file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/FieldTheory/ChevalleyWarning.lean
char_dvd_card_solutions
[ { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\n⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\n⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }", "tactic": "let F : Unit → MvPolynomial σ K := fun _ => f" }, { "state_after": "K : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\nthis : ∑ i : Unit, totalDegree (F i) < Fintype.card σ\n⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\n⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }", "tactic": "have : (∑ i : Unit, (F i).totalDegree) < Fintype.card σ := h" }, { "state_after": "case h.e'_4.h.h.e'_2.h.a\nK : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\nthis : ∑ i : Unit, totalDegree (F i) < Fintype.card σ\nx✝ : σ → K\n⊢ ↑(eval x✝) f = 0 ↔ ∀ (i : Unit), i ∈ univ → ↑(eval x✝) (F i) = 0", "state_before": "K : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\nthis : ∑ i : Unit, totalDegree (F i) < Fintype.card σ\n⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }", "tactic": "convert char_dvd_card_solutions_of_sum_lt p this" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.h.e'_2.h.a\nK : Type u_2\nσ : Type u_1\nι : Type ?u.638341\ninst✝⁵ : Fintype K\ninst✝⁴ : Field K\ninst✝³ : Fintype σ\ninst✝² : DecidableEq σ\ninst✝¹ : DecidableEq K\np : ℕ\ninst✝ : CharP K p\nf : MvPolynomial σ K\nh : totalDegree f < Fintype.card σ\nF : Unit → MvPolynomial σ K := fun x => f\nthis : ∑ i : Unit, totalDegree (F i) < Fintype.card σ\nx✝ : σ → K\n⊢ ↑(eval x✝) f = 0 ↔ ∀ (i : Unit), i ∈ univ → ↑(eval x✝) (F i) = 0", "tactic": "aesop" } ]
[ 193, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/Data/Nat/Choose/Basic.lean
Nat.multichoose_zero_right
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ multichoose n 0 = 1", "tactic": "cases n <;> simp [multichoose]" } ]
[ 364, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
MonoidHom.restrict_mker
[]
[ 1196, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1195, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
Convex.is_const_of_fderivWithin_eq_zero
[ { "state_after": "E : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.244965\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_2\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx y : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhs : Convex ℝ s\nhf : DifferentiableOn 𝕜 f s\nhf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0\nhx : x ∈ s\nhy : y ∈ s\nbound : ∀ (x : E), x ∈ s → ‖fderivWithin 𝕜 f s x‖ ≤ 0\n⊢ f x = f y", "state_before": "E : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.244965\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_2\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx y : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhs : Convex ℝ s\nhf : DifferentiableOn 𝕜 f s\nhf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0\nhx : x ∈ s\nhy : y ∈ s\n⊢ f x = f y", "tactic": "have bound : ∀ x ∈ s, ‖fderivWithin 𝕜 f s x‖ ≤ 0 := fun x hx => by\n simp only [hf' x hx, norm_zero, le_rfl]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.244965\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_2\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx y : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhs : Convex ℝ s\nhf : DifferentiableOn 𝕜 f s\nhf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0\nhx : x ∈ s\nhy : y ∈ s\nbound : ∀ (x : E), x ∈ s → ‖fderivWithin 𝕜 f s x‖ ≤ 0\n⊢ f x = f y", "tactic": "simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm] using\n hs.norm_image_sub_le_of_norm_fderivWithin_le hf bound hx hy" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.244965\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_2\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx✝ y : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhs : Convex ℝ s\nhf : DifferentiableOn 𝕜 f s\nhf' : ∀ (x : E), x ∈ s → fderivWithin 𝕜 f s x = 0\nhx✝ : x✝ ∈ s\nhy : y ∈ s\nx : E\nhx : x ∈ s\n⊢ ‖fderivWithin 𝕜 f s x‖ ≤ 0", "tactic": "simp only [hf' x hx, norm_zero, le_rfl]" } ]
[ 596, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 591, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.mul_inv
[ { "state_after": "case top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b ≠ 0\nha : a ≠ 0 ∨ ⊤ ≠ ⊤\nhb : a ≠ ⊤ ∨ ⊤ ≠ 0\n⊢ (a * ⊤)⁻¹ = a⁻¹ * ⊤⁻¹\n\ncase coe\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha : a ≠ 0 ∨ ↑b ≠ ⊤\nhb : a ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (a * ↑b)⁻¹ = a⁻¹ * (↑b)⁻¹", "state_before": "α : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nha : a ≠ 0 ∨ b ≠ ⊤\nhb : a ≠ ⊤ ∨ b ≠ 0\n⊢ (a * b)⁻¹ = a⁻¹ * b⁻¹", "tactic": "induction' b using recTopCoe with b" }, { "state_after": "case coe.top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝² : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a ≠ ⊤ ∨ ↑b ≠ 0\nha✝ : ⊤ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ⊤ ≠ ⊤ ∨ b✝ ≠ 0\nha : ⊤ ≠ 0 ∨ ↑b ≠ ⊤\nhb : ⊤ ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (⊤ * ↑b)⁻¹ = ⊤⁻¹ * (↑b)⁻¹\n\ncase coe.coe\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "state_before": "case coe\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha : a ≠ 0 ∨ ↑b ≠ ⊤\nhb : a ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (a * ↑b)⁻¹ = a⁻¹ * (↑b)⁻¹", "tactic": "induction' a using recTopCoe with a" }, { "state_after": "case pos\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : a = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹\n\ncase neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "state_before": "case coe.coe\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "tactic": "by_cases h'a : a = 0" }, { "state_after": "case pos\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : b = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹\n\ncase neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : ¬b = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "state_before": "case neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "tactic": "by_cases h'b : b = 0" }, { "state_after": "case neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : ¬b = 0\n⊢ a * b ≠ 0", "state_before": "case neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : ¬b = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "tactic": "rw [← ENNReal.coe_mul, ← ENNReal.coe_inv, ← ENNReal.coe_inv h'a, ← ENNReal.coe_inv h'b, ←\n ENNReal.coe_mul, mul_inv_rev, mul_comm]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : ¬b = 0\n⊢ a * b ≠ 0", "tactic": "simp [h'a, h'b]" }, { "state_after": "case top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b ≠ 0\nhb : a ≠ ⊤ ∨ ⊤ ≠ 0\nha : a ≠ 0\n⊢ (a * ⊤)⁻¹ = a⁻¹ * ⊤⁻¹", "state_before": "case top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b ≠ 0\nha : a ≠ 0 ∨ ⊤ ≠ ⊤\nhb : a ≠ ⊤ ∨ ⊤ ≠ 0\n⊢ (a * ⊤)⁻¹ = a⁻¹ * ⊤⁻¹", "tactic": "replace ha : a ≠ 0 := ha.neg_resolve_right rfl" }, { "state_after": "no goals", "state_before": "case top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\nha✝ : a ≠ 0 ∨ b ≠ ⊤\nhb✝ : a ≠ ⊤ ∨ b ≠ 0\nhb : a ≠ ⊤ ∨ ⊤ ≠ 0\nha : a ≠ 0\n⊢ (a * ⊤)⁻¹ = a⁻¹ * ⊤⁻¹", "tactic": "simp [ha]" }, { "state_after": "case coe.top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝² : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a ≠ ⊤ ∨ ↑b ≠ 0\nha✝ : ⊤ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ⊤ ≠ ⊤ ∨ b✝ ≠ 0\nha : ⊤ ≠ 0 ∨ ↑b ≠ ⊤\nhb : b ≠ 0\n⊢ (⊤ * ↑b)⁻¹ = ⊤⁻¹ * (↑b)⁻¹", "state_before": "case coe.top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝² : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a ≠ ⊤ ∨ ↑b ≠ 0\nha✝ : ⊤ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ⊤ ≠ ⊤ ∨ b✝ ≠ 0\nha : ⊤ ≠ 0 ∨ ↑b ≠ ⊤\nhb : ⊤ ≠ ⊤ ∨ ↑b ≠ 0\n⊢ (⊤ * ↑b)⁻¹ = ⊤⁻¹ * (↑b)⁻¹", "tactic": "replace hb : b ≠ 0 := coe_ne_zero.1 (hb.neg_resolve_left rfl)" }, { "state_after": "no goals", "state_before": "case coe.top\nα : Type ?u.257111\nβ : Type ?u.257114\na✝ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na b✝ : ℝ≥0∞\nha✝² : a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a ≠ ⊤ ∨ ↑b ≠ 0\nha✝ : ⊤ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ⊤ ≠ ⊤ ∨ b✝ ≠ 0\nha : ⊤ ≠ 0 ∨ ↑b ≠ ⊤\nhb : b ≠ 0\n⊢ (⊤ * ↑b)⁻¹ = ⊤⁻¹ * (↑b)⁻¹", "tactic": "simp [hb]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : a = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "tactic": "simp only [h'a, top_mul, ENNReal.inv_zero, ENNReal.coe_ne_top, zero_mul, Ne.def,\n not_false_iff, ENNReal.coe_zero, ENNReal.inv_eq_zero]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.257111\nβ : Type ?u.257114\na✝¹ b✝¹ c d : ℝ≥0∞\nr p q : ℝ≥0\na✝ b✝ : ℝ≥0∞\nha✝² : a✝ ≠ 0 ∨ b✝ ≠ ⊤\nhb✝² : a✝ ≠ ⊤ ∨ b✝ ≠ 0\nb : ℝ≥0\nha✝¹ : a✝ ≠ 0 ∨ ↑b ≠ ⊤\nhb✝¹ : a✝ ≠ ⊤ ∨ ↑b ≠ 0\na : ℝ≥0\nha✝ : ↑a ≠ 0 ∨ b✝ ≠ ⊤\nhb✝ : ↑a ≠ ⊤ ∨ b✝ ≠ 0\nha : ↑a ≠ 0 ∨ ↑b ≠ ⊤\nhb : ↑a ≠ ⊤ ∨ ↑b ≠ 0\nh'a : ¬a = 0\nh'b : b = 0\n⊢ (↑a * ↑b)⁻¹ = (↑a)⁻¹ * (↑b)⁻¹", "tactic": "simp only [h'b, ENNReal.inv_zero, ENNReal.coe_ne_top, mul_top, Ne.def, not_false_iff,\n mul_zero, ENNReal.coe_zero, ENNReal.inv_eq_zero]" } ]
[ 1442, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1426, 11 ]
Mathlib/Analysis/Convex/Strict.lean
DirectedOn.strictConvex_sUnion
