file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Nat/Basic.lean
Nat.mul_dvd_of_dvd_div
[ { "state_after": "no goals", "state_before": "m n k a b c : ℕ\nhab : c ∣ b\nh : a ∣ b / c\nh1 : ∃ d, b / c = a * d\nd : ℕ\nhd : b / c = a * d\nh3 : b = a * d * c\n⊢ b = c * a * d", "tactic": "rwa [mul_comm, ←mul_assoc] at h3" } ]
[ 774, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 769, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.subtype_injective
[]
[ 802, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.congr_const
[]
[ 323, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/GroupTheory/Submonoid/Membership.lean
SubmonoidClass.coe_finset_prod
[]
[ 66, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Algebra/CharP/Two.lean
CharTwo.bit0_apply_eq_zero
[ { "state_after": "no goals", "state_before": "R : Type u_1\nι : Type ?u.2610\ninst✝¹ : Semiring R\ninst✝ : CharP R 2\nx : R\n⊢ bit0 x = 0", "tactic": "simp" } ]
[ 46, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.toReal_min
[ { "state_after": "no goals", "state_before": "α : Type ?u.801740\nβ : Type ?u.801743\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nhr : a ≠ ⊤\nhp : b ≠ ⊤\nh : a ≤ b\n⊢ ENNReal.toReal (min a b) = min (ENNReal.toReal a) (ENNReal.toReal b)", "tactic": "simp only [h, (ENNReal.toReal_le_toReal hr hp).2 h, min_eq_left]" }, { "state_after": "no goals", "state_before": "α : Type ?u.801740\nβ : Type ?u.801743\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nhr : a ≠ ⊤\nhp : b ≠ ⊤\nh : b ≤ a\n⊢ ENNReal.toReal (min a b) = min (ENNReal.toReal a) (ENNReal.toReal b)", "tactic": "simp only [h, (ENNReal.toReal_le_toReal hp hr).2 h, min_eq_right]" } ]
[ 2056, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2053, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.mul_le_mul_iff_left
[]
[ 825, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 824, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.map_div_atTop_eq_nat
[ { "state_after": "no goals", "state_before": "ι : Type ?u.345892\nι' : Type ?u.345895\nα : Type ?u.345898\nβ : Type ?u.345901\nγ : Type ?u.345904\nk : ℕ\nhk : 0 < k\na b : ℕ\nx✝ : b ≥ 1\n⊢ a / k ≤ b ↔ a ≤ (fun b => b * k + (k - 1)) b", "tactic": "simp only [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul hk, Nat.succ_eq_add_one,\nadd_assoc, tsub_add_cancel_of_le (Nat.one_le_iff_ne_zero.2 hk.ne'), add_mul, one_mul]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.345892\nι' : Type ?u.345895\nα : Type ?u.345898\nβ : Type ?u.345901\nγ : Type ?u.345904\nk : ℕ\nhk : 0 < k\nb : ℕ\nx✝ : b ≥ 1\n⊢ b = b * k / k", "tactic": "rw [Nat.mul_div_cancel b hk]" } ]
[ 1671, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1663, 1 ]
Mathlib/Init/Data/Ordering/Lemmas.lean
cmpUsing_eq_lt
[ { "state_after": "no goals", "state_before": "α : Type u\nlt : α → α → Prop\ninst✝ : DecidableRel lt\na b : α\n⊢ (cmpUsing lt a b = Ordering.lt) = lt a b", "tactic": "simp" } ]
[ 51, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 51, 1 ]
Mathlib/Algebra/Tropical/Basic.lean
Tropical.untrop_monotone
[]
[ 221, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
LinearIndependent.set_finite_of_isNoetherian
[]
[ 314, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 312, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycleOn.extendDomain
[ { "state_after": "case intro.intro.intro.intro\nι : Type ?u.2071598\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\ns t : Set α\na✝ b✝ x y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\nh : IsCycleOn g s\na : α\nha : a ∈ s\nb : α\nhb : b ∈ s\n⊢ SameCycle (Perm.extendDomain g f) ((Subtype.val ∘ ↑f) a) ((Subtype.val ∘ ↑f) b)", "state_before": "ι : Type ?u.2071598\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\ns t : Set α\na b x y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\nh : IsCycleOn g s\n⊢ ∀ ⦃x : β⦄, x ∈ Subtype.val ∘ ↑f '' s → ∀ ⦃y : β⦄, y ∈ Subtype.val ∘ ↑f '' s → SameCycle (Perm.extendDomain g f) x y", "tactic": "rintro _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nι : Type ?u.2071598\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\ns t : Set α\na✝ b✝ x y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\nh : IsCycleOn g s\na : α\nha : a ∈ s\nb : α\nhb : b ∈ s\n⊢ SameCycle (Perm.extendDomain g f) ((Subtype.val ∘ ↑f) a) ((Subtype.val ∘ ↑f) b)", "tactic": "exact (h.2 ha hb).extendDomain" } ]
[ 941, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 937, 1 ]
Mathlib/CategoryTheory/Limits/Preserves/Shapes/Equalizers.lean
CategoryTheory.Limits.map_π_preserves_coequalizer_inv
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nG : C ⥤ D\nX Y Z : C\nf g : X ⟶ Y\nh : Y ⟶ Z\nw : f ≫ h = g ≫ h\ninst✝² : HasCoequalizer f g\ninst✝¹ : HasCoequalizer (G.map f) (G.map g)\ninst✝ : PreservesColimit (parallelPair f g) G\n⊢ G.map (coequalizer.π f g) ≫ (PreservesCoequalizer.iso G f g).inv = coequalizer.π (G.map f) (G.map g)", "tactic": "rw [← ι_comp_coequalizerComparison_assoc, ← PreservesCoequalizer.iso_hom, Iso.hom_inv_id,\n comp_id]" } ]
[ 209, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/Concept.lean
Concept.fst_injective
[]
[ 207, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Combinatorics/Derangements/Finite.lean
card_derangements_eq_numDerangements
[ { "state_after": "α✝ : Type ?u.21453\ninst✝³ : DecidableEq α✝\ninst✝² : Fintype α✝\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\n⊢ card ↑(derangements (Fin (card α))) = numDerangements (card α)", "state_before": "α✝ : Type ?u.21453\ninst✝³ : DecidableEq α✝\ninst✝² : Fintype α✝\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\n⊢ card ↑(derangements α) = numDerangements (card α)", "tactic": "rw [← card_derangements_invariant (card_fin _)]" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.21453\ninst✝³ : DecidableEq α✝\ninst✝² : Fintype α✝\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\n⊢ card ↑(derangements (Fin (card α))) = numDerangements (card α)", "tactic": "exact card_derangements_fin_eq_numDerangements" } ]
[ 116, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Std/Data/Rat/Lemmas.lean
Rat.normalize_mul_right
[ { "state_after": "d : Nat\nn : Int\na : Nat\nd0 : d ≠ 0\na0 : a ≠ 0\n⊢ normalize (n * ↑a) (d * a) = normalize (↑a * n) (a * d)", "state_before": "d : Nat\nn : Int\na : Nat\nd0 : d ≠ 0\na0 : a ≠ 0\n⊢ normalize (n * ↑a) (d * a) = normalize n d", "tactic": "rw [← normalize_mul_left (d0 := d0) a0]" }, { "state_after": "no goals", "state_before": "d : Nat\nn : Int\na : Nat\nd0 : d ≠ 0\na0 : a ≠ 0\n⊢ normalize (n * ↑a) (d * a) = normalize (↑a * n) (a * d)", "tactic": "congr 1 <;> [apply Int.mul_comm; apply Nat.mul_comm]" } ]
