,downstreamNodeID)] = [] thisNode.ANDDict[(upstreamNodeID,downstreamNodeID)].append(numNeeded) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # def playSimulation(self, gameType="multiNodeVerify", BSLevel=60, demandMethod="useFileDemand", fileDemand=df["IO"], seed='N/A', connectionCase="or", printOut=True): ''' Play the simulation, given the following: - game type (string) (default="multiNodeVerify) - base stock level (integer for multiNodeVerify game), single value for all nodes (default=60) ''' if gameType == "multiNodeVerify": if demandMethod == "useFileDemand": self.multiNodeVerify(demandArray=fileDemand, BSLevel=BSLevel, connectionCase=connectionCase, demandMethod=demandMethod, printOut=printOut) elif demandMethod == "useRandomDemand": self.multiNodeVerify(BSLevel=BSLevel, connectionCase=connectionCase, demandMethod=demandMethod, seed=seed, printOut=printOut) else: self.playOptimalBaseStockGame() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # def printEndStats(self, nodeID, thisNode, period): ''' Print the resulting statistics for a node in the game In: - nodeID (integer) - thisNode (node Object) - period (integer) ''' print("Node " + str(nodeID)) print("(IL) Starting Inventory record for node " + str(nodeID) + ":" + str(thisNode.startingInventoryRecord)) print("(IS) Inbound supply record for node " + str(nodeID) + ":" + str(thisNode.receivedMats)) print("(IO) Demand for node " + str(nodeID) + ":" + str(thisNode.demandArray)) print("(OQ) Order for node " + str(nodeID) + ":" + str(thisNode.orderArray)) print("(DMFS) Supply for node " + str(nodeID) + ":" + str(thisNode.supplyArray)) print("(EIL) Ending Inventory record for node " + str(nodeID) + ":" + str(thisNode.endingInventoryRecord)) print("(BO) Backorders for node " + str(nodeID) + ":" + str(thisNode.backorderRecord)) print("(TC) Total Cost for node " + str(nodeID) + ":" + str(thisNode.costRecord)) print() #diffIS = [] #if nodeID == 2: # for i in range(0,min(len(thisNode.inBoundOrders),len(df["IS 3 Node"]))): # diffIS.append(thisNode.inBoundOrders[i]-df["IS 3 Node"][i]) # print(diffIS) # print(len(thisNode.inBoundOrders)) def getReceivedMaterialsOrCase(self, nodeID, thisNode, period): ''' Get the number of inbound materials from what the preceding node was able to supply Example: Flow of material o -> o Suppose the left node represents a wholesaler, and the right node represents a retailer How much material was the wholesaler able to supply to the retailer? In: - nodeID (dictionary key) - period (integer) Out: - number of received materials (numeric) ''' # Get the number of inbound materials from what the previous node was able to supply receivedMatsNum = 0 upstreamNum= 0 upstreamList = [] #For every node that's not the end supplier if len(self.nodeDict[nodeID].recDict) != 0 and period != 0: #Step 1: get the number of upstream nodes upstreamList = self.nodeDict[nodeID].recDict[nodeID] for upstreamNode in upstreamList: #Step 2: For every upstream node, find out the total number of downstream nodes downstreamNum = len(self.nodeDict[upstreamNode].preDict[upstreamNode]) #Step 3: For every upstream node, find out the total number of finished materials that could be delievered downstream totFinishedMatsNum = self.nodeDict[upstreamNode].supplyArray[period-1] #The number of finished goods that could be delivered to this particular node = total finished goods/total number of downstream nodes finishedMatsNum = totFinishedMatsNum/downstreamNum #Sum up all such finished goods received from upstream nodes to get the total number of received materials receivedMatsNum += finishedMatsNum # If a node has no receivers, we assume that it'll always be supplied the qty it wants elif len(self.nodeDict[nodeID].recDict) == 0 and period != 0: if iterable(self.nodeDict[nodeID].orderArray[period - 1]): receivedMatsNum = max(self.nodeDict[nodeID].orderArray[period - 1].sum(), 0) else: receivedMatsNum = max(self.nodeDict[nodeID].orderArray[period - 1], 0) thisNode.receivedMats.append(receivedMatsNum) return receivedMatsNum def getReceivedMaterialsANDCase(self, nodeID, thisNode, period): ''' Get the number of inbound materials from what the preceding node was able to supply Example: Flow of material o -> o Suppose the left node represents a wholesaler, and the right node represents a retailer How much material was the wholesaler able to supply to the retailer? In: - nodeID (dictionary key) - period (integer) Out: - number of received materials (numeric) ''' # Get the number of inbound materials from what the previous node was able to supply receivedMatsNum = 0 upstreamNum= 0 upstreamList = [] finishedMatsList = [] #For every node that's not the end supplier if len(self.nodeDict[nodeID].recDict) != 0 and period != 0: #Step 1: get the number of upstream nodes upstreamList = self.nodeDict[nodeID].recDict[nodeID] for upstreamNode in upstreamList: #Step 2: For every upstream node, find out the total number of downstream nodes downstreamNum = len(self.nodeDict[upstreamNode].preDict[upstreamNode]) #Step 3: For every upstream node, find out the total number of finished materials that could be delievered downstream totFinishedMatsNum = self.nodeDict[upstreamNode].supplyArray[period-1] #The number of finished goods that could be delivered to this particular node = total finished goods/total number of downstream nodes finishedMatsNum = totFinishedMatsNum/downstreamNum #Append finishedMatsNum from every node to the finishedMatsList finishedMatsList.append(finishedMatsNum) #AND Relationship: find out the minimum of all finishedMatsNum receivedMatsNum = min(finishedMatsList) elif len(self.nodeDict[nodeID].recDict) == 0 and period != 0: if iterable(self.nodeDict[nodeID].orderArray[period - 1]): receivedMatsNum = max(self.nodeDict[nodeID].orderArray[period - 1].sum(), 0) else: receivedMatsNum = max(self.nodeDict[nodeID].orderArray[period - 1], 0) thisNode.receivedMats.append(receivedMatsNum) return receivedMatsNum def computeDemandOrCase(self, nodeID, thisNode, demandArray, demandMethod, period): ''' Compute the demand for a given node (using a demand array as reference) In: - nodeID (dictionary Key) - thisNode (Node) - demandArray (array of numerics) - period (integer) ''' downstreamNum = 0 downstreamList = [] downstreamNodeDemand = 0 totDemand = 0 demandUpstreamNum = 0 # Pull demand from the demand array if it's the retailer # Upstream nodes look at what the previous node's order was (that is in turn their demand) ### THIS WILL ALSO NEED TO CHANGE TO BE GENERALIZABLE TO THE MULTI-RETAILER CASE # if nodeID == 0: if len(thisNode.preDict) == 0: if demandMethod == "useFileDemand": totDemand = demandArray[period] else: totDemand = np.random.normal(loc=thisNode.demandMean, scale=thisNode.demandStDev) else: #Step 1: get the number of downstream nodes this node has downstreamList = thisNode.preDict[nodeID] downstreamNum = len(downstreamList) #Step 2: Calculate the number of units demanded for each downstream node for downstreamNode in downstreamList: #Step 3: find out the number of upstream nodes for the current downstream node demandUpstreamNum = len(self.nodeDict[downstreamNode].recDict[downstreamNode]) #Find out this downstream node's total demand for this period (assuming no delay in placing orders to upstream nodes) downstreamNodeDemand = self.nodeDict[downstreamNode].orderArray[period] #This node's demand from the current downstream node = total demand/#upstream nodes for this downstream node thisNodeDemand = downstreamNodeDemand/demandUpstreamNum #Sum up all demands to get the total demand for this node totDemand += thisNodeDemand #print("Node " + str(thisNode.id)) #print("Demand " + str(totDemand)) #print() # Incur the demand by appending it to the node's demand array (this is basically just being pulled from the file) thisNode.demandArray.append(totDemand) return totDemand def computeDemandAndCase(self, nodeID, thisNode, demandArray, demandMethod, period): ''' Compute the demand for a given node (using a demand array as reference) In: - nodeID (dictionary Key) - thisNode (Node) - demandArray (array of numerics) - period (integer) ''' downstreamNum = 0 downstreamList = [] downstreamNodeDemand = 0 totDemand = 0 demandUpstreamNum = 0 # Pull demand from the demand array if it's the retailer # Upstream nodes look at what the previous node's order was (that is in turn their demand) # THIS IS CHANGED # if nodeID == 0 if len(thisNode.preDict) == 0: if demandMethod == "useFileDemand": totDemand = demandArray[period] else: totDemand = np.random.normal(loc=thisNode.demandMean, scale=thisNode.demandStDev) else: #Step 1: get the number of downstream nodes this node has downstreamList = thisNode.preDict[nodeID] downstreamNum = len(downstreamList) #Step 2: Calculate the number of units demanded for each downstream node for downstreamNode in downstreamList: #Find out this downstream node's total demand for this period (assuming no delay in placing orders to upstream nodes) downstreamNodeDemand = self.nodeDict[downstreamNode].orderArray[period] #Sum up all demands to get the total demand for this node totDemand += downstreamNodeDemand #print("Node " + str(thisNode.id)) #print("Demand " + str(totDemand)) #print() # Incur the demand by appending it to the node's demand array (this is basically just being pulled from the file) thisNode.demandArray.append(totDemand) return totDemand def satisfyDemand(self, receivedMats, thisNode, thisPeriodDemand, backordersFulfilled): ''' Given the demand, as well as the supply for a node for a current period, compute how much of this node's demand can be supplied (and how many backorders result) Record this information in the node In: - Received materials (numeric) - node object (Node) - demand for this period (numeric) ''' availableSupply = receivedMats + max(thisNode.startingInventory,0) # Record demand that can be supplied, along with the backorders that were fulfilled if iterable(thisPeriodDemand): totDemand = thisPeriodDemand.sum() totDemand = thisPeriodDemand suppliableDemand = min(availableSupply, totDemand) thisNode.supplyArray.append(suppliableDemand + backordersFulfilled) thisNode.backordersFulfilledArray.append(backordersFulfilled) def computeEIAndCosts(self, thisNode, thisPeriodDemand, receivedMats, backordersFulfilled): if iterable(thisPeriodDemand): thisNode.endingInventory = thisNode.startingInventory - thisPeriodDemand.sum() + receivedMats + backordersFulfilled else: thisNode.endingInventory = thisNode.startingInventory - thisPeriodDemand + receivedMats + backordersFulfilled thisNode.backorders = -1 * min(0, thisNode.endingInventory) thisNode.backorderRecord.append(thisNode.backorders) thisPeriodCost = max(0,thisNode.endingInventory*thisNode.holdingCost)+max(0,-1*thisNode.endingInventory*thisNode.stockoutCost) thisNode.endingInventoryRecord.append(thisNode.endingInventory) thisNode.costRecord.append(thisPeriodCost) def getPdToSimulate(self, demandArray): availablePdToSimulate = 0 if len(demandArray) == 0: availablePdToSimulate = self.periodsToSimulate + 1 else: availablePdToSimulate = len(demandArray) return availablePdToSimulate # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # def multiNodeVerify(self, demandArray=[], BSLevel=60, connectionCase="or", demandMethod="useRandomDemand", seed="N/A", printOut=True): ''' Run instance of the game using a preset demand In: - demandArray: array of numerics, containing demand for each node - BSLevel: (optional, default=60) Base stock level (numeric) ''' # Apply an RN seed if we need one if seed != "N/A": np.random.seed(seed) if type(BSLevel) == dict: # Read the base stock level in from the dictionary for nodeID in sorted(self.nodeDict.keys()): self.nodeDict[nodeID].initGame(BSLevel[nodeID]) else: # Reset lists from previous runs for nodeID in sorted(self.nodeDict.keys()): self.nodeDict[nodeID].initGame(BSLevel) availablePdToSimulate = self.getPdToSimulate(demandArray) # Determine order quantity for the current period for all nodes (prior to demand determination) for period in range(0, min(availablePdToSimulate, self.periodsToSimulate)): for nodeID in sorted(self.nodeDict.keys()): thisNode = self.nodeDict[nodeID] # Record starting inventory, and get materials from upstream node thisNode.startingInventoryRecord.append(thisNode.startingInventory) if connectionCase == "and": receivedMats = self.getReceivedMaterialsANDCase(nodeID, thisNode, period) else: receivedMats = self.getReceivedMaterialsOrCase(nodeID, thisNode, period) # Determine how many backorders can be fulfilled backordersFulfilled, receivedMats = thisNode.getBackorders(receivedMats) # Compute the demand, and satisfy as much of it as we are able (during this period) if connectionCase == "and": thisPeriodDemand = self.computeDemandAndCase(nodeID, thisNode, demandArray, demandMethod, period) else: thisPeriodDemand = self.computeDemandOrCase(nodeID, thisNode, demandArray, demandMethod, period) self.satisfyDemand(receivedMats, thisNode, thisPeriodDemand, backordersFulfilled) # Order the same quantity as the demand from this period qtyToOrder = thisPeriodDemand thisNode.orderArray.append(qtyToOrder) # Compute the ending inventory and costs for this period (and print resulting statistics) self.computeEIAndCosts(thisNode, thisPeriodDemand, receivedMats, backordersFulfilled) if printOut == True and (period == self.periodsToSimulate - 1): self.printEndStats(nodeID, thisNode, period) # Make the starting inventory equal to ending inventory from previous period thisNode.startingInventory = thisNode.endingInventory class Node: def __init__(self, id, h=3, p=100, nodeType = "retailer",demandMean=50, demandStDev=10): ''' Node represents a single node on our supply network In: - NodeID (required, we recommend using integers 0-inf) - h (unit holding cost) (numeric), default = 3 - p (unit stockout cost) (numeric), default = 100 - nodeType (description of node type) (string), default = "retailer" - demandMean (mean of the demand function) (numeric), default = 50 - demandStDev (standard deviation of the demand function) (numeric), default = 10 Note that we are currently assuming normal demands (perhaps specify other distributions if you want) ''' self.id = id self.holdingCost = h self.stockoutCost = p self.baseStockLevel = 0 self.startingInventory = self.baseStockLevel self.endingInventory = 0 self.nodeType = nodeType self.backorders = 0 # This is assuming that in this game, we have an idea of the distribution params for demand self.demandMean = demandMean self.demandStDev = demandStDev # Add 2 dictionaries, one for recording recipients and one for predecessors, to each node for cross-node implementations self.preDict = {} self.recDict = {} #Create a dictionary that stores the nodes that have "AND" relationships with the current node self.ANDDict = {} def initGame(self, BSLevel): self.demandArray = [] self.orderArray = [] self.supplyArray = [] self.backordersFulfilledArray = [] self.startingInventoryRecord = [] self.endingInventoryRecord = [] self.backorderRecord = [] self.receivedMats = [] self.costRecord = [] # Initialize the base stock level for period 0 and beyond, also starting inventory for period 0 self.startingInventory = BSLevel self.baseStockLevel = BSLevel self.backorders = 0 self.endingInventory = 0 def getBackorders(self, receivedMats): backordersFulfilled = 0 # Serve backorders with the new supply first if self.backorders > 0: if receivedMats >= self.backorders: backordersFulfilled = self.backorders self.backorders = 0 receivedMats = receivedMats - backordersFulfilled else: backordersFulfilled = self.backorders - receivedMats self.backorders = self.backorders - receivedMats receivedMats = 0 return backordersFulfilled, receivedMats # New code!!! - Written by Sean (print method for Node class) def __str__(self): # Print method for the node class (be able to print out all node fields we're interested in) myString = "Node " + str(self.id) + "\n" myString += "nodeType = " + str(self.nodeType) + "\n" myString += "holdingCost = " + str(self.holdingCost) + "\n" myString += "stockoutCost = " + str(self.stockoutCost) + "\n" myString += "baseStockLevel = " + str(self.baseStockLevel) + "\n" myString += "\nNode Links\n" myString += "Predecessor Node IDs = " + str(self.preDict) + "\n" myString += "Recipient Node IDs = " + str(self.recDict) + "\n" myString += "AND Relationships this Node has = " + str(self.ANDDict) + "\n" myString += "\nDemand and Supply\n" myString += "demandArray = " + str(self.demandArray) + "\n" myString += "orderArray = " + str(self.orderArray) + "\n" myString += "supplyArray = " + str(self.supplyArray) + "\n" myString += "\nInventory Statistics\n" myString += "startingInventoryRecord = " + str(self.startingInventoryRecord) + "\n" myString += "endingInventoryRecord = " + str(self.endingInventoryRecord) + "\n" myString += "backorderRecord = " + str(self.backorderRecord) + "\n" myString += "receivedMats = " + str(self.receivedMats) + "\n" myString += "costRecord = " + str(self.costRecord) + "\n" myString += "backordersFulfilledArray = " + str(self.backordersFulfilledArray) + "\n\n" return myString df = pd.read_csv("3_node_60_60_60.csv") print(df["IS 3 Node"][len(df["IS 3 Node"])-1]) myInvSim = InvSimulation() # Node creation: Key (mandatory), holding cost, stockout cost, and fixed order cost myInvSim.createNode(nodeID = 0, h = 10, p = 100, demandMean=50, demandStDev=10) myInvSim.createNode(nodeID = 1, h = 10, p = 25, demandMean=50, demandStDev=10) myInvSim.createNode(nodeID = 2, h = 10, p = 25, demandMean=50, demandStDev=10) #myInvSim.createNode(nodeID = 3, h = 10, p = 0, demandMean=50, demandStDev=10) # Node linkage: start Node Key, end Node Key myInvSim.linkNode(startNode = 0,endNode = 1) myInvSim.linkNode(startNode = 0,endNode = 2) #myInvSim.linkNode(startNode = 1,endNode = 3) #myInvSim.linkNode(startNode = 2,endNode = 3) myInvSim.addAndRelationship(upstreamNodeID = 1,downstreamNodeID = 0, numNeeded=3) #for i in myInvSim.nodeDict.values(): # pprint.pprint(i.preDict) #ANDRelationIDList = [2,3] #myInvSim.addAndRelationship(4,ANDRelationList,) #print(myInvSim.nodeDict[0].recDict[0]) #print(myInvSim.nodeDict[2].preDict[2]) # Put node ID: base stock level, nextNodeID... startInvDict = {0: 60, 1: 60, 2: 60} # Currently assume that everyone plays with the same policy myInvSim.playSimulation(gameType = "multiNodeVerify", BSLevel=startInvDict, demandMethod="useFileDemand", fileDemand=df["IO"], connectionCase="and", printOut=True) #myInvSim.playSimulation(gameType = "multiNodeVerify", BSLevel=startInvDict, demandMethod="useRandomDemand", seed=60, connectionCase="and", printOut=True) ###Output Node 0 (IL) Starting Inventory record for node 0:[60, 19.176249730000002, 7.852610339999998, -19.19040905, -21.04642566999999, 21.44287896000001, 8.46862917, 1.1208494700000031, 17.298769710000002, 14.300057680000002, 8.831042189999998, 16.512934379999997, -1.384173969999999, 0.15576768000001096, 1.863777259999999, 23.54079935, -1.7492203400000008, 30.684211230000006, 23.496188269999998, -0.36212937999999895, -7.002773519999991, 1.4978545100000105, 20.34797524000001, -1.9206440599999866, -6.419065689999982, -16.66335404999998, -2.7133895199999927, -1.2274013599999947, -11.465920780000005, -17.54402458, 1.985553319999994, 10.333739789999996, 8.348442799999987, 20.95334325999999, -0.36735494000000557, -1.9418782800000045, 26.86334140999999, 7.002471499999984, 14.033030059999987, 9.321330359999983, 22.940767519999987, 2.725434529999987, 32.190332449999985, 1.3268761699999843, 32.49268793999998, 17.007861189999982, 9.51674417999999, 2.9750997399999832, 0.22282443999998236, -1.573100370000013, 16.165690879999985, 19.884305189999985, 18.85877845999999, -3.7039548600000174, 4.491466379999984, -4.195951240000014, 10.713261419999988, -2.771963250000013, 8.17334867999999, 12.545431629999989, -8.582602010000016, 0.36934460999998464, 8.390963589999984, -1.6062320700000114, -10.757886830000018, -3.901473270000018, -3.1973687100000276, -7.178830880000014, 16.195016059999986, 3.52572078999998, 32.849411519999975, 19.995467829999978, 16.737441709999974, 5.01100040999998, 28.59944179999998, -0.8401078600000247, 28.484151649999983, 8.087037189999975, 31.53482735999998, 19.89759233999998, -2.6783857200000227, 7.202930279999983, 0.527932679999978, 16.42561370999998, 16.490380709999975, 3.681185169999978, 17.09870318999998, -0.867690730000021, -12.626835230000005, -13.692268450000007, 15.845675169999986, 3.0532829899999783, 5.911533249999977, 10.173230809999978, 15.87024821999998, 6.365083409999976, 14.19551312999998, 25.62426690999998, 7.1241760999999855, 17.90595835999998, 0.4034744299999815, 6.61806070999998, 14.934259149999981, 23.627936009999978, 5.34583499999998, -1.3494959900000225, 6.073190459999985, 9.130492609999976, 11.638327339999975, 37.54976909999998, -0.3944421700000227, 21.808191379999986, 10.025726639999977, 8.625481929999978, 7.8510074799999785, 28.14784680999998, -2.0859241100000183, -5.475513820000007, 5.764734360000009, 22.451936099999994, 1.2037093199999944, 6.126590919999991, 13.775793579999991, 13.220228429999992, 2.458690869999991, -2.1464623900000106, -2.52566560999999, 23.209446450000016, 25.849945529999992, 14.068671139999992, 17.884255589999995, 6.049647999999991, 11.655637369999994, 13.73019038999999, 18.398320179999992, 8.765742339999996, 22.564585769999994, 4.152287089999994, 12.734524779999994, 5.028357819999989, 3.7550982699999906, 15.276584889999995, 18.133994489999992, 17.56038783999999, -0.6229133600000054, -1.7323779299999842, 7.9568462400000115, 12.54504218999999, 5.714961079999995, -4.877898370000004, -16.335289489999987, 10.548598450000007, 4.289440039999995, 4.253844019999995, 23.95761096999999, 20.662548779999995, 14.640800769999991, 21.378535339999992, 23.184749909999994, 6.832110159999992, 17.029387709999995, 4.74522490999999, -0.36938514000000566, 14.486509790000007, 4.072091329999992, 4.502498079999995, 30.102652649999992, 21.15986328999999, 4.696725159999993, 9.465379529999993, 9.628454269999992, -17.063805470000013, -15.967433689999993, -3.4620371000000176, 3.94060609000001, 14.447234619999989, 20.38653302999999, 19.626834379999984, 26.006606349999984, -5.244719680000017, -3.503993489999992, -5.648439240000009, -2.4164381399999755, 5.921299639999994, -8.011653250000002, -7.001490469999965, 9.642559310000003, 13.84792153, 10.086146149999998, 13.172099029999998, 24.57928434, 20.914755149999998, 9.839728639999997, 6.788790740000003, 5.656272459999997, -2.8488880900000026, 2.1876001800000253, 17.653025919999997, 4.600463159999997, 0.24345799999999684, 12.55171353, 21.11789332, -0.07572130999999871, 7.538584590000028, 2.826779639999998, -4.8624724999999955, -1.354012209999965, 12.470185630000003, 15.78547958, 7.31189770000001, 0.9510193999999998, 7.530359220000001, -21.1810379, -0.5849486799999681, -9.801421079999997, -4.70580396999997, 7.1241091899999915, 17.062531639999996, 12.20188156999999, -4.594826420000011, -1.0262168099999727, 0.9036269099999927, -13.83764865000002, 0.045991860000015095, 29.15221128999998, 8.651049709999981, -21.16365689000002, -20.483739849999978, 8.14639603999997, -6.895934330000031, -13.89005934999998, 13.809841490000025, 9.218102789999968, 0.3817318499999658, 15.108813459999965, 17.66481086999996, 7.514928879999964, 5.218426619999967, 10.607248289999966, 14.62914089999996, 8.591295039999963, 3.3612793199999658, -11.256932360000029, 11.373454300000027, 27.586223189999956, 18.554208219999957, 12.71976808999996, 9.142393689999956, -0.7440720600000432, -1.8167875399999787, 14.313324170000023, 6.6896334599999605, 5.28050350999996, 26.823597949999957, 22.843168679999955, 15.209125169999957, 0.7044171399999541, 0.5032445799999579, 13.265647639999955, 14.155095989999957, 16.893958939999955, 17.609357269999954, 4.139417809999955, 17.094950259999955, 8.732987489999957, -9.354029920000045, -11.285123769999977, 0.7467072200000331, 16.17674089999997, 9.18279275999997, 11.78773456999997, 18.10694203999997, 15.36018994999997, 17.49930401999997, 6.612203799999968, 5.261306629999972, -12.250607610000024, -0.9776758699999633, 28.086068779999977, 15.056707389999975, 17.798626819999978, 0.04568955999997826, 7.337809699999987, -4.560163310000014, 17.232872290000053, 3.034415459999977, 9.198909069999978, 16.221413349999978, 12.823742009999975, 18.36667802999998, -2.6297052200000195, 8.937741140000043, 6.0199462999999795, 4.0030665999999755, -0.8360531800000217, 2.330501090000041, 22.98068669999998, 10.399540659999978, 2.9523063499999793, 19.087837929999978, 12.374420479999976, 21.141086279999982, 16.198160469999976, 3.684817119999977, 6.961212729999978, 22.17517324999998, -7.506512290000025, 20.10486932000004, 0.474494469999982, 1.2989023999999745, 15.494125699999984, 17.230677319999977, 7.940122129999978, 11.498150979999977, 5.555953779999982, 10.44715344999998, 12.23829370999998, 16.476339779999982, -4.678048030000021, -4.440328509999965, 13.383132019999977, 19.516792019999976, 4.715017829999979, 3.92041288999998, 14.40297538999998, -1.7062169500000195, 0.3393663800000368, 1.4569891599999778, -0.1954458400000192, -5.767167559999962, 25.35077531000004, 5.16585268999998, 12.55477081999998, -5.397902920000028, 7.828135480000029, 18.226252549999977, 6.03864498999998, 12.848536519999982, 10.393747279999978, 19.84353359999998, 14.95740232999998, 25.549101829999977, 0.5975733199999809, 17.57140521999998, 3.9688312599999804, 0.37975948999997655, 7.5057890099999796, 15.134442249999978, 4.438814989999976, 19.02119931999998, 13.088026699999986, -0.6634130000000198, 1.935338170000044, 7.139124769999981, 11.135873239999981, 4.658500609999976, 16.25773721999998, 4.718685509999979, 3.7680184999999824, 14.115260759999977, 11.691111819999982, 4.677062729999982, 2.56562281999998, 5.644931719999981, 13.798743879999982, 15.682428219999977, 20.622217659999976, 22.40582827999998, 15.536092619999977, 33.627127999999985, 17.410615949999983, 7.37111153999998, 22.93988308999998, 20.147757899999974, 11.881606829999981, 5.7543375799999765, 4.815038889999975, 30.970259859999977, 5.9107446099999805, 20.17533195999998, 13.817790989999978, 4.797839279999977, 17.87268840999998, -2.778396000000015, 9.54921659000005, 2.2268667599999787, 16.08829153999998, 17.765030269999976, 13.937773829999976, 18.290447139999976, 15.015219879999975, 7.07937906999998, 13.557671819999982, 25.933414939999977, 22.51199921999998, 27.311764609999976, 14.359320239999981, 9.94979378999998, 23.559662699999983, 24.815616329999976, 13.16159039999998, 20.357585209999982, 8.661921469999982, 12.37371900999998, 13.978120099999977, 4.7281591199999795, 7.891580299999973, 11.803994769999981, 5.218850099999983, 3.5813478099999756, 32.53298384999998, 17.02583473999998, 5.817659559999981, -1.1503125700000183, 27.553158240000045, -3.363832200000026, 26.10167239000004, 16.53643341999998, 8.246334629999978, 8.504194789999978, -2.285934520000019, 29.14057169000005, 0.3170118199999763, 8.620008689999977, 9.120589439999982, 0.3470980599999791, 9.04191867999998, -1.7006035300000235, -3.2828804199999553, 19.526930880000045, 7.946080109999976, 26.05204346999998, 15.313677679999977, 9.655158459999981, 3.928909969999978, 18.936449629999977, 11.000666739999978, 20.33015350999998, -0.9485371700000229, 31.206198060000048, 8.215423229999978, 29.47414677999998, -18.061421610000014, 3.8378731600000613, 15.376722609999987, 22.708288839999987, -0.7678086000000164, 6.7847842300000565, 17.37041681999999, 23.644317309999984, -8.331812470000017, -13.425534249999941, -5.345055289999934, 8.450852040000065, 0.9153640699999883, 19.795977939999986, 22.008725129999988, 24.287219849999985, 13.580388659999983, 30.986754879999985, 18.584528359999986, 9.850536209999987, -8.893708390000015, -13.142776629999936, -3.757978769999937, 14.768003769999993, 0.63370531999999, 17.765502559999995, 24.170664439999996, 18.735257389999994, 11.51104140999999, 0.5846697199999937, 2.5242930799999925, 12.396706569999992, -3.656106490000006, 10.552424440000067, 15.16486995999999, 8.134829599999996, -6.177922480000014, -8.46680241999995, -5.972480609999934, 15.875625490000068, 7.579690040000003, 19.15531239, 1.9611611300000007, 3.1561035000000004, 6.990578720000002, 17.77062375, 8.14806359, 8.214542100000003, 9.204792750000003, 21.978549289999997, 8.134504980000003, 8.06396377, 17.94765504, 7.766139580000001, 23.1817263, 9.942647139999998, 25.64925532, 0.2324147200000013, 2.940352449999999, 26.402896300000002, 12.427350299999993, 13.980982079999997, 27.321758199999998, 29.06857407, 5.7795671399999975, 15.62905576, 16.529641050000002, 3.946888549999997, 3.9149550699999978, 12.89135598, 17.750608149999998, 10.095381840000002, -7.016529090000006, 0.6297688000000576, 7.1384651099999985, 4.584311159999999, -2.3877012399999984, 25.300818370000066, 7.7525326299999975, 8.880169359999996, 21.279079269999997, 6.642865239999999, 8.43744383, 28.07082426, 12.926733650000003, 5.042452949999998, 5.74937224, 9.06574345, 31.40097618, 7.427464489999998, 17.70912081, 19.29648968, 23.99865782, 4.143939920000001, 10.657851489999999, 16.817816649999997, 23.54984776, 5.005763430000002, 10.649061770000003, -23.683556609999997, 2.5971043200000707, 22.324701549999993, 7.832782769999994, -7.521028010000002, -5.484747079999934, -2.870763030000006, 10.865609220000074, 21.86719949999999, -4.743603010000008, 11.82425257000007, 5.6227649199999945, 23.415357719999996, -10.790887660000003, 0.351591610000078, 18.68744371999999, 19.622779069999993, 0.9693591299999937, 24.64435681999999, 12.234856179999994, 19.83246015999999, 11.655557199999997, -3.439401470000007, 10.11335371000007, 10.259240559999995, 0.17994707999999093, 11.92206706999999, 11.730296029999991, 1.904544009999995, 16.91787382999999, 7.1998646699999895, 9.77068581999999, 17.247770229999993, 4.978997509999992, -1.6275721900000093, 15.037044380000069, 6.692882889999993, 5.89658785999999, 21.566426189999994, 5.380136079999993, -0.7038586300000063, 15.11763618000007, 9.001275529999994, 7.2250022599999895, 30.068319409999994, 13.405907849999991, 16.60453155999999, -3.3157481500000046, 11.736187470000075, 7.621786879999995, 20.976934619999994, 11.941002559999994, 3.705297829999992, 4.080940719999994, 24.883878239999994, 17.561395059999995, 26.75633583999999, 12.32797743999999, 43.02228996999999, -0.5000651200000128, 24.96818500000006, 17.762151849999984, 12.980315229999984, 10.735685749999988, 15.303610029999987, 9.296754499999984, 22.078651059999984, 26.416721509999988, 19.445519389999987, 2.016220039999986, -0.1886408600000138, 9.020073580000059, 14.86701200999999, 16.634106649999985, 4.896883929999987, 10.686536989999986, 17.62345048999999, 17.191765479999987, -5.282238120000017, 6.720037430000055, 17.049014089999986, 7.8267793899999845, 2.094774639999983, 21.160603829999985, 15.484741549999988, -2.773863300000002, 0.8936064300000695, 4.1451547199999865, -0.6438260600000163, 9.292672660000058, 19.201733389999987, 17.114767259999986, 5.380780589999986, 15.634721709999987, 12.971941139999984, 14.427487379999988, 2.1128961799999857, 8.365898379999983, 0.31424013999998834, 0.04331662999998542, 4.8514889499999825, 18.069622069999987, 16.838427309999986, 12.533337429999989, 10.413579369999987, -4.631209290000015, -2.037293019999943, 27.865963269999988, 4.400742639999983, 17.577111249999987, -3.632260520000017, 15.991021740000058, 11.160216309999988, 6.230239639999986, 22.896914299999985, 3.870689089999985, -11.280296580000012, -17.271029419999948, 23.393870040000053, 16.042110209999983, 28.962856679999987, 11.420910019999987, 11.543351959999988, 7.7211208299999825, 7.187438809999989, 20.82209909999999, 2.408135279999989, 47.01742480999999, 2.4864407599999883, 18.039973289999985, 22.044582969999986, 28.121737089999986, 23.485632169999988, 14.268703499999987, 13.352259419999989, 16.592884019999985, 38.03410703999998, 14.012114719999982, 15.607213829999981, -8.432877750000024, 9.017544020000045, 23.785281939999983, 7.092227359999988, 16.623695639999987, 17.95065402999999, 10.258737999999987, -0.6337544900000154, 13.36644604000005, 3.1928286399999877, 12.436003679999985, 0.45946824999998626, 8.371062069999986, 3.0819798799999845, 8.660814749999986, 26.726350739999987, -15.647238080000008, -0.4054541299999457, 13.349006409999987, 10.198783809999988, 13.762121659999984, 22.37459581999999, 7.866697789999989, 20.685443699999986, 18.126954479999988, 15.56546489999998, 10.837763619999983, 3.920814639999989, 2.672081509999984, 2.8761885699999823, 13.171929109999986, 9.224771519999983, 6.280583369999988, 17.65417397999999, 9.729641309999984, 12.977270579999988, 17.79937634999999, 5.827384259999988, 19.412444489999984, 13.519597179999984, 4.305749609999985, 1.8476174899999833, 8.942415539999985, 19.14605978999999, 5.808276479999989, 7.278090459999987, -5.43384776000002, 6.409974060000046, 10.303513969999983, 23.44123238999999, 4.784711059999985, 18.991671369999985, 13.855040219999985, 6.782563209999985, 13.193177959999986, 17.377241959999985, -8.375749670000019, -12.118546299999956, 16.696254250000052, 17.197810429999976, 16.15579633999998, -8.705464360000015, -10.789110869999945, 7.831036590000046, 20.98329104999997, 4.473625469999973, 9.01540539999997, 14.029741429999973, 29.57645789999997, 7.796288299999972, 2.3873109599999722, 16.31889637999997, 9.212967129999974, 15.719781549999972, 26.153873909999973, 6.967282639999972, 14.035248909999972, 3.184238979999975, 14.426549689999973, 23.10739776999997, 0.8611200199999729, 23.001932769999975, 1.639180849999974, 9.966113179999972, -0.8915598800000311, -13.098249629999948, 17.06635388000005, 7.091926289999961, 11.334845589999958, 22.84314929999995, 31.990966259999958, 10.365074159999956, -16.49614975000005, -0.8455086999999679, 22.863800189999942, 4.755496649999941, 11.736605309999945, 16.348175039999944, -1.358111260000058, -0.01937934999996571, 8.978455629999942, 10.121620119999946, 23.001190359999946, 9.72668715999994, 12.890643149999946, 4.4140915799999405, 3.268203809999946, 13.978165669999946, 8.461878549999945, 14.241990449999946, -6.500655850000058, 6.256188520000038, -0.6181367200000594, -8.05755667999997, 1.9110863600000343, 3.997243179999934, 7.5902320999999375, 5.588317979999935, 23.887914889999934, 13.57940184999994, 13.482193119999934, -5.437612660000063, -0.8650773099999682, 13.40060685999994, -2.142017470000063, -7.970837979999963, 7.916342040000039, 5.569342719999952, 17.05967465999995, 14.210151769999953, 16.24675344999995, 10.513171559999954, 9.477816249999947, 5.423494509999948, 13.521818079999953, 22.66572924999995, -4.051994950000044, 17.85395205000004, 2.486512699999949, 25.49060460999995, 9.530861989999948, 17.33165150999995, 14.175881909999951, 3.0922212099999484, 1.305680469999949, 7.708067499999949, 27.15799766999995, 25.840355629999948, 7.925789589999951, 27.43294295999995, 7.481384819999953, 7.404527689999952, 1.782848079999951, 12.513459489999953, 10.382287549999951, -6.7155106600000565, -14.745017649999966, 11.814201320000038, 19.67684414999996, 5.118581269999957, 22.33816032999996, 15.890082699999965, 5.896897849999959, -1.8854813800000443, 23.71170296000004, 13.591022069999958, 22.89373192999996, 17.12036338999996, 9.55733346999996, 10.069126629999957, 9.242023549999956, 6.838190789999956, 22.77762286999996, 25.397184019999955, 13.347744619999958, 0.8304557699999577, -0.07518006000004362, 12.611102440000046, 14.631211519999958, 20.41143143999996, 16.739527209999956, 15.025772129999957, 14.133595019999959, 2.398356169999957, 16.274279609999958, 7.845849039999955, 9.134059989999955, 10.988029369999957, 8.422250439999956, 12.214015309999958, 14.904721489999957, 10.474641109999958, -10.051987310000044, -7.273864689999954, 6.870670039999972, 19.804053479999972, 20.48755128999997, 6.397680899999969, 13.481915849999972, 6.678717549999973, 29.05751110999997, 6.212801779999971, 14.42867998999997, 0.606535029999975, 18.15321194999997, 8.796888249999974, 2.7878053599999717, 20.174291599999975, 7.853275749999973, 34.872113059999975, 8.280112659999975, 7.742328699999973, -6.910178440000024, -15.61484650999995, -8.77708503999996, 0.07345815000003597, 1.2825314799999603, 8.520886169999955, 15.40497236999996, 12.653667289999959, 6.7140977699999596, 2.6522461599999545, -11.725374210000034, 1.7199214200000412, 21.128835799999962, -2.3423981000000396, 9.323075220000035, 14.464216689999965, -4.426065780000037, 3.1922262800000425, -3.8667710600000333, 4.923220780000044, 27.515817229999968, 12.829383049999961, 20.174090609999965, 5.987230059999966, 1.3620093599999663, 9.623738139999965, 15.837219199999971, 23.21874497999996, -3.405143710000033, 12.247465100000042, 13.666963059999965, 14.33197359999997, -2.037878030000037, 18.401670500000044, 14.236904189999962, 20.268174729999963, 2.638732059999967, 1.4428615599999617, 19.317440059999967, 21.592717289999968, 23.908968499999965, 17.506891379999963, 15.005966129999962, -0.580753480000034, 9.264412330000042, 15.992804099999965, 26.471756089999964, 0.006696819999966408, 16.234953559999965, 12.029009199999962, 8.419745399999961, -9.59901349000004, 7.274934220000041, -0.6730179100000342, -13.264467499999945, 10.292200210000047, 20.362607529999963, 7.3592103399999615, -1.329325690000033, 32.59268151000005, -3.7207357700000365, 22.474035680000046, 31.70129549999996, 5.101974629999962, 8.465151259999956, 19.02626422999996, 9.66725333999996, -6.187709080000047, 15.275089000000037, 13.302390699999961, 6.987941079999956, 16.517635329999955, -1.3024405000000456, 13.77132835000004, 3.3903450799999604, -12.653481720000045, 14.714736840000043, -9.140633080000043, -8.872111119999957, -6.476751050000047, 16.392865930000042, 5.230860149999955, -6.771491840000039, 5.166410240000047, 1.3056357999999548, 1.0462978599999602, 3.3006739399999603, 14.499600289999954, 27.784779919999956, 4.915992869999954, 12.75594532999996, 30.099039479999956, 9.21536255999996, 10.206760989999957, 9.39304021999996, 3.452675509999956, 31.15017092999996, 6.956269869999957, 2.955596239999956, 21.32166697999996, 20.307904409999956, 6.195153639999958, 10.622365199999955, 5.270282069999958, 17.189754429999958, 22.13958841999996, 0.9115381099999595, 15.508509889999956] (IS) Inbound supply record for node 0:[0, 40.82375027, 52.14738966, 60.0, 79.19040905, 38.55712103999999, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 60.00000000000001, 59.84423231999999, 58.13622274, 36.45920065, 60.00000000000001, 29.315788769999994, 36.50381173, 60.000000000000014, 60.36212938, 58.502145490000004, 39.65202476, 60.0, 61.92064406, 64.49842163, 62.71338952, 60.0, 61.22740136, 70.23851942, 58.01444668, 49.66626021, 51.651557200000006, 39.04665674, 60.0, 60.36735494, 33.136658589999996, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 60.0, 43.83430912, 40.11569481, 41.14122154, 60.0, 55.50853362, 60.0, 49.28673858, 60.0, 51.826651319999996, 47.45456837, 60.0, 59.63065539, 51.60903641, 60.0, 61.60623207, 63.90147326999999, 60.00000000000001, 63.19736871, 43.80498393999999, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.00000000000001, 31.515848349999995, 51.91296281, 28.46517264, 40.10240766, 60.00000000000001, 52.797069719999996, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.00000000000001, 60.86769073, 71.75914449999999, 44.15432482999999, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 60.00000000000001, 53.926809539999994, 50.86950739, 48.36167266, 22.450230899999998, 60.0, 38.19180861999999, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 60.00000000000001, 62.08592411000001, 54.23526563999998, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 60.00000000000002, 62.14646239, 36.79055354999998, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.00000000000002, 60.62291336, 52.04315375999998, 47.45495781, 54.28503892, 60.00000000000002, 64.87789837, 49.451401549999986, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.000000000000014, 45.513490209999986, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 60.000000000000014, 75.96743368999998, 60.00000000000003, 56.059393909999976, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 60.00000000000003, 63.50399348999998, 60.00000000000003, 62.41643813999997, 54.07870036, 60.00000000000003, 67.00149046999996, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 60.00000000000003, 57.812399819999975, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.00000000000003, 52.46141540999997, 57.17322036, 60.00000000000003, 61.354012209999965, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 60.00000000000003, 60.58494867999997, 60.000000000000036, 64.70580396999996, 52.87589081, 42.93746836, 47.79811843, 60.000000000000036, 61.026216809999966, 59.09637309, 60.000000000000036, 59.954008139999964, 30.84778871, 51.34895029, 60.00000000000004, 80.48373984999995, 51.85360396, 60.00000000000005, 66.89593433, 46.19015850999994, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 60.00000000000006, 48.62654569999993, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.000000000000064, 60.74407206, 45.686675829999935, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 60.000000000000064, 69.35402992, 59.25329277999994, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 60.000000000000064, 60.97767586999994, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 60.000000000000064, 42.767127709999926, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 60.000000000000064, 51.062258859999936, 53.9800537, 55.9969334, 60.000000000000064, 57.66949890999994, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 60.000000000000064, 39.89513067999994, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 60.000000000000064, 64.44032850999994, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 60.00000000000006, 59.66063361999994, 58.54301084, 60.00000000000006, 60.19544584, 34.64922468999994, 54.83414731, 47.44522918, 60.000000000000064, 52.17186451999995, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.000000000000064, 58.064661829999935, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 60.000000000000064, 50.45078340999993, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 60.000000000000064, 32.446841759999934, 60.000000000000064, 33.89832760999994, 43.46356658, 51.75366537, 51.49580521, 60.00000000000007, 30.859428309999927, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 60.00000000000007, 61.70060353, 40.473069119999934, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.00000000000007, 28.79380193999993, 51.78457677, 30.52585322, 60.00000000000007, 56.16212683999993, 44.62327739, 37.29171116, 60.00000000000007, 53.21521576999993, 42.62958318, 36.35568269, 60.00000000000007, 68.33181247, 65.09372178, 51.54914795999992, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 60.00000000000008, 68.89370839, 63.75797876999993, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 60.00000000000007, 49.447575559999926, 44.83513004, 51.8651704, 60.00000000000007, 66.17792248, 62.28887994, 44.12437450999993, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 60.000000000000064, 59.37023119999994, 52.86153489, 55.41568884, 60.000000000000064, 34.699181629999934, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 60.000000000000064, 57.40289567999992, 37.67529845, 52.16721723, 60.00000000000007, 65.48474707999992, 60.00000000000008, 49.13439077999992, 38.1328005, 60.00000000000008, 48.17574742999992, 54.37723508, 36.58464228, 60.00000000000008, 59.648408389999915, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 60.00000000000008, 49.88664628999992, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 60.00000000000008, 44.962955619999924, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.00000000000008, 44.882363819999924, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 60.00000000000008, 48.26381252999992, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.00000000000007, 35.03181499999992, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.00000000000007, 50.97992641999993, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 60.00000000000007, 53.27996256999993, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 60.00000000000007, 59.106393569999916, 55.85484528, 60.00000000000007, 50.70732733999993, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 60.00000000000007, 62.03729301999993, 32.13403673, 55.59925736, 42.42288875, 60.00000000000007, 44.00897825999993, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 60.00000000000007, 71.28029658, 36.60612995999993, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 60.00000000000007, 50.98245597999994, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.000000000000064, 46.63355395999994, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 60.000000000000064, 60.40545412999993, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 60.000000000000064, 53.59002593999994, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 60.000000000000064, 68.37574967, 43.303745749999926, 42.80218957, 43.84420366, 60.00000000000007, 68.70546436, 52.168963409999925, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.00000000000008, 60.89155988, 42.933646119999906, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 60.000000000000085, 60.84550869999991, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 60.00000000000009, 60.01937934999991, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 60.00000000000009, 53.743811479999906, 60.00000000000009, 60.61813672, 58.0889136399999, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 60.00000000000009, 60.865077309999904, 46.59939314, 60.00000000000009, 62.14201747, 52.08365795999991, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 60.000000000000085, 42.14604794999991, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 60.000000000000085, 66.71551066, 48.18579867999992, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 60.000000000000085, 36.28829703999992, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.000000000000085, 47.38889755999991, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 60.000000000000085, 67.27386468999993, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 60.00000000000007, 66.91017844, 68.70466807, 59.92654184999992, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 60.00000000000008, 58.28007857999992, 38.8711642, 60.00000000000008, 50.67692477999993, 45.53578331, 60.00000000000008, 56.80777371999992, 60.00000000000008, 55.07677921999992, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 60.00000000000008, 47.75253489999992, 46.33303694, 45.668026399999995, 60.00000000000008, 41.59832949999992, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.00000000000008, 50.73558766999992, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 60.00000000000008, 52.72506577999992, 60.00000000000008, 60.67301791, 49.70779978999992, 39.63739247, 52.64078966, 60.000000000000085, 27.407318489999913, 60.000000000000085, 37.525964319999915, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 60.000000000000085, 44.72491099999992, 46.697609299999996, 53.01205892, 43.48236467, 60.000000000000085, 46.22867164999992, 56.60965492, 60.000000000000085, 45.285263159999914, 60.000000000000085, 68.87211111999991, 60.000000000000085, 43.607134069999915, 54.76913985, 60.000000000000085, 54.83358975999991, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011] (IO) Demand for node 0:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (OQ) Order for node 0:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (DMFS) Supply for node 0:[40.82375027, 52.14738966, 60.0, 60.0, 57.74753008999999, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 60.0, 59.844232319999996, 58.13622274, 36.45920065, 60.0, 29.31578877, 36.50381173, 60.0, 60.000000000000014, 58.86427486999999, 39.65202476, 60.000000000000014, 60.0, 61.92064406, 64.49842163, 62.71338952, 60.0, 61.22740136, 68.25296610000001, 49.66626021, 51.651557200000006, 39.04665674, 59.99999999999999, 60.0, 33.50401353000001, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 59.999999999999986, 43.834309120000015, 40.11569481, 41.14122154, 59.999999999999986, 55.508533620000016, 59.999999999999986, 49.28673858000001, 59.999999999999986, 51.82665132000001, 47.45456837, 59.999999999999986, 59.630655390000015, 51.60903641, 59.999999999999986, 60.0, 61.60623207, 63.90147326999999, 60.00000000000001, 47.00235265000001, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 59.99999999999998, 31.515848350000024, 51.91296281, 28.46517264, 40.10240766, 59.99999999999998, 52.797069720000025, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 59.99999999999998, 60.00000000000001, 60.86769073, 55.913469330000005, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 59.99999999999998, 53.92680954000002, 50.86950739, 48.36167266, 22.450230899999998, 59.99999999999997, 38.19180862000002, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 59.99999999999998, 60.000000000000014, 56.32118975, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 59.99999999999999, 60.00000000000002, 38.93701593999999, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 59.99999999999999, 60.00000000000002, 52.66606711999999, 47.45495781, 54.28503892, 59.99999999999999, 60.00000000000002, 54.32929991999999, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 59.99999999999999, 45.51349021000001, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 59.99999999999999, 60.000000000000014, 75.96743368999998, 56.05939391000002, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 59.999999999999986, 60.00000000000003, 63.50399348999998, 60.00000000000003, 56.495138499999975, 59.99999999999999, 60.00000000000003, 57.35893115999996, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 60.0, 57.81239982, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.0, 52.46141541, 57.17322036, 60.0, 60.00000000000003, 48.88382657999996, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 60.0, 60.00000000000003, 60.58494867999997, 60.000000000000036, 57.58169477999997, 42.93746836, 47.79811843, 59.99999999999999, 60.000000000000036, 60.12258989999997, 59.99999999999999, 59.95400814000002, 30.84778871, 51.34895029, 59.99999999999998, 60.00000000000004, 72.33734380999998, 59.99999999999997, 60.00000000000005, 53.08609283999998, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 59.999999999999964, 48.62654570000003, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 59.99999999999996, 60.000000000000064, 46.43074788999998, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 59.99999999999996, 60.000000000000064, 68.60732269999997, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 59.99999999999997, 60.000000000000064, 32.891607089999965, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 59.99999999999998, 42.76712771000001, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 59.99999999999998, 51.06225886000002, 53.9800537, 55.9969334, 59.99999999999998, 57.66949891000002, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 59.99999999999998, 39.89513068000002, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 59.99999999999998, 60.000000000000064, 51.05719648999997, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 59.99999999999998, 59.66063362000002, 58.54301084, 59.99999999999998, 60.00000000000006, 34.84467052999996, 54.83414731, 47.44522918, 59.99999999999998, 52.171864520000035, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 59.99999999999998, 58.06466183000002, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 59.99999999999998, 50.450783410000014, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 59.99999999999998, 32.44684176000002, 59.99999999999998, 33.898327610000024, 43.46356658, 51.75366537, 51.49580521, 59.99999999999998, 30.85942831000002, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 59.99999999999998, 60.00000000000007, 42.17367264999996, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 59.99999999999998, 28.793801940000023, 51.78457677, 30.52585322, 59.99999999999998, 56.16212684000001, 44.62327739, 37.29171116, 59.999999999999986, 53.215215770000015, 42.62958318, 36.35568269, 59.999999999999986, 60.00000000000007, 68.33181247, 56.64286973999993, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 59.999999999999986, 60.00000000000008, 68.89370839, 48.98997499999994, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 59.99999999999999, 49.447575560000004, 44.83513004, 51.8651704, 59.99999999999999, 60.00000000000007, 66.17792248, 46.41325444999993, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 60.0, 59.370231200000006, 52.86153489, 55.41568884, 60.0, 34.69918163, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 60.0, 57.40289567999999, 37.67529845, 52.16721723, 59.99999999999999, 60.00000000000007, 65.48474707999992, 49.134390780000004, 38.1328005, 59.99999999999999, 48.17574743000001, 54.37723508, 36.58464228, 59.99999999999999, 59.64840839, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 59.99999999999999, 49.88664629000001, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 59.99999999999999, 44.96295562000001, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 59.99999999999999, 44.88236382000001, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 59.99999999999999, 48.26381253, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 59.999999999999986, 35.03181500000001, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 59.999999999999986, 50.97992642000001, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 59.999999999999986, 53.279962570000016, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 59.999999999999986, 59.10639357, 55.85484528, 59.999999999999986, 50.70732734000001, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 59.999999999999986, 60.00000000000007, 34.17132974999994, 55.59925736, 42.42288875, 59.999999999999986, 44.00897826000001, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 59.999999999999986, 60.00000000000007, 47.886426539999945, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 59.999999999999986, 50.982455980000026, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 59.999999999999986, 46.633553960000015, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 59.999999999999986, 60.000000000000064, 47.056447719999944, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 59.999999999999986, 53.59002594000002, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 59.999999999999986, 60.000000000000064, 51.67949541999995, 42.80218957, 43.84420366, 59.99999999999998, 60.00000000000007, 60.87442776999995, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 59.99999999999997, 60.00000000000008, 43.82520599999995, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 59.99999999999996, 60.000000000000085, 37.98170850999997, 55.24450335, 48.26339469, 43.65182496, 59.99999999999994, 60.00000000000009, 51.04092371999997, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 59.99999999999994, 53.743811480000055, 59.99999999999994, 60.00000000000009, 58.70705035999997, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 59.999999999999936, 60.00000000000009, 47.464470449999965, 59.999999999999936, 60.00000000000009, 54.22567542999996, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 59.99999999999995, 42.146047950000046, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 59.99999999999995, 60.000000000000085, 54.90130933999997, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 59.99999999999996, 36.288297040000046, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 59.99999999999996, 47.38889756000004, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 59.99999999999996, 60.000000000000085, 60.40319464999995, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 59.99999999999997, 60.00000000000007, 66.91017844, 68.63120991999996, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 59.99999999999996, 58.28007858000004, 38.8711642, 59.999999999999964, 50.67692478000004, 45.53578331, 59.999999999999964, 56.807773720000036, 59.999999999999964, 55.076779220000034, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 59.999999999999964, 47.752534900000036, 46.33303694, 45.668026399999995, 59.999999999999964, 41.598329500000034, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 59.999999999999964, 50.73558767000004, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 59.999999999999964, 52.72506578000004, 59.999999999999964, 60.00000000000008, 50.38081769999995, 39.63739247, 52.64078966, 59.999999999999964, 27.407318490000034, 59.99999999999996, 37.52596432000004, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 59.99999999999996, 44.72491100000005, 46.697609299999996, 53.01205892, 43.48236467, 59.99999999999996, 46.228671650000045, 56.60965492, 59.99999999999996, 45.28526316000004, 59.99999999999996, 60.000000000000085, 68.87211111999991, 43.60713407000004, 54.76913985, 59.99999999999996, 54.83358976000004, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (EIL) Ending Inventory record for node 0:[19.176249730000002, 7.852610339999998, -19.19040905, -21.04642566999999, 21.44287896000001, 8.46862917, 1.1208494700000031, 17.298769710000002, 14.300057680000002, 8.831042189999998, 16.512934379999997, -1.384173969999999, 0.15576768000001096, 1.863777259999999, 23.54079935, -1.7492203400000008, 30.684211230000006, 23.496188269999998, -0.36212937999999895, -7.002773519999991, 1.4978545100000105, 20.34797524000001, -1.9206440599999866, -6.419065689999982, -16.66335404999998, -2.7133895199999927, -1.2274013599999947, -11.465920780000005, -17.54402458, 1.985553319999994, 10.333739789999996, 8.348442799999987, 20.95334325999999, -0.36735494000000557, -1.9418782800000045, 26.86334140999999, 7.002471499999984, 14.033030059999987, 9.321330359999983, 22.940767519999987, 2.725434529999987, 32.190332449999985, 1.3268761699999843, 32.49268793999998, 17.007861189999982, 9.51674417999999, 2.9750997399999832, 0.22282443999998236, -1.573100370000013, 16.165690879999985, 19.884305189999985, 18.85877845999999, -3.7039548600000174, 4.491466379999984, -4.195951240000014, 10.713261419999988, -2.771963250000013, 8.17334867999999, 12.545431629999989, -8.582602010000016, 0.36934460999998464, 8.390963589999984, -1.6062320700000114, -10.757886830000018, -3.901473270000018, -3.1973687100000276, -7.178830880000014, 16.195016059999986, 3.52572078999998, 32.849411519999975, 19.995467829999978, 16.737441709999974, 5.01100040999998, 28.59944179999998, -0.8401078600000247, 28.484151649999983, 8.087037189999975, 31.53482735999998, 19.89759233999998, -2.6783857200000227, 7.202930279999983, 0.527932679999978, 16.42561370999998, 16.490380709999975, 3.681185169999978, 17.09870318999998, -0.867690730000021, -12.626835230000005, -13.692268450000007, 15.845675169999986, 3.0532829899999783, 5.911533249999977, 10.173230809999978, 15.87024821999998, 6.365083409999976, 14.19551312999998, 25.62426690999998, 7.1241760999999855, 17.90595835999998, 0.4034744299999815, 6.61806070999998, 14.934259149999981, 23.627936009999978, 5.34583499999998, -1.3494959900000225, 6.073190459999985, 9.130492609999976, 11.638327339999975, 37.54976909999998, -0.3944421700000227, 21.808191379999986, 10.025726639999977, 8.625481929999978, 7.8510074799999785, 28.14784680999998, -2.0859241100000183, -5.475513820000007, 5.764734360000009, 22.451936099999994, 1.2037093199999944, 6.126590919999991, 13.775793579999991, 13.220228429999992, 2.458690869999991, -2.1464623900000106, -2.52566560999999, 23.209446450000016, 25.849945529999992, 14.068671139999992, 17.884255589999995, 6.049647999999991, 11.655637369999994, 13.73019038999999, 18.398320179999992, 8.765742339999996, 22.564585769999994, 4.152287089999994, 12.734524779999994, 5.028357819999989, 3.7550982699999906, 15.276584889999995, 18.133994489999992, 17.56038783999999, -0.6229133600000054, -1.7323779299999842, 7.9568462400000115, 12.54504218999999, 5.714961079999995, -4.877898370000004, -16.335289489999987, 10.548598450000007, 4.289440039999995, 4.253844019999995, 23.95761096999999, 20.662548779999995, 14.640800769999991, 21.378535339999992, 23.184749909999994, 6.832110159999992, 17.029387709999995, 4.74522490999999, -0.36938514000000566, 14.486509790000007, 4.072091329999992, 4.502498079999995, 30.102652649999992, 21.15986328999999, 4.696725159999993, 9.465379529999993, 9.628454269999992, -17.063805470000013, -15.967433689999993, -3.4620371000000176, 3.94060609000001, 14.447234619999989, 20.38653302999999, 19.626834379999984, 26.006606349999984, -5.244719680000017, -3.503993489999992, -5.648439240000009, -2.4164381399999755, 5.921299639999994, -8.011653250000002, -7.001490469999965, 9.642559310000003, 13.84792153, 10.086146149999998, 13.172099029999998, 24.57928434, 20.914755149999998, 9.839728639999997, 6.788790740000003, 5.656272459999997, -2.8488880900000026, 2.1876001800000253, 17.653025919999997, 4.600463159999997, 0.24345799999999684, 12.55171353, 21.11789332, -0.07572130999999871, 7.538584590000028, 2.826779639999998, -4.8624724999999955, -1.354012209999965, 12.470185630000003, 15.78547958, 7.31189770000001, 0.9510193999999998, 7.530359220000001, -21.1810379, -0.5849486799999681, -9.801421079999997, -4.70580396999997, 7.1241091899999915, 17.062531639999996, 12.20188156999999, -4.594826420000011, -1.0262168099999727, 0.9036269099999927, -13.83764865000002, 0.045991860000015095, 29.15221128999998, 8.651049709999981, -21.16365689000002, -20.483739849999978, 8.14639603999997, -6.895934330000031, -13.89005934999998, 13.809841490000025, 9.218102789999968, 0.3817318499999658, 15.108813459999965, 17.66481086999996, 7.514928879999964, 5.218426619999967, 10.607248289999966, 14.62914089999996, 8.591295039999963, 3.3612793199999658, -11.256932360000029, 11.373454300000027, 27.586223189999956, 18.554208219999957, 12.71976808999996, 9.142393689999956, -0.7440720600000432, -1.8167875399999787, 14.313324170000023, 6.6896334599999605, 5.28050350999996, 26.823597949999957, 22.843168679999955, 15.209125169999957, 0.7044171399999541, 0.5032445799999579, 13.265647639999955, 14.155095989999957, 16.893958939999955, 17.609357269999954, 4.139417809999955, 17.094950259999955, 8.732987489999957, -9.354029920000045, -11.285123769999977, 0.7467072200000331, 16.17674089999997, 9.18279275999997, 11.78773456999997, 18.10694203999997, 15.36018994999997, 17.49930401999997, 6.612203799999968, 5.261306629999972, -12.250607610000024, -0.9776758699999633, 28.086068779999977, 15.056707389999975, 17.798626819999978, 0.04568955999997826, 7.337809699999987, -4.560163310000014, 17.232872290000053, 3.034415459999977, 9.198909069999978, 16.221413349999978, 12.823742009999975, 18.36667802999998, -2.6297052200000195, 8.937741140000043, 6.0199462999999795, 4.0030665999999755, -0.8360531800000217, 2.330501090000041, 22.98068669999998, 10.399540659999978, 2.9523063499999793, 19.087837929999978, 12.374420479999976, 21.141086279999982, 16.198160469999976, 3.684817119999977, 6.961212729999978, 22.17517324999998, -7.506512290000025, 20.10486932000004, 0.474494469999982, 1.2989023999999745, 15.494125699999984, 17.230677319999977, 7.940122129999978, 11.498150979999977, 5.555953779999982, 10.44715344999998, 12.23829370999998, 16.476339779999982, -4.678048030000021, -4.440328509999965, 13.383132019999977, 19.516792019999976, 4.715017829999979, 3.92041288999998, 14.40297538999998, -1.7062169500000195, 0.3393663800000368, 1.4569891599999778, -0.1954458400000192, -5.767167559999962, 25.35077531000004, 5.16585268999998, 12.55477081999998, -5.397902920000028, 7.828135480000029, 18.226252549999977, 6.03864498999998, 12.848536519999982, 10.393747279999978, 19.84353359999998, 14.95740232999998, 25.549101829999977, 0.5975733199999809, 17.57140521999998, 3.9688312599999804, 0.37975948999997655, 7.5057890099999796, 15.134442249999978, 4.438814989999976, 19.02119931999998, 13.088026699999986, -0.6634130000000198, 1.935338170000044, 7.139124769999981, 11.135873239999981, 4.658500609999976, 16.25773721999998, 4.718685509999979, 3.7680184999999824, 14.115260759999977, 11.691111819999982, 4.677062729999982, 2.56562281999998, 5.644931719999981, 13.798743879999982, 15.682428219999977, 20.622217659999976, 22.40582827999998, 15.536092619999977, 33.627127999999985, 17.410615949999983, 7.37111153999998, 22.93988308999998, 20.147757899999974, 11.881606829999981, 5.7543375799999765, 4.815038889999975, 30.970259859999977, 5.9107446099999805, 20.17533195999998, 13.817790989999978, 4.797839279999977, 17.87268840999998, -2.778396000000015, 9.54921659000005, 2.2268667599999787, 16.08829153999998, 17.765030269999976, 13.937773829999976, 18.290447139999976, 15.015219879999975, 7.07937906999998, 13.557671819999982, 25.933414939999977, 22.51199921999998, 27.311764609999976, 14.359320239999981, 9.94979378999998, 23.559662699999983, 24.815616329999976, 13.16159039999998, 20.357585209999982, 8.661921469999982, 12.37371900999998, 13.978120099999977, 4.7281591199999795, 7.891580299999973, 11.803994769999981, 5.218850099999983, 3.5813478099999756, 32.53298384999998, 17.02583473999998, 5.817659559999981, -1.1503125700000183, 27.553158240000045, -3.363832200000026, 26.10167239000004, 16.53643341999998, 8.246334629999978, 8.504194789999978, -2.285934520000019, 29.14057169000005, 0.3170118199999763, 8.620008689999977, 9.120589439999982, 0.3470980599999791, 9.04191867999998, -1.7006035300000235, -3.2828804199999553, 19.526930880000045, 7.946080109999976, 26.05204346999998, 15.313677679999977, 9.655158459999981, 3.928909969999978, 18.936449629999977, 11.000666739999978, 20.33015350999998, -0.9485371700000229, 31.206198060000048, 8.215423229999978, 29.47414677999998, -18.061421610000014, 3.8378731600000613, 15.376722609999987, 22.708288839999987, -0.7678086000000164, 6.7847842300000565, 17.37041681999999, 23.644317309999984, -8.331812470000017, -13.425534249999941, -5.345055289999934, 8.450852040000065, 0.9153640699999883, 19.795977939999986, 22.008725129999988, 24.287219849999985, 13.580388659999983, 30.986754879999985, 18.584528359999986, 9.850536209999987, -8.893708390000015, -13.142776629999936, -3.757978769999937, 14.768003769999993, 0.63370531999999, 17.765502559999995, 24.170664439999996, 18.735257389999994, 11.51104140999999, 0.5846697199999937, 2.5242930799999925, 12.396706569999992, -3.656106490000006, 10.552424440000067, 15.16486995999999, 8.134829599999996, -6.177922480000014, -8.46680241999995, -5.972480609999934, 15.875625490000068, 7.579690040000003, 19.15531239, 1.9611611300000007, 3.1561035000000004, 6.990578720000002, 17.77062375, 8.14806359, 8.214542100000003, 9.204792750000003, 21.978549289999997, 8.134504980000003, 8.06396377, 17.94765504, 7.766139580000001, 23.1817263, 9.942647139999998, 25.64925532, 0.2324147200000013, 2.940352449999999, 26.402896300000002, 12.427350299999993, 13.980982079999997, 27.321758199999998, 29.06857407, 5.7795671399999975, 15.62905576, 16.529641050000002, 3.946888549999997, 3.9149550699999978, 12.89135598, 17.750608149999998, 10.095381840000002, -7.016529090000006, 0.6297688000000576, 7.1384651099999985, 4.584311159999999, -2.3877012399999984, 25.300818370000066, 7.7525326299999975, 8.880169359999996, 21.279079269999997, 6.642865239999999, 8.43744383, 28.07082426, 12.926733650000003, 5.042452949999998, 5.74937224, 9.06574345, 31.40097618, 7.427464489999998, 17.70912081, 19.29648968, 23.99865782, 4.143939920000001, 10.657851489999999, 16.817816649999997, 23.54984776, 5.005763430000002, 10.649061770000003, -23.683556609999997, 2.5971043200000707, 22.324701549999993, 7.832782769999994, -7.521028010000002, -5.484747079999934, -2.870763030000006, 10.865609220000074, 21.86719949999999, -4.743603010000008, 11.82425257000007, 5.6227649199999945, 23.415357719999996, -10.790887660000003, 0.351591610000078, 18.68744371999999, 19.622779069999993, 0.9693591299999937, 24.64435681999999, 12.234856179999994, 19.83246015999999, 11.655557199999997, -3.439401470000007, 10.11335371000007, 10.259240559999995, 0.17994707999999093, 11.92206706999999, 11.730296029999991, 1.904544009999995, 16.91787382999999, 7.1998646699999895, 9.77068581999999, 17.247770229999993, 4.978997509999992, -1.6275721900000093, 15.037044380000069, 6.692882889999993, 5.89658785999999, 21.566426189999994, 5.380136079999993, -0.7038586300000063, 15.11763618000007, 9.001275529999994, 7.2250022599999895, 30.068319409999994, 13.405907849999991, 16.60453155999999, -3.3157481500000046, 11.736187470000075, 7.621786879999995, 20.976934619999994, 11.941002559999994, 3.705297829999992, 4.080940719999994, 24.883878239999994, 17.561395059999995, 26.75633583999999, 12.32797743999999, 43.02228996999999, -0.5000651200000128, 24.96818500000006, 17.762151849999984, 12.980315229999984, 10.735685749999988, 15.303610029999987, 9.296754499999984, 22.078651059999984, 26.416721509999988, 19.445519389999987, 2.016220039999986, -0.1886408600000138, 9.020073580000059, 14.86701200999999, 16.634106649999985, 4.896883929999987, 10.686536989999986, 17.62345048999999, 17.191765479999987, -5.282238120000017, 6.720037430000055, 17.049014089999986, 7.8267793899999845, 2.094774639999983, 21.160603829999985, 15.484741549999988, -2.773863300000002, 0.8936064300000695, 4.1451547199999865, -0.6438260600000163, 9.292672660000058, 19.201733389999987, 17.114767259999986, 5.380780589999986, 15.634721709999987, 12.971941139999984, 14.427487379999988, 2.1128961799999857, 8.365898379999983, 0.31424013999998834, 0.04331662999998542, 4.8514889499999825, 18.069622069999987, 16.838427309999986, 12.533337429999989, 10.413579369999987, -4.631209290000015, -2.037293019999943, 27.865963269999988, 4.400742639999983, 17.577111249999987, -3.632260520000017, 15.991021740000058, 11.160216309999988, 6.230239639999986, 22.896914299999985, 3.870689089999985, -11.280296580000012, -17.271029419999948, 23.393870040000053, 16.042110209999983, 28.962856679999987, 11.420910019999987, 11.543351959999988, 7.7211208299999825, 7.187438809999989, 20.82209909999999, 2.408135279999989, 47.01742480999999, 2.4864407599999883, 18.039973289999985, 22.044582969999986, 28.121737089999986, 23.485632169999988, 14.268703499999987, 13.352259419999989, 16.592884019999985, 38.03410703999998, 14.012114719999982, 15.607213829999981, -8.432877750000024, 9.017544020000045, 23.785281939999983, 7.092227359999988, 16.623695639999987, 17.95065402999999, 10.258737999999987, -0.6337544900000154, 13.36644604000005, 3.1928286399999877, 12.436003679999985, 0.45946824999998626, 8.371062069999986, 3.0819798799999845, 8.660814749999986, 26.726350739999987, -15.647238080000008, -0.4054541299999457, 13.349006409999987, 10.198783809999988, 13.762121659999984, 22.37459581999999, 7.866697789999989, 20.685443699999986, 18.126954479999988, 15.56546489999998, 10.837763619999983, 3.920814639999989, 2.672081509999984, 2.8761885699999823, 13.171929109999986, 9.224771519999983, 6.280583369999988, 17.65417397999999, 9.729641309999984, 12.977270579999988, 17.79937634999999, 5.827384259999988, 19.412444489999984, 13.519597179999984, 4.305749609999985, 1.8476174899999833, 8.942415539999985, 19.14605978999999, 5.808276479999989, 7.278090459999987, -5.43384776000002, 6.409974060000046, 10.303513969999983, 23.44123238999999, 4.784711059999985, 18.991671369999985, 13.855040219999985, 6.782563209999985, 13.193177959999986, 17.377241959999985, -8.375749670000019, -12.118546299999956, 16.696254250000052, 17.197810429999976, 16.15579633999998, -8.705464360000015, -10.789110869999945, 7.831036590000046, 20.98329104999997, 4.473625469999973, 9.01540539999997, 14.029741429999973, 29.57645789999997, 7.796288299999972, 2.3873109599999722, 16.31889637999997, 9.212967129999974, 15.719781549999972, 26.153873909999973, 6.967282639999972, 14.035248909999972, 3.184238979999975, 14.426549689999973, 23.10739776999997, 0.8611200199999729, 23.001932769999975, 1.639180849999974, 9.966113179999972, -0.8915598800000311, -13.098249629999948, 17.06635388000005, 7.091926289999961, 11.334845589999958, 22.84314929999995, 31.990966259999958, 10.365074159999956, -16.49614975000005, -0.8455086999999679, 22.863800189999942, 4.755496649999941, 11.736605309999945, 16.348175039999944, -1.358111260000058, -0.01937934999996571, 8.978455629999942, 10.121620119999946, 23.001190359999946, 9.72668715999994, 12.890643149999946, 4.4140915799999405, 3.268203809999946, 13.978165669999946, 8.461878549999945, 14.241990449999946, -6.500655850000058, 6.256188520000038, -0.6181367200000594, -8.05755667999997, 1.9110863600000343, 3.997243179999934, 7.5902320999999375, 5.588317979999935, 23.887914889999934, 13.57940184999994, 13.482193119999934, -5.437612660000063, -0.8650773099999682, 13.40060685999994, -2.142017470000063, -7.970837979999963, 7.916342040000039, 5.569342719999952, 17.05967465999995, 14.210151769999953, 16.24675344999995, 10.513171559999954, 9.477816249999947, 5.423494509999948, 13.521818079999953, 22.66572924999995, -4.051994950000044, 17.85395205000004, 2.486512699999949, 25.49060460999995, 9.530861989999948, 17.33165150999995, 14.175881909999951, 3.0922212099999484, 1.305680469999949, 7.708067499999949, 27.15799766999995, 25.840355629999948, 7.925789589999951, 27.43294295999995, 7.481384819999953, 7.404527689999952, 1.782848079999951, 12.513459489999953, 10.382287549999951, -6.7155106600000565, -14.745017649999966, 11.814201320000038, 19.67684414999996, 5.118581269999957, 22.33816032999996, 15.890082699999965, 5.896897849999959, -1.8854813800000443, 23.71170296000004, 13.591022069999958, 22.89373192999996, 17.12036338999996, 9.55733346999996, 10.069126629999957, 9.242023549999956, 6.838190789999956, 22.77762286999996, 25.397184019999955, 13.347744619999958, 0.8304557699999577, -0.07518006000004362, 12.611102440000046, 14.631211519999958, 20.41143143999996, 16.739527209999956, 15.025772129999957, 14.133595019999959, 2.398356169999957, 16.274279609999958, 7.845849039999955, 9.134059989999955, 10.988029369999957, 8.422250439999956, 12.214015309999958, 14.904721489999957, 10.474641109999958, -10.051987310000044, -7.273864689999954, 6.870670039999972, 19.804053479999972, 20.48755128999997, 6.397680899999969, 13.481915849999972, 6.678717549999973, 29.05751110999997, 6.212801779999971, 14.42867998999997, 0.606535029999975, 18.15321194999997, 8.796888249999974, 2.7878053599999717, 20.174291599999975, 7.853275749999973, 34.872113059999975, 8.280112659999975, 7.742328699999973, -6.910178440000024, -15.61484650999995, -8.77708503999996, 0.07345815000003597, 1.2825314799999603, 8.520886169999955, 15.40497236999996, 12.653667289999959, 6.7140977699999596, 2.6522461599999545, -11.725374210000034, 1.7199214200000412, 21.128835799999962, -2.3423981000000396, 9.323075220000035, 14.464216689999965, -4.426065780000037, 3.1922262800000425, -3.8667710600000333, 4.923220780000044, 27.515817229999968, 12.829383049999961, 20.174090609999965, 5.987230059999966, 1.3620093599999663, 9.623738139999965, 15.837219199999971, 23.21874497999996, -3.405143710000033, 12.247465100000042, 13.666963059999965, 14.33197359999997, -2.037878030000037, 18.401670500000044, 14.236904189999962, 20.268174729999963, 2.638732059999967, 1.4428615599999617, 19.317440059999967, 21.592717289999968, 23.908968499999965, 17.506891379999963, 15.005966129999962, -0.580753480000034, 9.264412330000042, 15.992804099999965, 26.471756089999964, 0.006696819999966408, 16.234953559999965, 