[ { "state_after": "𝕜 : Type u_2\n𝕝 : Type ?u.6609\nE : Type u_1\nF : Type ?u.6615\nβ : Type ?u.6618\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : SMul 𝕜 E\ninst✝ : SMul 𝕜 F\ns : Set E\nx y : E\na b : 𝕜\nS : Set (Set E)\nhdir : DirectedOn (fun x x_1 => x ⊆ x_1) S\nhS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s\n⊢ StrictConvex 𝕜 (⋃ (i : ↑S), ↑i)", "state_before": "𝕜 : Type u_2\n𝕝 : Type ?u.6609\nE : Type u_1\nF : Type ?u.6615\nβ : Type ?u.6618\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : SMul 𝕜 E\ninst✝ : SMul 𝕜 F\ns : Set E\nx y : E\na b : 𝕜\nS : Set (Set E)\nhdir : DirectedOn (fun x x_1 => x ⊆ x_1) S\nhS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s\n⊢ StrictConvex 𝕜 (⋃₀ S)", "tactic": "rw [sUnion_eq_iUnion]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\n𝕝 : Type ?u.6609\nE : Type u_1\nF : Type ?u.6615\nβ : Type ?u.6618\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : TopologicalSpace F\ninst✝³ : AddCommMonoid E\ninst✝² : AddCommMonoid F\ninst✝¹ : SMul 𝕜 E\ninst✝ : SMul 𝕜 F\ns : Set E\nx y : E\na b : 𝕜\nS : Set (Set E)\nhdir : DirectedOn (fun x x_1 => x ⊆ x_1) S\nhS : ∀ (s : Set E), s ∈ S → StrictConvex 𝕜 s\n⊢ StrictConvex 𝕜 (⋃ (i : ↑S), ↑i)", "tactic": "exact (directedOn_iff_directed.1 hdir).strictConvex_iUnion fun s => hS _ s.2" } ]
[ 100, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/RingTheory/OreLocalization/Basic.lean
OreLocalization.mul'_char
[ { "state_after": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\n⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\n⊢ OreLocalization.mul' r₁ s₁ r₂ s₂ = r₁ * v /ₒ (s₂ * u)", "tactic": "simp only [mul']" }, { "state_after": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nh₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * oreNum r₂ s₁\n⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\n⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "tactic": "have h₀ := ore_eq r₂ s₁" }, { "state_after": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nh₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * v₀\n⊢ r₁ * v₀ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nh₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * oreNum r₂ s₁\n⊢ r₁ * oreNum r₂ s₁ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "tactic": "set v₀ := oreNum r₂ s₁" }, { "state_after": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nh₀ : r₂ * ↑(oreDenom r₂ s₁) = ↑s₁ * v₀\n⊢ r₁ * v₀ /ₒ (s₂ * oreDenom r₂ s₁) = r₁ * v /ₒ (s₂ * u)", "tactic": "set u₀ := oreDenom r₂ s₁" }, { "state_after": "case mk.mk\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "tactic": "rcases oreCondition (u₀ : R) u with ⟨r₃, s₃, h₃⟩" }, { "state_after": "case mk.mk\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "state_before": "case mk.mk\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "tactic": "have :=\n calc\n (s₁ : R) * (v * r₃) = r₂ * u * r₃ := by rw [← mul_assoc, ← huv]\n _ = r₂ * u₀ * s₃ := by rw [mul_assoc, mul_assoc, h₃]\n _ = s₁ * (v₀ * s₃) := by rw [← mul_assoc, h₀]" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "state_before": "case mk.mk\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "tactic": "rcases ore_left_cancel _ _ _ this with ⟨s₄, hs₄⟩" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v /ₒ (s₂ * u) = r₁ * v₀ /ₒ (s₂ * u₀)", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v₀ /ₒ (s₂ * u₀) = r₁ * v /ₒ (s₂ * u)", "tactic": "symm" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ∃ u_1 v_1, r₁ * v₀ * ↑u_1 = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑u_1 = ↑(s₂ * u) * v_1", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v /ₒ (s₂ * u) = r₁ * v₀ /ₒ (s₂ * u₀)", "tactic": "rw [oreDiv_eq_iff]" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ∃ v_1, r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * v_1", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ∃ u_1 v_1, r₁ * v₀ * ↑u_1 = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑u_1 = ↑(s₂ * u) * v_1", "tactic": "use s₃ * s₄" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * (r₃ * ↑s₄)", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ∃ v_1, r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * v_1 ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * v_1", "tactic": "use r₃ * s₄" }, { "state_after": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * v₀ * ↑(s₃ * s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑(s₂ * u₀) * ↑(s₃ * s₄) = ↑(s₂ * u) * (r₃ * ↑s₄)", "tactic": "simp only [Submonoid.coe_mul]" }, { "state_after": "case mk.mk.intro.left\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)\n\ncase mk.mk.intro.right\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "state_before": "case mk.mk.intro\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄) ∧ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\n⊢ ↑s₁ * (v * r₃) = r₂ * ↑u * r₃", "tactic": "rw [← mul_assoc, ← huv]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\n⊢ r₂ * ↑u * r₃ = r₂ * ↑u₀ * ↑s₃", "tactic": "rw [mul_assoc, mul_assoc, h₃]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\n⊢ r₂ * ↑u₀ * ↑s₃ = ↑s₁ * (v₀ * ↑s₃)", "tactic": "rw [← mul_assoc, h₀]" }, { "state_after": "case mk.mk.intro.left\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * (v * r₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)", "state_before": "case mk.mk.intro.left\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * oreNum r₂ s₁ * (↑s₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)", "tactic": "rw [mul_assoc (b := v₀), ← mul_assoc (a := v₀), ← hs₄]" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.left\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ r₁ * (v * r₃ * ↑s₄) = r₁ * v * (r₃ * ↑s₄)", "tactic": "simp only [mul_assoc]" }, { "state_after": "case mk.mk.intro.right\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ↑s₂ * (↑u * r₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "state_before": "case mk.mk.intro.right\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ↑s₂ * ↑(oreDenom r₂ s₁) * (↑s₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "tactic": "rw [mul_assoc (b := (u₀ : R)), ← mul_assoc (a := (u₀ : R)), h₃]" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.right\nR : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr₁ r₂ : R\ns₁ s₂ u : { x // x ∈ S }\nv : R\nhuv : r₂ * ↑u = ↑s₁ * v\nv₀ : R := oreNum r₂ s₁\nu₀ : { x // x ∈ S } := oreDenom r₂ s₁\nh₀ : r₂ * ↑u₀ = ↑s₁ * v₀\nr₃ : R\ns₃ : { x // x ∈ S }\nh₃ : ↑u₀ * ↑s₃ = ↑u * r₃\nthis : ↑s₁ * (v * r₃) = ↑s₁ * (v₀ * ↑s₃)\ns₄ : { x // x ∈ S }\nhs₄ : v * r₃ * ↑s₄ = v₀ * ↑s₃ * ↑s₄\n⊢ ↑s₂ * (↑u * r₃ * ↑s₄) = ↑s₂ * ↑u * (r₃ * ↑s₄)", "tactic": "simp only [mul_assoc]" } ]
[ 218, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 9 ]
Mathlib/Logic/Equiv/Basic.lean
Function.update_comp_equiv
[ { "state_after": "no goals", "state_before": "α' : Sort u_1\nα : Sort u_2\nβ : Sort u_3\ninst✝¹ : DecidableEq α'\ninst✝ : DecidableEq α\nf : α → β\ng : α' ≃ α\na : α\nv : β\n⊢ update f a v ∘ ↑g = update (f ∘ ↑g) (↑g.symm a) v", "tactic": "rw [← update_comp_eq_of_injective _ g.injective, g.apply_symm_apply]" } ]
[ 1921, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1918, 1 ]
Mathlib/Data/Nat/Factors.lean
Nat.factors_chain
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ∀ {a : ℕ}, (∀ (p : ℕ), Prime p → p ∣ n → a ≤ p) → List.Chain (fun x x_1 => x ≤ x_1) a (factors n)", "tactic": "match n with\n| 0 => simp\n| 1 => simp\n| k + 2 =>\n intro a h\n let m := minFac (k + 2)\n have : (k + 2) / m < (k + 2) := factors_lemma\n rw [factors]\n refine' List.Chain.cons ((le_minFac.2 h).resolve_left (by simp)) (factors_chain _)\n exact fun p pp d => minFac_le_of_dvd pp.two_le (d.trans <| div_dvd_of_dvd <| minFac_dvd _)" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ∀ {a : ℕ}, (∀ (p : ℕ), Prime p → p ∣ 0 → a ≤ p) → List.Chain (fun x x_1 => x ≤ x_1) a (factors 0)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ∀ {a : ℕ}, (∀ (p : ℕ), Prime p → p ∣ 1 → a ≤ p) → List.Chain (fun x x_1 => x ≤ x_1) a (factors 1)", "tactic": "simp" }, { "state_after": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "state_before": "n k : ℕ\n⊢ ∀ {a : ℕ}, (∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p) → List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "tactic": "intro a h" }, { "state_after": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "tactic": "let m := minFac (k + 2)" }, { "state_after": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "tactic": "have : (k + 2) / m < (k + 2) := factors_lemma" }, { "state_after": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a\n (let m := minFac (k + 2);\n let_fun this := (_ : (k + 2) / minFac (k + 2) < k + 2);\n m :: factors ((k + 2) / m))", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a (factors (k + 2))", "tactic": "rw [factors]" }, { "state_after": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ ∀ (p : ℕ), Prime p → p ∣ (k + 2) / minFac (k + 2) → minFac (k + 2) ≤ p", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ List.Chain (fun x x_1 => x ≤ x_1) a\n (let m := minFac (k + 2);\n let_fun this := (_ : (k + 2) / minFac (k + 2) < k + 2);\n m :: factors ((k + 2) / m))", "tactic": "refine' List.Chain.cons ((le_minFac.2 h).resolve_left (by simp)) (factors_chain _)" }, { "state_after": "no goals", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ ∀ (p : ℕ), Prime p → p ∣ (k + 2) / minFac (k + 2) → minFac (k + 2) ≤ p", "tactic": "exact fun p pp d => minFac_le_of_dvd pp.two_le (d.trans <| div_dvd_of_dvd <| minFac_dvd _)" }, { "state_after": "no goals", "state_before": "n k a : ℕ\nh : ∀ (p : ℕ), Prime p → p ∣ k + 2 → a ≤ p\nm : ℕ := minFac (k + 2)\nthis : (k + 2) / m < k + 2\n⊢ ¬k + 2 = 1", "tactic": "simp" } ]
