file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/GroupTheory/Submonoid/Operations.lean
MonoidHom.submonoidMap_surjective
[ { "state_after": "case mk.intro.intro\nM : Type u_1\nN : Type u_2\nP : Type ?u.149443\ninst✝³ : MulOneClass M\ninst✝² : MulOneClass N\ninst✝¹ : MulOneClass P\nS : Submonoid M\nA : Type ?u.149464\ninst✝ : SetLike A M\nhA : SubmonoidClass A M\nS' : A\nF : Type ?u.149488\nmc : MonoidHomClass F M N\nf : M →* N\nM' : Submonoid M\nx : M\nhx : x ∈ ↑M'\n⊢ ∃ a, ↑(submonoidMap f M') a = { val := ↑f x, property := (_ : ∃ a, a ∈ ↑M' ∧ ↑f a = ↑f x) }", "state_before": "M : Type u_1\nN : Type u_2\nP : Type ?u.149443\ninst✝³ : MulOneClass M\ninst✝² : MulOneClass N\ninst✝¹ : MulOneClass P\nS : Submonoid M\nA : Type ?u.149464\ninst✝ : SetLike A M\nhA : SubmonoidClass A M\nS' : A\nF : Type ?u.149488\nmc : MonoidHomClass F M N\nf : M →* N\nM' : Submonoid M\n⊢ Function.Surjective ↑(submonoidMap f M')", "tactic": "rintro ⟨_, x, hx, rfl⟩" }, { "state_after": "no goals", "state_before": "case mk.intro.intro\nM : Type u_1\nN : Type u_2\nP : Type ?u.149443\ninst✝³ : MulOneClass M\ninst✝² : MulOneClass N\ninst✝¹ : MulOneClass P\nS : Submonoid M\nA : Type ?u.149464\ninst✝ : SetLike A M\nhA : SubmonoidClass A M\nS' : A\nF : Type ?u.149488\nmc : MonoidHomClass F M N\nf : M →* N\nM' : Submonoid M\nx : M\nhx : x ∈ ↑M'\n⊢ ∃ a, ↑(submonoidMap f M') a = { val := ↑f x, property := (_ : ∃ a, a ∈ ↑M' ∧ ↑f a = ↑f x) }", "tactic": "exact ⟨⟨x, hx⟩, rfl⟩" } ]
[ 1277, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1274, 1 ]
Mathlib/Combinatorics/Configuration.lean
Configuration.ProjectivePlane.card_lines
[]
[ 523, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 522, 1 ]
Mathlib/RingTheory/FreeCommRing.lean
FreeRing.coe_neg
[ { "state_after": "no goals", "state_before": "α : Type u\nx : FreeRing α\n⊢ ↑(-x) = -↑x", "tactic": "rw [castFreeCommRing, map_neg]" } ]
[ 345, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 11 ]
Mathlib/Algebra/Module/LinearMap.lean
AddMonoidHom.toIntLinearMap_injective
[ { "state_after": "R : Type ?u.355190\nR₁ : Type ?u.355193\nR₂ : Type ?u.355196\nR₃ : Type ?u.355199\nk : Type ?u.355202\nS : Type ?u.355205\nS₃ : Type ?u.355208\nT : Type ?u.355211\nM : Type u_1\nM₁ : Type ?u.355217\nM₂ : Type u_2\nM₃ : Type ?u.355223\nN₁ : Type ?u.355226\nN₂ : Type ?u.355229\nN₃ : Type ?u.355232\nι : Type ?u.355235\ninst✝¹ : AddCommGroup M\ninst✝ : AddCommGroup M₂\nf g : M →+ M₂\nh : toIntLinearMap f = toIntLinearMap g\n⊢ f = g", "state_before": "R : Type ?u.355190\nR₁ : Type ?u.355193\nR₂ : Type ?u.355196\nR₃ : Type ?u.355199\nk : Type ?u.355202\nS : Type ?u.355205\nS₃ : Type ?u.355208\nT : Type ?u.355211\nM : Type u_1\nM₁ : Type ?u.355217\nM₂ : Type u_2\nM₃ : Type ?u.355223\nN₁ : Type ?u.355226\nN₂ : Type ?u.355229\nN₃ : Type ?u.355232\nι : Type ?u.355235\ninst✝¹ : AddCommGroup M\ninst✝ : AddCommGroup M₂\n⊢ Injective toIntLinearMap", "tactic": "intro f g h" }, { "state_after": "case h\nR : Type ?u.355190\nR₁ : Type ?u.355193\nR₂ : Type ?u.355196\nR₃ : Type ?u.355199\nk : Type ?u.355202\nS : Type ?u.355205\nS₃ : Type ?u.355208\nT : Type ?u.355211\nM : Type u_1\nM₁ : Type ?u.355217\nM₂ : Type u_2\nM₃ : Type ?u.355223\nN₁ : Type ?u.355226\nN₂ : Type ?u.355229\nN₃ : Type ?u.355232\nι : Type ?u.355235\ninst✝¹ : AddCommGroup M\ninst✝ : AddCommGroup M₂\nf g : M →+ M₂\nh : toIntLinearMap f = toIntLinearMap g\nx : M\n⊢ ↑f x = ↑g x", "state_before": "R : Type ?u.355190\nR₁ : Type ?u.355193\nR₂ : Type ?u.355196\nR₃ : Type ?u.355199\nk : Type ?u.355202\nS : Type ?u.355205\nS₃ : Type ?u.355208\nT : Type ?u.355211\nM : Type u_1\nM₁ : Type ?u.355217\nM₂ : Type u_2\nM₃ : Type ?u.355223\nN₁ : Type ?u.355226\nN₂ : Type ?u.355229\nN₃ : Type ?u.355232\nι : Type ?u.355235\ninst✝¹ : AddCommGroup M\ninst✝ : AddCommGroup M₂\nf g : M →+ M₂\nh : toIntLinearMap f = toIntLinearMap g\n⊢ f = g", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nR : Type ?u.355190\nR₁ : Type ?u.355193\nR₂ : Type ?u.355196\nR₃ : Type ?u.355199\nk : Type ?u.355202\nS : Type ?u.355205\nS₃ : Type ?u.355208\nT : Type ?u.355211\nM : Type u_1\nM₁ : Type ?u.355217\nM₂ : Type u_2\nM₃ : Type ?u.355223\nN₁ : Type ?u.355226\nN₂ : Type ?u.355229\nN₃ : Type ?u.355232\nι : Type ?u.355235\ninst✝¹ : AddCommGroup M\ninst✝ : AddCommGroup M₂\nf g : M →+ M₂\nh : toIntLinearMap f = toIntLinearMap g\nx : M\n⊢ ↑f x = ↑g x", "tactic": "exact LinearMap.congr_fun h x" } ]
[ 768, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 764, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.Nonempty.exists_eq_singleton_or_nontrivial
[]
[ 812, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 810, 1 ]
Mathlib/Data/Fintype/Basic.lean
Finset.compl_filter
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.13578\nγ : Type ?u.13581\ninst✝³ : Fintype α\ns t : Finset α\ninst✝² : DecidableEq α\na : α\np : α → Prop\ninst✝¹ : DecidablePred p\ninst✝ : (x : α) → Decidable ¬p x\n⊢ ∀ (a : α), a ∈ filter p univᶜ ↔ a ∈ filter (fun x => ¬p x) univ", "tactic": "simp" } ]
[ 241, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.coe_toSubmonoid
[]
[ 528, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.neLocus_neg_neg
[]
[ 142, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/Topology/MetricSpace/Holder.lean
HolderOnWith.continuousOn
[]
[ 149, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 11 ]
Mathlib/Algebra/Lie/DirectSum.lean
DirectSum.bracket_apply
[]
[ 125, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Data/List/Basic.lean
List.map₂Left_eq_zipWith
[ { "state_after": "no goals", "state_before": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas : List α\nx✝ : length [] ≤ length []\n⊢ map₂Left f [] [] = zipWith (fun a b => f a (some b)) [] []", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas : List α\nhead✝ : β\ntail✝ : List β\nx✝ : length [] ≤ length (head✝ :: tail✝)\n⊢ map₂Left f [] (head✝ :: tail✝) = zipWith (fun a b => f a (some b)) [] (head✝ :: tail✝)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas✝ : List α\na : α\nas : List α\nh : length (a :: as) ≤ length []\n⊢ map₂Left f (a :: as) [] = zipWith (fun a b => f a (some b)) (a :: as) []", "tactic": "simp at h" }, { "state_after": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas✝ : List α\na : α\nas : List α\nb : β\nbs : List β\nh : length as ≤ length bs\n⊢ map₂Left f (a :: as) (b :: bs) = zipWith (fun a b => f a (some b)) (a :: as) (b :: bs)", "state_before": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas✝ : List α\na : α\nas : List α\nb : β\nbs : List β\nh : length (a :: as) ≤ length (b :: bs)\n⊢ map₂Left f (a :: as) (b :: bs) = zipWith (fun a b => f a (some b)) (a :: as) (b :: bs)", "tactic": "simp [Nat.succ_le_succ_iff] at h" }, { "state_after": "no goals", "state_before": "ι : Type ?u.466133\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : α → Option β → γ\nas✝ : List α\na : α\nas : List α\nb : β\nbs : List β\nh : length as ≤ length bs\n⊢ map₂Left f (a :: as) (b :: bs) = zipWith (fun a b => f a (some b)) (a :: as) (b :: bs)", "tactic": "simp [h, map₂Left_eq_zipWith]" } ]
[ 4124, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4116, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ArctanDeriv.lean
DifferentiableAt.arctan
[]
[ 201, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/Topology/StoneCech.lean
ultrafilter_isOpen_basic
[]
[ 57, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Order/Heyting/Basic.lean
le_compl_iff_disjoint_right
[ { "state_after": "no goals", "state_before": "ι : Type ?u.156709\nα : Type u_1\nβ : Type ?u.156715\ninst✝ : HeytingAlgebra α\na b c : α\n⊢ a ≤ bᶜ ↔ Disjoint a b", "tactic": "rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le]" } ]
[ 820, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 819, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
HasDerivWithinAt.add
[]
[ 66, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 8 ]
Mathlib/Dynamics/PeriodicPts.lean
Function.minimalPeriod_eq_minimalPeriod_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nf fa : α → α\nfb : β → β\nx y✝ : α\nm n : ℕ\ng : β → β\ny : β\n⊢ minimalPeriod f x = minimalPeriod g y ↔ ∀ (n : ℕ), IsPeriodicPt f n x ↔ IsPeriodicPt g n y", "tactic": "simp_rw [isPeriodicPt_iff_minimalPeriod_dvd, dvd_right_iff_eq]" } ]