[ 44, 96 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 42, 1 ]
Mathlib/RingTheory/Localization/AtPrime.lean
Localization.localRingHom_id
[]
[ 257, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.union_left
[ { "state_after": "no goals", "state_before": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl t₁ t₂ : List α\nh : t₁ ~ t₂\n⊢ List.union l t₁ ~ List.union l t₂", "tactic": "induction l <;> simp [*, Perm.insert]" } ]
[ 999, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 998, 1 ]
Mathlib/Data/Int/GCD.lean
Nat.gcdB_zero_left
[ { "state_after": "s : ℕ\n⊢ (xgcd 0 s).snd = 1", "state_before": "s : ℕ\n⊢ gcdB 0 s = 1", "tactic": "unfold gcdB" }, { "state_after": "no goals", "state_before": "s : ℕ\n⊢ (xgcd 0 s).snd = 1", "tactic": "rw [xgcd, xgcd_zero_left]" } ]
[ 92, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_pos_of_pos_of_nonneg
[]
[ 826, 52 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 825, 11 ]
Mathlib/Order/Heyting/Basic.lean
sup_compl_le_himp
[]
[ 807, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 806, 1 ]
Mathlib/Algebra/Order/Pointwise.lean
sSup_inv
[ { "state_after": "α : Type u_1\ninst✝³ : CompleteLattice α\ninst✝² : Group α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ns✝ t s : Set α\n⊢ (⨆ (a : α) (_ : a ∈ s), a⁻¹) = (sInf s)⁻¹", "state_before": "α : Type u_1\ninst✝³ : CompleteLattice α\ninst✝² : Group α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ns✝ t s : Set α\n⊢ sSup s⁻¹ = (sInf s)⁻¹", "tactic": "rw [← image_inv, sSup_image]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : CompleteLattice α\ninst✝² : Group α\ninst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ns✝ t s : Set α\n⊢ (⨆ (a : α) (_ : a ∈ s), a⁻¹) = (sInf s)⁻¹", "tactic": "exact ((OrderIso.inv α).map_sInf _).symm" } ]
[ 66, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.WellFoundedOn.union
[ { "state_after": "ι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\n⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ∪ t", "state_before": "ι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : WellFoundedOn s r\nht : WellFoundedOn t r\n⊢ WellFoundedOn (s ∪ t) r", "tactic": "rw [wellFoundedOn_iff_no_descending_seq] at *" }, { "state_after": "ι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\n⊢ False", "state_before": "ι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\n⊢ ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s ∪ t", "tactic": "rintro f hf" }, { "state_after": "case intro.inl\nι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\ng : ℕ ↪o ℕ\nhg : ∀ (n : ℕ), ↑f (↑g n) ∈ s\n⊢ False\n\ncase intro.inr\nι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\ng : ℕ ↪o ℕ\nhg : ∀ (n : ℕ), ↑f (↑g n) ∈ t\n⊢ False", "state_before": "ι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\n⊢ False", "tactic": "rcases Nat.exists_subseq_of_forall_mem_union f hf with ⟨g, hg | hg⟩" }, { "state_after": "no goals", "state_before": "case intro.inl\nι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\ng : ℕ ↪o ℕ\nhg : ∀ (n : ℕ), ↑f (↑g n) ∈ s\n⊢ False\n\ncase intro.inr\nι : Type ?u.29184\nα : Type u_1\nβ : Type ?u.29190\nr r' : α → α → Prop\ninst✝ : IsStrictOrder α r\ns t : Set α\nhs : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ s\nht : ∀ (f : (fun x x_1 => x > x_1) ↪r r), ¬∀ (n : ℕ), ↑f n ∈ t\nf : (fun x x_1 => x > x_1) ↪r r\nhf : ∀ (n : ℕ), ↑f n ∈ s ∪ t\ng : ℕ ↪o ℕ\nhg : ∀ (n : ℕ), ↑f (↑g n) ∈ t\n⊢ False", "tactic": "exacts [hs (g.dual.ltEmbedding.trans f) hg, ht (g.dual.ltEmbedding.trans f) hg]" } ]
[ 166, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Analysis/NormedSpace/LpEquiv.lean
coe_addEquiv_lpBcf
[]
[ 158, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/RingTheory/OreLocalization/Basic.lean
OreLocalization.neg_def
[]
[ 848, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 847, 11 ]
Mathlib/SetTheory/Cardinal/Continuum.lean
Cardinal.beth_one
[ { "state_after": "no goals", "state_before": "⊢ beth 1 = 𝔠", "tactic": "simpa using beth_succ 0" } ]
[ 87, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Data/List/Nodup.lean
List.get_indexOf
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na b : α\ninst✝ : DecidableEq α\nl : List α\nH : Nodup l\ni : Fin (length l)\n⊢ get l { val := indexOf (get l i) l, isLt := (_ : indexOf (get l i) l < length l) } = get l i", "tactic": "simp" } ]
[ 172, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.bind
[]
[ 822, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 820, 1 ]
Mathlib/Algebra/Order/Kleene.lean
mul_kstar_le_kstar
[]
[ 207, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/LogDeriv.lean
HasFDerivWithinAt.clog
[]
[ 121, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Topology/Algebra/Module/WeakDual.lean
WeakDual.coeFn_continuous
[]
[ 280, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 279, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.dim_ne_zero
[]
[ 123, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.indicator_mul
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\n⊢ indicator s (fun a => f a * g a) x✝ = indicator s f x✝ * indicator s g x✝", "state_before": "α : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\n⊢ (indicator s fun a => f a * g a) = fun a => indicator s f a * indicator s g a", "tactic": "funext" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\n⊢ (if x✝ ∈ s then f x✝ * g x✝ else 0) = (if x✝ ∈ s then f x✝ else 0) * if x✝ ∈ s then g x✝ else 0", "state_before": "case h\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\n⊢ indicator s (fun a => f a * g a) x✝ = indicator s f x✝ * indicator s g x✝", "tactic": "simp only [indicator]" }, { "state_after": "case h.inl\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\nh✝ : x✝ ∈ s\n⊢ f x✝ * g x✝ = f x✝ * g x✝\n\ncase h.inr\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\nh✝ : ¬x✝ ∈ s\n⊢ 0 = 0 * 0", "state_before": "case h\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\n⊢ (if x✝ ∈ s then f x✝ * g x✝ else 0) = (if x✝ ∈ s then f x✝ else 0) * if x✝ ∈ s then g x✝ else 0", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "case h.inr\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\nh✝ : ¬x✝ ∈ s\n⊢ 0 = 0 * 0", "tactic": "rw [mul_zero]" }, { "state_after": "no goals", "state_before": "case h.inl\nα : Type u_1\nβ : Type ?u.118109\nι : Type ?u.118112\nM : Type u_2\nN : Type ?u.118118\ninst✝ : MulZeroClass M\ns✝ t : Set α\nf✝ g✝ : α → M\na : α\ns : Set α\nf g : α → M\nx✝ : α\nh✝ : x✝ ∈ s\n⊢ f x✝ * g x✝ = f x✝ * g x✝", "tactic": "rfl" } ]
