file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Init/Data/Ordering/Lemmas.lean
Ordering.ite_eq_gt_distrib
[ { "state_after": "no goals", "state_before": "c : Prop\ninst✝ : Decidable c\na b : Ordering\n⊢ ((if c then a else b) = gt) = if c then a = gt else b = gt", "tactic": "by_cases c <;> simp [*]" } ]
[ 39, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Mathlib/Dynamics/PeriodicPts.lean
Function.minimalPeriod_id
[]
[ 370, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.lt_add_of_pos_right
[]
[ 90, 26 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 89, 11 ]
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
tendsto_one_plus_div_rpow_exp
[ { "state_after": "t : ℝ\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "state_before": "t : ℝ\n⊢ Tendsto (fun x => (1 + t / x) ^ x) atTop (𝓝 (exp t))", "tactic": "apply ((Real.continuous_exp.tendsto _).comp (tendsto_mul_log_one_plus_div_atTop t)).congr' _" }, { "state_after": "t : ℝ\nh₁ : 1 / 2 < 1\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "state_before": "t : ℝ\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "tactic": "have h₁ : (1 : ℝ) / 2 < 1 := by linarith" }, { "state_after": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "tactic": "have h₂ : Tendsto (fun x : ℝ => 1 + t / x) atTop (𝓝 1) := by\n simpa using (tendsto_inv_atTop_zero.const_mul t).const_add 1" }, { "state_after": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\nx : ℝ\nhx : 1 / 2 ≤ 1 + t / x\n⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\n⊢ (exp ∘ fun x => x * log (1 + t / x)) =ᶠ[atTop] fun x => (1 + t / x) ^ x", "tactic": "refine' (eventually_ge_of_tendsto_gt h₁ h₂).mono fun x hx => _" }, { "state_after": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\nx : ℝ\nhx : 1 / 2 ≤ 1 + t / x\nhx' : 0 < 1 + t / x\n⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\nx : ℝ\nhx : 1 / 2 ≤ 1 + t / x\n⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x", "tactic": "have hx' : 0 < 1 + t / x := by linarith" }, { "state_after": "no goals", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\nx : ℝ\nhx : 1 / 2 ≤ 1 + t / x\nhx' : 0 < 1 + t / x\n⊢ (exp ∘ fun x => x * log (1 + t / x)) x = (fun x => (1 + t / x) ^ x) x", "tactic": "simp [mul_comm x, exp_mul, exp_log hx']" }, { "state_after": "no goals", "state_before": "t : ℝ\n⊢ 1 / 2 < 1", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\n⊢ Tendsto (fun x => 1 + t / x) atTop (𝓝 1)", "tactic": "simpa using (tendsto_inv_atTop_zero.const_mul t).const_add 1" }, { "state_after": "no goals", "state_before": "t : ℝ\nh₁ : 1 / 2 < 1\nh₂ : Tendsto (fun x => 1 + t / x) atTop (𝓝 1)\nx : ℝ\nhx : 1 / 2 ≤ 1 + t / x\n⊢ 0 < 1 + t / x", "tactic": "linarith" } ]
[ 621, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 613, 1 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.FG.stablizes_of_iSup_eq
[ { "state_after": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\n⊢ ∃ n, M' = ↑N n", "state_before": "R : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nhM' : FG M'\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\n⊢ ∃ n, M' = ↑N n", "tactic": "obtain ⟨S, hS⟩ := hM'" }, { "state_after": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nthis : ∀ (s : { x // x ∈ S }), ∃ n, ↑s ∈ ↑N n\n⊢ ∃ n, M' = ↑N n", "state_before": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\n⊢ ∃ n, M' = ↑N n", "tactic": "have : ∀ s : S, ∃ n, (s : M) ∈ N n := fun s =>\n (Submodule.mem_iSup_of_chain N s).mp\n (by\n rw [H, ← hS]\n exact Submodule.subset_span s.2)" }, { "state_after": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ∃ n, M' = ↑N n", "state_before": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nthis : ∀ (s : { x // x ∈ S }), ∃ n, ↑s ∈ ↑N n\n⊢ ∃ n, M' = ↑N n", "tactic": "choose f hf using this" }, { "state_after": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ M' = ↑N (Finset.sup (Finset.attach S) f)", "state_before": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ∃ n, M' = ↑N n", "tactic": "use S.attach.sup f" }, { "state_after": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ M' ≤ ↑N (Finset.sup (Finset.attach S) f)\n\ncase intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑N (Finset.sup (Finset.attach S) f) ≤ M'", "state_before": "case intro\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ M' = ↑N (Finset.sup (Finset.attach S) f)", "tactic": "apply le_antisymm" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\ns : { x // x ∈ S }\n⊢ ↑s ∈ span R ↑S", "state_before": "R : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\ns : { x // x ∈ S }\n⊢ ↑s ∈ ⨆ (k : ℕ), ↑N k", "tactic": "rw [H, ← hS]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\ns : { x // x ∈ S }\n⊢ ↑s ∈ span R ↑S", "tactic": "exact Submodule.subset_span s.2" }, { "state_after": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ span R ↑S ≤ ↑N (Finset.sup (Finset.attach S) f)", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ M' ≤ ↑N (Finset.sup (Finset.attach S) f)", "tactic": "conv_lhs => rw [← hS]" }, { "state_after": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑S ⊆ ↑(↑N (Finset.sup (Finset.attach S) f))", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ span R ↑S ≤ ↑N (Finset.sup (Finset.attach S) f)", "tactic": "rw [Submodule.span_le]" }, { "state_after": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\ns : M\nhs : s ∈ ↑S\n⊢ s ∈ ↑(↑N (Finset.sup (Finset.attach S) f))", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑S ⊆ ↑(↑N (Finset.sup (Finset.attach S) f))", "tactic": "intro s hs" }, { "state_after": "no goals", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\ns : M\nhs : s ∈ ↑S\n⊢ s ∈ ↑(↑N (Finset.sup (Finset.attach S) f))", "tactic": "exact N.2 (Finset.le_sup <| S.mem_attach ⟨s, hs⟩) (hf _)" }, { "state_after": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑N (Finset.sup (Finset.attach S) f) ≤ iSup ↑N", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑N (Finset.sup (Finset.attach S) f) ≤ M'", "tactic": "rw [← H]" }, { "state_after": "no goals", "state_before": "case intro.a\nR : Type u_1\nM : Type u_2\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\nP : Type ?u.311147\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\nf✝ : M →ₗ[R] P\nM' : Submodule R M\nN : ℕ →o Submodule R M\nH : iSup ↑N = M'\nS : Finset M\nhS : span R ↑S = M'\nf : { x // x ∈ S } → ℕ\nhf : ∀ (s : { x // x ∈ S }), ↑s ∈ ↑N (f s)\n⊢ ↑N (Finset.sup (Finset.attach S) f) ≤ iSup ↑N", "tactic": "exact le_iSup _ _" } ]
[ 388, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.rangeS_subtype
[]
[ 1241, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1240, 1 ]
Std/Data/Int/Lemmas.lean
Int.subNatNat_add_left
[ { "state_after": "m n : Nat\n⊢ (match m - (m + n) with\n | 0 => ofNat (m + n - m)\n | succ k => -[k+1]) =\n ↑n", "state_before": "m n : Nat\n⊢ subNatNat (m + n) m = ↑n", "tactic": "unfold subNatNat" }, { "state_after": "no goals", "state_before": "m n : Nat\n⊢ (match m - (m + n) with\n | 0 => ofNat (m + n - m)\n | succ k => -[k+1]) =\n ↑n", "tactic": "rw [Nat.sub_eq_zero_of_le (Nat.le_add_right ..), Nat.add_sub_cancel_left, ofNat_eq_coe]" } ]
[ 116, 90 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 114, 1 ]
Mathlib/Algebra/Lie/Semisimple.lean
LieAlgebra.ad_ker_eq_bot_of_semisimple
[ { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\ninst✝³ : CommRing R\ninst✝² : LieRing L\ninst✝¹ : LieAlgebra R L\ninst✝ : IsSemisimple R L\n⊢ LieHom.ker (ad R L) = ⊥", "tactic": "simp" } ]
[ 121, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Analysis/Convex/Caratheodory.lean
Caratheodory.affineIndependent_minCardFinsetOfMemConvexHull
