file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ico_subset_Ico_union_Ico
[]
[ 1503, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1502, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.zpow_aux
[ { "state_after": "α : Type u\nβ : Type v\np : α → Prop\nf : Perm α\nhf : ∀ (x : α), p x ↔ p (↑f x)\nn : ℕ\n⊢ ∀ (x : α), p x ↔ p (↑(f ^ (n + 1))⁻¹ x)", "state_before": "α : Type u\nβ : Type v\np : α → Prop\nf : Perm α\nhf : ∀ (x : α), p x ↔ p (↑f x)\nn : ℕ\n⊢ ∀ (x : α), p x ↔ p (↑(f ^ Int.negSucc n) x)", "tactic": "rw [zpow_negSucc]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\np : α → Prop\nf : Perm α\nhf : ∀ (x : α), p x ↔ p (↑f x)\nn : ℕ\n⊢ ∀ (x : α), p x ↔ p (↑(f ^ (n + 1))⁻¹ x)", "tactic": "exact inv_aux.1 (pow_aux hf)" } ]
[ 417, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 9 ]
Mathlib/Algebra/Order/Hom/Basic.lean
le_map_add_map_div'
[ { "state_after": "no goals", "state_before": "ι : Type ?u.39551\nF : Type u_2\nα : Type u_3\nβ : Type u_1\nγ : Type ?u.39563\nδ : Type ?u.39566\ninst✝² : Group α\ninst✝¹ : OrderedAddCommMonoid β\ninst✝ : GroupSeminormClass F α β\nf : F\nx y : α\n⊢ ↑f x ≤ ↑f y + ↑f (y / x)", "tactic": "simpa only [add_comm, map_div_rev, div_mul_cancel'] using map_mul_le_add f (x / y) y" } ]
[ 259, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Combinatorics/Additive/SalemSpencer.lean
mulSalemSpencer_insert_of_lt
[ { "state_after": "F : Type ?u.90423\nα : Type u_1\nβ : Type ?u.90429\n𝕜 : Type ?u.90432\nE : Type ?u.90435\ninst✝ : OrderedCancelCommMonoid α\ns : Set α\na : α\nhs : ∀ (i : α), i ∈ s → i < a\n⊢ (MulSalemSpencer s ∧\n (∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b) ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → b * c = a * a → b = c) ↔\n MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b", "state_before": "F : Type ?u.90423\nα : Type u_1\nβ : Type ?u.90429\n𝕜 : Type ?u.90432\nE : Type ?u.90435\ninst✝ : OrderedCancelCommMonoid α\ns : Set α\na : α\nhs : ∀ (i : α), i ∈ s → i < a\n⊢ MulSalemSpencer (insert a s) ↔ MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b", "tactic": "refine' mulSalemSpencer_insert.trans _" }, { "state_after": "F : Type ?u.90423\nα : Type u_1\nβ : Type ?u.90429\n𝕜 : Type ?u.90432\nE : Type ?u.90435\ninst✝ : OrderedCancelCommMonoid α\ns : Set α\na : α\nhs : ∀ (i : α), i ∈ s → i < a\n⊢ ((MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b) ∧\n ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → b * c = a * a → b = c) ↔\n MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b", "state_before": "F : Type ?u.90423\nα : Type u_1\nβ : Type ?u.90429\n𝕜 : Type ?u.90432\nE : Type ?u.90435\ninst✝ : OrderedCancelCommMonoid α\ns : Set α\na : α\nhs : ∀ (i : α), i ∈ s → i < a\n⊢ (MulSalemSpencer s ∧\n (∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b) ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → b * c = a * a → b = c) ↔\n MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b", "tactic": "rw [← and_assoc]" }, { "state_after": "no goals", "state_before": "F : Type ?u.90423\nα : Type u_1\nβ : Type ?u.90429\n𝕜 : Type ?u.90432\nE : Type ?u.90435\ninst✝ : OrderedCancelCommMonoid α\ns : Set α\na : α\nhs : ∀ (i : α), i ∈ s → i < a\n⊢ ((MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b) ∧\n ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → b * c = a * a → b = c) ↔\n MulSalemSpencer s ∧ ∀ ⦃b c : α⦄, b ∈ s → c ∈ s → a * b = c * c → a = b", "tactic": "exact and_iff_left fun b c hb hc h => ((mul_lt_mul_of_lt_of_lt (hs _ hb) (hs _ hc)).ne h).elim" } ]
[ 227, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.mem_iSup_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.59414\nγ : Type ?u.59417\nι : Sort u_2\nκ : ι → Sort ?u.59425\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\nf : ι → UpperSet α\n⊢ (a ∈ ⋂ (i : ι), ↑(f i)) ↔ ∀ (i : ι), a ∈ f i", "state_before": "α : Type u_1\nβ : Type ?u.59414\nγ : Type ?u.59417\nι : Sort u_2\nκ : ι → Sort ?u.59425\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\nf : ι → UpperSet α\n⊢ (a ∈ ⨆ (i : ι), f i) ↔ ∀ (i : ι), a ∈ f i", "tactic": "rw [← SetLike.mem_coe, coe_iSup]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.59414\nγ : Type ?u.59417\nι : Sort u_2\nκ : ι → Sort ?u.59425\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\nf : ι → UpperSet α\n⊢ (a ∈ ⋂ (i : ι), ↑(f i)) ↔ ∀ (i : ι), a ∈ f i", "tactic": "exact mem_iInter" } ]
[ 603, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 601, 1 ]
Mathlib/GroupTheory/Submonoid/Pointwise.lean
Submonoid.inv_iSup
[]
[ 210, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Data/Set/Basic.lean
SetCoe.forall'
[]
[ 203, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Data/Polynomial/UnitTrinomial.lean
Polynomial.IsUnitTrinomial.irreducible_aux1
[ { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * (↑C ↑u * X ^ (m + n) + ↑C ↑w * X ^ (n - m + k + n)) =\n { toFinsupp := Finsupp.filter (Set.Ioo (k + n) (n + n)) (p * mirror p).toFinsupp }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\n⊢ ↑C ↑v * (↑C ↑u * X ^ (m + n) + ↑C ↑w * X ^ (n - m + k + n)) =\n { toFinsupp := Finsupp.filter (Set.Ioo (k + n) (n + n)) (p * mirror p).toFinsupp }", "tactic": "have key : n - m + k < n := by rwa [← lt_tsub_iff_right, tsub_lt_tsub_iff_left_of_le hmn.le]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * (↑C ↑u * X ^ (m + n) + ↑C ↑w * X ^ (n - m + k + n)) =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n))\n (trinomial k m n ↑u ↑v ↑w * trinomial k (n - m + k) n ↑w ↑v ↑u).toFinsupp }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * (↑C ↑u * X ^ (m + n) + ↑C ↑w * X ^ (n - m + k + n)) =\n { toFinsupp := Finsupp.filter (Set.Ioo (k + n) (n + n)) (p * mirror p).toFinsupp }", "tactic": "rw [hp, trinomial_mirror hkm hmn u.ne_zero w.ne_zero]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n))\n (Finsupp.single (k + k) (↑u * ↑w) + Finsupp.single (k + (n - m + k)) (↑u * ↑v) +\n Finsupp.single (k + n) (↑u * ↑u) +\n (Finsupp.single (m + k) (↑v * ↑w) + Finsupp.single (m + (n - m + k)) (↑v * ↑v) +\n Finsupp.single (m + n) (↑v * ↑u)) +\n (Finsupp.single (n + k) (↑w * ↑w) + Finsupp.single (n + (n - m + k)) (↑w * ↑v) +\n Finsupp.single (n + n) (↑w * ↑u))) }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * (↑C ↑u * X ^ (m + n) + ↑C ↑w * X ^ (n - m + k + n)) =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n))\n (trinomial k m n ↑u ↑v ↑w * trinomial k (n - m + k) n ↑w ↑v ↑u).toFinsupp }", "tactic": "simp_rw [trinomial_def, C_mul_X_pow_eq_monomial, add_mul, mul_add, monomial_mul_monomial,\n toFinsupp_add, toFinsupp_monomial, Finsupp.filter_add]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + k) (↑u * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + (n - m + k)) (↑u * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + n) (↑u * ↑u)) +\n (Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + k) (↑v * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + (n - m + k)) (↑v * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + n) (↑v * ↑u))) +\n (Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + k) (↑w * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + (n - m + k)) (↑w * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + n) (↑w * ↑u))) }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n))\n (Finsupp.single (k + k) (↑u * ↑w) + Finsupp.single (k + (n - m + k)) (↑u * ↑v) +\n Finsupp.single (k + n) (↑u * ↑u) +\n (Finsupp.single (m + k) (↑v * ↑w) + Finsupp.single (m + (n - m + k)) (↑v * ↑v) +\n Finsupp.single (m + n) (↑v * ↑u)) +\n (Finsupp.single (n + k) (↑w * ↑w) + Finsupp.single (n + (n - m + k)) (↑w * ↑v) +\n Finsupp.single (n + n) (↑w * ↑u))) }", "tactic": "rw [Finsupp.filter_add, Finsupp.filter_add, Finsupp.filter_add, Finsupp.filter_add,\n Finsupp.filter_add, Finsupp.filter_add, Finsupp.filter_add, Finsupp.filter_add]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n 0 + 0 + 0 + (0 + 0 + Finsupp.single (m + n) (↑v * ↑u)) + (0 + Finsupp.single (n + (n - m + k)) (↑w * ↑v) + 0) }\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (n + n)\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ Set.Ioo (k + n) (n + n) (n + (n - m + k))\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (n + k)\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ Set.Ioo (k + n) (n + n) (m + n)\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (m + (n - m + k))\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (m + k)\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + n)\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + (n - m + k))\n\ncase h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + k)", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + k) (↑u * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + (n - m + k)) (↑u * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (k + n) (↑u * ↑u)) +\n (Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + k) (↑v * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + (n - m + k)) (↑v * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (m + n) (↑v * ↑u))) +\n (Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + k) (↑w * ↑w)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + (n - m + k)) (↑w * ↑v)) +\n Finsupp.filter (Set.Ioo (k + n) (n + n)) (Finsupp.single (n + n) (↑w * ↑u))) }", "tactic": "rw [Finsupp.filter_single_of_neg, Finsupp.filter_single_of_neg, Finsupp.filter_single_of_neg,\n Finsupp.filter_single_of_neg, Finsupp.filter_single_of_neg, Finsupp.filter_single_of_pos,\n Finsupp.filter_single_of_neg, Finsupp.filter_single_of_pos, Finsupp.filter_single_of_neg]" }, { "state_after": "no goals", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\n⊢ n - m + k < n", "tactic": "rwa [← lt_tsub_iff_right, tsub_lt_tsub_iff_left_of_le hmn.le]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n { toFinsupp := Finsupp.single (m + n) (↑v * ↑u) + Finsupp.single (n + (n - m + k)) (↑w * ↑v) }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n {\n toFinsupp :=\n 0 + 0 + 0 + (0 + 0 + Finsupp.single (m + n) (↑v * ↑u)) + (0 + Finsupp.single (n + (n - m + k)) (↑w * ↑v) + 0) }", "tactic": "simp only [add_zero, zero_add, ofFinsupp_add, ofFinsupp_single]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n { toFinsupp := Finsupp.single (m + n) (↑v * ↑u) } + { toFinsupp := Finsupp.single (n + (n - m + k)) (↑w * ↑v) }", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n { toFinsupp := Finsupp.single (m + n) (↑v * ↑u) + Finsupp.single (n + (n - m + k)) (↑w * ↑v) }", "tactic": "rw [ofFinsupp_add]" }, { "state_after": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n ↑(monomial (m + n)) (↑v * ↑u) + ↑(monomial (n + (n - m + k))) (↑w * ↑v)", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n { toFinsupp := Finsupp.single (m + n) (↑v * ↑u) } + { toFinsupp := Finsupp.single (n + (n - m + k)) (↑w * ↑v) }", "tactic": "simp only [ofFinsupp_single]" }, { "state_after": "no goals", "state_before": "p q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ↑C ↑v * ↑(monomial (m + n)) ↑u + ↑C ↑v * ↑(monomial (n - m + k + n)) ↑w =\n ↑(monomial (m + n)) (↑v * ↑u) + ↑(monomial (n + (n - m + k))) (↑w * ↑v)", "tactic": "rw [C_mul_monomial, C_mul_monomial, mul_comm (v : ℤ) w, add_comm (n - m + k) n]" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (n + n)", "tactic": "exact fun h => h.2.ne rfl" }, { "state_after": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ k + n < n + (n - m + k)", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ Set.Ioo (k + n) (n + n) (n + (n - m + k))", "tactic": "refine' ⟨_, add_lt_add_left key n⟩" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ k + n < n + (n - m + k)", "tactic": "rwa [add_comm, add_lt_add_iff_left, lt_add_iff_pos_left, tsub_pos_iff_lt]" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (n + k)", "tactic": "exact fun h => h.1.ne (add_comm k n)" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ Set.Ioo (k + n) (n + n) (m + n)", "tactic": "exact ⟨add_lt_add_right hkm n, add_lt_add_right hmn n⟩" }, { "state_after": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (n + k) (n + n) (n + k)", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (m + (n - m + k))", "tactic": "rw [← add_assoc, add_tsub_cancel_of_le hmn.le, add_comm]" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (n + k) (n + n) (n + k)", "tactic": "exact fun h => h.1.ne rfl" }, { "state_after": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\n⊢ False", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (m + k)", "tactic": "intro h" }, { "state_after": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\nthis : k + n < m + k\n⊢ False", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\n⊢ False", "tactic": "have := h.1" }, { "state_after": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\nthis : n < m\n⊢ False", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\nthis : k + n < m + k\n⊢ False", "tactic": "rw [add_comm, add_lt_add_iff_right] at this" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\nh : Set.Ioo (k + n) (n + n) (m + k)\nthis : n < m\n⊢ False", "tactic": "exact asymm this hmn" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + n)", "tactic": "exact fun h => h.1.ne rfl" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + (n - m + k))", "tactic": "exact fun h => asymm ((add_lt_add_iff_left k).mp h.1) key" }, { "state_after": "no goals", "state_before": "case h\np q : ℤ[X]\nk m n : ℕ\nhkm : k < m\nhmn : m < n\nu v w : ℤˣ\nhp : p = trinomial k m n ↑u ↑v ↑w\nkey : n - m + k < n\n⊢ ¬Set.Ioo (k + n) (n + n) (k + k)", "tactic": "exact fun h => asymm ((add_lt_add_iff_left k).mp h.1) (hkm.trans hmn)" } ]
[ 256, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/LinearAlgebra/FreeModule/PID.lean
Module.free_of_finite_type_torsion_free
[ { "state_after": "case intro\nι : Type u_1\nR : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDomain R\ninst✝⁴ : IsPrincipalIdealRing R\nM : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nb : ι → M\ninst✝¹ : _root_.Finite ι\ns : ι → M\nhs : span R (range s) = ⊤\ninst✝ : NoZeroSMulDivisors R M\nval✝ : Fintype ι\n⊢ Free R M", "state_before": "ι : Type u_1\nR : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDomain R\ninst✝⁴ : IsPrincipalIdealRing R\nM : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nb : ι → M\ninst✝¹ : _root_.Finite ι\ns : ι → M\nhs : span R (range s) = ⊤\ninst✝ : NoZeroSMulDivisors R M\n⊢ Free R M", "tactic": "cases nonempty_fintype ι" }, { "state_after": "case intro.mk\nι : Type u_1\nR : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDomain R\ninst✝⁴ : IsPrincipalIdealRing R\nM : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nb✝ : ι → M\ninst✝¹ : _root_.Finite ι\ns : ι → M\nhs : span R (range s) = ⊤\ninst✝ : NoZeroSMulDivisors R M\nval✝ : Fintype ι\nn : ℕ\nb : Basis (Fin n) R M\n⊢ Free R M", "state_before": "case intro\nι : Type u_1\nR : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDomain R\ninst✝⁴ : IsPrincipalIdealRing R\nM : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nb : ι → M\ninst✝¹ : _root_.Finite ι\ns : ι → M\nhs : span R (range s) = ⊤\ninst✝ : NoZeroSMulDivisors R M\nval✝ : Fintype ι\n⊢ Free R M", "tactic": "obtain ⟨n, b⟩ : Σn, Basis (Fin n) R M := Module.basisOfFiniteTypeTorsionFree hs" }, { "state_after": "no goals", "state_before": "case intro.mk\nι : Type u_1\nR : Type u_3\ninst✝⁶ : CommRing R\ninst✝⁵ : IsDomain R\ninst✝⁴ : IsPrincipalIdealRing R\nM : Type u_2\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\nb✝ : ι → M\ninst✝¹ : _root_.Finite ι\ns : ι → M\nhs : span R (range s) = ⊤\ninst✝ : NoZeroSMulDivisors R M\nval✝ : Fintype ι\nn : ℕ\nb : Basis (Fin n) R M\n⊢ Free R M", "tactic": "exact Module.Free.of_basis b" } ]
[ 410, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 406, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
Submodule.coe_toConvexCone
[]
[ 518, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/Algebra/Divisibility/Basic.lean
MulHom.map_dvd
[]
[ 103, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Topology/Semicontinuous.lean
UpperSemicontinuousOn.upperSemicontinuousWithinAt
[]
[ 687, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 685, 1 ]
Mathlib/Topology/Order/Basic.lean
continuousWithinAt_Ioo_iff_Iio
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderClosedTopology α\na✝ b✝ : α\ninst✝ : TopologicalSpace γ\na b : α\nf : α → γ\nh : a < b\n⊢ ContinuousWithinAt f (Ioo a b) b ↔ ContinuousWithinAt f (Iio b) b", "tactic": "simp only [ContinuousWithinAt, nhdsWithin_Ioo_eq_nhdsWithin_Iio h]" } ]
[ 512, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Algebra/EuclideanDomain/Basic.lean
EuclideanDomain.gcd_one_left
[]
[ 187, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
Set.Subsingleton.differentiableOn
[]
[ 1132, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1131, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.castPred_zero
[]
[ 2299, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2298, 1 ]
Mathlib/CategoryTheory/StructuredArrow.lean
CategoryTheory.CostructuredArrow.eq_mk