[ 684, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 678, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.const_sub
[]
[ 342, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 341, 1 ]
Mathlib/Topology/MetricSpace/Lipschitz.lean
LipschitzWith.mapsTo_emetric_ball
[]
[ 152, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
ConvexCone.mem_zero
[]
[ 452, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/CategoryTheory/Abelian/Opposite.lean
CategoryTheory.factorThruImage_comp_imageUnopOp_inv
[ { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y : C\nf : X ⟶ Y\nA B : Cᵒᵖ\ng : A ⟶ B\n⊢ factorThruImage g ≫ (imageUnopOp g).inv = (image.ι g.unop).op", "tactic": "rw [Iso.comp_inv_eq, image_ι_op_comp_imageUnopOp_hom]" } ]
[ 190, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/AlgebraicGeometry/StructureSheaf.lean
AlgebraicGeometry.StructureSheaf.const_self
[]
[ 362, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean
Matrix.SpecialLinearGroup.coe_inv
[]
[ 141, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/Init/Data/Subtype/Basic.lean
Subtype.exists_of_subtype
[]
[ 25, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 24, 1 ]
Mathlib/Order/Max.lean
IsBot.fst
[]
[ 419, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.ext
[]
[ 111, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Topology/Maps.lean
Inducing.closure_eq_preimage_closure_image
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.5388\nδ : Type ?u.5391\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\nhf : Inducing f\ns : Set α\nx : α\n⊢ x ∈ closure s ↔ x ∈ f ⁻¹' closure (f '' s)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.5388\nδ : Type ?u.5391\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\nhf : Inducing f\ns : Set α\n⊢ closure s = f ⁻¹' closure (f '' s)", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.5388\nδ : Type ?u.5391\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\nhf : Inducing f\ns : Set α\nx : α\n⊢ x ∈ closure s ↔ x ∈ f ⁻¹' closure (f '' s)", "tactic": "rw [Set.mem_preimage, ← closure_induced, hf.induced]" } ]
[ 158, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Topology/Instances/AddCircle.lean
AddCircle.liftIoc_coe_apply
[ { "state_after": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\nthis : ↑(equivIoc p a) ↑x = { val := x, property := hx }\n⊢ liftIoc p a f ↑x = f x", "state_before": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\n⊢ liftIoc p a f ↑x = f x", "tactic": "have : (equivIoc p a) x = ⟨x, hx⟩ := by\n rw [Equiv.apply_eq_iff_eq_symm_apply]\n rfl" }, { "state_after": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\nthis : ↑(equivIoc p a) ↑x = { val := x, property := hx }\n⊢ restrict (Ioc a (a + p)) f { val := x, property := hx } = f x", "state_before": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\nthis : ↑(equivIoc p a) ↑x = { val := x, property := hx }\n⊢ liftIoc p a f ↑x = f x", "tactic": "rw [liftIoc, comp_apply, this]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\nthis : ↑(equivIoc p a) ↑x = { val := x, property := hx }\n⊢ restrict (Ioc a (a + p)) f { val := x, property := hx } = f x", "tactic": "rfl" }, { "state_after": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\n⊢ ↑x = ↑(equivIoc p a).symm { val := x, property := hx }", "state_before": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\n⊢ ↑(equivIoc p a) ↑x = { val := x, property := hx }", "tactic": "rw [Equiv.apply_eq_iff_eq_symm_apply]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nB : Type u_2\ninst✝³ : LinearOrderedAddCommGroup 𝕜\ninst✝² : TopologicalSpace 𝕜\ninst✝¹ : OrderTopology 𝕜\np : 𝕜\nhp : Fact (0 < p)\na : 𝕜\ninst✝ : Archimedean 𝕜\nf : 𝕜 → B\nx : 𝕜\nhx : x ∈ Ioc a (a + p)\n⊢ ↑x = ↑(equivIoc p a).symm { val := x, property := hx }", "tactic": "rfl" } ]
[ 262, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Order/CompleteLattice.lean
disjoint_sSup_right
[]
[ 1955, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1953, 1 ]
Mathlib/GroupTheory/Perm/Fin.lean
Fin.cycleRange_zero
[ { "state_after": "case H.h\nn : ℕ\nj : Fin (Nat.succ n)\n⊢ ↑(↑(cycleRange 0) j) = ↑(↑1 j)", "state_before": "n : ℕ\n⊢ cycleRange 0 = 1", "tactic": "ext j" }, { "state_after": "case H.h.refine'_1\nn : ℕ\nj : Fin (Nat.succ n)\n⊢ ↑(↑(cycleRange 0) 0) = ↑(↑1 0)\n\ncase H.h.refine'_2\nn : ℕ\nj✝ : Fin (Nat.succ n)\nj : Fin n\n⊢ ↑(↑(cycleRange 0) (succ j)) = ↑(↑1 (succ j))", "state_before": "case H.h\nn : ℕ\nj : Fin (Nat.succ n)\n⊢ ↑(↑(cycleRange 0) j) = ↑(↑1 j)", "tactic": "refine' Fin.cases _ (fun j => _) j" }, { "state_after": "no goals", "state_before": "case H.h.refine'_1\nn : ℕ\nj : Fin (Nat.succ n)\n⊢ ↑(↑(cycleRange 0) 0) = ↑(↑1 0)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case H.h.refine'_2\nn : ℕ\nj✝ : Fin (Nat.succ n)\nj : Fin n\n⊢ ↑(↑(cycleRange 0) (succ j)) = ↑(↑1 (succ j))", "tactic": "rw [cycleRange_of_gt (Fin.succ_pos j), one_apply]" } ]
[ 232, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/Data/SetLike/Basic.lean
SetLike.mem_coe
[]
[ 164, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Order/Max.lean
IsMin.eq_of_ge
[]
[ 390, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 389, 11 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.toSubsemiring_injective
[]
[ 256, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.floor_le_ceil
[]
[ 1224, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1223, 1 ]
Mathlib/LinearAlgebra/Multilinear/TensorProduct.lean
MultilinearMap.domCoprod_domDomCongr_sumCongr
[]
[ 96, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
OrderIso.map_csSup
[]
[ 1326, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1324, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.set_biUnion_insert_update
[]
[ 2069, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2067, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.sin_sq
[ { "state_after": "no goals", "state_before": "x y : ℂ\n⊢ sin x ^ 2 = 1 - cos x ^ 2", "tactic": "rw [← sin_sq_add_cos_sq x, add_sub_cancel]" } ]
[ 1048, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1048, 1 ]
Mathlib/Analysis/SpecialFunctions/Exp.lean
Real.isBigO_exp_comp_one
[ { "state_after": "no goals", "state_before": "α : Type u_1\nx y z : ℝ\nl : Filter α\nf : α → ℝ\n⊢ ((fun x => exp (f x)) =O[l] fun x => 1) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "simp only [isBigO_one_iff, norm_eq_abs, abs_exp, isBoundedUnder_le_exp_comp]" } ]
[ 409, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 407, 1 ]
Mathlib/CategoryTheory/Groupoid/VertexGroup.lean
CategoryTheory.Groupoid.vertexGroup.inv_eq_inv
[]