[ { "state_after": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\n⊢ AffineIndependent 𝕜 Subtype.val", "state_before": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\n⊢ AffineIndependent 𝕜 Subtype.val", "tactic": "let k := (minCardFinsetOfMemConvexHull hx).card - 1" }, { "state_after": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\n⊢ AffineIndependent 𝕜 Subtype.val", "state_before": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\n⊢ AffineIndependent 𝕜 Subtype.val", "tactic": "have hk : (minCardFinsetOfMemConvexHull hx).card = k + 1 :=\n (Nat.succ_pred_eq_of_pos (Finset.card_pos.mpr (minCardFinsetOfMemConvexHull_nonempty hx))).symm" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\n⊢ AffineIndependent 𝕜 Subtype.val", "tactic": "classical\nby_contra h\nobtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx)\nhave contra := minCardFinsetOfMemConvexHull_card_le_card hx (Set.Subset.trans\n (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx))\n (minCardFinsetOfMemConvexHull_subseteq hx)) hp\nrw [← not_lt] at contra\napply contra\nerw [card_erase_of_mem p.2, hk]\nexact lt_add_one _" }, { "state_after": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\n⊢ AffineIndependent 𝕜 Subtype.val", "tactic": "by_contra h" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\n⊢ False", "tactic": "obtain ⟨p, hp⟩ := mem_convexHull_erase h (mem_minCardFinsetOfMemConvexHull hx)" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : card (minCardFinsetOfMemConvexHull hx) ≤ card (erase (minCardFinsetOfMemConvexHull hx) ↑p)\n⊢ False", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\n⊢ False", "tactic": "have contra := minCardFinsetOfMemConvexHull_card_le_card hx (Set.Subset.trans\n (Finset.erase_subset (p : E) (minCardFinsetOfMemConvexHull hx))\n (minCardFinsetOfMemConvexHull_subseteq hx)) hp" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ False", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : card (minCardFinsetOfMemConvexHull hx) ≤ card (erase (minCardFinsetOfMemConvexHull hx) ↑p)\n⊢ False", "tactic": "rw [← not_lt] at contra" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ False", "tactic": "apply contra" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ k + 1 - 1 < k + 1", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)", "tactic": "erw [card_erase_of_mem p.2, hk]" }, { "state_after": "no goals", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns : Set E\nx : E\nhx : x ∈ ↑(convexHull 𝕜).toOrderHom s\nk : ℕ := card (minCardFinsetOfMemConvexHull hx) - 1\nhk : card (minCardFinsetOfMemConvexHull hx) = k + 1\nh : ¬AffineIndependent 𝕜 Subtype.val\np : ↑↑(minCardFinsetOfMemConvexHull hx)\nhp : x ∈ ↑(convexHull 𝕜).toOrderHom ↑(erase (minCardFinsetOfMemConvexHull hx) ↑p)\ncontra : ¬card (erase (minCardFinsetOfMemConvexHull hx) ↑p) < card (minCardFinsetOfMemConvexHull hx)\n⊢ k + 1 - 1 < k + 1", "tactic": "exact lt_add_one _" } ]
[ 148, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
constant_of_derivWithin_zero
[ { "state_after": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type ?u.49446\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nhdiff : DifferentiableOn ℝ f (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0\nH : ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ 0\n⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a", "state_before": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type ?u.49446\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nhdiff : DifferentiableOn ℝ f (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0\n⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a", "tactic": "have H : ∀ x ∈ Ico a b, ‖derivWithin f (Icc a b) x‖ ≤ 0 := by\n simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type ?u.49446\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nhdiff : DifferentiableOn ℝ f (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0\nH : ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ 0\n⊢ ∀ (x : ℝ), x ∈ Icc a b → f x = f a", "tactic": "simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using fun x hx =>\n norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type ?u.49446\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nf : ℝ → E\na b : ℝ\nhdiff : DifferentiableOn ℝ f (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ico a b → derivWithin f (Icc a b) x = 0\n⊢ ∀ (x : ℝ), x ∈ Ico a b → ‖derivWithin f (Icc a b) x‖ ≤ 0", "tactic": "simpa only [norm_le_zero_iff] using fun x hx => hderiv x hx" } ]
[ 409, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 1 ]
Mathlib/Topology/Basic.lean
continuousAt_def
[]
[ 1593, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1592, 1 ]
Mathlib/Data/Multiset/LocallyFinite.lean
Multiset.Ico_inter_Ico_of_le
[]
[ 217, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
AntilipschitzWith.mul_lipschitzWith
[ { "state_after": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\n⊢ AntilipschitzWith (Kf⁻¹ - Kg)⁻¹ fun x => f x * g x", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\n⊢ AntilipschitzWith (Kf⁻¹ - Kg)⁻¹ fun x => f x * g x", "tactic": "letI : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace hf.edist_ne_top" }, { "state_after": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y ≤ ↑(Kf⁻¹ - Kg)⁻¹ * dist (f x * g x) (f y * g y)", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\n⊢ AntilipschitzWith (Kf⁻¹ - Kg)⁻¹ fun x => f x * g x", "tactic": "refine' AntilipschitzWith.of_le_mul_dist fun x y => _" }, { "state_after": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y ≤ dist (f x * g x) (f y * g y) / ↑(Kf⁻¹ - Kg)", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y ≤ ↑(Kf⁻¹ - Kg)⁻¹ * dist (f x * g x) (f y * g y)", "tactic": "rw [NNReal.coe_inv, ← _root_.div_eq_inv_mul]" }, { "state_after": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y * ↑(Kf⁻¹ - Kg) ≤ dist (f x * g x) (f y * g y)", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y ≤ dist (f x * g x) (f y * g y) / ↑(Kf⁻¹ - Kg)", "tactic": "rw [le_div_iff (NNReal.coe_pos.2 <| tsub_pos_iff_lt.2 hK)]" }, { "state_after": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ ↑Kf⁻¹ * dist x y - ↑Kg * dist x y ≤ dist (f x * g x) (f y * g y)", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ dist x y * ↑(Kf⁻¹ - Kg) ≤ dist (f x * g x) (f y * g y)", "tactic": "rw [mul_comm, NNReal.coe_sub hK.le, _root_.sub_mul]" }, { "state_after": "no goals", "state_before": "𝓕 : Type ?u.1208856\n𝕜 : Type ?u.1208859\nα : Type u_1\nι : Type ?u.1208865\nκ : Type ?u.1208868\nE : Type u_2\nF : Type ?u.1208874\nG : Type ?u.1208877\ninst✝² : SeminormedCommGroup E\ninst✝¹ : SeminormedCommGroup F\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : PseudoEMetricSpace α\nK Kf Kg : ℝ≥0\nf g : α → E\nhf : AntilipschitzWith Kf f\nhg : LipschitzWith Kg g\nhK : Kg < Kf⁻¹\nthis : PseudoMetricSpace α := PseudoEMetricSpace.toPseudoMetricSpace (_ : ∀ (x y : α), edist x y ≠ ⊤)\nx y : α\n⊢ ↑Kf⁻¹ * dist x y - ↑Kg * dist x y ≤ dist (f x * g x) (f y * g y)", "tactic": "calc\n ↑Kf⁻¹ * dist x y - Kg * dist x y ≤ dist (f x) (f y) - dist (g x) (g y) :=\n sub_le_sub (hf.mul_le_dist x y) (hg.dist_le_mul x y)\n _ ≤ _ := le_trans (le_abs_self _) (abs_dist_sub_le_dist_mul_mul _ _ _ _)" } ]
[ 1898, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1887, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.sub_mulVec
[ { "state_after": "no goals", "state_before": "l : Type ?u.910087\nm : Type u_2\nn : Type u_1\no : Type ?u.910096\nm' : o → Type ?u.910101\nn' : o → Type ?u.910106\nR : Type ?u.910109\nS : Type ?u.910112\nα : Type v\nβ : Type w\nγ : Type ?u.910119\ninst✝¹ : NonUnitalNonAssocRing α\ninst✝ : Fintype n\nA B : Matrix m n α\nx : n → α\n⊢ mulVec (A - B) x = mulVec A x - mulVec B x", "tactic": "simp [sub_eq_add_neg, add_mulVec, neg_mulVec]" } ]
[ 1917, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1916, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
borel_eq_generateFrom_Ici
[]
[ 175, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/Order/UpperLower/Basic.lean
upperClosure_prod
[ { "state_after": "case a.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.191238\nι : Sort ?u.191241\nκ : ι → Sort ?u.191246\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set α\nt : Set β\nx✝ : α × β\n⊢ x✝ ∈ ↑(upperClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(upperClosure s ×ˢ upperClosure t)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.191238\nι : Sort ?u.191241\nκ : ι → Sort ?u.191246\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set α\nt : Set β\n⊢ upperClosure (s ×ˢ t) = upperClosure s ×ˢ upperClosure t", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.191238\nι : Sort ?u.191241\nκ : ι → Sort ?u.191246\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set α\nt : Set β\nx✝ : α × β\n⊢ x✝ ∈ ↑(upperClosure (s ×ˢ t)) ↔ x✝ ∈ ↑(upperClosure s ×ˢ upperClosure t)", "tactic": "simp [Prod.le_def, @and_and_and_comm _ (_ ∈ t)]" } ]
