text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from enum import Enum from typing import Any, Dict, Union import requests from azure.ai.ml._restclient.v2023_06_01_preview.models import WorkspaceConnectionPropertiesV2BasicResource from azure.ai.ml._scope_dependent_operations import ( OperationConfig, OperationsContainer, OperationScope, _ScopeDependentOperations, ) from azure.core.exceptions import ClientAuthenticationError from promptflow._sdk.entities._connection import CustomConnection, _Connection from promptflow._utils.retry_utils import http_retry_wrapper from promptflow.azure._restclient.flow_service_caller import FlowServiceCaller from promptflow.azure._utils.gerneral import get_arm_token from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException GET_CONNECTION_URL = ( "/subscriptions/{sub}/resourcegroups/{rg}/providers/Microsoft.MachineLearningServices" "/workspaces/{ws}/connections/{name}/listsecrets?api-version=2023-04-01-preview" ) LIST_CONNECTION_URL = ( "/subscriptions/{sub}/resourcegroups/{rg}/providers/Microsoft.MachineLearningServices" "/workspaces/{ws}/connections?api-version=2023-04-01-preview" ) FLOW_META_PREFIX = "azureml.flow." class ConnectionCategory(str, Enum): AzureOpenAI = "AzureOpenAI" CognitiveSearch = "CognitiveSearch" CognitiveService = "CognitiveService" CustomKeys = "CustomKeys" def get_case_insensitive_key(d, key, default=None): for k, v in d.items(): if k.lower() == key.lower(): return v return default class ArmConnectionOperations(_ScopeDependentOperations): """ArmConnectionOperations. Get connections from arm api. You should not instantiate this class directly. Instead, you should create an PFClient instance that instantiates it for you and attaches it as an attribute. """ def __init__( self, operation_scope: OperationScope, operation_config: OperationConfig, all_operations: OperationsContainer, credential, service_caller: FlowServiceCaller, **kwargs: Dict, ): super(ArmConnectionOperations, self).__init__(operation_scope, operation_config) self._all_operations = all_operations self._service_caller = service_caller self._credential = credential def get(self, name, **kwargs): connection_dict = self.build_connection_dict(name) return _Connection._from_execution_connection_dict(name=name, data=connection_dict) @classmethod def _direct_get(cls, name, subscription_id, resource_group_name, workspace_name, credential): """ This method is added for local pf_client with workspace provider to ensure we only require limited permission(workspace/list secrets). As create azure pf_client requires workspace read permission. """ connection_dict = cls._build_connection_dict( name, subscription_id, resource_group_name, workspace_name, credential ) return _Connection._from_execution_connection_dict(name=name, data=connection_dict) @classmethod def open_url(cls, token, url, action, host="management.azure.com", method="GET", model=None) -> Union[Any, dict]: """ :type token: str :type url: str :type action: str, for the error message format. :type host: str :type method: str :type model: Type[msrest.serialization.Model] """ headers = {"Authorization": f"Bearer {token}"} response = http_retry_wrapper(requests.request)(method, f"https://{host}{url}", headers=headers) message_format = ( f"Open url {{url}} failed with status code: {response.status_code}, action: {action}, reason: {{reason}}" ) if response.status_code == 403: raise AccessDeniedError(operation=url, target=ErrorTarget.RUNTIME) elif 400 <= response.status_code < 500: raise OpenURLFailedUserError( message_format=message_format, url=url, reason=response.reason, ) elif response.status_code != 200: raise OpenURLFailed( message_format=message_format, url=url, reason=response.reason, ) data = response.json() if model: return model.deserialize(data) return data @classmethod def validate_and_fallback_connection_type(cls, name, type_name, category, metadata): if type_name: return type_name if category == ConnectionCategory.AzureOpenAI: return "AzureOpenAI" if category == ConnectionCategory.CognitiveSearch: return "CognitiveSearch" if category == ConnectionCategory.CognitiveService: kind = get_case_insensitive_key(metadata, "Kind") if kind == "Content Safety": return "AzureContentSafety" if kind == "Form Recognizer": return "FormRecognizer" raise UnknownConnectionType( message_format="Connection {name} is not recognized in PromptFlow, " "please make sure the connection is created in PromptFlow.", category=category, name=name, ) @classmethod def build_connection_dict_from_rest_object(cls, name, obj) -> dict: """ :type name: str :type obj: azure.ai.ml._restclient.v2023_06_01_preview.models.WorkspaceConnectionPropertiesV2BasicResource """ # Reference 1: https://msdata.visualstudio.com/Vienna/_git/vienna?path=/src/azureml-api/src/AccountRP/Contracts/WorkspaceConnection/WorkspaceConnectionDtoV2.cs&_a=blame&version=GBmaster # noqa: E501 # Reference 2: https://msdata.visualstudio.com/Vienna/_git/vienna?path=%2Fsrc%2Fazureml-api%2Fsrc%2FDesigner%2Fsrc%2FMiddleTier%2FMiddleTier%2FServices%2FPromptFlow%2FConnectionsManagement.cs&version=GBmaster&_a=contents # noqa: E501 # This connection type covers the generic ApiKey auth connection categories, for examples: # AzureOpenAI: # Category:= AzureOpenAI # AuthType:= ApiKey (as type discriminator) # Credentials:= {ApiKey} as <see cref="ApiKey"/> # Target:= {ApiBase} # # CognitiveService: # Category:= CognitiveService # AuthType:= ApiKey (as type discriminator) # Credentials:= {SubscriptionKey} as <see cref="ApiKey"/> # Target:= ServiceRegion={serviceRegion} # # CognitiveSearch: # Category:= CognitiveSearch # AuthType:= ApiKey (as type discriminator) # Credentials:= {Key} as <see