[ 59, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.subtypeRestr_symm_trans_subtypeRestr
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (LocalHomeomorph.trans (Opens.localHomeomorphSubtypeCoe s) f') ≈\n LocalHomeomorph.restr (LocalHomeomorph.trans (LocalHomeomorph.symm f) f')\n (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\n⊢ LocalHomeomorph.trans (LocalHomeomorph.symm (subtypeRestr f s)) (subtypeRestr f' s) ≈\n LocalHomeomorph.restr (LocalHomeomorph.trans (LocalHomeomorph.symm f) f')\n (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)", "tactic": "simp only [subtypeRestr_def, trans_symm_eq_symm_trans_symm]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (LocalHomeomorph.trans (Opens.localHomeomorphSubtypeCoe s) f') ≈\n LocalHomeomorph.restr (LocalHomeomorph.trans (LocalHomeomorph.symm f) f')\n (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (LocalHomeomorph.trans (Opens.localHomeomorphSubtypeCoe s) f') ≈\n LocalHomeomorph.restr (LocalHomeomorph.trans (LocalHomeomorph.symm f) f')\n (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)", "tactic": "have openness₁ : IsOpen (f.target ∩ f.symm ⁻¹' s) := f.preimage_open_of_open_symm s.2" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s))\n f' ≈\n LocalHomeomorph.trans\n (LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f))\n f'", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (LocalHomeomorph.trans (Opens.localHomeomorphSubtypeCoe s) f') ≈\n LocalHomeomorph.restr (LocalHomeomorph.trans (LocalHomeomorph.symm f) f')\n (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)", "tactic": "rw [← ofSet_trans _ openness₁, ← trans_assoc, ← trans_assoc]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s))\n f' ≈\n LocalHomeomorph.trans\n (LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f))\n f'", "tactic": "refine' EqOnSource.trans' _ (eqOnSource_refl _)" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "tactic": "have sets_identity : f.symm.source ∩ (f.target ∩ f.symm ⁻¹' s) = f.symm.source ∩ f.symm ⁻¹' s :=\n by mfld_set_tac" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "tactic": "have openness₂ : IsOpen (s : Set α) := s.2" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans (LocalHomeomorph.symm f)\n (LocalHomeomorph.trans (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s))\n (Opens.localHomeomorphSubtypeCoe s)) ≈\n LocalHomeomorph.trans (LocalHomeomorph.symm f) (ofSet (↑s) openness₂)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans\n (LocalHomeomorph.trans (LocalHomeomorph.symm f) (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)))\n (Opens.localHomeomorphSubtypeCoe s) ≈\n LocalHomeomorph.trans (ofSet (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) openness₁) (LocalHomeomorph.symm f)", "tactic": "rw [ofSet_trans', sets_identity, ← trans_of_set' _ openness₂, trans_assoc]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)) (Opens.localHomeomorphSubtypeCoe s) ≈\n ofSet (↑s) openness₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans (LocalHomeomorph.symm f)\n (LocalHomeomorph.trans (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s))\n (Opens.localHomeomorphSubtypeCoe s)) ≈\n LocalHomeomorph.trans (LocalHomeomorph.symm f) (ofSet (↑s) openness₂)", "tactic": "refine' EqOnSource.trans' (eqOnSource_refl _) _" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ ofSet (Opens.localHomeomorphSubtypeCoe s).toLocalEquiv.target\n (_ : IsOpen (Opens.localHomeomorphSubtypeCoe s).toLocalEquiv.target) ≈\n ofSet (↑s) openness₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ LocalHomeomorph.trans (LocalHomeomorph.symm (Opens.localHomeomorphSubtypeCoe s)) (Opens.localHomeomorphSubtypeCoe s) ≈\n ofSet (↑s) openness₂", "tactic": "refine' Setoid.trans (trans_symm_self s.localHomeomorphSubtypeCoe) _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\nsets_identity :\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s\nopenness₂ : IsOpen ↑s\n⊢ ofSet (Opens.localHomeomorphSubtypeCoe s).toLocalEquiv.target\n (_ : IsOpen (Opens.localHomeomorphSubtypeCoe s).toLocalEquiv.target) ≈\n ofSet (↑s) openness₂", "tactic": "simp only [mfld_simps, Setoid.refl]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.116202\nδ : Type ?u.116205\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ne : LocalHomeomorph α β\ns : Opens α\ninst✝ : Nonempty { x // x ∈ s }\nf f' : LocalHomeomorph α β\nopenness₁ : IsOpen (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s)\n⊢ (LocalHomeomorph.symm f).toLocalEquiv.source ∩ (f.target ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s) =\n (LocalHomeomorph.symm f).toLocalEquiv.source ∩ ↑(LocalHomeomorph.symm f) ⁻¹' ↑s", "tactic": "mfld_set_tac" } ]
[ 1399, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1384, 1 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.fg_finset_sup
[]
[ 190, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Order/Filter/Lift.lean
Filter.tendsto_lift'
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Sort ?u.28305\nf f₁ f₂ : Filter α\nh h₁ h₂ : Set α → Set β\nm : γ → β\nl : Filter γ\n⊢ Tendsto m l (Filter.lift' f h) ↔ ∀ (s : Set α), s ∈ f → ∀ᶠ (a : γ) in l, m a ∈ h s", "tactic": "simp only [Filter.lift', tendsto_lift, tendsto_principal, comp]" } ]
[ 255, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.le_congr
[]
[ 802, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.rootSet_C_mul_X_pow
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn✝ : ℕ\ninst✝³ : Field R\np q : R[X]\ninst✝² : CommRing S\ninst✝¹ : IsDomain S\ninst✝ : Algebra R S\nn : ℕ\nhn : n ≠ 0\na : R\nha : a ≠ 0\n⊢ rootSet (↑C a * X ^ n) S = {0}", "tactic": "rw [C_mul_X_pow_eq_monomial, rootSet_monomial hn ha]" } ]
[ 376, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Order/Filter/Ultrafilter.lean
Ultrafilter.comap_pure
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.20593\nf g : Ultrafilter α\ns t : Set α\np q : α → Prop\nm : α → β\na : α\ninj : Injective m\nlarge : range m ∈ pure (m a)\n⊢ 𝓟 (m ⁻¹' {m a}) = ↑(pure a)", "tactic": "rw [coe_pure, ← principal_singleton, ← image_singleton, preimage_image_eq _ inj]" } ]
[ 306, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.Memℒp.ae_eq
[]
[ 532, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/Computability/Ackermann.lean
max_ack_right
[]
[ 174, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.pow_multiset_sum_mem_span_pow