[ 104, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
extChartAt_source_mem_nhdsWithin'
[]
[ 1078, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1076, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
ContinuousWithinAt.zpow
[]
[ 536, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.setToL1_const
[]
[ 1158, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1156, 1 ]
Mathlib/Topology/LocallyConstant/Basic.lean
IsLocallyConstant.one
[]
[ 193, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Data/PFunctor/Univariate/M.lean
PFunctor.M.iselect_cons
[ { "state_after": "no goals", "state_before": "F : PFunctor\nX : Type ?u.28846\nf✝ : X → Obj F X\ninst✝¹ : DecidableEq F.A\ninst✝ : Inhabited (M F)\nps : Path F\na : F.A\nf : B F a → M F\ni : B F a\n⊢ iselect ({ fst := a, snd := i } :: ps) (M.mk { fst := a, snd := f }) = iselect ps (f i)", "tactic": "simp only [iselect, isubtree_cons]" } ]
[ 574, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 573, 1 ]
Mathlib/Data/List/BigOperators/Basic.lean
MonoidHom.map_list_prod
[]
[ 704, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 11 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.leftMoves_mk
[]
[ 142, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.closure_cycle_coprime_swap
[ { "state_after": "ι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "state_before": "ι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (Fintype.card α)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "rw [← Finset.card_univ, ← h2, ← h1.orderOf] at h0" }, { "state_after": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "state_before": "ι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "cases' exists_pow_eq_self_of_coprime h0 with m hm" }, { "state_after": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "state_before": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "have h2' : (σ ^ n).support = ⊤ := Eq.trans (support_pow_coprime h0) h2" }, { "state_after": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle ((σ ^ n) ^ ↑m)\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "state_before": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "have h1' : IsCycle ((σ ^ n) ^ (m : ℤ)) := by rwa [← hm] at h1" }, { "state_after": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle (σ ^ n)\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "state_before": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle ((σ ^ n) ^ ↑m)\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "replace h1' : IsCycle (σ ^ n) :=\n h1'.of_pow (le_trans (support_pow_le σ n) (ge_of_eq (congr_arg support hm)))" }, { "state_after": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle (σ ^ n)\n⊢ σ ^ n ∈ ↑(closure {σ, swap x (↑(σ ^ n) x)}) ∧ {swap x (↑(σ ^ n) x)} ⊆ ↑(closure {σ, swap x (↑(σ ^ n) x)})", "state_before": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle (σ ^ n)\n⊢ closure {σ, swap x (↑(σ ^ n) x)} = ⊤", "tactic": "rw [eq_top_iff, ← closure_cycle_adjacent_swap h1' h2' x, closure_le, Set.insert_subset]" }, { "state_after": "no goals", "state_before": "case intro\nι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\nh1' : IsCycle (σ ^ n)\n⊢ σ ^ n ∈ ↑(closure {σ, swap x (↑(σ ^ n) x)}) ∧ {swap x (↑(σ ^ n) x)} ⊆ ↑(closure {σ, swap x (↑(σ ^ n) x)})", "tactic": "exact\n ⟨Subgroup.pow_mem (closure _) (subset_closure (Set.mem_insert σ _)) n,\n Set.singleton_subset_iff.mpr (subset_closure (Set.mem_insert_of_mem _ (Set.mem_singleton _)))⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2958039\nα : Type u_1\nβ : Type ?u.2958045\ninst✝² : DecidableEq α\ninst✝¹ : Finite β\ninst✝ : Fintype α\nn : ℕ\nσ : Perm α\nh0 : Nat.coprime n (orderOf σ)\nh1 : IsCycle σ\nh2 : support σ = univ\nx : α\nm : ℕ\nhm : (σ ^ n) ^ m = σ\nh2' : support (σ ^ n) = ⊤\n⊢ IsCycle ((σ ^ n) ^ ↑m)", "tactic": "rwa [← hm] at h1" } ]
[ 1680, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1668, 1 ]
Mathlib/Analysis/Complex/AbsMax.lean
Complex.norm_eq_norm_of_isMaxOn_of_ball_subset
[]
[ 208, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isLittleO_one_left_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.297892\nE : Type u_3\nF : Type u_2\nG : Type ?u.297901\nE' : Type ?u.297904\nF' : Type ?u.297907\nG' : Type ?u.297910\nE'' : Type ?u.297913\nF'' : Type ?u.297916\nG'' : Type ?u.297919\nR : Type ?u.297922\nR' : Type ?u.297925\n𝕜 : Type ?u.297928\n𝕜' : Type ?u.297931\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : One F\ninst✝ : NormOneClass F\n_x : α\n⊢ 0 ≤ ‖1‖", "tactic": "simp only [norm_one, zero_le_one]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.297892\nE : Type u_3\nF : Type u_2\nG : Type ?u.297901\nE' : Type ?u.297904\nF' : Type ?u.297907\nG' : Type ?u.297910\nE'' : Type ?u.297913\nF'' : Type ?u.297916\nG'' : Type ?u.297919\nR : Type ?u.297922\nR' : Type ?u.297925\n𝕜 : Type ?u.297928\n𝕜' : Type ?u.297931\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : One F\ninst✝ : NormOneClass F\n⊢ (∀ (n : ℕ), ∀ᶠ (x : α) in l, ↑n * ‖1‖ ≤ ‖f x‖) ↔ ∀ (n : ℕ), True → ∀ᶠ (x : α) in l, ‖f x‖ ∈ Ici ↑n", "tactic": "simp only [norm_one, mul_one, true_imp_iff, mem_Ici]" } ]
[ 1346, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1339, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iic_inter_Ioc_of_le
[]
[ 715, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 714, 1 ]
Mathlib/Order/Hom/Bounded.lean
BotHom.coe_copy
[]
[ 414, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.flip_apply
[]
[ 336, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 335, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.aeval_mul
[]
[ 254, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/MeasureTheory/Group/Arithmetic.lean
Finset.measurable_prod'
[]
[ 934, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 932, 1 ]
Mathlib/Algebra/Lie/Normalizer.lean
LieSubmodule.mem_normalizer
[]
[ 64, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Data/Set/Basic.lean
Set.setOf_or
[]
[ 306, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
sub_lt_of_abs_sub_lt_left
[]
[ 301, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 300, 1 ]
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_eq_of_isRotated
[ { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.774035\ninst✝ : DecidableEq α\nl✝ : List α\nx : α\nl : List α\nhd : Nodup l\nn : ℕ\n⊢ formPerm l = formPerm (rotate l n)", "state_before": "α : Type u_1\nβ : Type ?u.774035\ninst✝ : DecidableEq α\nl✝ : List α\nx : α\nl l' : List α\nhd : Nodup l\nh : l ~r l'\n⊢ formPerm l = formPerm l'", "tactic": "obtain ⟨n, rfl⟩ := h" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.774035\ninst✝ : DecidableEq α\nl✝ : List α\nx : α\nl : List α\nhd : Nodup l\nn : ℕ\n⊢ formPerm l = formPerm (rotate l n)", "tactic": "exact (formPerm_rotate l hd n).symm" } ]
[ 296, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.findMin_dual
[]
[ 591, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 589, 1 ]
Mathlib/Order/BoundedOrder.lean
bot_unique
[]
[ 369, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/Data/Fin/VecNotation.lean
Matrix.vecHead_vecAlt0
[]
[ 362, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Data/List/Func.lean
List.Func.get_map
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nx✝ : ℕ\nh : x✝ < length []\n⊢ get x✝ (map f []) = f (get x✝ [])", "tactic": "cases h" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\nh2 : n < length as\n⊢ get (n + 1) (map f (head✝ :: as)) = f (get (n + 1) (head✝ :: as))", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\n⊢ get (n + 1) (map f (head✝ :: as)) = f (get (n + 1) (head✝ :: as))", "tactic": "have h2 : n < length as := by\n rw [← Nat.succ_le_iff, ← Nat.lt_succ_iff]\n apply h1" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\nh2 : n < length as\n⊢ get (n + 1) (map f (head✝ :: as)) = f (get (n + 1) (head✝ :: as))", "tactic": "apply get_map h2" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\n⊢ Nat.succ n < Nat.succ (length as)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\n⊢ n < length as", "tactic": "rw [← Nat.succ_le_iff, ← Nat.lt_succ_iff]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas✝ as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nf : α → β\nn : ℕ\nhead✝ : α\nas : List α\nh1 : n + 1 < length (head✝ :: as)\n⊢ Nat.succ n < Nat.succ (length as)", "tactic": "apply h1" } ]
[ 205, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Analysis/Convex/Function.lean
concaveOn_iff_pairwise_pos
[]
[ 356, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 351, 1 ]
Mathlib/MeasureTheory/Group/Measure.lean
MeasureTheory.Measure.measurePreserving_inv
[]
[ 390, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 389, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.add_one_le_exp
[ { "state_after": "case inl\nx : ℝ\nh : 0 ≤ x\n⊢ x + 1 ≤ exp x\n\ncase inr\nx : ℝ\nh : x < 0\n⊢ x + 1 ≤ exp x", "state_before": "x : ℝ\n⊢ x + 1 ≤ exp x", "tactic": "cases' le_or_lt 0 x with h h" }, { "state_after": "no goals", "state_before": "case inr\nx : ℝ\nh : x < 0\n⊢ x + 1 ≤ exp x", "tactic": "exact (add_one_lt_exp_of_neg h).le" }, { "state_after": "no goals", "state_before": "case inl\nx : ℝ\nh : 0 ≤ x\n⊢ x + 1 ≤ exp x", "tactic": "exact Real.add_one_le_exp_of_nonneg h" } ]