cref="ApiKey"/> # Target:= {Endpoint} # # Use Metadata property bag for ApiType, ApiVersion, Kind and other metadata fields properties = obj.properties type_name = get_case_insensitive_key(properties.metadata, f"{FLOW_META_PREFIX}connection_type") type_name = cls.validate_and_fallback_connection_type(name, type_name, properties.category, properties.metadata) module = get_case_insensitive_key(properties.metadata, f"{FLOW_META_PREFIX}module", "promptflow.connections") # Note: Category is connectionType in MT, but type name should be class name, which is flowValueType in MT. # Handle old connections here, see details: https://github.com/Azure/promptflow/tree/main/connections type_name = f"{type_name}Connection" if not type_name.endswith("Connection") else type_name meta = {"type": type_name, "module": module} if properties.category == ConnectionCategory.AzureOpenAI: value = { "api_key": properties.credentials.key, "api_base": properties.target, "api_type": get_case_insensitive_key(properties.metadata, "ApiType"), "api_version": get_case_insensitive_key(properties.metadata, "ApiVersion"), } # Note: Resource id is required in some cloud scenario, which is not exposed on sdk/cli entity. resource_id = get_case_insensitive_key(properties.metadata, "ResourceId") if resource_id: value["resource_id"] = resource_id elif properties.category == ConnectionCategory.CognitiveSearch: value = { "api_key": properties.credentials.key, "api_base": properties.target, "api_version": get_case_insensitive_key(properties.metadata, "ApiVersion"), } elif properties.category == ConnectionCategory.CognitiveService: value = { "api_key": properties.credentials.key, "endpoint": properties.target, "api_version": get_case_insensitive_key(properties.metadata, "ApiVersion"), } elif properties.category == ConnectionCategory.CustomKeys: # Merge secrets from credentials.keys and other string fields from metadata value = { **properties.credentials.keys, **{k: v for k, v in properties.metadata.items() if not k.startswith(FLOW_META_PREFIX)}, } if type_name == CustomConnection.__name__: meta["secret_keys"] = list(properties.credentials.keys.keys()) else: raise UnknownConnectionType( message_format=( "Unknown connection {name} category {category}, " "please upgrade your promptflow sdk version and retry." ), category=properties.category, name=name, ) # Note: Filter empty values out to ensure default values can be picked when init class object. return {**meta, "value": {k: v for k, v in value.items() if v}} def build_connection_dict(self, name): return self._build_connection_dict( name, self._operation_scope.subscription_id, self._operation_scope.resource_group_name, self._operation_scope.workspace_name, self._credential, ) @classmethod def _convert_to_connection_dict(cls, conn_name, conn_data): try: rest_obj = WorkspaceConnectionPropertiesV2BasicResource.deserialize(conn_data) conn_dict = cls.build_connection_dict_from_rest_object(conn_name, rest_obj) return conn_dict except Exception as e: raise BuildConnectionError( message_format=f"Build connection dict for connection {{name}} failed with {e}.", name=conn_name, ) @classmethod def _build_connection_dict(cls, name, subscription_id, resource_group_name, workspace_name, credential) -> dict: """ :type name: str :type subscription_id: str :type resource_group_name: str :type workspace_name: str :type credential: azure.identity.TokenCredential """ url = GET_CONNECTION_URL.format( sub=subscription_id, rg=resource_group_name, ws=workspace_name, name=name, ) try: rest_obj: WorkspaceConnectionPropertiesV2BasicResource = cls.open_url( get_arm_token(credential=credential), url=url, action="listsecrets", method="POST", model=WorkspaceConnectionPropertiesV2BasicResource, ) except AccessDeniedError: auth_error_message = ( "Access denied to list workspace secret due to invalid authentication. " "Please ensure you have gain RBAC role 'Azure Machine Learning Workspace Connection Secrets Reader' " "for current workspace, and wait for a few minutes to make sure the new role takes effect. " ) raise OpenURLUserAuthenticationError(message=auth_error_message) except ClientAuthenticationError as e: raise UserErrorException(target=ErrorTarget.CONTROL_PLANE_SDK, message=str(e), error=e) except Exception as e: raise SystemErrorException(target=ErrorTarget.CONTROL_PLANE_SDK, message=str(e), error=e) try: return cls.build_connection_dict_from_rest_object(name, rest_obj) except Exception as e: raise BuildConnectionError( message_format=f"Build connection dict for connection {{name}} failed with {e}.", name=name, ) class AccessDeniedError(UserErrorException): """Exception raised when run info can not be found in storage""" def __init__(self, operation: str, target: ErrorTarget): super().__init__(message=f"Access is denied to perform operation {operation!r}", target=target) class OpenURLFailed(SystemErrorException): def __init__(self, **kwargs): super().__init__(target=ErrorTarget.CONTROL_PLANE_SDK, **kwargs) class BuildConnectionError(SystemErrorException): def __init__(self, **kwargs): super().__init__(target=ErrorTarget.CONTROL_PLANE_SDK, **kwargs) class UserAuthenticationError(UserErrorException): """Exception raised when user authentication failed""" pass class OpenURLUserAuthenticationError(UserAuthenticationError): def __init__(self, **kwargs): super().__init__(target=ErrorTarget.CONTROL_PLANE_SDK, **kwargs) class OpenURLFailedUserError(UserErrorException): def __init__(self, **kwargs): super().__init__(target=ErrorTarget.CONTROL_PLANE_SDK, **kwargs) class UnknownConnectionType(UserErrorException): def __init__(self, **kwargs): super().__init__(target=ErrorTarget.CONTROL_PLANE_SDK, **kwargs)