[ { "state_after": "case empty\nα : Type u\nβ : Type v\na b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\n⊢ Multiset.sum 0 ^ (↑Multiset.card 0 * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) 0))\n\ncase cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ Multiset.sum (a ::ₘ s) ^ (↑Multiset.card (a ::ₘ s) * n + 1) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) (a ::ₘ s)))", "state_before": "α : Type u\nβ : Type v\na b : α\ninst✝ : CommSemiring α\nI : Ideal α\ns : Multiset α\nn : ℕ\n⊢ Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "induction' s using Multiset.induction_on with a s hs" }, { "state_after": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ ∑ m in Finset.range ((↑Multiset.card s + 1) * n + 1 + 1),\n a ^ m * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - m) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) m) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "state_before": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ Multiset.sum (a ::ₘ s) ^ (↑Multiset.card (a ::ₘ s) * n + 1) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) (a ::ₘ s)))", "tactic": "simp only [Finset.coe_insert, Multiset.map_cons, Multiset.toFinset_cons, Multiset.sum_cons,\n Multiset.card_cons, add_pow]" }, { "state_after": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ ∀ (c : ℕ),\n c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1) →\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "state_before": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ ∑ m in Finset.range ((↑Multiset.card s + 1) * n + 1 + 1),\n a ^ m * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - m) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) m) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "tactic": "refine' Submodule.sum_mem _ _" }, { "state_after": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "state_before": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\n⊢ ∀ (c : ℕ),\n c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1) →\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "tactic": "intro c _hc" }, { "state_after": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z", "state_before": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span (insert (a ^ (n + 1)) ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)))", "tactic": "rw [mem_span_insert]" }, { "state_after": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z\n\ncase neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z", "state_before": "case cons\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z", "tactic": "by_cases h : n + 1 ≤ c" }, { "state_after": "no goals", "state_before": "case empty\nα : Type u\nβ : Type v\na b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\n⊢ Multiset.sum 0 ^ (↑Multiset.card 0 * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) 0))", "tactic": "simp" }, { "state_after": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) *\n a ^ (n + 1) +\n 0", "state_before": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z", "tactic": "refine' ⟨a ^ (c - (n + 1)) * s.sum ^ ((Multiset.card s + 1) * n + 1 - c) *\n ((Multiset.card s + 1) * n + 1).choose c, 0, Submodule.zero_mem _, _⟩" }, { "state_after": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (n + 1) *\n (a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c)) +\n 0", "state_before": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) *\n a ^ (n + 1) +\n 0", "tactic": "rw [mul_comm _ (a ^ (n + 1))]" }, { "state_after": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (n + 1) * a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) +\n 0", "state_before": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (n + 1) *\n (a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c)) +\n 0", "tactic": "simp_rw [← mul_assoc]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a ^ (n + 1) * a ^ (c - (n + 1)) * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) +\n 0", "tactic": "rw [← pow_add, add_zero, add_tsub_cancel_of_le h]" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n 0 * a ^ (n + 1) + z", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ a_1 z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n a_1 * a ^ (n + 1) + z", "tactic": "use 0" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n z", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n 0 * a ^ (n + 1) + z", "tactic": "simp_rw [zero_mul, zero_add]" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ ∃ z,\n z ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s)) ∧\n a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) =\n z", "tactic": "refine' ⟨_, _, rfl⟩" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : ¬n + 1 ≤ c\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "replace h : c ≤ n := Nat.lt_succ_iff.mp (not_le.mp h)" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "have : (Multiset.card s + 1) * n + 1 - c = Multiset.card s * n + 1 + (n - c) := by\n rw [add_mul, one_mul, add_assoc, add_comm n 1, ← add_assoc, add_tsub_assoc_of_le h]" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * (Multiset.sum s ^ (↑Multiset.card s * n + 1) * Multiset.sum s ^ (n - c)) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * Multiset.sum s ^ ((↑Multiset.card s + 1) * n + 1 - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "rw [this, pow_add]" }, { "state_after": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * Multiset.sum s ^ (n - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) *\n Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * (Multiset.sum s ^ (↑Multiset.card s * n + 1) * Multiset.sum s ^ (n - c)) *\n ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "simp_rw [mul_assoc, mul_comm (s.sum ^ (Multiset.card s * n + 1)), ← mul_assoc]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\nthis : (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)\n⊢ a ^ c * Multiset.sum s ^ (n - c) * ↑(Nat.choose ((↑Multiset.card s + 1) * n + 1) c) *\n Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈\n span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))", "tactic": "exact mul_mem_left _ _ hs" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\na✝ b : α\ninst✝ : CommSemiring α\nI : Ideal α\nn : ℕ\na : α\ns : Multiset α\nhs : Multiset.sum s ^ (↑Multiset.card s * n + 1) ∈ span ↑(Multiset.toFinset (Multiset.map (fun x => x ^ (n + 1)) s))\nc : ℕ\n_hc : c ∈ Finset.range ((↑Multiset.card s + 1) * n + 1 + 1)\nh : c ≤ n\n⊢ (↑Multiset.card s + 1) * n + 1 - c = ↑Multiset.card s * n + 1 + (n - c)", "tactic": "rw [add_mul, one_mul, add_assoc, add_comm n 1, ← add_assoc, add_tsub_assoc_of_le h]" } ]
[ 611, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/MeasureTheory/Measure/Portmanteau.lean
MeasureTheory.tendsto_lintegral_thickenedIndicator_of_isClosed