[ 1990, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1987, 1 ]
Mathlib/Algebra/Squarefree.lean
Squarefree.squarefree_of_dvd
[]
[ 88, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
orthogonalProjection_mem_subspace_eq_self
[ { "state_after": "case a\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.512356\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace { x // x ∈ K }\nv : { x // x ∈ K }\n⊢ ↑(↑(orthogonalProjection K) ↑v) = ↑v", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.512356\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace { x // x ∈ K }\nv : { x // x ∈ K }\n⊢ ↑(orthogonalProjection K) ↑v = v", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.512356\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\ninst✝ : CompleteSpace { x // x ∈ K }\nv : { x // x ∈ K }\n⊢ ↑(↑(orthogonalProjection K) ↑v) = ↑v", "tactic": "apply eq_orthogonalProjection_of_mem_of_inner_eq_zero <;> simp" } ]
[ 519, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.pair_eq_singleton
[]
[ 1113, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1112, 1 ]
Mathlib/SetTheory/ZFC/Ordinal.lean
ZFSet.isTransitive_iff_sUnion_subset
[ { "state_after": "case intro.intro\nx y✝ z✝ : ZFSet\nh : IsTransitive x\ny : ZFSet\nhy : y ∈ ⋃₀ x\nz : ZFSet\nhz : z ∈ x\nhz' : y ∈ z\n⊢ y ∈ x", "state_before": "x y✝ z : ZFSet\nh : IsTransitive x\ny : ZFSet\nhy : y ∈ ⋃₀ x\n⊢ y ∈ x", "tactic": "rcases mem_sUnion.1 hy with ⟨z, hz, hz'⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nx y✝ z✝ : ZFSet\nh : IsTransitive x\ny : ZFSet\nhy : y ∈ ⋃₀ x\nz : ZFSet\nhz : z ∈ x\nhz' : y ∈ z\n⊢ y ∈ x", "tactic": "exact h.mem_trans hz' hz" } ]
[ 99, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.MeasurePreserving.set_lintegral_comp_emb
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1688080\nδ : Type ?u.1688083\nm : MeasurableSpace α\nμ ν✝ : Measure α\nmb : MeasurableSpace β\nν : Measure β\ng : α → β\nhg : MeasurePreserving g\nhge : MeasurableEmbedding g\nf : β → ℝ≥0∞\ns : Set α\n⊢ (∫⁻ (a : α) in s, f (g a) ∂μ) = ∫⁻ (b : β) in g '' s, f b ∂ν", "tactic": "rw [← hg.set_lintegral_comp_preimage_emb hge, preimage_image_eq _ hge.injective]" } ]
[ 1357, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1354, 1 ]
Mathlib/Topology/Algebra/Module/StrongTopology.lean
ContinuousLinearMap.strongUniformity.uniformEmbedding_coeFn
[]
[ 104, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
IsLeast.csInf_eq
[]
[ 569, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 568, 1 ]
Mathlib/Deprecated/Group.lean
RingHom.to_isAddGroupHom
[]
[ 391, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/Analysis/Convex/Star.lean
StarConvex.smul_mem
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.110353\ninst✝⁴ : OrderedRing 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : AddCommGroup F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nx y : E\ns t✝ : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht₀ : 0 ≤ t\nht₁ : t ≤ 1\n⊢ t • x ∈ s", "tactic": "simpa using hs.add_smul_mem (by simpa using hx) ht₀ ht₁" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.110353\ninst✝⁴ : OrderedRing 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : AddCommGroup F\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nx y : E\ns t✝ : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht₀ : 0 ≤ t\nht₁ : t ≤ 1\n⊢ 0 + x ∈ s", "tactic": "simpa using hx" } ]
[ 344, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 343, 1 ]
Std/Data/List/Lemmas.lean
List.sublist_of_cons_sublist
[]
[ 342, 28 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 341, 1 ]
Mathlib/Data/Polynomial/UnitTrinomial.lean
Polynomial.trinomial_natDegree
[ { "state_after": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i ∈ support (trinomial k m n u v w)\n⊢ ↑i ≤ ↑n", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\n⊢ natDegree (trinomial k m n u v w) = n", "tactic": "refine'\n natDegree_eq_of_degree_eq_some\n ((Finset.sup_le fun i h => _).antisymm <|\n le_degree_of_ne_zero <| by rwa [trinomial_leading_coeff' hkm hmn])" }, { "state_after": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i ∈ {k, m, n}\n⊢ ↑i ≤ ↑n", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i ∈ support (trinomial k m n u v w)\n⊢ ↑i ≤ ↑n", "tactic": "replace h := support_trinomial' k m n u v w h" }, { "state_after": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i = k ∨ i = m ∨ i = n\n⊢ ↑i ≤ ↑n", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i ∈ {k, m, n}\n⊢ ↑i ≤ ↑n", "tactic": "rw [mem_insert, mem_insert, mem_singleton] at h" }, { "state_after": "case inl\nR : Type u_1\ninst✝ : Semiring R\nm n : ℕ\nu v w : R\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nhkm : i < m\n⊢ ↑i ≤ ↑n\n\ncase inr.inl\nR : Type u_1\ninst✝ : Semiring R\nk n : ℕ\nu v w : R\nhw : w ≠ 0\ni : ℕ\nhkm : k < i\nhmn : i < n\n⊢ ↑i ≤ ↑n\n\ncase inr.inr\nR : Type u_1\ninst✝ : Semiring R\nk m : ℕ\nu v w : R\nhkm : k < m\nhw : w ≠ 0\ni : ℕ\nhmn : m < i\n⊢ ↑i ≤ ↑i", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nh : i = k ∨ i = m ∨ i = n\n⊢ ↑i ≤ ↑n", "tactic": "rcases h with (rfl | rfl | rfl)" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Semiring R\nk m n : ℕ\nu v w : R\nhkm : k < m\nhmn : m < n\nhw : w ≠ 0\n⊢ coeff (trinomial k m n u v w) n ≠ 0", "tactic": "rwa [trinomial_leading_coeff' hkm hmn]" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u_1\ninst✝ : Semiring R\nm n : ℕ\nu v w : R\nhmn : m < n\nhw : w ≠ 0\ni : ℕ\nhkm : i < m\n⊢ ↑i ≤ ↑n", "tactic": "exact WithBot.coe_le_coe.mpr (hkm.trans hmn).le" }, { "state_after": "no goals", "state_before": "case inr.inl\nR : Type u_1\ninst✝ : Semiring R\nk n : ℕ\nu v w : R\nhw : w ≠ 0\ni : ℕ\nhkm : k < i\nhmn : i < n\n⊢ ↑i ≤ ↑n", "tactic": "exact WithBot.coe_le_coe.mpr hmn.le" }, { "state_after": "no goals", "state_before": "case inr.inr\nR : Type u_1\ninst✝ : Semiring R\nk m : ℕ\nu v w : R\nhkm : k < m\nhw : w ≠ 0\ni : ℕ\nhmn : m < i\n⊢ ↑i ≤ ↑i", "tactic": "exact le_rfl" } ]
[ 81, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Data/Num/Lemmas.lean
ZNum.zneg_zneg
[ { "state_after": "no goals", "state_before": "α : Type ?u.658241\nn : ZNum\n⊢ - -n = n", "tactic": "cases n <;> rfl" } ]
[ 1079, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1079, 1 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.isIso_of_bijective
[]
[ 564, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 561, 1 ]
Mathlib/Data/Polynomial/Coeff.lean
Polynomial.coeff_monomial_zero_mul
[]
[ 292, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 290, 1 ]
Mathlib/Data/Nat/Factors.lean
Nat.dvd_of_factors_subperm
[ { "state_after": "case inl\na : ℕ\nha : a ≠ 0\nh : factors a <+~ factors 0\n⊢ a ∣ 0\n\ncase inr\na b : ℕ\nha : a ≠ 0\nh : factors a <+~ factors b\nhb : b > 0\n⊢ a ∣ b", "state_before": "a b : ℕ\nha : a ≠ 0\nh : factors a <+~ factors b\n⊢ a ∣ b", "tactic": "rcases b.eq_zero_or_pos with (rfl | hb)" }, { "state_after": "case inr.zero\nb : ℕ\nhb : b > 0\nha : zero ≠ 0\nh : factors zero <+~ factors b\n⊢ zero ∣ b\n\ncase inr.succ.zero\nb : ℕ\nhb : b > 0\nha : succ zero ≠ 0\nh : factors (succ zero) <+~ factors b\n⊢ succ zero ∣ b\n\ncase inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ succ (succ a) ∣ b", "state_before": "case inr\na b : ℕ\nha : a ≠ 0\nh : factors a <+~ factors b\nhb : b > 0\n⊢ a ∣ b", "tactic": "rcases a with (_ | _ | a)" }, { "state_after": "case inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ b = succ (succ a) * prod (List.diff (factors b) (factors (succ (succ a))))", "state_before": "case inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ succ (succ a) ∣ b", "tactic": "use (@List.diff _ instBEq b.factors a.succ.succ.factors).prod" }, { "state_after": "case inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ b = prod (factors (succ (succ a))) * prod (List.diff (factors b) (factors (succ (succ a))))", "state_before": "case inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ b = succ (succ a) * prod (List.diff (factors b) (factors (succ (succ a))))", "tactic": "nth_rw 1 [← Nat.prod_factors ha]" }, { "state_after": "no goals", "state_before": "case inr.succ.succ\nb : ℕ\nhb : b > 0\na : ℕ\nha : succ (succ a) ≠ 0\nh : factors (succ (succ a)) <+~ factors b\n⊢ b = prod (factors (succ (succ a))) * prod (List.diff (factors b) (factors (succ (succ a))))", "tactic": "rw [← List.prod_append,\n List.Perm.prod_eq <| List.subperm_append_diff_self_of_count_le <| List.subperm_ext_iff.mp h,\n Nat.prod_factors hb.ne']" }, { "state_after": "no goals", "state_before": "case inl\na : ℕ\nha : a ≠ 0\nh : factors a <+~ factors 0\n⊢ a ∣ 0", "tactic": "exact dvd_zero _" }, { "state_after": "no goals", "state_before": "case inr.zero\nb : ℕ\nhb : b > 0\nha : zero ≠ 0\nh : factors zero <+~ factors b\n⊢ zero ∣ b", "tactic": "exact (ha rfl).elim" }, { "state_after": "no goals", "state_before": "case inr.succ.zero\nb : ℕ\nhb : b > 0\nha : succ zero ≠ 0\nh : factors (succ zero) <+~ factors b\n⊢ succ zero ∣ b", "tactic": "exact one_dvd _" } ]
[ 253, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.toList_cons
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.481863\nγ : Type ?u.481866\na : α\ns : Finset α\nh : ¬a ∈ s\n⊢ List.Nodup (a :: toList s)", "tactic": "simp [h, nodup_toList s]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.481863\nγ : Type ?u.481866\na : α\ns : Finset α\nh : ¬a ∈ s\nx : α\n⊢ x ∈ toList (cons a s h) ↔ x ∈ a :: toList s", "tactic": "simp only [List.mem_cons, Finset.mem_toList, Finset.mem_cons]" } ]