[ { "state_after": "case mk\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nT T' T'' : D\nY Y' : C\nS : C ⥤ D\nleft✝ : C\nright✝ : Discrete PUnit\nhom✝ : S.obj left✝ ⟶ (Functor.fromPUnit T).obj right✝\n⊢ { left := left✝, right := right✝, hom := hom✝ } = mk { left := left✝, right := right✝, hom := hom✝ }.hom", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nT T' T'' : D\nY Y' : C\nS : C ⥤ D\nf : CostructuredArrow S T\n⊢ f = mk f.hom", "tactic": "cases f" }, { "state_after": "no goals", "state_before": "case mk\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nT T' T'' : D\nY Y' : C\nS : C ⥤ D\nleft✝ : C\nright✝ : Discrete PUnit\nhom✝ : S.obj left✝ ⟶ (Functor.fromPUnit T).obj right✝\n⊢ { left := left✝, right := right✝, hom := hom✝ } = mk { left := left✝, right := right✝, hom := hom✝ }.hom", "tactic": "congr" } ]
[ 401, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 399, 1 ]
Mathlib/Data/Finset/NoncommProd.lean
Multiset.noncommProd_add
[ { "state_after": "case mk\nF : Type ?u.83828\nι : Type ?u.83831\nα : Type u_1\nβ : Type ?u.83837\nγ : Type ?u.83840\nf : α → β → β\nop : α → α → α\ninst✝¹ : Monoid α\ninst✝ : Monoid β\ns t : Multiset α\na✝ : List α\ncomm : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝ + t} Commute\n⊢ noncommProd (Quot.mk Setoid.r a✝ + t) comm =\n noncommProd (Quot.mk Setoid.r a✝) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝} Commute) *\n noncommProd t (_ : Set.Pairwise {x | x ∈ t} Commute)", "state_before": "F : Type ?u.83828\nι : Type ?u.83831\nα : Type u_1\nβ : Type ?u.83837\nγ : Type ?u.83840\nf : α → β → β\nop : α → α → α\ninst✝¹ : Monoid α\ninst✝ : Monoid β\ns t : Multiset α\ncomm : Set.Pairwise {x | x ∈ s + t} Commute\n⊢ noncommProd (s + t) comm =\n noncommProd s (_ : Set.Pairwise {x | x ∈ s} Commute) * noncommProd t (_ : Set.Pairwise {x | x ∈ t} Commute)", "tactic": "rcases s with ⟨⟩" }, { "state_after": "case mk.mk\nF : Type ?u.83828\nι : Type ?u.83831\nα : Type u_1\nβ : Type ?u.83837\nγ : Type ?u.83840\nf : α → β → β\nop : α → α → α\ninst✝¹ : Monoid α\ninst✝ : Monoid β\ns t : Multiset α\na✝¹ a✝ : List α\ncomm : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝} Commute\n⊢ noncommProd (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) comm =\n noncommProd (Quot.mk Setoid.r a✝¹) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝¹} Commute) *\n noncommProd (Quot.mk Setoid.r a✝) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝} Commute)", "state_before": "case mk\nF : Type ?u.83828\nι : Type ?u.83831\nα : Type u_1\nβ : Type ?u.83837\nγ : Type ?u.83840\nf : α → β → β\nop : α → α → α\ninst✝¹ : Monoid α\ninst✝ : Monoid β\ns t : Multiset α\na✝ : List α\ncomm : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝ + t} Commute\n⊢ noncommProd (Quot.mk Setoid.r a✝ + t) comm =\n noncommProd (Quot.mk Setoid.r a✝) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝} Commute) *\n noncommProd t (_ : Set.Pairwise {x | x ∈ t} Commute)", "tactic": "rcases t with ⟨⟩" }, { "state_after": "no goals", "state_before": "case mk.mk\nF : Type ?u.83828\nι : Type ?u.83831\nα : Type u_1\nβ : Type ?u.83837\nγ : Type ?u.83840\nf : α → β → β\nop : α → α → α\ninst✝¹ : Monoid α\ninst✝ : Monoid β\ns t : Multiset α\na✝¹ a✝ : List α\ncomm : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝} Commute\n⊢ noncommProd (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) comm =\n noncommProd (Quot.mk Setoid.r a✝¹) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝¹} Commute) *\n noncommProd (Quot.mk Setoid.r a✝) (_ : Set.Pairwise {x | x ∈ Quot.mk Setoid.r a✝} Commute)", "tactic": "simp" } ]
[ 177, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/RingTheory/Congruence.lean
RingCon.coe_mul
[]
[ 204, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean
InnerProductGeometry.angle_smul_smul
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ : V\nc : ℝ\nhc : c ≠ 0\nx y : V\nthis : c * c ≠ 0\n⊢ angle (c • x) (c • y) = angle x y", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ : V\nc : ℝ\nhc : c ≠ 0\nx y : V\n⊢ angle (c • x) (c • y) = angle x y", "tactic": "have : c * c ≠ 0 := mul_ne_zero hc hc" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ : V\nc : ℝ\nhc : c ≠ 0\nx y : V\nthis : c * c ≠ 0\n⊢ angle (c • x) (c • y) = angle x y", "tactic": "rw [angle, angle, real_inner_smul_left, inner_smul_right, norm_smul, norm_smul, Real.norm_eq_abs,\n mul_mul_mul_comm _ ‖x‖, abs_mul_abs_self, ← mul_assoc c c, mul_div_mul_left _ _ this]" } ]
[ 62, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Analysis/NormedSpace/CompactOperator.lean
isCompactOperator_iff_exists_mem_nhds_image_subset_compact
[]
[ 84, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.omega_ne_zero
[]
[ 194, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/RingTheory/Nilpotent.lean
isNilpotent_neg_iff
[]
[ 58, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
ULift.edist_eq
[]
[ 438, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/MeasureTheory/MeasurableSpaceDef.lean
Measurable.le
[]
[ 571, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 570, 1 ]
Mathlib/RingTheory/ChainOfDivisors.lean
DivisorChain.isPrimePow_of_has_chain
[]
[ 221, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 217, 1 ]
Mathlib/RingTheory/DedekindDomain/Ideal.lean
FractionalIdeal.adjoinIntegral_eq_one_of_isUnit
[ { "state_after": "R : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\n⊢ I = 1", "state_before": "R : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nhI : IsUnit (adjoinIntegral A⁰ x hx)\n⊢ adjoinIntegral A⁰ x hx = 1", "tactic": "set I := adjoinIntegral A⁰ x hx" }, { "state_after": "R : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\nmul_self : I * I = I\n⊢ I = 1", "state_before": "R : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\n⊢ I = 1", "tactic": "have mul_self : I * I = I := by apply coeToSubmodule_injective; simp" }, { "state_after": "case a\nR : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\n⊢ (fun I => ↑I) (I * I) = (fun I => ↑I) I", "state_before": "R : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\n⊢ I * I = I", "tactic": "apply coeToSubmodule_injective" }, { "state_after": "no goals", "state_before": "case a\nR : Type ?u.114414\nA : Type u_1\nK : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : Field K\ninst✝² : IsDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : K\nhx : IsIntegral A x\nI : FractionalIdeal A⁰ K := adjoinIntegral A⁰ x hx\nhI : IsUnit I\n⊢ (fun I => ↑I) (I * I) = (fun I => ↑I) I", "tactic": "simp" } ]
[ 272, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Std/Data/Array/Init/Lemmas.lean
Array.append_data
[ { "state_after": "α : Type u_1\narr arr' : Array α\n⊢ (Array.append arr arr').data = arr.data ++ arr'.data", "state_before": "α : Type u_1\narr arr' : Array α\n⊢ (arr ++ arr').data = arr.data ++ arr'.data", "tactic": "rw [← append_eq_append]" }, { "state_after": "α : Type u_1\narr arr' : Array α\n⊢ (foldl (fun r v => push r v) arr arr' 0 (size arr')).data = arr.data ++ arr'.data", "state_before": "α : Type u_1\narr arr' : Array α\n⊢ (Array.append arr arr').data = arr.data ++ arr'.data", "tactic": "unfold Array.append" }, { "state_after": "α : Type u_1\narr arr' : Array α\n⊢ (List.foldl (fun r v => push r v) arr arr'.data).data = arr.data ++ arr'.data", "state_before": "α : Type u_1\narr arr' : Array α\n⊢ (foldl (fun r v => push r v) arr arr' 0 (size arr')).data = arr.data ++ arr'.data", "tactic": "rw [foldl_eq_foldl_data]" }, { "state_after": "no goals", "state_before": "α : Type u_1\narr arr' : Array α\n⊢ (List.foldl (fun r v => push r v) arr arr'.data).data = arr.data ++ arr'.data", "tactic": "induction arr'.data generalizing arr <;> simp [*]" } ]
[ 196, 52 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 192, 9 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofRealClm_coe
[]
[ 1010, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1009, 1 ]
Mathlib/Data/Nat/Order/Lemmas.lean
Nat.div_eq_iff_eq_of_dvd_dvd