promptflow/src/promptflow/promptflow/azure/operations/_arm_connection_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_arm_connection_operations.py", "repo_id": "promptflow", "token_count": 5724 }
46
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import dataclass, is_dataclass from promptflow._core.tools_manager import register_connections from promptflow._sdk.entities import ( AzureContentSafetyConnection, AzureOpenAIConnection, CognitiveSearchConnection, CustomConnection, FormRecognizerConnection, OpenAIConnection, SerpConnection, CustomStrongTypeConnection, ) from promptflow._sdk.entities._connection import _Connection from promptflow.contracts.types import Secret @dataclass class BingConnection: api_key: Secret url: str = "https://api.bing.microsoft.com/v7.0/search" # We should use unified connection class everywhere. # Do not add new connection class definition directly here. # !!!Attention!!!: Do not add external package connections here. __all__ = [ "OpenAIConnection", "AzureOpenAIConnection", "AzureContentSafetyConnection", "SerpConnection", "CognitiveSearchConnection", "FormRecognizerConnection", "CustomConnection", "CustomStrongTypeConnection", ] register_connections( [v for v in globals().values() if is_dataclass(v) or (isinstance(v, type) and issubclass(v, _Connection))] )
promptflow/src/promptflow/promptflow/connections/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/connections/__init__.py", "repo_id": "promptflow", "token_count": 399 }
47
import inspect from typing import Any, Callable, Dict, List, Mapping from promptflow._utils.logger_utils import flow_logger from promptflow.contracts.flow import InputAssignment, InputValueType, Node from promptflow.executor import _input_assignment_parser class DAGManager: def __init__(self, nodes: List[Node], flow_inputs: dict): self._nodes = nodes self._flow_inputs = flow_inputs self._pending_nodes = {node.name: node for node in nodes} self._completed_nodes_outputs = {} # node name -> output self._bypassed_nodes = {} # node name -> node # TODO: Validate the DAG to avoid circular dependencies @property def completed_nodes_outputs(self) -> Dict[str, Any]: return self._completed_nodes_outputs @property def bypassed_nodes(self) -> Dict[str, Node]: return self._bypassed_nodes def pop_ready_nodes(self) -> List[Node]: """Returns a list of node names that are ready, and removes them from the list of nodes to be processed.""" ready_nodes: List[Node] = [] for node in self._pending_nodes.values(): if self._is_node_ready(node): ready_nodes.append(node) for node in ready_nodes: del self._pending_nodes[node.name] return ready_nodes def pop_bypassable_nodes(self) -> List[Node]: """Returns a list of nodes that are bypassed, and removes them from the list of nodes to be processed.""" # Confirm node should be bypassed bypassed_nodes: List[Node] = [] for node in self._pending_nodes.values(): if self._is_node_ready(node) and self._is_node_bypassable(node): self._bypassed_nodes[node.name] = node bypassed_nodes.append(node) for node in bypassed_nodes: del self._pending_nodes[node.name] return bypassed_nodes def get_node_valid_inputs(self, node: Node, f: Callable) -> Mapping[str, Any]: """Returns the valid inputs for the node, including the flow inputs, literal values and the outputs of completed nodes. The valid inputs are determined by the function of the node. :param node: The node for which to determine the valid inputs. :type node: Node :param f: The function of the current node, which is used to determine the valid inputs. In the case when node dependency is bypassed, the input is not required when parameter has default value, and the input is set to None when parameter has no default value. :type f: Callable :return: A dictionary mapping each valid input name to its value. :rtype: dict """ results = {} signature = inspect.signature(f).parameters for name, i in (node.inputs or {}).items(): if self._is_node_dependency_bypassed(i): # If the parameter has default value, the input will not be set so that the default value will be used. if signature.get(name) is not None and signature[name].default is not inspect.Parameter.empty: continue # If the parameter has no default value, the input will be set to None so that function will not fail. else: flow_logger.warning( f"The node '{i.value}' referenced by the input '{name}' of the current node '{node.name}' " "has been bypassed, and no default value is set. Will use 'None' as the value for this input." ) results[name] = None else: results[name] = self._get_node_dependency_value(i) return results def complete_nodes(self, nodes_outputs: Mapping[str, Any]): """Marks nodes as completed with the mapping from node names to their outputs.""" self._completed_nodes_outputs.update(nodes_outputs) def completed(self) -> bool: """Returns True if all nodes have been processed.""" return all( node.name in self._completed_nodes_outputs or node.name in self._bypassed_nodes for node in self._nodes ) def _is_node_ready(self, node: Node) -> bool: """Returns True if the node is ready to be executed.""" node_dependencies = [i for i in node.inputs.values()] # Add activate conditions as node dependencies if node.activate: node_dependencies.append(node.activate.condition) for node_dependency in node_dependencies: if ( node_dependency.value_type == InputValueType.NODE_REFERENCE and node_dependency.value not in self._completed_nodes_outputs and node_dependency.value not in self._bypassed_nodes ): return False return True def _is_node_bypassable(self, node: Node) -> bool: """Returns True if the node should be bypassed.""" # Bypass node if the activate condition is not met if node.activate: # If the node referenced by activate condition is bypassed, the current node should be bypassed if