[ 3409, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3407, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
Pi.sum_nnnorm_apply_le_nnnorm'
[]
[ 2557, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2556, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_comap
[]
[ 2087, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2086, 1 ]
Mathlib/Order/Bounds/Basic.lean
le_of_isLUB_le_isGLB
[]
[ 1063, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
Path.Homotopy.trans_refl_reparam
[ { "state_after": "no goals", "state_before": "X : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\n⊢ Continuous fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }", "tactic": "continuity" }, { "state_after": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =\n ↑(Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) })\n (_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) })\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))\n x✝", "state_before": "X : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\n⊢ Path.trans p (Path.refl x₁) =\n Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) })\n (_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) })\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1)", "tactic": "ext" }, { "state_after": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =\n ↑(Path.reparam p (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) })\n (_ :\n Continuous fun x =>\n { val := if ↑x ≤ 1 / 2 then 2 * ↑x else 1, property := (_ : transReflReparamAux x ∈ I) })\n (_ :\n (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)\n (_ :\n (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))\n x✝", "state_before": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =\n ↑(Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) })\n (_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) })\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)\n (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))\n x✝", "tactic": "unfold transReflReparamAux" }, { "state_after": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ (if h : ↑x✝ ≤ 2⁻¹ then ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } else x₁) =\n ↑p\n { val := if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1, property := (_ : (fun x => x ∈ I) (if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1)) }", "state_before": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =\n ↑(Path.reparam p (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) })\n (_ :\n Continuous fun x =>\n { val := if ↑x ≤ 1 / 2 then 2 * ↑x else 1, property := (_ : transReflReparamAux x ∈ I) })\n (_ :\n (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)\n (_ :\n (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))\n x✝", "tactic": "simp only [Path.trans_apply, not_le, coe_reparam, Function.comp_apply, one_div, Path.refl_apply]" }, { "state_after": "case a.h.inl.inl\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ↑x✝ ≤ 2⁻¹\nh✝ : ↑x✝ ≤ 2⁻¹\n⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =\n ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }\n\ncase a.h.inl.inr\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ↑x✝ ≤ 2⁻¹\nh✝ : ¬↑x✝ ≤ 2⁻¹\n⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =\n ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }\n\ncase a.h.inr.inl\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ¬↑x✝ ≤ 2⁻¹\nh✝ : ↑x✝ ≤ 2⁻¹\n⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }\n\ncase a.h.inr.inr\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ¬↑x✝ ≤ 2⁻¹\nh✝ : ¬↑x✝ ≤ 2⁻¹\n⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }", "state_before": "case a.h\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\n⊢ (if h : ↑x✝ ≤ 2⁻¹ then ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } else x₁) =\n ↑p\n { val := if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1, property := (_ : (fun x => x ∈ I) (if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1)) }", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "case a.h.inl.inl\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ↑x✝ ≤ 2⁻¹\nh✝ : ↑x✝ ≤ 2⁻¹\n⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =\n ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case a.h.inl.inr\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ↑x✝ ≤ 2⁻¹\nh✝ : ¬↑x✝ ≤ 2⁻¹\n⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =\n ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case a.h.inr.inl\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ¬↑x✝ ≤ 2⁻¹\nh✝ : ↑x✝ ≤ 2⁻¹\n⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case a.h.inr.inr\nX : Type u\nY : Type v\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx₀ x₁ : X\np : Path x₀ x₁\nx✝ : ↑I\nh✝¹ : ¬↑x✝ ≤ 2⁻¹\nh✝ : ¬↑x✝ ≤ 2⁻¹\n⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }", "tactic": "simp" } ]
[ 175, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Data/Set/Function.lean
Set.restrict_extend_range
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Sort ?u.3473\nπ : α → Type ?u.3478\nf : α → β\ng : α → γ\ng' : β → γ\n⊢ restrict (range f) (extend f g g') = fun x => g (Exists.choose (_ : ↑x ∈ range f))", "tactic": "classical\nexact restrict_dite _ _" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nι : Sort ?u.3473\nπ : α → Type ?u.3478\nf : α → β\ng : α → γ\ng' : β → γ\n⊢ restrict (range f) (extend f g g') = fun x => g (Exists.choose (_ : ↑x ∈ range f))", "tactic": "exact restrict_dite _ _" } ]
[ 123, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Constructions.lean
Pmf.normalize_apply
[]
[ 251, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
Continuous.ennreal_mul
[]
[ 373, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 369, 1 ]
Mathlib/Algebra/Ring/AddAut.lean
AddAut.mulRight_symm_apply
[]
[ 49, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.comp_eq_sum_left
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\n⊢ comp p q = sum p fun e a => ↑C a * q ^ e", "tactic": "rw [comp, eval₂_eq_sum]" } ]
[ 531, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/Data/Matrix/Kronecker.lean
Matrix.kroneckerMap_map_left
[]
[ 79, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/RingTheory/Polynomial/Basic.lean
Polynomial.linearIndependent_powers_iff_aeval
[ { "state_after": "R : Type u\nS : Type ?u.665456\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\n⊢ (∀ (l : ℕ →₀ R), ↑(Finsupp.total ℕ ((fun x => M) v) R fun n => ↑(f ^ n) v) l = 0 → l = 0) ↔\n ∀ (p : R[X]), ↑(↑(aeval f) p) v = 0 → p = 0", "state_before": "R : Type u\nS : Type ?u.665456\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\n⊢ (LinearIndependent R fun n => ↑(f ^ n) v) ↔ ∀ (p : R[X]), ↑(↑(aeval f) p) v = 0 → p = 0", "tactic": "rw [linearIndependent_iff]" }, { "state_after": "R : Type u\nS : Type ?u.665456\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\n⊢ (∀ (l : ℕ →₀ R), (Finsupp.sum l fun i a => a • ↑(f ^ i) v) = 0 → l = 0) ↔\n ∀ (q : AddMonoidAlgebra R ℕ), (sum { toFinsupp := q } fun n b => b • ↑(f ^ n) v) = 0 → q = 0", "state_before": "R : Type u\nS : Type ?u.665456\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\n⊢ (∀ (l : ℕ →₀ R), ↑(Finsupp.total ℕ ((fun x => M) v) R fun n => ↑(f ^ n) v) l = 0 → l = 0) ↔\n ∀ (p : R[X]), ↑(↑(aeval f) p) v = 0 → p = 0", "tactic": "simp only [Finsupp.total_apply, aeval_endomorphism, forall_iff_forall_finsupp, Sum, support,\n coeff, ofFinsupp_eq_zero]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type ?u.665456\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\nv : M\n⊢ (∀ (l : ℕ →₀ R), (Finsupp.sum l fun i a => a • ↑(f ^ i) v) = 0 → l = 0) ↔\n ∀ (q : AddMonoidAlgebra R ℕ), (sum { toFinsupp := q } fun n b => b • ↑(f ^ n) v) = 0 → q = 0", "tactic": "exact Iff.rfl" } ]
[ 991, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 986, 1 ]
Mathlib/Data/Complex/Module.lean
Complex.coe_basisOneI_repr
[]
[ 165, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.count_normalizedFactors_eq
[ { "state_after": "case pos\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : x = 0\n⊢ count p (normalizedFactors x) = n\n\ncase neg\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ count p (normalizedFactors x) = n", "state_before": "α : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\n⊢ count p (normalizedFactors x) = n", "tactic": "by_cases hx0 : x = 0" }, { "state_after": "case neg\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ ↑(count p (normalizedFactors x)) = ↑n", "state_before": "case neg\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ count p (normalizedFactors x) = n", "tactic": "rw [← PartENat.natCast_inj]" }, { "state_after": "case h.e'_2.h.e'_3.h.e'_3\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ p = ↑normalize p\n\ncase h.e'_3\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ ↑n = multiplicity p x", "state_before": "case neg\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ ↑(count p (normalizedFactors x)) = ↑n", "tactic": "convert (multiplicity_eq_count_normalizedFactors hp hx0).symm" }, { "state_after": "no goals", "state_before": "case h.e'_3\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ ↑n = multiplicity p x", "tactic": "exact (multiplicity.eq_coe_iff.mpr ⟨hle, hlt⟩).symm" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : x = 0\n⊢ count p (normalizedFactors x) = n", "tactic": "simp [hx0] at hlt" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_3.h.e'_3\nα : Type ?u.1059112\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nthis : DecidableRel fun x x_1 => x ∣ x_1 := fun x x_1 => Classical.propDecidable ((fun x x_2 => x ∣ x_2) x x_1)\nhx0 : ¬x = 0\n⊢ p = ↑normalize p", "tactic": "exact hnorm.symm" } ]