12.029009199999962, 8.419745399999961, -9.59901349000004, 7.274934220000041, -0.6730179100000342, -13.264467499999945, 10.292200210000047, 20.362607529999963, 7.3592103399999615, -1.329325690000033, 32.59268151000005, -3.7207357700000365, 22.474035680000046, 31.70129549999996, 5.101974629999962, 8.465151259999956, 19.02626422999996, 9.66725333999996, -6.187709080000047, 15.275089000000037, 13.302390699999961, 6.987941079999956, 16.517635329999955, -1.3024405000000456, 13.77132835000004, 3.3903450799999604, -12.653481720000045, 14.714736840000043, -9.140633080000043, -8.872111119999957, -6.476751050000047, 16.392865930000042, 5.230860149999955, -6.771491840000039, 5.166410240000047, 1.3056357999999548, 1.0462978599999602, 3.3006739399999603, 14.499600289999954, 27.784779919999956, 4.915992869999954, 12.75594532999996, 30.099039479999956, 9.21536255999996, 10.206760989999957, 9.39304021999996, 3.452675509999956, 31.15017092999996, 6.956269869999957, 2.955596239999956, 21.32166697999996, 20.307904409999956, 6.195153639999958, 10.622365199999955, 5.270282069999958, 17.189754429999958, 22.13958841999996, 0.9115381099999595, 15.508509889999956, 8.573967149999959] (BO) Backorders for node 0:[0, 0, 19.19040905, 21.04642566999999, 0, 0, 0, 0, 0, 0, 0, 1.384173969999999, 0, 0, 0, 1.7492203400000008, 0, 0, 0.36212937999999895, 7.002773519999991, 0, 0, 1.9206440599999866, 6.419065689999982, 16.66335404999998, 2.7133895199999927, 1.2274013599999947, 11.465920780000005, 17.54402458, 0, 0, 0, 0, 0.36735494000000557, 1.9418782800000045, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.573100370000013, 0, 0, 0, 3.7039548600000174, 0, 4.195951240000014, 0, 2.771963250000013, 0, 0, 8.582602010000016, 0, 0, 1.6062320700000114, 10.757886830000018, 3.901473270000018, 3.1973687100000276, 7.178830880000014, 0, 0, 0, 0, 0, 0, 0, 0.8401078600000247, 0, 0, 0, 0, 2.6783857200000227, 0, 0, 0, 0, 0, 0, 0.867690730000021, 12.626835230000005, 13.692268450000007, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.3494959900000225, 0, 0, 0, 0, 0.3944421700000227, 0, 0, 0, 0, 0, 2.0859241100000183, 5.475513820000007, 0, 0, 0, 0, 0, 0, 0, 2.1464623900000106, 2.52566560999999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6229133600000054, 1.7323779299999842, 0, 0, 0, 4.877898370000004, 16.335289489999987, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.36938514000000566, 0, 0, 0, 0, 0, 0, 0, 0, 17.063805470000013, 15.967433689999993, 3.4620371000000176, 0, 0, 0, 0, 0, 5.244719680000017, 3.503993489999992, 5.648439240000009, 2.4164381399999755, 0, 8.011653250000002, 7.001490469999965, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.8488880900000026, 0, 0, 0, 0, 0, 0, 0.07572130999999871, 0, 0, 4.8624724999999955, 1.354012209999965, 0, 0, 0, 0, 0, 21.1810379, 0.5849486799999681, 9.801421079999997, 4.70580396999997, 0, 0, 0, 4.594826420000011, 1.0262168099999727, 0, 13.83764865000002, 0, 0, 0, 21.16365689000002, 20.483739849999978, 0, 6.895934330000031, 13.89005934999998, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11.256932360000029, 0, 0, 0, 0, 0, 0.7440720600000432, 1.8167875399999787, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.354029920000045, 11.285123769999977, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12.250607610000024, 0.9776758699999633, 0, 0, 0, 0, 0, 4.560163310000014, 0, 0, 0, 0, 0, 0, 2.6297052200000195, 0, 0, 0, 0.8360531800000217, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.506512290000025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.678048030000021, 4.440328509999965, 0, 0, 0, 0, 0, 1.7062169500000195, 0, 0, 0.1954458400000192, 5.767167559999962, 0, 0, 0, 5.397902920000028, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6634130000000198, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.778396000000015, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.1503125700000183, 0, 3.363832200000026, 0, 0, 0, 0, 2.285934520000019, 0, 0, 0, 0, 0, 0, 1.7006035300000235, 3.2828804199999553, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9485371700000229, 0, 0, 0, 18.061421610000014, 0, 0, 0, 0.7678086000000164, 0, 0, 0, 8.331812470000017, 13.425534249999941, 5.345055289999934, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.893708390000015, 13.142776629999936, 3.757978769999937, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.656106490000006, 0, 0, 0, 6.177922480000014, 8.46680241999995, 5.972480609999934, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.016529090000006, 0, 0, 0, 2.3877012399999984, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23.683556609999997, 0, 0, 0, 7.521028010000002, 5.484747079999934, 2.870763030000006, 0, 0, 4.743603010000008, 0, 0, 0, 10.790887660000003, 0, 0, 0, 0, 0, 0, 0, 0, 3.439401470000007, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.6275721900000093, 0, 0, 0, 0, 0, 0.7038586300000063, 0, 0, 0, 0, 0, 0, 3.3157481500000046, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5000651200000128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1886408600000138, 0, 0, 0, 0, 0, 0, 0, 5.282238120000017, 0, 0, 0, 0, 0, 0, 2.773863300000002, 0, 0, 0.6438260600000163, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.631209290000015, 2.037293019999943, 0, 0, 0, 3.632260520000017, 0, 0, 0, 0, 0, 11.280296580000012, 17.271029419999948, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.432877750000024, 0, 0, 0, 0, 0, 0, 0.6337544900000154, 0, 0, 0, 0, 0, 0, 0, 0, 15.647238080000008, 0.4054541299999457, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.43384776000002, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.375749670000019, 12.118546299999956, 0, 0, 0, 8.705464360000015, 10.789110869999945, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8915598800000311, 13.098249629999948, 0, 0, 0, 0, 0, 0, 16.49614975000005, 0.8455086999999679, 0, 0, 0, 0, 1.358111260000058, 0.01937934999996571, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.500655850000058, 0, 0.6181367200000594, 8.05755667999997, 0, 0, 0, 0, 0, 0, 0, 5.437612660000063, 0.8650773099999682, 0, 2.142017470000063, 7.970837979999963, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.051994950000044, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.7155106600000565, 14.745017649999966, 0, 0, 0, 0, 0, 0, 1.8854813800000443, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.07518006000004362, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10.051987310000044, 7.273864689999954, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.910178440000024, 15.61484650999995, 8.77708503999996, 0, 0, 0, 0, 0, 0, 0, 11.725374210000034, 0, 0, 2.3423981000000396, 0, 0, 4.426065780000037, 0, 3.8667710600000333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.405143710000033, 0, 0, 0, 2.037878030000037, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.580753480000034, 0, 0, 0, 0, 0, 0, 0, 9.59901349000004, 0, 0.6730179100000342, 13.264467499999945, 0, 0, 0, 1.329325690000033, 0, 3.7207357700000365, 0, 0, 0, 0, 0, 0, 6.187709080000047, 0, 0, 0, 0, 1.3024405000000456, 0, 0, 12.653481720000045, 0, 9.140633080000043, 8.872111119999957, 6.476751050000047, 0, 0, 6.771491840000039, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (TC) Total Cost for node 0:[191.7624973, 78.52610339999998, 1919.0409049999998, 2104.642566999999, 214.42878960000007, 84.6862917, 11.208494700000031, 172.98769710000002, 143.00057680000003, 88.31042189999998, 165.12934379999996, 138.4173969999999, 1.5576768000001096, 18.63777259999999, 235.4079935, 174.92203400000008, 306.84211230000005, 234.9618827, 36.212937999999895, 700.2773519999992, 14.978545100000105, 203.4797524000001, 192.06440599999866, 641.9065689999982, 1666.335404999998, 271.33895199999927, 122.74013599999947, 1146.5920780000006, 1754.4024579999998, 19.85553319999994, 103.33739789999996, 83.48442799999987, 209.5334325999999, 36.73549400000056, 194.18782800000045, 268.63341409999987, 70.02471499999984, 140.33030059999987, 93.21330359999983, 229.40767519999986, 27.25434529999987, 321.9033244999998, 13.268761699999843, 324.92687939999985, 170.07861189999983, 95.16744179999989, 29.750997399999832, 2.2282443999998236, 157.3100370000013, 161.65690879999985, 198.84305189999986, 188.5877845999999, 370.3954860000017, 44.91466379999984, 419.59512400000136, 107.13261419999988, 277.1963250000013, 81.7334867999999, 125.45431629999989, 858.2602010000016, 3.6934460999998464, 83.90963589999984, 160.62320700000114, 1075.7886830000018, 390.14732700000184, 319.7368710000028, 717.8830880000014, 161.95016059999986, 35.2572078999998, 328.4941151999998, 199.95467829999978, 167.37441709999973, 50.1100040999998, 285.99441799999977, 84.01078600000247, 284.84151649999984, 80.87037189999975, 315.3482735999998, 198.97592339999983, 267.8385720000023, 72.02930279999983, 5.2793267999997795, 164.2561370999998, 164.90380709999977, 36.81185169999978, 170.9870318999998, 86.7690730000021, 1262.6835230000004, 1369.2268450000008, 158.45675169999987, 30.532829899999783, 59.11533249999977, 101.73230809999978, 158.7024821999998, 63.650834099999756, 141.9551312999998, 256.24266909999983, 71.24176099999985, 179.05958359999977, 4.034744299999815, 66.1806070999998, 149.3425914999998, 236.2793600999998, 53.4583499999998, 134.94959900000225, 60.73190459999985, 91.30492609999976, 116.38327339999975, 375.4976909999998, 39.44421700000227, 218.08191379999985, 100.25726639999976, 86.25481929999978, 78.51007479999979, 281.4784680999998, 208.59241100000185, 547.5513820000007, 57.64734360000009, 224.51936099999995, 12.037093199999944, 61.26590919999991, 137.75793579999993, 132.20228429999992, 24.58690869999991, 214.64623900000106, 252.566560999999, 232.09446450000016, 258.4994552999999, 140.68671139999992, 178.84255589999995, 60.496479999999906, 116.55637369999994, 137.3019038999999, 183.9832017999999, 87.65742339999996, 225.64585769999994, 41.522870899999944, 127.34524779999994, 50.283578199999894, 37.550982699999906, 152.76584889999995, 181.33994489999992, 175.6038783999999, 62.29133600000054, 173.23779299999842, 79.56846240000012, 125.4504218999999, 57.14961079999995, 487.7898370000004, 1633.5289489999986, 105.48598450000007, 42.89440039999995, 42.538440199999954, 239.5761096999999, 206.62548779999995, 146.40800769999993, 213.7853533999999, 231.84749909999994, 68.32110159999992, 170.29387709999995, 47.452249099999904, 36.938514000000566, 144.86509790000008, 40.72091329999992, 45.02498079999995, 301.02652649999993, 211.5986328999999, 46.967251599999926, 94.65379529999993, 96.28454269999992, 1706.3805470000013, 1596.7433689999993, 346.20371000000176, 39.4060609000001, 144.4723461999999, 203.86533029999987, 196.26834379999985, 260.0660634999998, 524.4719680000017, 350.39934899999923, 564.8439240000009, 241.64381399999755, 59.21299639999994, 801.1653250000002, 700.1490469999965, 96.42559310000003, 138.47921530000002, 100.86146149999998, 131.72099029999998, 245.7928434, 209.14755149999996, 98.39728639999997, 67.88790740000003, 56.56272459999997, 284.88880900000026, 21.876001800000253, 176.5302592, 46.00463159999997, 2.4345799999999684, 125.5171353, 211.17893320000002, 7.572130999999871, 75.38584590000028, 28.26779639999998, 486.24724999999955, 135.4012209999965, 124.70185630000003, 157.8547958, 73.1189770000001, 9.510193999999998, 75.30359220000001, 2118.10379, 58.49486799999681, 980.1421079999998, 470.580396999997, 71.24109189999992, 170.62531639999997, 122.0188156999999, 459.4826420000011, 102.62168099999727, 9.036269099999927, 1383.764865000002, 0.45991860000015095, 291.5221128999998, 86.51049709999981, 2116.365689000002, 2048.373984999998, 81.4639603999997, 689.5934330000032, 1389.005934999998, 138.09841490000025, 92.18102789999968, 3.817318499999658, 151.08813459999965, 176.64810869999963, 75.14928879999964, 52.18426619999967, 106.07248289999966, 146.2914089999996, 85.91295039999963, 33.61279319999966, 1125.6932360000028, 113.73454300000027, 275.86223189999953, 185.54208219999958, 127.1976808999996, 91.42393689999956, 74.40720600000432, 181.67875399999787, 143.1332417000002, 66.8963345999996, 52.8050350999996, 268.2359794999996, 228.43168679999957, 152.0912516999996, 7.0441713999995414, 5.032445799999579, 132.65647639999955, 141.55095989999955, 168.93958939999953, 176.09357269999953, 41.39417809999955, 170.94950259999956, 87.32987489999957, 935.4029920000045, 1128.5123769999977, 7.467072200000331, 161.7674089999997, 91.8279275999997, 117.8773456999997, 181.06942039999973, 153.60189949999972, 174.99304019999968, 66.12203799999968, 52.613066299999716, 1225.0607610000025, 97.76758699999633, 280.86068779999977, 150.56707389999974, 177.98626819999978, 0.4568955999997826, 73.37809699999987, 456.0163310000014, 172.3287229000005, 30.34415459999977, 91.98909069999978, 162.21413349999978, 128.23742009999975, 183.6667802999998, 262.97052200000195, 89.37741140000043, 60.199462999999795, 40.030665999999755, 83.60531800000217, 23.30501090000041, 229.80686699999978, 103.99540659999978, 29.523063499999793, 190.87837929999978, 123.74420479999976, 211.41086279999982, 161.98160469999976, 36.84817119999977, 69.61212729999978, 221.75173249999978, 750.6512290000024, 201.0486932000004, 4.74494469999982, 12.989023999999745, 154.94125699999984, 172.30677319999978, 79.40122129999978, 114.98150979999977, 55.559537799999816, 104.4715344999998, 122.3829370999998, 164.76339779999984, 467.80480300000204, 444.0328509999965, 133.83132019999977, 195.16792019999974, 47.150178299999794, 39.2041288999998, 144.0297538999998, 170.62169500000195, 3.3936638000003683, 14.569891599999778, 19.54458400000192, 576.7167559999962, 253.5077531000004, 51.6585268999998, 125.5477081999998, 539.7902920000029, 78.28135480000029, 182.26252549999975, 60.3864498999998, 128.48536519999982, 103.93747279999978, 198.43533599999978, 149.5740232999998, 255.49101829999978, 5.975733199999809, 175.7140521999998, 39.688312599999804, 3.7975948999997655, 75.0578900999998, 151.34442249999978, 44.38814989999976, 190.2119931999998, 130.88026699999986, 66.34130000000198, 19.35338170000044, 71.39124769999981, 111.35873239999981, 46.58500609999976, 162.57737219999981, 47.18685509999979, 37.680184999999824, 141.15260759999978, 116.91111819999982, 46.770627299999816, 25.656228199999802, 56.44931719999981, 137.98743879999984, 156.82428219999977, 206.22217659999976, 224.0582827999998, 155.36092619999977, 336.2712799999998, 174.10615949999982, 73.7111153999998, 229.3988308999998, 201.47757899999974, 118.81606829999981, 57.543375799999765, 48.150388899999754, 309.70259859999976, 59.107446099999805, 201.7533195999998, 138.17790989999978, 47.97839279999977, 178.7268840999998, 277.8396000000015, 95.4921659000005, 22.268667599999787, 160.88291539999977, 177.65030269999977, 139.37773829999975, 182.90447139999975, 150.15219879999975, 70.7937906999998, 135.57671819999982, 259.3341493999998, 225.11999219999979, 273.1176460999998, 143.59320239999983, 99.4979378999998, 235.59662699999984, 248.15616329999978, 131.6159039999998, 203.57585209999982, 86.61921469999982, 123.73719009999981, 139.78120099999978, 47.281591199999795, 78.91580299999973, 118.03994769999981, 52.18850099999983, 35.813478099999756, 325.3298384999998, 170.2583473999998, 58.176595599999814, 115.03125700000183, 275.53158240000045, 336.38322000000255, 261.0167239000004, 165.3643341999998, 82.46334629999978, 85.04194789999978, 228.59345200000192, 291.4057169000005, 3.170118199999763, 86.20008689999977, 91.20589439999982, 3.470980599999791, 90.4191867999998, 170.06035300000235, 328.2880419999955, 195.26930880000043, 79.46080109999976, 260.5204346999998, 153.13677679999978, 96.55158459999981, 39.28909969999978, 189.36449629999976, 110.00666739999978, 203.3015350999998, 94.85371700000229, 312.0619806000005, 82.15423229999978, 294.7414677999998, 1806.1421610000014, 38.37873160000061, 153.76722609999987, 227.0828883999999, 76.78086000000164, 67.84784230000056, 173.70416819999988, 236.44317309999985, 833.1812470000017, 1342.5534249999941, 534.5055289999934, 84.50852040000065, 9.153640699999883, 197.95977939999986, 220.08725129999988, 242.87219849999985, 135.80388659999983, 309.86754879999984, 185.84528359999985, 98.50536209999987, 889.3708390000015, 1314.2776629999937, 375.7978769999937, 147.68003769999993, 6.3370531999999, 177.65502559999993, 241.70664439999996, 187.35257389999992, 115.1104140999999, 5.846697199999937, 25.242930799999925, 123.96706569999992, 365.61064900000065, 105.52424440000067, 151.6486995999999, 81.34829599999996, 617.7922480000013, 846.6802419999951, 597.2480609999934, 158.75625490000067, 75.79690040000003, 191.5531239, 19.611611300000007, 31.561035000000004, 69.90578720000002, 177.7062375, 81.4806359, 82.14542100000003, 92.04792750000003, 219.78549289999995, 81.34504980000003, 80.63963770000001, 179.4765504, 77.66139580000001, 231.81726300000003, 99.42647139999998, 256.49255320000003, 2.324147200000013, 29.40352449999999, 264.02896300000003, 124.27350299999993, 139.80982079999995, 273.217582, 290.6857407, 57.795671399999975, 156.2905576, 165.29641050000004, 39.46888549999997, 39.14955069999998, 128.9135598, 177.5060815, 100.95381840000002, 701.6529090000006, 6.297688000000576, 71.38465109999999, 45.843111599999986, 238.77012399999984, 253.00818370000064, 77.52532629999997, 88.80169359999996, 212.79079269999997, 66.42865239999999, 84.3744383, 280.7082426, 129.26733650000003, 50.42452949999998, 57.493722399999996, 90.6574345, 314.0097618, 74.27464489999998, 177.09120810000002, 192.96489680000002, 239.9865782, 41.43939920000001, 106.57851489999999, 168.17816649999997, 235.4984776, 50.05763430000002, 106.49061770000003, 2368.3556609999996, 25.971043200000707, 223.24701549999992, 78.32782769999994, 752.1028010000002, 548.4747079999934, 287.0763030000006, 108.65609220000074, 218.67199499999992, 474.36030100000085, 118.2425257000007, 56.227649199999945, 234.15357719999997, 1079.0887660000003, 3.51591610000078, 186.8744371999999, 196.22779069999993, 9.693591299999937, 246.4435681999999, 122.34856179999994, 198.32460159999988, 116.55557199999997, 343.9401470000007, 101.1335371000007, 102.59240559999995, 1.7994707999999093, 119.2206706999999, 117.30296029999991, 19.04544009999995, 169.1787382999999, 71.9986466999999, 97.7068581999999, 172.47770229999992, 49.78997509999992, 162.75721900000093, 150.3704438000007, 66.92882889999993, 58.9658785999999, 215.66426189999993, 53.80136079999993, 70.38586300000063, 151.17636180000068, 90.01275529999994, 72.2500225999999, 300.6831940999999, 134.0590784999999, 166.04531559999992, 331.57481500000046, 117.36187470000075, 76.21786879999995, 209.76934619999994, 119.41002559999994, 37.05297829999992, 40.80940719999994, 248.83878239999996, 175.61395059999995, 267.5633583999999, 123.27977439999991, 430.22289969999986, 50.00651200000128, 249.6818500000006, 177.62151849999984, 129.80315229999985, 107.35685749999988, 153.03610029999987, 92.96754499999984, 220.78651059999984, 264.1672150999999, 194.45519389999987, 20.16220039999986, 18.86408600000138, 90.20073580000059, 148.6701200999999, 166.34106649999984, 48.96883929999987, 106.86536989999986, 176.23450489999988, 171.91765479999987, 528.2238120000017, 67.20037430000055, 170.49014089999986, 78.26779389999984, 20.94774639999983, 211.60603829999985, 154.8474154999999, 277.3863300000002, 8.936064300000695, 41.451547199999865, 64.38260600000163, 92.92672660000058, 192.01733389999987, 171.14767259999985, 53.80780589999986, 156.34721709999985, 129.71941139999984, 144.27487379999988, 21.128961799999857, 83.65898379999983, 3.1424013999998834, 0.43316629999985423, 48.514889499999825, 180.69622069999986, 168.38427309999986, 125.33337429999989, 104.13579369999987, 463.1209290000015, 203.7293019999943, 278.65963269999986, 44.00742639999983, 175.77111249999987, 363.2260520000017, 159.9102174000006, 111.60216309999988, 62.302396399999864, 228.96914299999986, 38.70689089999985, 1128.0296580000013, 1727.1029419999948, 233.93870040000053, 160.4211020999998, 289.6285667999999, 114.20910019999987, 115.43351959999988, 77.21120829999983, 71.87438809999989, 208.22099099999988, 24.08135279999989, 470.1742480999999, 24.864407599999883, 180.39973289999983, 220.44582969999988, 281.2173708999999, 234.85632169999988, 142.68703499999987, 133.5225941999999, 165.92884019999985, 380.3410703999998, 140.12114719999983, 156.0721382999998, 843.2877750000024, 90.17544020000045, 237.85281939999982, 70.92227359999988, 166.23695639999988, 179.50654029999987, 102.58737999999987, 63.37544900000154, 133.6644604000005, 31.928286399999877, 124.36003679999985, 4.594682499999863, 83.71062069999986, 30.819798799999845, 86.60814749999986, 267.26350739999987, 1564.7238080000009, 40.54541299999457, 133.49006409999987, 101.98783809999988, 137.62121659999985, 223.7459581999999, 78.66697789999989, 206.85443699999985, 181.2695447999999, 155.6546489999998, 108.37763619999983, 39.20814639999989, 26.72081509999984, 28.761885699999823, 131.71929109999985, 92.24771519999983, 62.80583369999988, 176.5417397999999, 97.29641309999984, 129.77270579999987, 177.9937634999999, 58.27384259999988, 194.12444489999984, 135.19597179999982, 43.05749609999985, 18.476174899999833, 89.42415539999985, 191.46059789999987, 58.08276479999989, 72.78090459999987, 543.384776000002, 64.09974060000046, 103.03513969999983, 234.41232389999988, 47.84711059999985, 189.91671369999983, 138.55040219999984, 67.82563209999985, 131.93177959999986, 173.77241959999986, 837.5749670000018, 1211.8546299999955, 166.96254250000052, 171.97810429999976, 161.5579633999998, 870.5464360000014, 1078.9110869999945, 78.31036590000046, 209.83291049999968, 44.73625469999973, 90.1540539999997, 140.29741429999973, 295.7645789999997, 77.96288299999972, 23.873109599999722, 163.1889637999997, 92.12967129999974, 157.1978154999997, 261.5387390999997, 69.67282639999972, 140.35248909999973, 31.84238979999975, 144.26549689999973, 231.07397769999972, 8.611200199999729, 230.01932769999974, 16.39180849999974, 99.66113179999972, 89.1559880000031, 1309.8249629999948, 170.6635388000005, 70.91926289999961, 113.34845589999958, 228.4314929999995, 319.9096625999996, 103.65074159999956, 1649.614975000005, 84.55086999999679, 228.63800189999944, 47.55496649999941, 117.36605309999945, 163.48175039999944, 135.8111260000058, 1.9379349999965712, 89.78455629999942, 101.21620119999946, 230.01190359999947, 97.2668715999994, 128.90643149999946, 44.140915799999405, 32.68203809999946, 139.78165669999947, 84.61878549999945, 142.41990449999946, 650.0655850000057, 62.561885200000376, 61.81367200000594, 805.755667999997, 19.110863600000343, 39.97243179999934, 75.90232099999938, 55.883179799999354, 238.87914889999934, 135.7940184999994, 134.82193119999934, 543.7612660000063, 86.50773099999682, 134.0060685999994, 214.2017470000063, 797.0837979999964, 79.16342040000039, 55.69342719999952, 170.5967465999995, 142.10151769999953, 162.4675344999995, 105.13171559999954, 94.77816249999947, 54.23494509999948, 135.21818079999952, 226.65729249999947, 405.1994950000044, 178.53952050000038, 24.86512699999949, 254.9060460999995, 95.30861989999948, 173.3165150999995, 141.75881909999953, 30.922212099999484, 13.05680469999949, 77.08067499999949, 271.5799766999995, 258.4035562999995, 79.25789589999951, 274.32942959999946, 74.81384819999953, 74.04527689999952, 17.82848079999951, 125.13459489999953, 103.82287549999951, 671.5510660000057, 1474.5017649999966, 118.14201320000038, 196.7684414999996, 51.18581269999957, 223.3816032999996, 158.90082699999965, 58.968978499999594, 188.54813800000443, 237.1170296000004, 135.91022069999957, 228.9373192999996, 171.2036338999996, 95.5733346999996, 100.69126629999957, 92.42023549999956, 68.38190789999956, 227.7762286999996, 253.97184019999955, 133.47744619999958, 8.304557699999577, 7.5180060000043625, 126.11102440000046, 146.3121151999996, 204.11431439999959, 167.39527209999954, 150.25772129999956, 141.3359501999996, 23.98356169999957, 162.74279609999957, 78.45849039999955, 91.34059989999955, 109.88029369999957, 84.22250439999956, 122.14015309999958, 149.04721489999957, 104.74641109999958, 1005.1987310000044, 727.3864689999954, 68.70670039999972, 198.0405347999997, 204.8755128999997, 63.97680899999969, 134.81915849999973, 66.78717549999973, 290.57511109999973, 62.12801779999971, 144.28679989999972, 6.06535029999975, 181.5321194999997, 87.96888249999974, 27.878053599999717, 201.74291599999975, 78.53275749999973, 348.72113059999975, 82.80112659999975, 77.42328699999973, 691.0178440000025, 1561.484650999995, 877.7085039999961, 0.7345815000003597, 12.825314799999603, 85.20886169999955, 154.04972369999962, 126.53667289999959, 67.1409776999996, 26.522461599999545, 1172.5374210000034, 17.199214200000412, 211.28835799999962, 234.23981000000396, 93.23075220000035, 144.64216689999967, 442.60657800000376, 31.922262800000425, 386.67710600000333, 49.23220780000044, 275.1581722999997, 128.29383049999961, 201.74090609999965, 59.87230059999966, 13.620093599999663, 96.23738139999965, 158.3721919999997, 232.18744979999963, 340.5143710000033, 122.47465100000042, 136.66963059999966, 143.3197359999997, 203.78780300000372, 184.01670500000046, 142.36904189999962, 202.68174729999964, 26.38732059999967, 14.428615599999617, 193.17440059999967, 215.92717289999968, 239.08968499999963, 175.06891379999962, 150.05966129999962, 58.0753480000034, 92.64412330000042, 159.92804099999967, 264.7175608999996, 0.06696819999966408, 162.34953559999965, 120.29009199999962, 84.19745399999961, 959.901349000004, 72.74934220000041, 67.30179100000342, 1326.4467499999946, 102.92200210000047, 203.62607529999963, 73.59210339999962, 132.9325690000033, 325.92681510000045, 372.07357700000364, 224.74035680000046, 317.01295499999964, 51.01974629999962, 84.65151259999956, 190.26264229999958, 96.6725333999996, 618.7709080000047, 152.75089000000037, 133.0239069999996, 69.87941079999956, 165.17635329999956, 130.24405000000456, 137.7132835000004, 33.903450799999604, 1265.3481720000045, 147.14736840000043, 914.0633080000043, 887.2111119999956, 647.6751050000047, 163.92865930000042, 52.308601499999554, 677.1491840000039, 51.66410240000047, 13.056357999999548, 10.462978599999602, 33.0067393999996, 144.99600289999955, 277.84779919999954, 49.15992869999954, 127.5594532999996, 300.99039479999954, 92.1536255999996, 102.06760989999957, 93.9304021999996, 34.52675509999956, 311.50170929999956, 69.56269869999957, 29.555962399999558, 213.2166697999996, 203.07904409999958, 61.95153639999958, 106.22365199999955, 52.70282069999958, 171.8975442999996, 221.3958841999996, 9.115381099999595, 155.08509889999956, 85.73967149999959] Node 1 (IL) Starting Inventory record for node 1:[60, 19.176249730000002, 7.852610339999998, -19.19040905, -1.8560166199999912, 23.298895580000007, 8.468629170000007, 1.1208494700000102, 17.29876971000001, 14.300057680000009, 8.831042190000005, 16.512934380000004, -1.384173969999992, 1.53994165000001, 1.8637772600000062, 23.540799350000007, -1.7492203399999937, 32.43343157000001, 23.496188270000008, -0.36212937999999184, -6.640644140000006, 8.138498650000002, 20.347975239999997, -1.9206440600000008, -4.498421629999996, -12.16493242, 9.4515429, -1.2274013600000018, -10.238519420000003, -7.305505159999996, 9.291058479999997, 10.333739790000003, 8.348442799999994, 20.953343259999997, -0.36735493999999846, -1.574523339999999, 28.437864750000003, 7.002471500000002, 14.033030060000002, 9.321330359999997, 22.94076752, 2.725434530000001, 32.19033245, 1.3268761699999985, 32.492687939999996, 17.007861189999996, 9.516744180000003, 2.9750997399999974, 0.22282443999999657, -1.5731003699999988, 17.73879125, 19.88430519, 18.858778460000003, -3.703954860000003, 8.195421240000002, -4.195951239999999, 14.909212660000001, -2.771963249999999, 10.945311930000003, 12.545431630000003, -8.582602010000002, 8.951946620000001, 8.390963589999998, -1.6062320699999972, -9.151654759999992, 5.25018149000001, -3.197368709999992, -3.9814621699999933, 20.176478230000008, 3.5257207900000083, 32.849411520000004, 19.995467830000006, 16.737441710000002, 5.011000410000008, 28.599441800000008, -0.8401078599999963, 29.324259510000008, 8.087037190000004, 31.53482736000001, 19.89759234000001, -2.6783857199999943, 9.881316000000005, 0.5279326800000064, 16.425613710000007, 16.490380710000004, 3.6811851700000062, 17.09870319000001, -0.8676907299999925, -11.759144499999984, -1.9331239499999953, 17.77879912000001, 3.0532829900000067, 5.911533250000005, 10.173230810000007, 15.870248220000008, 6.365083410000004, 14.195513130000009, 25.62426691000001, 7.124176100000014, 17.905958360000007, 0.40347443000000993, 6.618060710000009, 14.93425915000001, 23.627936010000006, 5.345835000000008, -1.349495989999994, 7.422686450000008, 9.130492610000005, 11.638327340000004, 37.549769100000006, -0.39444216999999426, 22.202633550000005, 10.025726640000006, 8.625481930000007, 7.851007480000007, 28.147846810000008, -2.08592410999999, -3.389589709999985, 9.154324070000019, 22.451936100000022, 1.2037093200000228, 6.1265909200000195, 13.77579358000002, 13.22022843000002, 2.4586908700000194, -2.146462389999982, -0.3792032199999795, 23.588649670000024, 25.84994553000002, 14.06867114000002, 17.884255590000024, 6.049648000000019, 11.655637370000022, 13.730190390000018, 18.39832018000002, 8.765742340000024, 22.564585770000022, 4.152287090000023, 12.734524780000022, 5.028357820000018, 3.755098270000019, 15.276584890000024, 18.13399449000002, 17.56038784000002, -0.622913359999977, -1.1094645699999788, 9.066310810000019, 12.545042190000018, 5.714961080000023, -4.877898369999976, -11.457391119999983, 22.00598957000001, 4.2894400400000166, 4.253844020000017, 23.95761097000001, 20.662548780000016, 14.640800770000013, 21.378535340000013, 23.184749910000015, 6.832110160000013, 17.029387710000016, 4.745224910000012, -0.36938513999998435, 14.855894930000012, 4.072091330000013, 4.5024980800000165, 30.102652650000014, 21.15986329000001, 4.696725160000014, 9.465379530000014, 9.628454270000013, -17.063805469999984, 1.0963717800000268, -3.462037099999975, 7.402643190000028, 14.447234620000032, 20.38653303000003, 19.626834380000027, 26.006606350000027, -5.2447196799999745, 1.740726190000025, -5.648439239999973, 3.2320011000000335, 5.921299640000029, -8.011653249999966, 1.0101627800000301, 9.642559310000031, 13.84792153000003, 10.086146150000026, 13.172099030000027, 24.57928434000003, 20.914755150000026, 9.839728640000025, 6.788790740000032, 5.656272460000025, -2.8488880899999742, 5.036488270000028, 17.653025920000026, 4.600463160000025, 0.24345800000002527, 12.551713530000029, 21.11789332000003, -0.07572130999997029, 7.614305900000026, 2.8267796400000265, -4.862472499999967, 3.5084602900000306, 12.470185630000032, 15.785479580000029, 7.3118977000000385, 0.9510194000000283, 7.5303592200000296, -21.18103789999997, 20.59608922000004, -9.801421079999962, 5.095617110000035, 7.124109190000034, 17.06253164000004, 12.201881570000033, -4.594826419999968, 3.5686096100000384, 0.9036269100000354, -13.837648649999963, 13.883640510000042, 29.152211290000043, 8.651049710000045, -21.16365688999995, 0.6799170400000492, 8.146396040000049, -6.895934329999953, -6.994125019999942, 20.80396651000006, 9.21810279000006, 0.38173185000005816, 15.108813460000057, 17.664810870000053, 7.514928880000056, 5.218426620000059, 10.607248290000058, 14.629140900000053, 8.591295040000055, 3.361279320000058, -11.25693235999993, 22.630386660000063, 27.586223190000062, 18.554208220000064, 12.719768090000066, 9.142393690000063, -0.7440720599999366, -1.0727154799999354, 15.386039650000065, 6.689633460000067, 5.280503510000067, 26.823597950000064, 22.843168680000062, 15.209125170000064, 0.7044171400000607, 0.5032445800000644, 13.265647640000061, 14.155095990000063, 16.89395894000006, 17.60935727000006, 4.139417810000062, 17.09495026000006, 8.732987490000063, -9.354029919999938, -1.9310938499999395, 2.677801070000065, 16.176740900000063, 9.182792760000062, 11.787734570000062, 18.106942040000064, 15.360189950000063, 17.49930402000006, 6.61220380000006, 5.261306630000064, -12.250607609999939, 11.272931740000061, 28.086068780000065, 15.056707390000064, 17.798626820000067, 0.04568956000006352, 7.337809700000072, -4.560163309999929, 21.793035600000067, 3.034415460000062, 9.198909070000063, 16.221413350000063, 12.82374201000006, 18.366678030000067, -2.6297052199999342, 11.567446360000062, 6.019946300000065, 4.003066600000061, -0.8360531799999364, 3.166554270000063, 22.980686700000064, 10.399540660000063, 2.9523063500000646, 19.087837930000063, 12.374420480000062, 21.141086280000067, 16.19816047000006, 3.684817120000062, 6.961212730000064, 22.175173250000064, -7.5065122899999395, 27.611381610000066, 0.4744944700000673, 1.2989024000000597, 15.494125700000069, 17.230677320000062, 7.940122130000063, 11.498150980000062, 5.555953780000067, 10.447153450000066, 12.238293710000065, 16.476339780000067, -4.678048029999935, 0.2377195200000557, 13.383132020000055, 19.516792020000054, 4.715017830000058, 3.9204128900000583, 14.402975390000059, -1.7062169499999413, 2.0455833300000563, 1.456989160000056, -0.19544583999994103, -5.571721719999935, 30.92249703000006, 5.165852690000062, 12.554770820000066, -5.397902919999943, 13.226038400000057, 18.226252550000062, 6.038644990000066, 12.848536520000067, 10.393747280000063, 19.843533600000065, 14.957402330000065, 25.549101830000062, 0.5975733200000661, 17.571405220000067, 3.9688312600000657, 0.3797594900000618, 7.505789010000065, 15.134442250000063, 4.438814990000061, 19.021199320000065, 13.088026700000071, -0.6634129999999345, 2.598751170000064, 7.139124770000066, 11.135873240000066, 4.658500610000061, 16.257737220000067, 4.718685510000064, 3.7680185000000677, 14.115260760000062, 11.691111820000067, 4.677062730000067, 2.5656228200000655, 5.644931720000066, 13.798743880000067, 15.682428220000062, 20.62221766000006, 22.405828280000065, 15.536092620000062, 33.62712800000007, 17.410615950000068, 7.371111540000065, 22.939883090000066, 20.14775790000006, 11.881606830000067, 5.754337580000062, 4.815038890000061, 30.970259860000063, 5.910744610000066, 20.175331960000065, 13.817790990000063, 4.797839280000062, 17.872688410000066, -2.7783959999999297, 12.327612590000065, 2.226866760000064, 16.088291540000064, 17.76503027000006, 13.937773830000062, 18.29044714000006, 15.01521988000006, 7.079379070000066, 13.557671820000067, 25.933414940000063, 22.511999220000064, 27.31176461000006, 14.359320240000066, 9.949793790000065, 23.559662700000068, 24.81561633000006, 13.161590400000065, 20.357585210000067, 8.661921470000067, 12.373719010000066, 13.978120100000062, 4.728159120000065, 7.891580300000058, 11.803994770000067, 5.218850100000068, 3.581347810000061, 32.532983850000065, 17.025834740000064, 5.817659560000067, -1.150312569999933, 28.703470810000063, -3.3638321999999405, 29.465504590000066, 16.53643342000007, 8.24633463000007, 8.50419479000007, -2.285934519999927, 31.42650621000007, 0.31701182000006867, 8.62000869000007, 9.120589440000074, 0.3470980600000715, 9.041918680000073, -1.7006035299999311, -1.5822768899999318, 21.10920777000007, 7.946080110000068, 26.052043470000072, 15.313677680000069, 9.655158460000074, 3.9289099700000705, 18.93644963000007, 11.00066674000007, 20.330153510000073, -0.9485371699999305, 32.15473523000007, 8.21542323000007, 29.474146780000073, -18.06142160999993, 21.899294770000072, 15.376722610000076, 22.708288840000076, -0.7678085999999311, 7.552592830000073, 17.370416820000074, 23.64431731000007, -8.331812469999932, -5.093721779999925, -0.2513335099999239, 8.702185550000081, 0.9153640700000807, 19.79597794000008, 22.00872513000008, 24.287219850000078, 13.580388660000075, 30.986754880000078, 18.58452836000008, 9.85053621000008, -8.893708389999922, -4.249068239999929, 0.49108947000006964, 14.768003770000071, 0.6337053200000682, 17.765502560000073, 24.170664440000074, 18.735257390000072, 11.511041410000068, 0.5846697200000719, 2.5242930800000707, 12.39670657000007, -3.656106489999928, 14.208530930000073, 15.164869960000068, 8.134829600000074, -6.1779224799999355, -2.28887993999993, -3.683600669999933, 19.559226160000065, 7.579690040000067, 19.155312390000063, 1.9611611300000646, 3.1561035000000643, 6.990578720000066, 17.770623750000063, 8.148063590000064, 8.214542100000067, 9.204792750000067, 21.97854929000006, 8.134504980000067, 8.063963770000065, 17.947655040000065, 7.766139580000065, 23.181726300000065, 9.942647140000062, 25.649255320000066, 0.23241472000006524, 2.940352450000063, 26.402896300000066, 12.427350300000057, 13.98098208000006, 27.321758200000062, 29.068574070000064, 5.779567140000061, 15.629055760000064, 16.529641050000066, 3.946888550000061, 3.9149550700000617, 12.891355980000064, 17.750608150000062, 10.095381840000066, -7.016529089999942, 7.6462978900000635, 7.1384651100000625, 4.584311160000063, -2.3877012399999344, 27.688519610000064, 7.752532630000061, 8.88016936000006, 21.27907927000006, 6.642865240000063, 8.437443830000063, 28.070824260000062, 12.926733650000067, 5.042452950000062, 5.7493722400000635, 9.065743450000063, 31.400976180000065, 7.427464490000062, 17.709120810000066, 19.296489680000064, 23.998657820000062, 4.143939920000065, 10.657851490000063, 16.81781665000006, 23.549847760000063, 5.005763430000066, 10.649061770000067, -23.683556609999926, 26.280660930000074, 22.32470155000007, 7.8327827700000725, -7.521028009999924, 2.036280930000075, -2.870763029999921, 13.73637225000008, 21.867199500000076, -4.743603009999923, 16.567855580000078, 5.62276492000008, 23.41535772000008, -10.790887659999918, 11.14247927000008, 18.687443720000076, 19.622779070000078, 0.969359130000079, 24.644356820000077, 12.23485618000008, 19.832460160000075, 11.655557200000082, -3.439401469999922, 13.552755180000077, 10.25924056000008, 0.1799470800000762, 11.922067070000075, 11.730296030000076, 1.9045440100000803, 16.917873830000076, 7.199864670000075, 9.770685820000075, 17.24777023000008, 4.978997510000077, -1.627572189999924, 16.664616570000078, 6.692882890000078, 5.896587860000075, 21.56642619000008, 5.380136080000078, -0.703858629999921, 15.821494810000075, 9.001275530000079, 7.225002260000075, 30.06831941000008, 13.405907850000077, 16.604531560000076, -3.3157481499999193, 15.05193562000008, 7.62178688000008, 20.97693462000008, 11.94100256000008, 3.7052978300000774, 4.080940720000079, 24.88387824000008, 17.56139506000008, 26.756335840000077, 12.327977440000076, 43.022289970000074, -0.5000651199999275, 25.468250120000075, 17.762151850000077, 12.980315230000077, 10.735685750000073, 15.303610030000073, 9.29675450000007, 22.07865106000007, 26.416721510000073, 19.445519390000072, 2.0162200400000714, -0.18864085999992852, 9.208714440000072, 14.867012010000074, 16.63410665000007, 4.896883930000072, 10.686536990000072, 17.623450490000074, 17.191765480000072, -5.282238119999931, 12.002275550000071, 17.04901409000007, 7.82677939000007, 2.094774640000068, 21.16060383000007, 15.484741550000074, -2.773863299999917, 3.6674697300000716, 4.145154720000072, -0.643826059999931, 9.936498720000074, 19.201733390000072, 17.11476726000007, 5.380780590000072, 15.634721710000072, 12.97194114000007, 14.427487380000073, 2.112896180000071, 8.365898380000068, 0.3142401400000736, 0.04331663000007069, 4.851488950000068, 18.069622070000072, 16.83842731000007, 12.533337430000074, 10.413579370000072, -4.63120928999993, 2.593916270000072, 27.865963270000073, 4.400742640000068, 17.577111250000073, -3.6322605199999316, 19.623282260000074, 11.160216310000074, 6.230239640000072, 22.89691430000007, 3.87068909000007, -11.280296579999927, -5.990732839999936, 29.384602880000074, 16.04211021000007, 28.962856680000076, 11.420910020000075, 11.543351960000074, 7.721120830000068, 7.187438810000074, 20.822099100000074, 2.4081352800000744, 47.01742481000007, 2.4864407600000735, 18.03997329000007, 22.04458297000007, 28.12173709000007, 23.485632170000073, 14.268703500000072, 13.352259420000074, 16.59288402000007, 38.034107040000066, 14.012114720000067, 15.607213830000067, -8.432877749999939, 17.450421770000062, 23.78528194000006, 7.0922273600000665, 16.623695640000065, 17.950654030000067, 10.258738000000065, -0.6337544899999372, 14.000200530000065, 3.192828640000066, 12.436003680000063, 0.4594682500000644, 8.371062070000065, 3.0819798800000626, 8.660814750000064, 26.726350740000065, -15.64723807999993, 15.241783950000062, 13.349006410000065, 10.198783810000066, 13.762121660000062, 22.374595820000067, 7.866697790000067, 20.685443700000064, 18.126954480000066, 15.565464900000059, 10.83776362000006, 3.920814640000067, 2.672081510000062, 2.8761885700000605, 13.171929110000065, 9.224771520000061, 6.280583370000066, 17.654173980000067, 9.729641310000062, 12.977270580000067, 17.799376350000067, 5.827384260000066, 19.412444490000063, 13.519597180000062, 4.305749610000063, 1.8476174900000615, 8.942415540000063, 19.146059790000066, 5.8082764800000675, 7.278090460000065, -5.433847759999942, 11.843821820000066, 10.303513970000061, 23.441232390000067, 4.784711060000063, 18.991671370000063, 13.855040220000063, 6.782563210000063, 13.193177960000064, 17.377241960000063, -8.37574966999994, -3.74279662999993, 20.439050880000075, 17.197810430000068, 16.155796340000073, -8.705464359999922, -2.083646509999923, 9.914683100000076, 20.983291050000076, 4.47362547000008, 9.015405400000077, 14.02974143000008, 29.576457900000076, 7.796288300000079, 2.387310960000079, 16.318896380000076, 9.21296713000008, 15.719781550000079, 26.15387391000008, 6.967282640000079, 14.035248910000078, 3.1842389800000817, 14.42654969000008, 23.107397770000077, 0.8611200200000795, 23.00193277000008, 1.6391808500000806, 9.966113180000079, -0.8915598799999245, -12.20668974999991, 29.27304363000009, 7.091926290000092, 11.334845590000086, 22.84314930000008, 31.990966260000086, 10.365074160000084, -16.49614974999991, 15.65064105000009, 22.86380019000009, 4.75549665000009, 11.736605310000094, 16.348175040000093, -1.3581112599999088, 1.3387319100000923, 8.978455630000092, 10.121620120000095, 23.001190360000095, 9.72668716000009, 12.890643150000095, 4.41409158000009, 3.268203810000095, 13.978165670000095, 8.461878550000094, 14.241990450000095, -6.500655849999909, 12.756844370000096, -0.6181367199999102, -7.439419959999903, 9.350506320000093, 3.9972431800000905, 7.590232100000094, 5.588317980000092, 23.88791489000009, 13.579401850000096, 13.48219312000009, -5.437612659999907, 4.572535350000095, 13.400606860000096, -2.1420174699999066, -5.828820509999915, 13.745162550000089, 5.569342720000087, 17.059674660000084, 14.210151770000088, 16.246753450000085, 10.513171560000089, 9.477816250000082, 5.423494510000083, 13.521818080000088, 22.665729250000084, -4.051994949999909, 21.905947000000083, 2.486512700000084, 25.490604610000084, 9.530861990000083, 17.331651510000086, 14.175881910000086, 3.0922212100000834, 1.305680470000084, 7.708067500000084, 27.157997670000086, 25.840355630000083, 7.925789590000086, 27.432942960000084, 7.481384820000088, 7.404527690000087, 1.782848080000086, 12.513459490000088, 10.382287550000086, -6.7155106599999215, -8.029506989999916, 19.843708310000082, 19.676844150000086, 5.118581270000085, 22.338160330000086, 15.890082700000093, 5.896897850000087, -1.8854813799999164, 25.597184340000084, 13.591022070000086, 22.893731930000087, 17.120363390000087, 9.557333470000088, 10.069126630000085, 9.242023550000084, 6.838190790000084, 22.777622870000087, 25.397184020000083, 13.347744620000086, 0.8304557700000856, -0.07518005999991573, 12.68628250000009, 14.631211520000086, 20.411431440000086, 16.739527210000084, 15.025772130000085, 14.133595020000087, 2.398356170000085, 16.274279610000086, 7.845849040000083, 9.134059990000083, 10.988029370000085, 8.422250440000084, 12.214015310000086, 14.904721490000085, 10.474641110000086, -10.051987309999916, 2.778122620000076, 6.870670040000078, 19.80405348000008, 20.487551290000077, 6.397680900000076, 13.481915850000078, 6.67871755000008, 29.05751111000008, 6.212801780000078, 14.428679990000077, 0.6065350300000816, 18.153211950000077, 8.79688825000008, 2.7878053600000783, 20.174291600000082, 7.85327575000008, 34.872113060000075, 8.280112660000075, 7.742328700000073, -6.910178439999925, -8.704668069999926, -0.07241696999992087, 0.14587512000007763, 1.282531480000081, 8.520886170000075, 15.404972370000081, 12.65366729000008, 6.71409777000008, 2.6522461600000753, -11.72537420999992, 13.445295630000075, 21.128835800000076, -2.342398099999926, 11.665473320000075, 14.464216690000079, -4.426065779999924, 7.61829206000008, -3.8667710599999197, 8.789991840000077, 27.51581723000008, 12.829383050000075, 20.17409061000008, 5.98723006000008, 1.36200936000008, 9.623738140000079, 15.837219200000085, 23.218744980000075, -3.405143709999919, 15.652608810000075, 13.666963060000079, 14.331973600000083, -2.0378780299999235, 20.43954853000008, 14.236904190000075, 20.268174730000077, 2.6387320600000805, 1.4428615600000754, 19.31744006000008, 21.59271729000008, 23.90896850000008, 17.506891380000077, 15.005966130000076, -0.5807534799999203, 9.845165810000076, 15.992804100000079, 26.471756090000078, 0.006696820000080095, 16.23495356000008, 12.029009200000075, 8.419745400000075, -9.599013489999926, 16.87394771000008, -0.6730179099999205, -12.591449589999911, 22.88364980000008, 20.362607530000083, 7.359210340000082, -1.3293256899999122, 33.92200720000009, -3.7207357699999086, 26.19477145000008, 31.701295500000082, 5.1019746300000826, 8.465151260000084, 19.026264230000088, 9.667253340000087, -6.1877090799999195, 21.462798080000084, 13.302390700000089, 6.987941080000084, 16.517635330000083, -1.3024404999999177, 15.073768850000086, 3.3903450800000883, -12.653481719999917, 27.368218560000088, -9.140633079999915, 0.2685219600000863, -6.476751049999919, 22.86961698000009, 5.230860150000083, -6.771491839999911, 11.937902080000086, 1.3056358000000827, 1.046297860000088, 3.300673940000088, 14.499600290000082, 27.784779920000084, 4.915992870000082, 12.755945330000088, 30.099039480000084, 9.215362560000088, 10.206760990000085, 9.393040220000088, 3.452675510000084, 31.150170930000087, 6.956269870000085, 2.9555962400000837, 21.32166698000009, 20.307904410000084, 6.195153640000086, 10.622365200000083, 5.270282070000086, 17.189754430000086, 22.139588420000088, 0.9115381100000874, 15.508509890000084] (IS) Inbound supply record for node 1:[0, 40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011] (IO) Demand for node 1:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (OQ) Order for node 1:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (DMFS) Supply for node 1:[40.82375027, 52.14738966, 60.0, 79.19040905, 38.55712103999999, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 60.00000000000001, 59.84423231999999, 58.13622274, 36.45920065, 60.00000000000001, 29.315788769999994, 36.50381173, 60.000000000000014, 60.36212938, 58.502145490000004, 39.65202476, 60.0, 61.92064406, 64.49842163, 62.71338952, 60.0, 61.22740136, 70.23851942, 58.01444668, 49.66626021, 51.651557200000006, 39.04665674, 60.0, 60.36735494, 33.136658589999996, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 60.0, 43.83430912, 40.11569481, 41.14122154, 60.0, 55.50853362, 60.0, 49.28673858, 60.0, 51.826651319999996, 47.45456837, 60.0, 59.63065539, 51.60903641, 60.0, 61.60623207, 63.90147326999999, 60.00000000000001, 63.19736871, 43.80498393999999, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.00000000000001, 31.515848349999995, 51.91296281, 28.46517264, 40.10240766, 60.00000000000001, 52.797069719999996, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.00000000000001, 60.86769073, 71.75914449999999, 44.15432482999999, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 60.00000000000001, 53.926809539999994, 50.86950739, 48.36167266, 22.450230899999998, 60.0, 38.19180861999999, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 60.00000000000001, 62.08592411000001, 54.23526563999998, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 60.00000000000002, 62.14646239, 36.79055354999998, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.00000000000002, 60.62291336, 52.04315375999998, 47.45495781, 54.28503892, 60.00000000000002, 64.87789837, 49.451401549999986, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.000000000000014, 45.513490209999986, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 60.000000000000014, 75.96743368999998, 60.00000000000003, 56.059393909999976, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 60.00000000000003, 63.50399348999998, 60.00000000000003, 62.41643813999997, 54.07870036, 60.00000000000003, 67.00149046999996, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 60.00000000000003, 57.812399819999975, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.00000000000003, 52.46141540999997, 57.17322036, 60.00000000000003, 61.354012209999965, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 60.00000000000003, 60.58494867999997, 60.000000000000036, 64.70580396999996, 52.87589081, 42.93746836, 47.79811843, 60.000000000000036, 61.026216809999966, 59.09637309, 60.000000000000036, 59.954008139999964, 30.84778871, 51.34895029, 60.00000000000004, 80.48373984999995, 51.85360396, 60.00000000000005, 66.89593433, 46.19015850999994, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 60.00000000000006, 48.62654569999993, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.000000000000064, 60.74407206, 45.686675829999935, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 60.000000000000064, 69.35402992, 59.25329277999994, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 60.000000000000064, 60.97767586999994, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 60.000000000000064, 42.767127709999926, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 60.000000000000064, 51.062258859999936, 53.9800537, 55.9969334, 60.000000000000064, 57.66949890999994, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 60.000000000000064, 39.89513067999994, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 60.000000000000064, 64.44032850999994, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 60.00000000000006, 59.66063361999994, 58.54301084, 60.00000000000006, 60.19544584, 34.64922468999994, 54.83414731, 47.44522918, 60.000000000000064, 52.17186451999995, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.000000000000064, 58.064661829999935, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 60.000000000000064, 50.45078340999993, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 60.000000000000064, 32.446841759999934, 60.000000000000064, 33.89832760999994, 43.46356658, 51.75366537, 51.49580521, 60.00000000000007, 30.859428309999927, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 60.00000000000007, 61.70060353, 40.473069119999934, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.00000000000007, 28.79380193999993, 51.78457677, 30.52585322, 60.00000000000007, 56.16212683999993, 44.62327739, 37.29171116, 60.00000000000007, 53.21521576999993, 42.62958318, 36.35568269, 60.00000000000007, 68.33181247, 65.09372178, 51.54914795999992, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 60.00000000000008, 68.89370839, 63.75797876999993, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 60.00000000000007, 49.447575559999926, 44.83513004, 51.8651704, 60.00000000000007, 66.17792248, 62.28887994, 44.12437450999993, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 60.000000000000064, 59.37023119999994, 52.86153489, 55.41568884, 60.000000000000064, 34.699181629999934, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 60.000000000000064, 57.40289567999992, 37.67529845, 52.16721723, 60.00000000000007, 65.48474707999992, 60.00000000000008, 49.13439077999992, 38.1328005, 60.00000000000008, 48.17574742999992, 54.37723508, 36.58464228, 60.00000000000008, 59.648408389999915, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 60.00000000000008, 49.88664628999992, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 60.00000000000008, 44.962955619999924, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.00000000000008, 44.882363819999924, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 60.00000000000008, 48.26381252999992, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.00000000000007, 35.03181499999992, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.00000000000007, 50.97992641999993, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 60.00000000000007, 53.27996256999993, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 60.00000000000007, 59.106393569999916, 55.85484528, 60.00000000000007, 50.70732733999993, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 60.00000000000007, 62.03729301999993, 32.13403673, 55.59925736, 42.42288875, 60.00000000000007, 44.00897825999993, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 60.00000000000007, 71.28029658, 36.60612995999993, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 60.00000000000007, 50.98245597999994, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.000000000000064, 46.63355395999994, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 60.000000000000064, 60.40545412999993, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 60.000000000000064, 53.59002593999994, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 60.000000000000064, 68.37574967, 43.303745749999926, 42.80218957, 43.84420366, 60.00000000000007, 68.70546436, 52.168963409999925, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.00000000000008, 60.89155988, 42.933646119999906, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 60.000000000000085, 60.84550869999991, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 60.00000000000009, 60.01937934999991, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 60.00000000000009, 53.743811479999906, 60.00000000000009, 60.61813672, 58.0889136399999, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 60.00000000000009, 60.865077309999904, 46.59939314, 60.00000000000009, 62.14201747, 52.08365795999991, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 60.000000000000085, 42.14604794999991, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 60.000000000000085, 66.71551066, 48.18579867999992, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 60.000000000000085, 36.28829703999992, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.000000000000085, 47.38889755999991, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 60.000000000000085, 67.27386468999993, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 60.00000000000007, 66.91017844, 68.70466807, 59.92654184999992, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 60.00000000000008, 58.28007857999992, 38.8711642, 60.00000000000008, 50.67692477999993, 45.53578331, 60.00000000000008, 56.80777371999992, 60.00000000000008, 55.07677921999992, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 60.00000000000008, 47.75253489999992, 46.33303694, 45.668026399999995, 60.00000000000008, 41.59832949999992, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.00000000000008, 50.73558766999992, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 60.00000000000008, 52.72506577999992, 60.00000000000008, 60.67301791, 49.70779978999992, 39.63739247, 52.64078966, 60.000000000000085, 27.407318489999913, 60.000000000000085, 37.525964319999915, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 60.000000000000085, 44.72491099999992, 46.697609299999996, 53.01205892, 43.48236467, 60.000000000000085, 46.22867164999992, 56.60965492, 60.000000000000085, 45.285263159999914, 60.000000000000085, 68.87211111999991, 60.000000000000085, 43.607134069999915, 54.76913985, 60.000000000000085, 54.83358975999991, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (EIL) Ending Inventory record for node 1:[19.176249730000002, 7.852610339999998, -19.19040905, -1.8560166199999912, 23.298895580000007, 8.468629170000007, 1.1208494700000102, 17.29876971000001, 14.300057680000009, 8.831042190000005, 16.512934380000004, -1.384173969999992, 1.53994165000001, 1.8637772600000062, 23.540799350000007, -1.7492203399999937, 32.43343157000001, 23.496188270000008, -0.36212937999999184, -6.640644140000006, 8.138498650000002, 20.347975239999997, -1.9206440600000008, -4.498421629999996, -12.16493242, 9.4515429, -1.2274013600000018, -10.238519420000003, -7.305505159999996, 9.291058479999997, 10.333739790000003, 8.348442799999994, 20.953343259999997, -0.36735493999999846, -1.574523339999999, 28.437864750000003, 7.002471500000002, 14.033030060000002, 9.321330359999997, 22.94076752, 2.725434530000001, 32.19033245, 1.3268761699999985, 32.492687939999996, 17.007861189999996, 9.516744180000003, 2.9750997399999974, 0.22282443999999657, -1.5731003699999988, 17.73879125, 19.88430519, 18.858778460000003, -3.703954860000003, 8.195421240000002, -4.195951239999999, 14.909212660000001, -2.771963249999999, 10.945311930000003, 12.545431630000003, -8.582602010000002, 8.951946620000001, 8.390963589999998, -1.6062320699999972, -9.151654759999992, 5.25018149000001, -3.197368709999992, -3.9814621699999933, 20.176478230000008, 3.5257207900000083, 32.849411520000004, 19.995467830000006, 16.737441710000002, 5.011000410000008, 28.599441800000008, -0.8401078599999963, 29.324259510000008, 8.087037190000004, 31.53482736000001, 19.89759234000001, -2.6783857199999943, 9.881316000000005, 0.5279326800000064, 16.425613710000007, 16.490380710000004, 3.6811851700000062, 17.09870319000001, -0.8676907299999925, -11.759144499999984, -1.9331239499999953, 17.77879912000001, 3.0532829900000067, 5.911533250000005, 10.173230810000007, 15.870248220000008, 6.365083410000004, 14.195513130000009, 25.62426691000001, 7.124176100000014, 17.905958360000007, 0.40347443000000993, 6.618060710000009, 14.93425915000001, 23.627936010000006, 5.345835000000008, -1.349495989999994, 7.422686450000008, 9.130492610000005, 11.638327340000004, 37.549769100000006, -0.39444216999999426, 22.202633550000005, 10.025726640000006, 8.625481930000007, 7.851007480000007, 28.147846810000008, -2.08592410999999, -3.389589709999985, 9.154324070000019, 22.451936100000022, 1.2037093200000228, 6.1265909200000195, 13.77579358000002, 13.22022843000002, 2.4586908700000194, -2.146462389999982, -0.3792032199999795, 23.588649670000024, 25.84994553000002, 14.06867114000002, 17.884255590000024, 6.049648000000019, 11.655637370000022, 13.730190390000018, 18.39832018000002, 8.765742340000024, 22.564585770000022, 4.152287090000023, 12.734524780000022, 5.028357820000018, 3.755098270000019, 15.276584890000024, 18.13399449000002, 17.56038784000002, -0.622913359999977, -1.1094645699999788, 9.066310810000019, 12.545042190000018, 5.714961080000023, -4.877898369999976, -11.457391119999983, 22.00598957000001, 4.2894400400000166, 4.253844020000017, 23.95761097000001, 20.662548780000016, 14.640800770000013, 21.378535340000013, 23.184749910000015, 6.832110160000013, 17.029387710000016, 4.745224910000012, -0.36938513999998435, 14.855894930000012, 4.072091330000013, 4.5024980800000165, 30.102652650000014, 21.15986329000001, 4.696725160000014, 9.465379530000014, 9.628454270000013, -17.063805469999984, 1.0963717800000268, -3.462037099999975, 7.402643190000028, 14.447234620000032, 20.38653303000003, 19.626834380000027, 26.006606350000027, -5.2447196799999745, 1.740726190000025, -5.648439239999973, 3.2320011000000335, 5.921299640000029, -8.011653249999966, 1.0101627800000301, 9.642559310000031, 13.84792153000003, 10.086146150000026, 13.172099030000027, 24.57928434000003, 20.914755150000026, 9.839728640000025, 6.788790740000032, 5.656272460000025, -2.8488880899999742, 5.036488270000028, 17.653025920000026, 4.600463160000025, 0.24345800000002527, 12.551713530000029, 21.11789332000003, -0.07572130999997029, 7.614305900000026, 2.8267796400000265, -4.862472499999967, 3.5084602900000306, 12.470185630000032, 15.785479580000029, 7.3118977000000385, 0.9510194000000283, 7.5303592200000296, -21.18103789999997, 20.59608922000004, -9.801421079999962, 5.095617110000035, 7.124109190000034, 17.06253164000004, 12.201881570000033, -4.594826419999968, 3.5686096100000384, 0.9036269100000354, -13.837648649999963, 13.883640510000042, 29.152211290000043, 8.651049710000045, -21.16365688999995, 0.6799170400000492, 8.146396040000049, -6.895934329999953, -6.994125019999942, 20.80396651000006, 9.21810279000006, 0.38173185000005816, 15.108813460000057, 17.664810870000053, 7.514928880000056, 5.218426620000059, 10.607248290000058, 14.629140900000053, 8.591295040000055, 3.361279320000058, -11.25693235999993, 22.630386660000063, 27.586223190000062, 18.554208220000064, 12.719768090000066, 9.142393690000063, -0.7440720599999366, -1.0727154799999354, 15.386039650000065, 6.689633460000067, 5.280503510000067, 26.823597950000064, 22.843168680000062, 15.209125170000064, 0.7044171400000607, 0.5032445800000644, 13.265647640000061, 14.155095990000063, 16.89395894000006, 17.60935727000006, 4.139417810000062, 17.09495026000006, 8.732987490000063, -9.354029919999938, -1.9310938499999395, 2.677801070000065, 16.176740900000063, 9.182792760000062, 11.787734570000062, 18.106942040000064, 15.360189950000063, 17.49930402000006, 6.61220380000006, 5.261306630000064, -12.250607609999939, 11.272931740000061, 28.086068780000065, 15.056707390000064, 17.798626820000067, 0.04568956000006352, 7.337809700000072, -4.560163309999929, 21.793035600000067, 3.034415460000062, 9.198909070000063, 16.221413350000063, 12.82374201000006, 18.366678030000067, -2.6297052199999342, 11.567446360000062, 6.019946300000065, 4.003066600000061, -0.8360531799999364, 3.166554270000063, 22.980686700000064, 10.399540660000063, 2.9523063500000646, 19.087837930000063, 12.374420480000062, 21.141086280000067, 16.19816047000006, 3.684817120000062, 6.961212730000064, 22.175173250000064, -7.5065122899999395, 27.611381610000066, 0.4744944700000673, 1.2989024000000597, 15.494125700000069, 17.230677320000062, 7.940122130000063, 11.498150980000062, 5.555953780000067, 10.447153450000066, 12.238293710000065, 16.476339780000067, -4.678048029999935, 0.2377195200000557, 13.383132020000055, 19.516792020000054, 4.715017830000058, 3.9204128900000583, 14.402975390000059, -1.7062169499999413, 2.0455833300000563, 1.456989160000056, -0.19544583999994103, -5.571721719999935, 30.92249703000006, 5.165852690000062, 12.554770820000066, -5.397902919999943, 13.226038400000057, 18.226252550000062, 6.038644990000066, 12.848536520000067, 10.393747280000063, 19.843533600000065, 14.957402330000065, 25.549101830000062, 0.5975733200000661, 17.571405220000067, 3.9688312600000657, 0.3797594900000618, 7.505789010000065, 15.134442250000063, 4.438814990000061, 19.021199320000065, 13.088026700000071, -0.6634129999999345, 2.598751170000064, 7.139124770000066, 11.135873240000066, 4.658500610000061, 16.257737220000067, 4.718685510000064, 3.7680185000000677, 14.115260760000062, 11.691111820000067, 4.677062730000067, 2.5656228200000655, 5.644931720000066, 13.798743880000067, 15.682428220000062, 20.62221766000006, 22.405828280000065, 15.536092620000062, 33.62712800000007, 17.410615950000068, 7.371111540000065, 22.939883090000066, 20.14775790000006, 11.881606830000067, 5.754337580000062, 4.815038890000061, 30.970259860000063, 5.910744610000066, 20.175331960000065, 13.817790990000063, 4.797839280000062, 17.872688410000066, -2.7783959999999297, 12.327612590000065, 2.226866760000064, 16.088291540000064, 17.76503027000006, 13.937773830000062, 18.29044714000006, 15.01521988000006, 7.079379070000066, 13.557671820000067, 25.933414940000063, 22.511999220000064, 27.31176461000006, 14.359320240000066, 9.949793790000065, 23.559662700000068, 24.81561633000006, 13.161590400000065, 20.357585210000067, 8.661921470000067, 12.373719010000066, 13.978120100000062, 4.728159120000065, 7.891580300000058, 11.803994770000067, 5.218850100000068, 3.581347810000061, 32.532983850000065, 17.025834740000064, 5.817659560000067, -1.150312569999933, 28.703470810000063, -3.3638321999999405, 29.465504590000066, 16.53643342000007, 8.24633463000007, 8.50419479000007, -2.285934519999927, 31.42650621000007, 0.31701182000006867, 8.62000869000007, 9.120589440000074, 0.3470980600000715, 9.041918680000073, -1.7006035299999311, -1.5822768899999318, 21.10920777000007, 7.946080110000068, 26.052043470000072, 15.313677680000069, 9.655158460000074, 3.9289099700000705, 18.93644963000007, 11.00066674000007, 20.330153510000073, -0.9485371699999305, 32.15473523000007, 8.21542323000007, 29.474146780000073, -18.06142160999993, 21.899294770000072, 15.376722610000076, 22.708288840000076, -0.7678085999999311, 7.552592830000073, 17.370416820000074, 23.64431731000007, -8.331812469999932, -5.093721779999925, -0.2513335099999239, 8.702185550000081, 0.9153640700000807, 19.79597794000008, 22.00872513000008, 24.287219850000078, 13.580388660000075, 30.986754880000078, 18.58452836000008, 9.85053621000008, -8.893708389999922, -4.249068239999929, 0.49108947000006964, 14.768003770000071, 0.6337053200000682, 17.765502560000073, 24.170664440000074, 18.735257390000072, 11.511041410000068, 0.5846697200000719, 2.5242930800000707, 12.39670657000007, -3.656106489999928, 14.208530930000073, 15.164869960000068, 8.134829600000074, -6.1779224799999355, -2.28887993999993, -3.683600669999933, 19.559226160000065, 7.579690040000067, 19.155312390000063, 1.9611611300000646, 3.1561035000000643, 6.990578720000066, 17.770623750000063, 8.148063590000064, 8.214542100000067, 9.204792750000067, 21.97854929000006, 8.134504980000067, 8.063963770000065, 17.947655040000065, 7.766139580000065, 23.181726300000065, 9.942647140000062, 25.649255320000066, 0.23241472000006524, 2.940352450000063, 26.402896300000066, 12.427350300000057, 13.98098208000006, 27.321758200000062, 29.068574070000064, 5.779567140000061, 15.629055760000064, 16.529641050000066, 3.946888550000061, 3.9149550700000617, 12.891355980000064, 17.750608150000062, 10.095381840000066, -7.016529089999942, 7.6462978900000635, 7.1384651100000625, 4.584311160000063, -2.3877012399999344, 27.688519610000064, 7.752532630000061, 8.88016936000006, 21.27907927000006, 6.642865240000063, 8.437443830000063, 28.070824260000062, 12.926733650000067, 5.042452950000062, 5.7493722400000635, 9.065743450000063, 31.400976180000065, 7.427464490000062, 17.709120810000066, 19.296489680000064, 23.998657820000062, 4.143939920000065, 10.657851490000063, 16.81781665000006, 23.549847760000063, 5.005763430000066, 10.649061770000067, -23.683556609999926, 26.280660930000074, 22.32470155000007, 7.8327827700000725, -7.521028009999924, 2.036280930000075, -2.870763029999921, 13.73637225000008, 21.867199500000076, -4.743603009999923, 16.567855580000078, 5.62276492000008, 23.41535772000008, -10.790887659999918, 11.14247927000008, 18.687443720000076, 19.622779070000078, 0.969359130000079, 24.644356820000077, 12.23485618000008, 19.832460160000075, 11.655557200000082, -3.439401469999922, 13.552755180000077, 10.25924056000008, 0.1799470800000762, 11.922067070000075, 11.730296030000076, 1.9045440100000803, 16.917873830000076, 7.199864670000075, 9.770685820000075, 17.24777023000008, 4.978997510000077, -1.627572189999924, 16.664616570000078, 6.692882890000078, 5.896587860000075, 21.56642619000008, 5.380136080000078, -0.703858629999921, 15.821494810000075, 9.001275530000079, 7.225002260000075, 30.06831941000008, 13.405907850000077, 16.604531560000076, -3.3157481499999193, 15.05193562000008, 7.62178688000008, 20.97693462000008, 11.94100256000008, 3.7052978300000774, 4.080940720000079, 24.88387824000008, 17.56139506000008, 26.756335840000077, 12.327977440000076, 43.022289970000074, -0.5000651199999275, 25.468250120000075, 17.762151850000077, 12.980315230000077, 10.735685750000073, 15.303610030000073, 9.29675450000007, 22.07865106000007, 26.416721510000073, 19.445519390000072, 2.0162200400000714, -0.18864085999992852, 9.208714440000072, 14.867012010000074, 16.63410665000007, 4.896883930000072, 10.686536990000072, 17.623450490000074, 17.191765480000072, -5.282238119999931, 12.002275550000071, 17.04901409000007, 7.82677939000007, 2.094774640000068, 21.16060383000007, 15.484741550000074, -2.773863299999917, 3.6674697300000716, 4.145154720000072, -0.643826059999931, 9.936498720000074, 19.201733390000072, 17.11476726000007, 5.380780590000072, 15.634721710000072, 12.97194114000007, 14.427487380000073, 2.112896180000071, 8.365898380000068, 0.3142401400000736, 0.04331663000007069, 4.851488950000068, 18.069622070000072, 16.83842731000007, 12.533337430000074, 10.413579370000072, -4.63120928999993, 2.593916270000072, 27.865963270000073, 4.400742640000068, 17.577111250000073, -3.6322605199999316, 19.623282260000074, 11.160216310000074, 6.230239640000072, 22.89691430000007, 3.87068909000007, -11.280296579999927, -5.990732839999936, 29.384602880000074, 16.04211021000007, 28.962856680000076, 11.420910020000075, 11.543351960000074, 7.721120830000068, 7.187438810000074, 20.822099100000074, 2.4081352800000744, 47.01742481000007, 2.4864407600000735, 18.03997329000007, 22.04458297000007, 28.12173709000007, 23.485632170000073, 14.268703500000072, 13.352259420000074, 16.59288402000007, 38.034107040000066, 14.012114720000067, 15.607213830000067, -8.432877749999939, 17.450421770000062, 23.78528194000006, 7.0922273600000665, 16.623695640000065, 17.950654030000067, 10.258738000000065, -0.6337544899999372, 14.000200530000065, 3.192828640000066, 12.436003680000063, 0.4594682500000644, 8.371062070000065, 3.0819798800000626, 8.660814750000064, 26.726350740000065, -15.64723807999993, 15.241783950000062, 13.349006410000065, 10.198783810000066, 13.762121660000062, 22.374595820000067, 7.866697790000067, 20.685443700000064, 18.126954480000066, 15.565464900000059, 10.83776362000006, 3.920814640000067, 2.672081510000062, 2.8761885700000605, 13.171929110000065, 9.224771520000061, 6.280583370000066, 17.654173980000067, 9.729641310000062, 12.977270580000067, 17.799376350000067, 5.827384260000066, 19.412444490000063, 13.519597180000062, 4.305749610000063, 1.8476174900000615, 8.942415540000063, 19.146059790000066, 5.8082764800000675, 7.278090460000065, -5.433847759999942, 11.843821820000066, 10.303513970000061, 23.441232390000067, 4.784711060000063, 18.991671370000063, 13.855040220000063, 6.782563210000063, 13.193177960000064, 17.377241960000063, -8.37574966999994, -3.74279662999993, 20.439050880000075, 17.197810430000068, 16.155796340000073, -8.705464359999922, -2.083646509999923, 9.914683100000076, 20.983291050000076, 4.47362547000008, 9.015405400000077, 14.02974143000008, 29.576457900000076, 7.796288300000079, 2.387310960000079, 16.318896380000076, 9.21296713000008, 15.719781550000079, 26.15387391000008, 6.967282640000079, 14.035248910000078, 3.1842389800000817, 14.42654969000008, 23.107397770000077, 0.8611200200000795, 23.00193277000008, 1.6391808500000806, 9.966113180000079, -0.8915598799999245, -12.20668974999991, 29.27304363000009, 7.091926290000092, 11.334845590000086, 22.84314930000008, 31.990966260000086, 10.365074160000084, -16.49614974999991, 15.65064105000009, 22.86380019000009, 4.75549665000009, 11.736605310000094, 16.348175040000093, -1.3581112599999088, 1.3387319100000923, 8.978455630000092, 10.121620120000095, 23.001190360000095, 9.72668716000009, 12.890643150000095, 4.41409158000009, 3.268203810000095, 13.978165670000095, 8.461878550000094, 14.241990450000095, -6.500655849999909, 12.756844370000096, -0.6181367199999102, -7.439419959999903, 9.350506320000093, 3.9972431800000905, 7.590232100000094, 5.588317980000092, 23.88791489000009, 13.579401850000096, 13.48219312000009, -5.437612659999907, 4.572535350000095, 13.400606860000096, -2.1420174699999066, -5.828820509999915, 13.745162550000089, 5.569342720000087, 17.059674660000084, 14.210151770000088, 16.246753450000085, 10.513171560000089, 9.477816250000082, 5.423494510000083, 13.521818080000088, 22.665729250000084, -4.051994949999909, 21.905947000000083, 2.486512700000084, 25.490604610000084, 9.530861990000083, 17.331651510000086, 14.175881910000086, 3.0922212100000834, 1.305680470000084, 7.708067500000084, 27.157997670000086, 25.840355630000083, 7.925789590000086, 27.432942960000084, 7.481384820000088, 7.404527690000087, 1.782848080000086, 12.513459490000088, 10.382287550000086, -6.7155106599999215, -8.029506989999916, 19.843708310000082, 19.676844150000086, 5.118581270000085, 22.338160330000086, 15.890082700000093, 5.896897850000087, -1.8854813799999164, 25.597184340000084, 13.591022070000086, 22.893731930000087, 17.120363390000087, 9.557333470000088, 10.069126630000085, 9.242023550000084, 6.838190790000084, 22.777622870000087, 25.397184020000083, 13.347744620000086, 0.8304557700000856, -0.07518005999991573, 12.68628250000009, 14.631211520000086, 20.411431440000086, 16.739527210000084, 15.025772130000085, 14.133595020000087, 2.398356170000085, 16.274279610000086, 7.845849040000083, 9.134059990000083, 10.988029370000085, 8.422250440000084, 12.214015310000086, 14.904721490000085, 10.474641110000086, -10.051987309999916, 2.778122620000076, 6.870670040000078, 19.80405348000008, 20.487551290000077, 6.397680900000076, 13.481915850000078, 6.67871755000008, 29.05751111000008, 6.212801780000078, 14.428679990000077, 0.6065350300000816, 18.153211950000077, 8.79688825000008, 2.7878053600000783, 20.174291600000082, 7.85327575000008, 34.872113060000075, 8.280112660000075, 7.742328700000073, -6.910178439999925, -8.704668069999926, -0.07241696999992087, 0.14587512000007763, 1.282531480000081, 8.520886170000075, 15.404972370000081, 12.65366729000008, 6.71409777000008, 2.6522461600000753, -11.72537420999992, 13.445295630000075, 21.128835800000076, -2.342398099999926, 11.665473320000075, 14.464216690000079, -4.426065779999924, 7.61829206000008, -3.8667710599999197, 8.789991840000077, 27.51581723000008, 12.829383050000075, 20.17409061000008, 5.98723006000008, 1.36200936000008, 9.623738140000079, 15.837219200000085, 23.218744980000075, -3.405143709999919, 15.652608810000075, 13.666963060000079, 14.331973600000083, -2.0378780299999235, 20.43954853000008, 14.236904190000075, 20.268174730000077, 2.6387320600000805, 1.4428615600000754, 19.31744006000008, 21.59271729000008, 23.90896850000008, 17.506891380000077, 15.005966130000076, -0.5807534799999203, 9.845165810000076, 15.992804100000079, 26.471756090000078, 0.006696820000080095, 16.23495356000008, 12.029009200000075, 8.419745400000075, -9.599013489999926, 16.87394771000008, -0.6730179099999205, -12.591449589999911, 22.88364980000008, 20.362607530000083, 7.359210340000082, -1.3293256899999122, 33.92200720000009, -3.7207357699999086, 26.19477145000008, 31.701295500000082, 5.1019746300000826, 8.465151260000084, 19.026264230000088, 9.667253340000087, -6.1877090799999195, 21.462798080000084, 13.302390700000089, 6.987941080000084, 16.517635330000083, -1.3024404999999177, 15.073768850000086, 3.3903450800000883, -12.653481719999917, 27.368218560000088, -9.140633079999915, 0.2685219600000863, -6.476751049999919, 22.86961698000009, 5.230860150000083, -6.771491839999911, 11.937902080000086, 1.3056358000000827, 1.046297860000088, 3.300673940000088, 14.499600290000082, 27.784779920000084, 4.915992870000082, 12.755945330000088, 30.099039480000084, 9.215362560000088, 10.206760990000085, 9.393040220000088, 3.452675510000084, 31.150170930000087, 6.956269870000085, 2.9555962400000837, 21.32166698000009, 20.307904410000084, 6.195153640000086, 10.622365200000083, 5.270282070000086, 17.189754430000086, 22.139588420000088, 0.9115381100000874, 