self._is_node_dependency_bypassed(node.activate.condition): flow_logger.info( f"The node '{node.name}' will be bypassed because it depends on the node " f"'{node.activate.condition.value}' which has already been bypassed in the activate config." ) return True # If a node has activate config, we will always use this config # to determine whether the node should be bypassed. activate_condition = InputAssignment.serialize(node.activate.condition) if not self._is_condition_met(node.activate.condition, node.activate.condition_value): flow_logger.info( f"The node '{node.name}' will be bypassed because the activate condition is not met, " f"i.e. '{activate_condition}' is not equal to '{node.activate.condition_value}'." ) return True else: flow_logger.info( f"The node '{node.name}' will be executed because the activate condition is met, " f"i.e. '{activate_condition}' is equal to '{node.activate.condition_value}'." ) return False # Bypass node if all of its node reference dependencies are bypassed node_dependencies = [i for i in node.inputs.values() if i.value_type == InputValueType.NODE_REFERENCE] all_dependencies_bypassed = node_dependencies and all( self._is_node_dependency_bypassed(dependency) for dependency in node_dependencies ) if all_dependencies_bypassed: node_dependencies_list = [dependency.value for dependency in node_dependencies] flow_logger.info( f"The node '{node.name}' will be bypassed because all nodes " f"{node_dependencies_list} it depends on are bypassed." ) return all_dependencies_bypassed def _is_condition_met(self, condition: InputAssignment, condition_value) -> bool: condition = self._get_node_dependency_value(condition) return condition == condition_value def _get_node_dependency_value(self, node_dependency: InputAssignment): return _input_assignment_parser.parse_value(node_dependency, self._completed_nodes_outputs, self._flow_inputs) def _is_node_dependency_bypassed(self, dependency: InputAssignment) -> bool: """Returns True if the node dependency is bypassed. There are two types of the node dependency: 1. The inputs of the node 2. The activate condition of the node """ return dependency.value_type == InputValueType.NODE_REFERENCE and dependency.value in self._bypassed_nodes
promptflow/src/promptflow/promptflow/executor/_dag_manager.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_dag_manager.py", "repo_id": "promptflow", "token_count": 3269 }
48
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from ._cache_storage import AbstractCacheStorage # noqa: F401 from ._run_storage import AbstractRunStorage # noqa: F401 __all__ = ["AbstractCacheStorage", "AbstractRunStorage"]
promptflow/src/promptflow/promptflow/storage/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/storage/__init__.py", "repo_id": "promptflow", "token_count": 74 }
49
import re from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.exception_utils import ErrorResponse from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.executor._flow_nodes_scheduler import RUN_FLOW_NODES_LINEARLY from promptflow.executor._result import LineResult from promptflow.executor.flow_executor import FlowExecutor from ..utils import get_flow_inputs, get_yaml_file, load_content TEST_ROOT = Path(__file__).parent.parent.parent FLOWS_ROOT = TEST_ROOT / "test_configs/flows" FLOW_FOLDER = "concurrent_execution_flow" @pytest.mark.e2etest class TestConcurrentExecution: def test_concurrent_run(self): logs_directory = Path(mkdtemp()) executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) flow_run_log_path = str(logs_directory / "test_flow_run.log") # flow run: test exec_line with LogContext(flow_run_log_path, run_mode=RunMode.Test): results = executor.exec_line(get_flow_inputs(FLOW_FOLDER)) log_content = load_content(flow_run_log_path) pattern = r"\[wait_(\d+) in line None.*Thread (\d+)" matches = re.findall(pattern, log_content) wait_thread_mapping = {} for wait, thread in matches: if wait in wait_thread_mapping: if wait_thread_mapping[wait] != thread: raise Exception(f"wait_{wait} corresponds to more than one thread number") else: wait_thread_mapping[wait] = thread self.assert_run_result(results) assert ( results.run_info.system_metrics["duration"] < 10 ), "run nodes concurrently should decrease the total run time." def test_concurrent_run_with_exception(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}, raise_ex=False) flow_result = executor.exec_line({"input1": "True", "input2": "False", "input3": "False", "input4": "False"}) assert 2 < flow_result.run_info.system_metrics["duration"] < 4, "Should at least finish the running job." error_response = ErrorResponse.from_error_dict(flow_result.run_info.error) assert error_response.error_code_hierarchy == "UserError/ToolExecutionError" def test_linear_run(self): executor = FlowExecutor.create(get_yaml_file(FLOW_FOLDER), {}) # flow run: test exec_line run linearly results = executor.exec_line(get_flow_inputs(FLOW_FOLDER), node_concurrency=RUN_FLOW_NODES_LINEARLY) self.assert_run_result(results) assert 15 > results.run_info.system_metrics["duration"] > 10, "run nodes linearly will consume more time." def assert_run_result(self, result: LineResult): # Validate the flow status assert result.run_info.status == Status.Completed # Validate the flow output assert isinstance(result.output, dict) # Validate the flow node run infos assert len(result.node_run_infos) == 5
promptflow/src/promptflow/tests/executor/e2etests/test_concurent_execution.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_concurent_execution.py", "repo_id": "promptflow", "token_count": 1258 }
50
{# Please replace the template with your own prompt. #} Write a simple program that displays the greeting message: "{{text}}" when executed.
promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/my_prompt.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/my_prompt.jinja2", "repo_id": "promptflow", "token_count": 33 }
51
import pytest from promptflow._core.generator_proxy import GeneratorProxy, generate_from_proxy def generator(): for i in range(3): yield i def iterator(): return iter([0, 1, 2]) @pytest.mark.unittest def test_generator_proxy_next(): proxy = GeneratorProxy(generator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generator_proxy_iter(): original_generator = generator() proxy = GeneratorProxy(generator()) for num in proxy: assert num == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_proxy(): proxy = GeneratorProxy(generator()) original_generator = generator() for i in generate_from_proxy(proxy): assert i == next(original_generator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_next(): proxy = GeneratorProxy(iterator()) assert proxy.items == [] assert next(proxy) == 0 assert next(proxy) == 1 assert next(proxy) == 2 with pytest.raises(StopIteration): next(proxy) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_iterator_proxy_iter(): original_iterator = iterator() proxy = GeneratorProxy(iterator()) for num in proxy: assert num == next(original_iterator) assert proxy.items == [0, 1, 2] @pytest.mark.unittest def test_generate_from_iterator_proxy(): proxy = GeneratorProxy(iterator()) original_iterator = iterator() for i in generate_from_proxy(proxy): assert i == next(original_iterator) assert proxy.items == [0, 1, 2]
promptflow/src/promptflow/tests/executor/unittests/_core/test_generator_proxy.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_generator_proxy.py", "repo_id": "promptflow", "token_count": 666 }
52
import io import logging import time from multiprocessing.pool import ThreadPool from pathlib import Path from tempfile import mkdtemp from unittest.mock import Mock from uuid import uuid4 import pytest from promptflow._utils.credential_scrubber import CredentialScrubber from promptflow._utils.logger_utils import ( CredentialScrubberFormatter, FileHandler, FileHandlerConcurrentWrapper, LogContext, bulk_logger, scrub_credentials, update_log_path, update_single_log_path, ) from promptflow.contracts.run_mode import RunMode from ...utils import load_content def _set_handler(logger: logging.Logger, handler: FileHandler, log_content: str): for h in logger.handlers: if isinstance(h, FileHandlerConcurrentWrapper): h.handler = handler time.sleep(1) logger.warning(log_content) h.clear() class DummyException(Exception): pass @pytest.fixture def logger(): logger = logging.getLogger(str(uuid4())) logger.setLevel(logging.INFO) return logger @pytest.fixture def stream_handler(): stream = io.StringIO() return logging.StreamHandler(stream) @pytest.mark.unittest class TestCredentialScrubberFormatter: def test_log(self, logger, stream_handler): """Make sure credentials by logger.log are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=signature") logger.error("testerror&key=accountkey") logger.warning("testwarning&sig=signature") logger.critical("print dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER}\n" f"testerror&key={CredentialScrubber.PLACE_HOLDER}\n" f"testwarning&sig={CredentialScrubber.PLACE_HOLDER}\n" f"print {CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_args(self, logger, stream_handler): """Make sure credentials by logger.log (in args) are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("testinfo&sig=%s credential=%s", "signature", "dummy secret") expected_log_output = ( f"testinfo&sig={CredentialScrubber.PLACE_HOLDER} " f"credential={CredentialScrubber.PLACE_HOLDER}\n" ) assert stream_handler.stream.getvalue() == expected_log_output def test_log_with_exc_info(self, logger, stream_handler): """Make sure credentials in exception are scrubbed.""" formatter = CredentialScrubberFormatter() formatter.set_credential_list(["dummy secret"]) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) exception = DummyException("credential=dummy secret accountkey=accountkey") logger.exception("test exception", exc_info=exception) expected_log_output = "credential=**data_scrubbed** accountkey=**data_scrubbed**" assert expected_log_output in stream_handler.stream.getvalue() def test_set_credential_list_thread_safe(self): formatter = CredentialScrubberFormatter() def set_and_check_credential_list(credential_list): formatter.set_credential_list(credential_list) time.sleep(1) assert formatter.credential_scrubber.custom_str_set == set(credential_list) with ThreadPool(processes=3) as pool: results = pool.map(set_and_check_credential_list, [[f"secret {i}", f"credential {i}"] for i in range(3)]) _ = list(results) @pytest.mark.unittest class TestFileHandlerConcurrentWrapper: def test_set_handler_thread_safe(self): wrapper = FileHandlerConcurrentWrapper() logger = logging.getLogger("test execution log handler") logger.addHandler(wrapper) process_num = 3 folder_path = Path(mkdtemp()) log_path_list = [str(folder_path / f"log_{i}.log") for i in range(process_num)] with ThreadPool(processes=process_num) as pool: results = pool.starmap( _set_handler, ((logger, FileHandler(log_path_list[i]), f"log {i}") for i in range(process_num)) ) results = list(results) # Make sure log content is as expected. for i, log_path in enumerate(log_path_list): with open(log_path, "r") as f: log = f.read() log_lines = log.split("\n") assert len(log_lines) == 2 assert f"log {i}" in log_lines[0] assert log_lines[1] == "" def test_clear(self): wrapper = FileHandlerConcurrentWrapper() assert wrapper.handler is None log_path = str(Path(mkdtemp()) / "logs.log") file_handler = FileHandler(log_path) file_handler.close = Mock(side_effect=Exception("test