[ 1007, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 998, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.EqOnSource.trans'
[]
[ 974, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 972, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.closure_eq_iInter_thickening'
[ { "state_after": "ι : Sort ?u.144923\nα : Type u\nβ : Type v\ninst✝ : PseudoEMetricSpace α\nδ ε : ℝ\ns✝ t : Set α\nx : α\nE : Set α\ns : Set ℝ\nhs₀ : s ⊆ Ioi 0\nhs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε)\n⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : δ ∈ s), thickening δ E", "state_before": "ι : Sort ?u.144923\nα : Type u\nβ : Type v\ninst✝ : PseudoEMetricSpace α\nδ ε : ℝ\ns✝ t : Set α\nx : α\nE : Set α\ns : Set ℝ\nhs₀ : s ⊆ Ioi 0\nhs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε)\n⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), thickening δ E", "tactic": "rw [← cthickening_zero]" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.144923\nα : Type u\nβ : Type v\ninst✝ : PseudoEMetricSpace α\nδ ε : ℝ\ns✝ t : Set α\nx : α\nE : Set α\ns : Set ℝ\nhs₀ : s ⊆ Ioi 0\nhs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε)\n⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : δ ∈ s), thickening δ E", "tactic": "apply cthickening_eq_iInter_thickening' le_rfl _ hs₀ hs" } ]
[ 1371, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1368, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.cos_coe
[]
[ 327, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 326, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval₂_sub
[ { "state_after": "no goals", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Ring R\np q r : R[X]\nS : Type u_1\ninst✝ : Ring S\nf : R →+* S\nx : S\n⊢ eval₂ f x (p - q) = eval₂ f x p - eval₂ f x q", "tactic": "rw [sub_eq_add_neg, eval₂_add, eval₂_neg, sub_eq_add_neg]" } ]
[ 1257, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1255, 1 ]
Mathlib/Algebra/GroupPower/Ring.lean
zero_pow_eq
[ { "state_after": "case inl\nR : Type ?u.7555\nS : Type ?u.7558\nM : Type u_1\ninst✝ : MonoidWithZero M\nn : ℕ\nh : n = 0\n⊢ 0 ^ n = 1\n\ncase inr\nR : Type ?u.7555\nS : Type ?u.7558\nM : Type u_1\ninst✝ : MonoidWithZero M\nn : ℕ\nh : ¬n = 0\n⊢ 0 ^ n = 0", "state_before": "R : Type ?u.7555\nS : Type ?u.7558\nM : Type u_1\ninst✝ : MonoidWithZero M\nn : ℕ\n⊢ 0 ^ n = if n = 0 then 1 else 0", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nR : Type ?u.7555\nS : Type ?u.7558\nM : Type u_1\ninst✝ : MonoidWithZero M\nn : ℕ\nh : n = 0\n⊢ 0 ^ n = 1", "tactic": "rw [h, pow_zero]" }, { "state_after": "no goals", "state_before": "case inr\nR : Type ?u.7555\nS : Type ?u.7558\nM : Type u_1\ninst✝ : MonoidWithZero M\nn : ℕ\nh : ¬n = 0\n⊢ 0 ^ n = 0", "tactic": "rw [zero_pow (Nat.pos_of_ne_zero h)]" } ]
[ 50, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/RingTheory/Finiteness.lean
RingHom.Finite.id
[]
[ 681, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 680, 1 ]
Mathlib/Combinatorics/Additive/SalemSpencer.lean
mulRothNumber_union_le
[ { "state_after": "no goals", "state_before": "F : Type ?u.136149\nα : Type u_1\nβ : Type ?u.136155\n𝕜 : Type ?u.136158\nE : Type ?u.136161\ninst✝³ : DecidableEq α\ninst✝² : Monoid α\ninst✝¹ : DecidableEq β\ninst✝ : Monoid β\ns✝ t✝ : Finset α\nn : ℕ\ns t u : Finset α\nhus : u ⊆ s ∪ t\nhcard : card u = ↑mulRothNumber (s ∪ t)\nhu : MulSalemSpencer ↑u\n⊢ card u = card (u ∩ s ∪ u ∩ t)", "tactic": "rw [← inter_distrib_left, (inter_eq_left_iff_subset _ _).2 hus]" } ]
[ 390, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/LinearAlgebra/Span.lean
Submodule.iSup_induction
[ { "state_after": "R : Type u_2\nR₂ : Type ?u.215996\nK : Type ?u.215999\nM : Type u_3\nM₂ : Type ?u.216005\nV : Type ?u.216008\nS : Type ?u.216011\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx✝ : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\nι : Sort u_1\np : ι → Submodule R M\nC : M → Prop\nx : M\nhx : x ∈ ⨆ (i : ι), (p i).toAddSubmonoid\nhp : ∀ (i : ι) (x : M), x ∈ p i → C x\nh0 : C 0\nhadd : ∀ (x y : M), C x → C y → C (x + y)\n⊢ C x", "state_before": "R : Type u_2\nR₂ : Type ?u.215996\nK : Type ?u.215999\nM : Type u_3\nM₂ : Type ?u.216005\nV : Type ?u.216008\nS : Type ?u.216011\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx✝ : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\nι : Sort u_1\np : ι → Submodule R M\nC : M → Prop\nx : M\nhx : x ∈ ⨆ (i : ι), p i\nhp : ∀ (i : ι) (x : M), x ∈ p i → C x\nh0 : C 0\nhadd : ∀ (x y : M), C x → C y → C (x + y)\n⊢ C x", "tactic": "rw [← mem_toAddSubmonoid, iSup_toAddSubmonoid] at hx" }, { "state_after": "no goals", "state_before": "R : Type u_2\nR₂ : Type ?u.215996\nK : Type ?u.215999\nM : Type u_3\nM₂ : Type ?u.216005\nV : Type ?u.216008\nS : Type ?u.216011\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx✝ : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\nι : Sort u_1\np : ι → Submodule R M\nC : M → Prop\nx : M\nhx : x ∈ ⨆ (i : ι), (p i).toAddSubmonoid\nhp : ∀ (i : ι) (x : M), x ∈ p i → C x\nh0 : C 0\nhadd : ∀ (x y : M), C x → C y → C (x + y)\n⊢ C x", "tactic": "exact AddSubmonoid.iSup_induction (x := x) _ hx hp h0 hadd" } ]
[ 634, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 630, 1 ]
Mathlib/Order/MinMax.lean
min_lt_of_right_lt
[]
[ 112, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.count_cons_self
[]
[ 2354, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2353, 1 ]
Mathlib/Analysis/Normed/Field/UnitBall.lean
coe_div_unitSphere
[]
[ 142, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/Init/Algebra/Order.lean
not_lt
[]
[ 373, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithBot.coe_nat
[]
[ 539, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
SeminormFamily.withSeminorms_of_nhds
[ { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.433245\n𝕝 : Type ?u.433248\n𝕝₂ : Type ?u.433251\nE : Type u_2\nF : Type ?u.433257\nG : Type ?u.433260\nι : Type u_3\nι' : Type ?u.433266\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nh : 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis\n⊢ 𝓝 0 = 𝓝 0", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.433245\n𝕝 : Type ?u.433248\n𝕝₂ : Type ?u.433251\nE : Type u_2\nF : Type ?u.433257\nG : Type ?u.433260\nι : Type u_3\nι' : Type ?u.433266\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nh : 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis\n⊢ WithSeminorms p", "tactic": "refine'\n ⟨TopologicalAddGroup.ext inferInstance p.addGroupFilterBasis.isTopologicalAddGroup _⟩" }, { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.433245\n𝕝 : Type ?u.433248\n𝕝₂ : Type ?u.433251\nE : Type u_2\nF : Type ?u.433257\nG : Type ?u.433260\nι : Type u_3\nι' : Type ?u.433266\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nh : 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis\n⊢ 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.433245\n𝕝 : Type ?u.433248\n𝕝₂ : Type ?u.433251\nE : Type u_2\nF : Type ?u.433257\nG : Type ?u.433260\nι : Type u_3\nι' : Type ?u.433266\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nh : 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis\n⊢ 𝓝 0 = 𝓝 0", "tactic": "rw [AddGroupFilterBasis.nhds_zero_eq]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.433245\n𝕝 : Type ?u.433248\n𝕝₂ : Type ?u.433251\nE : Type u_2\nF : Type ?u.433257\nG : Type ?u.433260\nι : Type u_3\nι' : Type ?u.433266\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nh : 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis\n⊢ 𝓝 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis", "tactic": "exact h" } ]
[ 425, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Topology/Basic.lean
nhds_le_of_le
[ { "state_after": "α : Type u\nβ : Type v\nι : Sort w\na✝ : α\ns✝ s₁ s₂ t : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\nf : Filter α\na : α\ns : Set α\nh : a ∈ s\no : IsOpen s\nsf : 𝓟 s ≤ f\n⊢ (⨅ (s : Set α) (_ : s ∈ {s | a ∈ s ∧ IsOpen s}), 𝓟 s) ≤ f", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na✝ : α\ns✝ s₁ s₂ t : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\nf : Filter α\na : α\ns : Set α\nh : a ∈ s\no : IsOpen s\nsf : 𝓟 s ≤ f\n⊢ 𝓝 a ≤ f", "tactic": "rw [nhds_def]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na✝ : α\ns✝ s₁ s₂ t : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\nf : Filter α\na : α\ns : Set α\nh : a ∈ s\no : IsOpen s\nsf : 𝓟 s ≤ f\n⊢ (⨅ (s : Set α) (_ : s ∈ {s | a ∈ s ∧ IsOpen s}), 𝓟 s) ≤ f", "tactic": "exact iInf₂_le_of_le s ⟨h, o⟩ sf" } ]
[ 881, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 880, 1 ]
Mathlib/Data/ULift.lean
ULift.up_inj
[]
[ 114, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Mathlib/ModelTheory/LanguageMap.lean
FirstOrder.Language.LHom.funext