[ { "state_after": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\n⊢ n / x = n / y → x = y\n\ncase mpr\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\n⊢ x = y → n / x = n / y", "state_before": "a b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\n⊢ n / x = n / y ↔ x = y", "tactic": "constructor" }, { "state_after": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ x = y", "state_before": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\n⊢ n / x = n / y → x = y", "tactic": "intro h" }, { "state_after": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n * x = n * y", "state_before": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ x = y", "tactic": "rw [← mul_right_inj' hn]" }, { "state_after": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n * x / y = n", "state_before": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n * x = n * y", "tactic": "apply Nat.eq_mul_of_div_eq_left (dvd_mul_of_dvd_left hy x)" }, { "state_after": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n = x * (n / y)", "state_before": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n * x / y = n", "tactic": "rw [eq_comm, mul_comm, Nat.mul_div_assoc _ hy]" }, { "state_after": "no goals", "state_before": "case mp\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : n / x = n / y\n⊢ n = x * (n / y)", "tactic": "exact Nat.eq_mul_of_div_eq_right hx h" }, { "state_after": "case mpr\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : x = y\n⊢ n / x = n / y", "state_before": "case mpr\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\n⊢ x = y → n / x = n / y", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mpr\na b m n✝ k n x y : ℕ\nhn : n ≠ 0\nhx : x ∣ n\nhy : y ∣ n\nh : x = y\n⊢ n / x = n / y", "tactic": "rw [h]" } ]
[ 80, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.range_sigma_eq_iUnion_range
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_3\nγ✝ : Type ?u.148439\nι : Sort ?u.148442\nι' : Sort ?u.148445\nι₂ : Sort ?u.148448\nκ : ι → Sort ?u.148453\nκ₁ : ι → Sort ?u.148458\nκ₂ : ι → Sort ?u.148463\nκ' : ι' → Sort ?u.148468\nγ : α → Type u_1\nf : Sigma γ → β\n⊢ ∀ (x : β), x ∈ range f ↔ x ∈ ⋃ (a : α), range fun b => f { fst := a, snd := b }", "tactic": "simp" } ]
[ 1265, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1263, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.measure_biUnion_finset
[]
[ 192, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 190, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_union_le
[]
[ 419, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 418, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.span_one
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : Semiring α\nI : Ideal α\na b : α\n⊢ span 1 = ⊤", "tactic": "rw [← Set.singleton_one, span_singleton_one]" } ]
[ 210, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.zero_of_to_zero
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nX : C\nf : X ⟶ 0\n⊢ f = 0", "tactic": "ext" } ]
[ 378, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/CategoryTheory/Preadditive/Schur.lean
CategoryTheory.finrank_hom_simple_simple_le_one
[ { "state_after": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1\n\ncase inr\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "state_before": "C : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "obtain (h|h) := subsingleton_or_nontrivial (X ⟶ Y)" }, { "state_after": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "state_before": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "skip" }, { "state_after": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ 0 ≤ 1", "state_before": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "rw [finrank_zero_of_subsingleton]" }, { "state_after": "no goals", "state_before": "case inl\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Subsingleton (X ⟶ Y)\n⊢ 0 ≤ 1", "tactic": "exact zero_le_one" }, { "state_after": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "state_before": "case inr\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "obtain ⟨f, nz⟩ := (nontrivial_iff_exists_ne 0).mp h" }, { "state_after": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "state_before": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "haveI fi := (isIso_iff_nonzero f).mpr nz" }, { "state_after": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\n⊢ ∀ (w : X ⟶ Y), ∃ c, c • f = w", "state_before": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\n⊢ finrank 𝕜 (X ⟶ Y) ≤ 1", "tactic": "refine' finrank_le_one f _" }, { "state_after": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\ng : X ⟶ Y\n⊢ ∃ c, c • f = g", "state_before": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\n⊢ ∀ (w : X ⟶ Y), ∃ c, c • f = w", "tactic": "intro g" }, { "state_after": "case inr.intro.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\ng : X ⟶ Y\nc : 𝕜\nw : c • 𝟙 X = g ≫ inv f\n⊢ ∃ c, c • f = g", "state_before": "case inr.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\ng : X ⟶ Y\n⊢ ∃ c, c • f = g", "tactic": "obtain ⟨c, w⟩ := endomorphism_simple_eq_smul_id 𝕜 (g ≫ inv f)" }, { "state_after": "no goals", "state_before": "case inr.intro.intro\nC : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\ng : X ⟶ Y\nc : 𝕜\nw : c • 𝟙 X = g ≫ inv f\n⊢ ∃ c, c • f = g", "tactic": "exact ⟨c, by simpa using w =≫ f⟩" }, { "state_after": "no goals", "state_before": "C : Type u_3\ninst✝⁸ : Category C\ninst✝⁷ : Preadditive C\n𝕜 : Type u_1\ninst✝⁶ : Field 𝕜\ninst✝⁵ : IsAlgClosed 𝕜\ninst✝⁴ : Linear 𝕜 C\ninst✝³ : HasKernels C\nX Y : C\ninst✝² : FiniteDimensional 𝕜 (X ⟶ X)\ninst✝¹ : Simple X\ninst✝ : Simple Y\nh : Nontrivial (X ⟶ Y)\nf : X ⟶ Y\nnz : f ≠ 0\nfi : IsIso f\ng : X ⟶ Y\nc : 𝕜\nw : c • 𝟙 X = g ≫ inv f\n⊢ c • f = g", "tactic": "simpa using w =≫ f" } ]
[ 183, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/Data/Finset/PImage.lean
Finset.pimage_some
[ { "state_after": "case a\nα : Type u_1\nβ : Type u_2\ninst✝³ : DecidableEq β\nf✝ g : α →. β\ninst✝² : (x : α) → Decidable (f✝ x).Dom\ninst✝¹ : (x : α) → Decidable (g x).Dom\ns✝ t : Finset α\nb : β\ns : Finset α\nf : α → β\ninst✝ : (x : α) → Decidable (Part.some (f x)).Dom\na✝ : β\n⊢ a✝ ∈ pimage (fun x => Part.some (f x)) s ↔ a✝ ∈ image f s", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝³ : DecidableEq β\nf✝ g : α →. β\ninst✝² : (x : α) → Decidable (f✝ x).Dom\ninst✝¹ : (x : α) → Decidable (g x).Dom\ns✝ t : Finset α\nb : β\ns : Finset α\nf : α → β\ninst✝ : (x : α) → Decidable (Part.some (f x)).Dom\n⊢ pimage (fun x => Part.some (f x)) s = image f s", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type u_2\ninst✝³ : DecidableEq β\nf✝ g : α →. β\ninst✝² : (x : α) → Decidable (f✝ x).Dom\ninst✝¹ : (x : α) → Decidable (g x).Dom\ns✝ t : Finset α\nb : β\ns : Finset α\nf : α → β\ninst✝ : (x : α) → Decidable (Part.some (f x)).Dom\na✝ : β\n⊢ a✝ ∈ pimage (fun x => Part.some (f x)) s ↔ a✝ ∈ image f s", "tactic": "simp [eq_comm]" } ]
[ 82, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Deprecated/Ring.lean
RingHom.coe_of
[]
[ 158, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/Data/Set/Basic.lean
Set.mem_of_mem_diff
[]
[ 1807, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1806, 1 ]
Mathlib/Topology/DenseEmbedding.lean
denseEmbedding_id
[]
[ 302, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.liminf_eq
[]
[ 386, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 385, 1 ]
Mathlib/Data/List/Basic.lean
List.map_comp_map
[ { "state_after": "case h.a.a\nι : Type ?u.136607\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ng : β → γ\nf : α → β\nl : List α\nn✝ : ℕ\na✝ : γ\n⊢ a✝ ∈ get? ((map g ∘ map f) l) n✝ ↔ a✝ ∈ get? (map (g ∘ f) l) n✝", "state_before": "ι : Type ?u.136607\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ng : β → γ\nf : α → β\n⊢ map g ∘ map f = map (g ∘ f)", "tactic": "ext l" }, { "state_after": "no goals", "state_before": "case h.a.a\nι : Type ?u.136607\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ng : β → γ\nf : α → β\nl : List α\nn✝ : ℕ\na✝ : γ\n⊢ a✝ ∈ get? ((map g ∘ map f) l) n✝ ↔ a✝ ∈ get? (map (g ∘ f) l) n✝", "tactic": "rw [comp_map, Function.comp_apply]" } ]
[ 1858, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1857, 1 ]
Std/Data/Option/Lemmas.lean
Option.get_some
[]
[ 35, 83 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 35, 9 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.scalar_inj