exception")) wrapper.handler = file_handler wrapper.clear() assert wrapper.handler is None @pytest.mark.unittest class TestLogContext: def test_context_manager(self): log_handler = FileHandlerConcurrentWrapper() logger = logging.getLogger("test_setup_logger_context") logger.addHandler(log_handler) log_path = str(Path(mkdtemp()) / "test.log") try: log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() log_context.input_logger = logger assert LogContext.get_current() is None with log_context: assert LogContext.get_current() is not None # Make sure context variables are set. inner_handler = log_handler._context_var.get() assert isinstance(inner_handler, FileHandler) assert isinstance(inner_handler._formatter, CredentialScrubberFormatter) scrubber = inner_handler._formatter._context_var.get() assert scrubber is not None logger.warning("Print %s", "&sig=signature") # Raise exception for test. raise DummyException("Raise exception for test.") except DummyException: pass # Make sure log content is as expected. with open(log_path, "r") as f: log_content = f.read() assert f"Print &sig={CredentialScrubber.PLACE_HOLDER}" in log_content # Make sure context variables are cleaned up. assert log_handler._context_var.get() is None def test_empty_file_path(self, logger, stream_handler): logger.addHandler(stream_handler) logger.addHandler(FileHandlerConcurrentWrapper()) with LogContext("", input_logger=logger): logger.info("test log") assert stream_handler.stream.getvalue() == "test log\n" def test_update_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path log_path = str(folder_path / "log_without_input_logger.log") update_log_path(log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") log = load_content(log_path) keywords = ["test update log", "test update input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in log for keyword in keywords) def test_update_single_log_path(self): log_handler = FileHandlerConcurrentWrapper() input_logger = logging.getLogger("input_logger") input_logger.addHandler(log_handler) folder_path = Path(mkdtemp()) original_log_path = str(folder_path / "original_log.log") with LogContext(original_log_path, input_logger=input_logger, run_mode=RunMode.Batch): bulk_logger.info("test log") input_logger.warning("test input log") original_log = load_content(original_log_path) keywords = ["test log", "test input log", "execution.bulk", "input_logger", "INFO", "WARNING"] assert all(keyword in original_log for keyword in keywords) # Update log path bulk_log_path = str(folder_path / "update_bulk_log.log") update_single_log_path(bulk_log_path, bulk_logger) input_log_path = str(folder_path / "update_input_log.log") update_single_log_path(input_log_path, input_logger) bulk_logger.info("test update log") input_logger.warning("test update input log") bulk_log = load_content(bulk_log_path) input_log = load_content(input_log_path) bulk_keywords = ["test update log", "execution.bulk", "INFO"] input_keywords = ["test update input log", "input_logger", "WARNING"] assert all(keyword in bulk_log for keyword in bulk_keywords) assert all(keyword not in bulk_log for keyword in input_keywords) assert all(keyword in input_log for keyword in input_keywords) assert all(keyword not in input_log for keyword in bulk_keywords) def test_scrub_credentials(self): log_content = "sig=signature&key=accountkey" folder_path = Path(mkdtemp()) logs_path = str(folder_path / "logs.log") scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**" with LogContext(logs_path): scrubbed_log_content = scrub_credentials(log_content) assert scrubbed_log_content == "sig=**data_scrubbed**&key=**data_scrubbed**"
promptflow/src/promptflow/tests/executor/unittests/_utils/test_logger_utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_logger_utils.py", "repo_id": "promptflow", "token_count": 4473 }
53
import json import pytest from promptflow._sdk._constants import VIS_JS_BUNDLE_FILENAME from promptflow.contracts._run_management import VisualizationRender @pytest.mark.unittest def test_visualization_render(): data = {"key": "value"} viz = VisualizationRender(data) assert viz.data == json.dumps(json.dumps(data)) assert viz.js_path == VIS_JS_BUNDLE_FILENAME
promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_management.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_management.py", "repo_id": "promptflow", "token_count": 135 }
54
import multiprocessing import os import sys import uuid from multiprocessing import Queue from pathlib import Path from tempfile import mkdtemp from unittest.mock import patch import pytest from pytest_mock import MockFixture from promptflow._utils.logger_utils import LogContext from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, UserErrorException from promptflow.executor import FlowExecutor from promptflow.executor._errors import SpawnedForkProcessManagerStartFailure from promptflow.executor._line_execution_process_pool import ( LineExecutionProcessPool, _exec_line, format_current_process_info, get_available_max_worker_count, log_process_status, ) from promptflow.executor._process_manager import create_spawned_fork_process_manager from promptflow.executor._result import LineResult from ...utils import get_flow_sample_inputs, get_yaml_file SAMPLE_FLOW = "web_classification_no_variants" def get_line_inputs(flow_folder=""): if flow_folder: inputs = get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(nlinee=4, flow_folder="", sample_inputs_file="", return_dict=False): if flow_folder: if not sample_inputs_file: sample_inputs_file = "samples.json" inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): if return_dict: return inputs return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [get_line_inputs() for _ in range(nlinee)] def execute_in_fork_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): os.environ["PF_BATCH_METHOD"] = "fork" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) else: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the " f"factors of {factors}." ) def execute_in_spawn_mode_subprocess( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): os.environ["PF_BATCH_METHOD"] = "spawn" if is_set_environ_pf_worker_count: os.environ["PF_WORKER_COUNT"] = pf_worker_count executor = FlowExecutor.create( get_yaml_file(flow_folder), dev_connections, ) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = 128.0 * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = 64 * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: assert pool._n_process == n_process if is_set_environ_pf_worker_count and is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) mock_logger.warning.assert_any_call( f"The current process count ({pf_worker_count}) is larger than recommended process count " f"({estimated_available_worker_count}) that estimated by system available memory. This may " f"cause memory exhaustion" ) elif is_set_environ_pf_worker_count and not is_calculation_smaller_than_set: mock_logger.info.assert_any_call( f"Set process count to {pf_worker_count} with the environment " f"variable 'PF_WORKER_COUNT'." ) elif not is_set_environ_pf_worker_count: factors = { "default_worker_count": pool._DEFAULT_WORKER_COUNT, "row_count": pool._nlines, "estimated_worker_count_based_on_memory_usage": estimated_available_worker_count, } mock_logger.info.assert_any_call( f"Set process count to {n_process} by taking the minimum value among the factors " f"of {factors}." ) def create_line_execution_process_pool(dev_connections): executor = FlowExecutor.create(get_yaml_file(SAMPLE_FLOW), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) line_execution_process_pool = LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) return line_execution_process_pool def set_environment_successed_in_subprocess(dev_connections, pf_batch_method): os.environ["PF_BATCH_METHOD"] = pf_batch_method line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork is False def set_environment_failed_in_subprocess(dev_connections): with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None os.environ["PF_BATCH_METHOD"] = "test" line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") sys_start_methods = multiprocessing.get_all_start_methods() exexpected_log_message = ( "Failed to set start method to 'test', start method test" f" is not in: {sys_start_methods}." ) mock_logger.warning.assert_called_once_with(exexpected_log_message) def not_set_environment_in_subprocess(dev_connections): line_execution_process_pool = create_line_execution_process_pool(dev_connections) use_fork = line_execution_process_pool._use_fork assert use_fork == (multiprocessing.get_start_method() == "fork") def custom_create_spawned_fork_process_manager(*args, **kwargs): create_spawned_fork_process_manager("test", *args, **kwargs) @pytest.mark.unittest class TestLineExecutionProcessPool: @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_process_pool(self, flow_folder, dev_connections): log_path = str(Path(mkdtemp()) / "test.log") log_context_initializer = LogContext(log_path).get_initializer() log_context = log_context_initializer() with log_context: executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) executor._log_interval = 1 run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.status == Status.Completed, f"{i}th line got {line_result.run_info.status}" @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_line_execution_not_completed(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, line_timeout_sec=1, ) as pool: result_list = pool.run(zip(range(nlines), bulk_inputs)) result_list = sorted(result_list, key=lambda r: r.run_info.index) assert len(result_list) == nlines for i, line_result in enumerate(result_list): assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == f"Line {i} execution timeout for exceeding 1 seconds" assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_exec_line_failed_when_line_execution_not_start(self, flow_folder, dev_connections, mocker: MockFixture): output_queue = Queue() executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) test_error_msg = "Test user error" with patch("promptflow.executor.flow_executor.FlowExecutor.exec_line", autouse=True) as mock_exec_line: mock_exec_line.side_effect = UserErrorException( message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE ) run_id = str(uuid.uuid4()) line_inputs = get_line_inputs() line_result = _exec_line( executor=executor, output_queue=output_queue, inputs=line_inputs, run_id=run_id, index=0, line_timeout_sec=600, ) assert isinstance(line_result, LineResult) assert line_result.run_info.error["message"] == test_error_msg assert line_result.run_info.error["code"] == "UserError" assert line_result.run_info.status == Status.Failed @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) def test_process_pool_run_with_exception(self, flow_folder, dev_connections, mocker: MockFixture): # mock process pool run execution raise error test_error_msg = "Test user error" mocker.patch( "promptflow.executor._line_execution_process_pool.LineExecutionProcessPool." "_monitor_workers_and_process_tasks_in_thread", side_effect=UserErrorException(message=test_error_msg, target=ErrorTarget.AZURE_RUN_STORAGE), ) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: with pytest.raises(UserErrorException) as e: pool.run(zip(range(nlines), bulk_inputs)) assert e.value.message == test_error_msg assert e.value.target == ErrorTarget.AZURE_RUN_STORAGE assert