[ 1752, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1749, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.mem_think
[ { "state_after": "case mk\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\n⊢ a ∈ think { val := f, property := al } ↔ a ∈ { val := f, property := al }", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\n⊢ a ∈ think s ↔ a ∈ s", "tactic": "cases' s with f al" }, { "state_after": "case mk\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\n⊢ some (some a) ∈ some none :: f ↔ some (some a) ∈ f", "state_before": "case mk\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\n⊢ a ∈ think { val := f, property := al } ↔ a ∈ { val := f, property := al }", "tactic": "change (some (some a) ∈ some none::f) ↔ some (some a) ∈ f" }, { "state_after": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\n⊢ some (some a) ∈ f\n\ncase mk.mpr\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ f\n⊢ some (some a) ∈ some none :: f", "state_before": "case mk\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\n⊢ some (some a) ∈ some none :: f ↔ some (some a) ∈ f", "tactic": "constructor <;> intro h" }, { "state_after": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\n⊢ ¬some (some a) = some none", "state_before": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\n⊢ some (some a) ∈ f", "tactic": "apply (Stream'.eq_or_mem_of_mem_cons h).resolve_left" }, { "state_after": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\na✝ : some (some a) = some none\n⊢ False", "state_before": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\n⊢ ¬some (some a) = some none", "tactic": "intro" }, { "state_after": "no goals", "state_before": "case mk.mp\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ some none :: f\na✝ : some (some a) = some none\n⊢ False", "tactic": "injections" }, { "state_after": "no goals", "state_before": "case mk.mpr\nα : Type u\nβ : Type v\nγ : Type w\na : α\nf : Stream' (Option (Option α))\nal : IsSeq f\nh : some (some a) ∈ f\n⊢ some (some a) ∈ some none :: f", "tactic": "apply Stream'.mem_cons_of_mem _ h" } ]
[ 932, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 925, 1 ]
Mathlib/Analysis/NormedSpace/Complemented.lean
ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl_toLinearEquiv
[]
[ 72, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/MeasureTheory/Function/SpecialFunctions/Basic.lean
Real.measurable_exp
[]
[ 33, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 32, 1 ]
Mathlib/Order/RelClasses.lean
IsAsymm.swap
[]
[ 88, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Data/TwoPointing.lean
TwoPointing.prop_fst
[]
[ 166, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Trivialization.eqOn
[]
[ 357, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 11 ]
Mathlib/Data/Part.lean
Part.right_dom_of_mul_dom
[]
[ 729, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 729, 1 ]
Mathlib/FieldTheory/IntermediateField.lean
IntermediateField.coe_sum
[ { "state_after": "case empty\nK : Type u_3\nL : Type u_2\nL' : Type ?u.104812\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : Field L'\ninst✝² : Algebra K L\ninst✝¹ : Algebra K L'\nS : IntermediateField K L\nι : Type u_1\ninst✝ : Fintype ι\nf : ι → { x // x ∈ S }\n⊢ ↑(∑ i in ∅, f i) = ∑ i in ∅, ↑(f i)\n\ncase insert\nK : Type u_3\nL : Type u_2\nL' : Type ?u.104812\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : Field L'\ninst✝² : Algebra K L\ninst✝¹ : Algebra K L'\nS : IntermediateField K L\nι : Type u_1\ninst✝ : Fintype ι\nf : ι → { x // x ∈ S }\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nH : ↑(∑ i in s, f i) = ∑ i in s, ↑(f i)\n⊢ ↑(∑ i in insert i s, f i) = ∑ i in insert i s, ↑(f i)", "state_before": "K : Type u_3\nL : Type u_2\nL' : Type ?u.104812\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : Field L'\ninst✝² : Algebra K L\ninst✝¹ : Algebra K L'\nS : IntermediateField K L\nι : Type u_1\ninst✝ : Fintype ι\nf : ι → { x // x ∈ S }\n⊢ ↑(∑ i : ι, f i) = ∑ i : ι, ↑(f i)", "tactic": "induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H" }, { "state_after": "no goals", "state_before": "case empty\nK : Type u_3\nL : Type u_2\nL' : Type ?u.104812\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : Field L'\ninst✝² : Algebra K L\ninst✝¹ : Algebra K L'\nS : IntermediateField K L\nι : Type u_1\ninst✝ : Fintype ι\nf : ι → { x // x ∈ S }\n⊢ ↑(∑ i in ∅, f i) = ∑ i in ∅, ↑(f i)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case insert\nK : Type u_3\nL : Type u_2\nL' : Type ?u.104812\ninst✝⁵ : Field K\ninst✝⁴ : Field L\ninst✝³ : Field L'\ninst✝² : Algebra K L\ninst✝¹ : Algebra K L'\nS : IntermediateField K L\nι : Type u_1\ninst✝ : Fintype ι\nf : ι → { x // x ∈ S }\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nH : ↑(∑ i in s, f i) = ∑ i in s, ↑(f i)\n⊢ ↑(∑ i in insert i s, f i) = ∑ i in insert i s, ↑(f i)", "tactic": "rw [Finset.sum_insert hi, AddMemClass.coe_add, H, Finset.sum_insert hi]" } ]
[ 354, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 350, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.LiftRel.swap_lem
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\ns1 : WSeq α\ns2 : WSeq β\nh✝ : LiftRel R s1 s2\ns : WSeq β\nt : WSeq α\nh : LiftRel R t s\n⊢ Computation.LiftRel (LiftRelO (swap R) (swap (LiftRel R))) (destruct s) (destruct t)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\ns1 : WSeq α\ns2 : WSeq β\nh : LiftRel R s1 s2\n⊢ LiftRel (swap R) s2 s1", "tactic": "refine' ⟨swap (LiftRel R), h, fun {s t} (h : LiftRel R t s) => _⟩" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\ns1 : WSeq α\ns2 : WSeq β\nh✝ : LiftRel R s1 s2\ns : WSeq β\nt : WSeq α\nh : LiftRel R t s\n⊢ Computation.LiftRel (LiftRelO R (LiftRel R)) (destruct t) (destruct s)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\ns1 : WSeq α\ns2 : WSeq β\nh✝ : LiftRel R s1 s2\ns : WSeq β\nt : WSeq α\nh : LiftRel R t s\n⊢ Computation.LiftRel (LiftRelO (swap R) (swap (LiftRel R))) (destruct s) (destruct t)", "tactic": "rw [← LiftRelO.swap, Computation.LiftRel.swap]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\ns1 : WSeq α\ns2 : WSeq β\nh✝ : LiftRel R s1 s2\ns : WSeq β\nt : WSeq α\nh : LiftRel R t s\n⊢ Computation.LiftRel (LiftRelO R (LiftRel R)) (destruct t) (destruct s)", "tactic": "apply liftRel_destruct h" } ]
[ 559, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 555, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.hasFiniteIntegral
[]
[ 461, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 460, 1 ]
Mathlib/Order/Chain.lean
ChainClosure.isChain
[ { "state_after": "case succ\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set α\na✝ : ChainClosure r s✝\na_ih✝ : IsChain r s✝\n⊢ IsChain r (SuccChain r s✝)\n\ncase union\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a\na_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a\n⊢ IsChain r (⋃₀ s✝)", "state_before": "α : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nhc : ChainClosure r c\n⊢ IsChain r c", "tactic": "induction hc" }, { "state_after": "case union\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a\na_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a\n⊢ IsChain r (⋃₀ s✝)", "state_before": "case succ\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set α\na✝ : ChainClosure r s✝\na_ih✝ : IsChain r s✝\n⊢ IsChain r (SuccChain r s✝)\n\ncase union\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a\na_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a\n⊢ IsChain r (⋃₀ s✝)", "tactic": "case succ c _ h => exact h.succ" }, { "state_after": "no goals", "state_before": "case union\nα : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a\na_ih✝ : ∀ (a : Set α), a ∈ s✝ → IsChain r a\n⊢ IsChain r (⋃₀ s✝)", "tactic": "case union s hs h =>\n exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq =>\n ((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht =>\n h t₁ ht₁ hc₁ (ht hc₂) hneq" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc✝ c₁ c₂ c₃ s t : Set α\na b x y : α\nc : Set α\na✝ : ChainClosure r c\nh : IsChain r c\n⊢ IsChain r (SuccChain r c)", "tactic": "exact h.succ" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.13781\nr : α → α → Prop\nc c₁ c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\nhs : ∀ (a : Set α), a ∈ s → ChainClosure r a\nh : ∀ (a : Set α), a ∈ s → IsChain r a\n⊢ IsChain r (⋃₀ s)", "tactic": "exact fun c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq =>\n ((hs _ ht₁).total <| hs _ ht₂).elim (fun ht => h t₂ ht₂ (ht hc₁) hc₂ hneq) fun ht =>\n h t₁ ht₁ hc₁ (ht hc₂) hneq" } ]