[ 412, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Data/Nat/PartENat.lean
PartENat.dom_of_le_some
[]
[ 217, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Order/UpperLower/Basic.lean
LowerSet.compl_map
[]
[ 1059, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.sigmaUncurry_smul
[]
[ 1576, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1572, 1 ]
Mathlib/Data/Real/Basic.lean
Real.iInf_nonneg
[]
[ 905, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 904, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq.destruct_nil
[]
[ 239, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/Algebra/Category/GroupCat/EpiMono.lean
GroupCat.mono_iff_injective
[]
[ 96, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Topology/VectorBundle/Basic.lean
VectorPrebundle.continuous_totalSpaceMk
[]
[ 961, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 959, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM2to1.addBottom_head_fst
[ { "state_after": "no goals", "state_before": "K : Type u_1\ninst✝² : DecidableEq K\nΓ : K → Type u_2\nΛ : Type ?u.605156\ninst✝¹ : Inhabited Λ\nσ : Type ?u.605162\ninst✝ : Inhabited σ\nL : ListBlank ((k : K) → Option (Γ k))\n⊢ (ListBlank.head (addBottom L)).fst = true", "tactic": "rw [addBottom, ListBlank.head_cons]" } ]
[ 2400, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2399, 1 ]
Mathlib/Topology/UniformSpace/Equiv.lean
UniformEquiv.injective
[]
[ 187, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 11 ]
Mathlib/Analysis/Calculus/FDerivMeasurable.lean
stronglyMeasurable_derivWithin_Ioi
[ { "state_after": "F : Type u_1\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\nf : ℝ → F\nK : Set F\ninst✝¹ : CompleteSpace F\ninst✝ : SecondCountableTopology F\nthis✝¹ : MeasurableSpace F := borel F\nthis✝ : BorelSpace F\n⊢ StronglyMeasurable fun x => derivWithin f (Ioi x) x", "state_before": "F : Type u_1\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\nf : ℝ → F\nK : Set F\ninst✝¹ : CompleteSpace F\ninst✝ : SecondCountableTopology F\n⊢ StronglyMeasurable fun x => derivWithin f (Ioi x) x", "tactic": "borelize F" }, { "state_after": "no goals", "state_before": "F : Type u_1\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\nf : ℝ → F\nK : Set F\ninst✝¹ : CompleteSpace F\ninst✝ : SecondCountableTopology F\nthis✝¹ : MeasurableSpace F := borel F\nthis✝ : BorelSpace F\n⊢ StronglyMeasurable fun x => derivWithin f (Ioi x) x", "tactic": "exact (measurable_derivWithin_Ioi f).stronglyMeasurable" } ]
[ 820, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 817, 1 ]
Mathlib/Data/Sigma/Interval.lean
Sigma.card_Icc
[]
[ 64, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.trans_source
[]
[ 710, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 709, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.prod_le_one'
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type ?u.18790\nβ : Type ?u.18793\nM : Type ?u.18796\nN : Type u_2\nG : Type ?u.18802\nk : Type ?u.18805\nR : Type ?u.18808\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf g : ι → N\ns t : Finset ι\nh : ∀ (i : ι), i ∈ s → f i ≤ 1\n⊢ ∏ i in s, 1 = 1", "tactic": "rw [prod_const_one]" } ]
[ 155, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Order/SuccPred/LinearLocallyFinite.lean
toZ_neg
[ { "state_after": "case refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ toZ i0 i ≤ 0\n\ncase refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ toZ i0 i ≠ 0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ toZ i0 i < 0", "tactic": "refine' lt_of_le_of_ne _ _" }, { "state_after": "case refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, (pred^[n]) i0 = i))", "state_before": "case refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ toZ i0 i ≤ 0", "tactic": "rw [toZ_of_lt hi, neg_nonpos]" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ 0 ≤ ↑(Nat.find (_ : ∃ n, (pred^[n]) i0 = i))", "tactic": "exact Nat.cast_nonneg _" }, { "state_after": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\nh : toZ i0 i = 0\n⊢ False", "state_before": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\n⊢ toZ i0 i ≠ 0", "tactic": "by_contra h" }, { "state_after": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\nh : toZ i0 i = 0\nh_eq : (pred^[Int.toNat (-toZ i0 i)]) i0 = i\n⊢ False", "state_before": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\nh : toZ i0 i = 0\n⊢ False", "tactic": "have h_eq := iterate_pred_toZ i hi" }, { "state_after": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : (pred^[Int.toNat (-0)]) i0 < i0\nh : toZ i0 i = 0\nh_eq : (pred^[Int.toNat (-toZ i0 i)]) i0 = i\n⊢ False", "state_before": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : i < i0\nh : toZ i0 i = 0\nh_eq : (pred^[Int.toNat (-toZ i0 i)]) i0 = i\n⊢ False", "tactic": "rw [← h_eq, h] at hi" }, { "state_after": "no goals", "state_before": "case refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i : ι\nhi : (pred^[Int.toNat (-0)]) i0 < i0\nh : toZ i0 i = 0\nh_eq : (pred^[Int.toNat (-toZ i0 i)]) i0 = i\n⊢ False", "tactic": "simp only [neg_zero, Int.toNat_zero, Function.iterate_zero, id.def, lt_self_iff_false] at hi" } ]
[ 238, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 231, 1 ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
Ideal.nonarchimedean
[]
[ 92, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.conj_re
[]
[ 508, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 507, 1 ]
Mathlib/CategoryTheory/Linear/LinearFunctor.lean
CategoryTheory.Functor.coe_mapLinearMap
[]
[ 68, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Data/TypeVec.lean
TypeVec.drop_append1'
[]
[ 122, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_map_inv'
[]
[ 308, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.zero_apply
[]
[ 1822, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1821, 1 ]
Mathlib/Data/Bool/Basic.lean
Bool.xor_comm
[ { "state_after": "no goals", "state_before": "⊢ ∀ (a b : Bool), xor a b = xor b a", "tactic": "decide" } ]
[ 263, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Analysis/MeanInequalities.lean
Real.geom_mean_le_arith_mean4_weighted
[ { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\nw₁ w₂ w₃ w₄ p₁ p₂ p₃ p₄ : ℝ\nhw₁ : 0 ≤ w₁\nhw₂ : 0 ≤ w₂\nhw₃ : 0 ≤ w₃\nhw₄ : 0 ≤ w₄\nhp₁ : 0 ≤ p₁\nhp₂ : 0 ≤ p₂\nhp₃ : 0 ≤ p₃\nhp₄ : 0 ≤ p₄\nhw : w₁ + w₂ + w₃ + w₄ = 1\n⊢ ↑({ val := w₁, property := hw₁ } + { val := w₂, property := hw₂ } + { val := w₃, property := hw₃ } +\n { val := w₄, property := hw₄ }) =\n ↑1", "tactic": "assumption" } ]
[ 240, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.integrable_map_measure
[ { "state_after": "α : Type u_3\nβ : Type u_2\nγ : Type ?u.857469\nδ : Type u_1\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → δ\ng : δ → β\nhg : AEStronglyMeasurable g (Measure.map f μ)\nhf : AEMeasurable f\n⊢ Memℒp g 1 ↔ Memℒp (g ∘ f) 1", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type ?u.857469\nδ : Type u_1\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → δ\ng : δ → β\nhg : AEStronglyMeasurable g (Measure.map f μ)\nhf : AEMeasurable f\n⊢ Integrable g ↔ Integrable (g ∘ f)", "tactic": "simp_rw [← memℒp_one_iff_integrable]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type ?u.857469\nδ : Type u_1\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → δ\ng : δ → β\nhg : AEStronglyMeasurable g (Measure.map f μ)\nhf : AEMeasurable f\n⊢ Memℒp g 1 ↔ Memℒp (g ∘ f) 1", "tactic": "exact memℒp_map_measure_iff hg hf" } ]
[ 600, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 596, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.distortion_bot
[]
[ 709, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.flip_apply
[]
[ 799, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 798, 1 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.eq_zero_or_one_of_isField
[]
[ 1233, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1231, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.toPartENat_surjective
[]
[ 1880, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1879, 1 ]
Mathlib/Order/UpperLower/Basic.lean
not_bddBelow_Iio
[]
[ 356, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
differentiable_const_sub_iff