15.508509890000084, 8.573967150000087] (BO) Backorders for node 1:[0, 0, 19.19040905, 1.8560166199999912, 0, 0, 0, 0, 0, 0, 0, 1.384173969999992, 0, 0, 0, 1.7492203399999937, 0, 0, 0.36212937999999184, 6.640644140000006, 0, 0, 1.9206440600000008, 4.498421629999996, 12.16493242, 0, 1.2274013600000018, 10.238519420000003, 7.305505159999996, 0, 0, 0, 0, 0.36735493999999846, 1.574523339999999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5731003699999988, 0, 0, 0, 3.703954860000003, 0, 4.195951239999999, 0, 2.771963249999999, 0, 0, 8.582602010000002, 0, 0, 1.6062320699999972, 9.151654759999992, 0, 3.197368709999992, 3.9814621699999933, 0, 0, 0, 0, 0, 0, 0, 0.8401078599999963, 0, 0, 0, 0, 2.6783857199999943, 0, 0, 0, 0, 0, 0, 0.8676907299999925, 11.759144499999984, 1.9331239499999953, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.349495989999994, 0, 0, 0, 0, 0.39444216999999426, 0, 0, 0, 0, 0, 2.08592410999999, 3.389589709999985, 0, 0, 0, 0, 0, 0, 0, 2.146462389999982, 0.3792032199999795, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.622913359999977, 1.1094645699999788, 0, 0, 0, 4.877898369999976, 11.457391119999983, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.36938513999998435, 0, 0, 0, 0, 0, 0, 0, 0, 17.063805469999984, 0, 3.462037099999975, 0, 0, 0, 0, 0, 5.2447196799999745, 0, 5.648439239999973, 0, 0, 8.011653249999966, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.8488880899999742, 0, 0, 0, 0, 0, 0, 0.07572130999997029, 0, 0, 4.862472499999967, 0, 0, 0, 0, 0, 0, 21.18103789999997, 0, 9.801421079999962, 0, 0, 0, 0, 4.594826419999968, 0, 0, 13.837648649999963, 0, 0, 0, 21.16365688999995, 0, 0, 6.895934329999953, 6.994125019999942, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11.25693235999993, 0, 0, 0, 0, 0, 0.7440720599999366, 1.0727154799999354, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.354029919999938, 1.9310938499999395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12.250607609999939, 0, 0, 0, 0, 0, 0, 4.560163309999929, 0, 0, 0, 0, 0, 0, 2.6297052199999342, 0, 0, 0, 0.8360531799999364, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.5065122899999395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.678048029999935, 0, 0, 0, 0, 0, 0, 1.7062169499999413, 0, 0, 0.19544583999994103, 5.571721719999935, 0, 0, 0, 5.397902919999943, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6634129999999345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.7783959999999297, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.150312569999933, 0, 3.3638321999999405, 0, 0, 0, 0, 2.285934519999927, 0, 0, 0, 0, 0, 0, 1.7006035299999311, 1.5822768899999318, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9485371699999305, 0, 0, 0, 18.06142160999993, 0, 0, 0, 0.7678085999999311, 0, 0, 0, 8.331812469999932, 5.093721779999925, 0.2513335099999239, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.893708389999922, 4.249068239999929, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.656106489999928, 0, 0, 0, 6.1779224799999355, 2.28887993999993, 3.683600669999933, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.016529089999942, 0, 0, 0, 2.3877012399999344, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23.683556609999926, 0, 0, 0, 7.521028009999924, 0, 2.870763029999921, 0, 0, 4.743603009999923, 0, 0, 0, 10.790887659999918, 0, 0, 0, 0, 0, 0, 0, 0, 3.439401469999922, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.627572189999924, 0, 0, 0, 0, 0, 0.703858629999921, 0, 0, 0, 0, 0, 0, 3.3157481499999193, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5000651199999275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18864085999992852, 0, 0, 0, 0, 0, 0, 0, 5.282238119999931, 0, 0, 0, 0, 0, 0, 2.773863299999917, 0, 0, 0.643826059999931, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.63120928999993, 0, 0, 0, 0, 3.6322605199999316, 0, 0, 0, 0, 0, 11.280296579999927, 5.990732839999936, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.432877749999939, 0, 0, 0, 0, 0, 0, 0.6337544899999372, 0, 0, 0, 0, 0, 0, 0, 0, 15.64723807999993, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.433847759999942, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.37574966999994, 3.74279662999993, 0, 0, 0, 8.705464359999922, 2.083646509999923, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8915598799999245, 12.20668974999991, 0, 0, 0, 0, 0, 0, 16.49614974999991, 0, 0, 0, 0, 0, 1.3581112599999088, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.500655849999909, 0, 0.6181367199999102, 7.439419959999903, 0, 0, 0, 0, 0, 0, 0, 5.437612659999907, 0, 0, 2.1420174699999066, 5.828820509999915, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.051994949999909, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.7155106599999215, 8.029506989999916, 0, 0, 0, 0, 0, 0, 1.8854813799999164, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.07518005999991573, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10.051987309999916, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.910178439999925, 8.704668069999926, 0.07241696999992087, 0, 0, 0, 0, 0, 0, 0, 11.72537420999992, 0, 0, 2.342398099999926, 0, 0, 4.426065779999924, 0, 3.8667710599999197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.405143709999919, 0, 0, 0, 2.0378780299999235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5807534799999203, 0, 0, 0, 0, 0, 0, 0, 9.599013489999926, 0, 0.6730179099999205, 12.591449589999911, 0, 0, 0, 1.3293256899999122, 0, 3.7207357699999086, 0, 0, 0, 0, 0, 0, 6.1877090799999195, 0, 0, 0, 0, 1.3024404999999177, 0, 0, 12.653481719999917, 0, 9.140633079999915, 0, 6.476751049999919, 0, 0, 6.771491839999911, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (TC) Total Cost for node 1:[191.7624973, 78.52610339999998, 479.76022624999996, 46.40041549999978, 232.98895580000007, 84.68629170000007, 11.208494700000102, 172.9876971000001, 143.0005768000001, 88.31042190000005, 165.12934380000004, 34.6043492499998, 15.3994165000001, 18.637772600000062, 235.4079935000001, 43.73050849999984, 324.3343157000001, 234.96188270000007, 9.053234499999796, 166.01610350000016, 81.38498650000002, 203.47975239999997, 48.01610150000002, 112.4605407499999, 304.1233105, 94.515429, 30.685034000000044, 255.96298550000006, 182.6376289999999, 92.91058479999997, 103.33739790000003, 83.48442799999994, 209.53343259999997, 9.183873499999962, 39.36308349999997, 284.37864750000006, 70.02471500000001, 140.33030060000002, 93.21330359999997, 229.40767520000003, 27.25434530000001, 321.9033245, 13.268761699999985, 324.92687939999996, 170.07861189999997, 95.16744180000003, 29.750997399999974, 2.2282443999999657, 39.32750924999997, 177.38791249999997, 198.84305189999998, 188.58778460000002, 92.59887150000009, 81.95421240000002, 104.89878099999999, 149.09212660000003, 69.29908124999997, 109.45311930000003, 125.45431630000003, 214.56505025000007, 89.51946620000001, 83.90963589999998, 40.15580174999993, 228.7913689999998, 52.5018149000001, 79.9342177499998, 99.53655424999982, 201.7647823000001, 35.25720790000008, 328.4941152, 199.95467830000007, 167.37441710000002, 50.11000410000008, 285.9944180000001, 21.002696499999907, 293.2425951000001, 80.87037190000004, 315.3482736000001, 198.9759234000001, 66.95964299999986, 98.81316000000005, 5.279326800000064, 164.25613710000007, 164.90380710000005, 36.81185170000006, 170.9870319000001, 21.692268249999813, 293.9786124999996, 48.32809874999988, 177.78799120000008, 30.532829900000067, 59.11533250000005, 101.73230810000007, 158.70248220000008, 63.65083410000004, 141.9551313000001, 256.2426691000001, 71.24176100000014, 179.05958360000005, 4.034744300000099, 66.18060710000009, 149.34259150000008, 236.27936010000008, 53.45835000000008, 33.73739974999985, 74.22686450000008, 91.30492610000005, 116.38327340000004, 375.49769100000003, 9.861054249999857, 222.02633550000004, 100.25726640000005, 86.25481930000007, 78.51007480000007, 281.4784681000001, 52.14810274999975, 84.73974274999962, 91.54324070000018, 224.51936100000023, 12.037093200000228, 61.265909200000195, 137.7579358000002, 132.2022843000002, 24.586908700000194, 53.661559749999554, 9.480080499999488, 235.88649670000024, 258.4994553000002, 140.6867114000002, 178.84255590000024, 60.49648000000019, 116.55637370000022, 137.30190390000018, 183.9832018000002, 87.65742340000024, 225.64585770000022, 41.52287090000023, 127.34524780000022, 50.28357820000018, 37.55098270000019, 152.76584890000024, 181.3399449000002, 175.60387840000018, 15.572833999999425, 27.73661424999947, 90.66310810000019, 125.45042190000018, 57.14961080000023, 121.94745924999938, 286.4347779999996, 220.0598957000001, 42.894400400000166, 42.53844020000017, 239.57610970000013, 206.62548780000014, 146.40800770000013, 213.78535340000013, 231.84749910000016, 68.32110160000013, 170.29387710000015, 47.45224910000012, 9.234628499999609, 148.5589493000001, 40.720913300000134, 45.024980800000165, 301.02652650000016, 211.5986329000001, 46.96725160000014, 94.65379530000014, 96.28454270000013, 426.5951367499996, 10.963717800000268, 86.55092749999937, 74.02643190000028, 144.47234620000032, 203.86533030000032, 196.26834380000025, 260.06606350000027, 131.11799199999936, 17.40726190000025, 141.21098099999932, 32.320011000000335, 59.21299640000029, 200.29133124999916, 10.101627800000301, 96.42559310000031, 138.4792153000003, 100.86146150000026, 131.72099030000027, 245.7928434000003, 209.14755150000025, 98.39728640000025, 67.88790740000032, 56.56272460000025, 71.22220224999936, 50.36488270000028, 176.53025920000027, 46.00463160000025, 2.4345800000002527, 125.51713530000029, 211.1789332000003, 1.8930327499992572, 76.14305900000026, 28.267796400000265, 121.56181249999918, 35.084602900000306, 124.70185630000032, 157.8547958000003, 73.11897700000038, 9.510194000000283, 75.3035922000003, 529.5259474999992, 205.9608922000004, 245.03552699999904, 50.95617110000035, 71.24109190000034, 170.62531640000037, 122.01881570000033, 114.87066049999922, 35.686096100000384, 9.036269100000354, 345.94121624999906, 138.83640510000043, 291.5221129000004, 86.51049710000045, 529.0914222499987, 6.7991704000004916, 81.46396040000049, 172.39835824999884, 174.85312549999855, 208.0396651000006, 92.1810279000006, 3.8173185000005816, 151.08813460000056, 176.64810870000053, 75.14928880000056, 52.18426620000059, 106.07248290000058, 146.29140900000053, 85.91295040000055, 33.61279320000058, 281.42330899999826, 226.30386660000062, 275.8622319000006, 185.54208220000064, 127.19768090000066, 91.42393690000063, 18.601801499998416, 26.817886999998386, 153.86039650000066, 66.89633460000067, 52.805035100000666, 268.23597950000067, 228.43168680000062, 152.09125170000064, 7.044171400000607, 5.0324458000006445, 132.6564764000006, 141.55095990000063, 168.9395894000006, 176.0935727000006, 41.394178100000616, 170.9495026000006, 87.32987490000063, 233.85074799999845, 48.27734624999849, 26.77801070000065, 161.7674090000006, 91.82792760000062, 117.87734570000062, 181.06942040000064, 153.60189950000063, 174.99304020000062, 66.1220380000006, 52.61306630000064, 306.26519024999845, 112.72931740000061, 280.8606878000007, 150.56707390000065, 177.98626820000067, 0.4568956000006352, 73.37809700000072, 114.00408274999822, 217.93035600000067, 30.34415460000062, 91.98909070000063, 162.21413350000063, 128.2374201000006, 183.66678030000065, 65.74263049999836, 115.67446360000062, 60.19946300000065, 40.03066600000061, 20.90132949999841, 31.66554270000063, 229.80686700000064, 103.99540660000063, 29.523063500000646, 190.87837930000063, 123.74420480000062, 211.41086280000067, 161.98160470000062, 36.84817120000062, 69.61212730000064, 221.75173250000063, 187.66280724999848, 276.1138161000007, 4.744944700000673, 12.989024000000597, 154.9412570000007, 172.30677320000063, 79.40122130000063, 114.98150980000062, 55.55953780000067, 104.47153450000066, 122.38293710000065, 164.7633978000007, 116.95120074999838, 2.377195200000557, 133.83132020000056, 195.16792020000054, 47.150178300000576, 39.20412890000058, 144.02975390000057, 42.65542374999853, 20.455833300000563, 14.56989160000056, 4.886145999998526, 139.2930429999984, 309.22497030000056, 51.658526900000616, 125.54770820000066, 134.94757299999858, 132.26038400000056, 182.2625255000006, 60.386449900000656, 128.48536520000067, 103.93747280000063, 198.43533600000063, 149.57402330000065, 255.49101830000063, 5.975733200000661, 175.71405220000065, 39.68831260000066, 3.797594900000618, 75.05789010000065, 151.34442250000063, 44.38814990000061, 190.21199320000065, 130.8802670000007, 16.585324999998363, 25.98751170000064, 71.39124770000066, 111.35873240000066, 46.58500610000061, 162.57737220000067, 47.18685510000064, 37.68018500000068, 141.15260760000064, 116.91111820000067, 46.77062730000067, 25.656228200000655, 56.449317200000664, 137.9874388000007, 156.82428220000062, 206.2221766000006, 224.05828280000065, 155.36092620000062, 336.27128000000073, 174.10615950000067, 73.71111540000065, 229.39883090000066, 201.4775790000006, 118.81606830000067, 57.54337580000062, 48.15038890000061, 309.7025986000006, 59.10744610000066, 201.75331960000065, 138.17790990000063, 47.97839280000062, 178.72688410000066, 69.45989999999824, 123.27612590000065, 22.26866760000064, 160.88291540000063, 177.65030270000062, 139.3777383000006, 182.9044714000006, 150.1521988000006, 70.79379070000066, 135.57671820000067, 259.3341494000006, 225.11999220000064, 273.1176461000006, 143.59320240000068, 99.49793790000065, 235.5966270000007, 248.15616330000063, 131.61590400000065, 203.57585210000067, 86.61921470000067, 123.73719010000066, 139.78120100000064, 47.28159120000065, 78.91580300000058, 118.03994770000067, 52.188501000000684, 35.81347810000061, 325.3298385000006, 170.25834740000064, 58.17659560000067, 28.757814249998326, 287.0347081000006, 84.0958049999985, 294.6550459000007, 165.36433420000068, 82.46334630000071, 85.04194790000071, 57.14836299999817, 314.2650621000007, 3.1701182000006867, 86.2000869000007, 91.20589440000074, 3.470980600000715, 90.41918680000073, 42.51508824999828, 39.556922249998294, 211.0920777000007, 79.46080110000068, 260.5204347000007, 153.1367768000007, 96.55158460000074, 39.289099700000705, 189.3644963000007, 110.00666740000071, 203.30153510000073, 23.713429249998264, 321.54735230000074, 82.1542323000007, 294.74146780000075, 451.53554024999823, 218.9929477000007, 153.76722610000076, 227.08288840000077, 19.195214999998278, 75.52592830000073, 173.70416820000074, 236.4431731000007, 208.2953117499983, 127.34304449999811, 6.283337749998097, 87.02185550000081, 9.153640700000807, 197.9597794000008, 220.0872513000008, 242.87219850000076, 135.80388660000074, 309.8675488000008, 185.84528360000078, 98.5053621000008, 222.34270974999805, 106.22670599999822, 4.910894700000696, 147.6800377000007, 6.337053200000682, 177.65502560000073, 241.70664440000076, 187.35257390000072, 115.11041410000068, 5.846697200000719, 25.242930800000707, 123.9670657000007, 91.4026622499982, 142.08530930000074, 151.64869960000067, 81.34829600000074, 154.4480619999984, 57.22199849999825, 92.09001674999833, 195.59226160000065, 75.79690040000067, 191.55312390000063, 19.611611300000646, 31.561035000000643, 69.90578720000066, 177.7062375000006, 81.48063590000064, 82.14542100000067, 92.04792750000067, 219.7854929000006, 81.34504980000067, 80.63963770000065, 179.47655040000063, 77.66139580000065, 231.81726300000065, 99.42647140000062, 256.49255320000066, 2.3241472000006524, 29.40352450000063, 264.02896300000066, 124.27350300000057, 139.8098208000006, 273.2175820000006, 290.6857407000006, 57.795671400000614, 156.29055760000062, 165.29641050000066, 39.46888550000061, 39.14955070000062, 128.91355980000066, 177.50608150000062, 100.95381840000066, 175.41322724999856, 76.46297890000064, 71.38465110000062, 45.843111600000626, 59.69253099999836, 276.88519610000066, 77.52532630000061, 88.8016936000006, 212.79079270000062, 66.42865240000063, 84.37443830000063, 280.70824260000063, 129.26733650000068, 50.42452950000062, 57.493722400000635, 90.65743450000063, 314.00976180000066, 74.27464490000062, 177.09120810000064, 192.96489680000064, 239.98657820000062, 41.43939920000065, 106.57851490000063, 168.1781665000006, 235.49847760000063, 50.05763430000066, 106.49061770000067, 592.0889152499981, 262.80660930000073, 223.2470155000007, 78.32782770000073, 188.0257002499981, 20.362809300000748, 71.76907574999802, 137.3637225000008, 218.67199500000078, 118.59007524999808, 165.67855580000077, 56.2276492000008, 234.15357720000083, 269.7721914999979, 111.42479270000081, 186.87443720000076, 196.22779070000078, 9.69359130000079, 246.44356820000075, 122.3485618000008, 198.32460160000073, 116.55557200000082, 85.98503674999805, 135.52755180000077, 102.5924056000008, 1.799470800000762, 119.22067070000075, 117.30296030000076, 19.045440100000803, 169.17873830000076, 71.99864670000075, 97.70685820000075, 172.47770230000077, 49.789975100000774, 40.6893047499981, 166.64616570000078, 66.92882890000078, 58.96587860000075, 215.66426190000078, 53.80136080000078, 17.596465749998025, 158.21494810000075, 90.01275530000079, 72.25002260000075, 300.6831941000008, 134.05907850000077, 166.04531560000078, 82.89370374999798, 150.5193562000008, 76.2178688000008, 209.7693462000008, 119.4100256000008, 37.052978300000774, 40.80940720000079, 248.8387824000008, 175.6139506000008, 267.56335840000077, 123.27977440000076, 430.22289970000077, 12.501627999998188, 254.68250120000076, 177.62151850000078, 129.80315230000076, 107.35685750000073, 153.03610030000073, 92.9675450000007, 220.7865106000007, 264.1672151000007, 194.45519390000072, 20.162200400000714, 4.716021499998213, 92.08714440000072, 148.67012010000076, 166.3410665000007, 48.968839300000724, 106.86536990000072, 176.23450490000073, 171.91765480000072, 132.05595299999828, 120.02275550000071, 170.4901409000007, 78.2677939000007, 20.947746400000682, 211.6060383000007, 154.84741550000075, 69.34658249999792, 36.674697300000716, 41.45154720000072, 16.095651499998276, 99.36498720000074, 192.01733390000072, 171.1476726000007, 53.807805900000716, 156.3472171000007, 129.7194114000007, 144.27487380000073, 21.12896180000071, 83.65898380000068, 3.142401400000736, 0.4331663000007069, 48.51488950000068, 180.6962207000007, 168.3842731000007, 125.33337430000074, 104.13579370000072, 115.78023224999825, 25.939162700000722, 278.6596327000007, 44.00742640000068, 175.77111250000073, 90.80651299999829, 196.23282260000076, 111.60216310000074, 62.30239640000072, 228.9691430000007, 38.7068909000007, 282.00741449999816, 149.7683209999984, 293.84602880000074, 160.42110210000072, 289.6285668000008, 114.20910020000076, 115.43351960000074, 77.21120830000068, 71.87438810000074, 208.22099100000074, 24.081352800000744, 470.17424810000074, 24.864407600000735, 180.39973290000069, 220.44582970000073, 281.21737090000073, 234.85632170000073, 142.68703500000072, 133.52259420000075, 165.9288402000007, 380.34107040000066, 140.12114720000068, 156.07213830000066, 210.82194374999847, 174.50421770000062, 237.8528194000006, 70.92227360000066, 166.23695640000065, 179.50654030000067, 102.58738000000065, 15.84386224999843, 140.00200530000063, 31.92828640000066, 124.36003680000063, 4.594682500000644, 83.71062070000065, 30.819798800000626, 86.60814750000064, 267.26350740000066, 391.18095199999823, 152.41783950000064, 133.49006410000067, 101.98783810000066, 137.62121660000062, 223.74595820000067, 78.66697790000067, 206.85443700000064, 181.26954480000066, 155.65464900000057, 108.37763620000061, 39.20814640000067, 26.72081510000062, 28.761885700000605, 131.71929110000065, 92.24771520000061, 62.80583370000066, 176.54173980000067, 97.29641310000062, 129.77270580000067, 177.99376350000068, 58.27384260000066, 194.12444490000064, 135.19597180000062, 43.057496100000634, 18.476174900000615, 89.42415540000063, 191.46059790000066, 58.082764800000675, 72.78090460000065, 135.84619399999855, 118.43821820000066, 103.03513970000061, 234.41232390000067, 47.84711060000063, 189.91671370000063, 138.55040220000063, 67.82563210000063, 131.93177960000065, 173.77241960000063, 209.39374174999853, 93.56991574999824, 204.39050880000076, 171.97810430000067, 161.55796340000074, 217.63660899999806, 52.09116274999808, 99.14683100000076, 209.83291050000076, 44.7362547000008, 90.15405400000077, 140.2974143000008, 295.76457900000077, 77.96288300000079, 23.873109600000788, 163.18896380000075, 92.12967130000081, 157.1978155000008, 261.5387391000008, 69.67282640000079, 140.35248910000078, 31.842389800000817, 144.2654969000008, 231.07397770000077, 8.611200200000795, 230.01932770000082, 16.391808500000806, 99.66113180000079, 22.288996999998112, 305.16724374999774, 292.73043630000086, 70.91926290000092, 113.34845590000086, 228.43149300000078, 319.90966260000084, 103.65074160000084, 412.4037437499977, 156.5064105000009, 228.63800190000092, 47.5549665000009, 117.36605310000094, 163.48175040000092, 33.95278149999772, 13.387319100000923, 89.78455630000092, 101.21620120000095, 230.01190360000095, 97.2668716000009, 128.90643150000096, 44.1409158000009, 32.68203810000095, 139.78165670000095, 84.61878550000094, 142.41990450000094, 162.5163962499977, 127.56844370000096, 15.453417999997754, 185.98549899999756, 93.50506320000093, 39.972431800000905, 75.90232100000094, 55.88317980000092, 238.8791489000009, 135.79401850000096, 134.8219312000009, 135.94031649999766, 45.72535350000095, 134.00606860000096, 53.550436749997665, 145.72051274999785, 137.4516255000009, 55.69342720000087, 170.59674660000084, 142.1015177000009, 162.46753450000085, 105.13171560000089, 94.77816250000082, 54.23494510000083, 135.21818080000088, 226.65729250000084, 101.29987374999772, 219.05947000000083, 24.86512700000084, 254.90604610000082, 95.30861990000083, 173.31651510000086, 141.75881910000086, 30.922212100000834, 13.05680470000084, 77.08067500000084, 271.5799767000009, 258.40355630000084, 79.25789590000086, 274.3294296000008, 74.81384820000088, 74.04527690000087, 17.82848080000086, 125.13459490000088, 103.82287550000086, 167.88776649999804, 200.7376747499979, 198.43708310000082, 196.76844150000085, 51.18581270000085, 223.38160330000085, 158.90082700000093, 58.96897850000087, 47.13703449999791, 255.97184340000084, 135.91022070000088, 228.93731930000087, 171.20363390000085, 95.57333470000088, 100.69126630000085, 92.42023550000084, 68.38190790000084, 227.77622870000087, 253.97184020000083, 133.47744620000086, 8.304557700000856, 1.8795014999978932, 126.8628250000009, 146.31211520000085, 204.11431440000086, 167.39527210000085, 150.25772130000087, 141.33595020000087, 23.98356170000085, 162.74279610000087, 78.45849040000083, 91.34059990000083, 109.88029370000085, 84.22250440000084, 122.14015310000086, 149.04721490000085, 104.74641110000086, 251.29968274999788, 27.78122620000076, 68.70670040000078, 198.04053480000078, 204.87551290000079, 63.976809000000756, 134.81915850000078, 66.7871755000008, 290.57511110000075, 62.12801780000078, 144.28679990000077, 6.065350300000816, 181.53211950000076, 87.9688825000008, 27.878053600000783, 201.74291600000083, 78.5327575000008, 348.7211306000007, 82.80112660000074, 77.42328700000073, 172.75446099999812, 217.61670174999813, 1.8104242499980217, 1.4587512000007763, 12.825314800000811, 85.20886170000075, 154.0497237000008, 126.5366729000008, 67.1409777000008, 26.522461600000753, 293.134355249998, 134.45295630000075, 211.28835800000076, 58.55995249999815, 116.65473320000075, 144.6421669000008, 110.6516444999981, 76.1829206000008, 96.66927649999799, 87.89991840000077, 275.15817230000084, 128.29383050000075, 201.74090610000079, 59.8723006000008, 13.6200936000008, 96.23738140000079, 158.37219200000084, 232.18744980000076, 85.12859274999798, 156.52608810000075, 136.6696306000008, 143.31973600000083, 50.94695074999809, 204.39548530000081, 142.36904190000075, 202.68174730000078, 26.387320600000805, 14.428615600000754, 193.1744006000008, 215.9271729000008, 239.08968500000077, 175.06891380000076, 150.05966130000076, 14.518836999998008, 98.45165810000076, 159.9280410000008, 264.71756090000076, 0.06696820000080095, 162.3495356000008, 120.29009200000075, 84.19745400000075, 239.97533724999815, 168.7394771000008, 16.825447749998013, 314.7862397499978, 228.8364980000008, 203.62607530000082, 73.59210340000082, 33.233142249997805, 339.22007200000087, 93.01839424999771, 261.9477145000008, 317.01295500000083, 51.019746300000826, 84.65151260000084, 190.2626423000009, 96.67253340000087, 154.692726999998, 214.62798080000084, 133.0239070000009, 69.87941080000084, 165.1763533000008, 32.56101249999794, 150.73768850000084, 33.90345080000088, 316.33704299999795, 273.6821856000009, 228.5158269999979, 2.6852196000008632, 161.91877624999796, 228.6961698000009, 52.30860150000083, 169.28729599999775, 119.37902080000086, 13.056358000000827, 10.46297860000088, 33.00673940000088, 144.9960029000008, 277.84779920000085, 49.15992870000082, 127.55945330000088, 300.99039480000084, 92.15362560000088, 102.06760990000085, 93.93040220000088, 34.52675510000084, 311.50170930000087, 69.56269870000085, 29.555962400000837, 213.2166698000009, 203.07904410000083, 61.95153640000086, 106.22365200000083, 52.702820700000856, 171.89754430000085, 221.39588420000086, 9.115381100000874, 155.08509890000084, 85.73967150000087] Node 2 (IL) Starting Inventory record for node 2:[60, 19.176249730000002, 7.852610339999998, -19.19040905, -1.8560166199999912, 23.298895580000007, 8.468629170000007, 1.1208494700000102, 17.29876971000001, 14.300057680000009, 8.831042190000005, 16.512934380000004, -1.384173969999992, 1.53994165000001, 1.8637772600000062, 23.540799350000007, -1.7492203399999937, 32.43343157000001, 23.496188270000008, -0.36212937999999184, -6.640644140000006, 8.138498650000002, 20.347975239999997, -1.9206440600000008, -4.498421629999996, -12.16493242, 9.4515429, -1.2274013600000018, -10.238519420000003, -7.305505159999996, 9.291058479999997, 10.333739790000003, 8.348442799999994, 20.953343259999997, -0.36735493999999846, -1.574523339999999, 28.437864750000003, 7.002471500000002, 14.033030060000002, 9.321330359999997, 22.94076752, 2.725434530000001, 32.19033245, 1.3268761699999985, 32.492687939999996, 17.007861189999996, 9.516744180000003, 2.9750997399999974, 0.22282443999999657, -1.5731003699999988, 17.73879125, 19.88430519, 18.858778460000003, -3.703954860000003, 8.195421240000002, -4.195951239999999, 14.909212660000001, -2.771963249999999, 10.945311930000003, 12.545431630000003, -8.582602010000002, 8.951946620000001, 8.390963589999998, -1.6062320699999972, -9.151654759999992, 5.25018149000001, -3.197368709999992, -3.9814621699999933, 20.176478230000008, 3.5257207900000083, 32.849411520000004, 19.995467830000006, 16.737441710000002, 5.011000410000008, 28.599441800000008, -0.8401078599999963, 29.324259510000008, 8.087037190000004, 31.53482736000001, 19.89759234000001, -2.6783857199999943, 9.881316000000005, 0.5279326800000064, 16.425613710000007, 16.490380710000004, 3.6811851700000062, 17.09870319000001, -0.8676907299999925, -11.759144499999984, -1.9331239499999953, 17.77879912000001, 3.0532829900000067, 5.911533250000005, 10.173230810000007, 15.870248220000008, 6.365083410000004, 14.195513130000009, 25.62426691000001, 7.124176100000014, 17.905958360000007, 0.40347443000000993, 6.618060710000009, 14.93425915000001, 23.627936010000006, 5.345835000000008, -1.349495989999994, 7.422686450000008, 9.130492610000005, 11.638327340000004, 37.549769100000006, -0.39444216999999426, 22.202633550000005, 10.025726640000006, 8.625481930000007, 7.851007480000007, 28.147846810000008, -2.08592410999999, -3.389589709999985, 9.154324070000019, 22.451936100000022, 1.2037093200000228, 6.1265909200000195, 13.77579358000002, 13.22022843000002, 2.4586908700000194, -2.146462389999982, -0.3792032199999795, 23.588649670000024, 25.84994553000002, 14.06867114000002, 17.884255590000024, 6.049648000000019, 11.655637370000022, 13.730190390000018, 18.39832018000002, 8.765742340000024, 22.564585770000022, 4.152287090000023, 12.734524780000022, 5.028357820000018, 3.755098270000019, 15.276584890000024, 18.13399449000002, 17.56038784000002, -0.622913359999977, -1.1094645699999788, 9.066310810000019, 12.545042190000018, 5.714961080000023, -4.877898369999976, -11.457391119999983, 22.00598957000001, 4.2894400400000166, 4.253844020000017, 23.95761097000001, 20.662548780000016, 14.640800770000013, 21.378535340000013, 23.184749910000015, 6.832110160000013, 17.029387710000016, 4.745224910000012, -0.36938513999998435, 14.855894930000012, 4.072091330000013, 4.5024980800000165, 30.102652650000014, 21.15986329000001, 4.696725160000014, 9.465379530000014, 9.628454270000013, -17.063805469999984, 1.0963717800000268, -3.462037099999975, 7.402643190000028, 14.447234620000032, 20.38653303000003, 19.626834380000027, 26.006606350000027, -5.2447196799999745, 1.740726190000025, -5.648439239999973, 3.2320011000000335, 5.921299640000029, -8.011653249999966, 1.0101627800000301, 9.642559310000031, 13.84792153000003, 10.086146150000026, 13.172099030000027, 24.57928434000003, 20.914755150000026, 9.839728640000025, 6.788790740000032, 5.656272460000025, -2.8488880899999742, 5.036488270000028, 17.653025920000026, 4.600463160000025, 0.24345800000002527, 12.551713530000029, 21.11789332000003, -0.07572130999997029, 7.614305900000026, 2.8267796400000265, -4.862472499999967, 3.5084602900000306, 12.470185630000032, 15.785479580000029, 7.3118977000000385, 0.9510194000000283, 7.5303592200000296, -21.18103789999997, 20.59608922000004, -9.801421079999962, 5.095617110000035, 7.124109190000034, 17.06253164000004, 12.201881570000033, -4.594826419999968, 3.5686096100000384, 0.9036269100000354, -13.837648649999963, 13.883640510000042, 29.152211290000043, 8.651049710000045, -21.16365688999995, 0.6799170400000492, 8.146396040000049, -6.895934329999953, -6.994125019999942, 20.80396651000006, 9.21810279000006, 0.38173185000005816, 15.108813460000057, 17.664810870000053, 7.514928880000056, 5.218426620000059, 10.607248290000058, 14.629140900000053, 8.591295040000055, 3.361279320000058, -11.25693235999993, 22.630386660000063, 27.586223190000062, 18.554208220000064, 12.719768090000066, 9.142393690000063, -0.7440720599999366, -1.0727154799999354, 15.386039650000065, 6.689633460000067, 5.280503510000067, 26.823597950000064, 22.843168680000062, 15.209125170000064, 0.7044171400000607, 0.5032445800000644, 13.265647640000061, 14.155095990000063, 16.89395894000006, 17.60935727000006, 4.139417810000062, 17.09495026000006, 8.732987490000063, -9.354029919999938, -1.9310938499999395, 2.677801070000065, 16.176740900000063, 9.182792760000062, 11.787734570000062, 18.106942040000064, 15.360189950000063, 17.49930402000006, 6.61220380000006, 5.261306630000064, -12.250607609999939, 11.272931740000061, 28.086068780000065, 15.056707390000064, 17.798626820000067, 0.04568956000006352, 7.337809700000072, -4.560163309999929, 21.793035600000067, 3.034415460000062, 9.198909070000063, 16.221413350000063, 12.82374201000006, 18.366678030000067, -2.6297052199999342, 11.567446360000062, 6.019946300000065, 4.003066600000061, -0.8360531799999364, 3.166554270000063, 22.980686700000064, 10.399540660000063, 2.9523063500000646, 19.087837930000063, 12.374420480000062, 21.141086280000067, 16.19816047000006, 3.684817120000062, 6.961212730000064, 22.175173250000064, -7.5065122899999395, 27.611381610000066, 0.4744944700000673, 1.2989024000000597, 15.494125700000069, 17.230677320000062, 7.940122130000063, 11.498150980000062, 5.555953780000067, 10.447153450000066, 12.238293710000065, 16.476339780000067, -4.678048029999935, 0.2377195200000557, 13.383132020000055, 19.516792020000054, 4.715017830000058, 3.9204128900000583, 14.402975390000059, -1.7062169499999413, 2.0455833300000563, 1.456989160000056, -0.19544583999994103, -5.571721719999935, 30.92249703000006, 5.165852690000062, 12.554770820000066, -5.397902919999943, 13.226038400000057, 18.226252550000062, 6.038644990000066, 12.848536520000067, 10.393747280000063, 19.843533600000065, 14.957402330000065, 25.549101830000062, 0.5975733200000661, 17.571405220000067, 3.9688312600000657, 0.3797594900000618, 7.505789010000065, 15.134442250000063, 4.438814990000061, 19.021199320000065, 13.088026700000071, -0.6634129999999345, 2.598751170000064, 7.139124770000066, 11.135873240000066, 4.658500610000061, 16.257737220000067, 4.718685510000064, 3.7680185000000677, 14.115260760000062, 11.691111820000067, 4.677062730000067, 2.5656228200000655, 5.644931720000066, 13.798743880000067, 15.682428220000062, 20.62221766000006, 22.405828280000065, 15.536092620000062, 33.62712800000007, 17.410615950000068, 7.371111540000065, 22.939883090000066, 20.14775790000006, 11.881606830000067, 5.754337580000062, 4.815038890000061, 30.970259860000063, 5.910744610000066, 20.175331960000065, 13.817790990000063, 4.797839280000062, 17.872688410000066, -2.7783959999999297, 12.327612590000065, 2.226866760000064, 16.088291540000064, 17.76503027000006, 13.937773830000062, 18.29044714000006, 15.01521988000006, 7.079379070000066, 13.557671820000067, 25.933414940000063, 22.511999220000064, 27.31176461000006, 14.359320240000066, 9.949793790000065, 23.559662700000068, 24.81561633000006, 13.161590400000065, 20.357585210000067, 8.661921470000067, 12.373719010000066, 13.978120100000062, 4.728159120000065, 7.891580300000058, 11.803994770000067, 5.218850100000068, 3.581347810000061, 32.532983850000065, 17.025834740000064, 5.817659560000067, -1.150312569999933, 28.703470810000063, -3.3638321999999405, 29.465504590000066, 16.53643342000007, 8.24633463000007, 8.50419479000007, -2.285934519999927, 31.42650621000007, 0.31701182000006867, 8.62000869000007, 9.120589440000074, 0.3470980600000715, 9.041918680000073, -1.7006035299999311, -1.5822768899999318, 21.10920777000007, 7.946080110000068, 26.052043470000072, 15.313677680000069, 9.655158460000074, 3.9289099700000705, 18.93644963000007, 11.00066674000007, 20.330153510000073, -0.9485371699999305, 32.15473523000007, 8.21542323000007, 29.474146780000073, -18.06142160999993, 21.899294770000072, 15.376722610000076, 22.708288840000076, -0.7678085999999311, 7.552592830000073, 17.370416820000074, 23.64431731000007, -8.331812469999932, -5.093721779999925, -0.2513335099999239, 8.702185550000081, 0.9153640700000807, 19.79597794000008, 22.00872513000008, 24.287219850000078, 13.580388660000075, 30.986754880000078, 18.58452836000008, 9.85053621000008, -8.893708389999922, -4.249068239999929, 0.49108947000006964, 14.768003770000071, 0.6337053200000682, 17.765502560000073, 24.170664440000074, 18.735257390000072, 11.511041410000068, 0.5846697200000719, 2.5242930800000707, 12.39670657000007, -3.656106489999928, 14.208530930000073, 15.164869960000068, 8.134829600000074, -6.1779224799999355, -2.28887993999993, -3.683600669999933, 19.559226160000065, 7.579690040000067, 19.155312390000063, 1.9611611300000646, 3.1561035000000643, 6.990578720000066, 17.770623750000063, 8.148063590000064, 8.214542100000067, 9.204792750000067, 21.97854929000006, 8.134504980000067, 8.063963770000065, 17.947655040000065, 7.766139580000065, 23.181726300000065, 9.942647140000062, 25.649255320000066, 0.23241472000006524, 2.940352450000063, 26.402896300000066, 12.427350300000057, 13.98098208000006, 27.321758200000062, 29.068574070000064, 5.779567140000061, 15.629055760000064, 16.529641050000066, 3.946888550000061, 3.9149550700000617, 12.891355980000064, 17.750608150000062, 10.095381840000066, -7.016529089999942, 7.6462978900000635, 7.1384651100000625, 4.584311160000063, -2.3877012399999344, 27.688519610000064, 7.752532630000061, 8.88016936000006, 21.27907927000006, 6.642865240000063, 8.437443830000063, 28.070824260000062, 12.926733650000067, 5.042452950000062, 5.7493722400000635, 9.065743450000063, 31.400976180000065, 7.427464490000062, 17.709120810000066, 19.296489680000064, 23.998657820000062, 4.143939920000065, 10.657851490000063, 16.81781665000006, 23.549847760000063, 5.005763430000066, 10.649061770000067, -23.683556609999926, 26.280660930000074, 22.32470155000007, 7.8327827700000725, -7.521028009999924, 2.036280930000075, -2.870763029999921, 13.73637225000008, 21.867199500000076, -4.743603009999923, 16.567855580000078, 5.62276492000008, 23.41535772000008, -10.790887659999918, 11.14247927000008, 18.687443720000076, 19.622779070000078, 0.969359130000079, 24.644356820000077, 12.23485618000008, 19.832460160000075, 11.655557200000082, -3.439401469999922, 13.552755180000077, 10.25924056000008, 0.1799470800000762, 11.922067070000075, 11.730296030000076, 1.9045440100000803, 16.917873830000076, 7.199864670000075, 9.770685820000075, 17.24777023000008, 4.978997510000077, -1.627572189999924, 16.664616570000078, 6.692882890000078, 5.896587860000075, 21.56642619000008, 5.380136080000078, -0.703858629999921, 15.821494810000075, 9.001275530000079, 7.225002260000075, 30.06831941000008, 13.405907850000077, 16.604531560000076, -3.3157481499999193, 15.05193562000008, 7.62178688000008, 20.97693462000008, 11.94100256000008, 3.7052978300000774, 4.080940720000079, 24.88387824000008, 17.56139506000008, 26.756335840000077, 12.327977440000076, 43.022289970000074, -0.5000651199999275, 25.468250120000075, 17.762151850000077, 12.980315230000077, 10.735685750000073, 15.303610030000073, 9.29675450000007, 22.07865106000007, 26.416721510000073, 19.445519390000072, 2.0162200400000714, -0.18864085999992852, 9.208714440000072, 14.867012010000074, 16.63410665000007, 4.896883930000072, 10.686536990000072, 17.623450490000074, 17.191765480000072, -5.282238119999931, 12.002275550000071, 17.04901409000007, 7.82677939000007, 2.094774640000068, 21.16060383000007, 15.484741550000074, -2.773863299999917, 3.6674697300000716, 4.145154720000072, -0.643826059999931, 9.936498720000074, 19.201733390000072, 17.11476726000007, 5.380780590000072, 15.634721710000072, 12.97194114000007, 14.427487380000073, 2.112896180000071, 8.365898380000068, 0.3142401400000736, 0.04331663000007069, 4.851488950000068, 18.069622070000072, 16.83842731000007, 12.533337430000074, 10.413579370000072, -4.63120928999993, 2.593916270000072, 27.865963270000073, 4.400742640000068, 17.577111250000073, -3.6322605199999316, 19.623282260000074, 11.160216310000074, 6.230239640000072, 22.89691430000007, 3.87068909000007, -11.280296579999927, -5.990732839999936, 29.384602880000074, 16.04211021000007, 28.962856680000076, 11.420910020000075, 11.543351960000074, 7.721120830000068, 7.187438810000074, 20.822099100000074, 2.4081352800000744, 47.01742481000007, 2.4864407600000735, 18.03997329000007, 22.04458297000007, 28.12173709000007, 23.485632170000073, 14.268703500000072, 13.352259420000074, 16.59288402000007, 38.034107040000066, 14.012114720000067, 15.607213830000067, -8.432877749999939, 17.450421770000062, 23.78528194000006, 7.0922273600000665, 16.623695640000065, 17.950654030000067, 10.258738000000065, -0.6337544899999372, 14.000200530000065, 3.192828640000066, 12.436003680000063, 0.4594682500000644, 8.371062070000065, 3.0819798800000626, 8.660814750000064, 26.726350740000065, -15.64723807999993, 15.241783950000062, 13.349006410000065, 10.198783810000066, 13.762121660000062, 22.374595820000067, 7.866697790000067, 20.685443700000064, 18.126954480000066, 15.565464900000059, 10.83776362000006, 3.920814640000067, 2.672081510000062, 2.8761885700000605, 13.171929110000065, 9.224771520000061, 6.280583370000066, 17.654173980000067, 9.729641310000062, 12.977270580000067, 17.799376350000067, 5.827384260000066, 19.412444490000063, 13.519597180000062, 4.305749610000063, 1.8476174900000615, 8.942415540000063, 19.146059790000066, 5.8082764800000675, 7.278090460000065, -5.433847759999942, 11.843821820000066, 10.303513970000061, 23.441232390000067, 4.784711060000063, 18.991671370000063, 13.855040220000063, 6.782563210000063, 13.193177960000064, 17.377241960000063, -8.37574966999994, -3.74279662999993, 20.439050880000075, 17.197810430000068, 16.155796340000073, -8.705464359999922, -2.083646509999923, 9.914683100000076, 20.983291050000076, 4.47362547000008, 9.015405400000077, 14.02974143000008, 29.576457900000076, 7.796288300000079, 2.387310960000079, 16.318896380000076, 9.21296713000008, 15.719781550000079, 26.15387391000008, 6.967282640000079, 14.035248910000078, 3.1842389800000817, 14.42654969000008, 23.107397770000077, 0.8611200200000795, 23.00193277000008, 1.6391808500000806, 9.966113180000079, -0.8915598799999245, -12.20668974999991, 29.27304363000009, 7.091926290000092, 11.334845590000086, 22.84314930000008, 31.990966260000086, 10.365074160000084, -16.49614974999991, 15.65064105000009, 22.86380019000009, 4.75549665000009, 11.736605310000094, 16.348175040000093, -1.3581112599999088, 1.3387319100000923, 8.978455630000092, 10.121620120000095, 23.001190360000095, 9.72668716000009, 12.890643150000095, 4.41409158000009, 3.268203810000095, 13.978165670000095, 8.461878550000094, 14.241990450000095, -6.500655849999909, 12.756844370000096, -0.6181367199999102, -7.439419959999903, 9.350506320000093, 3.9972431800000905, 7.590232100000094, 5.588317980000092, 23.88791489000009, 13.579401850000096, 13.48219312000009, -5.437612659999907, 4.572535350000095, 13.400606860000096, -2.1420174699999066, -5.828820509999915, 13.745162550000089, 5.569342720000087, 17.059674660000084, 14.210151770000088, 16.246753450000085, 10.513171560000089, 9.477816250000082, 5.423494510000083, 13.521818080000088, 22.665729250000084, -4.051994949999909, 21.905947000000083, 2.486512700000084, 25.490604610000084, 9.530861990000083, 17.331651510000086, 14.175881910000086, 3.0922212100000834, 1.305680470000084, 7.708067500000084, 27.157997670000086, 25.840355630000083, 7.925789590000086, 27.432942960000084, 7.481384820000088, 7.404527690000087, 1.782848080000086, 12.513459490000088, 10.382287550000086, -6.7155106599999215, -8.029506989999916, 19.843708310000082, 19.676844150000086, 5.118581270000085, 22.338160330000086, 15.890082700000093, 5.896897850000087, -1.8854813799999164, 25.597184340000084, 13.591022070000086, 22.893731930000087, 17.120363390000087, 9.557333470000088, 10.069126630000085, 9.242023550000084, 6.838190790000084, 22.777622870000087, 25.397184020000083, 13.347744620000086, 0.8304557700000856, -0.07518005999991573, 12.68628250000009, 14.631211520000086, 20.411431440000086, 16.739527210000084, 15.025772130000085, 14.133595020000087, 2.398356170000085, 16.274279610000086, 7.845849040000083, 9.134059990000083, 10.988029370000085, 8.422250440000084, 12.214015310000086, 14.904721490000085, 10.474641110000086, -10.051987309999916, 2.778122620000076, 6.870670040000078, 19.80405348000008, 20.487551290000077, 6.397680900000076, 13.481915850000078, 6.67871755000008, 29.05751111000008, 6.212801780000078, 14.428679990000077, 0.6065350300000816, 18.153211950000077, 8.79688825000008, 2.7878053600000783, 20.174291600000082, 7.85327575000008, 34.872113060000075, 8.280112660000075, 7.742328700000073, -6.910178439999925, -8.704668069999926, -0.07241696999992087, 0.14587512000007763, 1.282531480000081, 8.520886170000075, 15.404972370000081, 12.65366729000008, 6.71409777000008, 2.6522461600000753, -11.72537420999992, 13.445295630000075, 21.128835800000076, -2.342398099999926, 11.665473320000075, 14.464216690000079, -4.426065779999924, 7.61829206000008, -3.8667710599999197, 8.789991840000077, 27.51581723000008, 12.829383050000075, 20.17409061000008, 5.98723006000008, 1.36200936000008, 9.623738140000079, 15.837219200000085, 23.218744980000075, -3.405143709999919, 15.652608810000075, 13.666963060000079, 14.331973600000083, -2.0378780299999235, 20.43954853000008, 14.236904190000075, 20.268174730000077, 2.6387320600000805, 1.4428615600000754, 19.31744006000008, 21.59271729000008, 23.90896850000008, 17.506891380000077, 15.005966130000076, -0.5807534799999203, 9.845165810000076, 15.992804100000079, 26.471756090000078, 0.006696820000080095, 16.23495356000008, 12.029009200000075, 8.419745400000075, -9.599013489999926, 16.87394771000008, -0.6730179099999205, -12.591449589999911, 22.88364980000008, 20.362607530000083, 7.359210340000082, -1.3293256899999122, 33.92200720000009, -3.7207357699999086, 26.19477145000008, 31.701295500000082, 5.1019746300000826, 8.465151260000084, 19.026264230000088, 9.667253340000087, -6.1877090799999195, 21.462798080000084, 13.302390700000089, 6.987941080000084, 16.517635330000083, -1.3024404999999177, 15.073768850000086, 3.3903450800000883, -12.653481719999917, 27.368218560000088, -9.140633079999915, 0.2685219600000863, -6.476751049999919, 22.86961698000009, 5.230860150000083, -6.771491839999911, 11.937902080000086, 1.3056358000000827, 1.046297860000088, 3.300673940000088, 14.499600290000082, 27.784779920000084, 4.915992870000082, 12.755945330000088, 30.099039480000084, 9.215362560000088, 10.206760990000085, 9.393040220000088, 3.452675510000084, 31.150170930000087, 6.956269870000085, 2.9555962400000837, 21.32166698000009, 20.307904410000084, 6.195153640000086, 10.622365200000083, 5.270282070000086, 17.189754430000086, 22.139588420000088, 0.9115381100000874, 15.508509890000084] (IS) Inbound supply record for node 2:[0, 40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011] (IO) Demand for node 2:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (OQ) Order for node 2:[40.82375027, 52.14738966, 79.19040905, 61.85601662, 36.70110442, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 61.38417397, 58.46005835, 58.13622274, 36.45920065, 61.74922034, 27.56656843, 36.50381173, 60.36212938, 66.64064414, 51.86150135, 39.65202476, 61.92064406, 64.49842163, 72.16493242, 50.5484571, 61.22740136, 70.23851942, 67.30550516, 50.70894152, 49.66626021, 51.651557200000006, 39.04665674, 60.36735494, 61.57452334, 31.56213525, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 61.57310037, 42.26120875, 40.11569481, 41.14122154, 63.70395486, 51.80457876, 64.19595124, 45.09078734, 62.77196325, 49.05468807, 47.45456837, 68.58260201, 51.04805338, 51.60903641, 61.60623207, 69.15165476, 54.74981851, 63.19736871, 63.98146217, 39.82352177, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.84010786, 30.67574049, 51.91296281, 28.46517264, 40.10240766, 62.67838572, 50.118684, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.86769073, 71.75914449999999, 61.93312395, 42.22120088, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 61.34949599, 52.57731355, 50.86950739, 48.36167266, 22.450230899999998, 60.39444217, 37.79736645, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 62.08592411, 63.38958971, 50.84567593, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 62.14646239, 60.37920322, 36.41135033, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.62291336, 61.10946457, 50.93368919, 47.45495781, 54.28503892, 64.87789837, 71.45739112, 37.99401043, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.36938514, 45.14410507, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 77.06380547, 58.90362822, 63.4620371, 52.59735681, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 65.24471968, 58.25927381, 65.64843924, 56.767998899999995, 54.07870036, 68.01165325, 58.98983722, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 62.84888809, 54.96351173, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.07572131, 52.3856941, 57.17322036, 64.8624725, 56.49153971, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 81.1810379, 39.40391078, 69.80142108, 54.90438289, 52.87589081, 42.93746836, 47.79811843, 64.59482642, 56.43139039, 59.09637309, 73.83764865, 46.11635949, 30.84778871, 51.34895029, 81.16365689, 59.32008296, 51.85360396, 66.89593433, 66.99412502, 39.19603349, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 71.25693236, 37.36961334, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.74407206, 61.07271548, 44.61396035, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 69.35402992, 61.93109385, 57.32219893, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 72.25060761, 48.72706826, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 64.56016331, 38.2069644, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 62.62970522, 48.43255364, 53.9800537, 55.9969334, 60.83605318, 56.83344573, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 67.50651229, 32.38861839, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 64.67804803, 59.76228048, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 61.70621695, 57.95441667, 58.54301084, 60.19544584, 65.57172172, 29.07750297, 54.83414731, 47.44522918, 65.39790292, 46.77396160000001, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.663413, 57.40124883, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 62.778395999999994, 47.67238741, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 61.15031257, 31.29652919, 63.363832200000004, 30.53449541, 43.46356658, 51.75366537, 51.49580521, 62.28593452, 28.57349379, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 61.70060353, 61.58227689, 38.89079223, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.94853717, 27.84526477, 51.78457677, 30.52585322, 78.06142161, 38.10070523, 44.62327739, 37.29171116, 60.7678086, 52.44740717, 42.62958318, 36.35568269, 68.33181247, 65.09372178, 60.25133351, 51.29781445, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 68.89370839, 64.24906824, 59.50891053, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 63.65610649, 45.79146907, 44.83513004, 51.8651704, 66.17792248, 62.28887994, 63.68360067, 40.44077384, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 67.01652909, 52.35370211, 52.86153489, 55.41568884, 62.38770124, 32.31148039, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 83.68355661, 33.71933907, 37.67529845, 52.16721723, 67.52102801, 57.96371907, 62.87076303, 46.26362775, 38.1328005, 64.74360301, 43.43214442, 54.37723508, 36.58464228, 70.79088766, 48.85752073, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 63.43940147, 46.44724482, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 61.62757219, 43.33538343, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.70385863, 44.17850519, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 63.31574815, 44.94806438, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.50006512, 34.53174988, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.18864086, 50.79128556, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 65.28223812, 47.99772445, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 62.77386329999999, 56.33253027, 55.85484528, 60.64382606, 50.06350128, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 64.63120929, 57.40608373, 32.13403673, 55.59925736, 42.42288875, 63.63226052, 40.37671774, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 71.28029658, 65.99073284, 30.61539712, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 68.43287775, 42.54957823, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.63375449, 45.99979947, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 75.64723808, 44.75821605, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 65.43384776, 48.15617818, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 68.37574967, 63.74279663, 39.56094912, 42.80218957, 43.84420366, 68.70546436, 62.08364651, 50.0853169, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.89155988, 72.20668975, 30.72695637, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 76.49614975, 44.34935895, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 61.35811126, 58.66126809, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 66.50065585, 47.24315563, 60.61813672, 67.43941996, 50.64949368, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 65.43761266, 55.42746465, 46.59939314, 62.14201747, 65.82882051, 46.25483745, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 64.05199495, 38.094053, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 66.71551066, 68.02950699, 40.15629169, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 61.88548138, 34.40281566, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.07518006, 47.313717499999996, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 70.05198731, 57.22187738, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 66.91017844, 68.70466807, 60.07241697, 59.85412488, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 71.72537421, 46.55470437, 38.8711642, 62.342398100000004, 48.33452668, 45.53578331, 64.42606578, 52.38170794, 63.86677106, 51.21000816, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 63.40514371, 44.34739119, 46.33303694, 45.668026399999995, 62.03787803, 39.56045147, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.58075348, 50.15483419, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 69.59901349, 43.12605229, 60.67301791, 72.59144959, 37.11635020000001, 39.63739247, 52.64078966, 61.32932569, 26.0779928, 63.72073577, 33.80522855, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 66.18770908, 38.53720192, 46.697609299999996, 53.01205892, 43.48236467, 61.3024405, 44.92623115, 56.60965492, 72.65348172, 32.63178144, 69.14063308, 59.73147804, 66.47675105, 37.13038302, 54.76913985, 66.77149184, 48.06209792, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (DMFS) Supply for node 2:[40.82375027, 52.14738966, 60.0, 79.19040905, 38.55712103999999, 51.53137083, 58.87915053, 42.70123029, 45.69994232, 51.16895781, 43.48706562, 60.00000000000001, 59.84423231999999, 58.13622274, 36.45920065, 60.00000000000001, 29.315788769999994, 36.50381173, 60.000000000000014, 60.36212938, 58.502145490000004, 39.65202476, 60.0, 61.92064406, 64.49842163, 62.71338952, 60.0, 61.22740136, 70.23851942, 58.01444668, 49.66626021, 51.651557200000006, 39.04665674, 60.0, 60.36735494, 33.136658589999996, 52.9975285, 45.96696994, 50.67866964, 37.05923248, 57.27456547, 27.80966755, 58.67312383, 27.50731206, 42.99213881, 50.48325582, 57.02490026, 59.77717556, 60.0, 43.83430912, 40.11569481, 41.14122154, 60.0, 55.50853362, 60.0, 49.28673858, 60.0, 51.826651319999996, 47.45456837, 60.0, 59.63065539, 51.60903641, 60.0, 61.60623207, 63.90147326999999, 60.00000000000001, 63.19736871, 43.80498393999999, 56.47427921, 27.15058848, 40.00453217, 43.26255829, 54.98899959, 31.4005582, 60.00000000000001, 31.515848349999995, 51.91296281, 28.46517264, 40.10240766, 60.00000000000001, 52.797069719999996, 59.47206732, 43.57438629, 43.50961929, 56.31881483, 42.90129681, 60.00000000000001, 60.86769073, 71.75914449999999, 44.15432482999999, 56.94671701, 54.08846675, 49.82676919, 44.12975178, 53.63491659, 45.80448687, 34.37573309, 52.87582389999999, 42.09404164, 59.59652557, 53.38193929, 45.06574085, 36.37206399, 54.654165, 60.00000000000001, 53.926809539999994, 50.86950739, 48.36167266, 22.450230899999998, 60.0, 38.19180861999999, 49.97427336, 51.37451807, 52.14899252, 31.85215319, 60.00000000000001, 62.08592411000001, 54.23526563999998, 37.548063899999995, 58.79629068, 53.87340908, 46.22420642, 46.77977157, 57.54130913, 60.00000000000002, 62.14646239, 36.79055354999998, 34.15005447, 45.93132886, 42.11574441, 53.950352, 48.34436263, 46.26980961, 41.60167982, 51.23425766, 37.43541423, 55.84771291, 47.26547522, 54.97164218, 56.24490173, 44.72341511, 41.86600551, 42.43961216, 60.00000000000002, 60.62291336, 52.04315375999998, 47.45495781, 54.28503892, 60.00000000000002, 64.87789837, 49.451401549999986, 55.71055996, 55.74615598, 36.04238903, 39.33745122, 45.35919923, 38.62146466, 36.81525009, 53.16788984, 42.97061229, 55.25477509, 60.000000000000014, 45.513490209999986, 55.92790867, 55.49750192, 29.89734735, 38.84013671, 55.30327484, 50.53462047, 50.37154573, 60.000000000000014, 75.96743368999998, 60.00000000000003, 56.059393909999976, 45.55276538, 39.61346697, 40.37316562, 33.99339365, 60.00000000000003, 63.50399348999998, 60.00000000000003, 62.41643813999997, 54.07870036, 60.00000000000003, 67.00149046999996, 50.35744069, 46.15207847, 49.91385385, 46.82790097, 35.42071566, 39.08524485, 50.16027136, 53.21120926, 54.34372754, 60.00000000000003, 57.812399819999975, 42.34697408, 55.39953684, 59.756542, 47.44828647, 38.88210668, 60.00000000000003, 52.46141540999997, 57.17322036, 60.00000000000003, 61.354012209999965, 47.52981437, 44.21452042, 52.68810229999999, 59.0489806, 52.46964078, 60.00000000000003, 60.58494867999997, 60.000000000000036, 64.70580396999996, 52.87589081, 42.93746836, 47.79811843, 60.000000000000036, 61.026216809999966, 59.09637309, 60.000000000000036, 59.954008139999964, 30.84778871, 51.34895029, 60.00000000000004, 80.48373984999995, 51.85360396, 60.00000000000005, 66.89593433, 46.19015850999994, 50.78189721, 59.61826815, 44.89118654, 42.33518913, 52.48507112, 54.78157338, 49.39275171, 45.370859100000004, 51.40870496, 56.63872068, 60.00000000000006, 48.62654569999993, 32.41377681, 41.44579178, 47.28023191, 50.85760631, 60.000000000000064, 60.74407206, 45.686675829999935, 53.31036654, 54.71949649, 33.17640205, 37.15683132, 44.79087483, 59.29558286, 59.49675542, 46.73435236, 45.84490401, 43.10604106, 42.39064273, 55.86058219, 42.90504974, 51.26701251, 60.000000000000064, 69.35402992, 59.25329277999994, 43.8232591, 50.81720724, 48.21226543, 41.89305796, 44.63981005, 42.50069598, 53.387796200000004, 54.73869337, 60.000000000000064, 60.97767586999994, 31.91393122, 44.94329261, 42.20137318, 59.95431044, 52.66219029999999, 60.000000000000064, 42.767127709999926, 56.96558454, 50.80109093, 43.77858665, 47.17625799, 41.63332197, 60.000000000000064, 51.062258859999936, 53.9800537, 55.9969334, 60.000000000000064, 57.66949890999994, 37.0193133, 49.60045934, 57.04769365, 40.91216207, 47.62557952, 38.85891372, 43.80183953, 56.31518288, 53.03878727, 37.82482675, 60.000000000000064, 39.89513067999994, 59.52550553, 58.701097600000004, 44.505874299999995, 42.76932268, 52.05987787, 48.50184902, 54.44404622, 49.55284655, 47.76170629, 43.52366022, 60.000000000000064, 64.44032850999994, 46.61686798, 40.48320798, 55.28498217, 56.07958711, 45.59702461, 60.00000000000006, 59.66063361999994, 58.54301084, 60.00000000000006, 60.19544584, 34.64922468999994, 54.83414731, 47.44522918, 60.000000000000064, 52.17186451999995, 41.77374745, 53.96135501, 47.15146348, 49.60625272, 40.1564664, 45.04259767, 34.45089817, 59.40242668, 42.42859478, 56.03116874, 59.62024051, 52.49421099, 44.86555775, 55.56118501, 40.97880068, 46.91197329999999, 60.000000000000064, 58.064661829999935, 52.86087523, 48.86412676, 55.34149939, 43.74226278, 55.28131449, 56.231981499999996, 45.88473924, 48.30888818, 55.32293727, 57.43437718, 54.35506828, 46.20125612, 44.31757178, 39.37778234, 37.59417172, 44.46390738, 26.372871999999997, 42.58938405, 52.62888846, 37.06011691, 39.852242100000005, 48.11839317, 54.24566242, 55.18496111, 29.02974014, 54.08925539, 39.82466804, 46.18220901, 55.20216072, 42.12731159, 60.000000000000064, 50.45078340999993, 57.77313324, 43.91170846, 42.23496973, 46.06222617, 41.70955286, 44.98478012, 52.92062093, 46.44232818, 34.06658506, 37.48800078, 32.68823539, 45.64067976, 50.05020621, 36.440337299999996, 35.18438367, 46.8384096, 39.64241479, 51.33807853, 47.62628099, 46.0218799, 55.27184088, 52.108419700000006, 48.19600523, 54.781149899999996, 56.41865219, 27.46701615, 42.97416526, 54.18234044, 60.000000000000064, 32.446841759999934, 60.000000000000064, 33.89832760999994, 43.46356658, 51.75366537, 51.49580521, 60.00000000000007, 30.859428309999927, 59.68298818, 51.37999131, 50.87941056, 59.65290194, 50.95808132, 60.00000000000007, 61.70060353, 40.473069119999934, 52.05391989, 33.94795653, 44.68632232, 50.34484154, 56.07109003, 41.06355037, 48.99933326, 39.66984649, 60.00000000000007, 28.79380193999993, 51.78457677, 30.52585322, 60.00000000000007, 56.16212683999993, 44.62327739, 37.29171116, 60.00000000000007, 53.21521576999993, 42.62958318, 36.35568269, 60.00000000000007, 68.33181247, 65.09372178, 51.54914795999992, 59.08463593, 40.20402206, 37.99127487, 35.71278015, 46.41961134, 29.01324512, 41.41547164, 50.14946379, 60.00000000000008, 68.89370839, 63.75797876999993, 45.23199623, 59.36629468, 42.23449744, 35.82933556, 41.26474261, 48.48895859, 59.41533028, 57.47570692, 47.60329343, 60.00000000000007, 49.447575559999926, 44.83513004, 51.8651704, 60.00000000000007, 66.17792248, 62.28887994, 44.12437450999993, 52.42030996, 40.84468761, 58.03883887, 56.8438965, 53.00942128, 42.22937625, 51.85193641, 51.7854579, 50.79520725, 38.02145071, 51.86549502, 51.93603623, 42.05234496, 52.23386042, 36.8182737, 50.05735286, 34.35074468, 59.76758528, 57.05964755, 33.5971037, 47.57264970000001, 46.01901792, 32.6782418, 30.93142593, 54.22043286, 44.37094424, 43.47035895, 56.05311145, 56.08504493, 47.10864402, 42.24939185, 49.90461816, 60.000000000000064, 59.37023119999994, 52.86153489, 55.41568884, 60.000000000000064, 34.699181629999934, 52.24746737, 51.11983064, 38.72092073, 53.35713476, 51.56255617, 31.92917574, 47.07326635, 54.95754705, 54.25062776, 50.93425655, 28.59902382, 52.57253551, 42.29087919, 40.70351032, 36.00134218, 55.85606008, 49.34214851, 43.18218335, 36.45015224, 54.99423657, 49.35093823, 60.000000000000064, 57.40289567999992, 37.67529845, 52.16721723, 60.00000000000007, 65.48474707999992, 60.00000000000008, 49.13439077999992, 38.1328005, 60.00000000000008, 48.17574742999992, 54.37723508, 36.58464228, 60.00000000000008, 59.648408389999915, 41.31255628, 40.37722093, 59.03064087, 35.35564318, 47.76514382, 40.16753984, 48.344442799999996, 60.00000000000008, 49.88664628999992, 49.74075944, 59.82005292, 48.07793293, 48.26970397, 58.09545599, 43.08212617, 52.80013533, 50.22931418, 42.75222977, 55.02100249, 60.00000000000008, 44.962955619999924, 53.30711711, 54.10341214, 38.43357381, 54.61986392, 60.00000000000008, 44.882363819999924, 50.99872447, 52.77499774, 29.93168059, 46.59409215, 43.39546844, 60.00000000000008, 48.26381252999992, 52.37821312, 39.02306538, 48.05899744, 56.29470217, 55.91905928, 35.11612176, 42.43860494, 33.24366416, 47.67202256, 16.97771003, 60.00000000000007, 35.03181499999992, 42.23784815, 47.01968477, 49.26431425, 44.69638997, 50.7032455, 37.92134894, 33.58327849, 40.55448061, 57.98377996, 60.00000000000007, 50.97992641999993, 45.13298799, 43.36589335, 55.10311607, 49.31346301, 42.37654951, 42.80823452, 60.00000000000007, 53.27996256999993, 42.95098591, 52.17322061, 57.90522536, 38.83939617, 44.51525845, 60.00000000000007, 59.106393569999916, 55.85484528, 60.00000000000007, 50.70732733999993, 40.79826661, 42.88523274, 54.61921941, 44.36527829, 47.02805886, 45.57251262, 57.88710382, 51.63410162, 59.68575986, 59.95668337, 55.14851105, 41.93037793, 43.16157269, 47.46666257, 49.58642063, 60.00000000000007, 62.03729301999993, 32.13403673, 55.59925736, 42.42288875, 60.00000000000007, 44.00897825999993, 48.83978369, 53.76976036, 37.1030857, 56.12931091, 60.00000000000007, 71.28029658, 36.60612995999993, 43.95788979, 31.03714332, 48.57908998, 48.45664804, 52.27887917, 52.81256119, 39.1779009, 57.59186472, 12.98257519, 57.51355924, 41.96002671, 37.95541703, 31.87826291, 36.51436783, 45.7312965, 46.64774058, 43.40711598, 21.96589296, 45.98788528, 44.39278617, 60.00000000000007, 50.98245597999994, 36.21471806, 52.90777264, 43.37630436, 42.04934597, 49.741262, 60.000000000000064, 46.63355395999994, 56.80717136, 47.56399632, 59.54053175, 51.62893793, 56.91802012, 51.33918525, 33.27364926, 60.000000000000064, 60.40545412999993, 46.65099359, 49.80121619, 46.23787834, 37.62540418, 52.13330221, 39.3145563, 41.87304552, 44.434535100000005, 49.16223638, 56.07918536, 57.32791849, 57.12381143, 46.82807089, 50.77522848, 53.71941663, 42.34582602, 50.27035869, 47.02272942, 42.20062365, 54.17261574, 40.58755551, 46.48040282, 55.69425039, 58.15238251, 51.05758446, 40.85394021, 54.19172352, 52.72190954, 60.000000000000064, 53.59002593999994, 49.69648603, 36.55876761, 55.21528894, 41.00832863, 46.14495978, 53.21743679, 46.80682204, 42.62275804, 60.000000000000064, 68.37574967, 43.303745749999926, 42.80218957, 43.84420366, 60.00000000000007, 68.70546436, 52.168963409999925, 39.01670895, 55.52637453, 50.9845946, 45.97025857, 30.423542100000002, 52.2037117, 57.61268904, 43.68110362, 50.78703287, 44.28021845, 33.84612609, 53.03271736, 45.96475109, 56.81576102, 45.57345031, 36.89260223, 59.13887998, 36.99806723, 58.36081915, 50.03388682, 60.00000000000008, 60.89155988, 42.933646119999906, 52.90807371, 48.66515441, 37.15685070000001, 28.00903374, 49.63492584, 60.000000000000085, 60.84550869999991, 37.13619981, 55.24450335, 48.26339469, 43.65182496, 60.00000000000009, 60.01937934999991, 51.02154437, 49.87837988, 36.99880964, 50.27331284, 47.10935685, 55.58590842, 56.73179619, 46.02183433, 51.53812145, 45.75800955, 60.00000000000009, 53.743811479999906, 60.00000000000009, 60.61813672, 58.0889136399999, 56.00275682, 52.4097679, 54.41168202, 36.11208511, 46.42059815, 46.51780688, 60.00000000000009, 60.865077309999904, 46.59939314, 60.00000000000009, 62.14201747, 52.08365795999991, 54.43065728, 42.94032534, 45.78984823, 43.75324655, 49.48682844, 50.52218375, 54.57650549, 46.47818192, 37.33427075, 60.000000000000085, 42.14604794999991, 57.5134873, 34.50939539, 50.46913801, 42.66834849, 45.82411809, 56.90777879, 58.69431953, 52.2919325, 32.84200233, 34.15964437, 52.07421041, 32.56705704, 52.51861518, 52.59547231, 58.21715192, 47.48654051, 49.61771245, 60.000000000000085, 66.71551066, 48.18579867999992, 40.32315585, 54.88141873, 37.66183967, 44.10991729999999, 54.10310215, 60.000000000000085, 36.28829703999992, 46.40897793, 37.10626807, 42.87963661, 50.44266653, 49.93087337, 50.75797645, 53.16180921, 37.22237713, 34.60281598, 46.65225538, 59.16954423, 60.000000000000085, 47.38889755999991, 45.36878848, 39.58856856, 43.26047279, 44.97422787, 45.86640498, 57.60164383, 43.72572039, 52.15415096, 50.86594001, 49.01197063, 51.57774956, 47.78598469, 45.09527851, 49.52535889, 60.000000000000085, 67.27386468999993, 53.12932996, 40.19594652, 39.51244871, 53.6023191, 46.51808415, 53.32128245, 30.94248889, 53.78719822, 45.57132001, 59.39346497, 41.84678805, 51.20311175, 57.21219464, 39.825708399999996, 52.14672425, 25.12788694, 51.71988734, 52.2576713, 60.00000000000007, 66.91017844, 68.70466807, 59.92654184999992, 58.71746852, 51.47911383, 44.59502763, 47.34633271, 53.28590223, 57.34775384, 60.00000000000008, 58.28007857999992, 38.8711642, 60.00000000000008, 50.67692477999993, 45.53578331, 60.00000000000008, 56.80777371999992, 60.00000000000008, 55.07677921999992, 32.48418277, 47.17061695, 39.82590939, 54.01276994, 58.63799064, 50.37626186, 44.16278079999999, 36.78125502, 60.00000000000008, 47.75253489999992, 46.33303694, 45.668026399999995, 60.00000000000008, 41.59832949999992, 45.76309581, 39.73182527, 57.36126794, 58.55713844, 40.68255994, 38.40728271, 36.0910315, 42.49310862, 44.99403387, 60.00000000000008, 50.73558766999992, 44.0071959, 33.52824391, 59.99330318, 43.76504644, 47.9709908, 51.5802546, 60.00000000000008, 52.72506577999992, 60.00000000000008, 60.67301791, 49.70779978999992, 39.63739247, 52.64078966, 60.000000000000085, 27.407318489999913, 60.000000000000085, 37.525964319999915, 28.2987045, 54.89802537, 51.53484874, 40.97373577, 50.33274666, 60.000000000000085, 44.72491099999992, 46.697609299999996, 53.01205892, 43.48236467, 60.000000000000085, 46.22867164999992, 56.60965492, 60.000000000000085, 45.285263159999914, 60.000000000000085, 68.87211111999991, 60.000000000000085, 43.607134069999915, 54.76913985, 60.000000000000085, 54.83358975999991, 58.6943642, 58.95370214, 56.69932606, 45.50039971, 32.21522008, 55.08400713, 47.24405467, 29.90096052, 50.78463744, 49.79323901, 50.60695978, 56.54732449, 28.84982907, 53.04373013, 57.04440376, 38.67833302, 39.69209559, 53.80484636, 49.3776348, 54.72971793, 42.81024557, 37.86041158, 59.08846189, 44.49149011, 51.42603285] (EIL) Ending Inventory record for node 2:[19.176249730000002, 7.852610339999998, -19.19040905, -1.8560166199999912, 23.298895580000007, 8.468629170000007, 1.1208494700000102, 17.29876971000001, 14.300057680000009, 8.831042190000005, 16.512934380000004, -1.384173969999992, 1.53994165000001, 1.8637772600000062, 23.540799350000007, -1.7492203399999937, 32.43343157000001, 23.496188270000008, -0.36212937999999184, -6.640644140000006, 8.138498650000002, 20.347975239999997, -1.9206440600000008, -4.498421629999996, -12.16493242, 9.4515429, -1.2274013600000018, -10.238519420000003, -7.305505159999996, 9.291058479999997, 10.333739790000003, 8.348442799999994, 20.953343259999997, -0.36735493999999846, -1.574523339999999, 28.437864750000003, 7.002471500000002, 14.033030060000002, 9.321330359999997, 22.94076752, 2.725434530000001, 32.19033245, 1.3268761699999985, 32.492687939999996, 17.007861189999996, 9.516744180000003, 2.9750997399999974, 0.22282443999999657, -1.5731003699999988, 17.73879125, 19.88430519, 18.858778460000003, -3.703954860000003, 8.195421240000002, -4.195951239999999, 14.909212660000001, -2.771963249999999, 10.945311930000003, 12.545431630000003, -8.582602010000002, 8.951946620000001, 8.390963589999998, -1.6062320699999972, -9.151654759999992, 5.25018149000001, -3.197368709999992, -3.9814621699999933, 20.176478230000008, 3.5257207900000083, 32.849411520000004, 19.995467830000006, 16.737441710000002, 5.011000410000008, 28.599441800000008, -0.8401078599999963, 29.324259510000008, 8.087037190000004, 31.53482736000001, 19.89759234000001, -2.6783857199999943, 9.881316000000005, 0.5279326800000064, 16.425613710000007, 16.490380710000004, 3.6811851700000062, 17.09870319000001, -0.8676907299999925, -11.759144499999984, -1.9331239499999953, 17.77879912000001, 3.0532829900000067, 5.911533250000005, 10.173230810000007, 15.870248220000008, 6.365083410000004, 14.195513130000009, 25.62426691000001, 7.124176100000014, 17.905958360000007, 0.40347443000000993, 6.618060710000009, 14.93425915000001, 23.627936010000006, 5.345835000000008, -1.349495989999994, 7.422686450000008, 9.130492610000005, 11.638327340000004, 37.549769100000006, -0.39444216999999426, 22.202633550000005, 10.025726640000006, 8.625481930000007, 7.851007480000007, 28.147846810000008, -2.08592410999999, -3.389589709999985, 9.154324070000019, 22.451936100000022, 1.2037093200000228, 6.1265909200000195, 13.77579358000002, 13.22022843000002, 2.4586908700000194, -2.146462389999982, -0.3792032199999795, 23.588649670000024, 25.84994553000002, 14.06867114000002, 17.884255590000024, 6.049648000000019, 11.655637370000022, 13.730190390000018, 18.39832018000002, 8.765742340000024, 22.564585770000022, 4.152287090000023, 12.734524780000022, 5.028357820000018, 3.755098270000019, 15.276584890000024, 18.13399449000002, 17.56038784000002, -0.622913359999977, -1.1094645699999788, 9.066310810000019, 12.545042190000018, 5.714961080000023, -4.877898369999976, -11.457391119999983, 22.00598957000001, 4.2894400400000166, 4.253844020000017, 23.95761097000001, 20.662548780000016, 14.640800770000013, 21.378535340000013, 23.184749910000015, 6.832110160000013, 17.029387710000016, 4.745224910000012, -0.36938513999998435, 14.855894930000012, 4.072091330000013, 4.5024980800000165, 30.102652650000014, 21.15986329000001, 4.696725160000014, 9.465379530000014, 9.628454270000013, -17.063805469999984, 1.0963717800000268, -3.462037099999975, 7.402643190000028, 14.447234620000032, 20.38653303000003, 19.626834380000027, 26.006606350000027, -5.2447196799999745, 1.740726190000025, -5.648439239999973, 3.2320011000000335, 5.921299640000029, -8.011653249999966, 1.0101627800000301, 9.642559310000031, 13.84792153000003, 10.086146150000026, 13.172099030000027, 24.57928434000003, 20.914755150000026, 9.839728640000025, 6.788790740000032, 5.656272460000025, -2.8488880899999742, 5.036488270000028, 17.653025920000026, 4.600463160000025, 0.24345800000002527, 12.551713530000029, 21.11789332000003, -0.07572130999997029, 7.614305900000026, 2.8267796400000265, -4.862472499999967, 3.5084602900000306, 12.470185630000032, 15.785479580000029, 7.3118977000000385, 0.9510194000000283, 7.5303592200000296, -21.18103789999997, 20.59608922000004, -9.801421079999962, 5.095617110000035, 7.124109190000034, 17.06253164000004, 12.201881570000033, -4.594826419999968, 3.5686096100000384, 0.9036269100000354, -13.837648649999963, 13.883640510000042, 29.152211290000043, 8.651049710000045, -21.16365688999995, 0.6799170400000492, 8.146396040000049, -6.895934329999953, -6.994125019999942, 20.80396651000006, 9.21810279000006, 0.38173185000005816, 15.108813460000057, 17.664810870000053, 7.514928880000056, 5.218426620000059, 10.607248290000058, 14.629140900000053, 8.591295040000055, 3.361279320000058, -11.25693235999993, 22.630386660000063, 27.586223190000062, 18.554208220000064, 12.719768090000066, 9.142393690000063, -0.7440720599999366, -1.0727154799999354, 15.386039650000065, 6.689633460000067, 5.280503510000067, 26.823597950000064, 22.843168680000062, 15.209125170000064, 0.7044171400000607, 0.5032445800000644, 13.265647640000061, 14.155095990000063, 16.89395894000006, 17.60935727000006, 4.139417810000062, 17.09495026000006, 8.732987490000063, -9.354029919999938, -1.9310938499999395, 2.677801070000065, 16.176740900000063, 9.182792760000062, 11.787734570000062, 18.106942040000064, 15.360189950000063, 17.49930402000006, 6.61220380000006, 5.261306630000064, -12.250607609999939, 11.272931740000061, 28.086068780000065, 15.056707390000064, 17.798626820000067, 0.04568956000006352, 7.337809700000072, -4.560163309999929, 21.793035600000067, 3.034415460000062, 9.198909070000063, 16.221413350000063, 12.82374201000006, 18.366678030000067, -2.6297052199999342, 11.567446360000062, 6.019946300000065, 4.003066600000061, -0.8360531799999364, 3.166554270000063, 22.980686700000064, 10.399540660000063, 2.9523063500000646, 19.087837930000063, 12.374420480000062, 21.141086280000067, 16.19816047000006, 3.684817120000062, 6.961212730000064, 22.175173250000064, -7.5065122899999395, 27.611381610000066, 0.4744944700000673, 1.2989024000000597, 15.494125700000069, 17.230677320000062, 7.940122130000063, 11.498150980000062, 5.555953780000067, 10.447153450000066, 12.238293710000065, 16.476339780000067, -4.678048029999935, 0.2377195200000557, 13.383132020000055, 19.516792020000054, 4.715017830000058, 3.9204128900000583, 14.402975390000059, -1.7062169499999413, 2.0455833300000563, 1.456989160000056, -0.19544583999994103, -5.571721719999935, 30.92249703000006, 5.165852690000062, 12.554770820000066, -5.397902919999943, 13.226038400000057, 18.226252550000062, 6.038644990000066, 12.848536520000067, 10.393747280000063, 19.843533600000065, 14.957402330000065, 25.549101830000062, 0.5975733200000661, 17.571405220000067, 3.9688312600000657, 0.3797594900000618, 7.505789010000065, 15.134442250000063, 4.438814990000061, 19.021199320000065, 13.088026700000071, -0.6634129999999345, 2.598751170000064, 7.139124770000066, 11.135873240000066, 4.658500610000061, 16.257737220000067, 4.718685510000064, 3.7680185000000677, 14.115260760000062, 11.691111820000067, 4.677062730000067, 2.5656228200000655, 5.644931720000066, 13.798743880000067, 15.682428220000062, 20.62221766000006, 22.405828280000065, 15.536092620000062, 33.62712800000007, 17.410615950000068, 7.371111540000065, 22.939883090000066, 20.14775790000006, 11.881606830000067, 5.754337580000062, 4.815038890000061, 30.970259860000063, 5.910744610000066, 20.175331960000065, 13.817790990000063, 4.797839280000062, 17.872688410000066, -2.7783959999999297, 12.327612590000065, 2.226866760000064, 16.088291540000064, 17.76503027000006, 13.937773830000062, 18.29044714000006, 15.01521988000006, 7.079379070000066, 13.557671820000067, 25.933414940000063, 22.511999220000064, 27.31176461000006, 14.359320240000066, 9.949793790000065, 23.559662700000068, 24.81561633000006, 