[ 270, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 264, 1 ]
Mathlib/Computability/RegularExpressions.lean
RegularExpression.map_id
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.135359\nγ : Type ?u.135362\ndec : DecidableEq α\na b : α\nR S : RegularExpression α\n⊢ map id (R + S) = R + S", "tactic": "simp_rw [map, map_id]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.135359\nγ : Type ?u.135362\ndec : DecidableEq α\na b : α\nR S : RegularExpression α\n⊢ map id (R * S) = R * S", "tactic": "simp_rw [map, map_id]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.135359\nγ : Type ?u.135362\ndec : DecidableEq α\na b : α\nR : RegularExpression α\n⊢ map id (star R) = star R", "tactic": "simp_rw [map, map_id]" } ]
[ 432, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 426, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.disjoint_iUnion₂_right
[]
[ 2096, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2094, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithTop.untop_one'
[]
[ 59, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Data/Finset/Interval.lean
Finset.card_Ioo_finset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns t : Finset α\nh : s ⊆ t\n⊢ card (Ioo s t) = 2 ^ (card t - card s) - 2", "tactic": "rw [card_Ioo_eq_card_Icc_sub_two, card_Icc_finset h]" } ]
[ 119, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.sInf_neBot_of_directed
[]
[ 934, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 931, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
uniformInducing_id
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : UniformSpace α\ninst✝¹ : UniformSpace β\ninst✝ : UniformSpace γ\n⊢ comap (fun x => (id x.fst, id x.snd)) (𝓤 α) = 𝓤 α", "tactic": "rw [← Prod.map_def, Prod.map_id, comap_id]" } ]
[ 68, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.to_openEmbedding
[ { "state_after": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ Continuous ↑e\n\ncase h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ Injective ↑e\n\ncase h₃\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ IsOpenMap ↑e", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ OpenEmbedding ↑e", "tactic": "apply openEmbedding_of_continuous_injective_open" }, { "state_after": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ ContinuousOn (↑e) univ", "state_before": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ Continuous ↑e", "tactic": "apply continuous_iff_continuousOn_univ.mpr" }, { "state_after": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ ContinuousOn (↑e) e.source", "state_before": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ ContinuousOn (↑e) univ", "tactic": "rw [← h]" }, { "state_after": "no goals", "state_before": "case h₁\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ ContinuousOn (↑e) e.source", "tactic": "exact e.continuousOn" }, { "state_after": "case h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ InjOn (↑e) univ", "state_before": "case h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ Injective ↑e", "tactic": "apply Set.injective_iff_injOn_univ.mpr" }, { "state_after": "case h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ InjOn (↑e) e.source", "state_before": "case h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ InjOn (↑e) univ", "tactic": "rw [← h]" }, { "state_after": "no goals", "state_before": "case h₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ InjOn (↑e) e.source", "tactic": "exact e.injOn" }, { "state_after": "case h₃\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\nU : Set α\nhU : IsOpen U\n⊢ IsOpen (↑e '' U)", "state_before": "case h₃\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\n⊢ IsOpenMap ↑e", "tactic": "intro U hU" }, { "state_after": "no goals", "state_before": "case h₃\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.108605\nδ : Type ?u.108608\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\nh : e.source = univ\nU : Set α\nhU : IsOpen U\n⊢ IsOpen (↑e '' U)", "tactic": "simpa only [h, subset_univ, mfld_simps] using e.image_open_of_open hU" } ]
[ 1275, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1266, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.HasBasis.eq_generate
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.15440\nγ : Type ?u.15443\nι : Sort u_2\nι' : Sort ?u.15449\nl l' : Filter α\np : ι → Prop\ns : ι → Set α\nt : Set α\ni : ι\np' : ι' → Prop\ns' : ι' → Set α\ni' : ι'\nh : HasBasis l p s\n⊢ l = generate {U | ∃ i, p i ∧ s i = U}", "tactic": "rw [← h.isBasis.filter_eq_generate, h.filter_eq]" } ]
[ 328, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Topology/Separation.lean
SeparatedNhds.empty_left
[]
[ 155, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/CategoryTheory/SingleObj.lean
MonoidHom.comp_toFunctor
[]
[ 186, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/Data/Int/Cast/Lemmas.lean
eq_intCast'
[]
[ 250, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Algebra/Opposites.lean
AddOpposite.op_inv
[]
[ 412, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 411, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.union_mul_inter_subset
[]
[ 774, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 773, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.not_top_le_coe
[]
[ 659, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 659, 1 ]
Mathlib/CategoryTheory/Sites/InducedTopology.lean
CategoryTheory.LocallyCoverDense.pushforward_cover_iff_cover_pullback
[ { "state_after": "case mp\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\n⊢ GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S) → ∃ T, Sieve.functorPullback G ↑T = S\n\ncase mpr\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\n⊢ (∃ T, Sieve.functorPullback G ↑T = S) → GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S)", "state_before": "C : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\n⊢ GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S) ↔ ∃ T, Sieve.functorPullback G ↑T = S", "tactic": "constructor" }, { "state_after": "case mp\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\nhS : GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S)\n⊢ ∃ T, Sieve.functorPullback G ↑T = S", "state_before": "case mp\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\n⊢ GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S) → ∃ T, Sieve.functorPullback G ↑T = S", "tactic": "intro hS" }, { "state_after": "no goals", "state_before": "case mp\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\nhS : GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S)\n⊢ ∃ T, Sieve.functorPullback G ↑T = S", "tactic": "exact ⟨⟨_, hS⟩, (Sieve.fullyFaithfulFunctorGaloisCoinsertion G X).u_l_eq S⟩" }, { "state_after": "case mpr.intro\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nT : ↑(GrothendieckTopology.sieves K (G.obj X))\n⊢ GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G (Sieve.functorPullback G ↑T))", "state_before": "case mpr\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nS : Sieve X\n⊢ (∃ T, Sieve.functorPullback G ↑T = S) → GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G S)", "tactic": "rintro ⟨T, rfl⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro\nC : Type u_2\ninst✝⁴ : Category C\nD : Type u_4\ninst✝³ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝² : Category A\ninst✝¹ : Full G\ninst✝ : Faithful G\nHld : LocallyCoverDense K G\nX : C\nT : ↑(GrothendieckTopology.sieves K (G.obj X))\n⊢ GrothendieckTopology.sieves K (G.obj X) (Sieve.functorPushforward G (Sieve.functorPullback G ↑T))", "tactic": "exact Hld T" } ]
[ 70, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Algebra/Module/Submodule/Lattice.lean
Submodule.finset_inf_coe