[ { "state_after": "Ω✝ : Type ?u.24613\ninst✝⁴ : MeasurableSpace Ω✝\nΩ : Type u_1\ninst✝³ : MeasurableSpace Ω\ninst✝² : PseudoEMetricSpace Ω\ninst✝¹ : OpensMeasurableSpace Ω\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nF : Set Ω\nF_closed : IsClosed F\nδs : ℕ → ℝ\nδs_pos : ∀ (n : ℕ), 0 < δs n\nδs_lim : Tendsto δs atTop (𝓝 0)\n⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator F fun x => 1))", "state_before": "Ω✝ : Type ?u.24613\ninst✝⁴ : MeasurableSpace Ω✝\nΩ : Type u_1\ninst✝³ : MeasurableSpace Ω\ninst✝² : PseudoEMetricSpace Ω\ninst✝¹ : OpensMeasurableSpace Ω\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nF : Set Ω\nF_closed : IsClosed F\nδs : ℕ → ℝ\nδs_pos : ∀ (n : ℕ), 0 < δs n\nδs_lim : Tendsto δs atTop (𝓝 0)\n⊢ Tendsto (fun n => ∫⁻ (ω : Ω), ↑(↑(thickenedIndicator (_ : 0 < δs n) F) ω) ∂μ) atTop (𝓝 (↑↑μ F))", "tactic": "apply measure_of_cont_bdd_of_tendsto_indicator μ F_closed.measurableSet\n (fun n => thickenedIndicator (δs_pos n) F) fun n ω => thickenedIndicator_le_one (δs_pos n) F ω" }, { "state_after": "Ω✝ : Type ?u.24613\ninst✝⁴ : MeasurableSpace Ω✝\nΩ : Type u_1\ninst✝³ : MeasurableSpace Ω\ninst✝² : PseudoEMetricSpace Ω\ninst✝¹ : OpensMeasurableSpace Ω\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nF : Set Ω\nF_closed : IsClosed F\nδs : ℕ → ℝ\nδs_pos : ∀ (n : ℕ), 0 < δs n\nδs_lim : Tendsto δs atTop (𝓝 0)\nkey : Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator (closure F) fun x => 1))\n⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator F fun x => 1))", "state_before": "Ω✝ : Type ?u.24613\ninst✝⁴ : MeasurableSpace Ω✝\nΩ : Type u_1\ninst✝³ : MeasurableSpace Ω\ninst✝² : PseudoEMetricSpace Ω\ninst✝¹ : OpensMeasurableSpace Ω\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nF : Set Ω\nF_closed : IsClosed F\nδs : ℕ → ℝ\nδs_pos : ∀ (n : ℕ), 0 < δs n\nδs_lim : Tendsto δs atTop (𝓝 0)\n⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator F fun x => 1))", "tactic": "have key := thickenedIndicator_tendsto_indicator_closure δs_pos δs_lim F" }, { "state_after": "no goals", "state_before": "Ω✝ : Type ?u.24613\ninst✝⁴ : MeasurableSpace Ω✝\nΩ : Type u_1\ninst✝³ : MeasurableSpace Ω\ninst✝² : PseudoEMetricSpace Ω\ninst✝¹ : OpensMeasurableSpace Ω\nμ : Measure Ω\ninst✝ : IsFiniteMeasure μ\nF : Set Ω\nF_closed : IsClosed F\nδs : ℕ → ℝ\nδs_pos : ∀ (n : ℕ), 0 < δs n\nδs_lim : Tendsto δs atTop (𝓝 0)\nkey : Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator (closure F) fun x => 1))\n⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δs n) F)) atTop (𝓝 (indicator F fun x => 1))", "tactic": "rwa [F_closed.closure_eq] at key" } ]
[ 333, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.coe_toAffineMap
[]
[ 124, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/RingTheory/Subsemiring/Pointwise.lean
Subsemiring.mem_smul_pointwise_iff_exists
[]
[ 77, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Set/Basic.lean
Set.ite_inter_compl_self
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns✝ s₁ s₂ t✝ t₁ t₂ u t s s' : Set α\n⊢ Set.ite t s s' ∩ tᶜ = s' ∩ tᶜ", "tactic": "rw [← ite_compl, ite_inter_self]" } ]
[ 2257, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2256, 1 ]
Mathlib/CategoryTheory/Limits/IsLimit.lean
CategoryTheory.Limits.IsColimit.coconePointUniqueUpToIso_inv_desc
[ { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝² : Category J\nK : Type u₂\ninst✝¹ : Category K\nC : Type u₃\ninst✝ : Category C\nF : J ⥤ C\nr s t : Cocone F\nP : IsColimit s\nQ : IsColimit t\n⊢ ∀ (j : J), t.ι.app j ≫ (coconePointUniqueUpToIso P Q).inv ≫ desc P r = r.ι.app j", "tactic": "simp" } ]
[ 683, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 681, 1 ]
Mathlib/Combinatorics/Quiver/Cast.lean
Quiver.Path.cast_heq
[ { "state_after": "U : Type u_1\ninst✝ : Quiver U\nu v u' v' : U\nhu : u = u'\nhv : v = v'\np : Path u v\n⊢ HEq (_root_.cast (_ : Path u v = Path u' v') p) p", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu v u' v' : U\nhu : u = u'\nhv : v = v'\np : Path u v\n⊢ HEq (cast hu hv p) p", "tactic": "rw [Path.cast_eq_cast]" }, { "state_after": "no goals", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu v u' v' : U\nhu : u = u'\nhv : v = v'\np : Path u v\n⊢ HEq (_root_.cast (_ : Path u v = Path u' v') p) p", "tactic": "exact _root_.cast_heq _ _" } ]
[ 118, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Analysis/NormedSpace/LpEquiv.lean
Memℓp.all
[ { "state_after": "case inl\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\ninst✝ : Finite α\nf : (i : α) → E i\n⊢ Memℓp f 0\n\ncase inr.inl\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\ninst✝ : Finite α\nf : (i : α) → E i\n⊢ Memℓp f ⊤\n\ncase inr.inr\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Finite α\nf : (i : α) → E i\n_h : 0 < ENNReal.toReal p\n⊢ Memℓp f p", "state_before": "α : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Finite α\nf : (i : α) → E i\n⊢ Memℓp f p", "tactic": "rcases p.trichotomy with (rfl | rfl | _h)" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\ninst✝ : Finite α\nf : (i : α) → E i\n⊢ Memℓp f 0", "tactic": "exact memℓp_zero_iff.mpr { i : α | f i ≠ 0 }.toFinite" }, { "state_after": "no goals", "state_before": "case inr.inl\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\ninst✝ : Finite α\nf : (i : α) → E i\n⊢ Memℓp f ⊤", "tactic": "exact memℓp_infty_iff.mpr (Set.Finite.bddAbove (Set.range fun i : α => ‖f i‖).toFinite)" }, { "state_after": "case inr.inr.intro\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Finite α\nf : (i : α) → E i\n_h : 0 < ENNReal.toReal p\nval✝ : Fintype α\n⊢ Memℓp f p", "state_before": "case inr.inr\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Finite α\nf : (i : α) → E i\n_h : 0 < ENNReal.toReal p\n⊢ Memℓp f p", "tactic": "cases nonempty_fintype α" }, { "state_after": "no goals", "state_before": "case inr.inr.intro\nα : Type u_1\nE : α → Type u_2\ninst✝¹ : (i : α) → NormedAddCommGroup (E i)\np : ℝ≥0∞\ninst✝ : Finite α\nf : (i : α) → E i\n_h : 0 < ENNReal.toReal p\nval✝ : Fintype α\n⊢ Memℓp f p", "tactic": "exact memℓp_gen ⟨Finset.univ.sum _, hasSum_fintype _⟩" } ]
[ 57, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Data/Rat/Floor.lean
Rat.ceil_cast
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : LinearOrderedField α\ninst✝ : FloorRing α\nx : ℚ\n⊢ ⌈↑x⌉ = ⌈x⌉", "tactic": "rw [← neg_inj, ← floor_neg, ← floor_neg, ← Rat.cast_neg, Rat.floor_cast]" } ]
[ 79, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/SetTheory/Cardinal/Continuum.lean
Cardinal.continuum_lt_lift