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.569259\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.569354\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nc : F\n⊢ (Differentiable 𝕜 fun y => c - f y) ↔ Differentiable 𝕜 f", "tactic": "simp [sub_eq_add_neg]" } ]
[ 654, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 653, 1 ]
Mathlib/Algebra/Order/Module.lean
eq_of_smul_eq_smul_of_neg_of_le
[ { "state_after": "k : Type u_2\nM : Type u_1\nN : Type ?u.17203\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhab : -c • a = -c • b\nhc : c < 0\nh : a ≤ b\n⊢ a = b", "state_before": "k : Type u_2\nM : Type u_1\nN : Type ?u.17203\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhab : c • a = c • b\nhc : c < 0\nh : a ≤ b\n⊢ a = b", "tactic": "rw [← neg_neg c, neg_smul, neg_smul (-c), neg_inj] at hab" }, { "state_after": "no goals", "state_before": "k : Type u_2\nM : Type u_1\nN : Type ?u.17203\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhab : -c • a = -c • b\nhc : c < 0\nh : a ≤ b\n⊢ a = b", "tactic": "exact eq_of_smul_eq_smul_of_pos_of_le hab (neg_pos_of_neg hc) h" } ]
[ 68, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/Init/Set.lean
Set.ext
[]
[ 53, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Order/LiminfLimsup.lean
Monotone.isBoundedUnder_le_comp
[ { "state_after": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) → IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "state_before": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) ↔ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "refine' ⟨_, fun h => h.isBoundedUnder (α := β) hg⟩" }, { "state_after": "case intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "state_before": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l (g ∘ f) → IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "rintro ⟨c, hc⟩" }, { "state_after": "case intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "state_before": "case intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (x : γ) in map (g ∘ f) l, (fun x x_1 => x ≤ x_1) x c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "rw [eventually_map] at hc" }, { "state_after": "case intro.intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\nb : β\nhb : ∀ (a : β), a ≥ b → c < g a\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "state_before": "case intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "obtain ⟨b, hb⟩ : ∃ b, ∀ a ≥ b, c < g a := eventually_atTop.1 (hg'.eventually_gt_atTop c)" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Type ?u.197009\ninst✝³ : Nonempty β\ninst✝² : LinearOrder β\ninst✝¹ : Preorder γ\ninst✝ : NoMaxOrder γ\ng : β → γ\nf : α → β\nl : Filter α\nhg : Monotone g\nhg' : Tendsto g atTop atTop\nc : γ\nhc : ∀ᶠ (a : α) in l, (fun x x_1 => x ≤ x_1) ((g ∘ f) a) c\nb : β\nhb : ∀ (a : β), a ≥ b → c < g a\n⊢ IsBoundedUnder (fun x x_1 => x ≤ x_1) l f", "tactic": "exact ⟨b, hc.mono fun x hx => not_lt.1 fun h => (hb _ h.le).not_le hx⟩" } ]
[ 1184, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1178, 1 ]
Mathlib/Data/Set/Prod.lean
Set.univ_pi_ite
[ { "state_after": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\n⊢ (x✝ ∈ pi univ fun i => if i ∈ s then t i else univ) ↔ x✝ ∈ pi s t", "state_before": "ι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\n⊢ (pi univ fun i => if i ∈ s then t i else univ) = pi s t", "tactic": "ext" }, { "state_after": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\n⊢ (∀ (i : ι), x✝ i ∈ if i ∈ s then t i else univ) ↔ x✝ ∈ pi s t", "state_before": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\n⊢ (x✝ ∈ pi univ fun i => if i ∈ s then t i else univ) ↔ x✝ ∈ pi s t", "tactic": "simp_rw [mem_univ_pi]" }, { "state_after": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni✝ : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\ni : ι\n⊢ (x✝ i ∈ if i ∈ s then t i else univ) ↔ i ∈ s → x✝ i ∈ t i", "state_before": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\n⊢ (∀ (i : ι), x✝ i ∈ if i ∈ s then t i else univ) ↔ x✝ ∈ pi s t", "tactic": "refine' forall_congr' fun i => _" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.166768\ns✝ s₁ s₂ : Set ι\nt✝ t₁ t₂ : (i : ι) → Set (α i)\ni✝ : ι\ns : Set ι\ninst✝ : DecidablePred fun x => x ∈ s\nt : (i : ι) → Set (α i)\nx✝ : (i : ι) → α i\ni : ι\n⊢ (x✝ i ∈ if i ∈ s then t i else univ) ↔ i ∈ s → x✝ i ∈ t i", "tactic": "split_ifs with h <;> simp [h]" } ]
[ 874, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 869, 1 ]
Mathlib/GroupTheory/FreeProduct.lean
FreeProduct.NeWord.singleton_last
[]
[ 602, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 601, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
PSet.mem_sUnion
[ { "state_after": "no goals", "state_before": "α : Type u\nA : α → PSet\ny : PSet\nx✝ : y ∈ ⋃₀ mk α A\na : Type (mk α A)\nc : Type (Func (mk α A) a)\ne : Equiv y (Func (A a) c)\nthis : Func (A a) c ∈ mk (Type (A a)) (Func (A a))\n⊢ Func (A a) c ∈ A (?m.27126 α A y x✝ a c e this)", "tactic": "rwa [eta] at this" }, { "state_after": "α : Type u\nA : α → PSet\ny : PSet\nx✝ : ∃ z, z ∈ mk α A ∧ y ∈ z\nβ : Type u\nB : β → PSet\na : Type (mk α A)\ne : Equiv (mk β B) (mk (Type (A a)) (Func (A a)))\nb : Type (mk β B)\nyb : Equiv y (Func (mk β B) b)\n⊢ y ∈ ⋃₀ mk α A", "state_before": "α : Type u\nA : α → PSet\ny : PSet\nx✝ : ∃ z, z ∈ mk α A ∧ y ∈ z\nβ : Type u\nB : β → PSet\na : Type (mk α A)\ne : Equiv (mk β B) (A a)\nb : Type (mk β B)\nyb : Equiv y (Func (mk β B) b)\n⊢ y ∈ ⋃₀ mk α A", "tactic": "rw [← eta (A a)] at e" }, { "state_after": "no goals", "state_before": "α : Type u\nA : α → PSet\ny : PSet\nx✝ : ∃ z, z ∈ mk α A ∧ y ∈ z\nβ : Type u\nB : β → PSet\na : Type (mk α A)\ne : Equiv (mk β B) (mk (Type (A a)) (Func (A a)))\nb : Type (mk β B)\nyb : Equiv y (Func (mk β B) b)\n⊢ y ∈ ⋃₀ mk α A", "tactic": "exact\n let ⟨βt, _⟩ := e\n let ⟨c, bc⟩ := βt b\n ⟨⟨a, c⟩, yb.trans bc⟩" } ]
[ 493, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/Computability/RegularExpressions.lean
RegularExpression.one_def
[]
[ 96, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Analysis/LocallyConvex/Polar.lean
LinearMap.polar_iUnion
[]
[ 92, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/List/Sigma.lean
List.dlookup_nil
[]
[ 179, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Std/Data/Int/Lemmas.lean
Int.negSucc_coe'
[ { "state_after": "n : Nat\n⊢ -[n+1] = -(↑n + 1)", "state_before": "n : Nat\n⊢ -[n+1] = -↑n - 1", "tactic": "rw [Int.sub_eq_add_neg, ← Int.neg_add]" }, { "state_after": "no goals", "state_before": "n : Nat\n⊢ -[n+1] = -(↑n + 1)", "tactic": "rfl" } ]
[ 502, 46 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 501, 1 ]
Mathlib/LinearAlgebra/Alternating.lean
AlternatingMap.coe_multilinearMap_injective
[]
[ 168, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 166, 1 ]
Mathlib/Topology/MetricSpace/Kuratowski.lean
KuratowskiEmbedding.embeddingOfSubset_dist_le
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ ‖↑(embeddingOfSubset x a - embeddingOfSubset x b) n‖ ≤ dist a b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\n⊢ dist (embeddingOfSubset x a) (embeddingOfSubset x b) ≤ dist a b", "tactic": "refine' lp.norm_le_of_forall_le dist_nonneg fun n => _" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ ‖dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n))‖ ≤ dist a b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ ‖↑(embeddingOfSubset x a - embeddingOfSubset x b) n‖ ≤ dist a b", "tactic": "simp only [lp.coeFn_sub, Pi.sub_apply, embeddingOfSubset_coe, Real.dist_eq]" }, { "state_after": "case h.e'_3.h.e'_1\nα : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n)) = dist a (x n) - dist b (x n)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ ‖dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n))‖ ≤ dist a b", "tactic": "convert abs_dist_sub_le a b (x n) using 2" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_1\nα : Type u\nβ : Type v\nγ : Type w\nf g : { x // x ∈ lp (fun n => ℝ) ⊤ }\nn✝ : ℕ\nC : ℝ\ninst✝ : MetricSpace α\nx : ℕ → α\na✝ b✝ a b : α\nn : ℕ\n⊢ dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n)) = dist a (x n) - dist b (x n)", "tactic": "ring" } ]
[ 63, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/CharP/Algebra.lean
IsFractionRing.charP_of_isFractionRing
[]
[ 139, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Init/Algebra/Order.lean