[ { "state_after": "R : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\n⊢ ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)", "state_before": "R : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns : Finset ι\np : ι → Submodule R M\n⊢ ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)", "tactic": "letI := Classical.decEq ι" }, { "state_after": "case refine'_1\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\n⊢ ↑(Finset.inf ∅ p) = ⋂ (i : ι) (_ : i ∈ ∅), ↑(p i)\n\ncase refine'_2\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns✝ : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\ns : Finset ι\nx✝ : ¬i ∈ s\nih : ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)\n⊢ ↑(Finset.inf (insert i s) p) = ⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), ↑(p i_1)", "state_before": "R : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\n⊢ ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)", "tactic": "refine' s.induction_on _ fun i s _ ih ↦ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\n⊢ ↑(Finset.inf ∅ p) = ⋂ (i : ι) (_ : i ∈ ∅), ↑(p i)", "tactic": "simp" }, { "state_after": "case refine'_2\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns✝ : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\ns : Finset ι\nx✝ : ¬i ∈ s\nih : ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)\n⊢ (↑(p i) ∩ ⋂ (i : ι) (_ : i ∈ s), ↑(p i)) = ⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), ↑(p i_1)", "state_before": "case refine'_2\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns✝ : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\ns : Finset ι\nx✝ : ¬i ∈ s\nih : ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)\n⊢ ↑(Finset.inf (insert i s) p) = ⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), ↑(p i_1)", "tactic": "rw [Finset.inf_insert, inf_coe, ih]" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u_2\nS : Type ?u.133565\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Type u_1\ns✝ : Finset ι\np : ι → Submodule R M\nthis : DecidableEq ι := Classical.decEq ι\ni : ι\ns : Finset ι\nx✝ : ¬i ∈ s\nih : ↑(Finset.inf s p) = ⋂ (i : ι) (_ : i ∈ s), ↑(p i)\n⊢ (↑(p i) ∩ ⋂ (i : ι) (_ : i ∈ s), ↑(p i)) = ⋂ (i_1 : ι) (_ : i_1 ∈ insert i s), ↑(p i_1)", "tactic": "simp" } ]
[ 254, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.lt_nfp
[ { "state_after": "f : Ordinal → Ordinal\na b : Ordinal\n⊢ a < (fun a => sup fun n => (f^[n]) a) b ↔ ∃ n, a < (f^[n]) b", "state_before": "f : Ordinal → Ordinal\na b : Ordinal\n⊢ a < nfp f b ↔ ∃ n, a < (f^[n]) b", "tactic": "rw [← sup_iterate_eq_nfp]" }, { "state_after": "no goals", "state_before": "f : Ordinal → Ordinal\na b : Ordinal\n⊢ a < (fun a => sup fun n => (f^[n]) a) b ↔ ∃ n, a < (f^[n]) b", "tactic": "exact lt_sup" } ]
[ 449, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 447, 1 ]
Mathlib/FieldTheory/Minpoly/Basic.lean
minpoly.natDegree_pos
[ { "state_after": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\n⊢ natDegree (minpoly A x) ≠ 0", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\n⊢ 0 < natDegree (minpoly A x)", "tactic": "rw [pos_iff_ne_zero]" }, { "state_after": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ False", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\n⊢ natDegree (minpoly A x) ≠ 0", "tactic": "intro ndeg_eq_zero" }, { "state_after": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\neq_one : minpoly A x = 1\n⊢ False", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ False", "tactic": "have eq_one : minpoly A x = 1 := by\n rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero]\n convert C_1 (R := A)\n simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff" }, { "state_after": "no goals", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\neq_one : minpoly A x = 1\n⊢ False", "tactic": "simpa only [eq_one, AlgHom.map_one, one_ne_zero] using aeval A x" }, { "state_after": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ ↑C (coeff (minpoly A x) 0) = 1", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ minpoly A x = 1", "tactic": "rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero]" }, { "state_after": "case h.e'_2.h.e'_6\nA : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ coeff (minpoly A x) 0 = 1", "state_before": "A : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ ↑C (coeff (minpoly A x) 0) = 1", "tactic": "convert C_1 (R := A)" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nA : Type u_2\nB : Type u_1\nB' : Type ?u.58941\ninst✝³ : CommRing A\ninst✝² : Ring B\ninst✝¹ : Algebra A B\nx : B\ninst✝ : Nontrivial B\nhx : IsIntegral A x\nndeg_eq_zero : natDegree (minpoly A x) = 0\n⊢ coeff (minpoly A x) 0 = 1", "tactic": "simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff" } ]
[ 194, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/Logic/Equiv/Set.lean
Equiv.symm_image_image
[]
[ 79, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
isLeast_csInf
[ { "state_after": "α : Type u_1\nβ : Type ?u.69153\nγ : Type ?u.69156\nι : Sort ?u.69159\ninst✝¹ : ConditionallyCompleteLinearOrder α\ns t : Set α\na b : α\ninst✝ : IsWellOrder α fun x x_1 => x < x_1\nhs : Set.Nonempty s\n⊢ IsLeast s (argminOn id (_ : WellFounded fun x x_1 => x < x_1) s hs)", "state_before": "α : Type u_1\nβ : Type ?u.69153\nγ : Type ?u.69156\nι : Sort ?u.69159\ninst✝¹ : ConditionallyCompleteLinearOrder α\ns t : Set α\na b : α\ninst✝ : IsWellOrder α fun x x_1 => x < x_1\nhs : Set.Nonempty s\n⊢ IsLeast s (sInf s)", "tactic": "rw [sInf_eq_argmin_on hs]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.69153\nγ : Type ?u.69156\nι : Sort ?u.69159\ninst✝¹ : ConditionallyCompleteLinearOrder α\ns t : Set α\na b : α\ninst✝ : IsWellOrder α fun x x_1 => x < x_1\nhs : Set.Nonempty s\n⊢ IsLeast s (argminOn id (_ : WellFounded fun x x_1 => x < x_1) s hs)", "tactic": "exact ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩" } ]
[ 975, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 973, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Terminal.lean
CategoryTheory.Limits.isIso_ι_of_isInitial
[ { "state_after": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.ι F j ≫ colimit.desc F (coconeOfDiagramInitial I F) = 𝟙 (F.obj j)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.ι F j ≫ colimit.desc F (coconeOfDiagramInitial I F) = 𝟙 (F.obj j) ∧\n colimit.desc F (coconeOfDiagramInitial I F) ≫ colimit.ι F j = 𝟙 (colimit F)", "tactic": "refine ⟨?_, by ext; simp⟩" }, { "state_after": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.ι F j ≫ colimit.desc F (coconeOfDiagramInitial I F) = 𝟙 (F.obj j)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.ι F j ≫ colimit.desc F (coconeOfDiagramInitial I F) = 𝟙 (F.obj j)", "tactic": "dsimp" }, { "state_after": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ inv (𝟙 (F.obj j)) = 𝟙 (F.obj j)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.ι F j ≫ colimit.desc F (coconeOfDiagramInitial I F) = 𝟙 (F.obj j)", "tactic": "simp only [colimit.ι_desc, coconeOfDiagramInitial_pt, coconeOfDiagramInitial_ι_app,\nFunctor.const_obj_obj, IsInitial.to_self, Functor.map_id]" }, { "state_after": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ Classical.choose (_ : ∃ inv, 𝟙 (F.obj j) ≫ inv = 𝟙 (F.obj j) ∧ inv ≫ 𝟙 (F.obj j) = 𝟙 (F.obj j)) = 𝟙 (F.obj j)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ inv (𝟙 (F.obj j)) = 𝟙 (F.obj j)", "tactic": "dsimp [inv]" }, { "state_after": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ Classical.choose (_ : ∃ x, (fun x => x = 𝟙 (F.obj j)) x) = 𝟙 (F.obj j)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ Classical.choose (_ : ∃ inv, 𝟙 (F.obj j) ≫ inv = 𝟙 (F.obj j) ∧ inv ≫ 𝟙 (F.obj j) = 𝟙 (F.obj j)) = 𝟙 (F.obj j)", "tactic": "simp only [Category.id_comp, Category.comp_id, and_self]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ Classical.choose (_ : ∃ x, (fun x => x = 𝟙 (F.obj j)) x) = 𝟙 (F.obj j)", "tactic": "apply @Classical.choose_spec _ (fun x => x = 𝟙 F.obj j) _" }, { "state_after": "case w\nC : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\nj✝ : J\n⊢ colimit.ι F j✝ ≫ colimit.desc F (coconeOfDiagramInitial I F) ≫ colimit.ι F j = colimit.ι F j✝ ≫ 𝟙 (colimit F)", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ colimit.desc F (coconeOfDiagramInitial I F) ≫ colimit.ι F j = 𝟙 (colimit F)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case w\nC : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsInitial j\nF : J ⥤ C\ninst✝¹ : HasColimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\nj✝ : J\n⊢ colimit.ι F j✝ ≫ colimit.desc F (coconeOfDiagramInitial I F) ≫ colimit.ι F j = colimit.ι F j✝ ≫ 𝟙 (colimit F)", "tactic": "simp" } ]