13.161590400000065, 20.357585210000067, 8.661921470000067, 12.373719010000066, 13.978120100000062, 4.728159120000065, 7.891580300000058, 11.803994770000067, 5.218850100000068, 3.581347810000061, 32.532983850000065, 17.025834740000064, 5.817659560000067, -1.150312569999933, 28.703470810000063, -3.3638321999999405, 29.465504590000066, 16.53643342000007, 8.24633463000007, 8.50419479000007, -2.285934519999927, 31.42650621000007, 0.31701182000006867, 8.62000869000007, 9.120589440000074, 0.3470980600000715, 9.041918680000073, -1.7006035299999311, -1.5822768899999318, 21.10920777000007, 7.946080110000068, 26.052043470000072, 15.313677680000069, 9.655158460000074, 3.9289099700000705, 18.93644963000007, 11.00066674000007, 20.330153510000073, -0.9485371699999305, 32.15473523000007, 8.21542323000007, 29.474146780000073, -18.06142160999993, 21.899294770000072, 15.376722610000076, 22.708288840000076, -0.7678085999999311, 7.552592830000073, 17.370416820000074, 23.64431731000007, -8.331812469999932, -5.093721779999925, -0.2513335099999239, 8.702185550000081, 0.9153640700000807, 19.79597794000008, 22.00872513000008, 24.287219850000078, 13.580388660000075, 30.986754880000078, 18.58452836000008, 9.85053621000008, -8.893708389999922, -4.249068239999929, 0.49108947000006964, 14.768003770000071, 0.6337053200000682, 17.765502560000073, 24.170664440000074, 18.735257390000072, 11.511041410000068, 0.5846697200000719, 2.5242930800000707, 12.39670657000007, -3.656106489999928, 14.208530930000073, 15.164869960000068, 8.134829600000074, -6.1779224799999355, -2.28887993999993, -3.683600669999933, 19.559226160000065, 7.579690040000067, 19.155312390000063, 1.9611611300000646, 3.1561035000000643, 6.990578720000066, 17.770623750000063, 8.148063590000064, 8.214542100000067, 9.204792750000067, 21.97854929000006, 8.134504980000067, 8.063963770000065, 17.947655040000065, 7.766139580000065, 23.181726300000065, 9.942647140000062, 25.649255320000066, 0.23241472000006524, 2.940352450000063, 26.402896300000066, 12.427350300000057, 13.98098208000006, 27.321758200000062, 29.068574070000064, 5.779567140000061, 15.629055760000064, 16.529641050000066, 3.946888550000061, 3.9149550700000617, 12.891355980000064, 17.750608150000062, 10.095381840000066, -7.016529089999942, 7.6462978900000635, 7.1384651100000625, 4.584311160000063, -2.3877012399999344, 27.688519610000064, 7.752532630000061, 8.88016936000006, 21.27907927000006, 6.642865240000063, 8.437443830000063, 28.070824260000062, 12.926733650000067, 5.042452950000062, 5.7493722400000635, 9.065743450000063, 31.400976180000065, 7.427464490000062, 17.709120810000066, 19.296489680000064, 23.998657820000062, 4.143939920000065, 10.657851490000063, 16.81781665000006, 23.549847760000063, 5.005763430000066, 10.649061770000067, -23.683556609999926, 26.280660930000074, 22.32470155000007, 7.8327827700000725, -7.521028009999924, 2.036280930000075, -2.870763029999921, 13.73637225000008, 21.867199500000076, -4.743603009999923, 16.567855580000078, 5.62276492000008, 23.41535772000008, -10.790887659999918, 11.14247927000008, 18.687443720000076, 19.622779070000078, 0.969359130000079, 24.644356820000077, 12.23485618000008, 19.832460160000075, 11.655557200000082, -3.439401469999922, 13.552755180000077, 10.25924056000008, 0.1799470800000762, 11.922067070000075, 11.730296030000076, 1.9045440100000803, 16.917873830000076, 7.199864670000075, 9.770685820000075, 17.24777023000008, 4.978997510000077, -1.627572189999924, 16.664616570000078, 6.692882890000078, 5.896587860000075, 21.56642619000008, 5.380136080000078, -0.703858629999921, 15.821494810000075, 9.001275530000079, 7.225002260000075, 30.06831941000008, 13.405907850000077, 16.604531560000076, -3.3157481499999193, 15.05193562000008, 7.62178688000008, 20.97693462000008, 11.94100256000008, 3.7052978300000774, 4.080940720000079, 24.88387824000008, 17.56139506000008, 26.756335840000077, 12.327977440000076, 43.022289970000074, -0.5000651199999275, 25.468250120000075, 17.762151850000077, 12.980315230000077, 10.735685750000073, 15.303610030000073, 9.29675450000007, 22.07865106000007, 26.416721510000073, 19.445519390000072, 2.0162200400000714, -0.18864085999992852, 9.208714440000072, 14.867012010000074, 16.63410665000007, 4.896883930000072, 10.686536990000072, 17.623450490000074, 17.191765480000072, -5.282238119999931, 12.002275550000071, 17.04901409000007, 7.82677939000007, 2.094774640000068, 21.16060383000007, 15.484741550000074, -2.773863299999917, 3.6674697300000716, 4.145154720000072, -0.643826059999931, 9.936498720000074, 19.201733390000072, 17.11476726000007, 5.380780590000072, 15.634721710000072, 12.97194114000007, 14.427487380000073, 2.112896180000071, 8.365898380000068, 0.3142401400000736, 0.04331663000007069, 4.851488950000068, 18.069622070000072, 16.83842731000007, 12.533337430000074, 10.413579370000072, -4.63120928999993, 2.593916270000072, 27.865963270000073, 4.400742640000068, 17.577111250000073, -3.6322605199999316, 19.623282260000074, 11.160216310000074, 6.230239640000072, 22.89691430000007, 3.87068909000007, -11.280296579999927, -5.990732839999936, 29.384602880000074, 16.04211021000007, 28.962856680000076, 11.420910020000075, 11.543351960000074, 7.721120830000068, 7.187438810000074, 20.822099100000074, 2.4081352800000744, 47.01742481000007, 2.4864407600000735, 18.03997329000007, 22.04458297000007, 28.12173709000007, 23.485632170000073, 14.268703500000072, 13.352259420000074, 16.59288402000007, 38.034107040000066, 14.012114720000067, 15.607213830000067, -8.432877749999939, 17.450421770000062, 23.78528194000006, 7.0922273600000665, 16.623695640000065, 17.950654030000067, 10.258738000000065, -0.6337544899999372, 14.000200530000065, 3.192828640000066, 12.436003680000063, 0.4594682500000644, 8.371062070000065, 3.0819798800000626, 8.660814750000064, 26.726350740000065, -15.64723807999993, 15.241783950000062, 13.349006410000065, 10.198783810000066, 13.762121660000062, 22.374595820000067, 7.866697790000067, 20.685443700000064, 18.126954480000066, 15.565464900000059, 10.83776362000006, 3.920814640000067, 2.672081510000062, 2.8761885700000605, 13.171929110000065, 9.224771520000061, 6.280583370000066, 17.654173980000067, 9.729641310000062, 12.977270580000067, 17.799376350000067, 5.827384260000066, 19.412444490000063, 13.519597180000062, 4.305749610000063, 1.8476174900000615, 8.942415540000063, 19.146059790000066, 5.8082764800000675, 7.278090460000065, -5.433847759999942, 11.843821820000066, 10.303513970000061, 23.441232390000067, 4.784711060000063, 18.991671370000063, 13.855040220000063, 6.782563210000063, 13.193177960000064, 17.377241960000063, -8.37574966999994, -3.74279662999993, 20.439050880000075, 17.197810430000068, 16.155796340000073, -8.705464359999922, -2.083646509999923, 9.914683100000076, 20.983291050000076, 4.47362547000008, 9.015405400000077, 14.02974143000008, 29.576457900000076, 7.796288300000079, 2.387310960000079, 16.318896380000076, 9.21296713000008, 15.719781550000079, 26.15387391000008, 6.967282640000079, 14.035248910000078, 3.1842389800000817, 14.42654969000008, 23.107397770000077, 0.8611200200000795, 23.00193277000008, 1.6391808500000806, 9.966113180000079, -0.8915598799999245, -12.20668974999991, 29.27304363000009, 7.091926290000092, 11.334845590000086, 22.84314930000008, 31.990966260000086, 10.365074160000084, -16.49614974999991, 15.65064105000009, 22.86380019000009, 4.75549665000009, 11.736605310000094, 16.348175040000093, -1.3581112599999088, 1.3387319100000923, 8.978455630000092, 10.121620120000095, 23.001190360000095, 9.72668716000009, 12.890643150000095, 4.41409158000009, 3.268203810000095, 13.978165670000095, 8.461878550000094, 14.241990450000095, -6.500655849999909, 12.756844370000096, -0.6181367199999102, -7.439419959999903, 9.350506320000093, 3.9972431800000905, 7.590232100000094, 5.588317980000092, 23.88791489000009, 13.579401850000096, 13.48219312000009, -5.437612659999907, 4.572535350000095, 13.400606860000096, -2.1420174699999066, -5.828820509999915, 13.745162550000089, 5.569342720000087, 17.059674660000084, 14.210151770000088, 16.246753450000085, 10.513171560000089, 9.477816250000082, 5.423494510000083, 13.521818080000088, 22.665729250000084, -4.051994949999909, 21.905947000000083, 2.486512700000084, 25.490604610000084, 9.530861990000083, 17.331651510000086, 14.175881910000086, 3.0922212100000834, 1.305680470000084, 7.708067500000084, 27.157997670000086, 25.840355630000083, 7.925789590000086, 27.432942960000084, 7.481384820000088, 7.404527690000087, 1.782848080000086, 12.513459490000088, 10.382287550000086, -6.7155106599999215, -8.029506989999916, 19.843708310000082, 19.676844150000086, 5.118581270000085, 22.338160330000086, 15.890082700000093, 5.896897850000087, -1.8854813799999164, 25.597184340000084, 13.591022070000086, 22.893731930000087, 17.120363390000087, 9.557333470000088, 10.069126630000085, 9.242023550000084, 6.838190790000084, 22.777622870000087, 25.397184020000083, 13.347744620000086, 0.8304557700000856, -0.07518005999991573, 12.68628250000009, 14.631211520000086, 20.411431440000086, 16.739527210000084, 15.025772130000085, 14.133595020000087, 2.398356170000085, 16.274279610000086, 7.845849040000083, 9.134059990000083, 10.988029370000085, 8.422250440000084, 12.214015310000086, 14.904721490000085, 10.474641110000086, -10.051987309999916, 2.778122620000076, 6.870670040000078, 19.80405348000008, 20.487551290000077, 6.397680900000076, 13.481915850000078, 6.67871755000008, 29.05751111000008, 6.212801780000078, 14.428679990000077, 0.6065350300000816, 18.153211950000077, 8.79688825000008, 2.7878053600000783, 20.174291600000082, 7.85327575000008, 34.872113060000075, 8.280112660000075, 7.742328700000073, -6.910178439999925, -8.704668069999926, -0.07241696999992087, 0.14587512000007763, 1.282531480000081, 8.520886170000075, 15.404972370000081, 12.65366729000008, 6.71409777000008, 2.6522461600000753, -11.72537420999992, 13.445295630000075, 21.128835800000076, -2.342398099999926, 11.665473320000075, 14.464216690000079, -4.426065779999924, 7.61829206000008, -3.8667710599999197, 8.789991840000077, 27.51581723000008, 12.829383050000075, 20.17409061000008, 5.98723006000008, 1.36200936000008, 9.623738140000079, 15.837219200000085, 23.218744980000075, -3.405143709999919, 15.652608810000075, 13.666963060000079, 14.331973600000083, -2.0378780299999235, 20.43954853000008, 14.236904190000075, 20.268174730000077, 2.6387320600000805, 1.4428615600000754, 19.31744006000008, 21.59271729000008, 23.90896850000008, 17.506891380000077, 15.005966130000076, -0.5807534799999203, 9.845165810000076, 15.992804100000079, 26.471756090000078, 0.006696820000080095, 16.23495356000008, 12.029009200000075, 8.419745400000075, -9.599013489999926, 16.87394771000008, -0.6730179099999205, -12.591449589999911, 22.88364980000008, 20.362607530000083, 7.359210340000082, -1.3293256899999122, 33.92200720000009, -3.7207357699999086, 26.19477145000008, 31.701295500000082, 5.1019746300000826, 8.465151260000084, 19.026264230000088, 9.667253340000087, -6.1877090799999195, 21.462798080000084, 13.302390700000089, 6.987941080000084, 16.517635330000083, -1.3024404999999177, 15.073768850000086, 3.3903450800000883, -12.653481719999917, 27.368218560000088, -9.140633079999915, 0.2685219600000863, -6.476751049999919, 22.86961698000009, 5.230860150000083, -6.771491839999911, 11.937902080000086, 1.3056358000000827, 1.046297860000088, 3.300673940000088, 14.499600290000082, 27.784779920000084, 4.915992870000082, 12.755945330000088, 30.099039480000084, 9.215362560000088, 10.206760990000085, 9.393040220000088, 3.452675510000084, 31.150170930000087, 6.956269870000085, 2.9555962400000837, 21.32166698000009, 20.307904410000084, 6.195153640000086, 10.622365200000083, 5.270282070000086, 17.189754430000086, 22.139588420000088, 0.9115381100000874, 15.508509890000084, 8.573967150000087] (BO) Backorders for node 2:[0, 0, 19.19040905, 1.8560166199999912, 0, 0, 0, 0, 0, 0, 0, 1.384173969999992, 0, 0, 0, 1.7492203399999937, 0, 0, 0.36212937999999184, 6.640644140000006, 0, 0, 1.9206440600000008, 4.498421629999996, 12.16493242, 0, 1.2274013600000018, 10.238519420000003, 7.305505159999996, 0, 0, 0, 0, 0.36735493999999846, 1.574523339999999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5731003699999988, 0, 0, 0, 3.703954860000003, 0, 4.195951239999999, 0, 2.771963249999999, 0, 0, 8.582602010000002, 0, 0, 1.6062320699999972, 9.151654759999992, 0, 3.197368709999992, 3.9814621699999933, 0, 0, 0, 0, 0, 0, 0, 0.8401078599999963, 0, 0, 0, 0, 2.6783857199999943, 0, 0, 0, 0, 0, 0, 0.8676907299999925, 11.759144499999984, 1.9331239499999953, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.349495989999994, 0, 0, 0, 0, 0.39444216999999426, 0, 0, 0, 0, 0, 2.08592410999999, 3.389589709999985, 0, 0, 0, 0, 0, 0, 0, 2.146462389999982, 0.3792032199999795, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.622913359999977, 1.1094645699999788, 0, 0, 0, 4.877898369999976, 11.457391119999983, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.36938513999998435, 0, 0, 0, 0, 0, 0, 0, 0, 17.063805469999984, 0, 3.462037099999975, 0, 0, 0, 0, 0, 5.2447196799999745, 0, 5.648439239999973, 0, 0, 8.011653249999966, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.8488880899999742, 0, 0, 0, 0, 0, 0, 0.07572130999997029, 0, 0, 4.862472499999967, 0, 0, 0, 0, 0, 0, 21.18103789999997, 0, 9.801421079999962, 0, 0, 0, 0, 4.594826419999968, 0, 0, 13.837648649999963, 0, 0, 0, 21.16365688999995, 0, 0, 6.895934329999953, 6.994125019999942, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11.25693235999993, 0, 0, 0, 0, 0, 0.7440720599999366, 1.0727154799999354, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.354029919999938, 1.9310938499999395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12.250607609999939, 0, 0, 0, 0, 0, 0, 4.560163309999929, 0, 0, 0, 0, 0, 0, 2.6297052199999342, 0, 0, 0, 0.8360531799999364, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.5065122899999395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.678048029999935, 0, 0, 0, 0, 0, 0, 1.7062169499999413, 0, 0, 0.19544583999994103, 5.571721719999935, 0, 0, 0, 5.397902919999943, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6634129999999345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.7783959999999297, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.150312569999933, 0, 3.3638321999999405, 0, 0, 0, 0, 2.285934519999927, 0, 0, 0, 0, 0, 0, 1.7006035299999311, 1.5822768899999318, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9485371699999305, 0, 0, 0, 18.06142160999993, 0, 0, 0, 0.7678085999999311, 0, 0, 0, 8.331812469999932, 5.093721779999925, 0.2513335099999239, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.893708389999922, 4.249068239999929, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.656106489999928, 0, 0, 0, 6.1779224799999355, 2.28887993999993, 3.683600669999933, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.016529089999942, 0, 0, 0, 2.3877012399999344, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23.683556609999926, 0, 0, 0, 7.521028009999924, 0, 2.870763029999921, 0, 0, 4.743603009999923, 0, 0, 0, 10.790887659999918, 0, 0, 0, 0, 0, 0, 0, 0, 3.439401469999922, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.627572189999924, 0, 0, 0, 0, 0, 0.703858629999921, 0, 0, 0, 0, 0, 0, 3.3157481499999193, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5000651199999275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18864085999992852, 0, 0, 0, 0, 0, 0, 0, 5.282238119999931, 0, 0, 0, 0, 0, 0, 2.773863299999917, 0, 0, 0.643826059999931, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.63120928999993, 0, 0, 0, 0, 3.6322605199999316, 0, 0, 0, 0, 0, 11.280296579999927, 5.990732839999936, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.432877749999939, 0, 0, 0, 0, 0, 0, 0.6337544899999372, 0, 0, 0, 0, 0, 0, 0, 0, 15.64723807999993, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.433847759999942, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8.37574966999994, 3.74279662999993, 0, 0, 0, 8.705464359999922, 2.083646509999923, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8915598799999245, 12.20668974999991, 0, 0, 0, 0, 0, 0, 16.49614974999991, 0, 0, 0, 0, 0, 1.3581112599999088, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.500655849999909, 0, 0.6181367199999102, 7.439419959999903, 0, 0, 0, 0, 0, 0, 0, 5.437612659999907, 0, 0, 2.1420174699999066, 5.828820509999915, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.051994949999909, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.7155106599999215, 8.029506989999916, 0, 0, 0, 0, 0, 0, 1.8854813799999164, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.07518005999991573, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10.051987309999916, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.910178439999925, 8.704668069999926, 0.07241696999992087, 0, 0, 0, 0, 0, 0, 0, 11.72537420999992, 0, 0, 2.342398099999926, 0, 0, 4.426065779999924, 0, 3.8667710599999197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.405143709999919, 0, 0, 0, 2.0378780299999235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5807534799999203, 0, 0, 0, 0, 0, 0, 0, 9.599013489999926, 0, 0.6730179099999205, 12.591449589999911, 0, 0, 0, 1.3293256899999122, 0, 3.7207357699999086, 0, 0, 0, 0, 0, 0, 6.1877090799999195, 0, 0, 0, 0, 1.3024404999999177, 0, 0, 12.653481719999917, 0, 9.140633079999915, 0, 6.476751049999919, 0, 0, 6.771491839999911, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (TC) Total Cost for node 2:[191.7624973, 78.52610339999998, 479.76022624999996, 46.40041549999978, 232.98895580000007, 84.68629170000007, 11.208494700000102, 172.9876971000001, 143.0005768000001, 88.31042190000005, 165.12934380000004, 34.6043492499998, 15.3994165000001, 18.637772600000062, 235.4079935000001, 43.73050849999984, 324.3343157000001, 234.96188270000007, 9.053234499999796, 166.01610350000016, 81.38498650000002, 203.47975239999997, 48.01610150000002, 112.4605407499999, 304.1233105, 94.515429, 30.685034000000044, 255.96298550000006, 182.6376289999999, 92.91058479999997, 103.33739790000003, 83.48442799999994, 209.53343259999997, 9.183873499999962, 39.36308349999997, 284.37864750000006, 70.02471500000001, 140.33030060000002, 93.21330359999997, 229.40767520000003, 27.25434530000001, 321.9033245, 13.268761699999985, 324.92687939999996, 170.07861189999997, 95.16744180000003, 29.750997399999974, 2.2282443999999657, 39.32750924999997, 177.38791249999997, 198.84305189999998, 188.58778460000002, 92.59887150000009, 81.95421240000002, 104.89878099999999, 149.09212660000003, 69.29908124999997, 109.45311930000003, 125.45431630000003, 214.56505025000007, 89.51946620000001, 83.90963589999998, 40.15580174999993, 228.7913689999998, 52.5018149000001, 79.9342177499998, 99.53655424999982, 201.7647823000001, 35.25720790000008, 328.4941152, 199.95467830000007, 167.37441710000002, 50.11000410000008, 285.9944180000001, 21.002696499999907, 293.2425951000001, 80.87037190000004, 315.3482736000001, 198.9759234000001, 66.95964299999986, 98.81316000000005, 5.279326800000064, 164.25613710000007, 164.90380710000005, 36.81185170000006, 170.9870319000001, 21.692268249999813, 293.9786124999996, 48.32809874999988, 177.78799120000008, 30.532829900000067, 59.11533250000005, 101.73230810000007, 158.70248220000008, 63.65083410000004, 141.9551313000001, 256.2426691000001, 71.24176100000014, 179.05958360000005, 4.034744300000099, 66.18060710000009, 149.34259150000008, 236.27936010000008, 53.45835000000008, 33.73739974999985, 74.22686450000008, 91.30492610000005, 116.38327340000004, 375.49769100000003, 9.861054249999857, 222.02633550000004, 100.25726640000005, 86.25481930000007, 78.51007480000007, 281.4784681000001, 52.14810274999975, 84.73974274999962, 91.54324070000018, 224.51936100000023, 12.037093200000228, 61.265909200000195, 137.7579358000002, 132.2022843000002, 24.586908700000194, 53.661559749999554, 9.480080499999488, 235.88649670000024, 258.4994553000002, 140.6867114000002, 178.84255590000024, 60.49648000000019, 116.55637370000022, 137.30190390000018, 183.9832018000002, 87.65742340000024, 225.64585770000022, 41.52287090000023, 127.34524780000022, 50.28357820000018, 37.55098270000019, 152.76584890000024, 181.3399449000002, 175.60387840000018, 15.572833999999425, 27.73661424999947, 90.66310810000019, 125.45042190000018, 57.14961080000023, 121.94745924999938, 286.4347779999996, 220.0598957000001, 42.894400400000166, 42.53844020000017, 239.57610970000013, 206.62548780000014, 146.40800770000013, 213.78535340000013, 231.84749910000016, 68.32110160000013, 170.29387710000015, 47.45224910000012, 9.234628499999609, 148.5589493000001, 40.720913300000134, 45.024980800000165, 301.02652650000016, 211.5986329000001, 46.96725160000014, 94.65379530000014, 96.28454270000013, 426.5951367499996, 10.963717800000268, 86.55092749999937, 74.02643190000028, 144.47234620000032, 203.86533030000032, 196.26834380000025, 260.06606350000027, 131.11799199999936, 17.40726190000025, 141.21098099999932, 32.320011000000335, 59.21299640000029, 200.29133124999916, 10.101627800000301, 96.42559310000031, 138.4792153000003, 100.86146150000026, 131.72099030000027, 245.7928434000003, 209.14755150000025, 98.39728640000025, 67.88790740000032, 56.56272460000025, 71.22220224999936, 50.36488270000028, 176.53025920000027, 46.00463160000025, 2.4345800000002527, 125.51713530000029, 211.1789332000003, 1.8930327499992572, 76.14305900000026, 28.267796400000265, 121.56181249999918, 35.084602900000306, 124.70185630000032, 157.8547958000003, 73.11897700000038, 9.510194000000283, 75.3035922000003, 529.5259474999992, 205.9608922000004, 245.03552699999904, 50.95617110000035, 71.24109190000034, 170.62531640000037, 122.01881570000033, 114.87066049999922, 35.686096100000384, 9.036269100000354, 345.94121624999906, 138.83640510000043, 291.5221129000004, 86.51049710000045, 529.0914222499987, 6.7991704000004916, 81.46396040000049, 172.39835824999884, 174.85312549999855, 208.0396651000006, 92.1810279000006, 3.8173185000005816, 151.08813460000056, 176.64810870000053, 75.14928880000056, 52.18426620000059, 106.07248290000058, 146.29140900000053, 85.91295040000055, 33.61279320000058, 281.42330899999826, 226.30386660000062, 275.8622319000006, 185.54208220000064, 127.19768090000066, 91.42393690000063, 18.601801499998416, 26.817886999998386, 153.86039650000066, 66.89633460000067, 52.805035100000666, 268.23597950000067, 228.43168680000062, 152.09125170000064, 7.044171400000607, 5.0324458000006445, 132.6564764000006, 141.55095990000063, 168.9395894000006, 176.0935727000006, 41.394178100000616, 170.9495026000006, 87.32987490000063, 233.85074799999845, 48.27734624999849, 26.77801070000065, 161.7674090000006, 91.82792760000062, 117.87734570000062, 181.06942040000064, 153.60189950000063, 174.99304020000062, 66.1220380000006, 52.61306630000064, 306.26519024999845, 112.72931740000061, 280.8606878000007, 150.56707390000065, 177.98626820000067, 0.4568956000006352, 73.37809700000072, 114.00408274999822, 217.93035600000067, 30.34415460000062, 91.98909070000063, 162.21413350000063, 128.2374201000006, 183.66678030000065, 65.74263049999836, 115.67446360000062, 60.19946300000065, 40.03066600000061, 20.90132949999841, 31.66554270000063, 229.80686700000064, 103.99540660000063, 29.523063500000646, 190.87837930000063, 123.74420480000062, 211.41086280000067, 161.98160470000062, 36.84817120000062, 69.61212730000064, 221.75173250000063, 187.66280724999848, 276.1138161000007, 4.744944700000673, 12.989024000000597, 154.9412570000007, 172.30677320000063, 79.40122130000063, 114.98150980000062, 55.55953780000067, 104.47153450000066, 122.38293710000065, 164.7633978000007, 116.95120074999838, 2.377195200000557, 133.83132020000056, 195.16792020000054, 47.150178300000576, 39.20412890000058, 144.02975390000057, 42.65542374999853, 20.455833300000563, 14.56989160000056, 4.886145999998526, 139.2930429999984, 309.22497030000056, 51.658526900000616, 125.54770820000066, 134.94757299999858, 132.26038400000056, 182.2625255000006, 60.386449900000656, 128.48536520000067, 103.93747280000063, 198.43533600000063, 149.57402330000065, 255.49101830000063, 5.975733200000661, 175.71405220000065, 39.68831260000066, 3.797594900000618, 75.05789010000065, 151.34442250000063, 44.38814990000061, 190.21199320000065, 130.8802670000007, 16.585324999998363, 25.98751170000064, 71.39124770000066, 111.35873240000066, 46.58500610000061, 162.57737220000067, 47.18685510000064, 37.68018500000068, 141.15260760000064, 116.91111820000067, 46.77062730000067, 25.656228200000655, 56.449317200000664, 137.9874388000007, 156.82428220000062, 206.2221766000006, 224.05828280000065, 155.36092620000062, 336.27128000000073, 174.10615950000067, 73.71111540000065, 229.39883090000066, 201.4775790000006, 118.81606830000067, 57.54337580000062, 48.15038890000061, 309.7025986000006, 59.10744610000066, 201.75331960000065, 138.17790990000063, 47.97839280000062, 178.72688410000066, 69.45989999999824, 123.27612590000065, 22.26866760000064, 160.88291540000063, 177.65030270000062, 139.3777383000006, 182.9044714000006, 150.1521988000006, 70.79379070000066, 135.57671820000067, 259.3341494000006, 225.11999220000064, 273.1176461000006, 143.59320240000068, 99.49793790000065, 235.5966270000007, 248.15616330000063, 131.61590400000065, 203.57585210000067, 86.61921470000067, 123.73719010000066, 139.78120100000064, 47.28159120000065, 78.91580300000058, 118.03994770000067, 52.188501000000684, 35.81347810000061, 325.3298385000006, 170.25834740000064, 58.17659560000067, 28.757814249998326, 287.0347081000006, 84.0958049999985, 294.6550459000007, 165.36433420000068, 82.46334630000071, 85.04194790000071, 57.14836299999817, 314.2650621000007, 3.1701182000006867, 86.2000869000007, 91.20589440000074, 3.470980600000715, 90.41918680000073, 42.51508824999828, 39.556922249998294, 211.0920777000007, 79.46080110000068, 260.5204347000007, 153.1367768000007, 96.55158460000074, 39.289099700000705, 189.3644963000007, 110.00666740000071, 203.30153510000073, 23.713429249998264, 321.54735230000074, 82.1542323000007, 294.74146780000075, 451.53554024999823, 218.9929477000007, 153.76722610000076, 227.08288840000077, 19.195214999998278, 75.52592830000073, 173.70416820000074, 236.4431731000007, 208.2953117499983, 127.34304449999811, 6.283337749998097, 87.02185550000081, 9.153640700000807, 197.9597794000008, 220.0872513000008, 242.87219850000076, 135.80388660000074, 309.8675488000008, 185.84528360000078, 98.5053621000008, 222.34270974999805, 106.22670599999822, 4.910894700000696, 147.6800377000007, 6.337053200000682, 177.65502560000073, 241.70664440000076, 187.35257390000072, 115.11041410000068, 5.846697200000719, 25.242930800000707, 123.9670657000007, 91.4026622499982, 142.08530930000074, 151.64869960000067, 81.34829600000074, 154.4480619999984, 57.22199849999825, 92.09001674999833, 195.59226160000065, 75.79690040000067, 191.55312390000063, 19.611611300000646, 31.561035000000643, 69.90578720000066, 177.7062375000006, 81.48063590000064, 82.14542100000067, 92.04792750000067, 219.7854929000006, 81.34504980000067, 80.63963770000065, 179.47655040000063, 77.66139580000065, 231.81726300000065, 99.42647140000062, 256.49255320000066, 2.3241472000006524, 29.40352450000063, 264.02896300000066, 124.27350300000057, 139.8098208000006, 273.2175820000006, 290.6857407000006, 57.795671400000614, 156.29055760000062, 165.29641050000066, 39.46888550000061, 39.14955070000062, 128.91355980000066, 177.50608150000062, 100.95381840000066, 175.41322724999856, 76.46297890000064, 71.38465110000062, 45.843111600000626, 59.69253099999836, 276.88519610000066, 77.52532630000061, 88.8016936000006, 212.79079270000062, 66.42865240000063, 84.37443830000063, 280.70824260000063, 129.26733650000068, 50.42452950000062, 57.493722400000635, 90.65743450000063, 314.00976180000066, 74.27464490000062, 177.09120810000064, 192.96489680000064, 239.98657820000062, 41.43939920000065, 106.57851490000063, 168.1781665000006, 235.49847760000063, 50.05763430000066, 106.49061770000067, 592.0889152499981, 262.80660930000073, 223.2470155000007, 78.32782770000073, 188.0257002499981, 20.362809300000748, 71.76907574999802, 137.3637225000008, 218.67199500000078, 118.59007524999808, 165.67855580000077, 56.2276492000008, 234.15357720000083, 269.7721914999979, 111.42479270000081, 186.87443720000076, 196.22779070000078, 9.69359130000079, 246.44356820000075, 122.3485618000008, 198.32460160000073, 116.55557200000082, 85.98503674999805, 135.52755180000077, 102.5924056000008, 1.799470800000762, 119.22067070000075, 117.30296030000076, 19.045440100000803, 169.17873830000076, 71.99864670000075, 97.70685820000075, 172.47770230000077, 49.789975100000774, 40.6893047499981, 166.64616570000078, 66.92882890000078, 58.96587860000075, 215.66426190000078, 53.80136080000078, 17.596465749998025, 158.21494810000075, 90.01275530000079, 72.25002260000075, 300.6831941000008, 134.05907850000077, 166.04531560000078, 82.89370374999798, 150.5193562000008, 76.2178688000008, 209.7693462000008, 119.4100256000008, 37.052978300000774, 40.80940720000079, 248.8387824000008, 175.6139506000008, 267.56335840000077, 123.27977440000076, 430.22289970000077, 12.501627999998188, 254.68250120000076, 177.62151850000078, 129.80315230000076, 107.35685750000073, 153.03610030000073, 92.9675450000007, 220.7865106000007, 264.1672151000007, 194.45519390000072, 20.162200400000714, 4.716021499998213, 92.08714440000072, 148.67012010000076, 166.3410665000007, 48.968839300000724, 106.86536990000072, 176.23450490000073, 171.91765480000072, 132.05595299999828, 120.02275550000071, 170.4901409000007, 78.2677939000007, 20.947746400000682, 211.6060383000007, 154.84741550000075, 69.34658249999792, 36.674697300000716, 41.45154720000072, 16.095651499998276, 99.36498720000074, 192.01733390000072, 171.1476726000007, 53.807805900000716, 156.3472171000007, 129.7194114000007, 144.27487380000073, 21.12896180000071, 83.65898380000068, 3.142401400000736, 0.4331663000007069, 48.51488950000068, 180.6962207000007, 168.3842731000007, 125.33337430000074, 104.13579370000072, 115.78023224999825, 25.939162700000722, 278.6596327000007, 44.00742640000068, 175.77111250000073, 90.80651299999829, 196.23282260000076, 111.60216310000074, 62.30239640000072, 228.9691430000007, 38.7068909000007, 282.00741449999816, 149.7683209999984, 293.84602880000074, 160.42110210000072, 289.6285668000008, 114.20910020000076, 115.43351960000074, 77.21120830000068, 71.87438810000074, 208.22099100000074, 24.081352800000744, 470.17424810000074, 24.864407600000735, 180.39973290000069, 220.44582970000073, 281.21737090000073, 234.85632170000073, 142.68703500000072, 133.52259420000075, 165.9288402000007, 380.34107040000066, 140.12114720000068, 156.07213830000066, 210.82194374999847, 174.50421770000062, 237.8528194000006, 70.92227360000066, 166.23695640000065, 179.50654030000067, 102.58738000000065, 15.84386224999843, 140.00200530000063, 31.92828640000066, 124.36003680000063, 4.594682500000644, 83.71062070000065, 30.819798800000626, 86.60814750000064, 267.26350740000066, 391.18095199999823, 152.41783950000064, 133.49006410000067, 101.98783810000066, 137.62121660000062, 223.74595820000067, 78.66697790000067, 206.85443700000064, 181.26954480000066, 155.65464900000057, 108.37763620000061, 39.20814640000067, 26.72081510000062, 28.761885700000605, 131.71929110000065, 92.24771520000061, 62.80583370000066, 176.54173980000067, 97.29641310000062, 129.77270580000067, 177.99376350000068, 58.27384260000066, 194.12444490000064, 135.19597180000062, 43.057496100000634, 18.476174900000615, 89.42415540000063, 191.46059790000066, 58.082764800000675, 72.78090460000065, 135.84619399999855, 118.43821820000066, 103.03513970000061, 234.41232390000067, 47.84711060000063, 189.91671370000063, 138.55040220000063, 67.82563210000063, 131.93177960000065, 173.77241960000063, 209.39374174999853, 93.56991574999824, 204.39050880000076, 171.97810430000067, 161.55796340000074, 217.63660899999806, 52.09116274999808, 99.14683100000076, 209.83291050000076, 44.7362547000008, 90.15405400000077, 140.2974143000008, 295.76457900000077, 77.96288300000079, 23.873109600000788, 163.18896380000075, 92.12967130000081, 157.1978155000008, 261.5387391000008, 69.67282640000079, 140.35248910000078, 31.842389800000817, 144.2654969000008, 231.07397770000077, 8.611200200000795, 230.01932770000082, 16.391808500000806, 99.66113180000079, 22.288996999998112, 305.16724374999774, 292.73043630000086, 70.91926290000092, 113.34845590000086, 228.43149300000078, 319.90966260000084, 103.65074160000084, 412.4037437499977, 156.5064105000009, 228.63800190000092, 47.5549665000009, 117.36605310000094, 163.48175040000092, 33.95278149999772, 13.387319100000923, 89.78455630000092, 101.21620120000095, 230.01190360000095, 97.2668716000009, 128.90643150000096, 44.1409158000009, 32.68203810000095, 139.78165670000095, 84.61878550000094, 142.41990450000094, 162.5163962499977, 127.56844370000096, 15.453417999997754, 185.98549899999756, 93.50506320000093, 39.972431800000905, 75.90232100000094, 55.88317980000092, 238.8791489000009, 135.79401850000096, 134.8219312000009, 135.94031649999766, 45.72535350000095, 134.00606860000096, 53.550436749997665, 145.72051274999785, 137.4516255000009, 55.69342720000087, 170.59674660000084, 142.1015177000009, 162.46753450000085, 105.13171560000089, 94.77816250000082, 54.23494510000083, 135.21818080000088, 226.65729250000084, 101.29987374999772, 219.05947000000083, 24.86512700000084, 254.90604610000082, 95.30861990000083, 173.31651510000086, 141.75881910000086, 30.922212100000834, 13.05680470000084, 77.08067500000084, 271.5799767000009, 258.40355630000084, 79.25789590000086, 274.3294296000008, 74.81384820000088, 74.04527690000087, 17.82848080000086, 125.13459490000088, 103.82287550000086, 167.88776649999804, 200.7376747499979, 198.43708310000082, 196.76844150000085, 51.18581270000085, 223.38160330000085, 158.90082700000093, 58.96897850000087, 47.13703449999791, 255.97184340000084, 135.91022070000088, 228.93731930000087, 171.20363390000085, 95.57333470000088, 100.69126630000085, 92.42023550000084, 68.38190790000084, 227.77622870000087, 253.97184020000083, 133.47744620000086, 8.304557700000856, 1.8795014999978932, 126.8628250000009, 146.31211520000085, 204.11431440000086, 167.39527210000085, 150.25772130000087, 141.33595020000087, 23.98356170000085, 162.74279610000087, 78.45849040000083, 91.34059990000083, 109.88029370000085, 84.22250440000084, 122.14015310000086, 149.04721490000085, 104.74641110000086, 251.29968274999788, 27.78122620000076, 68.70670040000078, 198.04053480000078, 204.87551290000079, 63.976809000000756, 134.81915850000078, 66.7871755000008, 290.57511110000075, 62.12801780000078, 144.28679990000077, 6.065350300000816, 181.53211950000076, 87.9688825000008, 27.878053600000783, 201.74291600000083, 78.5327575000008, 348.7211306000007, 82.80112660000074, 77.42328700000073, 172.75446099999812, 217.61670174999813, 1.8104242499980217, 1.4587512000007763, 12.825314800000811, 85.20886170000075, 154.0497237000008, 126.5366729000008, 67.1409777000008, 26.522461600000753, 293.134355249998, 134.45295630000075, 211.28835800000076, 58.55995249999815, 116.65473320000075, 144.6421669000008, 110.6516444999981, 76.1829206000008, 96.66927649999799, 87.89991840000077, 275.15817230000084, 128.29383050000075, 201.74090610000079, 59.8723006000008, 13.6200936000008, 96.23738140000079, 158.37219200000084, 232.18744980000076, 85.12859274999798, 156.52608810000075, 136.6696306000008, 143.31973600000083, 50.94695074999809, 204.39548530000081, 142.36904190000075, 202.68174730000078, 26.387320600000805, 14.428615600000754, 193.1744006000008, 215.9271729000008, 239.08968500000077, 175.06891380000076, 150.05966130000076, 14.518836999998008, 98.45165810000076, 159.9280410000008, 264.71756090000076, 0.06696820000080095, 162.3495356000008, 120.29009200000075, 84.19745400000075, 239.97533724999815, 168.7394771000008, 16.825447749998013, 314.7862397499978, 228.8364980000008, 203.62607530000082, 73.59210340000082, 33.233142249997805, 339.22007200000087, 93.01839424999771, 261.9477145000008, 317.01295500000083, 51.019746300000826, 84.65151260000084, 190.2626423000009, 96.67253340000087, 154.692726999998, 214.62798080000084, 133.0239070000009, 69.87941080000084, 165.1763533000008, 32.56101249999794, 150.73768850000084, 33.90345080000088, 316.33704299999795, 273.6821856000009, 228.5158269999979, 2.6852196000008632, 161.91877624999796, 228.6961698000009, 52.30860150000083, 169.28729599999775, 119.37902080000086, 13.056358000000827, 10.46297860000088, 33.00673940000088, 144.9960029000008, 277.84779920000085, 49.15992870000082, 127.55945330000088, 300.99039480000084, 92.15362560000088, 102.06760990000085, 93.93040220000088, 34.52675510000084, 311.50170930000087, 69.56269870000085, 29.555962400000837, 213.2166698000009, 203.07904410000083, 61.95153640000086, 106.22365200000083, 52.702820700000856, 171.89754430000085, 221.39588420000086, 9.115381100000874, 155.08509890000084, 85.73967150000087] ###Markdown Base Stock Level Plots ###Code totalCostList = [] baseStockList = [] baseStockTestDict = {0: 60, 1: 30, 2: 30} for i in range(40,101,5): totalCost = 0 baseStockTestDict = {0: i, 1: 60, 2: 60} # Print out 45 and 50 because they be funky myInvSim.playSimulation(gameType = "multiNodeVerify", BSLevel=baseStockTestDict, demandMethod="useFileDemand", fileDemand=df["IO"], connectionCase="and", printOut=False) for node in myInvSim.nodeDict.values(): #print(sum(node.costRecord)) totalCost += sum(node.costRecord) totalCostList.append(totalCost) baseStockList.append(i) plt.scatter(baseStockList, totalCostList) plt.plot(baseStockList, totalCostList) plt.title("Total Cost vs Base Stock Level for Changing Node 0 Base Stock Level") plt.xlabel("Base Stock Level") plt.ylabel("Total Cost") plt.show() totalCostList = [] baseStockList = [] baseStockTestDict = {0: 60, 1: 30, 2: 30} for i in range(40,101,5): totalCost = 0 baseStockTestDict = {0: 60, 1: i, 2: i} # Print out 45 and 50 because they be funky myInvSim.playSimulation(gameType = "multiNodeVerify", BSLevel=baseStockTestDict, demandMethod="useFileDemand", fileDemand=df["IO"], connectionCase="and", printOut=False) for node in myInvSim.nodeDict.values(): #print(sum(node.costRecord)) totalCost += sum(node.costRecord) totalCostList.append(totalCost) baseStockList.append(i) plt.scatter(baseStockList, totalCostList) plt.plot(baseStockList, totalCostList) plt.title("Total Cost vs Base Stock Level for Changing Node 1 and 2 Base Stock Level") plt.xlabel("Base Stock Level") plt.ylabel("Total Cost") plt.show() # FINISHED SEP 22nd, 2020 totalCostList = [] retailerBaseStockList = [] supplierBaseStockList = [] baseStockTestDict = {0: 60, 1: 30, 2: 30} for j in range(20,101,5): for i in range(20,101,5): totalCost = 0 baseStockTestDict = {0: i, 1: j/2, 2: j/2} myInvSim.playSimulation(gameType = "multiNodeVerify", BSLevel=baseStockTestDict, demandMethod="useFileDemand", fileDemand=df["IO"], connectionCase="and", printOut=False) for node in myInvSim.nodeDict.values(): totalCost += sum(node.costRecord) totalCostList.append(totalCost) retailerBaseStockList.append(i) supplierBaseStockList.append(j/2) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.scatter(np.array(retailerBaseStockList), np.array(supplierBaseStockList), np.array(totalCostList)) ax.set_xlabel('Retailer Base Stock Level') ax.set_ylabel('Warehouse Base Stock Level') ax.set_zlabel('Total Supply Chain Cost') plt.show() ###Output _____no_output_____ ###Markdown Find the minimum value of basic 3-node simulation (Node 0 retailer, node 1 and 2 wholesaler ###Code # Find the minimum of the above simulation minTC = float('inf') bestRetailerBS = 0 bestWholesalerBS = 0 for i in range(len(totalCostList)): if totalCostList[i] < minTC: minTC = totalCostList[i] bestRetailerBS = retailerBaseStockList[i] bestWholesalerBS = supplierBaseStockList[i] print("Minimum Cost for this simulation") print("Lowest Cost found: " + str(minTC)) print("Associated Retailer Base Stock Level: " + str(bestRetailerBS)) print("Associated Wholesaler Base Stock Level: " + str(bestWholesalerBS)) ###Output Minimum Cost for this simulation Lowest Cost found: 511109.6726379993 Associated Retailer Base Stock Level: 70 Associated Wholesaler Base Stock Level: 50.0 ###Markdown PRINTING METHOD DEMO ###Code # printing method demo: for node in myInvSim.nodeDict.values(): print(node) ###Output _____no_output_____ ###Markdown Excel Export of Last Run of Simulation ###Code # Export to Excel Method Demo: import pandas as pd def createExcelFile(myInvSim, fname): nodeDataDF = {} for node in myInvSim.nodeDict.values(): nodeDataDF["node " + str(node.id) + " starting Inventory"] = node.startingInventoryRecord nodeDataDF["node " + str(node.id) + " backorders Fulfilled"] = node.backordersFulfilledArray nodeDataDF["node " + str(node.id) + " demand"] = node.demandArray nodeDataDF["node " + str(node.id) + " supply"] = node.supplyArray nodeDataDF["node " + str(node.id) + " backorders"] = node.backorderRecord nodeDataDF["node " + str(node.id) + " ending Inventory"] = node.endingInventoryRecord nodeDataDF["node " + str(node.id) + " cost"] = node.costRecord nodeDataDF = pd.DataFrame(nodeDataDF) nodeDataDF.to_excel(fname) # Checking Starting Supply over Time from operator import add import matplotlib.pyplot as plt startingInv = myInvSim.nodeDict[0].startingInventoryRecord[1:100] node1Supply = myInvSim.nodeDict[1].supplyArray node2Supply = myInvSim.nodeDict[2].supplyArray combinedSupply = list(map(add, node1Supply, node2Supply))[0:99] shouldbe60 = list(map(add, combinedSupply, startingInv)) pd = [i for i in range(len(shouldbe60))] scat = plt.scatter(pd, shouldbe60) plt.title("Starting Inventory Level + Inbound Supply for Node 0 vs. Period") plt.xlabel("Period") plt.ylabel("Starting Inventory + Inbound Supply for Node 0") plt.show() ###Output _____no_output_____ ###Markdown PLOTS ###Code # Demand for Node 0 over time pd0Demand = myInvSim.nodeDict[0].demandArray print(pd0Demand) pd = [i for i in range(len(pd0Demand))] plt.scatter(pd, pd0Demand) plt.plot(pd, pd0Demand) plt.title("Starting Inventory Level + Inbound Supply for Node 0 vs. Period") plt.xlabel("Period") plt.ylabel("Starting Inventory + Inbound Supply for Node 0") plt.show() # Demand for Node 0 over time node0Demand = myInvSim.nodeDict[0].demandArray node1Demand = myInvSim.nodeDict[1].demandArray node2Demand = myInvSim.nodeDict[2].demandArray plt.scatter(node0Demand, node1Demand) plt.plot(node0Demand, node1Demand) plt.title("Node 1 Qty Demanded vs. Node 0 Qty Demanded") plt.xlabel("Node 0 Qty Demanded") plt.ylabel("Node 1 Qty Demanded") plt.show() plt.scatter(node0Demand, node2Demand) plt.plot(node0Demand, node2Demand) plt.title("Node 2 Qty Demanded vs. Node 0 Qty Demanded") plt.xlabel("Node 0 Qty Demanded") plt.ylabel("Node 2 Qty Demanded") plt.show() plt.scatter(node1Demand, node2Demand) plt.plot(node1Demand, node2Demand) plt.title("Node 2 Qty Demanded vs. Node 1 Qty Demanded") plt.xlabel("Node 1 Qty Demanded") plt.ylabel("Node 2 Qty Demanded") plt.show() for node in myInvSim.nodeDict.values(): cost = node.costRecord EI = node.endingInventoryRecord plt.scatter(EI, cost) plt.xlabel("Ending Inventory") plt.ylabel("Cost (this Period)") plt.title("Cost as a function of Ending Inventory for node " + str(node.id)) plt.show() ###Output _____no_output_____ ###Markdown Notes / Tasks / TODO ![flow in nonserialized supply chain - goods.png]() ###Code ''' TODO: 15SEP2020 Things to do: - Change base stock level for node 1 and node 2 to 50 (actually 30) - Plot cost as a function of base stock level (see above, change up the nodes) - AND case issue... How to implement ordering? ''' ''' Notes: Total Cost as a function of base stock level Allow user to specify base stock level for specific nodes - Change one base stock level, keep other two constant, and plot the total SC cost -> Rinse and repeat for the other nodes AND siutation: Node 1 has inventory of 100 Node 2 has inventory of 80 Can retailer see the inventory for both? Node 0 orders what it needs, if extra stuff arrives, then it has to just let it sit there? Implement using a dictionary w/ PreDict and RecDict values Assume that node 1 and 2 have their inventories If node 0 orders, node 0 doesn't have matching pairs, it needs to hang on to the extra Right now nobody's selfish Assembly Supply Chain: ex: 0->1->2 There is an optimal policy "Diamond" Supply chain (see image) Distribution nodes screw things up, make the problems harder -> Because of allocation ''' ###Output _____no_output_____
Lessons/Lesson03_BasicObjectTypes.ipynb
###Markdown "Geo Data Science with Python" Notebook Lesson 2 Basic Object Types: Numbers, Booleans and StringsThis lesson discusses more details of the basic Python object types **Numbers**, **Booleans** and **Strings**. In the aftermath, strings will be further deepened by the subsequent reading material *String Fundamentals* (Lutz, 2013), available in the course's reading list on canvas. SourcesSome elements of this notebook source from Chapter 5 and Chapter 7 of Lutz (2013).--- Part A: Numeric Object Types in PythonEffective data-driven science and computation requires understanding how data is stored and manipulated (VanderPlas, 2016).Most of Python's number types are typical and will seem familiar if you have used other programming languages before. However, numbers are not really a single object type but rather a category. Python supports the usual numeric types (integers and floating point) as well as literals for creating numbers, expressions for processing them and some built-in functions and modules. Python also allows to write integers using hexadecimal, octal and binary literals; offers complex number types Python and allows integers to have unlimited precision - they can grow to have as many ditigs as your memory space allows. Lutz (2013) gives the following overview for numeric object types in Python:Table 1: *Numeric literals and constructors (Lutz, 2013, Table 5.1).* Built-in numbers are enough to represent most numeric quantities - from your age to your bank balance - but more types are available from external (third-party) Python packages.Below we briefly introduce the most important ones for this course. These are integer and floating numbers as well as Boolean types. The latter allows for logic operations. IntegersIntegers are written as strings of decimal digits. These numbers have no fractional component. The size of integer numbers is only limited by your computer's memory. Python's basic number types support the normal mathematical operations, like addition and substraction with the plus and minus signs ```+/-```, multiplication with the star sign ```*```, and two stars are used for exponentiation ```**```. Try to edit and execute the following example performing substractions, multiplications and divisions. What happens? Are the results of all of these operations also of type integer? ###Code 123 + 222 type(123 + 222) ###Output _____no_output_____ ###Markdown Indeed, most mathematical operations involving two integer numbers, will also return an integer number. However, divisions do not return an integer number. This is holds even for divisions without remainder. Instead, thanks to the dynamic typing in Python, we get a floating point number: ###Code type(4/2) ###Output _____no_output_____ ###Markdown In Python 3 (which we are using here, as you can see from the Kernel type at the top right), if you want to specifically perform an integer division, you have to mark this by using a double division symbol: ```//```. ###Code 4//2 # integer division type(4//2) ###Output _____no_output_____ ###Markdown Just as a side note: The integer division ```//``` in Python 3 is actually a floor division, provided by the Python module math. We will discuss Python modules, at a later point in the course. ###Code import math math.floor(123/222) ###Output _____no_output_____ ###Markdown Floating-point NumbersFloating-point numbers have a fractional component. A decimal point and/or an optional signed exponent introduced by an ```e``` or ```E``` and followed by an optional sign are used to write floating-point numbers. ###Code type(3.14) # literal for a floating-point number 314e-2 # literal for a floating-point number in scientific notation ###Output _____no_output_____ ###Markdown Floating-point numbers are implemented as C "doubles", therefore they get as much precision as the C compiler used to build the Python interpreter gives to doubles (usually that is 15 decimal digits of precision). For more precision, external Python packages have to be used. In addition, Python 3 automatically handles a user-friendly output of floating-point numbers. For example, if we define the mathematical constant π to a numeric object, the unformatted output on screen will have the same length. ###Code pi_approximate = 3.14 pi_accurate = 3.141592653589793 print(pi_approximate) print(pi_accurate) ###Output 3.14 3.141592653589793 ###Markdown However, when printing the variable to the screen, you can also change the precision of the output, by using the modulus operator ```%```. If you want to print out 4 digits after the comma, indicate this with ```%.4f``` in the following way: ###Code print('%.4f'%pi_accurate) # formated screen output using print() for floating-point numbers ###Output 3.1416 ###Markdown Alternatively, the output can be formatted in scientific notation or as ingeter number, thought the indicators ```e``` and ```i```: ###Code print('%.4e'%pi_accurate) # formated screen output using print() for numbers in scientific notation print('%i'%pi_accurate) # formated screen output using print() for integer numbers ###Output 3 ###Markdown We will discuss further details of formatted output using the print function, further below in the section about strings. Furthermore, since variables are strongly typed in Python, you cannot change their type, but you can change the output to the screen or assign a changed output to another variable.For example, the function ```int()``` truncates a floating-point number into an integer number: ###Code int(3.141) ###Output _____no_output_____ ###Markdown And the function ```float()``` does the opposite: ###Code float(3) ###Output _____no_output_____ ###Markdown Take notice what happens, if an operation is performed that involves both number types floating-point and integer. In that case, before the Python intepreter performs the operation, it converts the elements of the operation up to the most complicated type. Hence, the output object type of a mathematical operation that includes integer and floating-point numbers will be of floating-point type: ###Code type(40 + 3.141) ###Output _____no_output_____ ###Markdown Built-in Numeric ToolsWe have already mentioned some basic mathematic operations. Now let's discuss more expressions available for processing numeric object types and some built-in functions and modules. We will meet many of these as we go along. *Expression operators:*```+```, ```-```, ```/```, ```*```, ```**```, ```%```, etc.Expressions operators are used for mathematical operations between two numbers. Above listed are the operands of an addition, substraction, division, multiplication, exponent, and modulus. Go to this website to find a comprehensive list of expression operators: https://www.tutorialspoint.com/python/python_basic_operators.htmIt is important to keep in mind that:* Mixed operators follow operator precedence (similar to mathematical operations: multiplications precede additions, hence, ```5+1*10=50```. For a full list of precedence orders see table 6.16 in the Python documentation: https://docs.python.org/3/reference/expressions.html)* Parantheses group subexpressions (exactly like in mathematics: ```(5+1)*10=60``` but ```5+(1*10)=50```)* Mixed types are converted up (as already discussed for the last example in the section about floating-point numbers) *Built-in functions:*Python has some built-in functions and some of them are useful for basic numeric processing. Examples are:```pow()```, ```abs()```, ```round()```, ```int()```, ```hex()```, ```bin()```, etc. The documentation pages of the Python language provides a comprehensive list: https://docs.python.org/3/library/functions.html *Utility modules:*The packages (modules) ```random``` and ```math``` provide further functions useful for mathematical operations. The documentation pages of the Python language provides a comprehenisve overview of functions coming with the math module: https://docs.python.org/3/library/math.html Such modules have to be imported before first, and then functions in that module can be accessed by combining their names with a literal ```.``` (similar to the example above using the ```math``` function ```floor()``` ): ###Code import math math.floor(3.14) ###Output _____no_output_____ ###Markdown The ```math``` module contains more advanced numeric tools as functions. Conveniently, the math module comes also with some mathematical constants and trigonometric functions: ###Code math.sqrt(99) math.pi, math.e # returns the mathematical constants pi and euler's number e math.sin(math.pi/2) ###Output _____no_output_____ ###Markdown After importing the ```random``` module, you can perform random-number generation ... ###Code import random random.random() ###Output _____no_output_____ ###Markdown ... and random selections (here, from a Python *list* coded in square brackets - an object type to be indroduced later in this course module): ###Code random.choice([1,2,3,4]) # choice([L]) chooses a random element from L ###Output _____no_output_____ ###Markdown Go ahead and use the following code cell to try some of the functions and modules in the examples and/or links above (but be aware that some in the links listed functions request more advanced object types, that we haven't discussed yet). ###Code math.ceil(3.14) # ceil(x) returns the smallest integer >= x. ###Output _____no_output_____ ###Markdown And of course, you can do all of discussed and listed numerical operations with variables that have been assigned with a numerical values. ###Code a = math.pi b = math.sin(math.pi*5/4) print(b) ###Output -0.7071067811865475 ###Markdown Using variable of numeric object type with expressions, the following has to be kept in mind for Python:* Variables are created when they are first assigned values.* Variables are replaced with their values when used in expressions.* Variables must be assigned before they can be used in expressions.* Variables refer to objects and are never declared ahead of time.Now, you have gained the most important knowledge to use and process variables of numeric object type in Python. For even more complex numerical operations, especially involving data tables, one has to refer to separate, external Python packages. We will discuss modules in general and external Python packages in specific during a later course module. Python HELP???!!!If you ever wonder what a function's function is without starting any literature or internet search, you may always consult the very useful built-in function ```help()```, through which you can request the manual entry for any function: ###Code help(abs) ###Output Help on built-in function abs in module builtins: abs(x, /) Return the absolute value of the argument. ###Markdown The returned text delivers information about syntax and semantics of the function. This work also for functions of imported modules: ###Code help(math.ceil) ###Output Help on built-in function ceil in module math: ceil(x, /) Return the ceiling of x as an Integral. This is the smallest integer >= x. ###Markdown Part B: Boolean Types: Truth Values, Comparisons & TestsPython's Boolean type and its operators are a bit different from their counterparts in languages like C. In Python, the Boolean type, ```bool```, is numeric in nature because its two values, ```True``` and ```False```, are basically custom versions of 1 and 0. Also Boolean values ```True``` or ```False``` are treated as numeric *constants* in Python (see the Table 1) and their Boolean object type (```bool```) is actually a subtype (subclass) of integers (```int```). ###Code type(True) ###Output _____no_output_____ ###Markdown Let's look at some examples to understand how Boolean types and their operators function in Python. Boolean Truth ValuesIn Python all objects have an inherent *Boolean* true or false value. We can define:* Any nonzero number or nonempty object is true.* Zero numbers, empty objects, and a special object ```None``` are considered false.The built-in function ```bool()```, which tests the Boolean value of an argument, is available to request this inherent value for any variable. For example: ###Code a = 0 b = None c = 10.0 bool(a), bool(b), bool(c) ###Output _____no_output_____ ###Markdown Because of Python's customization of the Boolean type, the output of Boolean expressions typed at the interactive prompt prints as the words ```True``` and ```False``` instead of the older and less obvious ```1``` and ```0```. Most programmers had been assigning ```True``` and ```False``` to ```1``` and ```0``` anyway. The ```bool``` type simply makes this standard. It's implementation can lead to curious results, though. Because ```True``` is just the integer ```1``` with a custom display format, ```True + 4``` yields integer ```5``` in Python! ###Code True + 4 ###Output _____no_output_____ ###Markdown By the way, very much like the Boolean values ```True``` and ```False```, also the value ```None``` is a built-in constant. However the ```None``` value is special, as it basically sets a variable to an empty value (much like a ```NULL``` pointer in C) and it has it's very separate and unique object type: ###Code type(None), type(True) ###Output _____no_output_____ ###Markdown See the top of this Python documentation page for explanations of the built-in constants: https://docs.python.org/3/library/constants.html Comparisons & Equality testsAlso comparisons and equality tests return ```True``` or ```False```. Range comparisons can be performed using the expression operators ``````, ```>=```, ```<=```; and equality tests using the expression operators ```==```, ```!=```. For example: ###Code a < c, a==c, b!=c ###Output _____no_output_____ ###Markdown Notice how mixed types are allowed in numeric expressions (only). In the first test above, Python compares an integer and a floating-point number with each other as well as a number with the NoneType. Boolean TestsBoolean tests use the logical operators ```and``` and ```or``` and they return a true or false operand object. Such Boolean operators combine the results of other tests in richer ways to produce new truth values. For that, revise also the operator precedence ([Table 6.16 of the Python documentation](https://docs.python.org/3/reference/expressions.html)).More formally, there are three Boolean expression operators in Python, which are typed out as workds in Python (in contrast to other languages):* ```X and Y``` Is true if both ```X``` and ```Y``` are true* ```X or Y``` Is true if either ```X``` or ```Y``` is true* ```not X``` Is true if ```X``` is false (the expression returns ```True``` or ```False```)Here, ```X``` and ```Y``` may be any truth value, or any expression that returns a truth value (e.g., an equality test, range comparison, and so on).Keep in mind, that the Boolean ```and``` and ```or``` operators return a true or false object, not the values ```True``` or ```False```. Let's look at a few examples to see how this works. Compare the following comparison: ###Code 1 < 2, 3 < 1 ###Output _____no_output_____ ###Markdown ... with the output of the following Boolean tests: ###Code 1 or 2, 3 or 1 None or 3 0 and 3 ###Output _____no_output_____ ###Markdown You can see, that ```and``` and ```or``` operators always return an object. Either the object on the *left* side of the operator or the object on the *right*. If we test their results, using the built-in function ```bool()``` they will be as expected (remember, every object is inherently true or false), but we won't get back a simple ```True``` or ```False```.Furthermore, Boolean ```or``` tests are done in a so called *short-circuit evaluations*. This means the interpreter evaluates the operand objects from left to right. Once it finds the first true operand, it terminates (short-circuits) the evaluation of the rest of the expression. After the first true operand was found, the values of further operands in the expression won't be able to change the outcome of an ```or``` test: ```true``` or anything is always true.Similarily, the Python ```and``` operands stop as soon as the result is known. However, in this case Python evaluates the operands from left to right and stops if the left operand is a ```false``` object because it determines the result: false ```and``` anything is always false.The concept of *short-circuit evaluations* has to be known, to predict the exact output of a Boolean test. Below some examples to study: ###Code True or 20 # Evaluation stops after first True object: result is True 10 or 20 # Evaluation stops after first non-zero object: result is 10 False and 20 # Evaluation stops after first False: result is False 10 and False # Evaluation stops after first False: result is False 10 and 20 # Evaluation continues until last object: results is 20 # (no zero or false object) 10 and 20 and 30 # Evaluation continues until last object: results is 30 ###Output _____no_output_____ ###Markdown Chained ComparisonsIn addition to that, Python allows us to chain multiple comparisons together. Chained compariosns are sort of shorthand for larger Boolean expressions. This allows to perform range tests. For instance, the expression ```(a < b < c)``` tests wheter ```b``` is between ```a``` and ```c```; it is equivalent to the Boolean test ```(a < b and b < c)```. But the former is easier on the eyes (and the keyboard).For example: ###Code a = 20 b = 40 c = 60 ###Output _____no_output_____ ###Markdown Now compare: ###Code a < b < c ###Output _____no_output_____ ###Markdown with: ###Code a < b and b < c ###Output _____no_output_____ ###Markdown You can build even longer chains or add comparisons into the chained tests. ###Code 1 < 2 < 3 < 4.0 < 5 ###Output _____no_output_____ ###Markdown But the resulting expressions can become nonintuitive, unless you evaluate them the way Python does. The following, for example, is false just because 1 is not equal to 2: ###Code 1 == 2 < 3 # Same as 1 == 2 and 2 < 3 (not same as False < 3) ###Output _____no_output_____ ###Markdown In this example, Python does not compare the ```1 == 2``` expression's ```False``` result to 3. This would technically mean the same as ```0 < 3```, which would be ```True```. Identity OperatorsLastly, identity operators compare the memory locations of two objects. There are two identity operators: ```is``` and ```is not```.* ```is``` evaluates to true if the variables on either side of the operator point to the same object and false otherwise.* ```is not``` evaluates to false if the variables on either side of the operator point to the same object and true otherwise.For example, remember from the last notebook what we have learned about how Variable names are referenced to objects in Python? From that, it becomes obvious the following identity test has to be true: ###Code a = 3 b = a a is b ###Output _____no_output_____ ###Markdown And with identity tests, we can also show, that the Boolean "number" ```True``` and the integer number ```1``` are of the same value (both are basically an integer number ```1```), but not of the same object: ###Code True == 1 # Same value True is 1 # But a different object ###Output <>:1: SyntaxWarning: "is" with a literal. Did you mean "=="? <>:1: SyntaxWarning: "is" with a literal. Did you mean "=="? <ipython-input-48-6e82371b8779>:1: SyntaxWarning: "is" with a literal. Did you mean "=="? True is 1 # But a different object ###Markdown Boolean Types: SummarySo let's summarize briefly, what we have discussed about Boolean types and operators:* Any nonzero number or nonempty object is true.* Zero numbers, empty objects, and a special object ```None``` are considered false.* Comparisons and equality tests are applied recursively to data structures.* Comparisons, equality tests and identity operators return ```True``` or ```False``` (which are custom versions of 1 and 0)* Boolean ```and``` and ```or``` operators return a true or false operand object.* Boolean operators stop evaluating ("short circuit") as soon as a result is known.Refer back to this website to find a comprehensive list of expression operators, including those for comparisons and equality test as well as logical operators and identity operators: https://www.tutorialspoint.com/python/python_basic_operators.htm Part C: Strings in Python Strings are used to record both, textual information (your name, for instance) as well as arbritrary collection of bytes (such as image file's contents). They are our first example, of what in Python we call a ***sequence*** - **a positionally ordered collection of other objects**. Sequences maintain a **left-to-right order** among the items they contain: their items are stored and fetched by their relative positions. Strictly speaking, strings are sequences of one-character strings; other, more general sequence types include *lists* and *tuples*, coverd later (Lutz, 2013). But let's first begin with the syntax for generating strings. String LiteralsPython strings are easy to use and several syntax forms can be used to generate them. For example, we can assign the a string "```knight's```" to a variable ```S``` in different ways: ###Code S1 = 'knight"s' # single quotes S2 = "knight's" # double quotes S3 = '''knights''' # triple quotes S4 = '\nknight\'s' # escape sequence print(S1 , S2 , S3 , S4, ) ###Output knight"s knight's knights knight's ###Markdown Single and double-quote characters are interchangeable and they can be enclosed in either. You can also embed one in the other and vice versa, as seen in the examples above. Triple quotes are an alternative to code entire *block strings*. That is a syntactic convenience for coding mulitiline text data.Escape sequences allow embedding of special characters in string cannot easily be typed on a keyborad. In the string literal, one Backslash ```\``` precedes a character. The character pair is then replaced by a single character to be stored in the string:* ```\n``` stores a newline* ```\t``` stores a horizontal tab* ```\v``` stores a vertical tab* ```\\```,```\'```,```\''``` for special caracters like Backslash, single quotes or double quotes The ```\\``` stores one ```\``` in the string. While the function print replaces the escape characters (see code cell above). However, the interactive echo of the interpreter keeps showing the special characters as escapes: ###Code S4 ###Output _____no_output_____ ###Markdown String PropertiesBecause strings are sequences, they support operations that assume a positional ordering among its items. For example, one can request the length of a string with the built-in function ```len()```. And one can select and print out certain items of a string, or in other words, fetch its components with *indexing* expressions. ###Code len(S1) # len returns ength of a string sequence S1[0] # returns the first item from the left S1[1] # returns the second item from the left ###Output _____no_output_____ ###Markdown In Python, indexing is coded as offsets from the front. The first item is at index 0, the second at index 1 and so on. In addition to that, strings allow the following typcial sequence operations.* slicing: general form of indexing - extract an entire section (slice) of a string in a single step* concatenating: joining two strings into a new string* repeating: making a new string by repeating anotherHere some examples: ###Code S1[1:4] # slicing an index S2 + S3 # concatenating an index S3*3 # Repetition ###Output _____no_output_____ ###Markdown Index operations will be discussed in more detail in the upcoming reading material.Another property of strings in Python is *immutability*. In the previous notebook you have learned about the concepts of mutability and immutability. Now, strings being immutable means they cannot be changed in place after they are created: any operations performed on strings cannot overwrite the values of a string object. But you can always build a new one and assign it to the same name. To illustrate that, let's look at two examples. Immutabilitity means, that you cannot change a single item of a string like this: ###Code S1[1]='y' ###Output _____no_output_____ ###Markdown Instead, we get a ```TypeError```, stating that string objects do not support item assignment! But we can run expressions to make new objects and reference them to the same name: ###Code S1 = 'y' + S1 print(S1) ###Output _____no_output_____ ###Markdown In this case, the old object and its reference are then deleted. In fact, Python cleans up old objects as you go. You will learn more about that in the upcoming reading material. Formatted output of strings using ```print()```You have already used ```print()``` to quickly print variable to the screen. The function, however, can be fed with syntax that formats the output of strings and numbers. For that, two different flavors are possible. The original technique available since Python's beginning, which is based on the C language and is used widely:* String formatting expressions: ```'...%s...' % (values)```A newer technique added since Python 2.6:* String formatting method calls: ```'...{}...'.format(values)```The second method is syntactically a bit more complex, expecially since it uses object oriented syntax, which we will discuss at a later point in the course. However, it has a clear advantage, as type codes are optional and different object types handled automatically. Both flavors can be used without (as interactive echo of the interpreter) and with the ```print()``` function. Below you can find a list of type codes useful for the second option (string formatting expressions). The list is not complete, but contains all codes relevant for this course.Table 2: *Selected string Formatting Type Codes.*| Code | Meaning / Object Type | :-: | :- || ```%s``` | String | ```%c``` | Character (int or str) | ```%d``` | Decimal (base-10 integer)| ```%i``` | Integer| ```%e``` | Floating-point with exponent, lower case| ```%E``` | Same as ```e``` but uses upper case ```E```| ```%f``` | Floating-point decimal | ```%``` | Literal % (coded as %%) In the following examples, both formatting techniques are adapted. Try to alter them and learn how they work: ###Code print("The %s robe is green!" % S2) # formatting expression print('The {} robe is green!'.format(S2)) # formatting method calls knifes = 2 print("The %s has %i knifes in his hand." % (S2,knifes)) print("The {} has {} knifes in his hand.".format(S2,knifes)) ###Output _____no_output_____ ###Markdown Precision of floating points can be controlled for the second formatting method by entering parameter into the curvy brackets, for example in the following way if you want to print two digits after the comma. Also the positions of the variable replacements can be switched: ###Code money = 2.222222 print("The {1:.3f} cents in the {0} pockets were stolen.".format(S2,money)) print("The {0:.3} cents in the {1:0.3} pockets were stolen.".format(S2,money)) ###Output _____no_output_____ ###Markdown If you like to get into the details of the very flexible string formatting using method calls, check the following pages:* https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3 * https://pyformat.info/ Type Specific Operations and MethodsLastly, I would like to provide an overview of type specific operations for strings in Python.Table 3: *String Type Specific Operations (after Lutz, 2013, Table 7-1).*| Operation | Interpretation | :----------- | :----------- || ```S1 + S2``` | Concatenate | ```S1 * 3``` | Repeat | ```S[i]``` | Indexing | ```S[i:j]``` | Slicing | ```len(S)``` | Length | ```"The sum of 1 + 2 is %i" % (1+2)``` | String formatting expression | ```"The sum of 1 + 2 is {0}".format(1+2)``` | String formatting method calls| ```.find('pa')``` | String methods: search | ```.strip()``` | Remove all leading and trailing whitespace| ```.rstrip()``` | Remove trailing whitespace| ```.replace('pa','xx')``` | Replacement| ```.split(',')``` | Split on delimiter| ```.splitlines()``` | split string at all ‘\n’ and return a list of the lines| ```.lower()``` | Case conversion (to lower case)| ```.upper()``` | Case conversion (to upper case)| ```.endswith(spam')``` | End testThe first seven entries have been addressed in this notebook. All remaining entries are so called methods. Methods are specific functions that are applied with the following syntax: ```stringname.methodname(arguments)```. The methods in the table are specifically designed to handle strings. These methods may appear to alter the content of strings. However, they are actually not changing the original strings but create new strings as results - because strings are immutable.Investigate and practice the functionality of these methods. You can use the examples below, the Python ```help()``` function or search them in the Python documentation: https://docs.python.org/3/library/stdtypes.html (scroll down to the section "String Methods"). Alternatively, study the following external Jupyter Notebook, which discusses the most important string methods: https://www.digitalocean.com/community/tutorials/an-introduction-to-string-functions-in-python-3 ###Code S = 'Hello World ! '# define a string S S.find('World') # find the substring 'World' S.replace('World','Class') # replace the substring 'World' with 'Class' S.rstrip(), S.lower(), S.upper() # check what happened to the spaces and the letters S.split(' ') # splits the string at a given delimiter (here space) S # even after the performed operations, the immutable string S remains unchanged help(str.find) # request help for a method ###Output _____no_output_____ ###Markdown Now, you can move on to read the book section about "Strings in Action" from Lutz (2013), which you can download on Canvas. The material will strengthen you knowledge about strings sequences, most importantly details about **indexing and slicing**. You can use the code cells below, to practice the examples in the book section. ###Code # add your code here # add your code here # add your code here # add your code here ###Output _____no_output_____
code/notebooks/Phytoliths_Classifier/Background_images_generator.ipynb