[ { "state_after": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\n⊢ ↑(scalar n) r = ↑(scalar n) s → r = s\n\ncase mpr\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\n⊢ r = s → ↑(scalar n) r = ↑(scalar n) s", "state_before": "l : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\n⊢ ↑(scalar n) r = ↑(scalar n) s ↔ r = s", "tactic": "constructor" }, { "state_after": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\nh : ↑(scalar n) r = ↑(scalar n) s\n⊢ r = s", "state_before": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\n⊢ ↑(scalar n) r = ↑(scalar n) s → r = s", "tactic": "intro h" }, { "state_after": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\nh : ↑(scalar n) r = ↑(scalar n) s\ninhabited_h : Inhabited n\n⊢ r = s", "state_before": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\nh : ↑(scalar n) r = ↑(scalar n) s\n⊢ r = s", "tactic": "inhabit n" }, { "state_after": "no goals", "state_before": "case mp\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\nh : ↑(scalar n) r = ↑(scalar n) s\ninhabited_h : Inhabited n\n⊢ r = s", "tactic": "rw [← scalar_apply_eq r (Inhabited.default (α := n)),\n ← scalar_apply_eq s (Inhabited.default (α := n)), h]" }, { "state_after": "case mpr\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr : α\n⊢ ↑(scalar n) r = ↑(scalar n) r", "state_before": "case mpr\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr s : α\n⊢ r = s → ↑(scalar n) r = ↑(scalar n) s", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "case mpr\nl : Type ?u.458991\nm : Type ?u.458994\nn : Type u_1\no : Type ?u.459000\nm' : o → Type ?u.459005\nn' : o → Type ?u.459010\nR : Type ?u.459013\nS : Type ?u.459016\nα : Type v\nβ : Type w\nγ : Type ?u.459023\ninst✝³ : Semiring α\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : Nonempty n\nr : α\n⊢ ↑(scalar n) r = ↑(scalar n) r", "tactic": "rfl" } ]
[ 1270, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1263, 1 ]
Mathlib/Algebra/Order/Monoid/TypeTags.lean
Additive.toMul_le
[]
[ 134, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Algebra/FreeAlgebra.lean
FreeAlgebra.ι_ne_algebraMap
[ { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\n⊢ False", "tactic": "let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\n⊢ False", "tactic": "let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : ↑f0 (ι R x) = 0\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\n⊢ False", "tactic": "have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : ↑f0 (ι R x) = 0\nhf1 : ↑f1 (ι R x) = 1\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : ↑f0 (ι R x) = 0\n⊢ False", "tactic": "have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : r = 0\nhf1 : ↑f1 (ι R x) = 1\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : ↑f0 (ι R x) = 0\nhf1 : ↑f1 (ι R x) = 1\n⊢ False", "tactic": "rw [h, f0.commutes, Algebra.id.map_eq_self] at hf0" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : r = 0\nhf1 : r = 1\n⊢ False", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : r = 0\nhf1 : ↑f1 (ι R x) = 1\n⊢ False", "tactic": "rw [h, f1.commutes, Algebra.id.map_eq_self] at hf1" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nX : Type u_2\nA : Type ?u.733161\ninst✝² : Semiring A\ninst✝¹ : Algebra R A\ninst✝ : Nontrivial R\nx : X\nr : R\nh : ι R x = ↑(algebraMap R (FreeAlgebra R X)) r\nf0 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 0\nf1 : FreeAlgebra R X →ₐ[R] R := ↑(lift R) 1\nhf0 : r = 0\nhf1 : r = 1\n⊢ False", "tactic": "exact zero_ne_one (hf0.symm.trans hf1)" } ]
[ 461, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 454, 1 ]
Mathlib/Topology/Constructions.lean
continuous_quotient_mk'
[]
[ 1162, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1161, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.mem_sInf_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.58938\nγ : Type ?u.58941\nι : Sort ?u.58944\nκ : ι → Sort ?u.58949\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\n⊢ (∃ i j, a ∈ ↑i) ↔ ∃ s, s ∈ S ∧ a ∈ s", "tactic": "simp only [exists_prop, SetLike.mem_coe]" } ]
[ 597, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 596, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
mul_le_of_le_one_of_le'
[]
[ 859, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 857, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
le_of_neg_of_one_div_le_one_div
[]
[ 875, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 874, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
contDiffAt_const
[]
[ 102, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.coe_update
[]
[ 832, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 831, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalMax.comp_antitone
[]
[ 238, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 8 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.ghostMap.bijective_of_invertible
[]
[ 338, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_add_const_Ico
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => x + a) ⁻¹' Ico b c = Ico (b - a) (c - a)", "tactic": "simp [← Ici_inter_Iio]" } ]
[ 114, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Mathlib/RingTheory/Nilpotent.lean
Commute.isNilpotent_sub
[ { "state_after": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent y\n⊢ IsNilpotent (x - y)", "state_before": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm : Commute x y\nhx : IsNilpotent x\nhy : IsNilpotent y\n⊢ IsNilpotent (x - y)", "tactic": "rw [← neg_right_iff] at h_comm" }, { "state_after": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent (-y)\n⊢ IsNilpotent (x - y)", "state_before": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent y\n⊢ IsNilpotent (x - y)", "tactic": "rw [← isNilpotent_neg_iff] at hy" }, { "state_after": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent (-y)\n⊢ IsNilpotent (x + -y)", "state_before": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent (-y)\n⊢ IsNilpotent (x - y)", "tactic": "rw [sub_eq_add_neg]" }, { "state_after": "no goals", "state_before": "R S : Type u\nx y : R\ninst✝ : Ring R\nh_comm✝ : Commute x y\nh_comm : Commute x (-y)\nhx : IsNilpotent x\nhy : IsNilpotent (-y)\n⊢ IsNilpotent (x + -y)", "tactic": "exact h_comm.isNilpotent_add hx hy" } ]
[ 179, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.constantCoeff_zero
[]
[ 508, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 507, 1 ]
Mathlib/Algebra/Module/Bimodule.lean
Subbimodule.smul_mem'
[ { "state_after": "R : Type u_4\nA : Type u_2\nB : Type u_1\nM : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Module A M\ninst✝⁵ : Module B M\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R B\ninst✝² : IsScalarTower R A M\ninst✝¹ : IsScalarTower R B M\ninst✝ : SMulCommClass A B M\np : Submodule (A ⊗[R] B) M\nb : B\nm : M\nhm : m ∈ p\n⊢ b • m = 1 ⊗ₜ[R] b • m", "state_before": "R : Type u_4\nA : Type u_2\nB : Type u_1\nM : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Module A M\ninst✝⁵ : Module B M\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R B\ninst✝² : IsScalarTower R A M\ninst✝¹ : IsScalarTower R B M\ninst✝ : SMulCommClass A B M\np : Submodule (A ⊗[R] B) M\nb : B\nm : M\nhm : m ∈ p\n⊢ b • m ∈ p", "tactic": "suffices b • m = (1 : A) ⊗ₜ[R] b • m by exact this.symm ▸ p.smul_mem _ hm" }, { "state_after": "no goals", "state_before": "R : Type u_4\nA : Type u_2\nB : Type u_1\nM : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Module A M\ninst✝⁵ : Module B M\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R B\ninst✝² : IsScalarTower R A M\ninst✝¹ : IsScalarTower R B M\ninst✝ : SMulCommClass A B M\np : Submodule (A ⊗[R] B) M\nb : B\nm : M\nhm : m ∈ p\n⊢ b • m = 1 ⊗ₜ[R] b • m", "tactic": "simp [TensorProduct.Algebra.smul_def]" }, { "state_after": "no goals", "state_before": "R : Type u_4\nA : Type u_2\nB : Type u_1\nM : Type u_3\ninst✝¹¹ : CommSemiring R\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : Module R M\ninst✝⁸ : Semiring A\ninst✝⁷ : Semiring B\ninst✝⁶ : Module A M\ninst✝⁵ : Module B M\ninst✝⁴ : Algebra R A\ninst✝³ : Algebra R B\ninst✝² : IsScalarTower R A M\ninst✝¹ : IsScalarTower R B M\ninst✝ : SMulCommClass A B M\np : Submodule (A ⊗[R] B) M\nb : B\nm : M\nhm : m ∈ p\nthis : b • m = 1 ⊗ₜ[R] b • m\n⊢ b • m ∈ p", "tactic": "exact this.symm ▸ p.smul_mem _ hm" } ]
[ 105, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.submatrix_mulVec_equiv
[]
[ 2509, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2506, 1 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.add_eq_left_iff