[ 748, 5 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 740, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.nonpos_iff_eq_zero'
[]
[ 1091, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1090, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.bfamilyOfFamily_typein
[]
[ 1150, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1148, 1 ]
Mathlib/Topology/ContinuousOn.lean
nhdsWithin_mono
[]
[ 165, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Algebra/CharP/Basic.lean
ringChar.eq_iff
[]
[ 230, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.bijective_iff_has_inverse
[]
[ 512, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Computability/Partrec.lean
Nat.Partrec.prec'
[ { "state_after": "no goals", "state_before": "f g h : ℕ →. ℕ\nhf : Partrec f\nhg : Partrec g\nhh : Partrec h\na s : ℕ\n⊢ (s ∈\n (Seq.seq (Nat.pair <$> Part.some a) fun x => f a) >>=\n unpaired fun a n =>\n Nat.rec (g a)\n (fun y IH => do\n let i ← IH\n h (Nat.pair a (Nat.pair y i)))\n n) ↔\n s ∈\n Part.bind (f a) fun n =>\n Nat.rec (g a)\n (fun y IH => do\n let i ← IH\n h (Nat.pair a (Nat.pair y i)))\n n", "tactic": "simp [Seq.seq]" } ]
[ 215, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Data/Polynomial/Div.lean
Polynomial.degree_add_divByMonic
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ degree q + degree (p /ₘ q) = degree p", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n⊢ degree q + degree (p /ₘ q) = degree p", "tactic": "nontriviality R" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\n⊢ degree q + degree (p /ₘ q) = degree p", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ degree q + degree (p /ₘ q) = degree p", "tactic": "have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne.def, divByMonic_eq_zero_iff hq, not_lt]" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree q + degree (p /ₘ q) = degree p", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\n⊢ degree q + degree (p /ₘ q) = degree p", "tactic": "have hlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0 := by\n rwa [Monic.def.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\nhmod : degree (p %ₘ q) < degree (q * (p /ₘ q))\n⊢ degree q + degree (p /ₘ q) = degree p", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree q + degree (p /ₘ q) = degree p", "tactic": "have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) :=\n calc\n degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq\n _ ≤ _ := by\n rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero, degree_eq_natDegree hdiv0, ←\n Nat.cast_add, Nat.cast_withBot, Nat.cast_withBot, WithBot.coe_le_coe]\n exact Nat.le_add_right _ _" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\nhmod : degree (p %ₘ q) < degree (q * (p /ₘ q))\n⊢ degree q + degree (p /ₘ q) = degree p", "tactic": "calc\n degree q + degree (p /ₘ q) = degree (q * (p /ₘ q)) := Eq.symm (degree_mul' hlc)\n _ = degree (p %ₘ q + q * (p /ₘ q)) := (degree_add_eq_right_of_degree_lt hmod).symm\n _ = _ := congr_arg _ (modByMonic_add_div _ hq)" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ p /ₘ q ≠ 0", "tactic": "rwa [Ne.def, divByMonic_eq_zero_iff hq, not_lt]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\n⊢ leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0", "tactic": "rwa [Monic.def.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ natDegree q ≤ natDegree q + natDegree (p /ₘ q)", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree q ≤ degree (q * (p /ₘ q))", "tactic": "rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero, degree_eq_natDegree hdiv0, ←\n Nat.cast_add, Nat.cast_withBot, Nat.cast_withBot, WithBot.coe_le_coe]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\nhq : Monic q\nh : degree q ≤ degree p\n✝ : Nontrivial R\nhdiv0 : p /ₘ q ≠ 0\nhlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ natDegree q ≤ natDegree q + natDegree (p /ₘ q)", "tactic": "exact Nat.le_add_right _ _" } ]
[ 281, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/MeasureTheory/Group/Prod.lean
MeasureTheory.measure_mul_measure_eq
[ { "state_after": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 :\n (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂ν\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "state_before": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "tactic": "have h1 :=\n measure_lintegral_div_measure ν ν hs h2s h3s (t.indicator fun _ => 1)\n (measurable_const.indicator ht)" }, { "state_after": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 :\n (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂ν\nh2 :\n (↑↑μ s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂μ\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "state_before": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 :\n (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂ν\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "tactic": "have h2 :=\n measure_lintegral_div_measure μ ν hs h2s h3s (t.indicator fun _ => 1)\n (measurable_const.indicator ht)" }, { "state_after": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 : (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) = ↑↑ν t\nh2 : (↑↑μ s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) = ↑↑μ t\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "state_before": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 :\n (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂ν\nh2 :\n (↑↑μ s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) =\n ∫⁻ (x : G), indicator t (fun x => 1) x ∂μ\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "tactic": "rw [lintegral_indicator _ ht, set_lintegral_one] at h1 h2" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns✝ : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\ns t : Set G\nhs : MeasurableSet s\nht : MeasurableSet t\nh2s : ↑↑ν s ≠ 0\nh3s : ↑↑ν s ≠ ⊤\nh1 : (↑↑ν s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) = ↑↑ν t\nh2 : (↑↑μ s * ∫⁻ (y : G), indicator t (fun x => 1) y⁻¹ / ↑↑ν ((fun x => x * y⁻¹) ⁻¹' s) ∂ν) = ↑↑μ t\n⊢ ↑↑μ s * ↑↑ν t = ↑↑ν s * ↑↑μ t", "tactic": "rw [← h1, mul_left_comm, h2]" } ]
[ 348, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 339, 1 ]
Mathlib/Algebra/Hom/Group.lean
MonoidWithZeroHom.ext
[]
[ 662, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 661, 1 ]
Mathlib/RingTheory/Localization/InvSubmonoid.lean
IsLocalization.smul_toInvSubmonoid
[ { "state_after": "case h.e'_2.h.e\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\n⊢ HSMul.hSMul m = HMul.hMul (↑(algebraMap R S) ↑m)", "state_before": "R : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\n⊢ m • ↑(↑(toInvSubmonoid M S) m) = 1", "tactic": "convert mul_toInvSubmonoid M S m" }, { "state_after": "case h.e'_2.h.e.h\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\nx✝ : S\n⊢ m • x✝ = ↑(algebraMap R S) ↑m * x✝", "state_before": "case h.e'_2.h.e\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\n⊢ HSMul.hSMul m = HMul.hMul (↑(algebraMap R S) ↑m)", "tactic": "ext" }, { "state_after": "case h.e'_2.h.e.h\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\nx✝ : S\n⊢ m • x✝ = ↑m • x✝", "state_before": "case h.e'_2.h.e.h\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\nx✝ : S\n⊢ m • x✝ = ↑(algebraMap R S) ↑m * x✝", "tactic": "rw [← Algebra.smul_def]" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e.h\nR : Type u_1\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.131549\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\nm : { x // x ∈ M }\nx✝ : S\n⊢ m • x✝ = ↑m • x✝", "tactic": "rfl" } ]
[ 87, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
uniformEmbedding_translate_mul