lt_of_not_ge
[]
[ 337, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/Computability/Halting.lean
ComputablePred.computable_iff
[ { "state_after": "case intro.intro\nα : Type u_1\nσ : Type ?u.282635\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\nf : α → Bool\nh : Computable f\n⊢ ComputablePred fun a => f a = true", "state_before": "α : Type u_1\nσ : Type ?u.282635\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\np : α → Prop\n⊢ (∃ f, Computable f ∧ p = fun a => f a = true) → ComputablePred p", "tactic": "rintro ⟨f, h, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nσ : Type ?u.282635\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\nf : α → Bool\nh : Computable f\n⊢ ComputablePred fun a => f a = true", "tactic": "exact ⟨by infer_instance, by simpa using h⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nσ : Type ?u.282635\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\nf : α → Bool\nh : Computable f\n⊢ DecidablePred fun a => f a = true", "tactic": "infer_instance" }, { "state_after": "no goals", "state_before": "α : Type u_1\nσ : Type ?u.282635\ninst✝¹ : Primcodable α\ninst✝ : Primcodable σ\nf : α → Bool\nh : Computable f\n⊢ Computable fun a => decide ((fun a => f a = true) a)", "tactic": "simpa using h" } ]
[ 178, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Order/BoundedOrder.lean
Subtype.mk_eq_bot_iff
[]
[ 794, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 792, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Real.continuousAt_log_iff
[ { "state_after": "x y : ℝ\n⊢ ContinuousAt log x → x ≠ 0", "state_before": "x y : ℝ\n⊢ ContinuousAt log x ↔ x ≠ 0", "tactic": "refine' ⟨_, continuousAt_log⟩" }, { "state_after": "y : ℝ\nh : ContinuousAt log 0\n⊢ False", "state_before": "x y : ℝ\n⊢ ContinuousAt log x → x ≠ 0", "tactic": "rintro h rfl" }, { "state_after": "no goals", "state_before": "y : ℝ\nh : ContinuousAt log 0\n⊢ False", "tactic": "exact not_tendsto_nhds_of_tendsto_atBot tendsto_log_nhdsWithin_zero _\n (h.tendsto.mono_left inf_le_left)" } ]
[ 329, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 325, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.ker_eq_bot'
[ { "state_after": "no goals", "state_before": "R : Type u_2\nR₁ : Type ?u.1204225\nR₂ : Type u_3\nR₃ : Type ?u.1204231\nR₄ : Type ?u.1204234\nS : Type ?u.1204237\nK : Type ?u.1204240\nK₂ : Type ?u.1204243\nM : Type u_1\nM' : Type ?u.1204249\nM₁ : Type ?u.1204252\nM₂ : Type u_4\nM₃ : Type ?u.1204258\nM₄ : Type ?u.1204261\nN : Type ?u.1204264\nN₂ : Type ?u.1204267\nι : Type ?u.1204270\nV : Type ?u.1204273\nV₂ : Type ?u.1204276\ninst✝¹⁰ : Semiring R\ninst✝⁹ : Semiring R₂\ninst✝⁸ : Semiring R₃\ninst✝⁷ : AddCommMonoid M\ninst✝⁶ : AddCommMonoid M₂\ninst✝⁵ : AddCommMonoid M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\ninst✝⁴ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nσ₂₁ : R₂ →+* R\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type u_5\nsc : SemilinearMapClass F τ₁₂ M M₂\nf : F\n⊢ ker f = ⊥ ↔ ∀ (m : M), ↑f m = 0 → m = 0", "tactic": "simpa [disjoint_iff_inf_le] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤" } ]
[ 1359, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1358, 1 ]
Mathlib/Algebra/Group/Defs.lean
mul_right_injective
[]
[ 191, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
MvPolynomial.weightedHomogeneousComponent_zero
[ { "state_after": "case a\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\n⊢ coeff d (↑(weightedHomogeneousComponent w 0) φ) = coeff d (↑C (coeff 0 φ))", "state_before": "R : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\n⊢ ↑(weightedHomogeneousComponent w 0) φ = ↑C (coeff 0 φ)", "tactic": "ext1 d" }, { "state_after": "case a.inl\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\n⊢ coeff 0 (↑(weightedHomogeneousComponent w 0) φ) = coeff 0 (↑C (coeff 0 φ))\n\ncase a.inr\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ coeff d (↑(weightedHomogeneousComponent w 0) φ) = coeff d (↑C (coeff 0 φ))", "state_before": "case a\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\n⊢ coeff d (↑(weightedHomogeneousComponent w 0) φ) = coeff d (↑C (coeff 0 φ))", "tactic": "rcases Classical.em (d = 0) with (rfl | hd)" }, { "state_after": "no goals", "state_before": "case a.inl\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\n⊢ coeff 0 (↑(weightedHomogeneousComponent w 0) φ) = coeff 0 (↑C (coeff 0 φ))", "tactic": "simp only [coeff_weightedHomogeneousComponent, if_pos, map_zero, coeff_zero_C]" }, { "state_after": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ ¬↑(weightedDegree' w) d = 0", "state_before": "case a.inr\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ coeff d (↑(weightedHomogeneousComponent w 0) φ) = coeff d (↑C (coeff 0 φ))", "tactic": "rw [coeff_weightedHomogeneousComponent, if_neg, coeff_C, if_neg (Ne.symm hd)]" }, { "state_after": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "state_before": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ ¬↑(weightedDegree' w) d = 0", "tactic": "simp only [weightedDegree', LinearMap.toAddMonoidHom_coe, Finsupp.total_apply, Finsupp.sum,\n sum_eq_zero_iff, Finsupp.mem_support_iff, Ne.def, smul_eq_zero, not_forall, not_or,\n and_self_left, exists_prop]" }, { "state_after": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ∃ x, ¬↑d x = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "state_before": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ¬d = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "tactic": "simp only [FunLike.ext_iff, Finsupp.coe_zero, Pi.zero_apply, not_forall] at hd" }, { "state_after": "case a.inr.hnc.intro\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\ni : σ\nhi : ¬↑d i = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "state_before": "case a.inr.hnc\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\nhd : ∃ x, ¬↑d x = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "tactic": "obtain ⟨i, hi⟩ := hd" }, { "state_after": "no goals", "state_before": "case a.inr.hnc.intro\nR : Type u_2\nM : Type u_1\ninst✝² : CommSemiring R\nσ : Type u_3\ninst✝¹ : CanonicallyOrderedAddMonoid M\nw : σ → M\nφ : MvPolynomial σ R\ninst✝ : NoZeroSMulDivisors ℕ M\nhw : ∀ (i : σ), w i ≠ 0\nd : σ →₀ ℕ\ni : σ\nhi : ¬↑d i = 0\n⊢ ∃ x, ¬↑d x = 0 ∧ ¬w x = 0", "tactic": "exact ⟨i, hi, hw i⟩" } ]
[ 465, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 453, 1 ]
Std/Logic.lean
Or.imp_left
[]
[ 251, 61 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 251, 1 ]
Mathlib/AlgebraicTopology/DoldKan/FunctorGamma.lean
AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id
[ { "state_after": "case h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝¹ : Discrete (Splitting.IndexSet Δ✝)\nA✝ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝ : Discrete (Splitting.IndexSet Δ.op)\nA : Splitting.IndexSet Δ.op\n⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op))\n { as := A } ≫\n Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K [n].op) (Splitting.IndexSet.id [n].op)) Δ.op =\n colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op))\n { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op)", "state_before": "C : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ : SimplexCategoryᵒᵖ\nx✝ : Discrete (Splitting.IndexSet Δ)\nA : Splitting.IndexSet Δ\n⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ))\n { as := A } ≫\n Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K [n].op) (Splitting.IndexSet.id [n].op)) Δ =\n colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ))\n { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ)", "tactic": "induction' Δ using Opposite.rec' with Δ" }, { "state_after": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op))\n { as := A } ≫\n Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K [n].op) (Splitting.IndexSet.id [n].op)) [n].op =\n colimit.