###Markdown Generador de recortes del fondo de la imagen*** Este notebook tiene como objetivo la obtención de recortes del fondo de las imágenes de fitolitos. La obtención de estos es fundamental para la utilización de técnicas de clasificación y/o reconocimiento de objetos mediante clasificadores junto a descriptores.Para ello:1. Leemos las imágenes junto a sus coordenadas almacenadas en un fichero *JSON*.2. Obtenemos recortes (de distintos tamaños) de la imágen siempre y cuando sea un area sin un fitolito.Las imágenes generadas se almacenan en "Background2" dentro de "code/rsc/img" para no alterar el conjunto de imágenes del fondo que se aporta inicialmente. ###Code %matplotlib inline from __future__ import print_function from ipywidgets import interact_manual, fixed import matplotlib.pyplot as plt import os, os.path import re import numpy as np import math from math import ceil from sklearn.feature_extraction.image import PatchExtractor from skimage import io from skimage.transform import rescale import copy import json import warnings import random def extract_patches(img, coords_list, patch_size, N=math.inf, scale=1.0, random_patch_size = True): """Extraemos los recortes de una imagen dado un tamaño de recorte.""" patches = [] count = 0 y_size, x_size = patch_size h, w, _ = img.shape for y in range(0, h, 400): y2 = y+y_size if(y2 > h): break for x in range(0, w, 400): y2 = y+y_size x2 = x+x_size if(x2 > w): break else: # Transformación aleatoria del patch_size # para tener mayor variabilidad en los # tamaños del recorte if(random_patch_size == True): rand = random.random() if rand > 0.85: y2 = y + round(y_size*0.5) elif rand > 0.7: x2 = x + round(x_size*0.5) elif rand > 0.55: y2 = y + round(y_size*0.5) x2 = x + round(x_size*0.5) patches.append((img[y:y2,x:x2],(x,y,x2,y2))) count += 1 if(count > N): return patches return patches def is_containing_objects(patch_coords, coords): """""" is_containing_corners = [] height = coords[3] - coords[1] width = coords[2] - coords[0] # TODO Refactorizar is_containing_corners.append(patch_coords[0] <= coords[0] <= patch_coords[2]\ and patch_coords[1] <= coords[1] <= patch_coords[3]) is_containing_corners.append(patch_coords[0] <= (coords[0] + width)\ <= patch_coords[2] and patch_coords[1] <= coords[1] <= patch_coords[3]) is_containing_corners.append(patch_coords[0] <= coords[0] <= patch_coords[2]\ and patch_coords[1] <= (coords[1] + height) <= patch_coords[3]) is_containing_corners.append(patch_coords[0] <= coords[2] <= patch_coords[2]\ and patch_coords[1] <= coords[3] <= patch_coords[3]) height = patch_coords[3] - patch_coords[1] width = patch_coords[2] - patch_coords[0] is_containing_corners.append(coords[0] <= patch_coords[0] <= coords[2]\ and coords[1] <= patch_coords[1] <= coords[3]) is_containing_corners.append(coords[0] <= (patch_coords[0] + width)\ <= coords[2] and coords[1] <= patch_coords[1] <= coords[3]) is_containing_corners.append(coords[0] <= patch_coords[0] <= coords[2]\ and coords[1] <= (patch_coords[1] + height) <= coords[3]) is_containing_corners.append(coords[0] <= patch_coords[2] <= coords[2]\ and coords[1] <= patch_coords[3] <= coords[3]) return any(is_containing_corners) def supress_contained_patches(patches, coords_list): """Función que recibe un conjunto de recortes junto a sus coordenadas dentro de la imagen y elimina todos los recortes que pertenezcan al area en la que se encuentren fitolitos""" cleaned_patches = [] contained = False count = 0 for complete_patch in patches: patch = complete_patch[0] patch_coords = complete_patch[1] for coords in coords_list: if (is_containing_objects(patch_coords, coords)): contained = True count += 1 break if contained == False: cleaned_patches.append(complete_patch) else: contained = False return cleaned_patches def save_patches(patches, path, image_name = ''): """Función que guarda cada uno de los recortes como imágen""" count = 0 for patch in patches: io.imsave(path + image_name +str(patch[1][0]) + "_" + str(patch[1][1]) + "_" + str(patch[1][2]) + "_" + str(patch[1][3]) + ".jpg", patch[0], quality=30) count += 1 path="../../rsc/img/Default" dest_path = "../../rsc/img/Background2/" pattern = re.compile("^.*\.jpg$", re.IGNORECASE) def list_images(path='../../rsc/img/Default'): """Contamos el número de imágenes que tenemos en el directorio de las imágenes etiquetadas""" images_list = [] for name in os.listdir(path): json_name = name.split(".")[0] + ".json" if pattern.match(name) \ and os.path.exists(path + "/" + json_name): images_list.append(path + "/" + name) return images_list def read_coords_conversion(coords_dict): coords_list =[] for _, coords in coords_dict.items(): coords_mod = np.array(coords) coords_mod = coords_mod[:,[2,0,3,1]] coords_mod = coords_mod.tolist() for coords in coords_mod: coords_list.append(coords) return coords_list def background_images_generator(path, number_of_images, dest_path): images_names_list = list_images(path) initial_value = len(images_names_list) if initial_value == 0: raise ValueError("Number of images must be greater than 0") count = 0 images_per_image = ceil(number_of_images / initial_value) for image_path in images_names_list: warnings.filterwarnings("ignore") image = rescale(io.imread(image_path), 0.5) json_path = "../.." + image_path.split(".")[-2] + ".json" image_name = os.path.split(image_path)[1].split(".")[0] image_with_format = image_name + ".jpg" # Cargamos coordenadas, si existen, # y si no existe fichero de coordenadas # pasamos a la siguiente imagen if os.path.exists(json_path): with open(json_path) as jsonfile: coords_dict = json.load(jsonfile) coords_dict = coords_dict[image_with_format] coords_list = read_coords_conversion(coords_dict) else: continue # Generamos recortes del fondo de la imagen patches = extract_patches(image, coords_list, patch_size=(250,250), N=images_per_image) patches = supress_contained_patches(patches, coords_list) save_patches(patches, dest_path, image_name) count += len(patches) if count > number_of_images: break interact_manual(background_images_generator, number_of_images=(10,4000,10), path=fixed(path), dest_path=fixed(dest_path)) ###Output _____no_output_____
lesson3/dataframes.ipynb
###Markdown always add the following cell to the start of a notebook when using spark ###Code # lets start the spark session # the entry point for an spark app is the SparkSession from pyspark.sql import SparkSession spark = SparkSession.builder.master("local[2]").appName("FirstApp").getOrCreate() # if you don't get an output here it means that jupyter isn't connected to pyspark spark ###Output _____no_output_____ ###Markdown use this to debug any errors related to wrong path/file not found ###Code import os os.getcwd() # os.path.abspath(os.getcwd()) ###Output _____no_output_____ ###Markdown Dataframes we can create a dataframe from a list that we parallelize ###Code data = [ ('1', 'JS', 179), ('2', 'CL', 175), ('3', 'AS', 140), ('4', 'LF', 170) ] df = spark.createDataFrame( data, ['Id', 'Name', 'Height'] # column list ) df.printSchema() df.show(10) # default 20 rows # we can retrieve a subset of the df using head df.head(2) type(df.head(2)) df.head(2)[0][2] # we can also pass the schema from pyspark.sql.types import * schema = StructType([ # StructField("column_name", columnType(), Nullable), StructField("id", StringType(), False), StructField("name", StringType(), True), StructField("height", IntegerType(), False) ]) df = spark.createDataFrame(data=data, schema=schema) df.printSchema() ###Output root |-- id: string (nullable = false) |-- name: string (nullable = true) |-- height: integer (nullable = false) ###Markdown SPARK.READ usually we want to create a df from a data source.Spark can read from the following sources CSVspark.read.csvusefull when reading from delimited files ###Code csv_path = '../data/airports.text' df = spark.read.csv( csv_path, # header=True, inferSchema=True # affects performance as data as parsed a second time to inferSchema ) df.printSchema() # describe() can be used to glance over the data statics df.describe().show() df.show() ###Output +---+--------------------+--------------+----------------+---+----+---------+----------+----+----+----+--------------------+ |_c0| _c1| _c2| _c3|_c4| _c5| _c6| _c7| _c8| _c9|_c10| _c11| +---+--------------------+--------------+----------------+---+----+---------+----------+----+----+----+--------------------+ | 1| Goroka| Goroka|Papua New Guinea|GKA|AYGA|-6.081689|145.391881|5282|10.0| U|Pacific/Port_Moresby| | 2| Madang| Madang|Papua New Guinea|MAG|AYMD|-5.207083| 145.7887| 20|10.0| U|Pacific/Port_Moresby| | 3| Mount Hagen| Mount Hagen|Papua New Guinea|HGU|AYMH|-5.826789|144.295861|5388|10.0| U|Pacific/Port_Moresby| | 4| Nadzab| Nadzab|Papua New Guinea|LAE|AYNZ|-6.569828|146.726242| 239|10.0| U|Pacific/Port_Moresby| | 5|Port Moresby Jack...| Port Moresby|Papua New Guinea|POM|AYPY|-9.443383| 147.22005| 146|10.0| U|Pacific/Port_Moresby| | 6| Wewak Intl| Wewak|Papua New Guinea|WWK|AYWK|-3.583828|143.669186| 19|10.0| U|Pacific/Port_Moresby| | 7| Narsarsuaq| Narssarssuaq| Greenland|UAK|BGBW|61.160517|-45.425978| 112|-3.0| E| America/Godthab| | 8| Nuuk| Godthaab| Greenland|GOH|BGGH|64.190922|-51.678064| 283|-3.0| E| America/Godthab| | 9| Sondre Stromfjord| Sondrestrom| Greenland|SFJ|BGSF|67.016969|-50.689325| 165|-3.0| E| America/Godthab| | 10| Thule Air Base| Thule| Greenland|THU|BGTL|76.531203|-68.703161| 251|-4.0| E| America/Thule| | 11| Akureyri| Akureyri| Iceland|AEY|BIAR|65.659994|-18.072703| 6| 0.0| N| Atlantic/Reykjavik| | 12| Egilsstadir| Egilsstadir| Iceland|EGS|BIEG|65.283333|-14.401389| 76| 0.0| N| Atlantic/Reykjavik| | 13| Hornafjordur| Hofn| Iceland|HFN|BIHN|64.295556|-15.227222| 24| 0.0| N| Atlantic/Reykjavik| | 14| Husavik| Husavik| Iceland|HZK|BIHU|65.952328|-17.425978| 48| 0.0| N| Atlantic/Reykjavik| | 15| Isafjordur| Isafjordur| Iceland|IFJ|BIIS|66.058056|-23.135278| 8| 0.0| N| Atlantic/Reykjavik| | 16|Keflavik Internat...| Keflavik| Iceland|KEF|BIKF| 63.985|-22.605556| 171| 0.0| N| Atlantic/Reykjavik| | 17| Patreksfjordur|Patreksfjordur| Iceland|PFJ|BIPA|65.555833| -23.965| 11| 0.0| N| Atlantic/Reykjavik| | 18| Reykjavik| Reykjavik| Iceland|RKV|BIRK| 64.13|-21.940556| 48| 0.0| N| Atlantic/Reykjavik| | 19| Siglufjordur| Siglufjordur| Iceland|SIJ|BISI|66.133333|-18.916667| 10| 0.0| N| Atlantic/Reykjavik| | 20| Vestmannaeyjar|Vestmannaeyjar| Iceland|VEY|BIVM|63.424303|-20.278875| 326| 0.0| N| Atlantic/Reykjavik| +---+--------------------+--------------+----------------+---+----+---------+----------+----+----+----+--------------------+ only showing top 20 rows ###Markdown using the output from the previous 2 cells, build a schema and pass it at read ###Code csv_schema = StructType([ # StructField("column_name", columnType(), Nullable), # edit this and add the columns ]) df = spark.read.csv(csv_path, schema=csv_schema) df.show() ###Output ++ || ++ || || || || || || || || || || || || || || || || || || || || ++ only showing top 20 rows ###Markdown TEXTspark.read.textsimilar to spark.Context.textFile ###Code text_path = '../data/word_count.text' df = spark.read.text(text_path) df.show() help(spark.read.text) ###Output Help on method text in module pyspark.sql.readwriter: text(paths, wholetext=False, lineSep=None, pathGlobFilter=None, recursiveFileLookup=None) method of pyspark.sql.readwriter.DataFrameReader instance Loads text files and returns a :class:`DataFrame` whose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8. By default, each line in the text file is a new row in the resulting DataFrame. :param paths: string, or list of strings, for input path(s). :param wholetext: if true, read each file from input path(s) as a single row. :param lineSep: defines the line separator that should be used for parsing. If None is set, it covers all ``\r``, ``\r\n`` and ``\n``. :param pathGlobFilter: an optional glob pattern to only include files with paths matching the pattern. The syntax follows `org.apache.hadoop.fs.GlobFilter`. It does not change the behavior of `partition discovery`_. :param recursiveFileLookup: recursively scan a directory for files. Using this option disables `partition discovery`_. >>> df = spark.read.text('python/test_support/sql/text-test.txt') >>> df.collect() [Row(value='hello'), Row(value='this')] >>> df = spark.read.text('python/test_support/sql/text-test.txt', wholetext=True) >>> df.collect() [Row(value='hello\nthis')] .. versionadded:: 1.6 ###Markdown JSONspark.read.json ###Code json_path = '../data/resource_hvrh-b6nb.json' df = spark.read.json(json_path) df.printSchema() ###Output root |-- dropoff_latitude: string (nullable = true) |-- dropoff_longitude: string (nullable = true) |-- extra: string (nullable = true) |-- fare_amount: string (nullable = true) |-- improvement_surcharge: string (nullable = true) |-- lpep_dropoff_datetime: string (nullable = true) |-- lpep_pickup_datetime: string (nullable = true) |-- mta_tax: string (nullable = true) |-- passenger_count: string (nullable = true) |-- payment_type: string (nullable = true) |-- pickup_latitude: string (nullable = true) |-- pickup_longitude: string (nullable = true) |-- ratecodeid: string (nullable = true) |-- store_and_fwd_flag: string (nullable = true) |-- tip_amount: string (nullable = true) |-- tolls_amount: string (nullable = true) |-- total_amount: string (nullable = true) |-- trip_distance: string (nullable = true) |-- trip_type: string (nullable = true) |-- vendorid: string (nullable = true) ###Markdown as long as they have a valid schema the json can be different ###Code jsonStrings = ['{"uploadTimeStamp":"1500618037189","ID":"123ID","data":[{"Data":{"unit":"rpm","value":"0"},"EventID":"E1","Timestamp":1500618037189,"pii":{}},{"Data":{"heading":"N","loc1":"false","loc2":"13.022425","loc3":"77.760587","loc4":"false","speed":"10"},"EventID":"E2","Timestamp":1500618037189,"pii":{}},{"Data":{"x":"1.1","y":"1.2","z":"2.2"},"EventID":"E3","Timestamp":1500618037189,"pii":{}},{"EventID":"E4","Data":{"value":"50","unit":"percentage"},"Timestamp":1500618037189},{"Data":{"unit":"kmph","value":"60"},"EventID":"E5","Timestamp":1500618037189,"pii":{}}]}', '{"uploadTimeStamp":"1500618045735","ID":"123ID","data":[{"Data":{"unit":"rpm","value":"0"},"EventID":"E1","Timestamp":1500618045735,"pii":{}},{"Data":{"heading":"N","loc1":"false","loc2":"13.022425","loc3":"77.760587","loc4":"false","speed":"10"},"EventID":"E2","Timestamp":1500618045735,"pii":{}},{"Data":{"x":"1.1","y":"1.2","z":"2.2"},"EventID":"E3","Timestamp":1500618045735,"pii":{}},{"EventID":"E4","Data":{"value":"50","unit":"percentage"},"Timestamp":1500618045735},{"Data":{"unit":"kmph","value":"60"},"EventID":"E5","Timestamp":1500618045735,"pii":{}}]}', '{"REGULAR_DUMMY":"REGULAR_DUMMY", "ID":"123ID", "uploadTimeStamp":1500546893837}', '{"REGULAR_DUMMY":"text_of_json_per_item_in_list"}' ] jsonRDD = spark.sparkContext.parallelize(jsonStrings) df = spark.read.json(jsonRDD) df.show() # the schema of the json is merged df.printSchema() # Starting with Spark 2.2 you can read a multiline json # ideally you want to receive the json on a single line m_json = '../data/multiline.json' spark.read.json(m_json).printSchema() spark.read.json(m_json).show() spark.read.json(m_json, multiLine=True).printSchema() df = df.filter(df['data'].isNotNull()).drop('REGULAR_DUMMY') df.select('data').show(20, False) # why did I used False here?! df.select('data').printSchema() df.select('data.Data.speed').show(20, False) df.select('data.Data.speed').printSchema() # exploding nested jsons fields is a "hard" problem in spark from pyspark.sql.functions import explode, arrays_zip df.select(explode(arrays_zip('data'))).show(20, False) df.select(explode(arrays_zip('data'))).printSchema() ###Output root |-- col: struct (nullable = false) | |-- data: struct (nullable = true) | | |-- Data: struct (nullable = true) | | | |-- heading: string (nullable = true) | | | |-- loc1: string (nullable = true) | | | |-- loc2: string (nullable = true) | | | |-- loc3: string (nullable = true) | | | |-- loc4: string (nullable = true) | | | |-- speed: string (nullable = true) | | | |-- unit: string (nullable = true) | | | |-- value: string (nullable = true) | | | |-- x: string (nullable = true) | | | |-- y: string (nullable = true) | | | |-- z: string (nullable = true) | | |-- EventID: string (nullable = true) | | |-- Timestamp: long (nullable = true) ###Markdown JDBCspark.read.jdbcdepending on the number of partitions, the db will receive multiple connections. This might make the db unresponsive.used less in big projectsthe code below is just an example. read the following article for more details about jdbc readshttps://github.com/awesome-spark/spark-gotchas/blob/master/05_spark_sql_and_dataset_api.mdreading-data-using-jdbc-source ###Code jdbcDF = spark.read \ .format("jdbc") \ .option("url", "jdbc:postgresql:dbserver") \ .option("dbtable", "schema.tablename") \ .option("user", "username") \ .option("password", "password") \ .load() jdbcDF2 = spark.read \ .jdbc("jdbc:postgresql:dbserver", "schema.tablename", properties={"user": "username", "password": "password"}) # Specifying dataframe column data types on read jdbcDF3 = spark.read \ .format("jdbc") \ .option("url", "jdbc:postgresql:dbserver") \ .option("dbtable", "schema.tablename") \ .option("user", "username") \ .option("password", "password") \ .option("customSchema", "id DECIMAL(38, 0), name STRING") \ .load() ###Output _____no_output_____ ###Markdown Parquetspark.read.parquethttps://databricks.com/glossary/what-is-parquet ###Code df = spark.read.parquet(parquet_path) ###Output _____no_output_____ ###Markdown read more about partition discoveryhttps://spark.apache.org/docs/latest/sql-data-sources-parquet.htmlpartition-discovery FORMAT & LOADgeneric way of reading data from the above data sources ###Code df = spark.read.format("parquet").load(parquet_path) df = spark.read.format('jdbc').option().load() df = spark.read.format('csv').option().load() ###Output _____no_output_____ ###Markdown usefull when developing frameworks (reading metadata and using generic ETL) Writesame as read, with additional options related to number of partitions.assuming df is the final dataframe, you can do something like in the cells belowread the entire list of options athttps://spark.apache.org/docs/latest/api/python/pyspark.sql.htmlpyspark.sql.DataFrameWriter ###Code df.write.csv(output_csv) df.write.parquet(output_parquet) df.write.json(output_json) df.write.jdbc() df.format('parquet|jdbc|json').option().save() ###Output _____no_output_____ ###Markdown Transformations ###Code csv_file = '../data/uk-postcode.csv' df = spark.read.csv(csv_file, header = True, inferSchema=True) df.show() df.describe().show(5, False) +-------+---------+------------------+------------------+------------------+-----------------+--------+-----------------+--------+-----------------+-----------------+------------------+------------------+ |summary|Post Code|Latitude |Longitude |Easting |Northing |GridRef |Town/Area |Region |Postcodes |Active postcodes |Population |Households | +-------+---------+------------------+------------------+------------------+-----------------+--------+-----------------+--------+-----------------+-----------------+------------------+------------------+ |count |3107 |3094 |3094 |3082 |3082 |3082 |3107 |3106 |3086 |3086 |2814 |2814 | |mean |null |53.034849482870136|-2.051575161550915|399520.80012978584|351774.8997404283|null |null |null |832.2216461438755|564.9565780946209|22437.184434968018|9390.271144278608 | |stddev |null |1.8865014315147148|1.8334605907478179|121798.85778550198|209187.830957896 |null |null |null |600.2495165657779|397.5467297411277|16578.512623860708|6814.9887522729805| |min |AB1 |49.1995 |-7.82593 |22681 |8307 |HU390111|Abbey Hey, Gorton|Aberdeen|1 |0 |2 |1 | |max |ZE3 |60.3156 |1.73337 |653560 |1159304 |TV604994|York City Centre |York |3621 |2644 |153812 |61886 | +-------+---------+------------------+------------------+------------------+-----------------+--------+-----------------+--------+-----------------+-----------------+------------------+------------------+ # select fields df.select('Postcode', 'Latitude').show() # rename column df = df.withColumnRenamed('Postcode', 'Post Code') df.show() df.schema.fieldNames() from pyspark.sql.functions import col, when df = df.withColumn('type', when(col('Population') < 10000, 'village').when(df['Population'] < 20000, 'town').otherwise('city').alias('type')) df.select('type').distinct().show() # if you write a condition like this, is easier to read it df = df.withColumn('schema', when(col('Population').isNull(), None)\ .when(col('Population') < 10000, 'village')\ .when(df['Population'] < 20000, 'town')\ .otherwise('city')) df.filter(df.schema.isNull()).show(5) # why do we have an error here? df.filter(df['schema'].isNull()).show(5) +---------+--------+---------+-------+--------+--------+--------------------+--------+---------+----------------+----------+----------+----+ |Post Code|Latitude|Longitude|Easting|Northing| GridRef| Town/Area| Region|Postcodes|Active postcodes|Population|Households|type| +---------+--------+---------+-------+--------+--------+--------------------+--------+---------+----------------+----------+----------+----+ | AB1| 57.1269| -2.13644| 391839| 804005|NJ918040| Aberdeen|Aberdeen| 2655| 0| null| null|city| | AB2| 57.1713| -2.14152| 391541| 808948|NJ915089| Aberdeen|Aberdeen| 3070| 0| null| null|city| | AB3| 57.0876| -2.59624| 363963| 799780|NO639997| Aberdeen|Aberdeen| 2168| 0| null| null|city| | AB4| 57.5343| -2.12713| 392487| 849358|NJ924493|Fraserburgh, Pete...|Aberdeen| 2956| 0| null| null|city| | AB5| 57.4652| -2.64764| 361248| 841843|NJ612418|Buckie, Huntly, I...|Aberdeen| 3002| 0| null| null|city| +---------+--------+---------+-------+--------+--------+--------------------+--------+---------+----------------+----------+----------+----+ # replace null df.na.fill('').filter(df['GridRef'] == 'SJ261898').show() df.na.fill('ThisWasNULL').filter(df['GridRef'] == 'SJ261898').show() df.na.drop().filter(df['GridRef'] == 'SJ261898').show() df.select('schema').na.fill('').replace({'town': 'Town'}).distinct().collect() df.withColumn('extra_column', 'literal_value').printSchema() from pyspark.sql.functions import lit df.withColumn('extra_column', lit('literal_value')).printSchema() # group by ag = df.groupby('Region', 'Town/Area') print(ag.count(), df.count()) df.groupby('Region').count().show() df.groupby('Region', 'type').sum().show() ag = df.groupby('Region', 'type').agg({'Region': 'count'}).withColumnRenamed('count(Region)', 'asd') ag.show(20) import pyspark.sql.functions as pf ag = df.groupby('Region', 'type').agg(pf.sum('Population').alias('sum_population'), pf.count('PostCodes')) ag.show() ###Output +--------------------+-------+--------------+----------------+ | Region| type|sum_population|count(PostCodes)| +--------------------+-------+--------------+----------------+ | New Forest| city| 157569| 5| | North Down| city| 83041| 3| | Hereford|village| 19355| 3| | Llandrindod Wells|village| 19566| 6| | Mole Valley|village| 4313| 1| | Hambleton| town| 12832| 1| | South Ayrshire| town| 61814| 4| | Blaenau Gwent| city| 75512| 3| | Rotherham| town| 19772| 1| |Richmond upon Thames| town| 52176| 3| | Somerset|village| 58212| 14| | Strabane|village| 7691| 1| | Leeds|village| 45159| 6| | Telford and Wrekin| city| 99808| 3| | Blackburn| city| null| 1| | Bournemouth| city| 102019| 4| | Antrim| city| 40205| 1| | Tendring| town| 25258| 2| | East Hampshire| town| 23140| 2| | Rother| town| 59782| 4| +--------------------+-------+--------------+----------------+ only showing top 20 rows ###Markdown PartitionsChoose the right partition column. Think about how the cardinality of that column affects how the data gets distributed.When in doubt hash is better (safer) ###Code # get number of partitions df.rdd.getNumPartitions() # you can use repartition to redistribuite data # triggers a shuffle # repartition by hash df = df.repartition(10) # repartition by columns df = df.repartition('col1','col2') # repartition by hash and cols df = df.repartition(10, 'col1', 'col2') # you can use coalesce to reduce the number of partitions # assuming 10 partitions and 5 workers df = df.coalesce(5) # will reduce the number of partions without triggering a shuffle # df.coalesce(20) will not do anything because 20 > 10 df.select('Region').distinct().count() df_200 = df.repartition('Region') df_200.rdd.getNumPartitions() df_200.show(20) df_200.coalesce(427).rdd.getNumPartitions() df_200.coalesce(100).rdd.getNumPartitions() # if you do coalesce(1) only one worker will do the work. # if you have "unexecuted" transformations repartition(1) is better # "save" the dataframe in memory or disk to reusse it df = df.cache() # <== very important to "store" the result in a new variable ###Output _____no_output_____ ###Markdown UDF ###Code from pyspark.sql.functions import udf def my_custom_fct(x, y): if condition: return int else return str return x+y udf_my_custom_fct = udf(my_custom_fct) df.show(20) df.withColumn('calculated_value', udf_my_custom_fct(df['Population'])) ###Output _____no_output_____
world_series_prediction-master/notebooks_for_clean_data/FinalProject_DataML.ipynb
###Markdown Import csvs for 1905 and 1969 to clean up dataset for machine learning application. Remove columns that are not needed for analysis. ###Code # Import dependencies. import pandas as pd # Open up the 1905.csv and inspect. df2 = pd.read_csv("../clean_data/1905.csv") df2 = df2.drop("Unnamed: 0", axis=1) df2 df3 = pd.read_csv("../clean_data/1969.csv") df3 = df3.drop("Unnamed: 0", axis=1) df3 df2 = df2.drop(["teamID", "divID", "Rank", "Ghome", "DivWin", "WCWin", "LgWin", "SF", "ER", "CG", "SHO", "SV", "name", "park", "attendance", "BPF", "PPF", "teamIDlahman45", "teamIDretro", "AB", "RA", "IPouts", "index", "L", "teamIDBR", "HBP", "lgID", "2B", "3B", "CS", "DP", "FP", "SO"], axis=1) df2.head() df3 = df3.drop(["teamID", "divID", "Rank", "Ghome", "DivWin", "WCWin", "LgWin", "SF", "ER", "CG", "SHO", "SV", "name", "park", "attendance", "BPF", "PPF", "teamIDlahman45", "teamIDretro", "AB", "RA", "IPouts", "index", "L", "teamIDBR", "HBP", "lgID", "2B", "3B", "CS", "DP", "FP", "SO"], axis=1) df3.head() ###Output _____no_output_____ ###Markdown Determine the win percent (WP) per team. Append WP column with data. Remove the W and G column. ###Code win_percent1 = [] for entry in range(len(df2)): win = df2["W"][entry] total = df2["G"][entry] percentage = int((win/total) * 100) win_percent1.append(percentage) df2["WP"] = win_percent1 df2 = df2.drop(["G", "W"], axis=1) df2 win_percent2 = [] for entry in range(len(df3)): win = df3["W"][entry] total = df3["G"][entry] percentage = int((win/total) * 100) win_percent2.append(percentage) df3["WP"] = win_percent2 df3 = df3.drop(["W", "G"], axis=1) df3 ###Output _____no_output_____ ###Markdown Export the two tables. ###Code df2.to_csv("../clean_data/1905ML.csv") df3.to_csv("../clean_data/1969ML.csv") ###Output _____no_output_____
practical_introduction_to_NLP_part1.ipynb
###Markdown Getting Started with NLTK ###Code import nltk nltk.download() nltk.download('book') from nltk.book import * text1 text9 ###Output _____no_output_____ ###Markdown Searching Text A concordance view shows us every occurrence of a given word, together with some context. ###Code text1.concordance("monstrous") text9.concordance("Thursday") text3.concordance("lived") text2.concordance("affection") text1.similar("monstrous") text2.similar("monstrous") text2.common_contexts(["monstrous","very"]) text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"]) text2.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"]) # text3.generate()# not font in nltk 3 ###Output _____no_output_____ ###Markdown Counting Vocabulary ###Code len(text2) sorted(set(text2)) len(set(text2)) len(set(text3)) / len(text3) text3.count("smote") 100 * text4.count('a') / len(text4) def lexical_diversity(text): return len(set(text)) / len(text) lexical_diversity(text3) lexical_diversity(text4) def percentage(count, total): return 100 * count / total percentage(4, 5) percentage(text4.count('a'), len(text4)) ###Output _____no_output_____ ###Markdown Texts as Lists of Words Lists ###Code sent1 = ['Call', 'me', 'Rashmi', '.'] sent1 len(sent1) lexical_diversity(sent1) sent2 sent3 ['Monty', 'Python'] + ['and', 'the', 'Holy', 'Grail'] sent4+ sent5 sent1.append("Some") sent1 ###Output _____no_output_____ ###Markdown Indexing Lists ###Code text4[13] text4.index('Among') text5[16715:16735] text6[1600:1625] ###Output _____no_output_____ ###Markdown Frequency Distributions ###Code fdist1 = FreqDist(text1) fdist1 fdist1.most_common(50) fdist1.most_common(5) fdist1['like'] ## Fine-grained Selection of Words ###Output _____no_output_____ ###Markdown Fine-grained Selection of Words ###Code V = set(text1) long_words = [w for w in V if len(w) > 15] sorted(long_words) fdist5 = FreqDist(text5) sorted(w for w in set(text5) if len(w) > 7 and fdist5[w] > 7) ###Output _____no_output_____ ###Markdown Collocations and Bigrams ###Code list(bigrams(['more', 'is', 'said', 'than', 'done'])) text4.collocations() ###Output _____no_output_____ ###Markdown Counting Other Things ###Code [len(w) for w in text1] fdist = FreqDist(len(w) for w in text1) fdist fdist.most_common() fdist.max() sorted(w for w in set(text1) if w.endswith('ableness')) ###Output _____no_output_____
benchmark_notebooks/similar/ood/Similar_OOD.ipynb
###Markdown SMI AL Loop ###Code import h5py import time import random import datetime import copy import numpy as np import os import csv import json import subprocess import sys import PIL.Image as Image import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.models as models from matplotlib import pyplot as plt from distil.distil.utils.models.resnet import ResNet18 from trust.trust.utils.custom_dataset import load_dataset_custom from torch.utils.data import Subset from torch.autograd import Variable import tqdm from math import floor from sklearn.metrics.pairwise import cosine_similarity, pairwise_distances from distil.distil.active_learning_strategies.scmi import SCMI from distil.distil.active_learning_strategies.smi import SMI from distil.distil.active_learning_strategies.badge import BADGE from distil.distil.active_learning_strategies.entropy_sampling import EntropySampling from distil.distil.active_learning_strategies.gradmatch_active import GradMatchActive seed=42 torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) from distil.distil.utils.utils import * def model_eval_loss(data_loader, model, criterion): total_loss = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(data_loader): inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) total_loss += loss.item() return total_loss def init_weights(m): # torch.manual_seed(35) if isinstance(m, nn.Conv2d): torch.nn.init.xavier_uniform_(m.weight) elif isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight) m.bias.data.fill_(0.01) def weight_reset(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): m.reset_parameters() def create_model(name, num_cls, device, embedding_type): if name == 'ResNet18': if embedding_type == "gradients": model = ResNet18(num_cls) else: model = models.resnet18() elif name == 'MnistNet': model = MnistNet() elif name == 'ResNet164': model = ResNet164(num_cls) model.apply(init_weights) model = model.to(device) return model def loss_function(): criterion = nn.CrossEntropyLoss() criterion_nored = nn.CrossEntropyLoss(reduction='none') return criterion, criterion_nored def optimizer_with_scheduler(model, num_epochs, learning_rate, m=0.9, wd=5e-4): optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=m, weight_decay=wd) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs) return optimizer, scheduler def optimizer_without_scheduler(model, learning_rate, m=0.9, wd=5e-4): # optimizer = optim.Adam(model.parameters(),weight_decay=wd) optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=m, weight_decay=wd) return optimizer def generate_cumulative_timing(mod_timing): tmp = 0 mod_cum_timing = np.zeros(len(mod_timing)) for i in range(len(mod_timing)): tmp += mod_timing[i] mod_cum_timing[i] = tmp return mod_cum_timing/3600 def find_err_per_class(test_set, val_set, final_val_classifications, final_val_predictions, final_tst_classifications, final_tst_predictions, saveDir, prefix): #find queries from the validation set that are erroneous # saveDir = os.path.join(saveDir, prefix) # if(not(os.path.exists(saveDir))): # os.mkdir(saveDir) val_err_idx = list(np.where(np.array(final_val_classifications) == False)[0]) tst_err_idx = list(np.where(np.array(final_tst_classifications) == False)[0]) val_class_err_idxs = [] tst_err_log = [] val_err_log = [] for i in range(num_cls): if(feature=="ood"): tst_class_idxs = list(torch.where(torch.Tensor(test_set.targets.float()) == i)[0].cpu().numpy()) if(feature=="classimb"): tst_class_idxs = list(torch.where(torch.Tensor(test_set.targets) == i)[0].cpu().numpy()) val_class_idxs = list(torch.where(torch.Tensor(val_set.targets.float()) == i)[0].cpu().numpy()) #err classifications per class val_err_class_idx = set(val_err_idx).intersection(set(val_class_idxs)) tst_err_class_idx = set(tst_err_idx).intersection(set(tst_class_idxs)) if(len(val_class_idxs)>0): val_error_perc = round((len(val_err_class_idx)/len(val_class_idxs))*100,2) else: val_error_perc = 0 tst_error_perc = round((len(tst_err_class_idx)/len(tst_class_idxs))*100,2) print("val, test error% for class ", i, " : ", val_error_perc, tst_error_perc) val_class_err_idxs.append(val_err_class_idx) tst_err_log.append(tst_error_perc) val_err_log.append(val_error_perc) tst_err_log.append(sum(tst_err_log)/len(tst_err_log)) val_err_log.append(sum(val_err_log)/len(val_err_log)) return tst_err_log, val_err_log, val_class_err_idxs def aug_train_subset(train_set, lake_set, true_lake_set, subset, lake_subset_idxs, budget, augrandom=False): all_lake_idx = list(range(len(lake_set))) if(not(len(subset)==budget) and augrandom): print("Budget not filled, adding ", str(int(budget) - len(subset)), " randomly.") remain_budget = int(budget) - len(subset) remain_lake_idx = list(set(all_lake_idx) - set(subset)) random_subset_idx = list(np.random.choice(np.array(remain_lake_idx), size=int(remain_budget), replace=False)) subset += random_subset_idx lake_ss = SubsetWithTargets(true_lake_set, subset, torch.Tensor(true_lake_set.targets.float())[subset]) if(feature=="ood"): ood_lake_idx = list(set(lake_subset_idxs)-set(subset)) private_set = SubsetWithTargets(true_lake_set, ood_lake_idx, torch.Tensor(np.array([split_cfg['num_cls_idc']]*len(ood_lake_idx))).float()) remain_lake_idx = list(set(all_lake_idx) - set(lake_subset_idxs)) remain_lake_set = SubsetWithTargets(lake_set, remain_lake_idx, torch.Tensor(lake_set.targets.float())[remain_lake_idx]) remain_true_lake_set = SubsetWithTargets(true_lake_set, remain_lake_idx, torch.Tensor(true_lake_set.targets.float())[remain_lake_idx]) print(len(lake_ss),len(remain_lake_set),len(lake_set)) if(feature!="ood"): assert((len(lake_ss)+len(remain_lake_set))==len(lake_set)) aug_train_set = torch.utils.data.ConcatDataset([train_set, lake_ss]) if(feature=="ood"): return aug_train_set, remain_lake_set, remain_true_lake_set, private_set, lake_ss else: return aug_train_set, remain_lake_set, remain_true_lake_set, lake_ss def getQuerySet(val_set, val_class_err_idxs, imb_cls_idx, miscls): miscls_idx = [] if(miscls): for i in range(len(val_class_err_idxs)): if i in imb_cls_idx: miscls_idx += val_class_err_idxs[i] print("total misclassified ex from imb classes: ", len(miscls_idx)) else: for i in imb_cls_idx: imb_cls_samples = list(torch.where(torch.Tensor(val_set.targets.float()) == i)[0].cpu().numpy()) miscls_idx += imb_cls_samples print("total samples from imb classes as targets: ", len(miscls_idx)) return Subset(val_set, miscls_idx) def getPrivateSet(lake_set, subset, private_set): #augment prev private set and current subset new_private_set = SubsetWithTargets(lake_set, subset, torch.Tensor(lake_set.targets.float())[subset]) # new_private_set = Subset(lake_set, subset) total_private_set = torch.utils.data.ConcatDataset([private_set, new_private_set]) return total_private_set def remove_ood_points(lake_set, subset, idc_idx): idx_subset = [] subset_cls = torch.Tensor(lake_set.targets.float())[subset] for i in idc_idx: idc_subset_idx = list(torch.where(subset_cls == i)[0].cpu().numpy()) idx_subset += list(np.array(subset)[idc_subset_idx]) print(len(idx_subset),"/",len(subset), " idc points.") return idx_subset def getPerClassSel(lake_set, subset, num_cls): perClsSel = [] subset_cls = torch.Tensor(lake_set.targets.float())[subset] for i in range(num_cls): cls_subset_idx = list(torch.where(subset_cls == i)[0].cpu().numpy()) perClsSel.append(len(cls_subset_idx)) return perClsSel feature = "ood" device_id = 0 run="fkna_3" datadir = 'data/' data_name = 'cifar10' model_name = 'ResNet18' num_rep = 10 learning_rate = 0.01 num_runs = 1 # number of random runs computeClassErrorLog = True magnification = 1 device = "cuda:"+str(device_id) if torch.cuda.is_available() else "cpu" datkbuildPath = "./datk/build" exePath = "cifarSubsetSelector" print("Using Device:", device) doublePrecision = True linearLayer = True miscls = False # handler = DataHandler_CIFAR10 augTarget = True embedding_type = "gradients" if(feature=="ood"): num_cls=8 budget=250 num_epochs = int(10) split_cfg = {'num_cls_idc':8, 'per_idc_train':200, 'per_idc_val':10, 'per_idc_lake':500, 'per_ood_train':0, 'per_ood_val':0, 'per_ood_lake':5000}#cifar10 # split_cfg = {'num_cls_idc':50, 'per_idc_train':100, 'per_idc_val':2, 'per_idc_lake':100, 'per_ood_train':0, 'per_ood_val':0, 'per_ood_lake':500}#cifar100 initModelPath = "weights/" + data_name + "_" + feature + "_" + model_name + "_" + str(learning_rate) + "_" + str(split_cfg["per_idc_train"]) + "_" + str(split_cfg["per_idc_val"]) + "_" + str(split_cfg["num_cls_idc"]) ###Output _____no_output_____ ###Markdown AL Like Train Loop ###Code def train_model_al(datkbuildPath, exePath, num_epochs, dataset_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeErrorLog, strategy="SIM", sf=""): # torch.manual_seed(42) # np.random.seed(42) print(strategy, sf) #load the dataset based on type of feature train_set, val_set, test_set, lake_set, sel_cls_idx, num_cls = load_dataset_custom(datadir, dataset_name, feature, split_cfg, False, True) print("selected classes are: ", sel_cls_idx) if(feature=="ood"): num_cls+=1 #Add one class for OOD class N = len(train_set) trn_batch_size = 20 val_batch_size = 10 tst_batch_size = 100 trainloader = torch.utils.data.DataLoader(train_set, batch_size=trn_batch_size, shuffle=True, pin_memory=True) valloader = torch.utils.data.DataLoader(val_set, batch_size=val_batch_size, shuffle=False, pin_memory=True) tstloader = torch.utils.data.DataLoader(test_set, batch_size=tst_batch_size, shuffle=False, pin_memory=True) lakeloader = torch.utils.data.DataLoader(lake_set, batch_size=tst_batch_size, shuffle=False, pin_memory=True) true_lake_set = copy.deepcopy(lake_set) # Budget for subset selection bud = budget # Variables to store accuracies fulltrn_losses = np.zeros(num_epochs) val_losses = np.zeros(num_epochs) tst_losses = np.zeros(num_epochs) timing = np.zeros(num_epochs) val_acc = np.zeros(num_epochs) full_trn_acc = np.zeros(num_epochs) tst_acc = np.zeros(num_epochs) final_tst_predictions = [] final_tst_classifications = [] best_val_acc = -1 csvlog = [] val_csvlog = [] # Results logging file print_every = 3 # all_logs_dir = '/content/drive/MyDrive/research/tdss/SMI_active_learning_results_woVal/' + dataset_name + '/' + feature + '/'+ sf + '/' + str(bud) + '/' + str(run) all_logs_dir = './SMI_active_learning_results/' + dataset_name + '/' + feature + '/'+ sf + '/' + str(bud) + '/' + str(run) print("Saving results to: ", all_logs_dir) subprocess.run(["mkdir", "-p", all_logs_dir]) exp_name = dataset_name + "_" + feature + "_" + strategy + "_" + str(len(sel_cls_idx)) +"_" + sf + '_budget:' + str(bud) + '_epochs:' + str(num_epochs) + '_linear:' + str(linearLayer) + '_runs' + str(run) print(exp_name) res_dict = {"dataset":data_name, "feature":feature, "sel_func":sf, "sel_budget":budget, "num_selections":num_epochs, "model":model_name, "learning_rate":learning_rate, "setting":split_cfg, "all_class_acc":None, "test_acc":[], "sel_per_cls":[], "sel_cls_idx":sel_cls_idx.tolist()} # Model Creation model = create_model(model_name, num_cls, device, embedding_type) model1 = create_model(model_name, num_cls, device, embedding_type) # Loss Functions criterion, criterion_nored = loss_function() strategy_args = {'batch_size': 20, 'device':'cuda', 'num_partitions':1, 'wrapped_strategy_class': None, 'embedding_type':'gradients', 'keep_embedding':False} unlabeled_lake_set = LabeledToUnlabeledDataset(lake_set) if(strategy == "AL"): if(sf=="badge"): strategy_sel = BADGE(train_set, unlabeled_lake_set, model, num_cls, strategy_args) elif(sf=="us"): strategy_sel = EntropySampling(train_set, unlabeled_lake_set, model, num_cls, strategy_args) elif(sf=="glister" or sf=="glister-tss"): strategy_sel = GLISTER(train_set, unlabeled_lake_set, model, num_cls, strategy_args, val_set, typeOf='rand', lam=0.1) elif(sf=="gradmatch-tss"): strategy_sel = GradMatchActive(train_set, unlabeled_lake_set, model, num_cls, strategy_args, val_set) elif(sf=="coreset"): strategy_sel = CoreSet(train_set, unlabeled_lake_set, model, num_cls, strategy_args) elif(sf=="leastconf"): strategy_sel = LeastConfidence(train_set, unlabeled_lake_set, model, num_cls, strategy_args) elif(sf=="margin"): strategy_sel = MarginSampling(train_set, unlabeled_lake_set, model, num_cls, strategy_args) if(strategy == "SIM"): if(sf.endswith("mic")): strategy_args['scmi_function'] = sf.split("mic")[0] + "cmi" strategy_sel = SCMI(train_set, unlabeled_lake_set, val_set, val_set, model, num_cls, strategy_args) if(sf.endswith("mi")): strategy_args['smi_function'] = sf strategy_sel = SMI(train_set, unlabeled_lake_set, val_set, model, num_cls, strategy_args) strategy_args['verbose'] = True strategy_args['optimizer'] = "LazyGreedy" # Getting the optimizer and scheduler # optimizer, scheduler = optimizer_with_scheduler(model, num_epochs, learning_rate) optimizer = optimizer_without_scheduler(model, learning_rate) private_set = [] for i in range(num_epochs): print("AL epoch: ", i) tst_loss = 0 tst_correct = 0 tst_total = 0 val_loss = 0 val_correct = 0 val_total = 0 if(i==0): print("initial training epoch") if(os.path.exists(initModelPath)): model.load_state_dict(torch.load(initModelPath, map_location=device)) print("Init model loaded from disk, skipping init training: ", initModelPath) model.eval() with torch.no_grad(): final_val_predictions = [] final_val_classifications = [] for batch_idx, (inputs, targets) in enumerate(valloader): inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) val_loss += loss.item() if(feature=="ood"): _, predicted = outputs[...,:-1].max(1) else: _, predicted = outputs.max(1) val_total += targets.size(0) val_correct += predicted.eq(targets).sum().item() final_val_predictions += list(predicted.cpu().numpy()) final_val_classifications += list(predicted.eq(targets).cpu().numpy()) final_tst_predictions = [] final_tst_classifications = [] for batch_idx, (inputs, targets) in enumerate(tstloader): inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) tst_loss += loss.item() if(feature=="ood"): _, predicted = outputs[...,:-1].max(1) else: _, predicted = outputs.max(1) tst_total += targets.size(0) tst_correct += predicted.eq(targets).sum().item() final_tst_predictions += list(predicted.cpu().numpy()) final_tst_classifications += list(predicted.eq(targets).cpu().numpy()) best_val_acc = (val_correct/val_total) val_acc[i] = val_correct / val_total tst_acc[i] = tst_correct / tst_total val_losses[i] = val_loss tst_losses[i] = tst_loss res_dict["test_acc"].append(tst_acc[i]) continue else: unlabeled_lake_set = LabeledToUnlabeledDataset(lake_set) strategy_sel.update_data(train_set, unlabeled_lake_set) #compute the error log before every selection if(computeErrorLog): tst_err_log, val_err_log, val_class_err_idxs = find_err_per_class(test_set, val_set, final_val_classifications, final_val_predictions, final_tst_classifications, final_tst_predictions, all_logs_dir, sf+"_"+str(bud)) csvlog.append(tst_err_log) val_csvlog.append(val_err_log) ####SIM#### if(strategy=="SIM" or strategy=="SF"): if(sf.endswith("mi")): if(feature=="classimb"): #make a dataloader for the misclassifications - only for experiments with targets miscls_set = getQuerySet(val_set, val_class_err_idxs, sel_cls_idx, miscls) strategy_sel.update_queries(miscls_set) elif(sf.endswith("mic")): #configured for the OOD setting print("val set targets: ", val_set.targets) strategy_sel.update_queries(val_set) #In-dist samples are in Val if(len(private_set)!=0): print("private set targets: ", private_set.targets) strategy_sel.update_privates(private_set) ###AL### elif(strategy=="AL"): if(sf=="glister-tss" or sf=="gradmatch-tss"): miscls_set = getQuerySet(val_set, val_class_err_idxs, sel_cls_idx, miscls) strategy_sel.update_queries(miscls_set) print("reinit AL with targeted miscls samples") elif(strategy=="random"): subset = np.random.choice(np.array(list(range(len(lake_set)))), size=budget, replace=False) strategy_sel.update_model(model) subset = strategy_sel.select(budget) # print("True targets of subset: ", torch.Tensor(true_lake_set.targets.float())[subset]) # hypothesized_targets = strategy_sel.predict(unlabeled_lake_set) # print("Hypothesized targets of subset: ", hypothesized_targets) print("#### SELECTION COMPLETE ####") lake_subset_idxs = subset #indices wrt to lake that need to be removed from the lake if(feature=="ood"): #remove ood points from the subset subset = remove_ood_points(true_lake_set, subset, sel_cls_idx) print("selEpoch: %d, Selection Ended at:" % (i), str(datetime.datetime.now())) perClsSel = getPerClassSel(true_lake_set, lake_subset_idxs, num_cls) res_dict['sel_per_cls'].append(perClsSel) #augment the train_set with selected indices from the lake if(feature=="classimb"): train_set, lake_set, true_lake_set, add_val_set = aug_train_subset(train_set, lake_set, true_lake_set, subset, lake_subset_idxs, budget, True) #aug train with random if budget is not filled if(augTarget): val_set = ConcatWithTargets(val_set, add_val_set) elif(feature=="ood"): train_set, lake_set, true_lake_set, new_private_set, add_val_set = aug_train_subset(train_set, lake_set, true_lake_set, subset, lake_subset_idxs, budget) train_set = torch.utils.data.ConcatDataset([train_set, new_private_set]) #Add the OOD samples with a common OOD class val_set = ConcatWithTargets(val_set, add_val_set) if(len(private_set)!=0): private_set = ConcatWithTargets(private_set, new_private_set) else: private_set = new_private_set else: train_set, lake_set, true_lake_set = aug_train_subset(train_set, lake_set, true_lake_set, subset, lake_subset_idxs, budget) print("After augmentation, size of train_set: ", len(train_set), " lake set: ", len(lake_set), " val set: ", len(val_set)) # Reinit train and lake loaders with new splits and reinit the model trainloader = torch.utils.data.DataLoader(train_set, batch_size=trn_batch_size, shuffle=True, pin_memory=True) lakeloader = torch.utils.data.DataLoader(lake_set, batch_size=tst_batch_size, shuffle=False, pin_memory=True) if(augTarget): valloader = torch.utils.data.DataLoader(val_set, batch_size=len(val_set), shuffle=False, pin_memory=True) model = create_model(model_name, num_cls, device, strategy_args['embedding_type']) optimizer = optimizer_without_scheduler(model, learning_rate) #Start training start_time = time.time() num_ep=1 while(full_trn_acc[i]<0.99 and num_ep<300): model.train() for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) # Variables in Pytorch are differentiable. inputs, target = Variable(inputs), Variable(inputs) # This will zero out the gradients for this batch. optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() # scheduler.step() full_trn_loss = 0 full_trn_correct = 0 full_trn_total = 0 model.eval() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) full_trn_loss += loss.item() _, predicted = outputs.max(1) full_trn_total += targets.size(0) full_trn_correct += predicted.eq(targets).sum().item() full_trn_acc[i] = full_trn_correct / full_trn_total print("Selection Epoch ", i, " Training epoch [" , num_ep, "]" , " Training Acc: ", full_trn_acc[i], end="\r") num_ep+=1 timing[i] = time.time() - start_time with torch.no_grad(): final_val_predictions = [] final_val_classifications = [] for batch_idx, (inputs, targets) in enumerate(valloader): #Compute Val accuracy inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) val_loss += loss.item() if(feature=="ood"): _, predicted = outputs[...,:-1].max(1) else: _, predicted = outputs.max(1) val_total += targets.size(0) val_correct += predicted.eq(targets).sum().item() final_val_predictions += list(predicted.cpu().numpy()) final_val_classifications += list(predicted.eq(targets).cpu().numpy()) final_tst_predictions = [] final_tst_classifications = [] for batch_idx, (inputs, targets) in enumerate(tstloader): #Compute test accuracy inputs, targets = inputs.to(device), targets.to(device, non_blocking=True) outputs = model(inputs) loss = criterion(outputs, targets) tst_loss += loss.item() if(feature=="ood"): _, predicted = outputs[...,:-1].max(1) else: _, predicted = outputs.max(1) tst_total += targets.size(0) tst_correct += predicted.eq(targets).sum().item() final_tst_predictions += list(predicted.cpu().numpy()) final_tst_classifications += list(predicted.eq(targets).cpu().numpy()) val_acc[i] = val_correct / val_total tst_acc[i] = tst_correct / tst_total val_losses[i] = val_loss fulltrn_losses[i] = full_trn_loss tst_losses[i] = tst_loss full_val_acc = list(np.array(val_acc)) full_timing = list(np.array(timing)) res_dict["test_acc"].append(tst_acc[i]) print('Epoch:', i + 1, 'FullTrn,TrainAcc,ValLoss,ValAcc,TstLoss,TstAcc,Time:', full_trn_loss, full_trn_acc[i], val_loss, val_acc[i], tst_loss, tst_acc[i], timing[i]) if(i==0): print("saving initial model") torch.save(model.state_dict(), initModelPath) #save initial train model if not present if(computeErrorLog): tst_err_log, val_err_log, val_class_err_idxs = find_err_per_class(test_set, val_set, final_val_classifications, final_val_predictions, final_tst_classifications, final_tst_predictions, all_logs_dir, sf+"_"+str(bud)) csvlog.append(tst_err_log) val_csvlog.append(val_err_log) print(csvlog) res_dict["all_class_acc"] = csvlog res_dict["all_val_class_acc"] = val_csvlog with open(os.path.join(all_logs_dir, exp_name+".csv"), "w") as f: writer = csv.writer(f) writer.writerows(csvlog) #save results dir with test acc and per class selections with open(os.path.join(all_logs_dir, exp_name+".json"), 'w') as fp: json.dump(res_dict, fp) ###Output _____no_output_____ ###Markdown FLCMI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'flmic') ###Output _____no_output_____ ###Markdown LOGDETCMI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'logdetmic') ###Output _____no_output_____ ###Markdown FL2MI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'fl2mi') ###Output _____no_output_____ ###Markdown FL1MI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'fl1mi') ###Output _____no_output_____ ###Markdown BADGE ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","badge") ###Output _____no_output_____ ###Markdown US ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","us") ###Output _____no_output_____ ###Markdown GLISTER ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","glister-tss") ###Output _____no_output_____ ###Markdown GCMI+DIV ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'div-gcmi') ###Output _____no_output_____ ###Markdown GCMI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'gcmi') ###Output _____no_output_____ ###Markdown LOGDETMI ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SIM",'logdetmi') ###Output _____no_output_____ ###Markdown FL ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SF",'fl') ###Output _____no_output_____ ###Markdown LOGDET ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "SF",'logdet') ###Output _____no_output_____ ###Markdown Random ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "random",'random') ###Output _____no_output_____ ###Markdown CORESET ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","coreset") ###Output _____no_output_____ ###Markdown LEASTCONF ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","leastconf") ###Output _____no_output_____ ###Markdown MARGIN SAMPLING ###Code train_model_al(datkbuildPath, exePath, num_epochs, data_name, datadir, feature, model_name, budget, split_cfg, learning_rate, run, device, computeClassErrorLog, "AL","margin") ###Output _____no_output_____
docs/samples/ML Toolbox/Regression/Census/5 Service Predict.ipynb
###Markdown Deploying a Model and Predicting with Cloud Machine Learning Engine This notebook is the final step in a series of notebooks for doing machine learning on cloud. The [previous notebook](./4 Service Evaluate.ipynb), demonstrated evaluating a model. In a real-world scenario, it is likely that there are multiple evaluation datasets, as well as multiple models that need to be evaluated, before there is a model suitable for deployment. Workspace SetupThe first step is to setup the workspace that we will use within this notebook - the python libraries, and the Google Cloud Storage bucket that will be used to contain the inputs and outputs produced over the course of the steps. ###Code import google.datalab as datalab import google.datalab.ml as ml import mltoolbox.regression.dnn as regression import os import requests import time ###Output _____no_output_____ ###Markdown The storage bucket was created earlier. We'll re-declare it here, so we can use it. ###Code storage_bucket = 'gs://' + datalab.Context.default().project_id + '-datalab-workspace/' storage_region = 'us-central1' workspace_path = os.path.join(storage_bucket, 'census') training_path = os.path.join(workspace_path, 'training') model_name = 'census' model_version = 'v1' ###Output _____no_output_____ ###Markdown ModelLets take a quick look at the model that was previously produced as a result of the training job. This is the model that was evaluated, and is going to be deployed. ###Code !gsutil ls -r {training_path}/model ###Output gs://cloud-ml-users-datalab-workspace/census/training/model/: gs://cloud-ml-users-datalab-workspace/census/training/model/ gs://cloud-ml-users-datalab-workspace/census/training/model/saved_model.pb gs://cloud-ml-users-datalab-workspace/census/training/model/assets.extra/: gs://cloud-ml-users-datalab-workspace/census/training/model/assets.extra/ gs://cloud-ml-users-datalab-workspace/census/training/model/assets.extra/features.json gs://cloud-ml-users-datalab-workspace/census/training/model/assets.extra/schema.json gs://cloud-ml-users-datalab-workspace/census/training/model/variables/: gs://cloud-ml-users-datalab-workspace/census/training/model/variables/ gs://cloud-ml-users-datalab-workspace/census/training/model/variables/variables.data-00000-of-00001 gs://cloud-ml-users-datalab-workspace/census/training/model/variables/variables.index ###Markdown DeploymentCloud Machine Learning Engine provides APIs to deploy and manage models. The first step is to create a named model resource, which can be referred to by name. The second step is to deploy the trained model binaries as a version within the model resource.**NOTE**: These steps can take a few minutes. ###Code !gcloud ml-engine models create {model_name} --regions {storage_region} !gcloud ml-engine versions create {model_version} --model {model_name} --origin {training_path}/model ###Output Creating version (this might take a few minutes)......done. ###Markdown At this point the model is ready for batch prediction jobs. It is also automatically exposed as an HTTP endpoint for performing online prediction. Online PredictionOnline prediction is accomplished by issuing HTTP requests to the specific model version endpoint. Instances to be predicted are formatted as JSON in the request body. The structure of instances depend on the model. The census model in this sample was trained using data formatted as CSV, and so the model expects inputs as CSV formatted strings.Prediction results are returned as JSON in the response.HTTP requests must contain an OAuth token auth header to succeed. In the Datalab notebook, the OAuth token corresponding to the environment is accessible without a requiring OAuth flow. Actual applications will need to determine the best strategy for acquringing OAuth tokens, generally using [Application Default Credentials](https://developers.google.com/identity/protocols/application-default-credentials). ###Code api = 'https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions/{version}:predict' url = api.format(project=datalab.Context.default().project_id, model=model_name, version=model_version) headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + datalab.Context.default().credentials.get_access_token().access_token } body = { 'instances': [ '490,64,2,0,1,0,2,8090,015,01,1,00590,00500,1,18,0,2,1', '1225,32,5,0,4,5301,2,9680,015,01,1,00100,00100,1,21,2,1,1', '1226,30,1,0,1,0,2,8680,020,01,1,00100,00100,1,16,0,2,1' ] } response = requests.post(url, json=body, headers=headers) predictions = response.json()['predictions'] predictions ###Output _____no_output_____ ###Markdown It is quite simple to issue these requests using your HTTP library of choice. Actual applications should include the logic to handle errors, including retries. Batch PredictionWhile online prediction is optimized for low-latency requests over small lists of instances, batch prediction is designed for high-throughput prediction for large datasets. The same model can be used for both.Batch prediction jobs can also be submitted via the API. They are easily submitted via the gcloud tool as well. ###Code %file /tmp/instances.csv 490,64,2,0,1,0,2,8090,015,01,1,00590,00500,1,18,0,2,1 1225,32,5,0,4,5301,2,9680,015,01,1,00100,00100,1,21,2,1,1 1226,30,1,0,1,0,2,8680,020,01,1,00100,00100,1,16,0,2,1 prediction_data_path = os.path.join(workspace_path, 'data/prediction.csv') !gsutil -q cp /tmp/instances.csv {prediction_data_path} ###Output _____no_output_____ ###Markdown Each batch prediction job must have a unique name within the scope of a project. The specified name below may need to be changed if you are re-running this notebook. ###Code job_name = 'census_prediction_' + str(int(time.time())) prediction_path = os.path.join(workspace_path, 'predictions') ###Output _____no_output_____ ###Markdown **NOTE**: A batch prediction job can take a few minutes, due to overhead of provisioning resources, which is reasonable for large jobs, but can far exceed the time to complete a tiny dataset such as the one used in this sample. ###Code !gcloud ml-engine jobs submit prediction {job_name} --model {model_name} --version {model_version} --data-format TEXT --input-paths {prediction_data_path} --output-path {prediction_path} --region {storage_region} ###Output createTime: '2017-03-07T20:00:36Z' jobId: census_prediction_1488916830 predictionInput: dataFormat: TEXT inputPaths: - gs://cloud-ml-users-datalab-workspace/census/data/prediction.csv outputPath: gs://cloud-ml-users-datalab-workspace/census/predictions region: us-central1 runtimeVersion: '1.0' versionName: projects/cloud-ml-users/models/census/versions/v1 predictionOutput: outputPath: gs://cloud-ml-users-datalab-workspace/census/predictions state: QUEUED ###Markdown The status of the job can be inspected in the [Cloud Console](https://console.cloud.google.com/mlengine/jobs). Once it is completed, the outputs should be visible in the specified output path. ###Code !gsutil ls {prediction_path} !gsutil cat {prediction_path}/prediction* ###Output {"SERIALNO": "490", "predicted": 26.395479202270508} {"SERIALNO": "1225", "predicted": 68.57681274414062} {"SERIALNO": "1226", "predicted": 13.854779243469238}
Model backlog/Inference/110-tweet-inference-5fold-roberta-base-config-drop.ipynb
###Markdown Dependencies ###Code import json, glob from tweet_utility_scripts import * from tweet_utility_preprocess_roberta_scripts import * from transformers import TFRobertaModel, RobertaConfig from tokenizers import ByteLevelBPETokenizer from tensorflow.keras import layers from tensorflow.keras.models import Model ###Output _____no_output_____ ###Markdown Load data ###Code test = pd.read_csv('/kaggle/input/tweet-sentiment-extraction/test.csv') print('Test samples: %s' % len(test)) display(test.head()) ###Output Test samples: 3534 ###Markdown Model parameters ###Code input_base_path = '/kaggle/input/110roberta-base/' with open(input_base_path + 'config.json') as json_file: config = json.load(json_file) config # vocab_path = input_base_path + 'vocab.json' # merges_path = input_base_path + 'merges.txt' base_path = '/kaggle/input/qa-transformers/roberta/' vocab_path = base_path + 'roberta-base-vocab.json' merges_path = base_path + 'roberta-base-merges.txt' config['base_model_path'] = base_path + 'roberta-base-tf_model.h5' config['config_path'] = base_path + 'roberta-base-config.json' model_path_list = glob.glob(input_base_path + 'model' + '*.h5') model_path_list.sort() print('Models to predict:') print(*model_path_list, sep = "\n") ###Output Models to predict: /kaggle/input/110roberta-base/model_fold_1.h5 /kaggle/input/110roberta-base/model_fold_2.h5 /kaggle/input/110roberta-base/model_fold_3.h5 /kaggle/input/110roberta-base/model_fold_4.h5 /kaggle/input/110roberta-base/model_fold_5.h5 ###Markdown Tokenizer ###Code tokenizer = ByteLevelBPETokenizer(vocab_file=vocab_path, merges_file=merges_path, lowercase=True, add_prefix_space=True) ###Output _____no_output_____ ###Markdown Pre process ###Code test['text'].fillna('', inplace=True) test["text"] = test["text"].apply(lambda x: x.lower()) test["text"] = test["text"].apply(lambda x: x.strip()) x_test = get_data_test(test, tokenizer, config['MAX_LEN'], preprocess_fn=preprocess_roberta_test) ###Output _____no_output_____ ###Markdown Model ###Code module_config = RobertaConfig.from_pretrained(config['config_path'], output_hidden_states=False, attention_probs_dropout_prob=0.2, hidden_dropout_prob=0.2) def model_fn(MAX_LEN): input_ids = layers.Input(shape=(MAX_LEN,), dtype=tf.int32, name='input_ids') attention_mask = layers.Input(shape=(MAX_LEN,), dtype=tf.int32, name='attention_mask') base_model = TFRobertaModel.from_pretrained(config['base_model_path'], config=module_config, name="base_model") last_hidden_state, _ = base_model({'input_ids': input_ids, 'attention_mask': attention_mask}) x = layers.Dropout(.1)(last_hidden_state) x_start = layers.Dense(1)(x) x_start = layers.Flatten()(x_start) y_start = layers.Activation('softmax', name='y_start')(x_start) x_end = layers.Dense(1)(x) x_end = layers.Flatten()(x_end) y_end = layers.Activation('softmax', name='y_end')(x_end) model = Model(inputs=[input_ids, attention_mask], outputs=[y_start, y_end]) return model ###Output _____no_output_____ ###Markdown Make predictions ###Code NUM_TEST_IMAGES = len(test) test_start_preds = np.zeros((NUM_TEST_IMAGES, config['MAX_LEN'])) test_end_preds = np.zeros((NUM_TEST_IMAGES, config['MAX_LEN'])) for model_path in model_path_list: print(model_path) model = model_fn(config['MAX_LEN']) model.load_weights(model_path) test_preds = model.predict(x_test) test_start_preds += test_preds[0] / len(model_path_list) test_end_preds += test_preds[1] / len(model_path_list) ###Output /kaggle/input/110roberta-base/model_fold_1.h5 /kaggle/input/110roberta-base/model_fold_2.h5 /kaggle/input/110roberta-base/model_fold_3.h5 /kaggle/input/110roberta-base/model_fold_4.h5 /kaggle/input/110roberta-base/model_fold_5.h5 ###Markdown Post process ###Code test['start'] = test_start_preds.argmax(axis=-1) test['end'] = test_end_preds.argmax(axis=-1) test['text_len'] = test['text'].apply(lambda x : len(x)) test['text_wordCnt'] = test['text'].apply(lambda x : len(x.split(' '))) test["end"].clip(0, test["text_len"], inplace=True) test["start"].clip(0, test["end"], inplace=True) test['selected_text'] = test.apply(lambda x: decode(x['start'], x['end'], x['text'], config['question_size'], tokenizer), axis=1) test["selected_text"].fillna(test["text"], inplace=True) ###Output _____no_output_____ ###Markdown Visualize predictions ###Code display(test.head(10)) ###Output _____no_output_____ ###Markdown Test set predictions ###Code submission = pd.read_csv('/kaggle/input/tweet-sentiment-extraction/sample_submission.csv') submission['selected_text'] = test["selected_text"] submission.to_csv('submission.csv', index=False) submission.head(10) ###Output _____no_output_____
examples/Embedding+Clustering/PCN_EmbeddingClustering.ipynb
###Markdown THIS NOTEBOOK CONTAINS AN EXAMPLE OF A EMBEDDING + CLUSTERING ALGORITHM, IN THIS CASE LAPLACIANEIGENMAPS+KMEANS, APPLIED TO A Protein Contact Network OF THE SARSCOV2 SPIKE PROTEIN ###Code #handle different path separators from sys import platform if platform == "linux" or platform == "linux2": # linux add_slash_to_path = '/' elif platform == "darwin": # OS X add_slash_to_path = '/' elif platform == "win32": # Windows... add_slash_to_path = '\\' import numpy as np import subprocess import networkx as nx import os try: from pcn.pcn_miner import pcn_miner, pcn_pymol_scripts #installed with pip except: try: import sys #git cloned cwd = os.getcwd() exd = os.path.abspath(os.path.join(cwd, os.pardir)) pcnd = os.path.abspath(os.path.join(exd, os.pardir)) + add_slash_to_path + "pcn" sys.path.append(pcnd) from pcn_miner import pcn_miner, pcn_pymol_scripts except: raise ImportError("PCN-Miner is not correctly installed.") output_path = "" adj_path = "Adj\\" protein = "6vxx" protein_path = "{}.pdb".format(protein) atoms = pcn_miner.readPDBFile(protein_path) #read coordinates = pcn_miner.getResidueCoordinates(atoms) coordinates dict_residue_name = pcn_miner.associateResidueName(coordinates) residue_names = np.array(list (dict_residue_name.items())) residue_names A = pcn_miner.adjacent_matrix(output_path, coordinates, protein, 4, 8) A k = 14 d = 128 lem_km_labels = pcn_miner.kmeans_laplacianeigenmaps(A, k, d) lem_km_labels ###Output Laplacian matrix recon. error (low rank): 57.350107
advanced_examples/eofs_package_example.ipynb
###Markdown This example uses the eofs [python package](https://ajdawson.github.io/eofs/latest/) designed by AJ Dawson for running EOF analysis on monthly Sea Surface Temperature anomaly data that is only in the central and northern Pacific Ocean. This package can be used on any gridded spatio-temporal gridded data. ###Code import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt import numpy as np import xarray as xr from eofs.xarray import Eof from eofs.examples import example_data_path # Read SST anomalies using the xarray module. The file contains November-March # averages of SST anomaly in the central and northern Pacific. filename = example_data_path('sst_ndjfm_anom.nc') sst = xr.open_dataset(filename)['sst'] sst # Create an EOF solver to do the EOF analysis. Square-root of cosine of # latitude weights are applied before the computation of EOFs. coslat = np.cos(np.deg2rad(sst.coords['latitude'].values)) wgts = np.sqrt(coslat)[..., np.newaxis] solver = Eof(sst, weights=wgts) solver # Retrieve the leading EOF, expressed as the correlation between the leading # PC time series and the input SST anomalies at each grid point, and the # leading PC time series itself. eof1 = solver.eofsAsCorrelation(neofs=1) pc1 = solver.pcs(npcs=1, pcscaling=1) eof1 # Plot the leading EOF expressed as correlation in the Pacific domain. clevs = np.linspace(-1, 1, 11) ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=190)) fill = eof1[0].plot.contourf(ax=ax, levels=clevs, cmap=plt.cm.RdBu_r, add_colorbar=False, transform=ccrs.PlateCarree()) ax.add_feature(cfeature.LAND, facecolor='w', edgecolor='k') cb = plt.colorbar(fill, orientation='horizontal') cb.set_label('correlation coefficient', fontsize=12) ax.set_title('EOF1 expressed as correlation', fontsize=16) plt.show() # Plot the leading PC time series. plt.figure() pc1[:, 0].plot(color='b', linewidth=2) ax = plt.gca() ax.axhline(0, color='k') ax.set_ylim(-3, 3) ax.set_xlabel('Year') ax.set_ylabel('Normalized Units') ax.set_title('PC1 Time Series', fontsize=16) plt.show() ###Output _____no_output_____
ch00python/050import.ipynb
###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /usr/local/Cellar/python3/3.5.2_1/Frameworks/Pytho n.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-35m-darwin.so ###Markdown Note that `import` does *not* install libraries. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library*. **Supplementary Materials**: Review the list of standard library modules: https://docs.python.org/library/ If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the list of modules that are packaged with Anaconda by default on different architectures: https://docs.anaconda.com/anaconda/packages/pkg-docs/ (modules installed by default are shown with ticks)We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi = 3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16 ###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /usr/local/Cellar/python3/3.5.2_1/Frameworks/Pytho n.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-35m-darwin.so ###Markdown Note that `import` does *not* install libraries from PyPI. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library* **Supplementary Materials**: Review the list of standard library modules: https://docs.python.org/2/library/ If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the list of modules that are packaged with Anaconda by default: http://docs.continuum.io/anaconda/pkg-docs.html (The green ticks)We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi=3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16 ###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /usr/local/Cellar/python3/3.5.2_1/Frameworks/Pytho n.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-35m-darwin.so ###Markdown Note that `import` does *not* install libraries. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library*. **Supplementary Materials**: Review the list of standard library modules: https://docs.python.org/library/ If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the list of modules that are packaged with Anaconda by default on different architectures: https://docs.anaconda.com/anaconda/packages/pkg-docs/ (modules installed by default are shown with ticks)We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi=3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16 ###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /usr/local/Cellar/python3/3.5.2_1/Frameworks/Pytho n.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-35m-darwin.so ###Markdown Note that `import` does *not* install libraries. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library*. **Supplementary Materials**: Review the [list of standard library modules](https://docs.python.org/library/). If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the [list of modules that are packaged with Anaconda by default on different architectures](https://docs.anaconda.com/anaconda/packages/pkg-docs/) (modules installed by default are shown with ticks).We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi = 3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16 ###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /usr/local/Cellar/python3/3.5.2_1/Frameworks/Pytho n.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-35m-darwin.so ###Markdown Note that `import` does *not* install libraries. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library*. **Supplementary Materials**: Review the list of standard library modules: https://docs.python.org/library/ If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the list of modules that are packaged with Anaconda by default on different architectures: https://docs.anaconda.com/anaconda/packages/pkg-docs/ (modules installed by default are shown with ticks)We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi = 3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16 ###Markdown Using Libraries Import To use a function or type from a python library, rather than a **built-in** function or type, we have to import the library. ###Code math.sin(1.6) import math math.sin(1.6) ###Output _____no_output_____ ###Markdown We call these libraries **modules**: ###Code type(math) ###Output _____no_output_____ ###Markdown The tools supplied by a module are *attributes* of the module, and as such, are accessed with a dot. ###Code dir(math) ###Output _____no_output_____ ###Markdown They include properties as well as functions: ###Code math.pi ###Output _____no_output_____ ###Markdown You can always find out where on your storage medium a library has been imported from: ###Code print(math.__file__[0:50]) print(math.__file__[50:]) ###Output /Users/jroberts/opt/anaconda3/envs/rsd-course/lib/ python3.8/lib-dynload/math.cpython-38-darwin.so ###Markdown Note that `import` does *not* install libraries. It just makes them available to your current notebook session, assuming they are already installed. Installing libraries is harder, and we'll cover it later.So what libraries are available? Until you install more, you might have just the modules that come with Python, the *standard library*. **Supplementary Materials**: Review the list of standard library modules: https://docs.python.org/library/ If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.**Supplementary Materials**: Review the list of modules that are packaged with Anaconda by default on different architectures: https://docs.anaconda.com/anaconda/packages/pkg-docs/ (modules installed by default are shown with ticks)We'll see later how to add more libraries to our setup. Why bother? Why bother with modules? Why not just have everything available all the time?The answer is that there are only so many names available! Without a module system, every time I made a variable whose name matched a function in a library, I'd lose access to it. In the olden days, people ended up having to make really long variable names, thinking their names would be unique, and they still ended up with "name clashes". The module mechanism avoids this. Importing from modules Still, it can be annoying to have to write `math.sin(math.pi)` instead of `sin(pi)`.Things can be imported *from* modules to become part of the current module: ###Code import math math.sin(math.pi) from math import sin sin(math.pi) ###Output _____no_output_____ ###Markdown Importing one-by-one like this is a nice compromise between typing and risk of name clashes. It *is* possible to import **everything** from a module, but you risk name clashes. ###Code from math import * sin(pi) ###Output _____no_output_____ ###Markdown  Import and rename You can rename things as you import them to avoid clashes or for typing convenience ###Code import math as m m.cos(0) pi = 3 from math import pi as realpi print(sin(pi), sin(realpi)) ###Output 0.1411200080598672 1.2246467991473532e-16
Facial_Expression_Recognition.ipynb