[ { "state_after": "a b : Cardinal\n⊢ a + b = a ↔ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "state_before": "a b : Cardinal\n⊢ a + b = a ↔ max ℵ₀ b ≤ a ∨ b = 0", "tactic": "rw [max_le_iff]" }, { "state_after": "case refine'_1\na b : Cardinal\nh : a + b = a\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0\n\ncase refine'_2\na b : Cardinal\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0 → a + b = a", "state_before": "a b : Cardinal\n⊢ a + b = a ↔ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "tactic": "refine' ⟨fun h => _, _⟩" }, { "state_after": "case refine'_1.inl\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0\n\ncase refine'_1.inr\na b : Cardinal\nh : a + b = a\nha : a < ℵ₀\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "state_before": "case refine'_1\na b : Cardinal\nh : a + b = a\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "tactic": "cases' le_or_lt ℵ₀ a with ha ha" }, { "state_after": "case refine'_1.inr.h\na b : Cardinal\nh : a + b = a\nha : a < ℵ₀\n⊢ b = 0", "state_before": "case refine'_1.inr\na b : Cardinal\nh : a + b = a\nha : a < ℵ₀\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "tactic": "right" }, { "state_after": "case refine'_1.inr.h\na b : Cardinal\nh : a + b = a\nha : (∃ n, a = ↑n) ∧ ∃ n, b = ↑n\n⊢ b = 0", "state_before": "case refine'_1.inr.h\na b : Cardinal\nh : a + b = a\nha : a < ℵ₀\n⊢ b = 0", "tactic": "rw [← h, add_lt_aleph0_iff, lt_aleph0, lt_aleph0] at ha" }, { "state_after": "case refine'_1.inr.h.intro.intro.intro\nn m : ℕ\nh : ↑n + ↑m = ↑n\n⊢ ↑m = 0", "state_before": "case refine'_1.inr.h\na b : Cardinal\nh : a + b = a\nha : (∃ n, a = ↑n) ∧ ∃ n, b = ↑n\n⊢ b = 0", "tactic": "rcases ha with ⟨⟨n, rfl⟩, ⟨m, rfl⟩⟩" }, { "state_after": "case refine'_1.inr.h.intro.intro.intro\nn m : ℕ\nh : n + m = n\n⊢ m = 0", "state_before": "case refine'_1.inr.h.intro.intro.intro\nn m : ℕ\nh : ↑n + ↑m = ↑n\n⊢ ↑m = 0", "tactic": "norm_cast at h⊢" }, { "state_after": "no goals", "state_before": "case refine'_1.inr.h.intro.intro.intro\nn m : ℕ\nh : n + m = n\n⊢ m = 0", "tactic": "rw [← add_right_inj, h, add_zero]" }, { "state_after": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ℵ₀ ≤ a ∧ b ≤ a", "state_before": "case refine'_1.inl\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0", "tactic": "left" }, { "state_after": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ b ≤ a", "state_before": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ℵ₀ ≤ a ∧ b ≤ a", "tactic": "use ha" }, { "state_after": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ¬a < b", "state_before": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ b ≤ a", "tactic": "rw [← not_lt]" }, { "state_after": "a b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ a < b → a < a + b", "state_before": "case refine'_1.inl.h\na b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ ¬a < b", "tactic": "apply fun hb => ne_of_gt _ h" }, { "state_after": "a b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\nhb : a < b\n⊢ a < a + b", "state_before": "a b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\n⊢ a < b → a < a + b", "tactic": "intro hb" }, { "state_after": "no goals", "state_before": "a b : Cardinal\nh : a + b = a\nha : ℵ₀ ≤ a\nhb : a < b\n⊢ a < a + b", "tactic": "exact hb.trans_le (self_le_add_left b a)" }, { "state_after": "case refine'_2.inl.intro\na b : Cardinal\nh1 : ℵ₀ ≤ a\nh2 : b ≤ a\n⊢ a + b = a\n\ncase refine'_2.inr\na b : Cardinal\nh3 : b = 0\n⊢ a + b = a", "state_before": "case refine'_2\na b : Cardinal\n⊢ ℵ₀ ≤ a ∧ b ≤ a ∨ b = 0 → a + b = a", "tactic": "rintro (⟨h1, h2⟩ | h3)" }, { "state_after": "no goals", "state_before": "case refine'_2.inl.intro\na b : Cardinal\nh1 : ℵ₀ ≤ a\nh2 : b ≤ a\n⊢ a + b = a", "tactic": "rw [add_eq_max h1, max_eq_left h2]" }, { "state_after": "no goals", "state_before": "case refine'_2.inr\na b : Cardinal\nh3 : b = 0\n⊢ a + b = a", "tactic": "rw [h3, add_zero]" } ]
[ 804, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 787, 1 ]
Mathlib/Algebra/Algebra/Equiv.lean
AlgEquiv.arrowCongr_refl
[ { "state_after": "case H.H\nR : Type u\nA₁ : Type v\nA₂ : Type w\nA₃ : Type u₁\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Semiring A₁\ninst✝⁴ : Semiring A₂\ninst✝³ : Semiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nx✝¹ : A₁ →ₐ[R] A₂\nx✝ : A₁\n⊢ ↑(↑(arrowCongr refl refl) x✝¹) x✝ = ↑(↑(Equiv.refl (A₁ →ₐ[R] A₂)) x✝¹) x✝", "state_before": "R : Type u\nA₁ : Type v\nA₂ : Type w\nA₃ : Type u₁\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Semiring A₁\ninst✝⁴ : Semiring A₂\ninst✝³ : Semiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\n⊢ arrowCongr refl refl = Equiv.refl (A₁ →ₐ[R] A₂)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case H.H\nR : Type u\nA₁ : Type v\nA₂ : Type w\nA₃ : Type u₁\ninst✝⁶ : CommSemiring R\ninst✝⁵ : Semiring A₁\ninst✝⁴ : Semiring A₂\ninst✝³ : Semiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nx✝¹ : A₁ →ₐ[R] A₂\nx✝ : A₁\n⊢ ↑(↑(arrowCongr refl refl) x✝¹) x✝ = ↑(↑(Equiv.refl (A₁ →ₐ[R] A₂)) x✝¹) x✝", "tactic": "rfl" } ]
[ 468, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 466, 1 ]
Mathlib/GroupTheory/Exponent.lean
card_dvd_exponent_pow_rank
[ { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\n⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G", "state_before": "G : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\n⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G", "tactic": "obtain ⟨S, hS1, hS2⟩ := Group.rank_spec G" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\n⊢ Nat.card G ∣ Monoid.exponent G ^ Group.rank G", "tactic": "rw [← hS1, ← Fintype.card_coe, ← Finset.card_univ, ← Finset.prod_const]" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "tactic": "let f : (∀ g : S, zpowers (g : G)) →* G := noncommPiCoprod fun s t _ x y _ _ => mul_comm x _" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf : Function.Surjective ↑f\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "tactic": "have hf : Function.Surjective f := by\n rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le]\n exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf : Function.Surjective ↑f\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "tactic": "replace hf := nat_card_dvd_of_surjective f hf" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "tactic": "rw [Nat.card_pi] at hf" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\ng : { x // x ∈ S }\nx✝ : g ∈ Finset.univ\n⊢ Nat.card { x // x ∈ zpowers ↑g } ∣ Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\n⊢ Nat.card G ∣ ∏ _x : { x // x ∈ S }, Monoid.exponent G", "tactic": "refine' hf.trans (Finset.prod_dvd_prod_of_dvd _ _ fun g _ => _)" }, { "state_after": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\ng : { x // x ∈ S }\nx✝ : g ∈ Finset.univ\n⊢ orderOf ↑g ∣ Monoid.exponent G", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\ng : { x // x ∈ S }\nx✝ : g ∈ Finset.univ\n⊢ Nat.card { x // x ∈ zpowers ↑g } ∣ Monoid.exponent G", "tactic": "rw [← order_eq_card_zpowers']" }, { "state_after": "no goals", "state_before": "case intro.intro\nG : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\nhf✝ : Nat.card G ∣ Nat.card ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g })\nhf : Nat.card G ∣ ∏ a : { x // x ∈ S }, Nat.card { x // x ∈ zpowers ↑a }\ng : { x // x ∈ S }\nx✝ : g ∈ Finset.univ\n⊢ orderOf ↑g ∣ Monoid.exponent G", "tactic": "exact Monoid.order_dvd_exponent (g : G)" }, { "state_after": "G : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\n⊢ ↑S ⊆ ↑(MonoidHom.range f)", "state_before": "G : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\n⊢ Function.Surjective ↑f", "tactic": "rw [← MonoidHom.range_top_iff_surjective, eq_top_iff, ← hS2, closure_le]" }, { "state_after": "no goals", "state_before": "G : Type u\ninst✝¹ : CommGroup G\ninst✝ : Group.FG G\nS : Finset G\nhS1 : Finset.card S = Group.rank G\nhS2 : closure ↑S = ⊤\nf : ((g : { x // x ∈ S }) → { x // x ∈ zpowers ↑g }) →* G :=\n noncommPiCoprod (_ : ∀ (s t : { x // x ∈ S }), s ≠ t → ∀ (x y : G), x ∈ zpowers ↑s → y ∈ zpowers ↑t → x * y = y * x)\n⊢ ↑S ⊆ ↑(MonoidHom.range f)", "tactic": "exact fun g hg => ⟨Pi.mulSingle ⟨g, hg⟩ ⟨g, mem_zpowers g⟩, noncommPiCoprod_mulSingle _ _⟩" } ]
[ 379, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
Coplanar.finiteDimensional_vectorSpan
[ { "state_after": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.339734\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : Set P\nh : Coplanar k s\n⊢ 2 < Cardinal.aleph0", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.339734\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : Set P\nh : Coplanar k s\n⊢ FiniteDimensional k { x // x ∈ vectorSpan k s }", "tactic": "refine' IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 (lt_of_le_of_lt h _))" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.339734\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : Set P\nh : Coplanar k s\n⊢ 2 < Cardinal.aleph0", "tactic": "exact Cardinal.lt_aleph0.2 ⟨2, rfl⟩" } ]
[ 614, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 611, 1 ]
Mathlib/Analysis/NormedSpace/Star/Multiplier.lean
DoubleCentralizer.sub_snd
[]