ι\n (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op))\n { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "state_before": "case h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝¹ : Discrete (Splitting.IndexSet Δ✝)\nA✝ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝ : Discrete (Splitting.IndexSet Δ.op)\nA : Splitting.IndexSet Δ.op\n⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op))\n { as := A } ≫\n Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K [n].op) (Splitting.IndexSet.id [n].op)) Δ.op =\n colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op))\n { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) Δ.op)", "tactic": "induction' Δ using SimplexCategory.rec with n" }, { "state_after": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ (colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n Sigma.desc fun A =>\n Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op) =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "state_before": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op))\n { as := A } ≫\n Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K [n].op) (Splitting.IndexSet.id [n].op)) [n].op =\n colimit.ι\n (Discrete.functor (Splitting.summand (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op))\n { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "tactic": "dsimp [Splitting.map]" }, { "state_after": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "state_before": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ (colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n Sigma.desc fun A =>\n Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op) =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "tactic": "simp only [colimit.ι_desc, Cofan.mk_ι_app, Γ₀.obj_map]" }, { "state_after": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ Sigma.ι (Obj.summand K [n].op)\n (Splitting.IndexSet.mk\n (Splitting.IndexSet.e\n { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } })) =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst))\n { as := { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } } }", "state_before": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫\n 𝟙 (Splitting.coprod (fun n => Obj.summand K [n].op (Splitting.IndexSet.id [n].op)) [n].op)", "tactic": "erw [Γ₀.Obj.map_on_summand₀ K (SimplicialObject.Splitting.IndexSet.id A.1)\n (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _ by rfl),\n Γ₀.Obj.Termwise.mapMono_id, A.ext', id_comp, comp_id]" }, { "state_after": "no goals", "state_before": "case h.h\nC : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ Sigma.ι (Obj.summand K [n].op)\n (Splitting.IndexSet.mk\n (Splitting.IndexSet.e\n { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } })) =\n colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst))\n { as := { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } } }", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝² : Category C\ninst✝¹ : Preadditive C\nK K' : ChainComplex C ℕ\nf : K ⟶ K'\nΔ✝¹ Δ' Δ'' : SimplexCategory\ninst✝ : HasFiniteCoproducts C\nΔ✝ : SimplexCategoryᵒᵖ\nx✝² : Discrete (Splitting.IndexSet Δ✝)\nA✝¹ : Splitting.IndexSet Δ✝\nΔ : SimplexCategory\nx✝¹ : Discrete (Splitting.IndexSet Δ.op)\nA✝ : Splitting.IndexSet Δ.op\nn : ℕ\nx✝ : Discrete (Splitting.IndexSet [n].op)\nA : Splitting.IndexSet [n].op\n⊢ Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (Splitting.IndexSet.e A).op.unop ≫ 𝟙 A.fst.unop.op.unop", "tactic": "rfl" } ]
[ 247, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.rel_add_right
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.451251\nδ : Type ?u.451254\nr : α → β → Prop\np : γ → δ → Prop\nas : Multiset α\nbs₀ bs₁ : Multiset β\n⊢ (∃ bs₀_1 bs₁_1, Rel (flip r) bs₀ bs₀_1 ∧ Rel (flip r) bs₁ bs₁_1 ∧ as = bs₀_1 + bs₁_1) ↔\n ∃ as₀ as₁, Rel r as₀ bs₀ ∧ Rel r as₁ bs₁ ∧ as = as₀ + as₁", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.451251\nδ : Type ?u.451254\nr : α → β → Prop\np : γ → δ → Prop\nas : Multiset α\nbs₀ bs₁ : Multiset β\n⊢ Rel r as (bs₀ + bs₁) ↔ ∃ as₀ as₁, Rel r as₀ bs₀ ∧ Rel r as₁ bs₁ ∧ as = as₀ + as₁", "tactic": "rw [← rel_flip, rel_add_left]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.451251\nδ : Type ?u.451254\nr : α → β → Prop\np : γ → δ → Prop\nas : Multiset α\nbs₀ bs₁ : Multiset β\n⊢ (∃ bs₀_1 bs₁_1, Rel (flip r) bs₀ bs₀_1 ∧ Rel (flip r) bs₁ bs₁_1 ∧ as = bs₀_1 + bs₁_1) ↔\n ∃ as₀ as₁, Rel r as₀ bs₀ ∧ Rel r as₁ bs₁ ∧ as = as₀ + as₁", "tactic": "simp [rel_flip]" } ]
[ 2762, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2760, 1 ]
Mathlib/Algebra/Order/Floor.lean
Nat.lt_of_lt_floor
[]
[ 223, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
AffineIndependent.map'
[ { "state_after": "case inl\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh : IsEmpty ι\n⊢ AffineIndependent k (↑f ∘ p)\n\ncase inr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh : Nonempty ι\n⊢ AffineIndependent k (↑f ∘ p)", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "cases' isEmpty_or_nonempty ι with h h" }, { "state_after": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\n⊢ AffineIndependent k (↑f ∘ p)", "state_before": "case inr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh : Nonempty ι\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "obtain ⟨i⟩ := h" }, { "state_after": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\n⊢ AffineIndependent k (↑f ∘ p)", "state_before": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "rw [affineIndependent_iff_linearIndependent_vsub k p i] at hai" }, { "state_after": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\n⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i)", "state_before": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "simp_rw [affineIndependent_iff_linearIndependent_vsub k (f ∘ p) i, Function.comp_apply, ←\n f.linearMap_vsub]" }, { "state_after": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\nhf' : LinearMap.ker f.linear = ⊥\n⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i)", "state_before": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\n⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i)", "tactic": "have hf' : LinearMap.ker f.linear = ⊥ := by rwa [LinearMap.ker_eq_bot, f.linear_injective_iff]" }, { "state_after": "no goals", "state_before": "case inr.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\nhf' : LinearMap.ker f.linear = ⊥\n⊢ LinearIndependent k fun i_1 => ↑f.linear (p ↑i_1 -ᵥ p i)", "tactic": "exact LinearIndependent.map' hai f.linear hf'" }, { "state_after": "case inl\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh this : IsEmpty ι\n⊢ AffineIndependent k (↑f ∘ p)", "state_before": "case inl\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh : IsEmpty ι\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "haveI := h" }, { "state_after": "no goals", "state_before": "case inl\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nhai : AffineIndependent k p\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\nh this : IsEmpty ι\n⊢ AffineIndependent k (↑f ∘ p)", "tactic": "apply affineIndependent_of_subsingleton" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁶ : Ring k\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module k V\ninst✝³ : AffineSpace V P\nι : Type u_4\nV₂ : Type u_5\nP₂ : Type u_6\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module k V₂\ninst✝ : AffineSpace V₂ P₂\np : ι → P\nf : P →ᵃ[k] P₂\nhf : Injective ↑f\ni : ι\nhai : LinearIndependent k fun i_1 => p ↑i_1 -ᵥ p i\n⊢ LinearMap.ker f.linear = ⊥", "tactic": "rwa [LinearMap.ker_eq_bot, f.linear_injective_iff]" } ]
[ 389, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 379, 1 ]
Mathlib/Data/Bitvec/Lemmas.lean
Bitvec.ofFin_toFin
[ { "state_after": "n : ℕ\nv : Bitvec n\n⊢ Bitvec.ofNat n ↑(toFin v) = v", "state_before": "n : ℕ\nv : Bitvec n\n⊢ ofFin (toFin v) = v", "tactic": "dsimp [ofFin]" }, { "state_after": "no goals", "state_before": "n : ℕ\nv : Bitvec n\n⊢ Bitvec.ofNat n ↑(toFin v) = v", "tactic": "rw [toFin_val, ofNat_toNat]" } ]
[ 173, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Data/Matrix/Rank.lean
Matrix.rank_le_card_height