[ { "state_after": "α : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ 𝓤 α = 𝓤 α\n\nα : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ Function.Injective fun x => (x.fst * a, x.snd * a)", "state_before": "α : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ comap (fun x => (x.fst * a, x.snd * a)) (𝓤 α) = 𝓤 α", "tactic": "nth_rewrite 1 [← uniformity_translate_mul a, comap_map]" }, { "state_after": "α : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ Function.Injective fun x => (x.fst * a, x.snd * a)", "state_before": "α : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ 𝓤 α = 𝓤 α\n\nα : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ Function.Injective fun x => (x.fst * a, x.snd * a)", "tactic": "rfl" }, { "state_after": "case mk.mk\nα : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na p₁ p₂ q₁ q₂ : α\n⊢ (fun x => (x.fst * a, x.snd * a)) (p₁, p₂) = (fun x => (x.fst * a, x.snd * a)) (q₁, q₂) → (p₁, p₂) = (q₁, q₂)", "state_before": "α : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na : α\n⊢ Function.Injective fun x => (x.fst * a, x.snd * a)", "tactic": "rintro ⟨p₁, p₂⟩ ⟨q₁, q₂⟩" }, { "state_after": "no goals", "state_before": "case mk.mk\nα : Type u_1\nβ : Type ?u.112462\ninst✝² : UniformSpace α\ninst✝¹ : Group α\ninst✝ : UniformGroup α\na p₁ p₂ q₁ q₂ : α\n⊢ (fun x => (x.fst * a, x.snd * a)) (p₁, p₂) = (fun x => (x.fst * a, x.snd * a)) (q₁, q₂) → (p₁, p₂) = (q₁, q₂)", "tactic": "simp only [Prod.mk.injEq, mul_left_inj, imp_self]" } ]
[ 189, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.val_eq_coe
[]
[ 180, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/Data/List/MinMax.lean
List.argAux_self
[]
[ 67, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.coe_ofEq_apply
[]
[ 1179, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1178, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.sum_add_distrib'
[]
[ 894, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 892, 1 ]
Mathlib/Data/Set/Function.lean
Set.SurjOn.mapsTo_compl
[]
[ 877, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 874, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.map_eq_lift
[ { "state_after": "no goals", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\nβ : Type v\nf : α → β\nx✝ y : FreeGroup α\nx : α\n⊢ ↑(↑lift (of ∘ f)) (of x) = of (f x)", "tactic": "simp" } ]
[ 848, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 847, 1 ]
Mathlib/GroupTheory/Submonoid/Pointwise.lean
AddSubmonoid.pointwise_smul_le_iff
[]
[ 434, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 433, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.mem_erase
[]
[ 1860, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1859, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.ppow_zero
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Semiring R\nf : ArithmeticFunction R\n⊢ ppow f 0 = ↑ζ", "tactic": "rw [ppow, dif_pos rfl]" } ]
[ 551, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 551, 1 ]
Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.dart_card_eq_sum_degrees
[ { "state_after": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\nthis : DecidableEq V\n⊢ Fintype.card (Dart G) = ∑ v : V, degree G v", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\n⊢ Fintype.card (Dart G) = ∑ v : V, degree G v", "tactic": "haveI := Classical.decEq V" }, { "state_after": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\nthis : DecidableEq V\n⊢ card univ = ∑ x : V, card (filter (fun d => d.fst = x) univ)", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\nthis : DecidableEq V\n⊢ Fintype.card (Dart G) = ∑ v : V, degree G v", "tactic": "simp only [← card_univ, ← dart_fst_fiber_card_eq_degree]" }, { "state_after": "no goals", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\nthis : DecidableEq V\n⊢ card univ = ∑ x : V, card (filter (fun d => d.fst = x) univ)", "tactic": "exact card_eq_sum_card_fiberwise (by simp)" }, { "state_after": "no goals", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝² : Fintype V\ninst✝¹ : DecidableRel G.Adj\ninst✝ : Fintype (Sym2 V)\nthis : DecidableEq V\n⊢ ∀ (x : Dart G), x ∈ univ → x.fst ∈ univ", "tactic": "simp" } ]
[ 81, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Analysis/Convex/Topology.lean
Convex.combo_interior_closure_subset_interior
[ { "state_after": "no goals", "state_before": "ι : Type ?u.39791\n𝕜 : Type u_2\nE : Type u_1\ninst✝⁵ : LinearOrderedField 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : TopologicalSpace E\ninst✝¹ : TopologicalAddGroup E\ninst✝ : ContinuousConstSMul 𝕜 E\ns : Set E\nhs : Convex 𝕜 s\na b : 𝕜\nha : 0 < a\nhb : 0 ≤ b\nhab : a + b = 1\n⊢ interior (a • s) + closure (b • s) = interior (a • s) + b • s", "tactic": "rw [isOpen_interior.add_closure (b • s)]" } ]
[ 125, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/SetTheory/Ordinal/Exponential.lean
Ordinal.right_le_opow
[]
[ 177, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.mul_inv_cancel_right_of_invertible
[]
[ 356, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.IsSeparable.image
[ { "state_after": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ IsSeparable (f '' s)", "state_before": "α : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nhs : IsSeparable s\nf : α → β\nhf : Continuous f\n⊢ IsSeparable (f '' s)", "tactic": "rcases hs with ⟨c, c_count, hc⟩" }, { "state_after": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ f '' s ⊆ _root_.closure (f '' c)", "state_before": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ IsSeparable (f '' s)", "tactic": "refine' ⟨f '' c, c_count.image _, _⟩" }, { "state_after": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ s ⊆ f ⁻¹' _root_.closure (f '' c)", "state_before": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ f '' s ⊆ _root_.closure (f '' c)", "tactic": "rw [image_subset_iff]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\ns : Set α\nf : α → β\nhf : Continuous f\nc : Set α\nc_count : Set.Countable c\nhc : s ⊆ _root_.closure c\n⊢ s ⊆ f ⁻¹' _root_.closure (f '' c)", "tactic": "exact hc.trans (closure_subset_preimage_closure_image hf)" } ]
[ 438, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 433, 1 ]
Mathlib/Topology/Homotopy/Path.lean
Path.Homotopic.map
[]
[ 290, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 8 ]
Mathlib/Data/ZMod/Parity.lean
ZMod.ne_zero_iff_odd
[ { "state_after": "case mpr\nn : ℕ\n⊢ ¬↑n ≠ 0 → ¬Odd n", "state_before": "case mpr\nn : ℕ\n⊢ Odd n → ↑n ≠ 0", "tactic": "contrapose" }, { "state_after": "no goals", "state_before": "case mpr\nn : ℕ\n⊢ ¬↑n ≠ 0 → ¬Odd n", "tactic": "simp [eq_zero_iff_even]" } ]
[ 39, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/Topology/MetricSpace/Baire.lean
dense_of_mem_residual
[]
[ 253, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/Data/Polynomial/Coeff.lean
Polynomial.coeff_smul
[ { "state_after": "case ofFinsupp\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\ninst✝ : SMulZeroClass S R\nr : S\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff (r • { toFinsupp := toFinsupp✝ }) n = r • coeff { toFinsupp := toFinsupp✝ } n", "state_before": "R : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝¹ : Semiring R\np✝ q r✝ : R[X]\ninst✝ : SMulZeroClass S R\nr : S\np : R[X]\nn : ℕ\n⊢ coeff (r • p) n = r • coeff p n", "tactic": "rcases p with ⟨⟩" }, { "state_after": "case ofFinsupp\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\ninst✝ : SMulZeroClass S R\nr : S\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ ↑(r • toFinsupp✝) n = r • ↑toFinsupp✝ n", "state_before": "case ofFinsupp\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\ninst✝ : SMulZeroClass S R\nr : S\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff (r • { toFinsupp := toFinsupp✝ }) n = r • coeff { toFinsupp := toFinsupp✝ } n", "tactic": "simp_rw [← ofFinsupp_smul, coeff]" }, { "state_after": "no goals", "state_before": "case ofFinsupp\nR : Type u\nS : Type v\na b : R\nn✝ m : ℕ\ninst✝¹ : Semiring R\np q r✝ : R[X]\ninst✝ : SMulZeroClass S R\nr : S\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ ↑(r • toFinsupp✝) n = r • ↑toFinsupp✝ n", "tactic": "exact Finsupp.smul_apply _ _ _" } ]
[ 64, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.op_norm_le_of_lipschitz