[ 285, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Algebra/Group/WithOne/Defs.lean
WithOne.cases_on
[]
[ 185, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 11 ]
Mathlib/Data/Polynomial/EraseLead.lean
Polynomial.eraseLead_natDegree_lt
[]
[ 194, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Std/Logic.lean
iff_iff_eq
[]
[ 51, 61 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 51, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
GroupTopology.continuous_inv'
[ { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis : TopologicalSpace α := g.toTopologicalSpace\n⊢ Continuous Inv.inv", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\n⊢ Continuous Inv.inv", "tactic": "letI := g.toTopologicalSpace" }, { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis✝ : TopologicalSpace α := g.toTopologicalSpace\nthis : TopologicalGroup α\n⊢ Continuous Inv.inv", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis : TopologicalSpace α := g.toTopologicalSpace\n⊢ Continuous Inv.inv", "tactic": "haveI := g.toTopologicalGroup" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis✝ : TopologicalSpace α := g.toTopologicalSpace\nthis : TopologicalGroup α\n⊢ Continuous Inv.inv", "tactic": "exact continuous_inv" } ]
[ 1868, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1863, 1 ]
Mathlib/Algebra/AlgebraicCard.lean
Algebraic.infinite_of_charZero
[]
[ 35, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.dvd_of_mul_dvd_mul_left
[ { "state_after": "k m n : Nat\nkpos : 0 < k\nH✝ : k * m ∣ k * n\nl : Nat\nH : k * n = k * m * l\n⊢ m ∣ n", "state_before": "k m n : Nat\nkpos : 0 < k\nH : k * m ∣ k * n\n⊢ m ∣ n", "tactic": "let ⟨l, H⟩ := H" }, { "state_after": "k m n : Nat\nkpos : 0 < k\nH✝ : k * m ∣ k * n\nl : Nat\nH : k * n = k * (m * l)\n⊢ m ∣ n", "state_before": "k m n : Nat\nkpos : 0 < k\nH✝ : k * m ∣ k * n\nl : Nat\nH : k * n = k * m * l\n⊢ m ∣ n", "tactic": "rw [Nat.mul_assoc] at H" }, { "state_after": "no goals", "state_before": "k m n : Nat\nkpos : 0 < k\nH✝ : k * m ∣ k * n\nl : Nat\nH : k * n = k * (m * l)\n⊢ m ∣ n", "tactic": "exact ⟨_, Nat.eq_of_mul_eq_mul_left kpos H⟩" } ]
[ 750, 46 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 746, 11 ]
Mathlib/Data/Sum/Interval.lean
Sum.Icc_inl_inl
[]
[ 142, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/Analysis/Convex/Topology.lean
isClosed_stdSimplex
[]
[ 68, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.weightedVSubOfPoint_indicator_subset
[ { "state_after": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.58761\ns₂✝ : Finset ι₂\nw : ι → k\np : ι → P\nb : P\ns₁ s₂ : Finset ι\nh : s₁ ⊆ s₂\n⊢ ∑ i in s₁, w i • (p i -ᵥ b) = ∑ i in s₂, Set.indicator (↑s₁) w i • (p i -ᵥ b)", "state_before": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.58761\ns₂✝ : Finset ι₂\nw : ι → k\np : ι → P\nb : P\ns₁ s₂ : Finset ι\nh : s₁ ⊆ s₂\n⊢ ↑(weightedVSubOfPoint s₁ p b) w = ↑(weightedVSubOfPoint s₂ p b) (Set.indicator (↑s₁) w)", "tactic": "rw [weightedVSubOfPoint_apply, weightedVSubOfPoint_apply]" }, { "state_after": "no goals", "state_before": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.58761\ns₂✝ : Finset ι₂\nw : ι → k\np : ι → P\nb : P\ns₁ s₂ : Finset ι\nh : s₁ ⊆ s₂\n⊢ ∑ i in s₁, w i • (p i -ᵥ b) = ∑ i in s₂, Set.indicator (↑s₁) w i • (p i -ᵥ b)", "tactic": "exact\n Set.sum_indicator_subset_of_eq_zero w (fun i wi => wi • (p i -ᵥ b : V)) h fun i => zero_smul k _" } ]
[ 174, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithBot.one_lt_coe
[]
[ 521, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 520, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
Disjoint.edgeSet
[ { "state_after": "no goals", "state_before": "ι : Sort ?u.125448\nV : Type u\nW : Type v\nG : SimpleGraph V\nG₁ G₂ : Subgraph G\na b : V\nH₁ H₂ : Subgraph G\nh : Disjoint H₁ H₂\n⊢ SimpleGraph.Subgraph.edgeSet H₁ ⊓ SimpleGraph.Subgraph.edgeSet H₂ ≤ ⊥", "tactic": "simpa using edgeSet_mono h.le_bot" } ]
[ 639, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/Order/Max.lean
isTop_ofDual_iff
[]
[ 258, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Analysis/Calculus/Deriv/Comp.lean
HasStrictFDerivAt.comp_hasStrictDerivAt
[]
[ 265, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Order/Filter/Germ.lean
Filter.Germ.map_id
[ { "state_after": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.39044\nδ : Type ?u.39047\nl : Filter α\nf✝ g h : α → β\nx✝ : Germ l β\nf : α → β\n⊢ map id (Quot.mk Setoid.r f) = id (Quot.mk Setoid.r f)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.39044\nδ : Type ?u.39047\nl : Filter α\nf g h : α → β\n⊢ map id = id", "tactic": "ext ⟨f⟩" }, { "state_after": "no goals", "state_before": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.39044\nδ : Type ?u.39047\nl : Filter α\nf✝ g h : α → β\nx✝ : Germ l β\nf : α → β\n⊢ map id (Quot.mk Setoid.r f) = id (Quot.mk Setoid.r f)", "tactic": "rfl" } ]
[ 199, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.sub_conj
[ { "state_after": "no goals", "state_before": "z : ℂ\n⊢ (z - ↑(starRingEnd ℂ) z).re = (↑(2 * z.im) * I).re ∧ (z - ↑(starRingEnd ℂ) z).im = (↑(2 * z.im) * I).im", "tactic": "simp [two_mul, sub_eq_add_neg, ofReal']" } ]
[ 719, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 718, 1 ]
Std/Data/List/Lemmas.lean
List.mem_diff_of_mem
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl₁ : List α\nb : α\nl₂ : List α\nh₁ : a ∈ l₁\nh₂ : ¬a ∈ b :: l₂\n⊢ a ∈ List.diff (List.erase l₁ b) l₂", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl₁ : List α\nb : α\nl₂ : List α\nh₁ : a ∈ l₁\nh₂ : ¬a ∈ b :: l₂\n⊢ a ∈ List.diff l₁ (b :: l₂)", "tactic": "rw [diff_cons]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl₁ : List α\nb : α\nl₂ : List α\nh₁ : a ∈ l₁\nh₂ : ¬a ∈ b :: l₂\n⊢ a ∈ List.diff (List.erase l₁ b) l₂", "tactic": "exact mem_diff_of_mem ((mem_erase_of_ne <| ne_of_not_mem_cons h₂).2 h₁) (mt (.tail _) h₂)" } ]
[ 1539, 94 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1535, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.Compacts.coe_finset_sup
[ { "state_after": "α : Type u_2\nβ : Type ?u.34252\nγ : Type ?u.34255\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_1\ns✝ : Finset ι\nf : ι → Compacts α\na : ι\ns : Finset ι\nx✝ : ¬a ∈ s\nh : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i)\n⊢ ↑(Finset.sup (Finset.cons a s x✝) f) = Finset.sup (Finset.cons a s x✝) fun i => ↑(f i)", "state_before": "α : Type u_2\nβ : Type ?u.34252\nγ : Type ?u.34255\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_1\ns : Finset ι\nf : ι → Compacts α\n⊢ ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i)", "tactic": "refine Finset.cons_induction_on s rfl fun a s _ h => ?_" }, { "state_after": "α : Type u_2\nβ : Type ?u.34252\nγ : Type ?u.34255\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_1\ns✝ : Finset ι\nf : ι → Compacts α\na : ι\ns : Finset ι\nx✝ : ¬a ∈ s\nh : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i)\n⊢ ↑(f a) ∪ ↑(Finset.sup s f) = ↑(f a) ∪ Finset.sup s fun i => ↑(f i)", "state_before": "α : Type u_2\nβ : Type ?u.34252\nγ : Type ?u.34255\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_1\ns✝ : Finset ι\nf : ι → Compacts α\na : ι\ns : Finset ι\nx✝ : ¬a ∈ s\nh : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i)\n⊢ ↑(Finset.sup (Finset.cons a s x✝) f) = Finset.sup (Finset.cons a s x✝) fun i => ↑(f i)", "tactic": "simp_rw [Finset.sup_cons, coe_sup, sup_eq_union]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.34252\nγ : Type ?u.34255\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nι : Type u_1\ns✝ : Finset ι\nf : ι → Compacts α\na : ι\ns : Finset ι\nx✝ : ¬a ∈ s\nh : ↑(Finset.sup s f) = Finset.sup s fun i => ↑(f i)\n⊢ ↑(f a) ∪ ↑(Finset.sup s f) = ↑(f a) ∪ Finset.sup s fun i => ↑(f i)", "tactic": "congr" } ]
[ 131, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.inv_limsup
[]
[ 525, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 523, 1 ]
Mathlib/LinearAlgebra/Dual.lean
LinearMap.finrank_range_dualMap_eq_finrank_range
[ { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "have that := Submodule.finrank_quotient_add_finrank (LinearMap.range f)" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "let equiv := (Subspace.quotEquivAnnihilator <| LinearMap.range f)" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "have eq := LinearEquiv.finrank_eq (R := K) (M := (V₂ ⧸ range f))\n (M₂ := { x // x ∈ Submodule.dualAnnihilator (range f) }) equiv" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K (V₂ ⧸ range f) + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "rw [eq, ←ker_dualMap_eq_dualAnnihilator_range] at that" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K V₂\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "conv_rhs at that => rw [← Subspace.dual_finrank_eq]" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ (fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range (dualMap f) }) =\n (fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range f })", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } = finrank K { x // x ∈ range f }", "tactic": "refine' add_left_injective (finrank K <| LinearMap.ker f.dualMap) _" }, { "state_after": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } + finrank K { x // x ∈ ker (dualMap f) } =\n finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker (dualMap f) }", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ (fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range (dualMap f) }) =\n (fun x => x + finrank K { x // x ∈ ker (dualMap f) }) (finrank K { x // x ∈ range f })", "tactic": "change _ + _ = _ + _" }, { "state_after": "no goals", "state_before": "K : Type u\ninst✝⁵ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\ninst✝ : FiniteDimensional K V₂\nf : V₁ →ₗ[K] V₂\nthat : finrank K { x // x ∈ ker (dualMap f) } + finrank K { x // x ∈ range f } = finrank K (Dual K V₂)\nequiv : (V₂ ⧸ range f) ≃ₗ[K] { x // x ∈ Submodule.dualAnnihilator (range f) } := Subspace.quotEquivAnnihilator (range f)\neq : finrank K (V₂ ⧸ range f) = finrank K { x // x ∈ Submodule.dualAnnihilator (range f) }\n⊢ finrank K { x // x ∈ range (dualMap f) } + finrank K { x // x ∈ ker (dualMap f) } =\n finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker (dualMap f) }", "tactic": "rw [finrank_range_add_finrank_ker f.dualMap, add_comm, that]" } ]
[ 1494, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1481, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
Function.Injective.summable_iff
[]
[ 140, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Algebra/Group/WithOne/Basic.lean
WithOne.lift_unique
[]
[ 90, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Topology/Order.lean
induced_compose
[]
[ 474, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 468, 1 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.matrix_vecEmpty_coeff
[ { "state_after": "no goals", "state_before": "p : ℕ\nR✝ : Type ?u.636245\nS : Type ?u.636248\nT : Type ?u.636251\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R✝\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type ?u.636266\nβ : Type ?u.636269\nx y : 𝕎 R✝\nR : Type u_1\ni : Fin 0\nj : ℕ\n⊢ coeff ![] j = ![]", "tactic": "rcases i with ⟨_ | _ | _ | _ | i_val, ⟨⟩⟩" } ]
[ 186, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/Data/Set/Pairwise/Basic.lean
Symmetric.pairwise_on
[]
[ 55, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Data/Fin/Interval.lean
Fin.card_fintypeIci
[ { "state_after": "case b\nn : ℕ\na b : Fin n\n⊢ Fin n", "state_before": "n : ℕ\na b : Fin n\n⊢ Fintype.card ↑(Set.Ici a) = n - ↑a", "tactic": "rw [Fintype.card_ofFinset, card_Ici]" }, { "state_after": "no goals", "state_before": "case b\nn : ℕ\na b : Fin n\n⊢ Fin n", "tactic": "assumption" } ]
[ 203, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/RingTheory/TensorProduct.lean
Algebra.TensorProduct.lmul'_apply_tmul
[]
[ 943, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 942, 1 ]
Mathlib/Data/List/Basic.lean
List.nthLe_zero_scanl
[]
[ 2631, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2630, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoDiv_sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIcoDiv hp a (b - p) = toIcoDiv hp a b - 1", "tactic": "simpa only [one_zsmul] using toIcoDiv_sub_zsmul hp a b 1" } ]
[ 340, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 339, 1 ]
Mathlib/Analysis/Complex/Liouville.lean
Differentiable.exists_const_forall_eq_of_bounded
[]
[ 129, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Algebra/Order/Monoid/MinMax.lean
fn_min_mul_fn_max
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : CommSemigroup β\nf : α → β\nn m : α\n⊢ f (min n m) * f (max n m) = f n * f m", "tactic": "cases' le_total n m with h h <;> simp [h, mul_comm]" } ]
[ 29, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 28, 1 ]
Mathlib/Order/SymmDiff.lean
compl_bihimp
[]
[ 743, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 742, 1 ]
Mathlib/LinearAlgebra/Ray.lean
exists_nonneg_left_iff_sameRay
[ { "state_after": "R : Type u_2\ninst✝² : LinearOrderedField R\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx y : M\nhx : x ≠ 0\nh : ∃ r, 0 ≤ r ∧ r • x = y\n⊢ SameRay R x y", "state_before": "R : Type u_2\ninst✝² : LinearOrderedField R\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx y : M\nhx : x ≠ 0\n⊢ (∃ r, 0 ≤ r ∧ r • x = y) ↔ SameRay R x y", "tactic": "refine' ⟨fun h => _, fun h => h.exists_nonneg_left hx⟩" }, { "state_after": "case intro.intro\nR : Type u_2\ninst✝² : LinearOrderedField R\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx : M\nhx : x ≠ 0\nr : R\nhr : 0 ≤ r\n⊢ SameRay R x (r • x)", "state_before": "R : Type u_2\ninst✝² : LinearOrderedField R\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx y : M\nhx : x ≠ 0\nh : ∃ r, 0 ≤ r ∧ r • x = y\n⊢ SameRay R x y", "tactic": "rcases h with ⟨r, hr, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u_2\ninst✝² : LinearOrderedField R\nM : Type u_1\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx : M\nhx : x ≠ 0\nr : R\nhr : 0 ≤ r\n⊢ SameRay R x (r • x)", "tactic": "exact SameRay.sameRay_nonneg_smul_right x hr" } ]
[ 731, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 727, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.exists_pos
[]
[ 204, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.diagonal_zero
[ { "state_after": "case a.h\nl : Type ?u.47813\nm : Type ?u.47816\nn : Type u_1\no : Type ?u.47822\nm' : o → Type ?u.47827\nn' : o → Type ?u.47832\nR : Type ?u.47835\nS : Type ?u.47838\nα : Type v\nβ : Type w\nγ : Type ?u.47845\ninst✝¹ : DecidableEq n\ninst✝ : Zero α\ni✝ x✝ : n\n⊢ diagonal (fun x => 0) i✝ x✝ = OfNat.ofNat 0 i✝ x✝", "state_before": "l : Type ?u.47813\nm : Type ?u.47816\nn : Type u_1\no : Type ?u.47822\nm' : o → Type ?u.47827\nn' : o → Type ?u.47832\nR : Type ?u.47835\nS : Type ?u.47838\nα : Type v\nβ : Type w\nγ : Type ?u.47845\ninst✝¹ : DecidableEq n\ninst✝ : Zero α\n⊢ (diagonal fun x => 0) = 0", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a.h\nl : Type ?u.47813\nm : Type ?u.47816\nn : Type u_1\no : Type ?u.47822\nm' : o → Type ?u.47827\nn' : o → Type ?u.47832\nR : Type ?u.47835\nS : Type ?u.47838\nα : Type v\nβ : Type w\nγ : Type ?u.47845\ninst✝¹ : DecidableEq n\ninst✝ : Zero α\ni✝ x✝ : n\n⊢ diagonal (fun x => 0) i✝ x✝ = OfNat.ofNat 0 i✝ x✝", "tactic": "simp [diagonal]" } ]
[ 461, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/Algebra/Order/Chebyshev.lean
Monovary.sum_smul_sum_le_card_smul_sum
[]
[ 85, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/GroupTheory/FreeAbelianGroupFinsupp.lean
FreeAbelianGroup.toFinsupp_comp_toFreeAbelianGroup
[ { "state_after": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =\n ↑(↑(AddMonoidHom.comp (AddMonoidHom.id (X →₀ ℤ)) (singleAddHom x)) 1) y", "state_before": "X : Type u_1\n⊢ AddMonoidHom.comp toFinsupp toFreeAbelianGroup = AddMonoidHom.id (X →₀ ℤ)", "tactic": "ext (x y)" }, { "state_after": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =\n ↑(↑(singleAddHom x) 1) y", "state_before": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =\n ↑(↑(AddMonoidHom.comp (AddMonoidHom.id (X →₀ ℤ)) (singleAddHom x)) 1) y", "tactic": "simp only [AddMonoidHom.id_comp]" }, { "state_after": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp toFinsupp (↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x))) 1) y =\n ↑(↑(singleAddHom x) 1) y", "state_before": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp (AddMonoidHom.comp toFinsupp toFreeAbelianGroup) (singleAddHom x)) 1) y =\n ↑(↑(singleAddHom x) 1) y", "tactic": "rw [AddMonoidHom.comp_assoc, Finsupp.toFreeAbelianGroup_comp_singleAddHom]" }, { "state_after": "no goals", "state_before": "case H.h1.h\nX : Type u_1\nx y : X\n⊢ ↑(↑(AddMonoidHom.comp toFinsupp (↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x))) 1) y =\n ↑(↑(singleAddHom x) 1) y", "tactic": "simp only [toFinsupp, AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply,\n one_smul, lift.of, AddMonoidHom.flip_apply, smulAddHom_apply, AddMonoidHom.id_apply]" } ]
[ 66, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]