###Markdown Facial Expression Recognition* The data consists of 48x48 pixel grayscale images of faces. * The faces have been automatically registered so that the face is more or less centered and occupies about the same amount of space in each image. * The task is to categorize each face based on the emotion shown in the facial expression in to one of seven categories:0. `Angry`1. `Disgust` 2. `Fear` 3. `Happy`4. `Sad`5. `Surprise`,6. `Neutral` Download Dataset* For running on Google Colab ###Code # !pip install -q torchsummary # from google.colab import files # import os # if not os.path.exists(r"/content/fer2018.zip"): # print("Upload your kaggle.json file containing your API keys") # uploaded = files.upload() # for fn in uploaded.keys(): # print('User uploaded file "{name}" with length {length} bytes'.format( # name=fn, length=len(uploaded[fn]))) # !mkdir ~/.kaggle # !cp kaggle.json ~/.kaggle/ # !chmod 600 /root/.kaggle/kaggle.json # !kaggle datasets download -d ashishpatel26/fer2018 # !unzip -qq fer2018.zip -d datasets/ ###Output Upload your kaggle.json file containing your API keys ###Markdown Imports ###Code import warnings warnings.filterwarnings("ignore") import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from torchsummary import summary from PIL import Image import torch from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F import torch.nn as nn import torchvision import torchvision.transforms as T from torchvision.utils import make_grid sns.set_style('whitegrid') plt.style.use("fivethirtyeight") pd.set_option('display.max_columns', 20) %matplotlib inline ###Output _____no_output_____ ###Markdown Dataset Preparation ###Code emotions = { 0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral' } dataset = pd.read_csv('/content/datasets/fer20131.csv') dataset.info() dataset.head() dataset.Usage.value_counts() ###Output _____no_output_____ ###Markdown * We're going to use the `Training` and `PublicTest` rows combined together for training and validation set split into 80-20 proportion* `PrivateTest` will be our final test dataset. ###Code # extracting pixel data from pixel column # convert it to integer # drop original pixel column # add all pixels as individual column pixels = [] for pix in dataset.pixels: values = [int(i) for i in pix.split()] pixels.append(values) pixels = np.array(pixels) # rescaling pixel values pixels = pixels/255.0 dataset.drop(columns=['pixels'], axis=1, inplace=True) pix_cols = [] # for keeping track of column names # add each pixel value as a column for i in range(pixels.shape[1]): name = f'pixel_{i}' pix_cols.append(name) dataset[name] = pixels[:, i] dataset.head() ###Output _____no_output_____ ###Markdown Dataset Class ###Code class FERDataset(Dataset): ''' Parse raw data to form a Dataset of (X, y). ''' def __init__(self, df, transform=None): self.df = df self.transform = transform self.tensor_transform = T.ToTensor() def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.iloc[idx] img_id = int(row['emotion']) img = np.copy(row[pix_cols].values.reshape(48, 48)) img.setflags(write=True) if self.transform: img = Image.fromarray(img) img = self.transform(img) else: img = self.tensor_transform(img) return img, img_id ###Output _____no_output_____ ###Markdown Data Imbalance* To deal with class Imbalance we can try different image transformations* We can also combine angry and disgust class as one as they are closely related. ###Code plt.figure(figsize=(9, 8)) sns.countplot(x=dataset.emotion) _ = plt.title('Emotion Distribution') _ = plt.xticks(ticks=range(0, 7), labels=[emotions[i] for i in range(0, 7)], ) # combine digust and angry classes replacements = {1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5} dataset['emotion'] = dataset.emotion.replace(to_replace=replacements.keys(), value=replacements.values()) # update the emotions dictionary emotions = { 0: 'Angry', 1: 'Fear', 2: 'Happy', 3: 'Sad', 4: 'Surprise', 5: 'Neutral' } ###Output _____no_output_____ ###Markdown Data Augmentations* We're going to apply various augmentation techniques.* All available transformations are listed in : [pytorch transforms](https://pytorch.org/docs/stable/torchvision/transforms.html) ###Code def image_transformations() -> (object, object): ''' Return transformations to be applied. Input: None Output: train_tfms: transformations to be applied on the training set valid_tfms: transformations to be applied on the validation or test set ''' train_trans = [ T.RandomRotation(15), T.RandomAffine( degrees=0, translate=(0.01, 0.12), shear=(0.01, 0.03), ), T.RandomHorizontalFlip(), T.RandomCrop(48, padding=8, padding_mode='reflect'), T.ToTensor(), ] val_trans = [ T.ToTensor(), ] train_transformations = T.Compose(train_trans) valid_tfms = T.Compose(val_trans) return train_transformations, valid_tfms ###Output _____no_output_____ ###Markdown Dataset and Dataloader ###Code def get_train_dataset(dataframe: object, transformation: bool=True) -> (object, object): ''' Returns an object on FERDataset class Input: dataframe: object -> DataFrame object containing the whole data transformation: bool [optional] -> Apply transformations ''' # extracts rows specific to Training, PublicTest dataframe = dataframe.loc[dataframe.Usage.isin(['Training', 'PublicTest'])] # drop Usage column as it's no longer needed dataframe = dataframe.drop('Usage', axis=1) # split dataset into training and validation set np.random.seed(42) msk = np.random.rand(len(dataframe)) < 0.8 train_df = dataframe[msk].reset_index() val_df = dataframe[~msk].reset_index() # get transformations if transformation: train_tfms, valid_tfms = image_transformations() else: train_tfms, valid_tfms = None, None # fetch dataset train_ds = FERDataset(dataframe, transform=train_tfms) val_ds = FERDataset(dataframe, transform=valid_tfms) return train_ds, val_ds def get_train_dataloader(dataframe: object, transformation=True, batch_size: int=64) -> (object, object): ''' Returns train and test dataloaders. Input: dataframe: dataset DataFrame object batch_size: [optional] int Output: train_dl: train dataloader object valid_dl: validation dataloader object ''' # fetech train and validation dataset train_ds, valid_ds = get_train_dataset(dataframe, transformation=transformation) train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=3, pin_memory=True) valid_dl = DataLoader(valid_ds, batch_size*2, num_workers=2, pin_memory=True) return train_dl, valid_dl def get_test_dataloader(dataframe: object, batch_size: int=128) -> object: ''' Returns test set dataloaders. Input: dataframe: dataset DataFrame object batch_size: [optional] int Output: test_dl: test dataloader object ''' # extracts rows specific to PrivateTest test_df = dataframe.loc[dataset.Usage.isin(['PrivateTest'])] # drop Usage column as it's no longer needed test_df = test_df.drop('Usage', axis=1) # get transformations same as validation set _, valid_tfms = image_transformations() test_dataset = FERDataset(test_df, transform=valid_tfms) test_dl = DataLoader(test_dataset, batch_size, num_workers=3 , pin_memory=True) # move loader to GPU (class defined ahead) test_dl = DeviceDataLoader(test_dl, device) return test_dl ###Output _____no_output_____ ###Markdown Visualization ###Code train_dl_un, _ = get_train_dataloader(dataset, transformation=False) train_dl, _ = get_train_dataloader(dataset) for images, _ in train_dl: print('images.shape:', images.shape) plt.figure(figsize=(16, 8)) plt.axis("off") plt.imshow(make_grid(images, nrow=8).permute((1, 2, 0))) # move the channel dimension break _ = plt.suptitle("Transformed Images", y=0.92, fontsize=16) for images, _ in train_dl: print('images.shape:', images.shape) plt.figure(figsize=(16, 8)) plt.axis("off") plt.imshow(make_grid(images, nrow=8).permute((1, 2, 0))) # move the channel dimension break _ = plt.suptitle("Transformed Images", y=0.92, fontsize=16) ###Output images.shape: torch.Size([64, 1, 48, 48]) ###Markdown Setting up GPU usage ###Code def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list,tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader(): """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) device = get_default_device() device ###Output _____no_output_____ ###Markdown Model Building Base Image Classification Class ###Code # Can be used for any Image Classification task class ImageClassificationBase(nn.Module): def training_step(self, batch): inputs, labels = batch outputs = self(inputs) loss = F.cross_entropy(outputs, labels) acc = accuracy(outputs, labels) return {'loss': loss, 'acc': acc.detach()} def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = accuracy(out, labels) # Calculate accuracy return {'val_loss': loss.detach(), 'val_acc': acc.detach()} def get_metrics_epoch_end(self, outputs, validation=True): if validation: loss_ = 'val_loss' acc_ = 'val_acc' else: loss_ = 'loss' acc_ = 'acc' batch_losses = [x[f'{loss_}'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x[f'{acc_}'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {f'{loss_}': epoch_loss.detach().item(), f'{acc_}': epoch_acc.detach().item()} def epoch_end(self, epoch, result, num_epochs): print(f"Epoch: {epoch+1}/{num_epochs} -> lr: {result['lrs'][-1]:.5f} loss: {result['loss']:.4f}, acc: {result['acc']:.4f}, val_loss: {result['val_loss']:.4f}, val_acc: {result['val_acc']:.4f}\n") ###Output _____no_output_____ ###Markdown Metric ###Code def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) ###Output _____no_output_____ ###Markdown Model: ResNet-9 ###Code def conv_block(in_channels, out_channels, pool=False): layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ] if pool: layers.append(nn.MaxPool2d(kernel_size=2)) return nn.Sequential(*layers) # updated channels for the use case # added and additional layer in classifier class ResNet9(ImageClassificationBase): def __init__(self, in_channels, num_classes): super().__init__() self.conv1 = conv_block(in_channels, 16, pool=False) # 16 x 48 x 48 self.conv2 = conv_block(16, 32, pool=True) # 32 x 24 x 24 self.res1 = nn.Sequential( # 32 x 24 x 24 conv_block(32, 32, pool=False), conv_block(32, 32, pool=False) ) self.conv3 = conv_block(32, 64, pool=True) # 64 x 12 x 12 self.conv4 = conv_block(64, 128, pool=True) # 128 x 6 x 6 self.res2 = nn.Sequential( # 128 x 6 x 6 conv_block(128, 128), conv_block(128, 128) ) self.classifier = nn.Sequential( nn.MaxPool2d(kernel_size=2), # 128 x 3 x 3 nn.Flatten(), nn.Linear(128*3*3, 512), #512 nn.Linear(512, num_classes) # 6 ) self.network = nn.Sequential( self.conv1, self.conv2, self.res1, self.conv3, self.conv4, self.res2, self.classifier, ) def forward(self, xb): out = self.conv1(xb) out = self.conv2(out) out = self.res1(out) + out out = self.conv3(out) out = self.conv4(out) out = self.res2(out) + out out = self.classifier(out) return out def __repr__(self): return f"{self.network}" def __str__(self): summary(self.network, (1, 48, 48)) ###Output _____no_output_____ ###Markdown Model: From scratch ###Code class EmotionRecognition(ImageClassificationBase): def __init__(self, num_classes): super().__init__() self.num_classes = num_classes self.network = nn.Sequential( #1 x 48 x 48 nn.Conv2d(1, 32, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 32 x 24 x 24 nn.BatchNorm2d(32), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 64 x 12 x 12 nn.BatchNorm2d(64), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 128 x 6 x 6 nn.BatchNorm2d(128), nn.Flatten(), nn.Linear(128*6*6, 64), nn.ReLU(), nn.BatchNorm1d(64), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, num_classes)) def forward(self, xb): return self.network(xb) def __repr__(self): return f"{self.network}" def __str__(self): summary(self.network, (1, 48, 48)) ###Output _____no_output_____ ###Markdown Setup Training Helper Functions ###Code @torch.no_grad() def evaluate(model: object, val_loader: object) -> dict: ''' Evaluate model on the validation set Input: model: training model object val_loder: validation data loader object Output: validation metrics ''' model.eval() outputs = [model.validation_step(batch) for batch in val_loader] return model.get_metrics_epoch_end(outputs=outputs, validation=True) def get_lr(optimizer: object) -> float: ''' Returns current learning rate''' for param_group in optimizer.param_groups: return param_group['lr'] def fit_model(model_name: str, model: object, epochs: int, lr: float, train_loader: object, val_loader: object, opt_func: object=torch.optim.SGD): ''' This function is responsible for training our model. We use a One Cycle learning rate policy to update our learning rate with each epoch. The best model is saved during each epoch. Input: model_name: str model: object epochs: int -> Max epochs lr: float -> learning rate train_loader: training set data loader val_loader: validation set data loader opt_func: optimzer object Output: history: list of metrics ''' torch.cuda.empty_cache() BEST_VAL_SCORE = 0.0 # for keeping track of best model score history = [] optimizer = opt_func(model.parameters(), lr) # scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=max_lr, # epochs=epochs, # steps_per_epoch=len(train_loader)) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=1, factor=0.01) for epoch in range(epochs): train_history = [] lrs = [] # Training Phase model.train() for batch in tqdm(train_loader, desc=f'Epoch: {epoch+1}/{epochs}'): info = model.training_step(batch) loss = info['loss'] # contains batch loss and acc for training phase train_history.append(info) loss.backward() # Gradient clipping # if grad_clip: # nn.utils.clip_grad_value_(model.parameters(), grad_clip) optimizer.step() optimizer.zero_grad() lrs.append(get_lr(optimizer)) # scheduler.step() train_result = model.get_metrics_epoch_end(train_history, validation=False) val_result = evaluate(model, val_loader) result = {**train_result, **val_result} # call scheduler to check validation loss scheduler.step(result['val_loss']) result['lrs'] = lrs model.epoch_end(epoch, result, epochs) # Save the best model if result['val_acc'] > BEST_VAL_SCORE: BEST_VAL_SCORE = result['val_acc'] save_name = f"{model_name}_epoch-{epoch+1}_score-{round(result['val_acc'], 4)}.pth" !rm -f '{model_name}'_* torch.save(model.state_dict(), save_name) history.append(result) return history # functions to fetch test dataset and generate submission file for best model def load_best(model_name: str) -> object: '''Returns the best model''' # get model defintion best_model = models[model_name] # load trained weights path = r"/content/" file_path = '' for i in os.listdir(path): if os.path.isfile(os.path.join(path,i)) and i.startswith(f'{model_name}'): file_path = os.path.join(path, i) print(f"Loaded model: {file_path[9:]} weights.") best_model.load_state_dict(torch.load(file_path)) # move model to gpu best_model = to_device(best_model, device) return best_model @torch.no_grad() def generate_prediction(model_name: str) -> None: '''Generate prediction on the test set''' # load test dataset test_dl = get_test_dataloader(dataset) # load model model = load_best(model_name) # clear cuda cache torch.cuda.empty_cache() # generate prediction using the validation step method defined in Base class with torch.no_grad(): model.eval() outputs = [model.validation_step(batch) for batch in test_dl] metrics = model.get_metrics_epoch_end(outputs=outputs, validation=True) print(f"Test Scores:\n Loss: {round(metrics['val_loss'], 3)}, Accuracy: {round(metrics['val_acc'], 3)}") def end_to_end(model_name: str, parameters: dict=None) -> dict: ''' A simple function end-to-end training and testing on the selected model. Inputs: model_name: str -> chosen model name parameters: dict -> dictionary of hyperparameters for the model Outputs: history: dict -> dictionary containing model metrics(loss, score, lr) ''' torch.cuda.empty_cache() # hyperparameters BATCH_SIZE = parameters['batch_size'] epochs = parameters["epochs"] lr = parameters["lr"] opt_func = parameters["opt_func"] # get transformed dataset train_dl, valid_dl = get_train_dataloader(dataset, batch_size=BATCH_SIZE) # move dataset to use GPU train_dl = DeviceDataLoader(train_dl, device) valid_dl = DeviceDataLoader(valid_dl, device) # get model model = models[model_name] # move model to GPU model = to_device(model, device) # train model history = fit_model( model_name, model, epochs, lr, train_dl, valid_dl, opt_func ) # cleaning torch.cuda.empty_cache() # generate predictions print("Genearating predictions on the Test set") generate_prediction(model_name) return history # plotting metrics def plot_accuracies(history): train_acc = [r['acc'] for r in history] val_acc = [r['val_acc'] for r in history] plt.plot(train_acc, '-kx', label="train_acc") plt.plot(val_acc, '-rx', label="val_acc") plt.legend() _ = plt.xticks(ticks=range(len(train_acc)), labels=[str(i) for i in range(1, len(train_acc)+1)]) plt.xlabel('epoch') plt.ylabel('Accuracy') plt.title('Accuracy vs. epochs') def plot_losses(history): train_losses = [r['loss'] for r in history] val_losses = [r['val_loss'] for r in history] plt.plot(train_losses, '-kx', label="train_loss") plt.plot(val_losses, '-rx', label="val_loss") plt.legend() _ = plt.xticks(ticks=range(len(train_losses)), labels=[str(i) for i in range(1, len(train_losses)+1)]) plt.xlabel('epoch') plt.ylabel('loss') plt.title('Loss vs. epochs') def plot_lrs(history): lrs = np.concatenate([x.get('lrs', []) for x in history]) plt.plot(lrs) plt.xlabel('Batch no.') plt.ylabel('Learning rate') plt.title('Learning Rate vs. Batch no.'); ###Output _____no_output_____ ###Markdown Models ###Code models = { 'ResNet9': ResNet9(in_channels=1, num_classes=len(emotions.keys())), 'EmotionRecognition': EmotionRecognition(len(emotions.keys())), } ###Output _____no_output_____ ###Markdown Train Model ###Code # TRAINING CONSTANTS training_parameters = { "epochs": 30, "lr": 0.001, "opt_func": torch.optim.Adam, "batch_size": 128, } # using lr_scheduler = ReduceLROnPlateau model_name = "ResNet9" # model_name = "EmotionRecognition" history = end_to_end(model_name, training_parameters) ###Output Epoch: 1/30: 100%|██████████| 253/253 [02:18<00:00, 1.82it/s] ###Markdown Training plots ###Code # plotting score and loss plt.figure(figsize=(18, 6)) plt.subplot(1, 3, 1) plot_accuracies(history) plt.subplot(1, 3, 2) plot_losses(history) plt.subplot(1, 3, 3) plot_lrs(history) ###Output _____no_output_____ ###Markdown ###Code #Downloading the dataset !wget --no-check-certificate \ "https://storage.googleapis.com/kaggle-datasets/64681/127167/fer20131.csv.zip?GoogleAccessId=web-data@kaggle-161607.iam.gserviceaccount.com&Expires=1561353681&Signature=reLsF1yri6BKDnH1ull9DHGDo2hIzIeQKt6mGz8xoiZ5uPSVnIx9%2BcJAx5XPdfulo8LgadzEr7iuJGK7Xv4VXiGMX7j6YFRbe%2FCFxIafWrpcSa32%2FRgG22mT%2FnXIsR4vRkBxJ21jy5aMRiXm3tP30tIUZLG2EPG4ZZffIGVDSxFPD%2BVaxvcw2BBvad84IuEoqmaQL5YqdoNZzAYrd1rGN%2FsBUifdt7hDiaZdI64tCnAXhN5WRU6plUnFxhn%2FpPjyRNuMJ0%2B5YBUuAzibdxmSQkq8YFuiF6tbSsbJzK5itfCD3eR04M1rUqe039EhU5DXmZQR%2F7bEY3LqNAF%2FXsBIZQ%3D%3D"\ -O "/tmp/fer.zip" # Unzipping the downloaded dataset import os import zipfile local_zip='/tmp/fer.zip' zip_ref=zipfile.ZipFile(local_zip,'r') zip_ref.extractall('/tmp/fer') zip_ref.close() #The fer folder contains a .csv file containing the pixels and labels of the images. import csv fields = [] rows = [] import numpy as np with open('/tmp/fer/fer20131.csv') as training_file: # creating a csv reader object csvreader = csv.reader(training_file) # extracting field names through first row fields = next(csvreader) # extracting each data row one by one for row in csvreader: rows.append(row) #The first column corresponds to the label, the second column corresponsd to the pixels of the images and the third column corresponds to the Training/Test label. rows[0] #suffling the data import random rows=random.sample(rows,len(rows)) #Separating the Training and Test samples from the dataset train_images=[] train_labels=[] test_images=[] test_labels=[] for i in range(len(rows)): if rows[i][2]=='Training': train_images.append(rows[i][1].split()) train_labels.append(float(rows[i][0])) else: test_images.append(rows[i][1].split()) test_labels.append(float(rows[i][0])) #Converting the pixels of the images from string to float for i in range(len(train_images)): train_images[i] = list(map(float, train_images[i])) for i in range(len(test_images)): test_images[i] = list(map(float, test_images[i])) # Converting the images and labels to numpy array train_images=np.array(train_images) test_images=np.array(test_images) train_labels=np.array(train_labels) test_labels=np.array(test_labels) train_img=np.zeros((len(train_images),48,48)) test_img=np.zeros((len(test_images),48,48)) #Reshaping the Images from 2304 pixels to 48x48 for i in range(len(train_images)): train_img[i]=train_images[i].reshape((48,48)) for i in range(len(test_images)): test_img[i]=test_images[i].reshape((48,48)) #Extending the dimension of the Images train_img=np.expand_dims(train_img,axis=3) test_img=np.expand_dims(test_img,axis=3) #Data Summary print('No. of training images: ',len(train_img)) print('No. of test images: ',len(test_img)) print('No. of classes in training data: ', len(np.unique(train_labels))) print('No. of classes in test data: ', len(np.unique(test_labels))) print('Dimension of training images: ',train_img.shape) print('Dimension of test images: ',test_img.shape) print('Dimension of training labels: ',train_labels.shape) print('Dimension of test labels: ',test_labels.shape) #Displaying the images of facial expressions %matplotlib inline import matplotlib.pyplot as plt import matplotlib.image as mpimg #We'll output images in a 2X4 configuration. nrows=4 ncols=4 fig=plt.gcf() fig.set_size_inches(ncols*4,nrows*4) for i in range(len(train_img[:16])): sp=plt.subplot(nrows,ncols,i+1) sp.axis('Off') X = np.squeeze(train_img[i], axis=(2,)) # sample 2D array plt.imshow(X, cmap="gray") plt.show() import tensorflow as tf from tensorflow import keras #Image Generator from tensorflow.keras.preprocessing.image import ImageDataGenerator # Add data-augmentation parameters to ImageDataGenerator """train_datagen = ImageDataGenerator(rescale = 1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')""" train_datagen = ImageDataGenerator(rescale = 1./255) test_datagen=ImageDataGenerator(rescale=1./255) model=tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64,(3,3),activation='relu',input_shape=(48,48,1)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128,(3,3),activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(256,(3,3),activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(1024,activation='relu'), #tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(7,activation='softmax') ]) model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']) history=model.fit_generator( train_datagen.flow(train_img,train_labels,batch_size=100), steps_per_epoch=len(train_img)/100, epochs=10, validation_data=test_datagen.flow(test_img,test_labels,batch_size=10), validation_steps=len(test_img)/10, verbose=1 ) #Evaluating Accuracy and Loss of the model %matplotlib inline acc=history.history['acc'] val_acc=history.history['val_acc'] loss=history.history['loss'] val_loss=history.history['val_loss'] epochs=range(len(acc)) #No. of epochs #Plot training and validation accuracy per epoch import matplotlib.pyplot as plt plt.plot(epochs,acc,'r',label='Training Accuracy') plt.plot(epochs,val_acc,'g',label='Testing Accuracy') plt.legend() plt.figure() #Plot training and validation loss per epoch plt.plot(epochs,loss,'r',label='Training Loss') plt.plot(epochs,val_loss,'g',label='Testing Loss') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Importing Necessary Packages ###Code import sys, os import pandas as pd import cv2 import numpy as np import seaborn as sns import glob import PIL from tensorflow.keras.models import Sequential,model_from_json from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization,AveragePooling2D from tensorflow.keras.losses import categorical_crossentropy from tensorflow.keras.callbacks import History from tensorflow.keras.optimizers import Adam,SGD from tensorflow.keras.regularizers import l2 from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing import image from sklearn.utils import shuffle from sklearn.metrics import accuracy_score, confusion_matrix import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Preprocessing the Data and Reading the data ###Code num_features = 64 num_labels = 7 batch_size = 128 epochs = 150 width, height = 48, 48 df=pd.read_csv('C:/Users/Kunj/Downloads/fer2013/fer2013.csv') #df=pd.read_csv('C:\\Users\\Kunj\\Downloads\\ck+') # print(df.info()) # print(df["Usage"].value_counts()) # print(df.head()) X_train,train_y,X_test,test_y,X_Ptest,Ptest_y=[],[],[],[],[],[] for index, row in df.iterrows(): val=row['pixels'].split(" ") try: if 'Training' in row['Usage']: X_train.append(np.array(val,'float32')) train_y.append(row['emotion']) elif 'PublicTest' in row['Usage']: X_test.append(np.array(val,'float32')) test_y.append(row['emotion']) elif 'PrivateTest' in row['Usage']: X_Ptest.append(np.array(val,'float32')) Ptest_y.append(row['emotion']) except: print(f"error occured at index :{index} and row:{row}") num_angry_tr, num_disgust_tr, num_fear_tr, num_happy_tr, num_sad_tr, num_surprise_tr, num_neutral_tr=0,0,0,0,0,0,0 num_angry_te, num_disgust_te, num_fear_te, num_happy_te, num_sad_te, num_surprise_te, num_neutral_te=0,0,0,0,0,0,0 num_angry_pte, num_disgust_pte, num_fear_pte, num_happy_pte, num_sad_pte, num_surprise_pte, num_neutral_pte=0,0,0,0,0,0,0 for index, row in df.iterrows(): if 'Training' in row['Usage']: if row['emotion']==0: num_angry_tr+=1 if row['emotion']==1: num_disgust_tr+=1 if row['emotion']==2: num_fear_tr+=1 if row['emotion']==3: num_happy_tr+=1 if row['emotion']==4: num_sad_tr+=1 if row['emotion']==5: num_surprise_tr+=1 if row['emotion']==6: num_neutral_tr+=1 elif 'PublicTest' in row['Usage']: if row['emotion']==0: num_angry_te+=1 if row['emotion']==1: num_disgust_te+=1 if row['emotion']==2: num_fear_te+=1 if row['emotion']==3: num_happy_te+=1 if row['emotion']==4: num_sad_te+=1 if row['emotion']==5: num_surprise_te+=1 if row['emotion']==6: num_neutral_te+=1 elif 'PrivateTest' in row['Usage']: if row['emotion']==0: num_angry_pte+=1 if row['emotion']==1: num_disgust_pte+=1 if row['emotion']==2: num_fear_pte+=1 if row['emotion']==3: num_happy_pte+=1 if row['emotion']==4: num_sad_pte+=1 if row['emotion']==5: num_surprise_pte+=1 if row['emotion']==6: num_neutral_pte+=1 print("Number of Training Samples for Angry Expression = ",num_angry_tr) print("Number of Training Samples for Disgust Expression = ",num_disgust_tr) print("Number of Training Samples for Happy Expression = ",num_happy_tr) print("Number of Training Samples for Fear Expression = ",num_fear_tr) print("Number of Training Samples for Sad Expression = ",num_sad_tr) print("Number of Training Samples for Surprise Expression = ",num_surprise_tr) print("Number of Training Samples for Neutral Expression = ",num_neutral_tr) Y=[num_angry_tr, num_disgust_tr, num_fear_tr, num_happy_tr, num_sad_tr, num_surprise_tr, num_neutral_tr] X=['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] %matplotlib inline plt.style.use('ggplot') plt.xlabel('Emotion') plt.ylabel('Number of samples') plt.title('Number of Training samples for each Emotion') plt.bar(X,Y,color='green') print("Number of Validation Samples for Angry Expression = ",num_angry_te) print("Number of Validation Samples for Disgust Expression = ",num_disgust_te) print("Number of Validation Samples for Happy Expression = ",num_happy_te) print("Number of Validation Samples for Fear Expression = ",num_fear_te) print("Number of Validation Samples for Sad Expression = ",num_sad_te) print("Number of Validation Samples for Surprise Expression = ",num_surprise_te) print("Number of Validation Samples for Neutral Expression = ",num_neutral_te) Y_val=[num_angry_te, num_disgust_te, num_fear_te, num_happy_te, num_sad_te, num_surprise_te, num_neutral_te] X_val=['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] %matplotlib inline plt.style.use('ggplot') plt.xlabel('Emotion') plt.ylabel('Number of samples') plt.title('Number of Validation samples for each Emotion') plt.bar(X_val,Y_val,color='red') print("Number of Private Test Samples for Angry Expression = ",num_angry_pte) print("Number of Private Test Samples for Disgust Expression = ",num_disgust_pte) print("Number of Private Test Samples for Happy Expression = ",num_happy_pte) print("Number of Private Test Samples for Fear Expression = ",num_fear_pte) print("Number of Private Test Samples for Sad Expression = ",num_sad_pte) print("Number of Private Test Samples for Surprise Expression = ",num_surprise_pte) print("Number of Private Test Samples for Neutral Expression = ",num_neutral_pte) Y_PTest=[num_angry_te, num_disgust_te, num_fear_te, num_happy_te, num_sad_te, num_surprise_te, num_neutral_te] X_PTest=['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] %matplotlib inline plt.style.use('ggplot') plt.xlabel('Emotion') plt.ylabel('Number of samples') plt.title('Number of Validation samples for each Emotion') plt.bar(X_PTest,Y_PTest,color='blue') X_train = np.array(X_train,'float32') train_y = np.array(train_y,'float32') X_test = np.array(X_test,'float32') test_y = np.array(test_y,'float32') train_y=to_categorical(train_y, num_classes=num_labels) test_y=to_categorical(test_y, num_classes=num_labels) #cannot produce #normalizing data between oand 1 X_train -= np.mean(X_train, axis=0) X_train /= np.std(X_train, axis=0) X_test -= np.mean(X_test, axis=0) X_test /= np.std(X_test, axis=0) X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # print(f"shape:{X_train.shape}") ##designing the cnn model = Sequential() #1st convolution layer model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(X_train.shape[1:]))) model.add(Conv2D(64,kernel_size= (3, 3), activation='relu')) # model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) model.add(Dropout(0.5)) #2nd convolution layer model.add(Conv2D(128, (3, 3), activation='relu')) model.add(Conv2D(128, (3, 3), activation='relu')) # model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) model.add(Dropout(0.5)) #3rd convolution layer model.add(Conv2D(256, (3, 3), activation='relu')) model.add(Conv2D(256, (3, 3), activation='relu')) # model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) model.add(Flatten()) #fully connected neural networks model.add(Dense(1024, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(num_labels, activation='softmax')) model.summary() #Compliling the model model.compile(loss=categorical_crossentropy, optimizer=SGD(learning_rate=0.075), metrics=['accuracy']) #Training the model seqModel=model.fit(X_train, train_y, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(X_test, test_y), shuffle=True) train_loss= seqModel.history['loss'] train_acc= seqModel.history['accuracy'] val_loss= seqModel.history['val_loss'] val_acc= seqModel.history['val_accuracy'] xc = range(epochs) plt.figure(figsize=(15,10)) plt.plot(xc, train_loss) plt.figure(figsize=(15,10)) plt.plot(xc, train_acc) plt.figure(figsize=(15,10)) plt.plot(xc,val_loss) plt.plot(xc,val_acc) plt.figure(figsize=(15,10)) plt.plot(xc,val_acc) #Saving the model to use it later on fer_json = model.to_json() with open("C:/Users/Kunj/Downloads/fer2013/fer3.json", "w") as json_file: json_file.write(fer_json) model.save_weights("C:/Users/Kunj/Downloads/fer2013/fer3.h5") #load model model = model_from_json(open("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\fer3.json", "r").read()) #load weights model.load_weights("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\fer3.h5") human_angry=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\anger\\*.png") print("Number of images in Angry emotion = "+str(len(human_angry))) human_angry_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_angry] human_angry_imageName = [str(i.split("\\")[7]) for i in human_angry] human_angry_emotion = [["Angry"]*len(human_angry)][0] human_angry_label = [1]*len(human_angry) len(human_angry_folderName), len(human_angry_imageName), len(human_angry_emotion), len(human_angry_label) df_angry = pd.DataFrame() df_angry["folderName"] = human_angry_folderName df_angry["imageName"] = human_angry_imageName df_angry["Emotion"] = human_angry_emotion df_angry["Labels"] = human_angry_label df_angry.head() human_disgust=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\disgust\\*.png") print("Number of images in Disgust emotion = "+str(len(human_disgust))) human_disgust_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_disgust] human_disgust_imageName = [str(i.split("\\")[7]) for i in human_disgust] human_disgust_emotion = [["Disgust"]*len(human_disgust)][0] human_disgust_label = [2]*len(human_disgust) len(human_disgust_folderName), len(human_disgust_imageName), len(human_disgust_emotion), len(human_disgust_label) df_disgust = pd.DataFrame() df_disgust["folderName"] = human_disgust_folderName df_disgust["imageName"] = human_disgust_imageName df_disgust["Emotion"] = human_disgust_emotion df_disgust["Labels"] = human_disgust_label df_disgust.head() human_fear=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\fear\\*.png") print("Number of images in Fear emotion = "+str(len(human_fear))) human_fear_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_fear] human_fear_imageName = [str(i.split("\\")[7]) for i in human_fear] human_fear_emotion = [["Fear"]*len(human_fear)][0] human_fear_label = [3]*len(human_fear) len(human_fear_folderName), len(human_fear_imageName), len(human_fear_emotion), len(human_fear_label) df_fear = pd.DataFrame() df_fear["folderName"] = human_fear_folderName df_fear["imageName"] = human_fear_imageName df_fear["Emotion"] = human_fear_emotion df_fear["Labels"] = human_fear_label df_fear.head() human_happy=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\happy\\*.png") print("Number of images in Happy emotion = "+str(len(human_happy))) human_happy_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_happy] human_happy_imageName = [str(i.split("\\")[7]) for i in human_happy] human_happy_emotion = [["Happy"]*len(human_happy)][0] human_happy_label = [4]*len(human_happy) len(human_happy_folderName), len(human_happy_imageName), len(human_happy_emotion), len(human_happy_label) df_happy = pd.DataFrame() df_happy["folderName"] = human_happy_folderName df_happy["imageName"] = human_happy_imageName df_happy["Emotion"] = human_happy_emotion df_happy["Labels"] = human_happy_label df_happy.head() human_sad=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\sadness\\*.png") print("Number of images in Sad emotion = "+str(len(human_sad))) human_sad_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_sad] human_sad_imageName = [str(i.split("\\")[7]) for i in human_sad] human_sad_emotion = [["Sad"]*len(human_sad)][0] human_sad_label = [5]*len(human_sad) len(human_sad_folderName), len(human_sad_imageName), len(human_sad_emotion), len(human_neutral_label) df_sad = pd.DataFrame() df_sad["folderName"] = human_sad_folderName df_sad["imageName"] = human_sad_imageName df_sad["Emotion"] = human_sad_emotion df_sad["Labels"] = human_sad_label df_sad.head() human_surprise=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\surprise\\*.png") print("Number of images in Surprise emotion = "+str(len(human_surprise))) human_surprise_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_surprise] human_surprise_imageName = [str(i.split("\\")[7]) for i in human_surprise] human_surprise_emotion = [["Surprise"]*len(human_surprise)][0] human_surprise_label = [6]*len(human_surprise) len(human_surprise_folderName), len(human_surprise_imageName), len(human_surprise_emotion), len(human_surprise_label) df_surprise = pd.DataFrame() df_surprise["folderName"] = human_surprise_folderName df_surprise["imageName"] = human_surprise_imageName df_surprise["Emotion"] = human_surprise_emotion df_surprise["Labels"] = human_surprise_label df_surprise.head() human_neutral=glob.glob("C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\DATA\\neutral\\*.png") print("Number of images in Neutral emotion = "+str(len(human_neutral))) human_neutral_folderName = [str("/".join(i.split("\\")[:7]))+"/" for i in human_neutral] human_neutral_imageName = [str(i.split("\\")[7]) for i in human_neutral] human_neutral_emotion = [["Neutral"]*len(human_neutral)][0] human_neutral_label = [7]*len(human_neutral) len(human_neutral_folderName), len(human_neutral_imageName), len(human_neutral_emotion), len(human_neutral_label) df_neutral = pd.DataFrame() df_neutral["folderName"] = human_neutral_folderName df_neutral["imageName"] = human_neutral_imageName df_neutral["Emotion"] = human_neutral_emotion df_neutral["Labels"] = human_neutral_label df_neutral.head() print(df_neutral["folderName"][1]) ###Output C:/Users/Kunj/Downloads/Facial_Expression_Recognition/DATA/neutral/ ###Markdown Concatening All DataFrames ###Code frames = [df_angry, df_disgust, df_fear, df_happy, df_neutral, df_sad, df_surprise] Final_Test_human = pd.concat(frames) Final_Test_human.shape Final_Test_human.reset_index(inplace = True, drop = True) Final_Test_human = Final_Test_human.sample(frac = 1.0) #shuffling the dataframe Final_Test_human.reset_index(inplace = True, drop = True) Final_Test_human.head() TestData_distribution = Final_Test_human["Emotion"].value_counts().sort_index() TestData_distribution_sorted = sorted(TestData_distribution.items(), key = lambda d: d[1], reverse = True) fig = plt.figure(figsize = (10, 6)) ax = fig.add_axes([0,0,1,1]) ax.set_title("Count of each Emotion in Test Data", fontsize = 20) sns.countplot(x = "Emotion", data = Final_Test_human) plt.grid() for i in ax.patches: ax.text(x = i.get_x() + 0.27, y = i.get_height()+0.2, s = str(i.get_height()), fontsize = 20, color = "grey") plt.xlabel("") plt.ylabel("Count", fontsize = 15) plt.tick_params(labelsize = 15) plt.xticks(rotation = 40) plt.show() for i in TestData_distribution_sorted: print("Number of training data points in class "+str(i[0])+" = "+str(i[1])+ "("+str(np.round(((i[1]/Final_Test_human.shape[0])*100), 4))+"%)") face_cascade = cv2.CascadeClassifier('C:\\Users\\Kunj\\Downloads\\Facial_Expression_Recognition\\haarcascade_frontalface_default.xml') #download this xml file from link: https://github.com/opencv/opencv/tree/master/data/haarcascades. def face_det_crop_resize(img_path): img = cv2.imread(img_path) #gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(img, 1.3, 5) for (x,y,w,h) in faces: face_clip = img[y:y+h, x:x+w] #cropping the face in image cv2.imwrite(img_path, cv2.resize(face_clip, (350, 350))) for i, d in Final_Test_human.iterrows(): img_path = os.path.join(d["folderName"], d["imageName"]) face_det_crop_resize(img_path) print(img_path) def print_confusionMatrix(Y_TestLabels, PredictedLabels): confusionMatx = confusion_matrix(Y_TestLabels, PredictedLabels) precision = confusionMatx/confusionMatx.sum(axis = 0) recall = (confusionMatx.T/confusionMatx.sum(axis = 1)).T sns.set(font_scale=1.5) # confusionMatx = [[1, 2], # [3, 4]] # confusionMatx.T = [[1, 3], # [2, 4]] # confusionMatx.sum(axis = 1) axis=0 corresponds to columns and axis=1 corresponds to rows in two diamensional array # confusionMatx.sum(axix =1) = [[3, 7]] # (confusionMatx.T)/(confusionMatx.sum(axis=1)) = [[1/3, 3/7] # [2/3, 4/7]] # (confusionMatx.T)/(confusionMatx.sum(axis=1)).T = [[1/3, 2/3] # [3/7, 4/7]] # sum of row elements = 1 labels = ["ANGRY", "DISGUST", "FEAR", "HAPPY", "NEUTRAL", "SAD", "SURPRISE"] plt.figure(figsize=(16,7)) sns.heatmap(confusionMatx, cmap = "Blues", annot = True, fmt = ".1f", xticklabels=labels, yticklabels=labels) plt.title("Confusion Matrix", fontsize = 30) plt.xlabel('Predicted Class', fontsize = 20) plt.ylabel('Original Class', fontsize = 20) plt.tick_params(labelsize = 15) plt.xticks(rotation = 90) plt.show() print("-"*125) plt.figure(figsize=(16,7)) sns.heatmap(precision, cmap = "Blues", annot = True, fmt = ".2f", xticklabels=labels, yticklabels=labels) plt.title("Precision Matrix", fontsize = 30) plt.xlabel('Predicted Class', fontsize = 20) plt.ylabel('Original Class', fontsize = 20) plt.tick_params(labelsize = 15) plt.xticks(rotation = 90) plt.show() print("-"*125) plt.figure(figsize=(16,7)) sns.heatmap(recall, cmap = "Blues", annot = True, fmt = ".2f", xticklabels=labels, yticklabels=labels) plt.title("Recall Matrix", fontsize = 30) plt.xlabel('Predicted Class', fontsize = 20) plt.ylabel('Original Class', fontsize = 20) plt.tick_params(labelsize = 15) plt.xticks(rotation = 90) plt.show() predicted_labels, true_labels=[],[] for i, d in Final_Test_human.iterrows(): img_path = os.path.join(d["folderName"], d["imageName"]) img_label=d["Labels"] #img_r = cv2.resize(img,(48,48)) img=PIL.Image.open(img_path) img_pixels = image.img_to_array(img) img_pixels = np.expand_dims(img_pixels, axis = 0) img_pixels /= 255 preds=model.predict(img_pixels) predicted_labels.append(preds[0].argmax()) true_labels.append(img_label) accuracy=accuracy_score(true_labels,predicted_labels) print("Accuracy on Human Test Data = {}%".format(np.round(float(accuracy*100), 2))) print_confusionMatrix(true_labels, predicted_labels) ###Output C:\Users\Kunj\anaconda3\envs\tf-gpu\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: invalid value encountered in true_divide after removing the cwd from sys.path. C:\Users\Kunj\anaconda3\envs\tf-gpu\lib\site-packages\ipykernel_launcher.py:6: RuntimeWarning: invalid value encountered in true_divide ###Markdown Import all the necessary library ###Code import numpy as np import seaborn as sns import matplotlib.pyplot as plt import os from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tensorflow.keras.layers import Dense, Input, Dropout,Flatten, Conv2D from tensorflow.keras.layers import BatchNormalization, Activation, MaxPooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from tensorflow.keras.utils import plot_model from IPython.display import SVG, Image import tensorflow as tf print("Tensorflow version:", tf.__version__) ###Output Tensorflow version: 2.4.1 ###Markdown Plot some images from the dataset ###Code def plot_example_images(plt): img_size = 48 plt.figure(0, figsize=(12,20)) ctr = 0 for expression in os.listdir("/content/drive/MyDrive/facial expression/data/train/"): for i in range(1,6): ctr += 1 plt.subplot(7,5,ctr) img = load_img("/content/drive/MyDrive/facial expression/data/train/" + expression + "/" +os.listdir("/content/drive/MyDrive/facial expression/data/train/" + expression)[i], target_size=(img_size, img_size)) plt.imshow(img, cmap="gray") plt.tight_layout() return plt plot_example_images(plt).show() for expression in os.listdir("/content/drive/MyDrive/facial expression/data/train/"): print(str(len(os.listdir("/content/drive/MyDrive/facial expression/data/train/" + expression))) + " " + expression + " images") ###Output 3995 angry images 4097 fear images 4830 sad images 4965 neutral images 7215 happy images 3171 surprise images 436 disgust images ###Markdown split dataset for training and validation ###Code img_size = 48 batch_size = 64 datagen_train = ImageDataGenerator(horizontal_flip=True) train_generator = datagen_train.flow_from_directory("/content/drive/MyDrive/facial expression/data/train/", target_size=(img_size,img_size), color_mode="grayscale", batch_size=batch_size, class_mode='categorical', shuffle=True) datagen_validation = ImageDataGenerator(horizontal_flip=True) validation_generator = datagen_validation.flow_from_directory("/content/drive/MyDrive/facial expression/data/test/", target_size=(img_size,img_size), color_mode="grayscale", batch_size=batch_size, class_mode='categorical', shuffle=False) ###Output Found 28709 images belonging to 7 classes. Found 7178 images belonging to 7 classes. ###Markdown Model ###Code model = Sequential() # 1 - Convolution model.add(Conv2D(64,(3,3), padding='same', input_shape=(48, 48,1))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 2nd Convolution layer model.add(Conv2D(128,(5,5), padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 3rd Convolution layer model.add(Conv2D(512,(3,3), padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 4th Convolution layer model.add(Conv2D(512,(3,3), padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # Flattening model.add(Flatten()) # Fully connected layer 1st layer model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) # Fully connected layer 2nd layer model.add(Dense(512)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Dense(7, activation='softmax')) opt = Adam(lr=0.0005) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) model.summary() import keras keras.utils.plot_model(model,'/content/drive/MyDrive/facial expression/model.png', show_shapes=True) import tensorflow as tf ###Output _____no_output_____ ###Markdown training the model ###Code with tf.device('/GPU:0'): epochs = 15 steps_per_epoch = train_generator.n//train_generator.batch_size validation_steps = validation_generator.n//validation_generator.batch_size reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, min_lr=0.00001, mode='auto') checkpoint = ModelCheckpoint("/content/drive/MyDrive/facial expression/face_model_weights.h5", monitor='val_accuracy', save_weights_only=True, mode='max', verbose=1) callbacks = [ checkpoint, reduce_lr] history = model.fit( x=train_generator, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data = validation_generator, validation_steps = validation_steps, callbacks=callbacks ) ###Output Epoch 1/15 448/448 [==============================] - 6280s 14s/step - loss: 1.9596 - accuracy: 0.2568 - val_loss: 1.5205 - val_accuracy: 0.4136 Epoch 00001: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 2/15 448/448 [==============================] - 43s 96ms/step - loss: 1.5125 - accuracy: 0.4210 - val_loss: 1.5629 - val_accuracy: 0.4295 Epoch 00002: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 3/15 448/448 [==============================] - 42s 93ms/step - loss: 1.3506 - accuracy: 0.4834 - val_loss: 1.3200 - val_accuracy: 0.5064 Epoch 00003: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 4/15 448/448 [==============================] - 41s 92ms/step - loss: 1.2552 - accuracy: 0.5188 - val_loss: 1.1997 - val_accuracy: 0.5371 Epoch 00004: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 5/15 448/448 [==============================] - 42s 93ms/step - loss: 1.1810 - accuracy: 0.5457 - val_loss: 1.2215 - val_accuracy: 0.5244 Epoch 00005: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 6/15 448/448 [==============================] - 41s 92ms/step - loss: 1.1551 - accuracy: 0.5602 - val_loss: 1.1624 - val_accuracy: 0.5479 Epoch 00006: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 7/15 448/448 [==============================] - 41s 92ms/step - loss: 1.1113 - accuracy: 0.5798 - val_loss: 1.1528 - val_accuracy: 0.5628 Epoch 00007: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 8/15 448/448 [==============================] - 41s 92ms/step - loss: 1.0747 - accuracy: 0.5910 - val_loss: 1.0864 - val_accuracy: 0.5936 Epoch 00008: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 9/15 448/448 [==============================] - 43s 95ms/step - loss: 1.0621 - accuracy: 0.5990 - val_loss: 1.1393 - val_accuracy: 0.5703 Epoch 00009: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 10/15 448/448 [==============================] - 42s 95ms/step - loss: 1.0297 - accuracy: 0.6099 - val_loss: 1.0840 - val_accuracy: 0.5889 Epoch 00010: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 11/15 448/448 [==============================] - 42s 93ms/step - loss: 1.0112 - accuracy: 0.6151 - val_loss: 1.0707 - val_accuracy: 0.5960 Epoch 00011: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 12/15 448/448 [==============================] - 42s 94ms/step - loss: 0.9912 - accuracy: 0.6264 - val_loss: 1.0822 - val_accuracy: 0.5933 Epoch 00012: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 13/15 448/448 [==============================] - 42s 93ms/step - loss: 0.9622 - accuracy: 0.6305 - val_loss: 1.1562 - val_accuracy: 0.5590 Epoch 00013: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 14/15 448/448 [==============================] - 42s 93ms/step - loss: 0.9168 - accuracy: 0.6566 - val_loss: 0.9639 - val_accuracy: 0.6410 Epoch 00014: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 Epoch 15/15 448/448 [==============================] - 42s 93ms/step - loss: 0.8838 - accuracy: 0.6686 - val_loss: 0.9648 - val_accuracy: 0.6445 Epoch 00015: saving model to /content/drive/MyDrive/facial expression/face_model_weights.h5 ###Markdown save the model ###Code model_json = model.to_json() with open("/content/drive/MyDrive/facial expression/model.json", "w") as json_file: json_file.write(model_json) ###Output _____no_output_____ ###Markdown **IMPORTING LIBRARIES** ###Code import os import shutil import random #for random distribution of data from shutil import copyfile from os import getcwd # getcwd returns current working directory import pandas as pd # for data manipulation import numpy as np # for operation import tensorflow as tf from tensorflow.keras.preprocessing import image # for image processing import matplotlib.pyplot as plt from keras.utils import np_utils import cv2 from google.colab.patches import cv2_imshow from scipy import stats from PIL import Image import math %matplotlib inline import matplotlib.image as mpimg import numpy as np import dlib from tensorflow.keras.preprocessing.image import ImageDataGenerator from google.colab import drive # for importing dataset from google drive drive.mount('/content/drive') from zipfile import ZipFile # for importing dataset locally from the colab file_name = '/content/datasets.zip' with ZipFile(file_name,'r') as zip: zip.extractall() SOURCE = '/content/datasets/CK+48/' #source directory for images os.listdir(SOURCE) # subdirectories of source directory ###Output _____no_output_____ ###Markdown **PREPROCESSING** ###Code def HistEqualization(image, number_bins = 256): #implementing the histogram equalization # get the image histogram image_Hist, bins = np.histogram(image.flatten(), number_bins, [0, 256]) cdf = image_Hist.cumsum() # cumulative distribution function cdf = image_Hist.max()*cdf/cdf.max() #normalize cdf_mask = np.ma.masked_equal(cdf, 0) cdf_mask = (cdf_mask - cdf_mask.min())*255/(cdf_mask.max()-cdf_mask.min()) cdf = np.ma.filled(cdf_mask,0).astype('uint8') return cdf[image.astype('uint8')] !wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 !bunzip2 "shape_predictor_68_face_landmarks.dat.bz2" predictor_path = 'shape_predictor_68_face_landmarks.dat' # path of data #initializes dlib’s pre-trained face detector based on a modification to the standard Histogram of Oriented Gradients + Linear SVM method for object detection. detector = dlib.get_frontal_face_detector() #loads the facial landmark predictor using the path predictor = dlib.shape_predictor(predictor_path) # take a bounding predicted by dlib and convert it def rect_to_bb(rect): # to the format (x, y, w, h) as we would normally do # with OpenCV x1 = rect.left() y1 = rect.top() w1 = rect.right() - x1 h1 = rect.bottom() - y1 # return a tuple of (x, y, w, h) return (x1, y1, w1, h1) # extract 68 coordinate from shape object def shape_to_np(shape, dtype = int): coords = np.zeros((68, 2), dtype=dtype) for i in range(0,68): coords[i] = (shape.part(i).x, shape.part(i).y) return coords # loop over the 68 facial landmarks and convert them # calculate forehead distance to use in cropping image def forehead_dist(coords): d = (np.sum(coords[42:47,1]) - np.sum(coords[36:41,1]))/ 6 return d # calculate angle using eye landmark points i.e 42 to 47 is right eye and 36 to 41 is left eye def required_angle(shape): val = (np.sum(shape[42:47,1]) - np.sum(shape[36:41,1]))/(np.sum(shape[42:47,0]) - np.sum(shape[36:41,0])) angle = math.degrees(math.atan(val)) return angle #finally rotate image obtained by required_angle function def rotate_image(image, shape): angle = required_angle(shape) image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) rotated_image = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR) return rotated_image def face_alignment(image): # implementing face alignment image = np.array(image) image = image.astype(np.uint8) gray_image = image #gray_image = cv2.cvtColor(image ,cv2.COLOR_BGR2GRAY) # convert color image to grayscale image rects = detector(gray_image ,1) # detect faces in the grayscale image if len(rects) > 0: images = [] for (i, rect) in enumerate(rects): shape = predictor(image, rect) shape = shape_to_np(shape) rotated_image = rotate_image(image , shape) images.append(rotated_image) if len(rects) == 1 : return rotated_image else: return images else: #print("Error : number of detected face is zero, so we just return original image") return image def face_cropping_without_forehead(image): # implementing face cropping without forehead gray_image = image #gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # convert color image to grayscale image rects = detector(gray_image ,1) # detect faces in the grayscale image if len(rects) > 0: images = [] for (i, rect) in enumerate(rects): shape = predictor(image, rect) shape = shape_to_np(shape) # convert dlib's rectangle to a OpenCV-style bounding box # [i.e., (x, y, w, h)], then draw the face bounding box (x1, y1, w1, h1) = rect_to_bb(rect) d = forehead_dist(shape) top_y = int(np.sum(shape[42 : 47, 1]) / 6 - 0.6 * d) left_x, left_y = shape[0] bottom_x, bottom_y = shape[8] right_x, right_y = shape[16] cropped_image = image[top_y : bottom_y, left_x : right_x] if cropped_image.shape[0] == 0: cropped_image = image[0:-1,left_x : right_x] if cropped_image.shape[1] == 0: cropped_image = image[top_y : bottom_y, 0:-1] images.append(cropped_image) if len(rects) == 1 : return cropped_image else: return images else: #print("Error : number of detected face is zero, so we just return original image") return image def face_cropping_without_background(image): # implementing face cropping without background gray_image=image #gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # convert color image to grayscale image rects = detector(gray_image ,1) # detect faces in the grayscale image if len(rects) > 0: images = [] for (i, rect) in enumerate(rects): shape = predictor(image, rect) shape = shape_to_np(shape) # convert dlib's rectangle to a OpenCV-style bounding box # [i.e., (x, y, w, h)], then draw the face bounding box (x1, y1, w1, h1) = rect_to_bb(rect) top_x, top_y = shape[19] left_x, left_y = shape[0] bottom_x, bottom_y = shape[8] right_x, right_y = shape[16] cropped_image = image[ min(top_y, abs(y1)) : max(bottom_y, abs(y1) + w1), min(left_x, abs(x1)) : max(right_x, abs(x1) + w1)] if cropped_image.shape[0] == 0: cropped_image = image[:,min(left_x, abs(x1)) : max(right_x, abs(x1) + w1)] if cropped_image.shape[1] == 0: cropped_image = image[min(top_y, abs(y1)) : max(bottom_y, abs(y1) + w1), :] images.append(cropped_image) if len(rects) == 1 : return cropped_image else: return images else: print("Error : number of detected face is zero, so we just return original image") return image def preprocessing(images): # A function for overall preprocessing including alignment ,cropping and normalization images = face_alignment(images) images = face_cropping_without_background(images) images = HistEqualization(images,256) normalized_img = stats.zscore(images) images = normalized_img*255 #images = cv2.cvtColor(images,cv2.COLOR_BGR2GRAY) images = cv2.resize(images,(100,100)) images = np.array(images) try: images = images.reshape(100,100,1) except: return images return images # just a checkout code , NO need to run it image = cv2.imread('/content/drive/My Drive/datasets/jaffe/angry/KA.AN1.39.png',0) cv2_imshow(preprocessing(image)) print(preprocessing(image).shape) ###Output _____no_output_____ ###Markdown **MAKING DIRECTORIES FOR TRAINING AND VALIDATION IMAGES** ###Code os.mkdir('/content/images') os.mkdir('/content/images/train') os.mkdir('/content/images/test') os.mkdir('/content/images/train/anger') os.mkdir('/content/images/train/sadness') os.mkdir('/content/images/train/happy') os.mkdir('/content/images/train/fear') os.mkdir('/content/images/train/surprise') os.mkdir('/content/images/train/disgust') os.mkdir('/content/images/train/contempt') os.mkdir('/content/images/test/anger') os.mkdir('/content/images/test/sadness') os.mkdir('/content/images/test/happy') os.mkdir('/content/images/test/fear') os.mkdir('/content/images/test/surprise') os.mkdir('/content/images/test/contempt') os.mkdir('/content/images/test/disgust') def split_data(SOURCE, TRAINING, TESTING, SPLIT_SIZE): # A function that splits the data present in source directory files = [] # into training and test sets for filename in os.listdir(SOURCE): # filename is the name of image files in the source dir file = SOURCE + filename # this file will contain the path of the images if os.path.getsize(file) > 0: # files will contain the paths of all images in source dir files.append(filename) else: print(filename + " is zero length, so ignoring.") #print(len(files)) training_length = int(len(files) * SPLIT_SIZE) testing_length = int(len(files) - training_length) shuffled_set = random.sample(files, len(files)) training_set = shuffled_set[0:training_length] testing_set = shuffled_set[:testing_length] for filename in training_set: this_file = SOURCE + filename destination = TRAINING + filename copyfile(this_file, destination) for filename in testing_set: this_file = SOURCE + filename destination = TESTING + filename copyfile(this_file, destination) split_size = 0.8 anger_train_dir = '/content/images/train/anger/' sadness_train_dir = '/content/images/train/sadness/' disgust_train_dir = '/content/images/train/disgust/' happy_train_dir = '/content/images/train/happy/' fear_train_dir = '/content/images/train/fear/' contempt_train_dir = '/content/images/train/contempt/' surprise_train_dir = '/content/images/train/surprise/' anger_test_dir = '/content/images/test/anger/' sadness_test_dir = '/content/images/test/sadness/' disgust_test_dir = '/content/images/test/disgust/' happy_test_dir = '/content/images/test/happy/' fear_test_dir = '/content/images/test/fear/' contempt_test_dir = '/content/images/test/contempt/' surprise_test_dir = '/content/images/test/surprise/' anger_source_dir = '/content/datasets/CK+48/anger/' sadness_source_dir = '/content/datasets/CK+48/sadness/' disgust_source_dir = '/content/datasets/CK+48/disgust/' happy_source_dir = '/content/datasets/CK+48/happy/' fear_source_dir = '/content/datasets/CK+48/fear/' contempt_source_dir = '/content/datasets/CK+48/contempt/' surprise_source_dir = '/content/datasets/CK+48/surprise/' len(os.listdir(anger_source_dir)) split_data(anger_source_dir,anger_train_dir,anger_test_dir,split_size) split_data(sadness_source_dir,sadness_train_dir,sadness_test_dir,split_size) split_data(disgust_source_dir,disgust_train_dir,disgust_test_dir,split_size) split_data(happy_source_dir,happy_train_dir,happy_test_dir,split_size) split_data(fear_source_dir,fear_train_dir,fear_test_dir,split_size) split_data(contempt_source_dir,contempt_train_dir,contempt_test_dir,split_size) split_data(surprise_source_dir,surprise_train_dir,surprise_test_dir,split_size) ###Output _____no_output_____ ###Markdown **DATA AUGMENTATION** ###Code TRAINING_DIR = "/content/images/train" train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, rotation_range=2, preprocessing_function=preprocessing ) train_generator = train_datagen.flow_from_directory(TRAINING_DIR, batch_size=50, class_mode='categorical', target_size=(100,100), shuffle=True, color_mode='grayscale') VALIDATION_DIR = "/content/images/test" validation_datagen = ImageDataGenerator( rescale=1./255, horizontal_flip=True, rotation_range=2, preprocessing_function=preprocessing ) validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR, batch_size=50, class_mode='categorical', target_size=(100,100), shuffle=True, color_mode='grayscale') validation_generator.shuffle = False validation_generator.index_array = None ###Output Found 783 images belonging to 7 classes. Found 198 images belonging to 7 classes. ###Markdown **MAKING CNN MODEL** ###Code def CNN_model_with_0_neurons(num_of_classes): model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (5,5), activation = 'relu', name = 'conv2d_1',), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_1'), tf.keras.layers.Conv2D(64,(5,5), activation = 'relu', name = 'conv2d_2'), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_2'), tf.keras.layers.Flatten(name = 'flatten_1'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_of_classes,activation = 'softmax') ]) return model def CNN_model_with_256_neurons(num_of_classes): model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (5,5), activation = 'relu', name = 'conv2d_1',), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_1'), tf.keras.layers.Conv2D(64,(5,5), activation = 'relu', name = 'conv2d_2'), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_2'), tf.keras.layers.Flatten(name = 'flatten_1'), tf.keras.layers.Dense(256, activation = 'relu', name = "full_connected_1"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_of_classes,activation = 'softmax') ]) return model def CNN_model_with_512_neurons(num_of_classes): model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (5,5), activation = 'relu', name = 'conv2d_1',), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_1'), tf.keras.layers.Conv2D(64,(5,5), activation = 'relu', name = 'conv2d_2'), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_2'), tf.keras.layers.Flatten(name = 'flatten_1'), tf.keras.layers.Dense(512, activation = 'relu', name = "full_connected_1"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_of_classes,activation = 'softmax') ]) return model def CNN_model_with_1024_neurons(num_of_classes): model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (5,5), activation = 'relu', name = 'conv2d_1',), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_1'), tf.keras.layers.Conv2D(64,(5,5), activation = 'relu', name = 'conv2d_2'), tf.keras.layers.MaxPooling2D((2,2), name = 'max_pool_2'), tf.keras.layers.Flatten(name = 'flatten_1'), tf.keras.layers.Dense(1024, activation = 'relu', name = "full_connected_1"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_of_classes,activation = 'softmax') ]) return model model = CNN_model_with_0_neurons(7) model.compile(optimizer = 'adam', loss = 'categorical_crossentropy',metrics = ['accuracy']) class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.99): print("\nReached 99% accuracy so cancelling training!") self.model.stop_training = True ###Output _____no_output_____ ###Markdown **TRAINING THE MODEL** ###Code callbacks = myCallback() history = model.fit(train_generator,epochs=10,callbacks=[callbacks],batch_size=50,shuffle=True,validation_data=validation_generator) acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy with 256 neurons') plt.legend(loc=0) plt.grid() plt.show() ###Output _____no_output_____ ###Markdown **EVALUATION VIA CONFUSION MATRIX** ###Code emotion = os.listdir('/content/images/train') import itertools from sklearn.metrics import confusion_matrix,classification_report def plot_confusion_matrix(cm): print(cm) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest', cmap="BuPu") plt.title('Confusion Matrix on Validation Data') plt.colorbar() tick_marks = np.arange(len(emotion)) plt.xticks(tick_marks, emotion,rotation=45) plt.yticks(tick_marks, emotion) fmt = '.2f' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True Emotions') plt.xlabel('Predicted Emotions') plt.show() predictions = model.predict(validation_generator, 4) y_pred = np.argmax(predictions, axis=1) plot_confusion_matrix(confusion_matrix(validation_generator.classes, y_pred)) ###Output [[14 0 0 0 0 0 0] [ 0 6 0 0 0 0 0] [ 0 0 18 0 0 0 0] [ 0 0 0 8 0 0 0] [ 0 0 0 1 20 0 0] [ 0 0 0 0 0 9 0] [ 0 0 0 0 0 0 25]] ###Markdown ***Cross validation*** ###Code os.mkdir('/content/folds') for i in range(0,10): os.mkdir('/content/folds/fold'+str(i)) os.mkdir('/content/folds/fold'+str(i)+'/train') os.mkdir('/content/folds/fold'+str(i)+'/test') for j in os.listdir('/content/datasets/CK+48'): os.mkdir('/content/folds/fold'+str(i)+'/train/'+j) os.mkdir('/content/folds/fold'+str(i)+'/test/'+j) for i in range(0,10): fold_path = '/content/folds/fold' + str(i) test_fold = '/content/folds/fold' + str(i) + '/test' train_fold = '/content/folds/fold' + str(i) + '/train' for j in os.listdir(train_fold): emotion_train_fold = train_fold + '/' + j emotion_test_fold = test_fold + '/' + j emotion_source = '/content/datasets/CK+48/' + j length = len(os.listdir(emotion_source)) initial_size = int(i*length/10) final_size = int((i+1)*length/10) files = [] for k in os.listdir(emotion_source): path = emotion_source + '/' + k files.append(k) testing_set = files[initial_size:final_size] training_set = [] for n in files: if n not in testing_set: training_set.append(n) for filename in training_set: src = emotion_source + '/' + filename des = emotion_train_fold + '/' + filename copyfile(src,des) for filename in testing_set: src = emotion_source + '/' + filename des = emotion_test_fold + '/' + filename copyfile(src,des) sum_acc=0 for i in range(0,10): fold_path = '/content/folds/fold' + str(i) TRAINING_DIR = train_fold = '/content/folds/fold' + str(i) + '/train' train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, rotation_range=2, preprocessing_function=preprocessing ) train_generator = train_datagen.flow_from_directory(TRAINING_DIR, batch_size=50, class_mode='categorical', target_size=(100,100), shuffle=True, color_mode='grayscale') VALIDATION_DIR = '/content/folds/fold' + str(i) + '/test' validation_datagen = ImageDataGenerator( rescale=1./255, horizontal_flip=True, rotation_range=2, preprocessing_function=preprocessing ) validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR, batch_size=50, class_mode='categorical', target_size=(100,100), shuffle=True, color_mode='grayscale') validation_generator.shuffle = False validation_generator.index_array = None model = CNN_model_with_256_neurons(7) model.compile(optimizer = 'adam', loss = 'categorical_crossentropy',metrics = ['accuracy']) history = model.fit(train_generator,epochs=10,batch_size=50,shuffle=True) test_loss,test_acc=model.evaluate(validation_generator) sum_acc=sum_acc+test_acc avg_acc=sum_acc/10 print(avg_acc) image = cv2.imread('/content/happily-surprised.jpg',0) cv2_imshow(image) image = preprocessing(image) image = np.array(image) cv2_imshow(image) image = image.reshape(1,100,100,1) print('The emotion in the given figure is ' + emotion[np.argmax(model.predict(image))]) ###Output _____no_output_____
notebooks/predict.ipynb