[ { "state_after": "l : Type ?u.223607\nm : Type u_2\nn : Type u_3\no : Type ?u.223616\nR : Type u_1\nm_fin : Fintype m\ninst✝³ : Fintype n\ninst✝² : Fintype o\ninst✝¹ : CommRing R\ninst✝ : StrongRankCondition R\nA : Matrix m n R\nthis : Module.Finite R (m → R)\n⊢ rank A ≤ Fintype.card m", "state_before": "l : Type ?u.223607\nm : Type u_2\nn : Type u_3\no : Type ?u.223616\nR : Type u_1\nm_fin : Fintype m\ninst✝³ : Fintype n\ninst✝² : Fintype o\ninst✝¹ : CommRing R\ninst✝ : StrongRankCondition R\nA : Matrix m n R\n⊢ rank A ≤ Fintype.card m", "tactic": "haveI : Module.Finite R (m → R) := Module.Finite.pi" }, { "state_after": "l : Type ?u.223607\nm : Type u_2\nn : Type u_3\no : Type ?u.223616\nR : Type u_1\nm_fin : Fintype m\ninst✝³ : Fintype n\ninst✝² : Fintype o\ninst✝¹ : CommRing R\ninst✝ : StrongRankCondition R\nA : Matrix m n R\nthis✝ : Module.Finite R (m → R)\nthis : Module.Free R (m → R)\n⊢ rank A ≤ Fintype.card m", "state_before": "l : Type ?u.223607\nm : Type u_2\nn : Type u_3\no : Type ?u.223616\nR : Type u_1\nm_fin : Fintype m\ninst✝³ : Fintype n\ninst✝² : Fintype o\ninst✝¹ : CommRing R\ninst✝ : StrongRankCondition R\nA : Matrix m n R\nthis : Module.Finite R (m → R)\n⊢ rank A ≤ Fintype.card m", "tactic": "haveI : Module.Free R (m → R) := Module.Free.pi _ _" }, { "state_after": "no goals", "state_before": "l : Type ?u.223607\nm : Type u_2\nn : Type u_3\no : Type ?u.223616\nR : Type u_1\nm_fin : Fintype m\ninst✝³ : Fintype n\ninst✝² : Fintype o\ninst✝¹ : CommRing R\ninst✝ : StrongRankCondition R\nA : Matrix m n R\nthis✝ : Module.Finite R (m → R)\nthis : Module.Free R (m → R)\n⊢ rank A ≤ Fintype.card m", "tactic": "exact (Submodule.finrank_le _).trans (finrank_pi R).le" } ]
[ 154, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Topology/Order/Basic.lean
frontier_Ioi
[]
[ 2350, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2349, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sin_eq_iff_coe_eq_or_add_eq_pi
[ { "state_after": "case mp\nθ ψ : ℝ\n⊢ sin θ = sin ψ → ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π\n\ncase mpr\nθ ψ : ℝ\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π → sin θ = sin ψ", "state_before": "θ ψ : ℝ\n⊢ sin θ = sin ψ ↔ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "constructor" }, { "state_after": "case mp\nθ ψ : ℝ\nHsin : sin θ = sin ψ\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "state_before": "case mp\nθ ψ : ℝ\n⊢ sin θ = sin ψ → ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "intro Hsin" }, { "state_after": "case mp\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "state_before": "case mp\nθ ψ : ℝ\nHsin : sin θ = sin ψ\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "rw [← cos_pi_div_two_sub, ← cos_pi_div_two_sub] at Hsin" }, { "state_after": "case mp.inl\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = ↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π\n\ncase mp.inr\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = -↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "state_before": "case mp\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "cases' cos_eq_iff_coe_eq_or_eq_neg.mp Hsin with h h" }, { "state_after": "case mp.inr.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = -↑(π / 2 - ψ)\n⊢ ↑θ + ↑ψ = ↑π", "state_before": "case mp.inr\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = -↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "right" }, { "state_after": "case mp.inr.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑π = ↑θ + ↑ψ\n⊢ ↑θ + ↑ψ = ↑π", "state_before": "case mp.inr.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = -↑(π / 2 - ψ)\n⊢ ↑θ + ↑ψ = ↑π", "tactic": "rw [coe_sub, coe_sub, eq_neg_iff_add_eq_zero, add_sub, sub_add_eq_add_sub, ← coe_add,\n add_halves, sub_sub, sub_eq_zero] at h" }, { "state_after": "no goals", "state_before": "case mp.inr.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑π = ↑θ + ↑ψ\n⊢ ↑θ + ↑ψ = ↑π", "tactic": "exact h.symm" }, { "state_after": "case mp.inl.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = ↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ", "state_before": "case mp.inl\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = ↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π", "tactic": "left" }, { "state_after": "case mp.inl.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2) - ↑θ = ↑(π / 2) - ↑ψ\n⊢ ↑θ = ↑ψ", "state_before": "case mp.inl.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2 - θ) = ↑(π / 2 - ψ)\n⊢ ↑θ = ↑ψ", "tactic": "rw [coe_sub, coe_sub] at h" }, { "state_after": "no goals", "state_before": "case mp.inl.h\nθ ψ : ℝ\nHsin : cos (π / 2 - θ) = cos (π / 2 - ψ)\nh : ↑(π / 2) - ↑θ = ↑(π / 2) - ↑ψ\n⊢ ↑θ = ↑ψ", "tactic": "exact sub_right_inj.1 h" }, { "state_after": "case mpr\nθ ψ : ℝ\n⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - (π - ψ) = 2 * π * ↑k) → sin θ = sin ψ", "state_before": "case mpr\nθ ψ : ℝ\n⊢ ↑θ = ↑ψ ∨ ↑θ + ↑ψ = ↑π → sin θ = sin ψ", "tactic": "rw [angle_eq_iff_two_pi_dvd_sub, ← eq_sub_iff_add_eq, ← coe_sub, angle_eq_iff_two_pi_dvd_sub]" }, { "state_after": "case mpr.inl.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - ψ = 2 * π * ↑k\n⊢ sin θ = sin ψ\n\ncase mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\n⊢ sin θ = sin ψ", "state_before": "case mpr\nθ ψ : ℝ\n⊢ ((∃ k, θ - ψ = 2 * π * ↑k) ∨ ∃ k, θ - (π - ψ) = 2 * π * ↑k) → sin θ = sin ψ", "tactic": "rintro (⟨k, H⟩ | ⟨k, H⟩)" }, { "state_after": "case mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\n⊢ sin θ = sin ψ", "state_before": "case mpr.inl.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - ψ = 2 * π * ↑k\n⊢ sin θ = sin ψ\n\ncase mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\n⊢ sin θ = sin ψ", "tactic": "rw [← sub_eq_zero, sin_sub_sin, H, mul_assoc 2 π k, mul_div_cancel_left _ (two_ne_zero' ℝ),\n mul_comm π _, sin_int_mul_pi, MulZeroClass.mul_zero, MulZeroClass.zero_mul]" }, { "state_after": "case mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\nH' : θ + ψ = 2 * ↑k * π + π\n⊢ sin θ = sin ψ", "state_before": "case mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\n⊢ sin θ = sin ψ", "tactic": "have H' : θ + ψ = 2 * k * π + π := by\n rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ←\n mul_assoc] at H" }, { "state_after": "no goals", "state_before": "case mpr.inr.intro\nθ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\nH' : θ + ψ = 2 * ↑k * π + π\n⊢ sin θ = sin ψ", "tactic": "rw [← sub_eq_zero, sin_sub_sin, H', add_div, mul_assoc 2 _ π,\n mul_div_cancel_left _ (two_ne_zero' ℝ), cos_add_pi_div_two, sin_int_mul_pi, neg_zero,\n MulZeroClass.mul_zero]" }, { "state_after": "no goals", "state_before": "θ ψ : ℝ\nk : ℤ\nH : θ - (π - ψ) = 2 * π * ↑k\n⊢ θ + ψ = 2 * ↑k * π + π", "tactic": "rwa [← sub_add, sub_add_eq_add_sub, sub_eq_iff_eq_add, mul_assoc, mul_comm π _, ←\n mul_assoc] at H" } ]
[ 289, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/CategoryTheory/Extensive.lean
CategoryTheory.mapPair_equifibered
[ { "state_after": "case mk.left.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } })\n (α.app { as := WalkingPair.left }) (α.app { as := { as := WalkingPair.left }.as })\n (F'.map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } })\n\ncase mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })\n (α.app { as := WalkingPair.right }) (α.app { as := { as := WalkingPair.right }.as })\n (F'.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })", "state_before": "J : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ NatTrans.Equifibered α", "tactic": "rintro ⟨⟨⟩⟩ ⟨j⟩ ⟨⟨rfl : _ = j⟩⟩" }, { "state_after": "no goals", "state_before": "case mk.left.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } })\n (α.app { as := WalkingPair.left }) (α.app { as := { as := WalkingPair.left }.as })\n (F'.map { down := { down := (_ : { as := WalkingPair.left }.as = { as := WalkingPair.left }.as) } })\n\ncase mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })\n (α.app { as := WalkingPair.right }) (α.app { as := { as := WalkingPair.right }.as })\n (F'.