[ { "state_after": "case mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nG : L →ᴸ L'\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = G.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = G.onRelation\n⊢ { onFunction := Ff, onRelation := Fr } = G", "state_before": "L : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nF G : L →ᴸ L'\nh_fun : F.onFunction = G.onFunction\nh_rel : F.onRelation = G.onRelation\n⊢ F = G", "tactic": "cases' F with Ff Fr" }, { "state_after": "case mk.mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nGf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nGr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation\n⊢ { onFunction := Ff, onRelation := Fr } = { onFunction := Gf, onRelation := Gr }", "state_before": "case mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nG : L →ᴸ L'\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = G.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = G.onRelation\n⊢ { onFunction := Ff, onRelation := Fr } = G", "tactic": "cases' G with Gf Gr" }, { "state_after": "case mk.mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nGf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nGr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation\n⊢ Ff = Gf ∧ Fr = Gr", "state_before": "case mk.mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nGf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nGr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation\n⊢ { onFunction := Ff, onRelation := Fr } = { onFunction := Gf, onRelation := Gr }", "tactic": "simp only [mk.injEq]" }, { "state_after": "no goals", "state_before": "case mk.mk\nL : Language\nL' : Language\nM : Type w\ninst✝ : Structure L M\nϕ : L →ᴸ L'\nL'' : Language\nFf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nFr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nGf : ⦃n : ℕ⦄ → Functions L n → Functions L' n\nGr : ⦃n : ℕ⦄ → Relations L n → Relations L' n\nh_fun : { onFunction := Ff, onRelation := Fr }.onFunction = { onFunction := Gf, onRelation := Gr }.onFunction\nh_rel : { onFunction := Ff, onRelation := Fr }.onRelation = { onFunction := Gf, onRelation := Gr }.onRelation\n⊢ Ff = Gf ∧ Fr = Gr", "tactic": "exact And.intro h_fun h_rel" } ]
[ 122, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 11 ]
Mathlib/Order/Heyting/Basic.lean
PUnit.compl_eq
[]
[ 1355, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1354, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycle.cycleFactorsFinset_eq_singleton
[]
[ 1458, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1456, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.inl_one
[]
[ 464, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 463, 1 ]
Mathlib/Analysis/Convex/StoneSeparation.lean
exists_convex_convex_compl_subset
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\n⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 (Cᶜ) ∧ s ⊆ C ∧ t ⊆ Cᶜ", "state_before": "𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\n⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 (Cᶜ) ∧ s ⊆ C ∧ t ⊆ Cᶜ", "tactic": "let S : Set (Set E) := { C | Convex 𝕜 C ∧ Disjoint C t }" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\n⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 (Cᶜ) ∧ s ⊆ C ∧ t ⊆ Cᶜ", "state_before": "𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\n⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 (Cᶜ) ∧ s ⊆ C ∧ t ⊆ Cᶜ", "tactic": "obtain ⟨C, hC, hsC, hCmax⟩ :=\n zorn_subset_nonempty S\n (fun c hcS hc ⟨_, _⟩ =>\n ⟨⋃₀ c,\n ⟨hc.directedOn.convex_sUnion fun s hs => (hcS hs).1,\n disjoint_sUnion_left.2 fun c hc => (hcS hc).2⟩,\n fun s => subset_sUnion_of_mem⟩)\n s ⟨hs, hst⟩" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\n⊢ False", "state_before": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\n⊢ ∃ C, Convex 𝕜 C ∧ Convex 𝕜 (Cᶜ) ∧ s ⊆ C ∧ t ⊆ Cᶜ", "tactic": "refine'\n ⟨C, hC.1, convex_iff_segment_subset.2 fun x hx y hy z hz hzC => _, hsC, hC.2.subset_compl_left⟩" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ False\n\ncase h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\n⊢ ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)", "state_before": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\n⊢ False", "tactic": "suffices h : ∀ c ∈ Cᶜ, ∃ a ∈ C, (segment 𝕜 c a ∩ t).Nonempty" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\n⊢ ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\n⊢ ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)", "tactic": "rintro c hc" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ False", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\n⊢ ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)", "tactic": "by_contra' h" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\nh : Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t\n⊢ False\n\ncase h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ False", "tactic": "suffices h : Disjoint (convexHull 𝕜 (insert c C)) t" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ Disjoint (⋃ (y : E) (_ : y ∈ ↑(convexHull 𝕜).toOrderHom C), segment 𝕜 c y) t", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t", "tactic": "rw [convexHull_insert ⟨z, hzC⟩, convexJoin_singleton_left]" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\na : E\nha : a ∈ ↑(convexHull 𝕜).toOrderHom C\nb : E\nhb : b ∈ segment 𝕜 c a ⊓ t\n⊢ a ∈ C", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ Disjoint (⋃ (y : E) (_ : y ∈ ↑(convexHull 𝕜).toOrderHom C), segment 𝕜 c y) t", "tactic": "refine' disjoint_iUnion₂_left.2 fun a ha => disjoint_iff_inf_le.mpr fun b hb => h a _ ⟨b, hb⟩" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\na : E\nha : a ∈ ↑(convexHull 𝕜).toOrderHom C\nb : E\nhb : b ∈ segment 𝕜 c a ⊓ t\n⊢ a ∈ C", "tactic": "rwa [← hC.1.convexHull_eq]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\n⊢ False", "state_before": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\n⊢ False", "tactic": "obtain ⟨p, hp, u, hu, hut⟩ := h x hx" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\nq : E\nhq : q ∈ C\nv : E\nhv : v ∈ segment 𝕜 y q\nhvt : v ∈ t\n⊢ False", "state_before": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\n⊢ False", "tactic": "obtain ⟨q, hq, v, hv, hvt⟩ := h y hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\nq : E\nhq : q ∈ C\nv : E\nhv : v ∈ segment 𝕜 y q\nhvt : v ∈ t\n⊢ {p, q, z} ⊆ C", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\nq : E\nhq : q ∈ C\nv : E\nhv : v ∈ segment 𝕜 y q\nhvt : v ∈ t\n⊢ False", "tactic": "refine'\n not_disjoint_segment_convexHull_triple hz hu hv\n (hC.2.symm.mono (ht.segment_subset hut hvt) <| convexHull_min _ hC.1)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nh : ∀ (c : E), c ∈ Cᶜ → ∃ a, a ∈ C ∧ Set.Nonempty (segment 𝕜 c a ∩ t)\np : E\nhp : p ∈ C\nu : E\nhu : u ∈ segment 𝕜 x p\nhut : u ∈ t\nq : E\nhq : q ∈ C\nv : E\nhv : v ∈ segment 𝕜 y q\nhvt : v ∈ t\n⊢ {p, q, z} ⊆ C", "tactic": "simpa [insert_subset, hp, hq, singleton_subset_iff.2 hzC]" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ ↑(convexHull 𝕜).toOrderHom (insert c C)ᶜ\nh✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\nh : Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t\n⊢ False", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ Cᶜ\nh✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\nh : Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t\n⊢ False", "tactic": "rw [←\n hCmax _ ⟨convex_convexHull _ _, h⟩ ((subset_insert _ _).trans <| subset_convexHull _ _)] at hc" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\nι : Type ?u.47333\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nhs : Convex 𝕜 s\nht : Convex 𝕜 t\nhst : Disjoint s t\nS : Set (Set E) := {C | Convex 𝕜 C ∧ Disjoint C t}\nC : Set E\nhC : C ∈ S\nhsC : s ⊆ C\nhCmax : ∀ (a : Set E), a ∈ S → C ⊆ a → a = C\nx : E\nhx : x ∈ Cᶜ\ny : E\nhy : y ∈ Cᶜ\nz : E\nhz : z ∈ segment 𝕜 x y\nhzC : z ∈ C\nc : E\nhc : c ∈ ↑(convexHull 𝕜).toOrderHom (insert c C)ᶜ\nh✝ : ∀ (a : E), a ∈ C → ¬Set.Nonempty (segment 𝕜 c a ∩ t)\nh : Disjoint (↑(convexHull 𝕜).toOrderHom (insert c C)) t\n⊢ False", "tactic": "exact hc (subset_convexHull _ _ <| mem_insert _ _)" } ]
[ 114, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/LinearAlgebra/Matrix/Circulant.lean
Matrix.Fin.circulant_isSymm_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.64581\nm : Type ?u.64584\nn : Type ?u.64587\nR : Type ?u.64590\nv✝ : Fin 0 → α\n⊢ IsSymm (circulant v✝) ↔ ∀ (i : Fin 0), v✝ (-i) = v✝ i", "tactic": "simp [IsSymm.ext_iff, IsEmpty.forall_iff]" } ]
[ 199, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Analysis/Normed/Group/HomCompletion.lean
NormedAddGroupHom.zero_completion
[]
[ 136, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Tagged.lean
BoxIntegral.TaggedPrepartition.mem_iUnion
[ { "state_after": "case h.e'_2.h.e'_2.h.a\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ : TaggedPrepartition I\nx : ι → ℝ\nx✝ : Box ι\n⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝", "state_before": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ : TaggedPrepartition I\nx : ι → ℝ\n⊢ x ∈ iUnion π ↔ ∃ J, J ∈ π ∧ x ∈ J", "tactic": "convert Set.mem_iUnion₂" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_2.h.a\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ : TaggedPrepartition I\nx : ι → ℝ\nx✝ : Box ι\n⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝", "tactic": "rw [Box.mem_coe, mem_toPrepartition, exists_prop]" } ]
[ 84, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Logic/IsEmpty.lean
isEmpty_pprod
[ { "state_after": "no goals", "state_before": "α : Sort u_2\nβ : Sort u_1\nγ : Sort ?u.3177\n⊢ IsEmpty (PProd α β) ↔ IsEmpty α ∨ IsEmpty β", "tactic": "simp only [← not_nonempty_iff, nonempty_pprod, not_and_or]" } ]