###Markdown Specify parameters ###Code input_dir = '../example_data/img' bbox_fn = '../example_data/bboxes.csv' model_dir = '../outputs/model/' wn = 'weights_best.pth' output_dir = '../outputs/outlines/' batch_size = 2 overlap_threshold=0.1 detection_threshold=0.1 figsize = 4 model_name = os.listdir(model_dir)[0] model_name ###Output _____no_output_____ ###Markdown Predict ###Code df = detect_bboxes(input_dir=input_dir, model_fn=os.path.join(model_dir, model_name, wn), batch_size=batch_size, overlap_threshold=overlap_threshold, detection_threshold=detection_threshold) ###Output _____no_output_____ ###Markdown Overlay bboxes ###Code overlay_bboxes_batch(df=df, input_dir=input_dir, output_dir=os.path.join(output_dir, model_name)) ###Output _____no_output_____ ###Markdown Display example data ###Code files = walk_dir(os.path.join(output_dir, model_name)) for i in range(min(5, len(files))): plt.figure(figsize=(figsize, figsize)) io.imshow(io.imread(files[i])) ###Output _____no_output_____ ###Markdown Predict on new data using a trained CNN on XPS data on Google Colab In this notebook, we will use a trained convolutional network to predict on unseen XPS spectra. Setup Mount google drive, change working directory ###Code # Mount drive from google.colab import drive import os drive.mount('/content/drive') # Change working path os.chdir('/content/drive/My Drive/deepxps') ###Output _____no_output_____ ###Markdown Install packages and import modules ###Code %%capture # Install packages !pip install python-docx # Import standard modules and magic commands import datetime import numpy as np import pytz import importlib import matplotlib.pyplot as plt # Magic commands %matplotlib inline from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # Disable tf warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf ###Output _____no_output_____ ###Markdown Set seeds and restart session to ensure reproducibility ###Code def reset_seeds_and_session(seed=1): os.environ['PYTHONHASHSEED']=str(seed) tf.random.set_seed(seed) np.random.seed(seed) session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf) tf.compat.v1.keras.backend.set_session(sess) reset_seeds_and_session(seed=1) ###Output _____no_output_____ ###Markdown Check TensorFlow version ###Code f"TF version: {tf.__version__}." ###Output _____no_output_____ ###Markdown Predict on new data set Load custom modules ###Code try: import importlib importlib.reload(classifier) importlib.reload(clfutils) print('\n Modules were reloaded.') except: import xpsdeeplearning.network.classifier as classifier import xpsdeeplearning.network.utils as clfutils print('Modules were loaded.') ###Output _____no_output_____ ###Markdown Set up the parameters & folder structure ###Code np.random.seed(502) time = datetime.datetime.now().astimezone(pytz.timezone('Europe/Berlin')).strftime("%Y%m%d_%Hh%Mm") exp_name = 'test' clf = classifier.Classifier(time = time, exp_name = exp_name, task = 'regression', intensity_only = True) ###Output _____no_output_____ ###Markdown Load and inspect the data ###Code input_filepath = r'/content/drive/My Drive/deepxps/datasets/20210903_CoFe_combined_without_auger_peaks.h5' train_test_split = 0.99 train_val_split = 0 no_of_examples = 100#000 #180 X_train, X_val, X_test, y_train, y_val, y_test,\ names_train, names_val, names_test =\ clf.load_data_preprocess(input_filepath = input_filepath, no_of_examples = no_of_examples, train_test_split = train_test_split, train_val_split = train_val_split) # Check how the examples are distributed across the classes. class_distribution = clf.datahandler.check_class_distribution(clf.task) clf.plot_class_distribution() clf.plot_random(no_of_spectra = 10, dataset = 'test') ###Output _____no_output_____ ###Markdown Continue with 10-point average of last values (cutoff: 5 eV on each side) ###Code for dataset in [clf.datahandler.X, clf.datahandler.X_train, clf.datahandler.X_val, clf.datahandler.X_test]: for arr in dataset: arr[:100,:] = np.average(arr[100:110,:], axis=0) arr[-100:,:] = np.average(arr[-110:-100,:], axis=0) clf.plot_random(no_of_spectra = 10, dataset = 'test') ###Output _____no_output_____ ###Markdown Load and compile the model ###Code clf.load_model(model_path = '/content/drive/My Drive/deepxps/runs/20210914_19h11m_FeCo_combined_without_auger_7_classes_no_window/model') ###Output _____no_output_____ ###Markdown Plot summary and save model plot. ###Code clf.summary() clf.save_and_print_model_image() ###Output _____no_output_____ ###Markdown Evaluate on test data ###Code clf.logging.hyperparams['batch_size'] = 32 if clf.task == 'classification': score = clf.evaluate() test_loss, test_accuracy = score[0], score[1] print('Test loss: ' + str(np.round(test_loss, decimals=8))) print('Test accuracy: ' + str(np.round(test_accuracy, decimals=3))) elif clf.task == 'regression': test_loss = clf.evaluate() print('Test loss: ' + str(np.round(test_loss, decimals=8))) ###Output _____no_output_____ ###Markdown Predict on train & test data ###Code pred_train, pred_test = clf.predict() if clf.task == 'classification': pred_train_classes, pred_test_classes = clf.predict_classes() ###Output _____no_output_____ ###Markdown Show some predictions on random test samples ###Code clf.plot_random(no_of_spectra = 15, dataset = 'test', with_prediction = True) clf.datahandler.plot_spectra(no_of_spectra=20, dataset="test", indices=list(range(20)), with_prediction=True) ###Output _____no_output_____ ###Markdown Show the worst predictions on the test samples ###Code clf.show_worst_predictions(no_of_spectra = 10) ###Output _____no_output_____ ###Markdown Save data ###Code #clf.save_hyperparams() clf.pickle_results() ###Output _____no_output_____ ###Markdown Check where and why the predictions fail Show worst predictions for single spectra ###Code clf.show_worst_predictions(no_of_spectra = 10, kind = 'single') ###Output _____no_output_____ ###Markdown Show worst predictions for different loss thresholds (single spectra) ###Code threshold = 0.2 clf.show_worst_predictions(no_of_spectra = 10, kind = 'single', threshold = threshold) threshold = 0.1 clf.show_worst_predictions(no_of_spectra = 10, kind = 'single', threshold = threshold) threshold = 0.05 clf.show_worst_predictions(no_of_spectra = 10, kind = 'single', threshold = threshold) threshold = 0.02 clf.show_worst_predictions(no_of_spectra = 10, kind = 'single', threshold = threshold) threshold = 0.01 clf.show_worst_predictions(no_of_spectra = 10, kind = 'single', threshold = threshold) ###Output _____no_output_____ ###Markdown Show worst predictions for linearly combined spectra ###Code clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb') ###Output _____no_output_____ ###Markdown Show worst predictions for different loss thresholds (linearly combined spectra) ###Code threshold = 0.3 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.2 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.1 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.05 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.025 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.01 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) threshold = 0.005 clf.show_worst_predictions(no_of_spectra = 10, kind = 'linear_comb', threshold = threshold) ###Output _____no_output_____ ###Markdown Show worst predictions for all ###Code clf.show_worst_predictions(no_of_spectra = 10, kind = 'all') ###Output _____no_output_____ ###Markdown Show worst predictions for different loss thresholds (all spectra) ###Code threshold = 0.3 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.2 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.1 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.05 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.025 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.01 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.005 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.001 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.0005 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.00025 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.0001 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) threshold = 0.00001 clf.show_worst_predictions(no_of_spectra = 10, kind = 'all', threshold = threshold) ###Output _____no_output_____ ###Markdown Remove empty model directory ###Code import shutil shutil.rmtree(clf.logging.model_dir) del(clf.logging.model_dir) ###Output _____no_output_____ ###Markdown Save output of notebook ###Code from IPython.display import Javascript, display from nbconvert import HTMLExporter def save_notebook(): display(Javascript("IPython.notebook.save_notebook()"), include=['application/javascript']) def output_HTML(read_file, output_file): import codecs import nbformat exporter = HTMLExporter() # read_file is '.ipynb', output_file is '.html' output_notebook = nbformat.read(read_file, as_version=4) output, resources = exporter.from_notebook_node(output_notebook) codecs.open(output_file, 'w', encoding='utf-8').write(output) import time import os time.sleep(20) save_notebook() print('Notebook saved!') time.sleep(30) current_file = '/content/drive/My Drive/deepxps/xpsdeeplearning/notebooks/predict.ipynb' output_file = os.path.join(clf.logging.log_dir, 'predict_out.html') output_HTML(current_file, output_file) print('HTML file saved!') ###Output _____no_output_____ ###Markdown Load predictor ###Code %matplotlib inline import os import matplotlib import numpy as np import matplotlib.pyplot as plt matplotlib.use("Agg") os.getcwd() os.chdir('/home/del/research/span_ae') import span_ae from allennlp.models.archival import load_archive from allennlp.service.predictors import Predictor archive = load_archive("models/baseline/model.tar.gz") predictor = Predictor.from_archive(archive, 'span_ae') ###Output _____no_output_____ ###Markdown Func ###Code def predict_plot(sentence): # predict result = predictor.predict_json(sentence) attention_matrix = result['attention_matrix'] predicted_tokens = result['predicted_tokens'] survived_span_ids = result['top_spans'] input_sentence = ['BOS'] + sentence['src'].split() + ['EOS'] predicted_tokens = predicted_tokens + ['EOS'] survived_spans = [] for span_id in survived_span_ids: ind_from = span_id[0] ind_to = span_id[1] + 1 survived_spans.append(" ".join(input_sentence[ind_from:ind_to])) attention_matrix_local = attention_matrix[0:len(predicted_tokens)] att_matrix_np = np.array([np.array(xi) for xi in attention_matrix_local]) #print print('ORIGINAL :', " ".join(input_sentence)) #print('TOP SPANs:', " \n ".join(survived_spans)) print('PREDICTED:', " ".join(predicted_tokens)) #print('span scores:', result['top_spans_scores']) print('\nAttnetion matrix:') # plot plt.figure(figsize=(9, 9), dpi= 80, facecolor='w', edgecolor='k') plt.imshow(att_matrix_np.transpose(), interpolation="nearest", cmap="Greys") plt.xlabel("target") plt.ylabel("source") plt.gca().set_xticks([i for i in range(0, len(predicted_tokens))]) plt.gca().set_yticks([i for i in range(0, len(survived_spans))]) plt.gca().set_xticklabels(predicted_tokens, rotation='vertical') plt.gca().set_yticklabels(survived_spans) plt.tight_layout() ###Output _____no_output_____ ###Markdown Inference ###Code # change it sentence = "to school" # do not change it predict_plot({'src': sentence}) # change it sentence = "school" # do not change it predict_plot({'src': sentence}) # change it sentence = "it is spring already , but there are a lot of snow out there" # do not change it predict_plot({'src': sentence}) b # change it sentence = "let us discard our entire human knowledge" # do not change it predict_plot({'src': sentence}) ###Output ORIGINAL : BOS let us discard our entire human knowledge EOS PREDICTED: let us discard our entire development knowledge EOS Attnetion matrix: ###Markdown Load Data and Build Model ###Code seed_everything(42, workers=True) DEVICE = torch.device("cuda:1") config, module, model, light_model = load_model_from_path( # "/shared/gbiamby/geo/models/geoscreens_009-resnest50_fpn-with_augs/", # "/home/gbiamby/proj/geoscreens/tools/output/keep/gs_012_extra_augs_more_epochs--geoscreens_012-model_faster_rcnn-bb_resnest50_fpn-36e514692a/", "/home/gbiamby/proj/geoscreens/tools/output/gs_urls_02b_013--geoscreens_013-model_faster_rcnn-bb_resnest50_fpn-2e71bb2f4d/", device=DEVICE, ) model, light_model = model.eval(), light_model.eval() geoscreens_data = GeoScreensDataModule(config, module) ###Output _____no_output_____ ###Markdown Show Some Training Samples ###Code train_ds = geoscreens_data.train_ds # Show an element of the train_ds with augmentation transformations applied samples = [train_ds[10] for _ in range(3)] show_samples(samples, ncols=3) ###Output _____no_output_____ ###Markdown Show some validation set samples ###Code module.show_batch(first(geoscreens_data.val_dataloader()), ncols=4) ###Output _____no_output_____ ###Markdown Show some predictions ###Code num_samples = 10 size = 30 module.show_results( light_model, geoscreens_data.valid_ds, num_samples=num_samples, detection_threshold=0.5, device=DEVICE, figsize=(size, (size * num_samples) / 2), ) ###Output _____no_output_____ ###Markdown --- Prediction Testing Dataloader and Batching ###Code from icevision.core import ClassMap from icevision.core.record import BaseRecord from icevision.core.record_components import ClassMapRecordComponent, ImageRecordComponent from icevision.tfms import Transform from PIL import Image class GeoscreensInferenceDataset(object): """ Only usable for inference. Provides a dataset over a folder with video frames in form:: <video_id_1>/ frame_....jpg <video_id_2>/ frame_....jpg If no video_id specified, the dataset will loop over all <video_id> subfolders and include all frames in each. """ def __init__( self, frames_path: Union[str, Path], class_map: ClassMap, video_ids: Union[int, List[int]] = None, tfm: Optional[Transform] = None, ): self.frames_path = Path(frames_path).resolve() assert self.frames_path.exists(), f"Frames path not found: {self.frames_path}" assert self.frames_path.is_dir(), f"Frames path is not a directory: {self.frames_path}" if video_ids and isinstance(video_ids, str): video_ids = [video_ids] elif video_ids is None: video_ids = [] self.tfm = tfm self.class_map = class_map self.frames = [] record_id: int = 0 print("video_ids") for video_id in video_ids: frames = sorted((self.frames_path / video_id).glob("*.jpg")) print("Num frames found: ", len(frames)) for f in frames: record = BaseRecord((ImageRecordComponent(),)) record.set_record_id(record_id) # record.set_img(image) # TODO, HACK: adding class map because of `convert_raw_prediction` record.add_component(ClassMapRecordComponent(task=tasks.detection)) if class_map is not None: record.detection.set_class_map(class_map) parts = f.stem.replace("frame_", "").replace("s", "").split("-") self.frames.append( { "video_id": video_id, "frame_idx": -1, "file_path": f, "frame_idx": int(parts[0]), "seconds": round(float(parts[1]), 2), "record": record, } ) record_id += 1 def __len__(self): return len(self.frames) def __getitem__(self, i: int): meta = self.frames[i] record = meta["record"] img = np.array(Image.open(str(meta["file_path"]))) record.set_img(img) record.load() if self.tfm is not None: record = self.tfm(record) # else: # # HACK FIXME # # record.set_img(np.array(record.img)) # pass return record def __repr__(self): return f"<{self.__class__.__name__} with {len(self.records)} items>" # video_path = Path("/shared/gbiamby/geo/video_frames/pF9OA332DPk.mp4") frames_path = "/shared/gbiamby/geo/video_frames" infer_tfms = tfms.A.Adapter( [*tfms.A.resize_and_pad(config.dataset_config.img_size), tfms.A.Normalize()] ) infer_ds = GeoscreensFramesDataset( frames_path, geoscreens_data.parser.class_map, "pF9OA332DPk", infer_tfms ) infer_dl = module.infer_dl(infer_ds, batch_size=8, shuffle=False, num_workers=16) print("len ds: ", len(infer_ds)) preds = module.predict_from_dl(model, infer_dl, detection_threshold=0.5) preds preds[0].pred f_name = "frame_00039798-001326.600s.jpg" parts = f_name.replace("frame_", "").replace(".jpg", "").split("-") frame_idx = int(parts[0]) seconds = round(float(parts[1].replace("s", "")), 2) frame_idx, seconds def get_detections_from_generator(): raw_frames = [np.array(frame)] infer_ds = Dataset.from_images( raw_frames, infer_tfms, class_map=geoscreens_data.parser.class_map ) preds = module.predict(model, infer_ds, detection_threshold=0.5) if preds: assert len(preds) == 1, "Expected list of size 1." preds = preds[0] detections[frame_counter] = { "label_ids": [int(l) for l in preds.detection.label_ids], "scores": preds.detection.scores.tolist(), "bboxes": [ { "xmin": float(box.xmin), "ymin": float(box.ymin), "xmax": float(box.xmax), "ymax": float(box.ymax), } for box in preds.detection.bboxes ], } @timeit_context("") def get_frames_wrapper(fn, config, video_path): return [f for f in fn(config, video_path)] def get_indices_to_sample(config, total_frames: int, fps: float) -> List[int]: indices = map( int, np.linspace( start=0.0, stop=total_frames, num=int(total_frames * (config.frame_sample_rate_fps / fps)), retstep=False, endpoint=False, ), ) return list(indices) # def get_frames_generator_opencv( # config: DictConfig, # video_path: Path, # ): # print("Segmenting video: ", video_path) # error_state = False # cap = cv2.VideoCapture(str(video_path)) # if not cap.isOpened(): # print("Error opening input video: {}".format(video_path)) # return # num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # fps = cap.get(cv2.CAP_PROP_FPS) # sample_indices = get_indices_to_sample(config, num_frames, fps) # print(f"total_frames: {num_frames:,}, num_to_sample: {len(sample_indices):,}, fps: {fps}") # print("config.frame_sample_rate_fps: ", config.frame_sample_rate_fps) # for frame_counter in tqdm(range(len(sample_indices)), total=len(sample_indices)): # frame_idx = sample_indices[frame_counter] # if config.fast_debug and frame_counter >= config.debug_max_frames: # break # seconds = frame_idx / fps # cap.set(cv2.CAP_PROP_POS_MSEC, (seconds * 1000)) # ret, frame = cap.read() # if not ret: # raise Error(f"Error while processing video_id: {video_path} (ret:{ret}") # break # yield (seconds, frame_idx, frame) # video_path = Path("/home/gbiamby/proj/geoscreens/data/videos/pF9OA332DPk.mp4") # config = DictConfig( # { # "frame_sample_rate_fps": 4.0, # "fast_debug": False, # "debug_max_frames": 300, # } # ) # frames_cv = get_frames_wrapper(get_frames_generator_opencv, config, video_path) # print("num_frames sampled: ", len(frames_cv)) from decord import VideoReader, cpu, gpu def get_frames_generator_decord(config, video_path): vr = VideoReader(str(video_path), ctx=cpu(0)) sample_indices = get_indices_to_sample(config, len(vr), vr.get_avg_fps()) print( f"num_frames: {len(vr):,}, num_to_sample: {len(sample_indices):,}, fps: {vr.get_avg_fps()}" ) print("config.frame_sample_rate: ", config.frame_sample_rate_fps) for sample_idx in tqdm(range(len(sample_indices)), total=len(sample_indices)): frame_idx = sample_indices[sample_idx] if config.fast_debug and sample_idx >= config.debug_max_frames: break frame = vr[frame_idx] seconds = round(frame_idx / vr.get_avg_fps(), 2) yield (frame_idx, seconds, frame) # video_path = Path("/home/gbiamby/proj/geoscreens/data/videos/pF9OA332DPk.mp4") # config = DictConfig( # { # "frame_sample_rate_fps": 4.0, # "fast_debug": True, # "debug_max_frames": 30, # "video_frames_path": "/home/gbiamby/proj/geoscreens/data/video_frames", # } # ) # frames_decord = get_frames_wrapper(get_frames_generator_decord, config, video_path) # print("num_frames sampled: ", len(frames_decord)) # frames_decord[:10], frames_decord[:-10] from typing import Callable @timeit_context("extract_frames") def extract_frames(config: DictConfig, video_path: Path, get_frames_fn: Callable): frames_path = Path(config.video_frames_path) / video_path.stem frames_path.mkdir(exist_ok=True, parents=True) print("Saving frames to: ", frames_path) for frame_idx, seconds, frame in get_frames_fn(config, video_path): frame_out_path = frames_path / f"frame_{frame_idx:08}-{seconds:010.3f}s.jpg" cv2.imwrite(str(frame_out_path), cv2.cvtColor(frame.asnumpy(), cv2.COLOR_RGB2BGR)) video_path = Path("/shared/g-luo/geoguessr/videos/pF9OA332DPk.mp4") config = DictConfig( { "frame_sample_rate_fps": 4.0, "fast_debug": False, "debug_max_frames": 30, "video_frames_path": "/shared/gbiamby/geo/video_frames", } ) extract_frames(config, video_path, get_frames_generator_decord) from multiprocessing import Pool def extract_frames_fake(config: DictConfig, video_path: Path, get_frames_fn: Callable): frames_path = Path(config.video_frames_path) / video_path.stem frames_path.mkdir(exist_ok=True, parents=True) print("Saving frames to: ", frames_path) def process_videos_muli_cpu(config: DictConfig): files = sorted(Path(config.videos_path).glob("*.mp4")) print(len(files)) with Pool(processes=4) as pool: result = pool.map(extract_frames_fake, (config, files)) print(result.get(timeout=1)) config = DictConfig( { "frame_sample_rate_fps": 4.0, "fast_debug": False, "debug_max_frames": 30, "video_frames_path": "/shared/gbiamby/geo/video_frames", "videos_path": "/shared/g-luo/geoguessr/videos", "num_workers": 4, } ) process_videos_muli_cpu(config) # from geoscreens.utils import timeit_context # # Using the decord batching is somehow slower than just using the VideoReader indexing, i.e, # # get_frames_generator_decord(). # @timeit_context("get_frames_generator_decord_batched") # def get_frames_generator_decord_batched(config, video_path): # vr = VideoReader(str(video_path), ctx=cpu(0)) # indices = get_indices_to_sample(config, len(vr), vr.get_avg_fps()) # print(f"num_frames: {len(vr):,}, fps: {vr.get_avg_fps()}") # print("config.frame_sample_rate: ", config.frame_sample_rate_fps) # if config.fast_debug and len(indices) > config.debug_max_frames: # indices = indices[: config.debug_max_frames] # frames = vr.get_batch(indices).asnumpy() # yield from frames # video_path = Path("/shared/g-luo/geoguessr/videos/pF9OA332DPk.mp4") # config = DictConfig( # { # "frame_sample_rate_fps": 4.0, # "fast_debug": True, # "debug_max_frames": 10000, # } # ) # frames = get_frames_wrapper(get_frames_generator_decord_batched, config, video_path) # print("num_frames sampled: ", len(frames)) # To get multiple frames at once, use get_batch # this is the efficient way to obtain a long list of frames frames = vr.get_batch([1, 3, 5, 7, 9]) print(frames.shape) # (5, 240, 320, 3) # duplicate frame indices will be accepted and handled internally to avoid duplicate decoding frames2 = vr.get_batch([1, 2, 3, 2, 3, 4, 3, 4, 5]).asnumpy() print(frames2.shape) # (9, 240, 320, 3) # 2. you can do cv2 style reading as well # skip 100 frames vr.skip_frames(100) # seek to start vr.seek(0) batch = vr.next() print("frame shape:", batch.shape) print("numpy frames:", batch.asnumpy()) # from torchvision import transforms as t # from torchvision.datasets.folder import make_dataset # def get_samples(root, extensions=(".mp4", ".avi")): # _, class_to_idx = _find_classes(root) # return make_dataset(root, class_to_idx, extensions=extensions) # class RandomDataset(torch.utils.data.IterableDataset): # def __init__( # self, root, epoch_size=None, frame_transform=None, video_transform=None, clip_len=16, # video_id: str = # ): # super(RandomDataset).__init__() # self.samples = [] # # Allow for temporal jittering # if epoch_size is None: # epoch_size = len(self.samples) # self.epoch_size = epoch_size # self.clip_len = clip_len # self.frame_transform = frame_transform # self.video_transform = video_transform # def __iter__(self): # for i in range(self.epoch_size): # # Get random sample # path, target = random.choice(self.samples) # # Get video object # vid = torchvision.io.VideoReader(path, "video") # metadata = vid.get_metadata() # video_frames = [] # video frame buffer # # Seek and return frames # max_seek = metadata["video"]["duration"][0] - ( # self.clip_len / metadata["video"]["fps"][0] # ) # start = random.uniform(0.0, max_seek) # for frame in itertools.islice(vid.seek(start), self.clip_len): # video_frames.append(self.frame_transform(frame["data"])) # current_pts = frame["pts"] # # Stack it into a tensor # video = torch.stack(video_frames, 0) # if self.video_transform: # video = self.video_transform(video) # output = { # "path": path, # "video": video, # "target": target, # "start": start, # "end": current_pts, # } # yield output ###Output _____no_output_____ ###Markdown --- Naive Detection of Bad Ground Truth Lables ###Code tasks = json.load( open("/shared/gbiamby/geo/exports/geoscreens_009-from_proj_id_58.json", "r", encoding="utf-8") ) mistakes = [] for i, t in enumerate(tqdm(tasks, total=len(tasks))): # if i >= 10: # break # print("") anns_results = [ann["result"] for ann in t["annotations"]] # print(anns_results) # print([ann for ann in anns_results]) labels = [ann["value"]["rectanglelabels"][0] for ann in anns_results[0]] if len(labels) != len(set(labels)): mistakes.append(t) len(mistakes) [m["data"] for m in mistakes] [m["data"] for m in mistakes] for i, t in enumerate(tqdm(tasks, total=len(tasks))): # if i >= 10: # break if "aob8sh6l-6M/frame_00000221" in t["data"]["image"]: print("") print(t["id"], t["data"]["image"]) anns_results = [ann["result"] for ann in t["annotations"]] print("anns_results: ", anns_results, len(anns_results)) labels = [ann["value"]["rectanglelabels"][0] for ann in anns_results[0]] print("labels: ", labels) ###Output _____no_output_____ ###Markdown --- Scratch / Junk Find/FIlter Duplicates ###Code path_to_task = defaultdict(list) for t in tasks: path_to_task[t["data"]["full_path"]].append(t) print(len(tasks), len(path_to_task)) c = Counter([t["data"]["full_path"] for t in tasks]) dupes = [k for k, v in c.items() if v > 1] print("total dupes: ", len(dupes)) to_remove = [] for path in dupes: print("") print("=" * 100) task_blobs = [json.dumps(t, sort_keys=True) for t in path_to_task[path]] ann_ids = [t["id"] for t in path_to_task[path]] max_id = max(ann_ids) # print("ann_ids: ", path_to_task[path]) print("ann_ids: ", ann_ids) # for t in task_blobs: # print("") # print(t) print("Removing: ") for t in path_to_task[path]: if t["id"] != max_id: print("Removing task_id: ", t["id"]) to_remove.append((t["id"], path)) to_remove tasks_filtered = [] for t in tasks: if (t["id"], t["data"]["full_path"]) in to_remove: continue tasks_filtered.append(t) print(len(tasks), len(tasks_filtered)) ###Output _____no_output_____ ###Markdown Save ###Code json.dump( tasks_filtered, open(Path("/shared/gbiamby/geo/geoscreens_004_tasks_with_preds.json"), "w"), indent=4, sort_keys=True, ) ###Output _____no_output_____ ###Markdown --- --- ###Code 213 % 10, 213 // 10 ###Output _____no_output_____ ###Markdown **Deviation scores using normative models based on deep autoencoders**Here in this notebook, we implemented an easy way to you try our normative models trained on the [UK Biobank](https://www.ukbiobank.ac.uk/) dataset. **Disclaimer**: this script can not be used for clinical purposes.Let's start!--- Set this notebook's hardware acceleratorFirst, you'll need to enable the use of Google's [GPUs](https://cloud.google.com/gpu) (graphics processing unit) for this notebook:- Navigate to Edit→Notebook Settings- Select GPU from the Hardware Accelerator drop-downThese GPUs allow us to perform the deep learning model's calculation in a faster way! --- Download trained modelsNext, we will load the trained normative models based on adversarial autoencoders into this colab environment. During our study, we trained normative models on the UK Biobank using the resampling method called bootstrap method. By using this resampling method, we trained 1,000 different models, each one using a different bootstraped datasets as training set (containing 11,032 brain scans) (check Section 2.4. Normative model training of our paper for more information).Structure of the normative model based on adversarial autoencoders. In this configuration, the subject data is inputted into the encoder and then mapped to the latent code. This latent code is fed to the decoder with the demographic data, and then the decoder generates a reconstruction of the original data. During the training of the model, the discriminator is used to shape the distribution of the latent code. Since the model is trained on healthy controls data, it can reconstruct similar data relatively well, yielding to a small reconstruction error. However, the model would generate a high error when processing data affected by unseen underlying mechanisms, e.g. pathological mechanisms. For each normative model, we had others auxiliary components, like data scalers and demographic data preprocessors. During training, all these components were stored and are available at https://www.dropbox.com/s/bs89t2davs1p2dm/models_for_normative_paper_2019.zip?dl=0 . This link contains a compressed file that have all files created using the [bootstrap_train_aae_supervised.py](https://github.com/Warvito/Normative-modelling-using-deep-autoencoders/blob/master/bootstrap_train_aae_supervised.py) script. The models files are organized in subdirectories where each one correspond to a bootstrap iteration.Besides the models, the zipped file contains two templates files (used later in this notebook).In the following cell, we download the compressed file. ###Code !wget -O models.zip --no-check-certificate https://www.dropbox.com/s/bs89t2davs1p2dm/models_for_normative_paper_2019.zip?dl=0 ###Output --2019-12-04 17:19:52-- https://www.dropbox.com/s/bs89t2davs1p2dm/models_for_normative_paper_2019.zip?dl=0 Resolving www.dropbox.com (www.dropbox.com)... 162.125.65.1, 2620:100:6021:1::a27d:4101 Connecting to www.dropbox.com (www.dropbox.com)|162.125.65.1|:443... connected. HTTP request sent, awaiting response... 301 Moved Permanently Location: /s/raw/bs89t2davs1p2dm/models_for_normative_paper_2019.zip [following] --2019-12-04 17:19:52-- https://www.dropbox.com/s/raw/bs89t2davs1p2dm/models_for_normative_paper_2019.zip Reusing existing connection to www.dropbox.com:443. HTTP request sent, awaiting response... 302 Found Location: https://uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com/cd/0/inline/AtlJvpsEA_66AIcgy486EG8_s3tU9jKWLCgXv9vqSDZKlAIxB-FfvxA04RxpLTjQrfo52zhyJPaBJG58utLO55kGsqouqyLbI6OFFTBpCiVOXMW5uztWIlQ1W3sIzuDjPvI/file# [following] --2019-12-04 17:19:52-- https://uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com/cd/0/inline/AtlJvpsEA_66AIcgy486EG8_s3tU9jKWLCgXv9vqSDZKlAIxB-FfvxA04RxpLTjQrfo52zhyJPaBJG58utLO55kGsqouqyLbI6OFFTBpCiVOXMW5uztWIlQ1W3sIzuDjPvI/file Resolving uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com (uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com)... 162.125.65.6, 2620:100:6021:6::a27d:4106 Connecting to uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com (uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com)|162.125.65.6|:443... connected. HTTP request sent, awaiting response... 302 FOUND Location: /cd/0/inline2/AtlLi--wvJvlr-pBGsL0IhziyaKce4DsjQ-t0ytExD2PUUH3RQxgFwPI6YIvOjU_hWhbHcb4oH8N9Ih3Riy0FuZIahE7uZmFlpiQpSGY7j9MK-n-8dcwa7eZJ5T6Q9w1QQuM8FPgcie4YV5DXJc_9TRCjUUOb6Mjx6SZVAYo5cP5sJfjIP15KQLAvrCBf2GpGiLSq_m7xbOhb2uMqug8ITsB478CvZ01O6sYoOm857HWwaur4TxB2H79hbxwajkKxB4XRJDp6YY06ZNRRbfMbJXM3_frdt78oi2gnQgxTlLvipPODfp759-jJKzrS-iDX7zTZeZssqc7pfgOpN9bqRmD4evevSGvcoivwznCRXaPVA/file [following] --2019-12-04 17:19:53-- https://uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com/cd/0/inline2/AtlLi--wvJvlr-pBGsL0IhziyaKce4DsjQ-t0ytExD2PUUH3RQxgFwPI6YIvOjU_hWhbHcb4oH8N9Ih3Riy0FuZIahE7uZmFlpiQpSGY7j9MK-n-8dcwa7eZJ5T6Q9w1QQuM8FPgcie4YV5DXJc_9TRCjUUOb6Mjx6SZVAYo5cP5sJfjIP15KQLAvrCBf2GpGiLSq_m7xbOhb2uMqug8ITsB478CvZ01O6sYoOm857HWwaur4TxB2H79hbxwajkKxB4XRJDp6YY06ZNRRbfMbJXM3_frdt78oi2gnQgxTlLvipPODfp759-jJKzrS-iDX7zTZeZssqc7pfgOpN9bqRmD4evevSGvcoivwznCRXaPVA/file Reusing existing connection to uc009c4a272cfa1056b31be39219.dl.dropboxusercontent.com:443. HTTP request sent, awaiting response... 200 OK Length: 185725753 (177M) [application/zip] Saving to: ‘models.zip’ models.zip 100%[===================>] 177.12M 47.7MB/s in 7.0s 2019-12-04 17:20:00 (25.5 MB/s) - ‘models.zip’ saved [185725753/185725753] ###Markdown --- Unzip models filesAfter downloaded the compressed file, we need to unzip it in our colab enviroment. ###Code !unzip models.zip ###Output _____no_output_____ ###Markdown To see the unzipped models, go to “Files” in the Google colab environment. If the Google colab environment is not shown, click in the arrow mark which looks like “>” at the left-hand side of the cells. When you click that you will find a tab with three options, just select “Files” to explore the loaded unzipped models. --- Import Python librariesNow, we will start to use the necessary Python code to make our predictions. But first let's import all the necessary Python modules for our processing. ###Code %tensorflow_version 2.x from pathlib import Path import warnings import joblib import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from google.colab import files from tqdm import tqdm ###Output TensorFlow 2.x selected. ###Markdown --- Download freesurferData.csv and participants.tsv templatesIn order to make predictions of your data, it is necessary to make it in the format to correctly read by this script. To facilitate this process, we supply the template files to be filled with your data.As shown below, these template files contain the names of the necessary columns to run the script. ###Code pd.read_csv('templates/freesurferData.csv') pd.read_csv('templates/participants.tsv', sep='\t') ###Output _____no_output_____ ###Markdown * Note: The column with gender is codified as 0 = "Female" and 1 = "Male".The next cells will start the download of the templates.--- ###Code files.download('templates/freesurferData.csv') files.download('templates/participants.tsv') ###Output _____no_output_____ ###Markdown After filled the templates, upload the files to the Google colab environment.**Note: You can create the freesurferData.csv file using our colab script on this** [link](https://colab.research.google.com/github/Warvito/Normative-modelling-using-deep-autoencoders/blob/master/notebooks/freesurfer_organizer.ipynb).Note2: Your data will only be loaded in this runtime of the Google colab. This code is being executed at the Google Cloud Platform by default, and you are not making your data available for our team. If you are concern about uploading your data to the Google Cloud Platform, please, consider executing this notebook in a local runtime in your computer (https://research.google.com/colaboratory/local-runtimes.html). First, start uploading the freesurferData.csv. ###Code # Remove freesurferData.csv if it exists !rm freesurferData.csv uploaded = files.upload() for fn in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=fn, length=len(uploaded[fn]))) freesurfer_data_df = pd.read_csv(fn) freesurfer_data_df ###Output _____no_output_____ ###Markdown Then, upload the participants.tsv file. ###Code # Remove participants.tsv if it exists !rm participants.tsv uploaded = files.upload() for fn2 in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=fn2, length=len(uploaded[fn2]))) participants_df = pd.read_csv(fn2, sep='\t') participants_df dataset_df = pd.merge(freesurfer_data_df, participants_df, on='Participant_ID') dataset_df ###Output _____no_output_____ ###Markdown --- Predict the deviation scoresAfter loading the data, we predict the deviations of the new data based on our trained normative models.We begin the processing by setting the random seeds. ###Code # Set random seed random_seed = 42 tf.random.set_seed(random_seed) np.random.seed(random_seed) ###Output _____no_output_____ ###Markdown Next, we define the name of the brain regions in the variable COLUMNS_NAME. ###Code #@title COLUMNS_NAME = ['Left-Lateral-Ventricle', 'Left-Inf-Lat-Vent', 'Left-Cerebellum-White-Matter', 'Left-Cerebellum-Cortex', 'Left-Thalamus-Proper', 'Left-Caudate', 'Left-Putamen', 'Left-Pallidum', '3rd-Ventricle', '4th-Ventricle', 'Brain-Stem', 'Left-Hippocampus', 'Left-Amygdala', 'CSF', 'Left-Accumbens-area', 'Left-VentralDC', 'Right-Lateral-Ventricle', 'Right-Inf-Lat-Vent', 'Right-Cerebellum-White-Matter', 'Right-Cerebellum-Cortex', 'Right-Thalamus-Proper', 'Right-Caudate', 'Right-Putamen', 'Right-Pallidum', 'Right-Hippocampus', 'Right-Amygdala', 'Right-Accumbens-area', 'Right-VentralDC', 'CC_Posterior', 'CC_Mid_Posterior', 'CC_Central', 'CC_Mid_Anterior', 'CC_Anterior', 'lh_bankssts_volume', 'lh_caudalanteriorcingulate_volume', 'lh_caudalmiddlefrontal_volume', 'lh_cuneus_volume', 'lh_entorhinal_volume', 'lh_fusiform_volume', 'lh_inferiorparietal_volume', 'lh_inferiortemporal_volume', 'lh_isthmuscingulate_volume', 'lh_lateraloccipital_volume', 'lh_lateralorbitofrontal_volume', 'lh_lingual_volume', 'lh_medialorbitofrontal_volume', 'lh_middletemporal_volume', 'lh_parahippocampal_volume', 'lh_paracentral_volume', 'lh_parsopercularis_volume', 'lh_parsorbitalis_volume', 'lh_parstriangularis_volume', 'lh_pericalcarine_volume', 'lh_postcentral_volume', 'lh_posteriorcingulate_volume', 'lh_precentral_volume', 'lh_precuneus_volume', 'lh_rostralanteriorcingulate_volume', 'lh_rostralmiddlefrontal_volume', 'lh_superiorfrontal_volume', 'lh_superiorparietal_volume', 'lh_superiortemporal_volume', 'lh_supramarginal_volume', 'lh_frontalpole_volume', 'lh_temporalpole_volume', 'lh_transversetemporal_volume', 'lh_insula_volume', 'rh_bankssts_volume', 'rh_caudalanteriorcingulate_volume', 'rh_caudalmiddlefrontal_volume', 'rh_cuneus_volume', 'rh_entorhinal_volume', 'rh_fusiform_volume', 'rh_inferiorparietal_volume', 'rh_inferiortemporal_volume', 'rh_isthmuscingulate_volume', 'rh_lateraloccipital_volume', 'rh_lateralorbitofrontal_volume', 'rh_lingual_volume', 'rh_medialorbitofrontal_volume', 'rh_middletemporal_volume', 'rh_parahippocampal_volume', 'rh_paracentral_volume', 'rh_parsopercularis_volume', 'rh_parsorbitalis_volume', 'rh_parstriangularis_volume', 'rh_pericalcarine_volume', 'rh_postcentral_volume', 'rh_posteriorcingulate_volume', 'rh_precentral_volume', 'rh_precuneus_volume', 'rh_rostralanteriorcingulate_volume', 'rh_rostralmiddlefrontal_volume', 'rh_superiorfrontal_volume', 'rh_superiorparietal_volume', 'rh_superiortemporal_volume', 'rh_supramarginal_volume', 'rh_frontalpole_volume', 'rh_temporalpole_volume', 'rh_transversetemporal_volume', 'rh_insula_volume'] ###Output _____no_output_____ ###Markdown Then, we calculate the relative brain region volumes (original volume divided by the total intracranial volume). ###Code # Get the relative brain region volumes x_dataset = dataset_df[COLUMNS_NAME].values tiv = dataset_df['EstimatedTotalIntraCranialVol'].values tiv = tiv[:, np.newaxis] x_dataset = (np.true_divide(x_dataset, tiv)).astype('float32') ###Output _____no_output_____ ###Markdown Next, we iterate over all models performing the calculation of the deviations. In our paper, we define the **deviation score as the mean squared error** between the autoencoder's reconstruction and the inputted data (more details in the Section 2.5 Analysis of the observed deviation).**Note**: if the age of someone is lower than 47 or higher than 73, the age value will be clipped to be inside the range (47, 73). For example, if someone has age = 40, it will be rounded to 47. We performed this clipping because the age is an important variable for conditioning the predictions of our model. ###Code warnings.filterwarnings('ignore') model_dir = Path('models') N_BOOTSTRAP = 1000 # Create dataframe to store outputs reconstruction_error_df = pd.DataFrame(columns=['Participant_ID']) reconstruction_error_df['Participant_ID'] = dataset_df['Participant_ID'] # ---------------------------------------------------------------------------- for i_bootstrap in tqdm(range(N_BOOTSTRAP)): bootstrap_model_dir = model_dir / '{:03d}'.format(i_bootstrap) # ---------------------------------------------------------------------------- encoder = keras.models.load_model(bootstrap_model_dir / 'encoder.h5', compile=False) decoder = keras.models.load_model(bootstrap_model_dir / 'decoder.h5', compile=False) scaler = joblib.load(bootstrap_model_dir / 'scaler.joblib') enc_age = joblib.load(bootstrap_model_dir / 'age_encoder.joblib') enc_gender = joblib.load(bootstrap_model_dir / 'gender_encoder.joblib') # ---------------------------------------------------------------------------- x_normalized = scaler.transform(x_dataset) # ---------------------------------------------------------------------------- age = dataset_df['Age'].values age = np.clip(age, 47, 73) age = age[:, np.newaxis].astype('float32') one_hot_age = enc_age.transform(age) gender = dataset_df['Gender'].values[:, np.newaxis].astype('float32') one_hot_gender = enc_gender.transform(gender) y_data = np.concatenate((one_hot_age, one_hot_gender), axis=1).astype('float32') # ---------------------------------------------------------------------------- encoded = encoder(x_normalized, training=False) reconstruction = decoder(tf.concat([encoded, y_data], axis=1), training=False) # ---------------------------------------------------------------------------- reconstruction_error = np.mean((x_normalized - reconstruction) ** 2, axis=1) reconstruction_error_df[('Reconstruction error {:03d}'.format(i_bootstrap))] = reconstruction_error ###Output 100%|██████████| 1000/1000 [01:37<00:00, 9.42it/s] ###Markdown Finally, we compute the mean deviation score and save the file with all scores. ###Code reconstruction_error_df['Mean reconstruction error'] = reconstruction_error_df[reconstruction_error_df.columns[1:]].mean(axis=1) reconstruction_error_df reconstruction_error_df.to_csv('reconstruction_error.csv', index=False) ###Output _____no_output_____ ###Markdown Download predictionsFinally, you can download the result in the "Files" tab or executing the cell below. ###Code files.download('reconstruction_error.csv') ###Output _____no_output_____ ###Markdown Use the model deployed for prediction ###Code import requests import pandas as pd df = pd.read_csv('../data/iris2.csv', index_col=False, header=0) test_data = df X = df.drop('label', axis=1) Y = df.label http_data = X.to_json(orient='split') http_data host = '127.0.0.1' port = '1234' url = f'http://{host}:{port}/invocations' headers = {'Content-Type':'application/json'} r = requests.post(url=url, headers= headers, data=http_data) r.text X.shape ###Output _____no_output_____ ###Markdown Company Name matching ProblèmeLorsqu'un prospect rempli un formulaire, il saisit le nom de son entreprise. Afin de récolter d'avantage d'informations sur le prospect, il est nécessaire d'identifier l'entreprise, c'est à dire de connaitre son numéro SIREN. Cependant, un matching naif entre la saisie utilisateur et une base de référence Nom-Siren n'est pas satisfaisant.En effet la saisie utilisateur est imparfaite (ne correspond à aucun nom de la base de référence):* Erreurs de saisie* Noms non légaux : * Abbreviations * Département, région * Surnom * InversionQuelques exemples : ###Code #! TODO : Ecrire exemple ###Output _____no_output_____ ###Markdown Solution L'idée est donc de construire un **moteur de recherche**, qui à partir d'une requête (ici saisie du champ companyName) de l'utilisateur retrouve le document (ici le nom *standard* dans la base de référence), ce qui nous permettra de faire le lien entre la saisie du nom de l'entreprise et son numéro de SIREN.Pour ce faire, plusieurs pistes ont été explorées:* standardisation du nom puis matching naif* utilisation d'un moteur de recherche déjà entrainéEffectuer une requete sur google (ou autre) de la forme `companyName site:"societe.com"` et récupérer le premier résultat renvoyé. Cependant, le nombre de requêtes google est limitée (10-20/heure sans astuce, 200/heure avec), ce qui ne permet pas de tester efficacement sur la base de données historique. Egalement, societe.com n'autorise pas l'utilisation de scrapping à des fins commerciales. Pour ce qui est de la première limitation, il pourrait être envisageable d'utiliser cette méthode en production, car le flux de requêtes à effectuer est relativement faible. Pour la deuxième, utiliser l'addresse url du site suffit car elle est sous la forme `https://www.societe.com/societe/companyName-SIREN.html`. * Deux étapes : 1. Tokeization et identification des stop words correspondants à des mots communs qui n'ajoutent pas d'information sur les entreprises 2. Identification du nom standard (dans la base de référence) C'est cette deuxième solution que nous avons trouvé la plus pertinente et la plus précise. ###Code import pandas as pd import re from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import NearestNeighbors from collections import Counter ###Output _____no_output_____ ###Markdown Chargement des bases de donnéesDeux bases de données différentes sont chargées : une base test, qui simule l'entrée utilisateur, et la base de référence, qui permet de faire le lien entre un nom standard de référence pour l'entreprise et son numéro SIREN. Ces données sous fichiers textes sont chargées dans des dataframes pandas. * **test_inputs** : On récupère les 500 plus grandes entreprises de France, collectée par un copier coller dans un fichier texte * **siren_df** : données SIREN-noms issues de l'api data gouv ###Code df = pd.read_csv("../data/top500verifCom.tsv", names=["companyName", "postCode", "city", "CA"], sep="\t") test_inputs = df[["companyName"]] print(f"Taille du test set : {len(test_inputs)}") test_inputs.head() siren_table_path = "../data/siren_table.csv" siren_df = pd.read_csv(siren_table_path, dtype={"Siren": "object"}) print(f"Taille de la base de données de référence : {len(siren_df)}") siren_df.head() ###Output Taille de la base de données de référence : 1213321 ###Markdown CleaningEn examinant la base de données, les charactères et les motifs *polluants* ont été supprimé. ###Code def clean_spaces(text): text=text.replace(' ', ' ') text=text.strip() if len(text) < 1: return "unmeaningfulofatext" return text def prep(company): """ Clean un nom d'entreprise saisie par un utilisateur Arguments: company {string} -- nom de l'entreprise, correspond au champ companyName de la table Lead Returns: string -- le nom de l'entreprise, avec des caractères polluants en moins. """ company = company.encode("ascii", errors="ignore").decode() company = clean_spaces(company) company = company.lower() chars_to_remove = [")", "(", ".", "|", "[", "]", "{", "}", "'", ",", ";"] rx = '[' + re.escape(''.join(chars_to_remove)) + ']' company = re.sub(rx, '', company) company = re.sub(r'[0-9]+', '', company) return company prep("BNP PPAri,bas") ###Output _____no_output_____ ###Markdown Application du preprocessing aux colonnes des deux tables et matching "un à un", parfait ###Code siren_df["companyNameClean"] = siren_df["companyName"].map(prep) test_inputs["companyNameClean"] = test_inputs["companyName"].map(prep) naif_result = test_inputs.merge(siren_df, on="companyNameClean", how="left") missing_joins = naif_result["Siren"].isnull().sum()/len(test_inputs)*100 #un nom d'entreprise n'ayant pas de numéro siren dans la table naif_result n'apparait qu'une fois print(f'{missing_joins:.2f} % de joins manquants sur les {len(test_inputs)} champs du test set. La jointure donne {len(naif_result)} champs') naif_result[naif_result["Siren"].isnull()] ###Output _____no_output_____ ###Markdown A étudier plus tard : noms non unique dans chiffre-cle-2020--> faire à la main pour les 500 plus grosses entreprises--> attention au merge Lors de la jointure, des noms d'entreprises correspondent à différents SIREN à droite. En effet, après preprocessing, les noms d'entreprise perdent leur unicité dans siren_table ###Code g = naif_result.groupby("companyNameClean").size() g.where(g>1).dropna() ###Output _____no_output_____ ###Markdown Des entreprises apparaissent de nombreuses fois : après cleaning, leur nom n'est plus unique. ###Code naif_result[naif_result.duplicated(subset=["companyNameClean"], keep=False)].sample(10) result_df_2 = naif_result.merge(siren_df, left_on="companyName_x", right_on="companyName", suffixes=("_a", "_b")) result_df_2[result_df_2["Siren_a"]==result_df_2["Siren_b"]] ###Output _____no_output_____ ###Markdown NLPOn utilise la méthode de fuzzy string matching [[Ukkonnen](https://www.sciencedirect.com/science/article/pii/S0019995885800462)], que l'on applique avec les stop words judicieusement définis pour les noms d'entreprise. TODO : Stop words Calcul du score de similaritésDans un premier temps, il s'agit de vectoriser chaque nom d'entreprise, à partir des tokens définis par la méthode ngram ###Code def ngrams(string, n=3): ngrams = zip(*[string[i:] for i in range(n)]) return [''.join(ngram) for ngram in ngrams] ngrams("benjamin") def knn_reference(standard_names=[], k_matches=5, ngram_length=3): #Construit un modèle des k plus proches voisins à partir des n-grams de la liste `standard_names` #Tf Idf matrice à partir des données références vectorizer = TfidfVectorizer(min_df=1, analyzer=lambda word : ngrams(word, ngram_length)) tf_idf_ref = vectorizer.fit_transform(standard_names) # Fit le k-NN sur cette matrice neighbors = NearestNeighbors(n_neighbors=k_matches, n_jobs=-1, metric="cosine").fit( tf_idf_ref ) return neighbors, vectorizer neighbors, vectorizer = knn_reference(standard_names=siren_df['companyNameClean'].values) ###Output _____no_output_____ ###Markdown La liste standard contient les noms standards de référence. * Chaque nom est découpé en ngrams.* On transforme cahque nom en une sparce matrix [tf-idf](https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a) grâce au n-grams* A partir de cette matrice, on entraine un k-nn sur la base des noms standards* On transforme la liste input dans une matrice tf-idf* Calcul les distances et les voisins les plus proches* Calcul un match score* Synthétise ces résultats dans un dataframe ###Code def matcher(input_names=[], standard_names=[], k_matches=5, ngram_length=3): """Pour chaque entrée dans la liste input_names, renvoie les k premiers matches (nom, index, niveau de confiance) de la liste standard. Arguments: input_names {string list} -- noms de l'entreprise, saisies par l'utilisateur, que l'on veut faire match avec un nom standard (clean, permettant de faire le lien avec le numéro SIREN) standard_names {string list} -- noms standards des entreprises, déjà clean k-matches {int} -- nombre de matchs à renvoyer ngram_length -- longueur des ngrams Returns: DataFrame -- avec la liste originale, et `k_matches` colonnes qui contiennet les matchs les plus proche dans `standard` et leurs scores de similarité """ # Calcul des plus proches voisins de l'input set tf_idf_test_names = vectorizer.transform(input_names) distances, neighbors_indices = neighbors.kneighbors(tf_idf_test_names) #Récupération des informations dans un dataframe def get_matches(input): index = input.name #pour chaque input, récupère les infos de chacun de ses voisins (nom, index, distance/confiance) neighbors_indexes = neighbors_indices[index] matches_infos = {} for neighbor_number, neighbor_index in enumerate(neighbors_indexes): correspondance = standard_names[neighbor_index] distance = distances[index][neighbor_number] confiance = 1 - round(distance, 2) matches_infos[f"Match #{neighbor_number}"] = correspondance matches_infos[f"Match #{neighbor_number} similarite"] = confiance matches_infos[f"Match #{neighbor_number} index"] = neighbor_index return pd.Series(matches_infos) column_names = [] for neighbor_number in range(1, k_matches+1): column_names += [f"Match #{neighbor_number}", f"Match #{neighbor_number} similarite", f"Match #{neighbor_number} index"] result_df = pd.DataFrame(input_names, columns=["input"]) result_df.loc[:, column_names] = result_df.apply(get_matches, axis=1) return result_df matcher(input_names=test_inputs["companyNameClean"].values, standard_names=siren_df['companyNameClean'].values) ###Output _____no_output_____ ###Markdown Predict Library Loading Concentration ###Code cd ../ import pickle from utility import load_data,predict_loading_concentration import matplotlib %matplotlib inline file_id = 'data/run/nexteraJD_201907_High Sensitivity DNA Assay_DE24802700_2019-02-07_13-09-36_' state_df = load_data(file_id,plot=True) columns = [column for column in state_df.columns if not column in ['Cluster Density','Library Loading Concentration'] ] spectra = state_df[columns].values[0] #Load Model with open('model/model.pkl','rb') as fp: model = pickle.load(fp) #Predict Loading Concentration predict_loading_concentration(spectra,model) ###Output _____no_output_____ ###Markdown This notebook uses a pre-trained Tensorflow model to make livepredictions on the audio samples recorded from a microphone. ###Code import os from micmon.audio import AudioDevice, AudioPlayer from micmon.model import Model model_dir = os.path.expanduser(os.path.join('~', 'models', 'baby-monitor')) audio_system = 'alsa' audio_device = 'plughw:3,0' label_names = ['negative', 'positive'] ###Output DEBUG:matplotlib:(private) matplotlib data path: /usr/lib/python3.8/site-packages/matplotlib/mpl-data DEBUG:matplotlib:matplotlib data path: /usr/lib/python3.8/site-packages/matplotlib/mpl-data DEBUG:matplotlib:CONFIGDIR=/home/blacklight/.config/matplotlib DEBUG:matplotlib:matplotlib version 3.3.2 DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is linux DEBUG:matplotlib:loaded modules: ['sys', 'builtins', '_frozen_importlib', '_imp', '_warnings', '_frozen_importlib_external', '_io', 'marshal', 'posix', '_thread', '_weakref', 'time', 'zipimport', '_codecs', 'codecs', 'encodings.aliases', 'encodings', 'encodings.utf_8', '_signal', '__main__', 'encodings.latin_1', '_abc', 'abc', 'io', '_stat', 'stat', '_collections_abc', 'genericpath', 'posixpath', 'os.path', 'os', '_sitebuiltins', '_locale', '_bootlocale', 'types', 'importlib._bootstrap', 'importlib._bootstrap_external', 'warnings', 'importlib', 'importlib.machinery', 'importlib.abc', '_operator', 'operator', 'keyword', '_heapq', 'heapq', 'itertools', 'reprlib', '_collections', 'collections', '_functools', 'functools', 'contextlib', 'importlib.util', 'google', 'google.assistant', 'google.assistant.embedded', 'googlesamples', 'googlesamples.assistant', 'google.cloud', 'google.logging', 'google.iam', 'mpl_toolkits', 'ruamel', 'sphinxcontrib', 'zope', 'site', '_weakrefset', 'weakref', 'pkgutil', 'runpy', 'ipykernel._version', '__future__', 'enum', '_sre', 'sre_constants', 'sre_parse', 'sre_compile', 'copyreg', 're', '_json', 'json.scanner', 'json.decoder', 'json.encoder', 'json', 'errno', 'signal', 'threading', '_posixsubprocess', 'select', 'collections.abc', 'math', 'selectors', 'subprocess', 'IPython.core', 'IPython.core.getipython', 'IPython.core.release', 'atexit', 'copy', 'fnmatch', 'glob', 'token', 'tokenize', 'linecache', 'traceback', '_string', 'string', 'logging', 'zlib', '_compression', '_bz2', 'bz2', '_lzma', 'lzma', 'pwd', 'grp', 'shutil', '_opcode', 'opcode', 'dis', 'inspect', '_struct', 'struct', 'six', 'traitlets.utils', 'traitlets.utils.getargspec', 'ipython_genutils._version', 'ipython_genutils', 'locale', 'ipython_genutils.encoding', 'ipython_genutils.py3compat', 'traitlets.utils.importstring', 'traitlets.utils.sentinel', 'traitlets.utils.bunch', 'traitlets.traitlets', 'traitlets._version', 'traitlets', 'decorator', 'gettext', 'argparse', '_ast', 'ast', '_bisect', 'bisect', '_sha512', '_random', 'random', 'ipython_genutils.path', 'traitlets.config.loader', 'textwrap', 'ipython_genutils.text', 'traitlets.config.configurable', 'ipython_genutils.importstring', 'traitlets.config.application', 'traitlets.config', 'pprint', 'platform', 'sysconfig', 'urllib', 'urllib.parse', '_sysconfigdata__linux_x86_64-linux-gnu', 'pydoc', 'bdb', 'IPython.utils', 'IPython.utils.ipstruct', 'IPython.utils.coloransi', 'pygments', 'IPython.utils.colorable', 'IPython.utils.PyColorize', 'IPython.utils.encoding', 'IPython.utils.py3compat', 'IPython.core.excolors', 'IPython.testing', 'IPython.testing.skipdoctest', 'cmd', 'codeop', 'code', 'pdb', 'IPython.core.debugger', 'IPython.core.display_trap', 'pexpect.exceptions', 'pexpect.utils', 'pexpect.expect', 'termios', 'tty', 'pty', 'fcntl', 'resource', 'ptyprocess.util', 'ptyprocess.ptyprocess', 'ptyprocess', 'pexpect.spawnbase', 'pexpect.pty_spawn', 'pexpect.run', 'pexpect', 'shlex', 'IPython.utils._process_common', 'IPython.utils._process_posix', 'IPython.utils.process', 'IPython.utils.decorators', 'IPython.utils.path', 'IPython.utils.data', 'IPython.utils.terminal', 'IPython.core.ultratb', 'IPython.utils._sysinfo', 'IPython.utils.sysinfo', 'IPython.core.crashhandler', 'tempfile', 'IPython.utils.importstring', 'IPython.paths', 'IPython.core.profiledir', 'IPython.core.application', 'IPython.terminal', '_hashlib', '_blake2', '_sha3', 'hashlib', 'IPython.core.compilerop', 'IPython.core.error', 'ntpath', 'pathlib', 'IPython.utils.text', 'IPython.core.magic_arguments', 'getopt', 'typing.io', 'typing.re', 'typing', 'binascii', 'mimetypes', 'IPython.core.display', 'IPython.core.page', 'getpass', 'IPython.lib.security', 'IPython.lib', '_datetime', 'datetime', 'IPython.lib.pretty', 'IPython.utils.openpy', 'IPython.utils.dir2', 'IPython.utils.wildcard', 'pygments.lexers._mapping', 'pygments.modeline', 'pygments.plugin', 'pygments.util', 'pygments.lexers', 'pygments.filter', 'pygments.token', 'pygments.filters', 'pygments.regexopt', 'pygments.lexer', 'pygments.unistring', 'pygments.lexers.python', 'pygments.formatters._mapping', 'pygments.formatters', 'pygments.styles', 'pygments.formatter', 'pygments.formatters.html', 'IPython.core.oinspect', 'IPython.core.inputtransformer2', 'IPython.core.magic', '_compat_pickle', '_pickle', 'pickle', 'pickleshare', 'IPython.core.autocall', 'IPython.core.macro', 'IPython.core.splitinput', 'IPython.core.prefilter', 'IPython.core.alias', 'IPython.core.builtin_trap', 'backcall.backcall', 'backcall', 'IPython.core.events', 'IPython.core.displayhook', 'IPython.core.displaypub', 'IPython.core.extensions', 'IPython.utils.sentinel', 'IPython.core.formatters', '_sqlite3', 'sqlite3.dbapi2', 'sqlite3', 'IPython.core.history', 'IPython.core.logger', 'IPython.core.payload', 'IPython.core.usage', 'html.entities', 'html', 'IPython.lib.display', 'IPython.display', 'IPython.utils.capture', 'IPython.utils.io', 'IPython.core.hooks', 'IPython.utils.strdispatch', 'IPython.utils.syspathcontext', 'IPython.utils.tempdir', 'IPython.utils.contexts', 'IPython.core.async_helpers', 'IPython.core.interactiveshell', 'concurrent', 'concurrent.futures._base', 'concurrent.futures', '_socket', 'socket', '_ssl', 'base64', 'ssl', 'asyncio.constants', 'asyncio.format_helpers', 'asyncio.base_futures', 'asyncio.log', 'asyncio.coroutines', '_contextvars', 'contextvars', 'asyncio.exceptions', 'asyncio.base_tasks', '_asyncio', 'asyncio.events', 'asyncio.futures', 'asyncio.protocols', 'asyncio.transports', 'asyncio.sslproto', 'asyncio.locks', 'asyncio.tasks', 'asyncio.staggered', 'asyncio.trsock', 'asyncio.base_events', 'asyncio.runners', 'asyncio.queues', 'asyncio.streams', 'asyncio.subprocess', 'asyncio.base_subprocess', 'asyncio.selector_events', 'asyncio.unix_events', 'asyncio', 'prompt_toolkit.application.current', 'prompt_toolkit.eventloop.utils', 'prompt_toolkit.eventloop.async_generator', 'wcwidth.table_wide', 'wcwidth.table_zero', 'wcwidth.unicode_versions', 'wcwidth.wcwidth', 'wcwidth', 'prompt_toolkit.utils', 'prompt_toolkit.eventloop.inputhook', 'prompt_toolkit.eventloop', 'prompt_toolkit.application.run_in_terminal', 'prompt_toolkit.selection', 'prompt_toolkit.clipboard.base', 'prompt_toolkit.clipboard.in_memory', 'prompt_toolkit.clipboard', 'prompt_toolkit.cache', 'prompt_toolkit.enums', 'prompt_toolkit.filters.base', 'prompt_toolkit.filters.app', 'prompt_toolkit.filters.cli', 'prompt_toolkit.filters.utils', 'prompt_toolkit.filters', 'prompt_toolkit.document', 'prompt_toolkit.auto_suggest', 'prompt_toolkit.data_structures', 'prompt_toolkit.styles.base', 'prompt_toolkit.styles.named_colors', 'prompt_toolkit.styles.style', 'prompt_toolkit.styles.defaults', 'prompt_toolkit.styles.pygments', 'colorsys', 'prompt_toolkit.styles.style_transformation', 'prompt_toolkit.styles', 'prompt_toolkit.output.color_depth', 'prompt_toolkit.output.base', 'prompt_toolkit.patch_stdout', 'prompt_toolkit.output.defaults', 'prompt_toolkit.output', 'array', 'prompt_toolkit.output.vt100', 'prompt_toolkit.mouse_events', 'prompt_toolkit.formatted_text.base', 'prompt_toolkit.formatted_text.ansi', 'xml', 'xml.dom.domreg', 'xml.dom', 'xml.dom.minicompat', 'xml.dom.NodeFilter', 'xml.dom.xmlbuilder', 'xml.dom.minidom', 'prompt_toolkit.formatted_text.html', 'prompt_toolkit.formatted_text.pygments', 'prompt_toolkit.formatted_text.utils', 'prompt_toolkit.formatted_text', 'prompt_toolkit.completion.base', 'prompt_toolkit.completion.filesystem', 'prompt_toolkit.completion.word_completer', 'prompt_toolkit.completion.fuzzy_completer', 'prompt_toolkit.completion.nested', 'prompt_toolkit.completion', 'prompt_toolkit.history', 'prompt_toolkit.keys', 'prompt_toolkit.key_binding.key_bindings', 'prompt_toolkit.key_binding.key_processor', 'prompt_toolkit.key_binding', 'prompt_toolkit.key_binding.vi_state', 'prompt_toolkit.search', 'prompt_toolkit.validation', 'prompt_toolkit.buffer', 'prompt_toolkit.input.base', 'prompt_toolkit.input.defaults', 'prompt_toolkit.input', 'prompt_toolkit.input.typeahead', 'prompt_toolkit.key_binding.bindings', 'prompt_toolkit.key_binding.bindings.scroll', 'prompt_toolkit.key_binding.bindings.page_navigation', 'prompt_toolkit.lexers.base', 'prompt_toolkit.lexers.pygments', 'prompt_toolkit.lexers', 'prompt_toolkit.layout.utils', 'prompt_toolkit.layout.processors', 'prompt_toolkit.layout.controls', 'prompt_toolkit.layout.dimension', 'prompt_toolkit.layout.margins', 'prompt_toolkit.layout.mouse_handlers', 'prompt_toolkit.layout.screen', 'prompt_toolkit.layout.containers', 'prompt_toolkit.layout.layout', 'prompt_toolkit.layout.menus', 'prompt_toolkit.layout', 'prompt_toolkit.key_binding.bindings.completion', 'prompt_toolkit.key_binding.bindings.named_commands', 'prompt_toolkit.key_binding.bindings.basic', 'prompt_toolkit.key_binding.bindings.cpr', 'prompt_toolkit.key_binding.bindings.emacs', 'prompt_toolkit.key_binding.bindings.mouse', 'prompt_toolkit.input.ansi_escape_sequences', 'prompt_toolkit.input.vt100_parser', 'prompt_toolkit.key_binding.digraphs', 'prompt_toolkit.key_binding.bindings.vi', 'prompt_toolkit.key_binding.defaults', 'prompt_toolkit.key_binding.emacs_state', 'prompt_toolkit.layout.dummy', 'prompt_toolkit.renderer', 'prompt_toolkit.application.application', 'prompt_toolkit.application.dummy', 'prompt_toolkit.application', 'prompt_toolkit.key_binding.bindings.focus', 'prompt_toolkit.widgets.toolbars', 'prompt_toolkit.widgets.base', 'prompt_toolkit.widgets.dialogs', 'prompt_toolkit.widgets.menus', 'prompt_toolkit.widgets', 'prompt_toolkit.shortcuts.dialogs', 'prompt_toolkit.shortcuts.progress_bar.formatters', 'prompt_toolkit.shortcuts.progress_bar.base', 'prompt_toolkit.shortcuts.progress_bar', 'prompt_toolkit.key_binding.bindings.auto_suggest', 'prompt_toolkit.key_binding.bindings.open_in_editor', 'prompt_toolkit.shortcuts.prompt', 'prompt_toolkit.shortcuts.utils', 'prompt_toolkit.shortcuts', 'prompt_toolkit', 'pygments.style', 'unicodedata', 'IPython.core.latex_symbols', 'IPython.utils.generics', 'parso._compatibility', 'parso.utils', 'parso.tree', 'parso.python', 'parso.python.token', 'parso.python.tokenize', 'parso.pgen2.grammar_parser', 'parso.pgen2.generator', 'parso.pgen2', 'parso.parser', 'difflib', 'parso.python.prefix', 'parso.python.tree', 'parso.python.parser', 'parso.python.diff', 'gc', 'parso.file_io', 'parso.cache', 'parso.normalizer', 'parso.python.errors', 'parso.python.pep8', 'parso.grammar', 'parso', 'jedi.file_io', '_queue', 'queue', 'jedi._compatibility', 'jedi.parser_utils', 'colorama.ansi', '_ctypes', 'ctypes._endian', 'ctypes', 'colorama.win32', 'colorama.winterm', 'colorama.ansitowin32', 'colorama.initialise', 'colorama', 'jedi.debug', 'jedi.settings', 'jedi.cache', 'jedi.inference.cache', 'jedi.inference.helpers', 'jedi.inference.utils', 'jedi.inference.base_value', 'jedi.common', 'jedi.inference.sys_path', 'jedi.inference.recursion', 'jedi.inference.flow_analysis', 'jedi.inference.lazy_value', 'jedi.inference.docstrings', 'jedi.plugins', 'jedi.inference.names', 'jedi.inference.filters', 'jedi.inference.compiled.getattr_static', 'jedi.inference.compiled.access', 'jedi.inference.signature', 'jedi.inference.context', 'jedi.inference.compiled.value', 'jedi.inference.compiled', 'jedi.inference.analysis', 'jedi.inference.gradual', 'jedi.inference.value.module', 'jedi.inference.value.dynamic_arrays', 'jedi.inference.value.iterable', 'jedi.inference.arguments', 'jedi.inference.parser_cache', 'jedi.inference.gradual.generics', 'jedi.inference.value.function', 'jedi.inference.value.klass', 'jedi.inference.value.instance', 'jedi.inference.value', 'jedi.inference.gradual.base', 'jedi.inference.gradual.type_var', 'jedi.inference.gradual.typing', 'jedi.inference.gradual.stub_value', 'jedi.inference.gradual.typeshed', 'jedi.inference.imports', 'jedi.inference.param', 'jedi.inference.gradual.annotation', 'jedi.inference.value.decorator', 'jedi.inference.syntax_tree', 'jedi.inference', 'jedi.inference.gradual.conversion', 'jedi.inference.compiled.mixed', 'pydoc_data', 'pydoc_data.topics', 'jedi.api.keywords', 'jedi.api.completion_cache', 'jedi.api.helpers', 'jedi.api.classes', 'jedi.api.interpreter', 'jedi.api.strings', 'jedi.api.file_name', 'jedi.api.completion', 'filecmp', 'jedi.inference.compiled.subprocess.functions', 'jedi.api.exceptions', 'jedi.inference.compiled.subprocess', 'jedi.api.environment', 'jedi.inference.references', 'jedi.api.project', 'jedi.api.errors', 'jedi.api.refactoring', 'jedi.api.refactoring.extract', 'jedi.inference.gradual.utils', 'jedi.api', 'jedi.plugins.stdlib', 'jedi.plugins.flask', 'jedi.plugins.pytest', 'jedi.plugins.django', 'jedi.plugins.registry', 'jedi', 'IPython.core.completer', 'IPython.terminal.ptutils', 'IPython.terminal.shortcuts', 'IPython.terminal.debugger', 'IPython.lib.clipboard', 'IPython.terminal.magics', 'IPython.terminal.pt_inputhooks', 'IPython.terminal.prompts', 'IPython.terminal.interactiveshell', 'IPython.core.magics.auto', 'IPython.core.magics.basic', 'email', 'http', 'email.errors', 'email.quoprimime', 'email.base64mime', 'quopri', 'email.encoders', 'email.charset', 'email.header', 'calendar', 'email._parseaddr', 'email.utils', 'email._policybase', 'email.feedparser', 'email.parser', 'uu', 'email._encoded_words', 'email.iterators', 'email.message', 'http.client', 'urllib.response', 'urllib.error', 'urllib.request', 'IPython.core.magics.code', 'IPython.core.magics.config', 'IPython.core.magics.display', 'timeit', '_lsprof', 'profile', 'cProfile', 'pstats', 'IPython.utils.module_paths', 'IPython.utils.timing', 'IPython.core.magics.execution', 'IPython.core.magics.extension', 'IPython.core.magics.history', 'IPython.core.magics.logging', 'IPython.core.magics.namespace', 'IPython.core.magics.osm', 'IPython.core.magics.packaging', 'IPython.core.pylabtools', 'IPython.core.magics.pylab', 'IPython.lib.backgroundjobs', 'IPython.core.magics.script', 'IPython.core.magics', 'IPython.core.shellapp', 'IPython.extensions', 'IPython.extensions.storemagic', 'IPython.terminal.ipapp', 'IPython.terminal.embed', 'IPython.utils.frame', 'IPython', 'jupyter_client._version', 'zmq.backend.select', 'cython_runtime', 'zmq.backend.cython.constants', '_cython_0_29_17', 'zmq.backend.cython.error', 'zmq.error', 'zmq.backend.cython.message', 'zmq.backend.cython.context', 'zmq.backend.cython.socket', 'zmq.backend.cython.utils', 'zmq.backend.cython._poll', 'zmq.backend.cython._version', 'zmq.backend.cython._device', 'zmq.backend.cython._proxy_steerable', 'zmq.backend.cython', 'zmq.backend', 'zmq.utils', 'zmq.utils.constant_names', 'zmq.sugar.constants', 'zmq.sugar.attrsettr', 'zmq.sugar.poll', 'zmq.utils.strtypes', 'numbers', '_pydecimal', 'decimal', 'simplejson.errors', 'simplejson.raw_json', 'simplejson.compat', 'simplejson._speedups', 'simplejson.scanner', 'simplejson.decoder', 'simplejson.encoder', 'simplejson', 'zmq.utils.jsonapi', 'zmq.sugar.socket', 'zmq.sugar.context', 'zmq.sugar.frame', 'zmq.sugar.tracker', 'zmq.sugar.version', 'zmq.sugar.stopwatch', 'zmq.sugar', 'zmq', 'jupyter_client.localinterfaces', 'jupyter_core.version', 'jupyter_core', 'distutils', 'distutils.errors', 'distutils.dep_util', 'distutils.debug', 'distutils.log', 'distutils.spawn', 'distutils.util', 'jupyter_core.paths', 'jupyter_client.connect', 'traitlets.log', 'jupyter_client.launcher', 'jupyter_client.channelsabc', 'jupyter_client.channels', 'jupyter_client.clientabc', 'jupyter_client.client', 'jupyter_client.kernelspec', 'jupyter_client.managerabc', 'jupyter_client.manager', 'jupyter_client.blocking.channels', 'jupyter_client.blocking.client', 'jupyter_client.blocking', 'zmq._future', 'zmq.asyncio', 'jupyter_client.asynchronous.channels', 'jupyter_client.asynchronous.client', 'jupyter_client.asynchronous', '_uuid', 'uuid', 'jupyter_client.multikernelmanager', 'jupyter_client', 'ipykernel.connect', 'ipykernel', 'tornado', 'logging.handlers', 'tornado.speedups', 'tornado.util', 'tornado.escape', '_curses', 'curses', 'tornado.log', 'tornado.concurrent', 'tornado.ioloop', 'tornado.platform', 'tornado.gen', 'tornado.platform.asyncio', 'zmq.eventloop.ioloop', 'zmq.eventloop', 'tornado.stack_context', 'zmq.eventloop.zmqstream', 'imp', 'hmac', 'dateutil._version', 'dateutil', 'dateutil._common', 'dateutil.relativedelta', 'six.moves', 'dateutil.tz._common', 'dateutil.tz._factories', 'dateutil.tz.tz', 'dateutil.tz', 'dateutil.parser._parser', 'dateutil.parser.isoparser', 'dateutil.parser', '_strptime', 'jupyter_client.jsonutil', 'jupyter_client.adapter', 'jupyter_client.session', 'ipykernel.iostream', 'ipykernel.heartbeat', 'IPython.utils.tokenutil', 'tornado.locks', 'tornado.queues', 'ipykernel.jsonutil', 'ipykernel.kernelbase', 'ipykernel.comm.comm', 'ipykernel.comm.manager', 'ipykernel.comm', 'IPython.core.payloadpage', 'ipykernel.displayhook', 'ipykernel.zmqshell', 'distutils.version', 'ipykernel.eventloops', 'ipykernel.ipkernel', 'ipykernel.parentpoller', 'ipykernel.kernelapp', 'netifaces', 'faulthandler', 'ipykernel.codeutil', 'ipykernel.pickleutil', 'ipykernel.serialize', 'ipykernel.datapub', 'IPython.core.completerlib', 'storemagic', 'micmon', 'micmon.audio', 'micmon.audio.directory', 'micmon.audio.segment', 'numpy._globals', 'numpy.__config__', 'numpy.version', 'numpy._distributor_init', 'numpy.core._multiarray_umath', 'numpy.compat._inspect', 'numpy.compat.py3k', 'numpy.compat', 'numpy.core.overrides', 'numpy.core.multiarray', 'numpy.core.umath', 'numpy.core._string_helpers', 'numpy.core._dtype', 'numpy.core._type_aliases', 'numpy.core.numerictypes', 'numpy.core._asarray', 'numpy.core._exceptions', 'numpy.core._methods', 'numpy.core.fromnumeric', 'numpy.core.shape_base', 'numpy.core._ufunc_config', 'numpy.core.arrayprint', 'numpy.core.numeric', 'numpy.core.defchararray', 'numpy.core.records', 'numpy.core.memmap', 'numpy.core.function_base', 'numpy.core.machar', 'numpy.core.getlimits', 'numpy.core.einsumfunc', 'numpy.core._multiarray_tests', 'numpy.core._add_newdocs', 'numpy.core._dtype_ctypes', 'numpy.core._internal', 'numpy._pytesttester', 'numpy.core', 'numpy.lib.mixins', 'numpy.lib.ufunclike', 'numpy.lib.type_check', 'numpy.lib.scimath', 'numpy.lib.twodim_base', 'numpy.linalg.lapack_lite', 'numpy.linalg._umath_linalg', 'numpy.linalg.linalg', 'numpy.linalg', 'numpy.matrixlib.defmatrix', 'numpy.matrixlib', 'numpy.lib.histograms', 'numpy.lib.function_base', 'numpy.lib.stride_tricks', 'numpy.lib.index_tricks', 'numpy.lib.nanfunctions', 'numpy.lib.shape_base', 'numpy.lib.polynomial', 'numpy.lib.utils', 'numpy.lib.arraysetops', 'numpy.lib.format', 'numpy.lib._datasource', 'numpy.lib._iotools', 'numpy.lib.npyio', 'numpy.lib.financial', 'numpy.lib.arrayterator', 'numpy.lib.arraypad', 'numpy.lib._version', 'numpy.lib', 'numpy.fft._pocketfft_internal', 'numpy.fft._pocketfft', 'numpy.fft.helper', 'numpy.fft', 'numpy.polynomial.polyutils', 'numpy.polynomial._polybase', 'numpy.polynomial.polynomial', 'numpy.polynomial.chebyshev', 'numpy.polynomial.legendre', 'numpy.polynomial.hermite', 'numpy.polynomial.hermite_e', 'numpy.polynomial.laguerre', 'numpy.polynomial', '_cython_0_29_21', 'numpy.random._common', 'secrets', 'numpy.random.bit_generator', 'numpy.random._bounded_integers', 'numpy.random._mt19937', 'numpy.random.mtrand', 'numpy.random._philox', 'numpy.random._pcg64', 'numpy.random._sfc64', 'numpy.random._generator', 'numpy.random._pickle', 'numpy.random', 'numpy.ctypeslib', 'numpy.ma.core', 'numpy.ma.extras', 'numpy.ma', 'numpy', 'matplotlib', 'gzip', 'matplotlib.cbook.deprecation', 'matplotlib.cbook', 'matplotlib._animation_data', 'matplotlib.animation', 'pyparsing', 'matplotlib.fontconfig_pattern', 'matplotlib.docstring', 'matplotlib._color_data', 'matplotlib.colors', 'cycler', 'matplotlib.rcsetup', 'matplotlib._version', 'matplotlib.ft2font', 'kiwisolver'] DEBUG:matplotlib:CACHEDIR=/home/blacklight/.cache/matplotlib DEBUG:matplotlib.font_manager:Using fontManager instance from /home/blacklight/.cache/matplotlib/fontlist-v330.json DEBUG:matplotlib.pyplot:Loaded backend module://ipykernel.pylab.backend_inline version unknown. DEBUG:matplotlib.pyplot:Loaded backend module://ipykernel.pylab.backend_inline version unknown. DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.compat.v2.summary API due to missing TensorBoard installation. WARNING:root:Limited tf.summary API due to missing TensorBoard installation. ###Markdown Load the model ###Code model = Model.load(model_dir) ###Output _____no_output_____ ###Markdown Play some audio from the input device ###Code with AudioDevice(audio_system, device=audio_device) as source, AudioPlayer() as player: for sample in source: player.play(sample) ###Output _____no_output_____ ###Markdown Record frames from an audio source and make predictions using the model ###Code with AudioDevice(audio_system, device=audio_device) as source: for sample in source: source.pause() prediction = model.predict(sample) print(prediction) source.resume() ###Output negative negative negative negative negative negative negative negative negative negative
Pandas- Visualização.ipynb
###Markdown Gráficos do Pandas ###Code import numpy as np import pandas as pd %matplotlib inline ###Output _____no_output_____ ###Markdown Dados ###Code df1 = pd.read_csv("df1.csv") df2 = pd.read_csv("df2.csv") df1.head() df2.head() ###Output _____no_output_____ ###Markdown Estilos ###Code df1['A'].hist() import matplotlib.pyplot as plt plt.style.use('ggplot') df1['A'].hist() plt.style.use('bmh') df1['A'].hist() plt.style.use('dark_background') df1['A'].hist() plt.style.use('fivethirtyeight') df1['A'].hist() plt.style.use('ggplot') ###Output _____no_output_____ ###Markdown Área ###Code df2.plot.area(alpha=0.4) ###Output _____no_output_____ ###Markdown Barras ###Code df2.head() df2.plot.bar() df2.plot.bar(stacked=True) ###Output _____no_output_____ ###Markdown Histograma ###Code df1['A'].plot.hist(bins=50) ###Output _____no_output_____ ###Markdown Dispersão ###Code df1.plot.scatter(x='A',y='B') ###Output _____no_output_____ ###Markdown Veja: http://matplotlib.org/users/colormaps.html ###Code df1.plot.scatter(x='A',y='B',c='C',cmap='coolwarm') ###Output _____no_output_____ ###Markdown Or use s to indicate size based off another column. s parameter needs to be an array, not just the name of a column: ###Code df1.plot.scatter(x='A',y='B',s=df1['C']*200) ###Output /data/user/0/ru.iiec.pydroid3/files/aarch64-linux-android/lib/python3.7/site-packages/matplotlib/collections.py:874: RuntimeWarning: invalid value encountered in sqrt scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor ###Markdown BoxPlots ###Code df2.plot.box() ###Output _____no_output_____ ###Markdown Hexagonal ###Code df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b']) df.plot.hexbin(x='a',y='b',gridsize=25,cmap='Oranges') ###Output _____no_output_____ ###Markdown ____ Densidade de distribuição (KDE) ###Code df2['a'].plot.kde() df2.plot.density() ###Output _____no_output_____
markdown_generator/.ipynb_checkpoints/PubsFromBib_my-checkpoint.ipynb
###Markdown Publications markdown generator for academicpagesTakes a set of bibtex of publications and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook ([see more info here](http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html)). The core python code is also in `pubsFromBibs.py`. Run either from the `markdown_generator` folder after replacing updating the publist dictionary with:* bib file names* specific venue keys based on your bib file preferences* any specific pre-text for specific files* Collection Name (future feature)TODO: Make this work with other databases of citations, TODO: Merge this with the existing TSV parsing solution ###Code from pybtex.database.input import bibtex import pybtex.database.input.bibtex from time import strptime import string import html import os import re import sys sys.executable #todo: incorporate different collection types rather than a catch all publications, requires other changes to template publist = { # "proceeding": { # "file" : "proceedings.bib", # "venuekey": "booktitle", # "venue-pretext": "In the proceedings of ", # "collection" : {"name":"publications", # "permalink":"/publication/"} # }, "journal":{ "file": "mypubs.bib", "venuekey" : "journal", "venue-pretext" : "", "collection" : {"name":"publications", "permalink":"/publication/"} } } html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;" } def html_escape(text): """Produce entities within text.""" return "".join(html_escape_table.get(c,c) for c in text) cts=[] for pubsource in publist: parser = bibtex.Parser() bibdata = parser.parse_file(publist[pubsource]["file"]) entries_sorted=sorted(bibdata.entries,key=lambda x: bibdata.entries[x].fields["year"],reverse=True) #loop through the individual references in a given bibtex file for ind,bib_id in enumerate(entries_sorted): entry=bibdata.entries[bib_id] b=entry.fields pub_year = f'{b["year"]}' print(pub_year) print(ind) #todo: this hack for month and day needs some cleanup if "month" in b.keys(): if(len(b["month"])<3): pub_month = "0"+b["month"] pub_month = pub_month[-2:] elif(b["month"] not in range(12)): tmnth = strptime(b["month"][:3],'%b').tm_mon pub_month = "{:02d}".format(tmnth) else: pub_month = str(b["month"]) if "day" in b.keys(): pub_day = str(b["day"]) citation="" persons=entry.persons["author"] num_of_authors=len(persons) author=persons[0] citation = author.first()[0]+" "+author.last_names[0] if num_of_authors==2: author=persons[1] citation = citation+" and "+author.first_names[0]+" "+author.last_names[0] for i in range(1,num_of_authors-1): author=persons[i] citation = citation+", "+author.first_names[0]+" "+author.last_names[0] print(citation) author=persons[-1] citation = citation+" and "+author.first_names[0]+" "+author.last_names[0]+". " url = b["url"] clean_title = b["title"].replace("{", "").replace("}","").replace("\\","") print(clean_title) citation = citation+"<a href=\""+url+"\">"+clean_title+".</a>" journal = entry.fields["journal"] citation = citation+"<em> "+journal+"</em> " if "arXiv" in journal: citation= citation+","+pub_year else: vol=b["volume"] if "number" in b.keys(): num=b["number"] else: num="" pages=b["pages"] if "number" in b.keys(): citation = citation+vol+"("+num+")"+":"+pages+","+pub_year else: citation= citation+vol+":"+pages+","+pub_year cts.append(citation) # field may not exist for a reference all_text="<ol>" for c in cts: all_text+="<li>"+c+"</li>" all_text+="</ol>" all_text bibdata = parser.parse_file(publist["journal"]["file"]) bibdata.entries['Gazit2009'].fields["journal"] citation="" entry=bibdata.entries['Gazit2018'] persons=entry.persons["author"] num_of_authors=len(persons) author=persons[0] citation = author.first+" "+author.last if num_of_authors==2: citation = citation+" and "+author.first+" "+author.last for i in range(1,num_of_authors-1): author=persons[i] citation = citation+", "+author.first+" "+author.last author=persons[-1] citation = citation+" and "+author.first+" "+author.last+"." b=entry.fields url = b["url"] clean_title = b["title"].replace("{", "").replace("}","").replace("\\","") citation = citation+"<a href=\">"+url+"\""+clean_title+".</a>" journal = entry.fields["journal"] citation = citation+"<em> "+journal+"</em>" vol=b["volume"] num=b["number"] pages=b["pages"] pub_year = f'{b["year"]}' #todo: this hack for month and day needs some cleanup if "month" in b.keys(): if(len(b["month"])<3): pub_month = "0"+b["month"] pub_month = pub_month[-2:] elif(b["month"] not in range(12)): tmnth = strptime(b["month"][:3],'%b').tm_mon pub_month = "{:02d}".format(tmnth) else: pub_month = str(b["month"]) if "day" in b.keys(): pub_day = str(b["day"]) citation = citation+vol+"("+num+")"+":"+pages+pub_year citation vol bibtex.Person("Gazit, Snir") ?bibtex.Person ###Output _____no_output_____
Lab6_Convolutional_cats_and_dogs.ipynb
###Markdown Training with a Larger Dataset - Cats and DogsIn the previous lab you trained a classifier with a horses-v-humans dataset. You saw that despite getting great training results, when you tried to do classification with real images, there were many errors, due primarily to overfitting -- where the network does very well with data that it has previously seen, but poorly with data it hasn't!In this lab you'll look at a real, and very large dataset, and see the impact this has to avoid overfitting. ###Code import os import zipfile import random import tensorflow as tf from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator from shutil import copyfile # If the URL doesn't work, visit https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765 # And right click on the 'Download Manually' link to get a new URL to the dataset # Note: This is a very large dataset and will take time to download !wget --no-check-certificate \ "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip" \ -O "/tmp/cats-and-dogs.zip" local_zip = '/tmp/cats-and-dogs.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp') zip_ref.close() print(len(os.listdir('/tmp/PetImages/Cat/'))) print(len(os.listdir('/tmp/PetImages/Dog/'))) # Expected Output: # 12501 # 12501 try: os.mkdir('/tmp/cats-v-dogs') os.mkdir('/tmp/cats-v-dogs/training') os.mkdir('/tmp/cats-v-dogs/testing') os.mkdir('/tmp/cats-v-dogs/training/cats') os.mkdir('/tmp/cats-v-dogs/training/dogs') os.mkdir('/tmp/cats-v-dogs/testing/cats') os.mkdir('/tmp/cats-v-dogs/testing/dogs') except OSError: pass def split_data(SOURCE, TRAINING, TESTING, SPLIT_SIZE): files = [] for filename in os.listdir(SOURCE): file = SOURCE + filename if os.path.getsize(file) > 0: files.append(filename) else: print(filename + " is zero length, so ignoring.") training_length = int(len(files) * SPLIT_SIZE) testing_length = int(len(files) - training_length) shuffled_set = random.sample(files, len(files)) training_set = shuffled_set[0:training_length] testing_set = shuffled_set[-testing_length:] for filename in training_set: this_file = SOURCE + filename destination = TRAINING + filename copyfile(this_file, destination) for filename in testing_set: this_file = SOURCE + filename destination = TESTING + filename copyfile(this_file, destination) CAT_SOURCE_DIR = "/tmp/PetImages/Cat/" TRAINING_CATS_DIR = "/tmp/cats-v-dogs/training/cats/" TESTING_CATS_DIR = "/tmp/cats-v-dogs/testing/cats/" DOG_SOURCE_DIR = "/tmp/PetImages/Dog/" TRAINING_DOGS_DIR = "/tmp/cats-v-dogs/training/dogs/" TESTING_DOGS_DIR = "/tmp/cats-v-dogs/testing/dogs/" split_size = .9 split_data(CAT_SOURCE_DIR, TRAINING_CATS_DIR, TESTING_CATS_DIR, split_size) split_data(DOG_SOURCE_DIR, TRAINING_DOGS_DIR, TESTING_DOGS_DIR, split_size) # Expected output # 666.jpg is zero length, so ignoring # 11702.jpg is zero length, so ignoring print(len(os.listdir('/tmp/cats-v-dogs/training/cats/'))) print(len(os.listdir('/tmp/cats-v-dogs/training/dogs/'))) print(len(os.listdir('/tmp/cats-v-dogs/testing/cats/'))) print(len(os.listdir('/tmp/cats-v-dogs/testing/dogs/'))) # Expected output: # 11250 # 11250 # 1250 # 1250 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(150, 150, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer=RMSprop(lr=0.001), loss='binary_crossentropy', metrics=['acc']) TRAINING_DIR = "/tmp/cats-v-dogs/training/" train_datagen = ImageDataGenerator(rescale=1.0/255.) train_generator = train_datagen.flow_from_directory(TRAINING_DIR, batch_size=250, class_mode='binary', target_size=(150, 150)) VALIDATION_DIR = "/tmp/cats-v-dogs/testing/" validation_datagen = ImageDataGenerator(rescale=1.0/255.) validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR, batch_size=250, class_mode='binary', target_size=(150, 150)) # Expected Output: # Found 22498 images belonging to 2 classes. # Found 2500 images belonging to 2 classes. # Note that this may take some time. history = model.fit(train_generator, epochs=15, steps_per_epoch=90, validation_data=validation_generator, validation_steps=6) %matplotlib inline import matplotlib.image as mpimg import matplotlib.pyplot as plt #----------------------------------------------------------- # Retrieve a list of list results on training and test data # sets for each training epoch #----------------------------------------------------------- acc=history.history['acc'] val_acc=history.history['val_acc'] loss=history.history['loss'] val_loss=history.history['val_loss'] epochs=range(len(acc)) # Get number of epochs #------------------------------------------------ # Plot training and validation accuracy per epoch #------------------------------------------------ plt.plot(epochs, acc, 'r', "Training Accuracy") plt.plot(epochs, val_acc, 'b', "Validation Accuracy") plt.title('Training and validation accuracy') plt.figure() #------------------------------------------------ # Plot training and validation loss per epoch #------------------------------------------------ plt.plot(epochs, loss, 'r', "Training Loss") plt.plot(epochs, val_loss, 'b', "Validation Loss") plt.figure() # Desired output. Charts with training and validation metrics. No crash :) # Here's a codeblock just for fun. You should be able to upload an image here # and have it classified without crashing import numpy as np from google.colab import files from keras.preprocessing import image uploaded = files.upload() for fn in uploaded.keys(): # predicting images path = '/content/' + fn img = image.load_img(path, target_size=(150, 150)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) print(classes[0]) if classes[0]>0.5: print(fn + " is a dog") else: print(fn + " is a cat") ###Output _____no_output_____