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })", "tactic": "all_goals\n dsimp; simp only [Discrete.functor_map_id]\n exact IsPullback.of_horiz_isIso ⟨by simp only [Category.comp_id, Category.id_comp]⟩" }, { "state_after": "case mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : WalkingPair.right = WalkingPair.right) } })\n (α.app { as := WalkingPair.right }) (α.app { as := WalkingPair.right })\n (F'.map { down := { down := (_ : WalkingPair.right = WalkingPair.right) } })", "state_before": "case mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })\n (α.app { as := WalkingPair.right }) (α.app { as := { as := WalkingPair.right }.as })\n (F'.map { down := { down := (_ : { as := WalkingPair.right }.as = { as := WalkingPair.right }.as) } })", "tactic": "dsimp" }, { "state_after": "case mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (𝟙 (F.obj { as := WalkingPair.right })) (α.app { as := WalkingPair.right })\n (α.app { as := WalkingPair.right }) (𝟙 (F'.obj { as := WalkingPair.right }))", "state_before": "case mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (F.map { down := { down := (_ : WalkingPair.right = WalkingPair.right) } })\n (α.app { as := WalkingPair.right }) (α.app { as := WalkingPair.right })\n (F'.map { down := { down := (_ : WalkingPair.right = WalkingPair.right) } })", "tactic": "simp only [Discrete.functor_map_id]" }, { "state_after": "no goals", "state_before": "case mk.right.mk.up.up\nJ : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ IsPullback (𝟙 (F.obj { as := WalkingPair.right })) (α.app { as := WalkingPair.right })\n (α.app { as := WalkingPair.right }) (𝟙 (F'.obj { as := WalkingPair.right }))", "tactic": "exact IsPullback.of_horiz_isIso ⟨by simp only [Category.comp_id, Category.id_comp]⟩" }, { "state_after": "no goals", "state_before": "J : Type v'\ninst✝¹ : Category J\nC : Type u\ninst✝ : Category C\nX Y : C\nF F' : Discrete WalkingPair ⥤ C\nα : F ⟶ F'\n⊢ 𝟙 (F.obj { as := WalkingPair.right }) ≫ α.app { as := WalkingPair.right } =\n α.app { as := WalkingPair.right } ≫ 𝟙 (F'.obj { as := WalkingPair.right })", "tactic": "simp only [Category.comp_id, Category.id_comp]" } ]
[ 157, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.destruct_think
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\n⊢ Computation.destruct (destruct (think s)) = Sum.inr (destruct s)", "tactic": "simp [destruct, think, Computation.rmap]" } ]
[ 639, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 638, 1 ]
Mathlib/Data/Multiset/Powerset.lean
Multiset.powersetLen_coe'
[]
[ 237, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.hasSum_integral_of_dominated_convergence
[ { "state_after": "ι✝ : Type ?u.17150684\n𝕜 : Type ?u.17150687\nE : Type u_2\nF✝ : Type ?u.17150693\nA : Type ?u.17150696\ninst✝³ : NormedAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\na b c d : ℝ\nf g : ℝ → E\nμ : MeasureTheory.Measure ℝ\nι : Type u_1\ninst✝ : Countable ι\nF : ι → ℝ → E\nbound : ι → ℝ → ℝ\nhF_meas : ∀ (n : ι), AEStronglyMeasurable (F n) (Measure.restrict μ (Ι a b))\nh_bound : ∀ (n : ι), ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ‖F n x‖ ≤ bound n x\nbound_summable : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), Summable fun n => bound n x\nbound_integrable : IntegrableOn (fun t => ∑' (n : ι), bound n t) (Ι a b)\nh_lim : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasSum (fun n => F n x) (f x)\n⊢ HasSum (fun n => (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F n x ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, f x ∂μ)", "state_before": "ι✝ : Type ?u.17150684\n𝕜 : Type ?u.17150687\nE : Type u_2\nF✝ : Type ?u.17150693\nA : Type ?u.17150696\ninst✝³ : NormedAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\na b c d : ℝ\nf g : ℝ → E\nμ : MeasureTheory.Measure ℝ\nι : Type u_1\ninst✝ : Countable ι\nF : ι → ℝ → E\nbound : ι → ℝ → ℝ\nhF_meas : ∀ (n : ι), AEStronglyMeasurable (F n) (Measure.restrict μ (Ι a b))\nh_bound : ∀ (n : ι), ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ‖F n t‖ ≤ bound n t\nbound_summable : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → Summable fun n => bound n t\nbound_integrable : IntervalIntegrable (fun t => ∑' (n : ι), bound n t) μ a b\nh_lim : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → HasSum (fun n => F n t) (f t)\n⊢ HasSum (fun n => ∫ (t : ℝ) in a..b, F n t ∂μ) (∫ (t : ℝ) in a..b, f t ∂μ)", "tactic": "simp only [intervalIntegrable_iff, intervalIntegral_eq_integral_uIoc, ←\n ae_restrict_iff' (α := ℝ) (μ := μ) measurableSet_uIoc] at *" }, { "state_after": "no goals", "state_before": "ι✝ : Type ?u.17150684\n𝕜 : Type ?u.17150687\nE : Type u_2\nF✝ : Type ?u.17150693\nA : Type ?u.17150696\ninst✝³ : NormedAddCommGroup E\ninst✝² : CompleteSpace E\ninst✝¹ : NormedSpace ℝ E\na b c d : ℝ\nf g : ℝ → E\nμ : MeasureTheory.Measure ℝ\nι : Type u_1\ninst✝ : Countable ι\nF : ι → ℝ → E\nbound : ι → ℝ → ℝ\nhF_meas : ∀ (n : ι), AEStronglyMeasurable (F n) (Measure.restrict μ (Ι a b))\nh_bound : ∀ (n : ι), ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ‖F n x‖ ≤ bound n x\nbound_summable : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), Summable fun n => bound n x\nbound_integrable : IntegrableOn (fun t => ∑' (n : ι), bound n t) (Ι a b)\nh_lim : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), HasSum (fun n => F n x) (f x)\n⊢ HasSum (fun n => (if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F n x ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, f x ∂μ)", "tactic": "exact\n (hasSum_integral_of_dominated_convergence bound hF_meas h_bound bound_summable bound_integrable\n h_lim).const_smul\n _" } ]
[ 1039, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1027, 8 ]
Mathlib/Topology/VectorBundle/Basic.lean
Trivialization.symmₗ_linearMapAt
[]
[ 264, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.one_mod
[]
[ 498, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 497, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.basisDivisor_self
[ { "state_after": "no goals", "state_before": "F : Type u_1\ninst✝ : Field F\nx y : F\n⊢ basisDivisor x x = 0", "tactic": "simp only [basisDivisor, sub_self, inv_zero, map_zero, MulZeroClass.zero_mul]" } ]
[ 133, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/Data/Nat/PartENat.lean
PartENat.lt_coe_iff
[ { "state_after": "no goals", "state_before": "x : PartENat\nn : ℕ\n⊢ x < ↑n ↔ ∃ h, Part.get x h < n", "tactic": "simp only [lt_def, forall_prop_of_true, get_natCast', dom_natCast]" } ]
[ 297, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Combinatorics/Configuration.lean
Configuration.HasLines.existsUnique_line
[]
[ 121, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
BilinForm.nondegenerate_toMatrix_iff
[]
[ 589, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.ball_half_subset
[ { "state_after": "α : Type u\nβ : Type v\nX : Type ?u.44437\nι : Type ?u.44440\ninst✝ : PseudoMetricSpace α\nx y✝ z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ny : α\nh : y ∈ ball x (ε / 2)\n⊢ dist y x ≤ ε / 2", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.44437\nι : Type ?u.44440\ninst✝ : PseudoMetricSpace α\nx y✝ z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ny : α\nh : y ∈ ball x (ε / 2)\n⊢ dist y x ≤ ε - ε / 2", "tactic": "rw [sub_self_div_two]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.44437\nι : Type ?u.44440\ninst✝ : PseudoMetricSpace α\nx y✝ z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ny : α\nh : y ∈ ball x (ε / 2)\n⊢ dist y x ≤ ε / 2", "tactic": "exact le_of_lt h" } ]
[ 666, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 665, 1 ]
Mathlib/CategoryTheory/Functor/Category.lean
CategoryTheory.NatTrans.id_app
[]
[ 75, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Topology/Bornology/Basic.lean
Bornology.isCobounded_univ
[]
[ 187, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Algebra/Module/Submodule/Basic.lean
Submodule.smul_of_tower_mem
[]
[ 243, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.eventually_ne_atBot
[]
[ 226, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.BoundedFormula.toPrenex_isPrenex
[]
[ 867, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 864, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm'_add_le
[ { "state_after": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\n⊢ (∫⁻ (a : α), ↑‖(f + g) a‖₊ ^ q ∂μ) ≤ ∫⁻ (a : α), ((fun a => ↑‖f a‖₊) + fun a => ↑‖g a‖₊) a ^ q ∂μ", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\n⊢ (∫⁻ (a : α), ↑‖(f + g) a‖₊ ^ q ∂μ) ^ (1 / q) ≤\n (∫⁻ (a : α), ((fun a => ↑‖f a‖₊) + fun a => ↑‖g a‖₊) a ^ q ∂μ) ^ (1 / q)", "tactic": "refine' ENNReal.rpow_le_rpow _ (by simp [le_trans zero_le_one hq1] : 0 ≤ 1 / q)" }, { "state_after": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\na : α\n⊢ ↑‖(f + g) a‖₊ ≤ ((fun a => ↑‖f a‖₊) + fun a => ↑‖g a‖₊) a", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\n⊢ (∫⁻ (a : α), ↑‖(f + g) a‖₊ ^ q ∂μ) ≤ ∫⁻ (a : α), ((fun a => ↑‖f a‖₊) + fun a => ↑‖g a‖₊) a ^ q ∂μ", "tactic": "refine' lintegral_mono fun a => ENNReal.rpow_le_rpow _ (le_trans zero_le_one hq1)" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\na : α\n⊢ ↑‖(f + g) a‖₊ ≤ ((fun a => ↑‖f a‖₊) + fun a => ↑‖g a‖₊) a", "tactic": "simp only [Pi.add_apply, ← ENNReal.coe_add, ENNReal.coe_le_coe, nnnorm_add_le]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.2325640\nG : Type ?u.2325643\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf g : α → E\nhf : AEStronglyMeasurable f μ\nhg : AEStronglyMeasurable g μ\nhq1 : 1 ≤ q\n⊢ 0 ≤ 1 / q", "tactic": "simp [le_trans zero_le_one hq1]" } ]