[ 176, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Antiperiodic.sub_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.153445\nf g : α → β\nc c₁ c₂ x✝ : α\ninst✝¹ : AddGroup α\ninst✝ : InvolutiveNeg β\nh : Antiperiodic f c\nx : α\n⊢ f (x - c) = -f x", "tactic": "simp only [← neg_eq_iff_eq_neg, ← h (x - c), sub_add_cancel]" } ]
[ 408, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 407, 1 ]
Mathlib/Algebra/Periodic.lean
Multiset.periodic_prod
[]
[ 94, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineEquiv.span_eq_top_iff
[ { "state_after": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\n⊢ affineSpan k (↑e '' s) = ⊤ → affineSpan k s = ⊤", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\n⊢ affineSpan k s = ⊤ ↔ affineSpan k (↑e '' s) = ⊤", "tactic": "refine' ⟨(e : P₁ →ᵃ[k] P₂).span_eq_top_of_surjective e.surjective, _⟩" }, { "state_after": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\n⊢ affineSpan k s = ⊤", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\n⊢ affineSpan k (↑e '' s) = ⊤ → affineSpan k s = ⊤", "tactic": "intro h" }, { "state_after": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\nthis : s = ↑(symm e) '' (↑e '' s)\n⊢ affineSpan k s = ⊤", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\n⊢ affineSpan k s = ⊤", "tactic": "have : s = e.symm '' (e '' s) := by rw [← image_comp]; simp" }, { "state_after": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\nthis : s = ↑(symm e) '' (↑e '' s)\n⊢ affineSpan k (↑(symm e) '' (↑e '' s)) = ⊤", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\nthis : s = ↑(symm e) '' (↑e '' s)\n⊢ affineSpan k s = ⊤", "tactic": "rw [this]" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\nthis : s = ↑(symm e) '' (↑e '' s)\n⊢ affineSpan k (↑(symm e) '' (↑e '' s)) = ⊤", "tactic": "exact (e.symm : P₂ →ᵃ[k] P₁).span_eq_top_of_surjective e.symm.surjective h" }, { "state_after": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\n⊢ s = ↑(symm e) ∘ ↑e '' s", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\n⊢ s = ↑(symm e) '' (↑e '' s)", "tactic": "rw [← image_comp]" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV₁ : Type u_4\nP₁ : Type u_1\nV₂ : Type u_5\nP₂ : Type u_3\nV₃ : Type ?u.582825\nP₃ : Type ?u.582828\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\ne : P₁ ≃ᵃ[k] P₂\nh : affineSpan k (↑e '' s) = ⊤\n⊢ s = ↑(symm e) ∘ ↑e '' s", "tactic": "simp" } ]
[ 1599, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1593, 1 ]
Mathlib/MeasureTheory/Measure/AEDisjoint.lean
MeasureTheory.AEDisjoint.iUnion_left_iff
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\nm : MeasurableSpace α\nμ : Measure α\ns✝ t u v : Set α\ninst✝ : Countable ι\ns : ι → Set α\n⊢ AEDisjoint μ (⋃ (i : ι), s i) t ↔ ∀ (i : ι), AEDisjoint μ (s i) t", "tactic": "simp only [AEDisjoint, iUnion_inter, measure_iUnion_null_iff]" } ]
[ 98, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Topology/MetricSpace/MetricSeparated.lean
IsMetricSeparated.mono
[]
[ 70, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
Module.punctured_nhds_neBot
[ { "state_after": "case intro\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ NeBot (𝓝[{x}ᶜ] x)", "state_before": "R : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx : M\n⊢ NeBot (𝓝[{x}ᶜ] x)", "tactic": "rcases exists_ne (0 : M) with ⟨y, hy⟩" }, { "state_after": "case intro\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\nthis : Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)\n⊢ NeBot (𝓝[{x}ᶜ] x)\n\ncase this\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)", "state_before": "case intro\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ NeBot (𝓝[{x}ᶜ] x)", "tactic": "suffices : Tendsto (fun c : R => x + c • y) (𝓝[≠] 0) (𝓝[≠] x)" }, { "state_after": "case this\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)", "state_before": "case intro\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\nthis : Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)\n⊢ NeBot (𝓝[{x}ᶜ] x)\n\ncase this\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)", "tactic": "exact this.neBot" }, { "state_after": "case this.refine'_1\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝 0) (𝓝 x)\n\ncase this.refine'_2\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ ∀ (a : R), a ∈ {0}ᶜ → x + a • y ∈ {x}ᶜ", "state_before": "case this\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝[{0}ᶜ] 0) (𝓝[{x}ᶜ] x)", "tactic": "refine' Tendsto.inf _ (tendsto_principal_principal.2 <| _)" }, { "state_after": "case h.e'_5.h.e'_3\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ x = x + 0 • y", "state_before": "case this.refine'_1\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ Tendsto (fun c => x + c • y) (𝓝 0) (𝓝 x)", "tactic": "convert tendsto_const_nhds.add ((@tendsto_id R _).smul_const y)" }, { "state_after": "no goals", "state_before": "case h.e'_5.h.e'_3\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ x = x + 0 • y", "tactic": "rw [zero_smul, add_zero]" }, { "state_after": "case this.refine'_2\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\nc : R\nhc : c ∈ {0}ᶜ\n⊢ x + c • y ∈ {x}ᶜ", "state_before": "case this.refine'_2\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\n⊢ ∀ (a : R), a ∈ {0}ᶜ → x + a • y ∈ {x}ᶜ", "tactic": "intro c hc" }, { "state_after": "no goals", "state_before": "case this.refine'_2\nR : Type u_2\nM : Type u_1\ninst✝⁹ : Ring R\ninst✝⁸ : TopologicalSpace R\ninst✝⁷ : TopologicalSpace M\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : ContinuousAdd M\ninst✝⁴ : Module R M\ninst✝³ : ContinuousSMul R M\ninst✝² : Nontrivial M\ninst✝¹ : NeBot (𝓝[{0}ᶜ] 0)\ninst✝ : NoZeroSMulDivisors R M\nx y : M\nhy : y ≠ 0\nc : R\nhc : c ∈ {0}ᶜ\n⊢ x + c • y ∈ {x}ᶜ", "tactic": "simpa [hy] using hc" } ]
[ 96, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
StrictMonoOn.const_mul'
[]
[ 1384, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1382, 1 ]
Mathlib/Algebra/Hom/Freiman.lean
FreimanHom.cancel_right
[]
[ 260, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.card_eq_zero
[ { "state_after": "α✝ : Type ?u.102030\nβ : Type ?u.102033\nγ : Type ?u.102036\nr✝ : α✝ → α✝ → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\nh : card (type r) = 0\nthis : IsEmpty { α := α, r := r, wo := x✝ }.α\n⊢ type r = 0", "state_before": "α✝ : Type ?u.102030\nβ : Type ?u.102033\nγ : Type ?u.102036\nr✝ : α✝ → α✝ → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\nh : card (type r) = 0\n⊢ type r = 0", "tactic": "haveI := Cardinal.mk_eq_zero_iff.1 h" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.102030\nβ : Type ?u.102033\nγ : Type ?u.102036\nr✝ : α✝ → α✝ → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\nh : card (type r) = 0\nthis : IsEmpty { α := α, r := r, wo := x✝ }.α\n⊢ type r = 0", "tactic": "apply type_eq_zero_of_empty" }, { "state_after": "no goals", "state_before": "α : Type ?u.102030\nβ : Type ?u.102033\nγ : Type ?u.102036\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\ne : o = 0\n⊢ card o = 0", "tactic": "simp only [e, card_zero]" } ]
[ 634, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 630, 1 ]
Mathlib/Data/Nat/Hyperoperation.lean
hyperoperation_two
[ { "state_after": "case h.h\nm k : ℕ\n⊢ hyperoperation 2 m k = m * k", "state_before": "⊢ hyperoperation 2 = fun x x_1 => x * x_1", "tactic": "ext (m k)" }, { "state_after": "case h.h.zero\nm : ℕ\n⊢ hyperoperation 2 m Nat.zero = m * Nat.zero\n\ncase h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ hyperoperation 2 m (Nat.succ bn) = m * Nat.succ bn", "state_before": "case h.h\nm k : ℕ\n⊢ hyperoperation 2 m k = m * k", "tactic": "induction' k with bn bih" }, { "state_after": "case h.h.zero\nm : ℕ\n⊢ 0 = m * Nat.zero", "state_before": "case h.h.zero\nm : ℕ\n⊢ hyperoperation 2 m Nat.zero = m * Nat.zero", "tactic": "rw [hyperoperation]" }, { "state_after": "no goals", "state_before": "case h.h.zero\nm : ℕ\n⊢ 0 = m * Nat.zero", "tactic": "exact (Nat.mul_zero m).symm" }, { "state_after": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ (fun x x_1 => x + x_1) m (m * bn) = m * Nat.succ bn", "state_before": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ hyperoperation 2 m (Nat.succ bn) = m * Nat.succ bn", "tactic": "rw [hyperoperation_recursion, hyperoperation_one, bih]" }, { "state_after": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ m + m * bn = m * Nat.succ bn", "state_before": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ (fun x x_1 => x + x_1) m (m * bn) = m * Nat.succ bn", "tactic": "dsimp only" }, { "state_after": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ m * 1 + m * bn = m * Nat.succ bn", "state_before": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ m + m * bn = m * Nat.succ bn", "tactic": "nth_rewrite 1 [← mul_one m]" }, { "state_after": "no goals", "state_before": "case h.h.succ\nm bn : ℕ\nbih : hyperoperation 2 m bn = m * bn\n⊢ m * 1 + m * bn = m * Nat.succ bn", "tactic": "rw [← mul_add, add_comm, Nat.succ_eq_add_one]" } ]
[ 83, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Order/Bounds/Basic.lean
IsLeast.union
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ns✝ t✝ : Set α\na✝ b✝ : α\ninst✝ : LinearOrder γ\na b : γ\ns t : Set γ\nha : IsLeast s a\nhb : IsLeast t b\n⊢ min a b ∈ s ∪ t", "tactic": "cases' le_total a b with h h <;> simp [h, ha.1, hb.1]" } ]
[ 461, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]