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type u_2\n𝕜₃ : Type ?u.274096\nE : Type u_3\nEₗ : Type ?u.274102\nF : Type u_4\nFₗ : Type ?u.274108\nG : Type ?u.274111\nGₗ : Type ?u.274114\n𝓕 : Type ?u.274117\ninst✝¹⁵ : SeminormedAddCommGroup E\ninst✝¹⁴ : SeminormedAddCommGroup Eₗ\ninst✝¹³ : SeminormedAddCommGroup F\ninst✝¹² : SeminormedAddCommGroup Fₗ\ninst✝¹¹ : SeminormedAddCommGroup G\ninst✝¹⁰ : SeminormedAddCommGroup Gₗ\ninst✝⁹ : NontriviallyNormedField 𝕜\ninst✝⁸ : NontriviallyNormedField 𝕜₂\ninst✝⁷ : NontriviallyNormedField 𝕜₃\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 Eₗ\ninst✝⁴ : NormedSpace 𝕜₂ F\ninst✝³ : NormedSpace 𝕜 Fₗ\ninst✝² : NormedSpace 𝕜₃ G\ninst✝¹ : NormedSpace 𝕜 Gₗ\nσ₁₂ : 𝕜 →+* 𝕜₂\nσ₂₃ : 𝕜₂ →+* 𝕜₃\nσ₁₃ : 𝕜 →+* 𝕜₃\ninst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\nf : E →SL[σ₁₂] F\nK : ℝ≥0\nhf : LipschitzWith K ↑f\nx : E\n⊢ ‖↑f x‖ ≤ ↑K * ‖x‖", "tactic": "simpa only [dist_zero_right, f.map_zero] using hf.dist_le_mul x 0" } ]
[ 176, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.inf'_induction
[]
[ 966, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.relindex_bot_right
[ { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\n⊢ relindex H ⊥ = 1", "tactic": "rw [relindex, subgroupOf_bot_eq_top, index_top]" } ]
[ 267, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
ContDiff.sin
[]
[ 1036, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1035, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.continuousWithinAt_iff_continuousWithinAt_comp_right
[]
[ 1143, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.support_C_mul_X_pow'
[ { "state_after": "no goals", "state_before": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn : ℕ\nc : R\n⊢ support (↑C c * X ^ n) ⊆ {n}", "tactic": "simpa only [C_mul_X_pow_eq_monomial] using support_monomial' n c" } ]
[ 858, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 857, 1 ]
Mathlib/Data/UnionFind.lean
UFModel.Agrees.set
[ { "state_after": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\n⊢ Agrees (Array.set arr i x) f m'", "state_before": "α : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\nn : ℕ\nm : Fin n → β\nH : Agrees arr f m\ni : Fin (Array.size arr)\nx : α\nm' : Fin n → β\nhm₁ : ∀ (j : Fin n), ↑j ≠ ↑i → m' j = m j\nhm₂ : ∀ (h : ↑i < n), f x = m' { val := ↑i, isLt := h }\n⊢ Agrees (Array.set arr i x) f m'", "tactic": "cases H" }, { "state_after": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\n⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ }", "state_before": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\n⊢ Agrees (Array.set arr i x) f m'", "tactic": "refine mk' (by simp) fun j hj₁ hj₂ ↦ ?_" }, { "state_after": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }", "state_before": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\n⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ }", "tactic": "suffices f (Array.set arr i x)[j] = m' ⟨j, hj₂⟩ by simp_all [Array.get_set]" }, { "state_after": "case pos\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ↑i = j\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }\n\ncase neg\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }", "state_before": "case mk\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }", "tactic": "by_cases h : i = j" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\n⊢ Array.size arr = Array.size (Array.set arr i x)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nthis : f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }\n⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ }", "tactic": "simp_all [Array.get_set]" }, { "state_after": "case pos\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nhj₁ : ↑i < Array.size (Array.set arr i x)\nhj₂ : ↑i < Array.size arr\n⊢ f (Array.set arr i x)[↑i] = m' { val := ↑i, isLt := hj₂ }", "state_before": "case pos\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ↑i = j\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nhj₁ : ↑i < Array.size (Array.set arr i x)\nhj₂ : ↑i < Array.size arr\n⊢ f (Array.set arr i x)[↑i] = m' { val := ↑i, isLt := hj₂ }", "tactic": "rw [Array.get_set_eq, ← hm₂]" }, { "state_after": "case neg\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ f arr[j] = (fun i => f (Array.get arr i)) { val := j, isLt := hj₂ }\n\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ j < Array.size arr\n\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ j < Array.size arr", "state_before": "case neg\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }", "tactic": "rw [arr.get_set_ne _ _ _ h, hm₁ ⟨j, _⟩ (Ne.symm h)]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ f arr[j] = (fun i => f (Array.get arr i)) { val := j, isLt := hj₂ }\n\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ j < Array.size arr\n\nα : Type u_1\nβ : Sort u_2\nf : α → β\narr : Array α\ni : Fin (Array.size arr)\nx : α\nm' : Fin (Array.size arr) → β\nhm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }\nhm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j\nj : ℕ\nhj₁ : j < Array.size (Array.set arr i x)\nhj₂ : j < Array.size arr\nh : ¬↑i = j\n⊢ j < Array.size arr", "tactic": "rfl" } ]
[ 113, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Order/CompleteLattice.lean
sInf_eq_top
[]
[ 549, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 548, 1 ]
Mathlib/LinearAlgebra/Ray.lean
Module.Ray.map_neg
[ { "state_after": "case h\nR : Type u_1\ninst✝⁴ : StrictOrderedCommRing R\nM : Type u_2\nN : Type u_3\ninst✝³ : AddCommGroup M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R M\ninst✝ : Module R N\nx y : M\nf : M ≃ₗ[R] N\ng : M\nhg : g ≠ 0\n⊢ ↑(map f) (-rayOfNeZero R g hg) = -↑(map f) (rayOfNeZero R g hg)", "state_before": "R : Type u_1\ninst✝⁴ : StrictOrderedCommRing R\nM : Type u_2\nN : Type u_3\ninst✝³ : AddCommGroup M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R M\ninst✝ : Module R N\nx y : M\nf : M ≃ₗ[R] N\nv : Ray R M\n⊢ ↑(map f) (-v) = -↑(map f) v", "tactic": "induction' v using Module.Ray.ind with g hg" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝⁴ : StrictOrderedCommRing R\nM : Type u_2\nN : Type u_3\ninst✝³ : AddCommGroup M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R M\ninst✝ : Module R N\nx y : M\nf : M ≃ₗ[R] N\ng : M\nhg : g ≠ 0\n⊢ ↑(map f) (-rayOfNeZero R g hg) = -↑(map f) (rayOfNeZero R g hg)", "tactic": "simp" } ]
[ 498, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 496, 11 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.infDist_singleton
[ { "state_after": "no goals", "state_before": "ι : Sort ?u.59247\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\n⊢ infDist x {y} = dist x y", "tactic": "simp [infDist, dist_edist]" } ]
[ 505, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 505, 1 ]
Mathlib/Data/Finset/Preimage.lean
Finset.preimage_subset
[]
[ 110, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
DifferentiableWithinAt.cexp
[]
[ 140, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.relabel_moveRight'
[]
[ 1162, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1160, 1 ]
Mathlib/Data/Rat/NNRat.lean
Rat.toNNRat_add
[ { "state_after": "no goals", "state_before": "p q : ℚ\nhq : 0 ≤ q\nhp : 0 ≤ p\n⊢ ↑(toNNRat (q + p)) = ↑(toNNRat q + toNNRat p)", "tactic": "simp [toNNRat, hq, hp, add_nonneg]" } ]
[ 379, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/Data/Num/Lemmas.lean
Num.cast_pos
[]
[ 290, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Topology/Algebra/Module/Multilinear.lean
ContinuousMultilinearMap.map_add
[]
[ 123, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.smul_inv
[]
[ 2204, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2203, 1 ]
Mathlib/RingTheory/Ideal/Quotient.lean
Ideal.Quotient.eq_zero_iff_mem
[]
[ 137, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
rootsOfUnityEquivNthRoots_apply
[]
[ 225, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/Data/List/Card.lean
List.card_nil
[]
[ 79, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 9 ]
Mathlib/Computability/Primrec.lean
Primrec₂.right
[]
[ 434, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 433, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_to_list
[ { "state_after": "no goals", "state_before": "ι : Type ?u.290155\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\n⊢ List.prod (List.map f (toList s)) = Finset.prod s f", "tactic": "rw [Finset.prod, ← Multiset.coe_prod, ← Multiset.coe_map, Finset.coe_toList]" } ]
[ 430, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 429, 1 ]
Mathlib/Order/Bounded.lean
Set.bounded_ge_Icc
[]
[ 274, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]