[ 754, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 746, 1 ]
Mathlib/Topology/FiberBundle/Basic.lean
FiberBundleCore.baseSet_at
[]
[ 681, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 680, 1 ]
Mathlib/RingTheory/Localization/Module.lean
Basis.localizationLocalization_repr_algebraMap
[ { "state_after": "no goals", "state_before": "R : Type u_2\nRₛ : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing Rₛ\ninst✝⁸ : Algebra R Rₛ\nS : Submonoid R\nhT : IsLocalization S Rₛ\nA : Type u_3\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\nAₛ : Type u_5\ninst✝⁵ : CommRing Aₛ\ninst✝⁴ : Algebra A Aₛ\ninst✝³ : Algebra Rₛ Aₛ\ninst✝² : Algebra R Aₛ\ninst✝¹ : IsScalarTower R Rₛ Aₛ\ninst✝ : IsScalarTower R A Aₛ\nhA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ\nι : Type u_1\nb : Basis ι R A\nx : A\ni : ι\n⊢ ↑(↑(localizationLocalization Rₛ S Aₛ b).repr (↑(algebraMap A Aₛ) x)) i =\n ↑(↑(localizationLocalization Rₛ S Aₛ b).repr\n (Finsupp.sum (↑b.repr x) fun j c => ↑(algebraMap R Rₛ) c • ↑(algebraMap A Aₛ) (↑b j)))\n i", "tactic": "simp_rw [IsScalarTower.algebraMap_smul, Algebra.smul_def,\n IsScalarTower.algebraMap_apply R A Aₛ, ← _root_.map_mul, ← map_finsupp_sum, ←\n Algebra.smul_def, ← Finsupp.total_apply, Basis.total_repr]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nRₛ : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing Rₛ\ninst✝⁸ : Algebra R Rₛ\nS : Submonoid R\nhT : IsLocalization S Rₛ\nA : Type u_3\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\nAₛ : Type u_5\ninst✝⁵ : CommRing Aₛ\ninst✝⁴ : Algebra A Aₛ\ninst✝³ : Algebra Rₛ Aₛ\ninst✝² : Algebra R Aₛ\ninst✝¹ : IsScalarTower R Rₛ Aₛ\ninst✝ : IsScalarTower R A Aₛ\nhA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ\nι : Type u_1\nb : Basis ι R A\nx : A\ni : ι\n⊢ ↑(↑(localizationLocalization Rₛ S Aₛ b).repr\n (Finsupp.sum (↑b.repr x) fun j c => ↑(algebraMap R Rₛ) c • ↑(algebraMap A Aₛ) (↑b j)))\n i =\n Finsupp.sum (↑b.repr x) fun j c => ↑(algebraMap R Rₛ) c • ↑(Finsupp.single j 1) i", "tactic": "simp_rw [← b.localizationLocalization_apply Rₛ S Aₛ, map_finsupp_sum, LinearEquiv.map_smul,\n Basis.repr_self, Finsupp.sum_apply, Finsupp.smul_apply]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nRₛ : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing Rₛ\ninst✝⁸ : Algebra R Rₛ\nS : Submonoid R\nhT : IsLocalization S Rₛ\nA : Type u_3\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\nAₛ : Type u_5\ninst✝⁵ : CommRing Aₛ\ninst✝⁴ : Algebra A Aₛ\ninst✝³ : Algebra Rₛ Aₛ\ninst✝² : Algebra R Aₛ\ninst✝¹ : IsScalarTower R Rₛ Aₛ\ninst✝ : IsScalarTower R A Aₛ\nhA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ\nι : Type u_1\nb : Basis ι R A\nx : A\ni j : ι\nx✝ : j ∈ (↑b.repr x).support\nhj : j ≠ i\n⊢ (fun j c => ↑(algebraMap R Rₛ) c • ↑(Finsupp.single j 1) i) j (↑(↑b.repr x) j) = 0", "tactic": "simp [hj]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nRₛ : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing Rₛ\ninst✝⁸ : Algebra R Rₛ\nS : Submonoid R\nhT : IsLocalization S Rₛ\nA : Type u_3\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\nAₛ : Type u_5\ninst✝⁵ : CommRing Aₛ\ninst✝⁴ : Algebra A Aₛ\ninst✝³ : Algebra Rₛ Aₛ\ninst✝² : Algebra R Aₛ\ninst✝¹ : IsScalarTower R Rₛ Aₛ\ninst✝ : IsScalarTower R A Aₛ\nhA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ\nι : Type u_1\nb : Basis ι R A\nx : A\ni : ι\nhi : ¬i ∈ (↑b.repr x).support\n⊢ (fun j c => ↑(algebraMap R Rₛ) c • ↑(Finsupp.single j 1) i) i (↑(↑b.repr x) i) = 0", "tactic": "simp [Finsupp.not_mem_support_iff.mp hi]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nRₛ : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing Rₛ\ninst✝⁸ : Algebra R Rₛ\nS : Submonoid R\nhT : IsLocalization S Rₛ\nA : Type u_3\ninst✝⁷ : CommRing A\ninst✝⁶ : Algebra R A\nAₛ : Type u_5\ninst✝⁵ : CommRing Aₛ\ninst✝⁴ : Algebra A Aₛ\ninst✝³ : Algebra Rₛ Aₛ\ninst✝² : Algebra R Aₛ\ninst✝¹ : IsScalarTower R Rₛ Aₛ\ninst✝ : IsScalarTower R A Aₛ\nhA : IsLocalization (Algebra.algebraMapSubmonoid A S) Aₛ\nι : Type u_1\nb : Basis ι R A\nx : A\ni : ι\n⊢ (fun j c => ↑(algebraMap R Rₛ) c • ↑(Finsupp.single j 1) i) i (↑(↑b.repr x) i) = ↑(algebraMap R Rₛ) (↑(↑b.repr x) i)", "tactic": "simp [Algebra.smul_def]" } ]
[ 143, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.mk'_eq_of_eq
[]
[ 827, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 825, 1 ]
Std/Data/AssocList.lean
Std.AssocList.mapKey_toList
[ { "state_after": "no goals", "state_before": "α : Type u_1\nδ : Type u_2\nβ : Type u_3\nf : α → δ\nl : AssocList α β\n⊢ toList (mapKey f l) =\n List.map\n (fun x =>\n match x with\n | (a, b) => (f a, b))\n (toList l)", "tactic": "induction l <;> simp [*]" } ]
[ 87, 27 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 85, 9 ]
Mathlib/LinearAlgebra/PiTensorProduct.lean
PiTensorProduct.zero_tprodCoeff
[]
[ 150, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Analysis/NormedSpace/ENorm.lean
ENorm.top_map
[]
[ 157, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Logic/Basic.lean
or_of_or_of_imp_right
[]
[ 342, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Topology/Connected.lean
locallyConnectedSpace_iff_connectedComponentIn_open
[ { "state_after": "case mp\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\n⊢ LocallyConnectedSpace α → ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)\n\ncase mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\n⊢ (∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)) → LocallyConnectedSpace α", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\n⊢ LocallyConnectedSpace α ↔ ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)", "tactic": "constructor" }, { "state_after": "case mp\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : LocallyConnectedSpace α\n⊢ ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)", "state_before": "case mp\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\n⊢ LocallyConnectedSpace α → ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : LocallyConnectedSpace α\n⊢ ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)", "tactic": "exact fun F hF x _ => hF.connectedComponentIn" }, { "state_after": "case mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)\n⊢ LocallyConnectedSpace α", "state_before": "case mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\n⊢ (∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)) → LocallyConnectedSpace α", "tactic": "intro h" }, { "state_after": "case mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)\n⊢ ∀ (x : α) (U : Set α), U ∈ 𝓝 x → ∃ V, V ⊆ U ∧ IsOpen V ∧ x ∈ V ∧ IsConnected V", "state_before": "case mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)\n⊢ LocallyConnectedSpace α", "tactic": "rw [locallyConnectedSpace_iff_open_connected_subsets]" }, { "state_after": "no goals", "state_before": "case mpr\nα : Type u\nβ : Type v\nι : Type ?u.115042\nπ : ι → Type ?u.115047\ninst✝ : TopologicalSpace α\ns t u v : Set α\nh : ∀ (F : Set α), IsOpen F → ∀ (x : α), x ∈ F → IsOpen (connectedComponentIn F x)\n⊢ ∀ (x : α) (U : Set α), U ∈ 𝓝 x → ∃ V, V ⊆ U ∧ IsOpen V ∧ x ∈ V ∧ IsConnected V", "tactic": "refine' fun x U hU =>\n ⟨connectedComponentIn (interior U) x,\n (connectedComponentIn_subset _ _).trans interior_subset, h _ isOpen_interior x _,\n mem_connectedComponentIn _, isConnected_connectedComponentIn_iff.mpr _⟩ <;>\n exact mem_interior_iff_mem_nhds.mpr hU" } ]
[ 1180, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1168, 1 ]
Mathlib/MeasureTheory/Integral/Average.lean
MeasureTheory.average_neg
[]
[ 89, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]