Code/Viet_AI_LP_TF_Falselabel_half_data.ipynb
###Markdown Visualize Label Spreading ###Code import matplotlib.pyplot as plt drop=0.5 n=np.shape(X)[0] Cn=np.copy(trans.embedding_) Ynd=np.copy(Y) #Generate 28 flase labels for ni in range(28): r_false=randint(0,np.shape(Y)[0]-1) Ynd[r_false]=false_label_return(Y[r_false]) #One label flipped randomly ns=np.round(drop*n).astype(int) #print('num of samples dropped=',ns) dropI=np.floor(np.random.rand(ns)*n).astype(int) no_drop=np.delete(nums,dropI) Ynd[dropI]=0 #Now combine (Xn, UX1, NUX1) Xn=((X1)) Ynd=((Ynd)) #dropI=np.concatenate((dropI,range(np.shape(X)[0],np.shape(Xn)[0]))) #Thus (Xn,Ynd) is the new data that will be subjected to label propagation ################################### so random label removal works! #Step 4.2: Apply Label propagation to [X,UX,NUX] #lp_model = LabelSpreading(kernel='rbf',gamma=20,alpha=0.1) #high alpha means labels an change till stable # Train the model #np.savetxt('test.out', Ynd, delimiter=',') #lp_model.fit(Xn, Ynd) #Step 4.3: Predict Model label for the dropped samples #pred = lp_model.transduction_[dropI] #pred=pred.astype(int) #print(np.shape(pred)) #print('Predictions=',pred)#pred[np.shape(X)[0]:np.shape(X)[0]+np.shape(UX)[0]]) #print('Groundtruth=',UY) ############Predictions to be measured####################### #predictions=pred[ns:(ns+np.shape(UY)[0])] #print(np.shape(predictions)[0]) #pred_labels=np.zeros((np.shape(UY)[0],7)) print(np.shape(Xn),np.shape(Ynd), no_drop) # Collect no drops print(np.shape(no_drop)) no_drop fig = plt.figure() #plt.scatter(trans.embedding_[no_drop,0], trans.embedding_[no_drop,1], s=30, c=Ynd[no_drop], cmap='hsv') #ax.scatter(Xn[dropI,0], Xn[dropI,1], Xn[dropI,2], c=np.zeros(np.shape(dropI)[0])) plt.scatter(X1[no_drop,1], X1[no_drop,2], s=30, c=Ynd[no_drop], cmap='hsv') fig = plt.figure() #ax = fig.add_subplot(projection='3d') #plt.scatter(trans.embedding_[:,0], trans.embedding_[:,1], c=Ynd, s=30, cmap='hsv') #plt.scatter(trans.embedding_[no_drop,0], trans.embedding_[no_drop,1], s=30, c=Ynd[no_drop], cmap='hsv') #plt.scatter(trans.embedding_[dropI,0], trans.embedding_[dropI,1], s=5, c=np.zeros(np.shape(dropI)[0])) plt.scatter(X1[no_drop,1], X1[no_drop,2], s=30, c=Ynd[no_drop], cmap='hsv') plt.scatter(X1[dropI,1], X1[dropI,2], s=5, c=np.zeros(np.shape(dropI)[0])) np.shape(dropI), np.shape(Xn), np.shape(Ynd) #dropI=np.concatenate((dropI,range(np.shape(X)[0],np.shape(Xn)[0]))) #Thus (Xn,Ynd) is the new data that will be subjected to label propagation ################################### so random label removal works! #Step 4.2: Apply Label propagation to [X,UX,NUX] lp_model = LabelSpreading(kernel='rbf',gamma=0.2,alpha=0.1) #high alpha means labels an change till stable # Train the model #np.savetxt('test.out', Ynd, delimiter=',') lp_model.fit(Xn, Ynd) #Step 4.3: Predict Model label for the dropped samples pred = lp_model.transduction_[dropI] pred=pred.astype(int) Ynd[dropI]=pred #print(np.shape(pred)) #print('Predictions=',pred)#pred[np.shape(X)[0]:np.shape(X)[0]+np.shape(UX)[0]]) #print('Groundtruth=',UY) ############Predictions to be measured####################### #predictions=pred[ns:(ns+np.shape(UY)[0])] #print(np.shape(predictions)[0]) #pred_labels=np.zeros((np.shape(UY)[0],7)) print(np.shape(Xn),np.shape(Ynd)) idx=np.where(Ynd<0) idx fig = plt.figure() plt.scatter(X1[no_drop,1], X1[no_drop,2], s=30, c=Ynd[no_drop], cmap='hsv') plt.scatter(X1[dropI,1], X1[dropI,2], s=5, c=np.zeros(np.shape(dropI)[0]),cmap='hsv') #ax = fig.add_subplot(projection='3d') #plt.scatter(trans.embedding_[:,0], trans.embedding_[:,1], c=Ynd, s=30, cmap='hsv') #Step 4.1: LP averaged across all 7 classes (equally likely) dropP=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]#Fraction of population to be randomly dropped prec=np.zeros((8,20)) rec=np.zeros((8,20)) fb=np.zeros((8,20)) n=np.shape(X)[0] ######################################################################## #In each loop, randomly drop (dropP) number of samples from X, label propagate on [X, UX, NUX], test on [UX] for cn in range(20): print(cn) Xn=np.copy(X1) for cp,drop in enumerate(dropP): Ynd=np.copy(Y) #Generate 28 flase labels for ni in range(28): r_false=randint(0,np.shape(Y)[0]-1) Ynd[r_false]=false_label_return(Y[r_false]) #One label flipped randomly ns=np.round(drop*n).astype(int) #print('num of samples dropped=',ns) dropI=np.floor(np.random.rand(ns)*n).astype(int) Ynd[dropI]=-1 #Now combine (Xn, UX1, NUX1) Xn=np.concatenate((X1,UX1,NUX1)) Ynd=np.concatenate((Ynd,YO)) dropI=np.concatenate((dropI,range(np.shape(X)[0],np.shape(Xn)[0]))) #Thus (Xn,Ynd) is the new data that will be subjected to label propagation ################################### so random label removal works! #Step 4.2: Apply Label propagation to [X,UX,NUX] lp_model = LabelSpreading(kernel='rbf',gamma=20,alpha=0.1) #high alpha means labels an change till stable # Train the model #np.savetxt('test.out', Ynd, delimiter=',') lp_model.fit(Xn, Ynd) #Step 4.3: Predict Model label for the dropped samples pred = lp_model.transduction_[dropI] pred=pred.astype(int) #print(np.shape(pred)) #print('Predictions=',pred)#pred[np.shape(X)[0]:np.shape(X)[0]+np.shape(UX)[0]]) #print('Groundtruth=',UY) ############Predictions to be measured####################### predictions=pred[ns:(ns+np.shape(UY)[0])] #print(np.shape(predictions)[0]) pred_labels=np.zeros((np.shape(UY)[0],7)) for i in range(np.shape(predictions)[0]): pred_labels[i]=decimal_to_bin(predictions[i]) #Step 4.4: Compute accuracy, for predictions # Modify more multilabel metrics here prec[cp][cn], rec[cp][cn], fb[cp][cn]=return_metrics(true_labels,pred_labels) dropI=[] fb pp=np.mean(prec,axis=1) rr=np.mean(rec,axis=1) ff=np.mean(fb,axis=1) print(np.shape(pp)) #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,pp) plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Precision of Labels') plt.ylim(0,1) plt.show() #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,rr) plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Recall of Labels') plt.ylim(0,1) plt.show() #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,ff) plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Fbeta-score Labels') plt.ylim(0,1) plt.show() def return_per_class_metrics(y_true,y_pred): p=np.zeros(7) r=np.zeros(7) Fbeta=np.zeros(7) eps=0.000001 beta=2*2 Fbeta=np.zeros(7) for i in range(7): y_t=y_true[:,i] y_p=y_pred[:,i] tp = np.sum(y_t * y_p) fp = np.sum((y_p - y_t)>0) fn = np.sum((y_t - y_p)>0) p[i] = tp / (tp + fp + eps) r[i] = tp / (tp + fn + eps) Fbeta[i]=np.mean((1 + beta) * (p[i] * r[i]) / (beta * p[i] + r[i] + eps)) return p, r, Fbeta #Step 4.1: LP averaged across each class separately dropP=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]#Fraction of population to be randomly dropped prec=np.zeros((8,20,7)) rec=np.zeros((8,20,7)) fb=np.zeros((8,20,7)) n=np.shape(X)[0] ######################################################################## #In each loop, randomly drop (dropP) number of samples from X, label propagate on [X, UX, NUX], test on [UX] for cn in range(20): print(cn) Xn=np.copy(X1) for cp,drop in enumerate(dropP): Ynd=np.copy(Y) #Generate 1% false labels and check for ni in range(28): r_false=randint(0,np.shape(Y)[0]-1) Ynd[r_false]=false_label_return(Y[r_false]) #One label flipped randomly ns=np.round(drop*n).astype(int) #print('num of samples dropped=',ns) dropI=np.floor(np.random.rand(ns)*n).astype(int) Ynd[dropI]=-1 #Now combine (Xn, UX1, NUX1) Xn=np.concatenate((X1,UX1,NUX1)) Ynd=np.concatenate((Ynd,YO)) dropI=np.concatenate((dropI,range(np.shape(X)[0],np.shape(Xn)[0]))) #Thus (Xn,Ynd) is the new data that will be subjected to label propagation ################################### so random label removal works! #Step 4.2: Apply Label propagation to [X,UX,NUX] lp_model = LabelSpreading(kernel='rbf',gamma=20,alpha=0.1) #high alpha means labels an change till stable # Train the model #np.savetxt('test.out', Ynd, delimiter=',') lp_model.fit(Xn, Ynd) #Step 4.3: Predict Model label for the dropped samples pred = lp_model.transduction_[dropI] pred=pred.astype(int) #print(np.shape(pred)) #print('Predictions=',pred)#pred[np.shape(X)[0]:np.shape(X)[0]+np.shape(UX)[0]]) #print('Groundtruth=',UY) ############Predictions to be measured####################### predictions=pred[ns:(ns+np.shape(UY)[0])] #print(np.shape(predictions)[0]) pred_labels=np.zeros((np.shape(UY)[0],7)) for i in range(np.shape(predictions)[0]): pred_labels[i]=decimal_to_bin(predictions[i]) #Step 4.4: Compute accuracy, for predictions # Modify more multilabel metrics here prec[cp][cn], rec[cp][cn], fb[cp][cn]=return_per_class_metrics(true_labels,pred_labels) dropI=[] p=np.mean(prec,axis=1) r=np.mean(rec,axis=1) f=np.mean(fb,axis=1) print(np.round(p,2)) #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,p[:,0],label='Opacity') plt.plot(dropP,p[:,1],label='DR') plt.plot(dropP,p[:,2],label='Glaucoma') plt.plot(dropP,p[:,3],label='ME') plt.plot(dropP,p[:,4],label='MD') plt.plot(dropP,p[:,5],label='RVO') plt.plot(dropP,p[:,6],label='Normal') plt.plot(dropP,pp,label='Overall') plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Precision of Labels') plt.ylim(0,1) plt.legend() plt.show() #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,r[:,0],label='Opacity') plt.plot(dropP,r[:,1],label='DR') plt.plot(dropP,r[:,2],label='Glaucoma') plt.plot(dropP,r[:,3],label='ME') plt.plot(dropP,r[:,4],label='MD') plt.plot(dropP,r[:,5],label='RVO') plt.plot(dropP,r[:,6],label='Normal') plt.plot(dropP,rr,label='Overall') plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Recall of Labels') plt.ylim(0,1) #Finally generate the plots per cluster plt.figure(figsize=(8,6)) plt.plot(dropP,f[:,0],label='Opacity') plt.plot(dropP,f[:,1],label='DR') plt.plot(dropP,f[:,2],label='Glaucoma') plt.plot(dropP,f[:,3],label='ME') plt.plot(dropP,f[:,4],label='MD') plt.plot(dropP,f[:,5],label='RVO') plt.plot(dropP,f[:,6],label='Normal') plt.plot(dropP,ff,label='Overall') plt.xlabel('Percentage of Dropped Labels') plt.ylabel('Fbeta of Labels') plt.ylim(0,1) plt.legend() plt.show() ###Output _____no_output_____
Face-Mask-Detector/Training.ipynb
###Markdown Install the packages using the following commands : pip3 install tensorflow pip3 install opencv-python pip3 install sklearn scikit-learn auto-sklearn pip3 install pygame imutils pip3 install numpy matplotlib pip3 install keras Import all necessary packages to train the Face Mask Detector Model ###Code from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.layers import AveragePooling2D from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from imutils import paths import matplotlib.pyplot as plt import numpy as np import os ###Output _____no_output_____ ###Markdown Initialize the initial learning rate, number of epochs to train and batch size Also allocate the directory of the folder containg the datasets . grab the list of images in our dataset directory, then initialize the list of data (i.e., images) and class images ###Code INIT_LR = 1e-4 EPOCHS = 75 BS = 32 DIRECTORY = r"dataset" CATEGORIES = ["with_mask", "without_mask"] print("[INFO] loading images...") data = [] labels = [] for category in CATEGORIES: path = os.path.join(DIRECTORY, category) for img in os.listdir(path): img_path = os.path.join(path, img) image = load_img(img_path, target_size=(224, 224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) labels.append(category) lb = LabelBinarizer() labels = lb.fit_transform(labels) labels = to_categorical(labels) data = np.array(data, dtype="float32") labels = np.array(labels) (trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.20, stratify=labels, random_state=42) ###Output [INFO] loading images... ###Markdown construct the training image generator for data augmentation ###Code aug = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest") ###Output _____no_output_____ ###Markdown load the MobileNetV2 network, ensuring the head FC layer sets are left off ###Code baseModel = MobileNetV2(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3))) #construct the head of the model that will be placed on top of the base model headModel = baseModel.output headModel = AveragePooling2D(pool_size=(7, 7))(headModel) headModel = Flatten(name="flatten")(headModel) headModel = Dense(128, activation="relu")(headModel) headModel = Dropout(0.5)(headModel) headModel = Dense(2, activation="softmax")(headModel) model = Model(inputs=baseModel.input, outputs=headModel) #loop over all layers in the base model and freeze them so they will *not* be updated during the first training process for layer in baseModel.layers: layer.trainable = False ###Output WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default. ###Markdown compile our model ###Code print("[INFO] compiling model...") opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) ###Output [INFO] compiling model... ###Markdown train the head of the network ###Code print("[INFO] training head...") H = model.fit( aug.flow(trainX, trainY, batch_size=BS), steps_per_epoch=len(trainX) // BS, validation_data=(testX, testY), validation_steps=len(testX) // BS, epochs=EPOCHS) # make predictions on the testing set print("[INFO] evaluating network...") predIdxs = model.predict(testX, batch_size=BS) # for each image in the testing set we need to find the index of the # label with corresponding largest predicted probability predIdxs = np.argmax(predIdxs, axis=1) # show a nicely formatted classification report print(classification_report(testY.argmax(axis=1), predIdxs, target_names=lb.classes_)) ###Output [INFO] training head... Epoch 1/75 184/184 [==============================] - ETA: 0s - loss: 0.2362 - accuracy: 0.9195WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 46 batches). You may need to use the repeat() function when building your dataset. 184/184 [==============================] - 156s 842ms/step - loss: 0.2362 - accuracy: 0.9195 - val_loss: 0.0860 - val_accuracy: 0.9736 Epoch 2/75 184/184 [==============================] - 148s 804ms/step - loss: 0.0829 - accuracy: 0.9770 Epoch 3/75 184/184 [==============================] - 122s 660ms/step - loss: 0.0690 - accuracy: 0.9809 Epoch 4/75 184/184 [==============================] - 119s 646ms/step - loss: 0.0620 - accuracy: 0.9813 Epoch 5/75 184/184 [==============================] - 125s 677ms/step - loss: 0.0575 - accuracy: 0.9842 Epoch 6/75 184/184 [==============================] - 125s 678ms/step - loss: 0.0540 - accuracy: 0.9860 Epoch 7/75 184/184 [==============================] - 126s 685ms/step - loss: 0.0458 - accuracy: 0.9867 Epoch 8/75 184/184 [==============================] - 124s 673ms/step - loss: 0.0473 - accuracy: 0.9860 Epoch 9/75 184/184 [==============================] - 121s 656ms/step - loss: 0.0439 - accuracy: 0.9871 Epoch 10/75 184/184 [==============================] - 127s 691ms/step - loss: 0.0441 - accuracy: 0.9871 Epoch 11/75 184/184 [==============================] - 124s 672ms/step - loss: 0.0431 - accuracy: 0.9871 Epoch 12/75 184/184 [==============================] - 123s 667ms/step - loss: 0.0424 - accuracy: 0.9862 Epoch 13/75 184/184 [==============================] - 122s 664ms/step - loss: 0.0441 - accuracy: 0.9864 Epoch 14/75 184/184 [==============================] - 115s 622ms/step - loss: 0.0401 - accuracy: 0.9891 Epoch 15/75 184/184 [==============================] - 120s 650ms/step - loss: 0.0382 - accuracy: 0.9867 Epoch 16/75 184/184 [==============================] - 113s 612ms/step - loss: 0.0375 - accuracy: 0.9872 Epoch 17/75 184/184 [==============================] - 110s 595ms/step - loss: 0.0354 - accuracy: 0.9891 Epoch 18/75 184/184 [==============================] - 113s 615ms/step - loss: 0.0372 - accuracy: 0.9881 Epoch 19/75 184/184 [==============================] - 118s 640ms/step - loss: 0.0305 - accuracy: 0.9910 Epoch 20/75 184/184 [==============================] - 121s 659ms/step - loss: 0.0337 - accuracy: 0.9898 Epoch 21/75 184/184 [==============================] - 119s 648ms/step - loss: 0.0328 - accuracy: 0.9896 Epoch 22/75 184/184 [==============================] - 113s 614ms/step - loss: 0.0340 - accuracy: 0.9896 Epoch 23/75 184/184 [==============================] - 117s 634ms/step - loss: 0.0299 - accuracy: 0.9881 Epoch 24/75 184/184 [==============================] - 120s 652ms/step - loss: 0.0319 - accuracy: 0.9903 Epoch 25/75 184/184 [==============================] - 112s 606ms/step - loss: 0.0312 - accuracy: 0.9891 Epoch 26/75 184/184 [==============================] - 114s 617ms/step - loss: 0.0318 - accuracy: 0.9903 Epoch 27/75 184/184 [==============================] - 116s 631ms/step - loss: 0.0261 - accuracy: 0.9912 Epoch 28/75 184/184 [==============================] - 120s 652ms/step - loss: 0.0256 - accuracy: 0.9913 Epoch 29/75 184/184 [==============================] - 110s 597ms/step - loss: 0.0276 - accuracy: 0.9908 Epoch 30/75 184/184 [==============================] - 114s 617ms/step - loss: 0.0277 - accuracy: 0.9906 Epoch 31/75 184/184 [==============================] - 116s 632ms/step - loss: 0.0257 - accuracy: 0.9898 Epoch 32/75 184/184 [==============================] - 121s 658ms/step - loss: 0.0260 - accuracy: 0.9908 Epoch 33/75 184/184 [==============================] - 114s 618ms/step - loss: 0.0287 - accuracy: 0.9901 Epoch 34/75 184/184 [==============================] - 114s 619ms/step - loss: 0.0231 - accuracy: 0.9918 Epoch 35/75 184/184 [==============================] - 118s 640ms/step - loss: 0.0250 - accuracy: 0.9918 Epoch 36/75 184/184 [==============================] - 118s 639ms/step - loss: 0.0268 - accuracy: 0.9903 Epoch 37/75 184/184 [==============================] - 111s 602ms/step - loss: 0.0250 - accuracy: 0.9906 Epoch 38/75 184/184 [==============================] - 114s 619ms/step - loss: 0.0264 - accuracy: 0.9918 Epoch 39/75 184/184 [==============================] - 117s 637ms/step - loss: 0.0223 - accuracy: 0.9925 Epoch 40/75 184/184 [==============================] - 117s 636ms/step - loss: 0.0233 - accuracy: 0.9908 Epoch 41/75 184/184 [==============================] - 112s 609ms/step - loss: 0.0212 - accuracy: 0.9923 Epoch 42/75 184/184 [==============================] - 115s 625ms/step - loss: 0.0207 - accuracy: 0.9918 Epoch 43/75 184/184 [==============================] - 119s 644ms/step - loss: 0.0250 - accuracy: 0.9910 Epoch 44/75 184/184 [==============================] - 122s 662ms/step - loss: 0.0243 - accuracy: 0.9910 Epoch 45/75 184/184 [==============================] - 111s 605ms/step - loss: 0.0210 - accuracy: 0.9929 Epoch 46/75 184/184 [==============================] - 115s 627ms/step - loss: 0.0220 - accuracy: 0.9908 Epoch 47/75 184/184 [==============================] - 118s 639ms/step - loss: 0.0209 - accuracy: 0.9918 Epoch 48/75 184/184 [==============================] - 111s 605ms/step - loss: 0.0184 - accuracy: 0.9937 Epoch 49/75 184/184 [==============================] - 112s 608ms/step - loss: 0.0228 - accuracy: 0.9915 Epoch 50/75 184/184 [==============================] - 115s 625ms/step - loss: 0.0216 - accuracy: 0.9927 Epoch 51/75 184/184 [==============================] - 119s 645ms/step - loss: 0.0178 - accuracy: 0.9922 Epoch 52/75 184/184 [==============================] - 109s 593ms/step - loss: 0.0200 - accuracy: 0.9930 Epoch 53/75 184/184 [==============================] - 111s 605ms/step - loss: 0.0229 - accuracy: 0.9915 Epoch 54/75 184/184 [==============================] - 115s 623ms/step - loss: 0.0162 - accuracy: 0.9940 Epoch 55/75 184/184 [==============================] - 106s 577ms/step - loss: 0.0193 - accuracy: 0.9932 Epoch 56/75 184/184 [==============================] - 110s 599ms/step - loss: 0.0189 - accuracy: 0.9944 Epoch 57/75 184/184 [==============================] - 112s 608ms/step - loss: 0.0178 - accuracy: 0.9925 Epoch 58/75 184/184 [==============================] - 116s 629ms/step - loss: 0.0189 - accuracy: 0.9934 Epoch 59/75 184/184 [==============================] - 112s 608ms/step - loss: 0.0177 - accuracy: 0.9927 Epoch 60/75 184/184 [==============================] - 109s 593ms/step - loss: 0.0178 - accuracy: 0.9935 Epoch 61/75 184/184 [==============================] - 112s 607ms/step - loss: 0.0172 - accuracy: 0.9942 Epoch 62/75 184/184 [==============================] - 116s 627ms/step - loss: 0.0162 - accuracy: 0.9942 Epoch 63/75 184/184 [==============================] - 112s 609ms/step - loss: 0.0164 - accuracy: 0.9940 Epoch 64/75 184/184 [==============================] - 109s 593ms/step - loss: 0.0201 - accuracy: 0.9923 Epoch 65/75 184/184 [==============================] - 119s 644ms/step - loss: 0.0180 - accuracy: 0.9930 Epoch 66/75 184/184 [==============================] - 133s 724ms/step - loss: 0.0172 - accuracy: 0.9934 Epoch 67/75 184/184 [==============================] - 125s 681ms/step - loss: 0.0150 - accuracy: 0.9946 Epoch 68/75 184/184 [==============================] - 121s 658ms/step - loss: 0.0159 - accuracy: 0.9942 Epoch 69/75 184/184 [==============================] - 121s 658ms/step - loss: 0.0144 - accuracy: 0.9949 Epoch 70/75 184/184 [==============================] - 121s 656ms/step - loss: 0.0137 - accuracy: 0.9954 Epoch 71/75 184/184 [==============================] - 118s 639ms/step - loss: 0.0168 - accuracy: 0.9946 Epoch 72/75 184/184 [==============================] - 103s 558ms/step - loss: 0.0149 - accuracy: 0.9942 Epoch 73/75 184/184 [==============================] - 104s 564ms/step - loss: 0.0143 - accuracy: 0.9951 Epoch 74/75 184/184 [==============================] - 106s 575ms/step - loss: 0.0155 - accuracy: 0.9946 Epoch 75/75 ###Markdown serialize the model to disk ###Code print("[INFO] saving mask detector model...") model.save("mask_detector.model", save_format="h5") # plot the training loss and accuracy N = EPOCHS plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig("plot.png") ###Output [INFO] saving mask detector model...
notebooks/omero_upload.ipynb
###Markdown Notebook for uploading a data set with description into an OMERO server ###Code import os import sys import getpass from pyomero_upload.pyomero_upload import PyOmeroUploader # configure connection settings server = 'demo.openmicroscopy.org' user = 'USER' password = getpass.getpass() uploader = PyOmeroUploader(user, password, server) # defining data to upload data_path = '/home/jovyan/work/test_data' dataset_name = 'Upload from Jupyter' # data upload with hybercubes # The 'True' argument instructs the uploader to process and deposit image files as hypercubes dId = uploader.launch_upload(dataset_name, data_path, True) print(dId) # searching for the upload # should be searcher = uploader.searcher() import omero_data_transfer.omero_data_broker as data_broker from omero import sys as om_sys from omero import rtypes #query = "select d from Dataset d where d.name = :dname" query = "select d from Dataset d where d.id = :did" params = om_sys.Parameters() params.map = {'dname' : rtypes.rstring(dataset_name)} params.map = {'did' : rtypes.rlong(dId)} datasets = searcher.find_objects_by_query(query, params) dataset = datasets[0] #dataset = datasets print(dataset.name.val) ###Output _____no_output_____
emulator_examples/emulator_RF_sklearn.ipynb
###Markdown Emulator: Random Forest A [Random Forest (RF)](https://builtin.com/data-science/random-forest-algorithm) regressor is an example of an ensemble learning method. During training, multiple decision trees are generated. Each tree is trained on a different subset of the data. Each tree overfits on the different subsamples of data and features. However, by averaging over all the different trees, the overall variance of the forest is lower. Index1. [Import packages](imports)2. [Load data](loadData) 1. [Load train data](loadTrainData) 2. [Load test data](loadTestData)3. [Emulator method](emulator) 1. [Scale data](scaleData) 2. [Train emulator](trainEmu) 3. [Predict on test data](predEmu) 4. [Plot results](plotEmu) 1. Import packages ###Code import numpy as np import pickle import matplotlib.pyplot as plt import matplotlib from matplotlib import pylab %config InlineBackend.figure_format = 'retina' matplotlib.rcParams['figure.dpi'] = 80 textsize = 'x-large' params = {'legend.fontsize': 'large', 'figure.figsize': (5, 4), 'axes.labelsize': textsize, 'axes.titlesize': textsize, 'xtick.labelsize': textsize, 'ytick.labelsize': textsize} pylab.rcParams.update(params) from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler ###Output _____no_output_____ ###Markdown 2. Load data 2.1. Load train data The training set here is the correlation function of galaxy clustering, for different cosmological model. Here we show a 3-free-parameter model; you can also play with a simpler 1-free-parameter model by commenting in the '1d' data (be sure to do this with the test set too). ###Code path_train = '../data/cosmology_train_big.pickle' #path_train = '../data/cosmology_train.pickle' #path_train = '../data/cosmology_train_1d.pickle' with open(path_train, 'rb') as input_file: data_train = pickle.load(input_file) input_train = data_train['input_data'] number_train = input_train.shape[0] print("Number of datapoints:", number_train) output_train = data_train['output_data'] n_params = input_train.shape[1]-1 n_values = output_train.shape[1]-1 print("Number of input parameters:", n_params) # remove the `object_id` column print("Number of output values:", n_values) # remove the `object_id` column xs_train = np.array(input_train.drop(columns=['object_id'])) ys_train = np.array(output_train.drop(columns=['object_id'])) extra_train = data_train['extra_input'] r_vals = extra_train['r_vals'] ###Output _____no_output_____ ###Markdown 2.2. Load test data ###Code path_test = '../data/cosmology_test.pickle' #path_test = '../data/cosmology_test_1d.pickle' with open(path_test, 'rb') as input: data_test = pickle.load(input) input_test = data_test['input_data'] number_test = input_test.shape[0] print("Number of datapoints:", number_test) output_test = data_test['output_data'] print("Number of input parameters:", input_test.shape[1]-1) # remove the `object_id` column print("Number of output values:", output_test.shape[1]-1) # remove the `object_id` column xs_test = np.array(input_test.drop(columns=['object_id'])) ys_test = np.array(output_test.drop(columns=['object_id'])) ###Output _____no_output_____ ###Markdown 3. Emulator method 3.1. Scale data Let's first scale our input parameters, to make training easier: ###Code scaler = StandardScaler() scaler.fit(xs_train) xs_train = scaler.transform(xs_train) xs_test = scaler.transform(xs_test) ###Output _____no_output_____ ###Markdown Let's also normalize the output data by the mean of the training data, so it's easier to emulate (don't forget to undo the normalization after!): ###Code y_mean = np.mean(ys_train, axis=0) ys_train = ys_train/y_mean ys_test = ys_test/y_mean ###Output _____no_output_____ ###Markdown 3.2. Train emulator We will use `scikit-learn`'s `RandomForestRegressor` to build our emulator. We train a separate regressor for each output value. For this dataset, the simple 'lbfgs' solver works very well. We can also use the 'adam' optimizer; in both cases, we have to tune the hyperparameters carefully. ###Code regrs = np.empty(n_values, dtype=object) for j in range(n_values): ys_train_r = ys_train[:,j] ys_test_r = ys_test[:,j] regr = RandomForestRegressor(n_estimators=1000, n_jobs=-1).fit(xs_train, ys_train_r) score = regr.score(xs_test, ys_test_r) print(f"Value {j} score:", score) regrs[j] = regr ###Output _____no_output_____ ###Markdown These values should be as close to 1 as possible. Try tuning the hyperparameter `n_estimators` to get better results on your test set. 3.3. Predict on test data Now we can predict on our test dataset: ###Code ys_predict = np.zeros((number_test, n_values)) for j in range(n_values): ys_predict_r = regrs[j].predict(xs_test) ys_predict[:,j] = ys_predict_r ###Output _____no_output_____ ###Markdown Undo all the normalizations: ###Code ys_train = ys_train*y_mean ys_test = ys_test*y_mean ys_predict = ys_predict*y_mean ###Output _____no_output_____ ###Markdown 3.4. Plot resultsWe compare our predictions to the truth (choosing a subset for visual clarity): ###Code n_plot = int(0.2*number_test) idxs = np.random.choice(np.arange(number_test), n_plot) color_idx = np.linspace(0, 1, n_plot) colors = np.array([plt.cm.rainbow(c) for c in color_idx]) plt.figure(figsize=(8,6)) for i in range(n_plot): ys_test_plot = ys_test[idxs,:][i] ys_predict_plot = ys_predict[idxs][i] if i==0: label_test = 'truth' label_predict = 'emu_prediction' else: label_test = None label_predict = None plt.plot(r_vals[:n_values], ys_test_plot, alpha=0.8, label=label_test, marker='o', markerfacecolor='None', ls='None', color=colors[i]) plt.plot(r_vals[:n_values], ys_predict_plot, alpha=0.8, label=label_predict, color=colors[i]) plt.xlabel('$r$') plt.ylabel(r'$\xi(r)$') plt.legend() ###Output _____no_output_____ ###Markdown We plot the fractional error of all test set statistics: ###Code color_idx = np.linspace(0, 1, number_test) colors = np.array([plt.cm.rainbow(c) for c in color_idx]) plt.figure(figsize=(8,6)) frac_errs = np.empty((number_test, n_values)) for i in range(number_test): # ys_test_plot = ys_test[idxs,:][i] # ys_predict_plot = ys_predict[idxs][i] ys_test_plot = ys_test[i] ys_predict_plot = ys_predict[i] frac_err = (ys_predict_plot-ys_test_plot)/ys_test_plot frac_errs[i] = frac_err plt.plot(r_vals, frac_err, alpha=0.8, color=colors[i]) plt.axhline(0.0, color='k') plt.xlabel('$r$') plt.ylabel(r'fractional error') ###Output _____no_output_____ ###Markdown The emulator is sort of working but it's not great! In particular it struggles significantly with one of the r-bins. This r-bin is likely more difficult to emulate because it contains large range of values and both positive and negative values. ###Code color_idx = np.linspace(0, 1, number_test) colors = np.array([plt.cm.rainbow(c) for c in color_idx]) plt.figure(figsize=(8,6)) frac_errs_stdev = np.std(frac_errs, axis=0) plt.plot(r_vals, frac_errs_stdev, alpha=0.8, color='blue', label='standard deviation') frac_errs_p16 = np.percentile(frac_errs, 16, axis=0) frac_errs_p84 = np.percentile(frac_errs, 84, axis=0) frac_errs_percentile = np.mean([np.abs(frac_errs_p16), np.abs(frac_errs_p84)], axis=0) plt.plot(r_vals, frac_errs_percentile, alpha=0.8, color='green', label="mean of 16/84 percentile") plt.xlabel('$r$') plt.ylabel(r'spread of fractional errors') plt.legend() ###Output _____no_output_____
miscellaneous_notebooks/Distributions_of_Sums/Chernoff_Bound.ipynb
###Markdown Chernoff Bound If the form of a distribution is intractable in that it is difficult to find exact probabilities by integration, then good estimates and bounds become important. Bounds on the tails of the distribution of a random variable help us quantify roughly how close to the mean the random variable is likely to be. We already know two such bounds. Let $X$ be a random variable with expectation $\mu$ and SD $\sigma$. Markov's Bound on the Right Hand Tail If $X$ is non-negative, $$P(X \ge c) ~ \le ~ \frac{\mu}{c}$$ Chebychev's Bound on Two Tails $$P(\lvert X - \mu\rvert \ge c) ~ \le ~ \frac{\sigma^2}{c^2}$$Moment generating functions can help us improve upon these bounds in many cases. In what follows, we will assume that the moment generating function of $X$ is finite over the whole real line. If it is finite only over a smaller interval around 0, the calculations of the mgf below should be confined to that interval. Chernoff Bound on the Right Tail Observe that if $g$ is an increasing function, then the event $\{ X \ge c \}$ is the same as the event $\{ g(X) \ge g(c)\}$. For any fixed $t > 0$, the function defined by $g(x) = e^{tx}$ is increasing as well as non-negative. So for each $t > 0$,\begin{align*}P(X \ge c) ~ &= P(e^{tX} \ge e^{tc}) \\&\le ~ \frac{E(e^{tX})}{e^{tc}} ~~~~ \text{(Markov's bound)} \\&= ~ \frac{M_X(t)}{e^{tc}}\end{align*}This is the first step in developing a [Chernoff bound](https://en.wikipedia.org/wiki/Chernoff_bound) on the right hand tail. For the next step, notice that you can choose $t$ to be any positive number. Some choices of $t$ will give sharper bounds than others. Because these are upper bounds, the sharpest among all of the bounds will correspond to the value of $t$ that minimizes the right hand side. So the Chernoff bound has an *optimized* form:$$P(X \ge c) ~ \le ~ \min_{t > 0} \frac{M_X(t)}{e^{tc}}$$ Application to the Normal Distribution Suppose $X$ has the normal $(\mu, \sigma^2)$ distribution and we want to get a sense of how far $X$ can be above the mean. Fix $c > 0$. The exact chance that the value of $X$ is at least $c$ above the mean is$$P(X - \mu \ge c) ~ = ~ 1 - \Phi(c/\sigma)$$because the distribution of $X - \mu$ is normal $(0, \sigma^2)$. This exact answer looks neat and tidy, but the standard normal cdf $\Phi$ is not easy to work with analytically. Sometimes we can gain more insight from a good bound.The optimized Chernoff bound is\begin{align*}P(X- \mu \ge c) ~ &\le ~ \min_{t > 0} \frac{M_{X-\mu}(t)}{e^{tc}} \\ \\&= ~ \min_{t > 0} \frac{e^{\sigma^2t^2/2}}{e^{tc}} \\ \\&= ~ \min_{t > 0} e^{-ct + \sigma^2t^2/2}\end{align*}The curve below is the graph of $\exp(-ct + \sigma^2t^2/2)$ as a function of $t$, in the case $\sigma = 2$ and $c = 5$. The flat line is the exact probability of $P(X - \mu \ge c)$. The curve is always above the flat line: no matter what $t$ is, the bound is an upper bound. The sharpest bound corresponds to the minimizing value $t^*$ which is somewhere in the 1.2 to 1.3 range. ###Code # HIDDEN c = 5 sigma = 2 t_min = 0.5 t_max = 2 t = np.arange(t_min, t_max, 0.01) bound = np.exp(-1*c*t + 0.5*((sigma*t)**2)) exact = 1 - stats.norm.cdf(2.5) plt.plot([t_min, t_max], [exact, exact], lw=2, label = 'Exact Chance') plt.plot(t, bound, lw=2, label = 'Bound') plt.legend(bbox_to_anchor=(1.4, 1)) plt.xlabel('$t$'); ###Output _____no_output_____ ###Markdown To find the minimizing value of $t$ analytically, we will use the standard calculus method of minimization. But first we will simplify our calculations by a method we used when we were finding maximum likelihood estimates.**Finding the point at which a positive function is minimized is the same as finding the point at which the log of the function is minimized.** This is because $\log$ is an increasing function.So the problem reduces to finding the value of $t$ that minimizes the function $h(t) = -ct + \sigma^2t^2/2$. By differentiation, the minimizing value of $t$ solves$$c ~ = ~ \sigma^2 t^*$$and hence$$t^* ~ = ~ \frac{c}{\sigma^2}$$So the Chernoff bound is $$P(X - \mu \ge c) ~ \le ~ e^{-ct^* + \sigma^2{t^*}^2/2} ~ = ~ e^{-\frac{c^2}{2\sigma^2}}$$Compare this with the bounds we already have. Markov's bound can't be applied directly as $X - \mu$ can have negative values. Because the distribution of $X - \mu$ is symmetric about 0, Chebychev's bound becomes$$P(X - \mu \ge c ) ~ \le ~ \frac{\sigma^2}{2c^2}$$When $c$ is large, the optimized Chernoff bound is quite a bit sharper than Chebychev's. In the case $\sigma = 2$, the graph below shows the exact value of $P(X - \mu \ge c)$ as a function of $c$, along with the Chernoff and Chebychev bounds. ###Code # HIDDEN sigma = 2 c_min = 4 c_max = 7 c = np.arange(c_min, c_max + .01, 0.01) chernoff = np.exp(-0.5*((c/sigma)**2)) chebychev = 0.5 * ((sigma/c)**2) plt.plot(c, 1 - stats.norm.cdf(c/sigma), label='Exact Chance', lw=2) plt.plot(c, chernoff, lw=2, label='Chernoff') plt.plot(c, chebychev, lw=2, label='Chebychev') plt.xlim(c_min, c_max) plt.xlabel('$c$') plt.legend() plt.title('Bounds on $P(X - \mu \geq c)$ where $X$ is normal $(\mu, 2^2)$'); ###Output _____no_output_____
examples/pandas_multi-index_Tutorial.ipynb
###Markdown Tutorial on using pandas multi-index dataframes Use processed TTU dataset for demonstration purposes. The dataset can be obtained by running the notebook "process_TTU_tower.ipynb" which can be found in the [a2e-mmc/assessment repository](https://github.com/a2e-mmc/assessment) (currently only in the dev branch) ###Code datadir = './' TTUdata = 'TTU_tilt_corrected_20131108-09.csv' ###Output _____no_output_____ ###Markdown 1. Loading .csv file into multi-index dataframe .csv files can be read directly into a multi-index dataframe by using the `index_col` argument of `read_csv()` ###Code df = pd.read_csv(os.path.join(datadir,TTUdata),parse_dates=True,index_col=['datetime','height']) df.head() ###Output _____no_output_____ ###Markdown 2. Extracting index values To extract index values, it is advisable to use `index.get_level_values()` (this function also works for single index dataframes). You could also use `index.levels[]`, but this might cause some issues when working with subsets or copies of dataframes. ###Code df.index.get_level_values(0) # specify level by index position df.index.get_level_values('height') # specify level by index label df.index.levels[0] ###Output _____no_output_____ ###Markdown Note that `index.get_level_values()` returns the full index, whereas `index.levels[]` returns the unique values ###Code df.index.get_level_values(0).size, df.index.levels[0].size ###Output _____no_output_____ ###Markdown 3. Conversion to single index and back Use `set_index()` and `reset_index()` to go back and forth between single index and multi-index dataframes From multi-index to single index ... ###Code # Reset all indices df_noindex = df.reset_index() df_noindex.head() # Reset a specific index df_single_index = df.reset_index(level=1) # level can be specified by position or label ('height') df_single_index.head() ###Output _____no_output_____ ###Markdown ... and back ###Code df = df_noindex.set_index(['datetime','height']) df.head() # append 'height' to existing index, otherwise 'datetime' index will be removed df = df_single_index.set_index('height',append=True) df.head() ###Output _____no_output_____ ###Markdown 4. Accessing slices and cross-sections Use `xs()` and `loc[]` to access slices or cross-sections of a multi-index. Note that `xs()` is used to access a single value of a certain index and that it removes that particular index level, whereas `loc[]` is more general but does not remove indices with a single entry. ###Code df_xs = df.xs(0.9,level='height') df_xs.head() df_loc = df.loc[('2013-11-08 00:00:00',[0.9,2.4,10.1]),['u','v','w']] df_loc.head() # To access an entire index using loc, use "slice(None)" instead of ":", # Columns can be accessed all together using ":" df_loc = df.loc[(slice(None),0.9),:] df_loc.head() ###Output _____no_output_____ ###Markdown Accessing columns works the same as with single index dataframes ###Code df[['u','v','w']].head() ###Output _____no_output_____ ###Markdown 5. Stacking and unstacking `stack()` and `unstack()` allows to turn an index level into a new column level and vice versa.**These tools are particularly useful to compute time statistics (mean, variance, covariance) or interpolate over height or times (see advanced examples below).** ###Code # Extract a subset to make examples more clear times = pd.date_range('2013-11-08 00:00:00','2013-11-08 00:00:03',freq='1s') heights = [0.9,2.4,4.0] df_subset = df.loc[(times,heights),['u','v']] df_subset ###Output _____no_output_____ ###Markdown Unstacking an index level to column level ... ###Code # Without any argument, unstack() converts the last index into a column level unstacked_height = df_subset.unstack() unstacked_height # The level that needs to be unstacked can be specified unstacked_time = df_subset.unstack(level='datetime') unstacked_time ###Output _____no_output_____ ###Markdown ... and back ###Code unstacked_height.stack() ###Output _____no_output_____ ###Markdown Note that `stack()` takes the last column level and appends it to the index. In the case of `unstacked_time`, stacking 'datetime' back as an index will reversed the original order of indices. This can be set back to the original form by using `reorder_levels()` and then `sort_index()` ###Code unstacked_time.stack() unstacked_time.stack().reorder_levels(order=['datetime','height']).sort_index() ###Output _____no_output_____ ###Markdown Advanced examples using `unstack()` and `stack()` 1. Calculate hourly means ###Code df.head() ###Output _____no_output_____ ###Markdown Unstack 'height' so that datetime is the only index level ###Code unstacked = df.unstack(level=1) ###Output _____no_output_____ ###Markdown calculate hourly averages using `resample().mean()` ###Code df_1h = unstacked.resample('1h').mean() df_1h.head() ###Output _____no_output_____ ###Markdown run `stack()` so that height is again an index level ###Code df_1h = df_1h.stack() df_1h.head() ###Output _____no_output_____ ###Markdown Or as a single line: ###Code df_1h = df.unstack(level=1).resample('1h').mean().stack() df_1h.head() ###Output _____no_output_____ ###Markdown Note that it would be much harder to do this with a single index dataframe with 'height' as a column as you don't want to take an average over the heights. Instead, you would need to `pivot()` the table about the 'height' column, compute the hourly mean values, use `stack()` to undo the pivoting, and then use `reset_index()` and `set_index()` to arrive at the original single index form 2. Interpolate to a specified height ###Code df.head() ###Output _____no_output_____ ###Markdown Unstack 'datetime' so that height is the only index level ###Code unstacked = df.unstack(level=0) ###Output _____no_output_____ ###Markdown Interpolate to a specified height (gets appended at the end) ###Code from scipy.interpolate import interp1d unstacked.loc[2.0] = interp1d(unstacked.index,unstacked,axis=0)(2.0) unstacked.tail() ###Output _____no_output_____ ###Markdown run `stack()` so that datetime is again an index level, and reverse order of indices ###Code df_2m = unstacked.stack().reorder_levels(order=['datetime','height']).sort_index() df_2m.head() ###Output _____no_output_____
Data Science Ass/Intro to Python Ass(Week 4 Ass).ipynb
###Markdown 2- Write out the datatypes in python with comment Declaring Integer ###Code #Declaring age as an integer age = 23 print(age) ###Output 23 ###Markdown Declaring Float ###Code # Declaring weight of a fish as a float fish_weight = 43.6 print(fish_weight) ###Output 43.6 ###Markdown Declaring String ###Code # Decalring Adegbite Ayoade Abel as name name = "Adegbite Ayoade Abel" print(name) ###Output Adegbite Ayoade Abel ###Markdown Declaring List ###Code # Declaring countries as a list countries = ["Nigeria","Cameroon","Senegal","India","Paris"] print(countries) ###Output ['Nigeria', 'Cameroon', 'Senegal', 'India', 'Paris'] ###Markdown Declaring Tuples ###Code # Declaring list of bootcamps in Lagos bootcamp_tuples = ("CodeLagos","Data Science Nigeria","AISaturday Lagos","WAAW Foundation") print(bootcamp_tuples) ###Output ('CodeLagos', 'Data Science Nigeria', 'AISaturday Lagos', 'WAAW Foundation')
TryingToWorkWithTwoNetworks(Working).ipynb
###Markdown Copyright 2018 The TensorFlow Datasets Authors, Licensed under the Apache License, Version 2.0 ###Code !pip install -q tensorflow-datasets tensorflow from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds import glob import imageio import matplotlib.pyplot as plt import numpy as np import os import PIL from tensorflow.keras import layers import time # tfds works in both Eager and Graph modes tf.enable_v2_behavior() # Construct a tf.data.Dataset ds = tfds.load('mnist', split='train', shuffle_files=True) # Build your input pipeline ds = ds.shuffle(1024).batch(32).prefetch(tf.data.experimental.AUTOTUNE) k=0 for example in ds.take(10): k=k+1 print(k) image, label = example['image'], example['label'] from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(test_labels.shape) print(test_images.shape) plt.imshow(test_images[4,:, :].astype(np.float32), cmap=plt.get_cmap("gray")) for example in ds.take(1): image, label = example['image'], example['label'] label2 = tf.one_hot(label,10) im_np = image.numpy() im_np2 = im_np[0,:,:,0] print(im_np2.shape) plt.imshow(image.numpy()[0,:, :, 0].astype(np.float32), cmap=plt.get_cmap("gray")) print("Label: %d" % label[0].numpy()) print(label2[0].numpy()) print(image.shape) print(label.shape) def make_a(): inputs = tf.keras.layers.Input(shape=[28,28,1]) model = tf.keras.Sequential() model.add(inputs) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dropout(0.2)) model.add(layers.Dense(128, activation='relu')) return model def make_b(): inputs = tf.keras.layers.Input(shape=[128,]) model = tf.keras.Sequential() model.add(inputs) model.add(layers.Dense(10,activation='softmax')) return model model_a = make_a() model_b = make_b() cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam(1e-4) tf.keras.utils.plot_model(model_a, show_shapes=True, dpi=64) tf.keras.utils.plot_model(model_b, show_shapes=True, dpi=64) def train_step(image, label): with tf.GradientTape(persistent=True) as gen_tape: model_a_output = model_a(image, training=True) print('Model_a_output shape: ', model_a_output.shape) model_b_output = model_b(model_a_output, training=True) print('Model_b_output shape: ', model_b_output.shape) loss = cross_entropy(model_b_output,label) print("Loss: ", loss) # gradients_of_model_a, gradients_of_model_b= gen_tape.gradient(loss, model_a.trainable_variables,model_b.trainable_variables) gradients_of_model_a = gen_tape.gradient(loss, model_a.trainable_variables) print('Gradients_of_model_a: ', gradients_of_model_a) gradients_of_model_b = gen_tape.gradient(loss, model_b.trainable_variables) print('Gradients_of_model_b: ', gradients_of_model_b) optimizer.apply_gradients(zip(gradients_of_model_a, model_a.trainable_variables)) optimizer.apply_gradients(zip(gradients_of_model_b, model_b.trainable_variables)) epochs=10 def train(ds, epochs): for epoch in range(epochs): start = time.time() for example in ds.take(100): image, label = example['image'], example['label'] label2 = tf.one_hot(label, depth=10) # print(label2.shape) # print(image.shape) train_step(image, label2) train(ds, epochs) result = model_b(model_a(test_images)) print(result[4]) ###Output tf.Tensor([0. 0. 0. 0. 0. 0. 0. 0. 0. 1.], shape=(10,), dtype=float32)
targets.ipynb
###Markdown Protein-protein targets ###Code targets = pd.DataFrame(targets.values()) targets.to_csv("targets.csv") targets ###Output _____no_output_____ ###Markdown Protein-protein target chains ###Code target_chains = pd.DataFrame.from_dict(target_chains) target_chains.to_csv("target_chains.csv") target_chains ###Output _____no_output_____ ###Markdown Templates for protein-protein target chains ###Code target_templates = pd.DataFrame(target_templates) target_templates.to_csv("target_templates.csv") target_templates import qgrid target_templates2 = qgrid.show_grid(target_templates) target_templates2 ###Output _____no_output_____ ###Markdown Protein-peptide targets ###Code prot_peptide_targets = pd.DataFrame(prot_peptide_targets.values()) prot_peptide_targets.to_csv("prot_peptide_targets.csv") prot_peptide_targets prot_peptide_chains = pd.DataFrame.from_dict(prot_peptide_chains) prot_peptide_chains.to_csv("prot_peptide_chains.csv") prot_peptide_chains ###Output _____no_output_____
doc/examples/visualization_gallery.ipynb
###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in Xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset('air_temperature') ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot(transform=ccrs.PlateCarree(), # the data's projection col='time', col_wrap=1, # multiplot settings aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize subplot_kws={'projection': map_proj}) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={'label': 'K'}) ax1.set_title('Kelvins: default') ax2.set_xlabel('') # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={'label': '°C'}) ax2.set_title('Celsius: default') ax2.set_xlabel('') ax2.set_ylabel('') # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'}) ax3.set_title('Kelvins: center=273.15') # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'}) ax4.set_title('Celsius: center=False') ax4.set_ylabel('') # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels}) air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels, 'spacing': 'proportional'}) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat') ax1.set_ylabel('°C') # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False) ax2.set_ylabel('') # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code da = xr.tutorial.open_rasterio("RGB.byte") # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM('18N') # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb='band', transform=crs) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from rasterio.warp import transform import numpy as np da = xr.tutorial.open_rasterio("RGB.byte") # Compute the lon/lat coordinates with rasterio.warp.transform ny, nx = len(da['y']), len(da['x']) x, y = np.meshgrid(da['x'], da['y']) # Rasterio works with 1D arrays lon, lat = transform(da.crs, {'init': 'EPSG:4326'}, x.flatten(), y.flatten()) lon = np.asarray(lon).reshape((ny, nx)) lat = np.asarray(lat).reshape((ny, nx)) da.coords['lon'] = (('y', 'x'), lon) da.coords['lat'] = (('y', 'x'), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim='band') # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(), cmap='Greys_r', add_colorbar=False) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in Xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset('air_temperature') ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot(transform=ccrs.PlateCarree(), # the data's projection col='time', col_wrap=1, # multiplot settings aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize subplot_kws={'projection': map_proj}) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={'label': 'K'}) ax1.set_title('Kelvins: default') ax2.set_xlabel('') # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={'label': '°C'}) ax2.set_title('Celsius: default') ax2.set_xlabel('') ax2.set_ylabel('') # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'}) ax3.set_title('Kelvins: center=273.15') # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'}) ax4.set_title('Celsius: center=False') ax4.set_ylabel('') # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels}) air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels, 'spacing': 'proportional'}) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat') ax1.set_ylabel('°C') # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False) ax2.set_ylabel('') # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code da = xr.tutorial.open_dataset("RGB.byte").data # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM('18N') # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb='band', transform=crs) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from rasterio.warp import transform import numpy as np da = xr.tutorial.open_dataset("RGB.byte").data # Compute the lon/lat coordinates with rasterio.warp.transform ny, nx = len(da['y']), len(da['x']) x, y = np.meshgrid(da['x'], da['y']) # Rasterio works with 1D arrays lon, lat = transform(da.crs, {'init': 'EPSG:4326'}, x.flatten(), y.flatten()) lon = np.asarray(lon).reshape((ny, nx)) lat = np.asarray(lat).reshape((ny, nx)) da.coords['lon'] = (('y', 'x'), lon) da.coords['lat'] = (('y', 'x'), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim='band') # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(), cmap='Greys_r', add_colorbar=False) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset('air_temperature') ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot(transform=ccrs.PlateCarree(), # the data's projection col='time', col_wrap=1, # multiplot settings aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize subplot_kws={'projection': map_proj}) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={'label': 'K'}) ax1.set_title('Kelvins: default') ax2.set_xlabel('') # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={'label': '°C'}) ax2.set_title('Celsius: default') ax2.set_xlabel('') ax2.set_ylabel('') # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'}) ax3.set_title('Kelvins: center=273.15') # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'}) ax4.set_title('Celsius: center=False') ax4.set_ylabel('') # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels}) air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels, 'spacing': 'proportional'}) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat') ax1.set_ylabel('°C') # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False) ax2.set_ylabel('') # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code da = xr.tutorial.open_rasterio("RGB.byte") # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM('18') # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb='band', transform=crs) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from pyproj import Transformer import numpy as np da = xr.tutorial.open_rasterio("RGB.byte") x, y = np.meshgrid(da['x'], da['y']) transformer = Transformer.from_crs(da.crs, "EPSG:4326", always_xy=True) lon, lat = transformer.transform(x, y) da.coords['lon'] = (('y', 'x'), lon) da.coords['lat'] = (('y', 'x'), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim='band') # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(), cmap='Greys_r', shading="auto",add_colorbar=False) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset("air_temperature") ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot( transform=ccrs.PlateCarree(), # the data's projection col="time", col_wrap=1, # multiplot settings aspect=ds.dims["lon"] / ds.dims["lat"], # for a sensible figsize subplot_kws={"projection": map_proj}, ) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={"label": "K"}) ax1.set_title("Kelvins: default") ax2.set_xlabel("") # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={"label": "°C"}) ax2.set_title("Celsius: default") ax2.set_xlabel("") ax2.set_ylabel("") # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={"label": "K"}) ax3.set_title("Kelvins: center=273.15") # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={"label": "°C"}) ax4.set_title("Celsius: center=False") ax4.set_ylabel("") # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={"ticks": levels}) air2d.plot( ax=ax3, levels=levels, cbar_kwargs={"ticks": levels, "spacing": "proportional"} ) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue="lat") ax1.set_ylabel("°C") # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x="time", add_legend=False) ax2.set_ylabel("") # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code da = xr.tutorial.open_rasterio("RGB.byte") # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM("18") # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb="band", transform=crs) ax.coastlines("10m", color="r") ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from pyproj import Transformer import numpy as np da = xr.tutorial.open_rasterio("RGB.byte") x, y = np.meshgrid(da["x"], da["y"]) transformer = Transformer.from_crs(da.crs, "EPSG:4326", always_xy=True) lon, lat = transformer.transform(x, y) da.coords["lon"] = (("y", "x"), lon) da.coords["lat"] = (("y", "x"), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim="band") # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot( ax=ax, x="lon", y="lat", transform=ccrs.PlateCarree(), cmap="Greys_r", shading="auto", add_colorbar=False, ) ax.coastlines("10m", color="r") ###Output _____no_output_____ ###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in Xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset('air_temperature') ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot(transform=ccrs.PlateCarree(), # the data's projection col='time', col_wrap=1, # multiplot settings aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize subplot_kws={'projection': map_proj}) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={'label': 'K'}) ax1.set_title('Kelvins: default') ax2.set_xlabel('') # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={'label': '°C'}) ax2.set_title('Celsius: default') ax2.set_xlabel('') ax2.set_ylabel('') # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'}) ax3.set_title('Kelvins: center=273.15') # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'}) ax4.set_title('Celsius: center=False') ax4.set_ylabel('') # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels}) air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels, 'spacing': 'proportional'}) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat') ax1.set_ylabel('°C') # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False) ax2.set_ylabel('') # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code url = 'https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif' da = xr.open_rasterio(url) # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM('18N') # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb='band', transform=crs) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from rasterio.warp import transform import numpy as np url = 'https://github.com/mapbox/rasterio/raw/master/tests/data/RGB.byte.tif' da = xr.open_rasterio(url) # Compute the lon/lat coordinates with rasterio.warp.transform ny, nx = len(da['y']), len(da['x']) x, y = np.meshgrid(da['x'], da['y']) # Rasterio works with 1D arrays lon, lat = transform(da.crs, {'init': 'EPSG:4326'}, x.flatten(), y.flatten()) lon = np.asarray(lon).reshape((ny, nx)) lat = np.asarray(lat).reshape((ny, nx)) da.coords['lon'] = (('y', 'x'), lon) da.coords['lat'] = (('y', 'x'), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim='band') # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(), cmap='Greys_r', add_colorbar=False) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Visualization GalleryThis notebook shows common visualization issues encountered in xarray. ###Code import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr %matplotlib inline ###Output _____no_output_____ ###Markdown Load example dataset: ###Code ds = xr.tutorial.load_dataset('air_temperature') ###Output _____no_output_____ ###Markdown Multiple plots and map projectionsControl the map projection parameters on multiple axesThis example illustrates how to plot multiple maps and control their extentand aspect ratio.For more details see [this discussion](https://github.com/pydata/xarray/issues/1397issuecomment-299190567) on github. ###Code air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot(transform=ccrs.PlateCarree(), # the data's projection col='time', col_wrap=1, # multiplot settings aspect=ds.dims['lon'] / ds.dims['lat'], # for a sensible figsize subplot_kws={'projection': map_proj}) # the plot's projection # We have to set the map's options on all axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) ###Output _____no_output_____ ###Markdown Centered colormapsXarray's automatic colormaps choice ###Code air = ds.air.isel(time=0) f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6)) # The first plot (in kelvins) chooses "viridis" and uses the data's min/max air.plot(ax=ax1, cbar_kwargs={'label': 'K'}) ax1.set_title('Kelvins: default') ax2.set_xlabel('') # The second plot (in celsius) now chooses "BuRd" and centers min/max around 0 airc = air - 273.15 airc.plot(ax=ax2, cbar_kwargs={'label': '°C'}) ax2.set_title('Celsius: default') ax2.set_xlabel('') ax2.set_ylabel('') # The center doesn't have to be 0 air.plot(ax=ax3, center=273.15, cbar_kwargs={'label': 'K'}) ax3.set_title('Kelvins: center=273.15') # Or it can be ignored airc.plot(ax=ax4, center=False, cbar_kwargs={'label': '°C'}) ax4.set_title('Celsius: center=False') ax4.set_ylabel('') # Make it nice plt.tight_layout() ###Output _____no_output_____ ###Markdown Control the plot's colorbarUse ``cbar_kwargs`` keyword to specify the number of ticks.The ``spacing`` kwarg can be used to draw proportional ticks. ###Code air2d = ds.air.isel(time=500) # Prepare the figure f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14, 4)) # Irregular levels to illustrate the use of a proportional colorbar levels = [245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 310, 340] # Plot data air2d.plot(ax=ax1, levels=levels) air2d.plot(ax=ax2, levels=levels, cbar_kwargs={'ticks': levels}) air2d.plot(ax=ax3, levels=levels, cbar_kwargs={'ticks': levels, 'spacing': 'proportional'}) # Show plots plt.tight_layout() ###Output _____no_output_____ ###Markdown Multiple lines from a 2d DataArrayUse ``xarray.plot.line`` on a 2d DataArray to plot selections asmultiple lines.See ``plotting.multiplelines`` for more details. ###Code air = ds.air - 273.15 # to celsius # Prepare the figure f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) # Selected latitude indices isel_lats = [10, 15, 20] # Temperature vs longitude plot - illustrates the "hue" kwarg air.isel(time=0, lat=isel_lats).plot.line(ax=ax1, hue='lat') ax1.set_ylabel('°C') # Temperature vs time plot - illustrates the "x" and "add_legend" kwargs air.isel(lon=30, lat=isel_lats).plot.line(ax=ax2, x='time', add_legend=False) ax2.set_ylabel('') # Show plt.tight_layout() ###Output _____no_output_____ ###Markdown `imshow()` and rasterio map projectionsUsing rasterio's projection information for more accurate plots.This example extends `recipes.rasterio` and plots the image in theoriginal map projection instead of relying on pcolormesh and a maptransformation. ###Code da = xr.tutorial.open_rasterio("RGB.byte") # The data is in UTM projection. We have to set it manually until # https://github.com/SciTools/cartopy/issues/813 is implemented crs = ccrs.UTM('18N') # Plot on a map ax = plt.subplot(projection=crs) da.plot.imshow(ax=ax, rgb='band', transform=crs) ax.coastlines('10m', color='r') ###Output _____no_output_____ ###Markdown Parsing rasterio geocoordinatesConverting a projection's cartesian coordinates into 2D longitudes andlatitudes.These new coordinates might be handy for plotting and indexing, but it shouldbe kept in mind that a grid which is regular in projection coordinates willlikely be irregular in lon/lat. It is often recommended to work in the data'soriginal map projection (see `recipes.rasterio_rgb`). ###Code from rasterio.warp import transform import numpy as np da = xr.tutorial.open_rasterio("RGB.byte") # Compute the lon/lat coordinates with rasterio.warp.transform ny, nx = len(da['y']), len(da['x']) x, y = np.meshgrid(da['x'], da['y']) # Rasterio works with 1D arrays lon, lat = transform(da.crs, {'init': 'EPSG:4326'}, x.flatten(), y.flatten()) lon = np.asarray(lon).reshape((ny, nx)) lat = np.asarray(lat).reshape((ny, nx)) da.coords['lon'] = (('y', 'x'), lon) da.coords['lat'] = (('y', 'x'), lat) # Compute a greyscale out of the rgb image greyscale = da.mean(dim='band') # Plot on a map ax = plt.subplot(projection=ccrs.PlateCarree()) greyscale.plot(ax=ax, x='lon', y='lat', transform=ccrs.PlateCarree(), cmap='Greys_r', add_colorbar=False) ax.coastlines('10m', color='r') ###Output _____no_output_____
Assignments/hw3/HW3_Generalized_Linear_Model_finished/.ipynb_checkpoints/plot_iris_logistic-checkpoint.ipynb
###Markdown Logistic Regression 3-class ClassifierShow below is a logistic-regression classifiers decision boundaries on the`iris `_ dataset. Thedatapoints are colored according to their labels. ###Code print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets import pandas as pd mydata = pd.read_csv("iris.csv") dt = mydata.values X = dt[:, 2] X = X.astype('int') Y = dt[:, 3] Y = Y.astype('int') # import some data to play with #iris = datasets.load_iris() #X = iris.data[:, :2] # we only take the first two features. #Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit([[X, Y]]) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show() ###Output Automatically created module for IPython interactive environment
notebooks/hillslope_diffusion_class_notebook.ipynb
###Markdown Linear diffusion exercise with LandlabThis notebook is adapted from *Landscape Evolution Modeling with CHILD* by Gregory Tucker and Stephen Lancaster. This notebook was created by Nicole Gasparini at Tulane University. For tutorials on learning Landlab, click here: https://github.com/landlab/landlab/wiki/Tutorials **What is this notebook?**This notebook illustrates the evolution of landforms dominated by processes that result in linear diffusion of sediment. In other words, the downhill flow of soil is proportional to the (downhill) gradient of the land surface multiplied by a transport coefficient.The notebook first illustrates a simple example of a diffusing hillslope. We then provide a number of exercises for students to do on their own. This set of exercises is recomended for students in a quantitative geomorphology class, who have been introduced to the linear diffusion equation in class. **Application of linear diffusion transport law:**For relatively gentle, soil-mantled slopes, there is reasonably strong support for a transport law of the form:\begin{equation}q_s = -D \nabla z\end{equation}where ${q}_s$ is the transport rate with dimensions of L$^2$T$^{-1}$; $D$ is a transport coefficient with dimensions of L$^2$T$^{-1}$; and $z$ is elevation. $\nabla z$ is the gradient in elevation. If distance is increasing downslope, $\nabla z$ is negative downslope, hence the negative in front of $D$. Changes in elevation, or erosion, are calculated from conservation of mass:\begin{equation}\frac{dz}{dt} = U-\nabla q_s\end{equation}where $U$ is the rock uplift rate, with dimensions LT$^{-1}$.**How will we explore this with Landlab?**We will use the Landlab component *LinearDiffuser*, which implements the equations above, to explore how hillslopes evolve when linear diffusion describes hillslope sediment transport. We will explore both steady state, here defined as erosion rate equal to rock uplift rate, and also how a landscape gets to steady state.The first example illustrates how to set-up the model and evolve a hillslope to steady state, along with how to plot some variables of interest. We assume that you have knowledge of how to derive the steady-state form of a uniformly uplifting, steady-state, diffusive hillslope. For more information on hillslope sediment transport laws, this paper is a great overview:Roering, Joshua J. (2008) "How well can hillslope evolution models “explain” topography? Simulating soil transport and production with high-resolution topographic data." Geological Society of America Bulletin.Based on the first example, you are asked to first think about what will happen as you change a parameter, and then you explore this numerically by changing the code.Start at the top by reading each block of text and sequentially running each code block (shift - enter OR got to the _Cell_ pulldown menu at the top and choose _Run Cells_). Remember that you can always go to the _Kernel_ pulldown menu at the top and choose _Restart & Clear Output_ or _Restart & Run All_ if you change things and want to start afresh. If you just change one code block and rerun only that code block, only the parts of the code in that code block will be updated. (E.g. if you change parameters but don't reset the code blocks that initialize run time or topography, then these values will not be reset.) **Now on to the code example**Import statements. You should not need to edit this. ###Code # Code Block 1 from landlab import RasterModelGrid from landlab.components import FlowAccumulator, LinearDiffuser from landlab.plot.imshow import imshow_grid from matplotlib.pyplot import ( figure, show, plot, xlabel, ylabel, title, legend, ylim ) import numpy as np ###Output _____no_output_____ ###Markdown We will create a grid with 41 rows and 5 columns, and dx is 5 m (a long, narrow, hillslope). The initial elevation is 0 at all nodes.We set-up boundary conditions so that material can leave the hillslope at the two short ends. ###Code # Code Block 2 # setup grid mg = RasterModelGrid((41, 5), 5.) z_vals = mg.add_zeros('topographic__elevation', at='node') # initialize some values for plotting ycoord_rast = mg.node_vector_to_raster(mg.node_y) ys_grid = ycoord_rast[:, 2] # set boundary condition. mg.set_closed_boundaries_at_grid_edges(True, False, True, False) ###Output _____no_output_____ ###Markdown Now we initialize the *LinearDiffuser* component. ###Code # Code Block 3 D = 0.01 # initial value of 0.01 m^2/yr lin_diffuse = LinearDiffuser(mg, linear_diffusivity=D) ###Output _____no_output_____ ###Markdown We now initialize a few more parameters. ###Code # Code Block 4 # Uniform rate of rock uplift uplift_rate = 0.0001 # meters/year, originally set to 0.0001 # Total time in years that the model will run for. runtime = 1000000 # years, originally set to 1,000,000 # Stability criteria for timestep dt. Coefficient can be changed # depending on our tolerance for stability vs tolerance for run time. dt = 0.5 * mg.dx * mg.dx / D # nt is number of time steps nt = int(runtime // dt) # Below is to keep track of time for labeling plots time_counter = 0 # length of uplift over a single time step, meters uplift_per_step = uplift_rate * dt ###Output _____no_output_____ ###Markdown Now we figure out the analytical solution for the elevation of the steady-state profile. ###Code # Code Block 5 ys = np.arange(mg.number_of_node_rows*mg.dx-mg.dx) # location of divide or ridge crest -> middle of grid # based on boundary conds. divide_loc = (mg.number_of_node_rows*mg.dx-mg.dx)/2 # half-width of the ridge half_width = (mg.number_of_node_rows*mg.dx-mg.dx)/2 # analytical solution for elevation under linear diffusion at steady state zs = (uplift_rate/(2*D)) * \ (np.power(half_width, 2) - np.power(ys - divide_loc, 2)) ###Output _____no_output_____ ###Markdown Before we evolve the landscape, let's look at the initial topography. (This is just verifying that it is flat with zero elevation.) ###Code # Code Block 6 figure(1) imshow_grid(mg, 'topographic__elevation') title('initial topography') figure(2) elev_rast = mg.node_vector_to_raster( mg.at_node['topographic__elevation']) plot(ys_grid, elev_rast[:, 2], 'r-', label='model') plot(ys, zs, 'k--', label='analytical solution') ylim((-5,50)) #may want to change upper limit if D changes xlabel('horizontal distance (m)') ylabel('vertical distance (m)') legend(loc='lower center') _ = title('initial topographic cross section') ###Output _____no_output_____ ###Markdown Now we are ready to evolve the landscape and compare it to the steady state solution.Below is the time loop that does all the calculations. ###Code # Code Block 7 for i in range(nt): mg['node']['topographic__elevation'][mg.core_nodes] += uplift_per_step lin_diffuse.run_one_step(dt) time_counter += dt # All landscape evolution is the first two lines of loop. # Below is simply for plotting the topography halfway through the run if i == int(nt // 2): figure(1) imshow_grid(mg, 'topographic__elevation') title('topography at time %s, with D = %s'%(time_counter,D)) figure(2) elev_rast = mg.node_vector_to_raster( mg.at_node['topographic__elevation'] ) plot(ys_grid, elev_rast[:, 2], 'k-', label='model') plot(ys, zs, 'g--', label='analytical solution - SS') plot(ys, zs*0.75, 'b--', label='75% of analytical solution') plot(ys, zs*0.5, 'r--', label='50% of analytical solution') xlabel('horizontal distance (m)') ylabel('vertical distance (m)') legend(loc='lower center') title( 'topographic__elevation at time %s, with D = %s' %(time_counter,D) ) ###Output _____no_output_____ ###Markdown Now we plot the final cross-section. ###Code # Code Block 8 elev_rast = mg.node_vector_to_raster(mg.at_node['topographic__elevation']) plot(ys_grid, elev_rast[:, 2], 'k-', label='model') plot(ys, zs, 'g--', label='analytical solution - SS') plot(ys, zs * 0.75, 'b--', label='75% of analytical solution') plot(ys, zs * 0.5, 'r--', label='50% of analytical solution') xlabel('horizontal distance (m)') ylabel('vertical distance (m)') legend(loc='lower center') _ = title('topographic cross section at time %s, with D = %s'%(time_counter,D)) ###Output _____no_output_____ ###Markdown Now we plot the steepest slope in the downward direction across the landscape.(To calculate the steepest slope at a location, we need to route flow across the landscape.) ###Code # Code Block 9 fr = FlowAccumulator(mg, flow_director='FlowDirectorD8') # intializing flow routing fr.run_one_step() plot( mg.node_y[mg.core_nodes], mg.at_node['topographic__steepest_slope'][mg.core_nodes], 'k-' ) xlabel('horizontal distance (m)') ylabel('topographic slope (m/m)') _ = title('slope of the hillslope at time %s, with D = %s'%(time_counter,D)) ###Output _____no_output_____