[ { "state_after": "no goals", "state_before": "c : Cardinal\n⊢ 𝔠 < lift c ↔ 𝔠 < c", "tactic": "rw [← lift_continuum.{u,v}, lift_lt]" } ]
[ 64, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Algebra/Field/Basic.lean
same_add_div
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1565\nK : Type ?u.1568\ninst✝ : DivisionSemiring α\na b c d : α\nh : b ≠ 0\n⊢ (b + a) / b = 1 + a / b", "tactic": "rw [← div_self h, add_div]" } ]
[ 40, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.liminf_le_liminf
[]
[ 526, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 521, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffWithinAt.fderivWithin
[ { "state_after": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀", "tactic": "rw [← insert_eq_self.mpr hx₀] at hf" }, { "state_after": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ∀ᶠ (x : E) in 𝓝[insert x₀ s] x₀, UniqueDiffWithinAt 𝕜 t (g x)", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ContDiffWithinAt 𝕜 m (fun x => fderivWithin 𝕜 (f x) t (g x)) s x₀", "tactic": "refine' hf.fderivWithin' hg _ hmn hst" }, { "state_after": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ∀ᶠ (x : E) in 𝓝[s] x₀, UniqueDiffWithinAt 𝕜 t (g x)", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ∀ᶠ (x : E) in 𝓝[insert x₀ s] x₀, UniqueDiffWithinAt 𝕜 t (g x)", "tactic": "rw [insert_eq_self.mpr hx₀]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.1064062\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t✝ u : Set E\nf✝ f₁ : E → F\ng✝ : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf : E → F → G\ng : E → F\nt : Set F\nn : ℕ∞\nhf : ContDiffWithinAt 𝕜 n (uncurry f) (insert x₀ s ×ˢ t) (x₀, g x₀)\nhg : ContDiffWithinAt 𝕜 m g s x₀\nht : UniqueDiffOn 𝕜 t\nhmn : m + 1 ≤ n\nhx₀ : x₀ ∈ s\nhst : s ⊆ g ⁻¹' t\n⊢ ∀ᶠ (x : E) in 𝓝[s] x₀, UniqueDiffWithinAt 𝕜 t (g x)", "tactic": "exact eventually_of_mem self_mem_nhdsWithin fun x hx => ht _ (hst hx)" } ]
[ 1018, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1011, 11 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.mem_sup_left
[]
[ 408, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 407, 1 ]
Mathlib/Probability/ConditionalProbability.lean
ProbabilityTheory.cond_cond_eq_cond_inter
[]
[ 141, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
balanced_iInter₂
[]
[ 205, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Algebra/Homology/Augment.lean
ChainComplex.augment_d_one_zero
[]
[ 90, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_eq_finset_prod_of_mulSupport_subset
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.180289\nι : Type ?u.180292\nG : Type ?u.180295\nM : Type u_2\nN : Type ?u.180301\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf : α → M\ns : Finset α\nh : mulSupport f ⊆ ↑s\n⊢ Finite.toFinset (_ : Set.Finite (mulSupport f)) ⊆ s", "tactic": "simpa [← Finset.coe_subset, Set.coe_toFinset]" } ]
[ 408, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 1 ]
Mathlib/Data/Set/Sups.lean
Set.sups_sups_sups_comm
[]
[ 211, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
MeasureTheory.Measure.LebesgueDecomposition.iSup_monotone
[]
[ 527, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 525, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.normSq_pos
[ { "state_after": "K : Type u_1\nE : Type ?u.4450828\ninst✝ : IsROrC K\nz : K\n⊢ 0 ≤ ↑normSq z ∧ ¬↑normSq z = 0 ↔ z ≠ 0", "state_before": "K : Type u_1\nE : Type ?u.4450828\ninst✝ : IsROrC K\nz : K\n⊢ 0 < ↑normSq z ↔ z ≠ 0", "tactic": "rw [lt_iff_le_and_ne, Ne, eq_comm]" }, { "state_after": "no goals", "state_before": "K : Type u_1\nE : Type ?u.4450828\ninst✝ : IsROrC K\nz : K\n⊢ 0 ≤ ↑normSq z ∧ ¬↑normSq z = 0 ↔ z ≠ 0", "tactic": "simp [normSq_nonneg]" } ]
[ 494, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.uniformEmbedding_iff'
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.553589\nι : Type ?u.553592\ninst✝² : PseudoMetricSpace α\nγ : Type w\ninst✝¹ : MetricSpace γ\nx : γ\ns : Set γ\ninst✝ : MetricSpace β\nf : γ → β\n⊢ UniformEmbedding f ↔\n (∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {a b : γ}, dist a b < δ → dist (f a) (f b) < ε) ∧\n ∀ (δ : ℝ), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : γ}, dist (f a) (f b) < ε → dist a b < δ", "tactic": "rw [uniformEmbedding_iff_uniformInducing, uniformInducing_iff, uniformContinuous_iff]" } ]
[ 2927, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2923, 1 ]
Mathlib/CategoryTheory/FintypeCat.lean
FintypeCat.Skeleton.incl_mk_nat_card
[ { "state_after": "case h.e'_2\nn : ℕ\n⊢ Fintype.card ↑(incl.obj (mk n)) = Finset.card Finset.univ", "state_before": "n : ℕ\n⊢ Fintype.card ↑(incl.obj (mk n)) = n", "tactic": "convert Finset.card_fin n" }, { "state_after": "no goals", "state_before": "case h.e'_2\nn : ℕ\n⊢ Fintype.card ↑(incl.obj (mk n)) = Finset.card Finset.univ", "tactic": "apply Fintype.ofEquiv_card" } ]
[ 207, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
src/lean/Init/Classical.lean
Classical.axiomOfChoice
[]
[ 108, 34 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 107, 1 ]
Mathlib/Tactic/Ring/Basic.lean
Mathlib.Tactic.Ring.cast_pos
[ { "state_after": "no goals", "state_before": "u : Lean.Level\nR : Type u_1\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝ : CommSemiring R\na : R\nn : ℕ\ne : a = ↑n\n⊢ a = Nat.rawCast n + 0", "tactic": "simp [e]" } ]
[ 832, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 831, 1 ]
Mathlib/Order/WithBot.lean
WithTop.untop_coe
[]
[ 782, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 781, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.mem_direction_iff_eq_vsub_left
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\np : P\nhp : p ∈ s\nv : V\n⊢ v ∈ (fun x x_1 => x -ᵥ x_1) p '' ↑s ↔ ∃ p2, p2 ∈ s ∧ v = p -ᵥ p2", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\np : P\nhp : p ∈ s\nv : V\n⊢ v ∈ direction s ↔ ∃ p2, p2 ∈ s ∧ v = p -ᵥ p2", "tactic": "rw [← SetLike.mem_coe, coe_direction_eq_vsub_set_left hp]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\np : P\nhp : p ∈ s\nv : V\n⊢ v ∈ (fun x x_1 => x -ᵥ x_1) p '' ↑s ↔ ∃ p2, p2 ∈ s ∧ v = p -ᵥ p2", "tactic": "exact ⟨fun ⟨p2, hp2, hv⟩ => ⟨p2, hp2, hv.symm⟩, fun ⟨p2, hp2, hv⟩ => ⟨p2, hp2, hv.symm⟩⟩" } ]
[ 331, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.infinitePos_omega
[]
[ 807, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 806, 1 ]
Mathlib/CategoryTheory/Category/Basic.lean
CategoryTheory.mono_of_mono
[ { "state_after": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝ X Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ninst✝ : Mono (f ≫ g)\n⊢ ∀ {Z : C} (g h : Z ⟶ X), g ≫ f = h ≫ f → g = h", "state_before": "C : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝ X Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ninst✝ : Mono (f ≫ g)\n⊢ Mono f", "tactic": "constructor" }, { "state_after": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : a ≫ f = b ≫ f\n⊢ a = b", "state_before": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝ X Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ninst✝ : Mono (f ≫ g)\n⊢ ∀ {Z : C} (g h : Z ⟶ X), g ≫ f = h ≫ f → g = h", "tactic": "intro Z a b w" }, { "state_after": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : (fun k => k ≫ g) (a ≫ f) = (fun k => k ≫ g) (b ≫ f)\n⊢ a = b", "state_before": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : a ≫ f = b ≫ f\n⊢ a = b", "tactic": "replace w := congr_arg (fun k => k ≫ g) w" }, { "state_after": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : (a ≫ f) ≫ g = (b ≫ f) ≫ g\n⊢ a = b", "state_before": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : (fun k => k ≫ g) (a ≫ f) = (fun k => k ≫ g) (b ≫ f)\n⊢ a = b", "tactic": "dsimp at w" }, { "state_after": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : a ≫ f ≫ g = b ≫ f ≫ g\n⊢ a = b", "state_before": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : (a ≫ f) ≫ g = (b ≫ f) ≫ g\n⊢ a = b", "tactic": "rw [Category.assoc, Category.assoc] at w" }, { "state_after": "no goals", "state_before": "case right_cancellation\nC : Type u\ninst✝¹ : Category C\nX✝ Y✝ Z✝¹ X Y Z✝ : C\nf : X ⟶ Y\ng : Y ⟶ Z✝\ninst✝ : Mono (f ≫ g)\nZ : C\na b : Z ⟶ X\nw : a ≫ f ≫ g = b ≫ f ≫ g\n⊢ a = b", "tactic": "exact (cancel_mono _).1 w" } ]
[ 327, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 321, 1 ]
Mathlib/Algebra/Symmetrized.lean
SymAlg.sym_bijective
[]
[ 95, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/AlgebraicTopology/SimplicialObject.lean
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt
[ { "state_after": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 2)\nj : Fin (n + 1)\nH : ↑Fin.castSucc j < i\n⊢ X.map (SimplexCategory.σ (↑Fin.castSucc j)).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op =\n X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 2)\nj : Fin (n + 1)\nH : ↑Fin.castSucc j < i\n⊢ σ X (↑Fin.castSucc j) ≫ δ X (Fin.succ i) = δ X i ≫ σ X j", "tactic": "dsimp [δ, σ]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 2)\nj : Fin (n + 1)\nH : ↑Fin.castSucc j < i\n⊢ X.map (SimplexCategory.σ (↑Fin.castSucc j)).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op =\n X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op", "tactic": "simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt H]" } ]
[ 188, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.div_le_of_le_mul'
[]
[ 1594, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1593, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.Chain.nil
[ { "state_after": "no goals", "state_before": "α : Type u_1\nr : α → α → Prop\n⊢ Chain r Cycle.nil", "tactic": "trivial" } ]
[ 935, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 935, 1 ]
Std/Data/List/Init/Lemmas.lean
List.foldrM_reverse
[ { "state_after": "no goals", "state_before": "m : Type u_1 → Type u_2\nα : Type u_3\nβ : Type u_1\ninst✝ : Monad m\nl : List α\nf : α → β → m β\nb : β\n⊢ List.foldlM (fun y x => f x y) b (reverse (reverse l)) = List.foldlM (fun x y => f y x) b l", "tactic": "simp" } ]
[ 175, 44 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 173, 9 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.LocalInvariantProp.liftPropAt_symm_of_mem_maximalAtlas
[ { "state_after": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\n⊢ LiftPropAt Q (↑(LocalHomeomorph.symm e)) x\n\ncase h\nH : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\n⊢ Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\n⊢ LiftPropAt Q (↑(LocalHomeomorph.symm e)) x", "tactic": "suffices h : Q (e ∘ e.symm) univ x" }, { "state_after": "no goals", "state_before": "case h\nH : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\n⊢ Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x", "tactic": "exact hG.congr' (e.eventually_right_inverse hx) (hQ x)" }, { "state_after": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ LiftPropAt Q (↑(LocalHomeomorph.symm e)) x", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\n⊢ LiftPropAt Q (↑(LocalHomeomorph.symm e)) x", "tactic": "have : e.symm x ∈ e.source := by simp only [hx, mfld_simps]" }, { "state_after": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ ContinuousWithinAt (↑(LocalHomeomorph.symm e)) univ x ∧\n Q (↑e ∘ ↑(LocalHomeomorph.symm e) ∘ ↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)))\n (↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)) ⁻¹' univ) (↑(LocalHomeomorph.refl H) x)", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ LiftPropAt Q (↑(LocalHomeomorph.symm e)) x", "tactic": "rw [LiftPropAt, hG.liftPropWithinAt_indep_chart G.id_mem_maximalAtlas (mem_univ _) he this]" }, { "state_after": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ Q (↑e ∘ ↑(LocalHomeomorph.symm e) ∘ ↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)))\n (↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)) ⁻¹' univ) (↑(LocalHomeomorph.refl H) x)", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ ContinuousWithinAt (↑(LocalHomeomorph.symm e)) univ x ∧\n Q (↑e ∘ ↑(LocalHomeomorph.symm e) ∘ ↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)))\n (↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)) ⁻¹' univ) (↑(LocalHomeomorph.refl H) x)", "tactic": "refine' ⟨(e.symm.continuousAt hx).continuousWithinAt, _⟩" }, { "state_after": "no goals", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\nthis : ↑(LocalHomeomorph.symm e) x ∈ e.source\n⊢ Q (↑e ∘ ↑(LocalHomeomorph.symm e) ∘ ↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)))\n (↑(LocalHomeomorph.symm (LocalHomeomorph.refl H)) ⁻¹' univ) (↑(LocalHomeomorph.refl H) x)", "tactic": "simp only [h, mfld_simps]" }, { "state_after": "no goals", "state_before": "H : Type u_1\nM : Type u_2\nH' : Type ?u.56211\nM' : Type ?u.56214\nX : Type ?u.56217\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nhG✝ : LocalInvariantProp G G' P\ninst✝ : HasGroupoid M G\nx : H\nhG : LocalInvariantProp G G Q\nhQ : ∀ (y : H), Q id univ y\nhe : e ∈ maximalAtlas M G\nhx : x ∈ e.target\nh : Q (↑e ∘ ↑(LocalHomeomorph.symm e)) univ x\n⊢ ↑(LocalHomeomorph.symm e) x ∈ e.source", "tactic": "simp only [hx, mfld_simps]" } ]
[ 501, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply
[]
[ 457, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 455, 1 ]