e.value.error_codes[0] == "UserError" @pytest.mark.parametrize( ("flow_folder", "is_set_environ_pf_worker_count", "pf_worker_count", "n_process"), [(SAMPLE_FLOW, True, "3", 3), (SAMPLE_FLOW, False, None, 4)], ) def test_process_pool_parallelism_in_fork_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process ): if "fork" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: fork") p = multiprocessing.Process( target=execute_in_fork_mode_subprocess, args=(dev_connections, flow_folder, is_set_environ_pf_worker_count, pf_worker_count, n_process), ) p.start() p.join() assert p.exitcode == 0 @pytest.mark.parametrize( ( "flow_folder", "is_set_environ_pf_worker_count", "is_calculation_smaller_than_set", "pf_worker_count", "estimated_available_worker_count", "n_process", ), [ (SAMPLE_FLOW, True, False, "2", 4, 2), (SAMPLE_FLOW, True, True, "6", 2, 6), (SAMPLE_FLOW, False, True, None, 2, 2), ], ) def test_process_pool_parallelism_in_spawn_mode( self, dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ): if "spawn" not in multiprocessing.get_all_start_methods(): pytest.skip("Unsupported start method: spawn") p = multiprocessing.Process( target=execute_in_spawn_mode_subprocess, args=( dev_connections, flow_folder, is_set_environ_pf_worker_count, is_calculation_smaller_than_set, pf_worker_count, estimated_available_worker_count, n_process, ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_successed(self, dev_connections): p = multiprocessing.Process( target=set_environment_successed_in_subprocess, args=( dev_connections, "spawn", ), ) p.start() p.join() assert p.exitcode == 0 def test_process_set_environment_variable_failed(self, dev_connections): p = multiprocessing.Process(target=set_environment_failed_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 def test_process_not_set_environment_variable(self, dev_connections): p = multiprocessing.Process(target=not_set_environment_in_subprocess, args=(dev_connections,)) p.start() p.join() assert p.exitcode == 0 @pytest.mark.skipif(sys.platform == "win32" or sys.platform == "darwin", reason="Only test on linux") @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, ], ) @patch( "promptflow.executor._process_manager.create_spawned_fork_process_manager", custom_create_spawned_fork_process_manager, ) def test_spawned_fork_process_manager_crashed_in_fork_mode(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) run_id = str(uuid.uuid4()) bulk_inputs = get_bulk_inputs() nlines = len(bulk_inputs) run_id = run_id or str(uuid.uuid4()) with pytest.raises(SpawnedForkProcessManagerStartFailure) as e: with LineExecutionProcessPool( executor, nlines, run_id, None, ) as pool: pool.run(zip(range(nlines), bulk_inputs)) assert "Failed to start spawned fork process manager" in str(e.value) class TestGetAvailableMaxWorkerCount: @pytest.mark.parametrize( "available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count", [ (128.0, 64.0, 2, 2), # available_memory/process_memory > 1 (63.0, 64.0, 1, 0), # available_memory/process_memory < 1 ], ) def test_get_available_max_worker_count( self, available_memory, process_memory, expected_max_worker_count, actual_calculate_worker_count ): with patch("psutil.virtual_memory") as mock_mem: mock_mem.return_value.available = available_memory * 1024 * 1024 with patch("psutil.Process") as mock_process: mock_process.return_value.memory_info.return_value.rss = process_memory * 1024 * 1024 with patch("promptflow.executor._line_execution_process_pool.bulk_logger") as mock_logger: mock_logger.warning.return_value = None estimated_available_worker_count = get_available_max_worker_count() assert estimated_available_worker_count == expected_max_worker_count if actual_calculate_worker_count < 1: mock_logger.warning.assert_called_with( f"Current system's available memory is {available_memory}MB, less than the memory " f"{process_memory}MB required by the process. The maximum available worker count is 1." ) else: mock_logger.info.assert_called_with( f"Current system's available memory is {available_memory}MB, " f"memory consumption of current process is {process_memory}MB, " f"estimated available worker count is {available_memory}/{process_memory} " f"= {actual_calculate_worker_count}" ) @pytest.mark.unittest class TestFormatCurrentProcess: def test_format_current_process_info(self): process_name = "process_name" process_pid = 123 line_number = 13 formatted_message = format_current_process_info(process_name, process_pid, line_number) expected_returned_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number})" ) assert formatted_message == expected_returned_log_message @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_start_execution(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) start execution." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_completed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_completed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) completed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message) @patch("promptflow.executor._line_execution_process_pool.bulk_logger.info", autospec=True) def test_log_process_status_failed(self, mock_logger_info): process_name = "process_name" process_pid = 123 line_number = 13 log_process_status(process_name, process_pid, line_number, is_failed=True) exexpected_during_execution_log_message = ( f"Process name({process_name})-Process id({process_pid})-Line number({line_number}) failed." ) mock_logger_info.assert_called_once_with(exexpected_during_execution_log_message)
promptflow/src/promptflow/tests/executor/unittests/processpool/test_line_execution_process_pool.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/processpool/test_line_execution_process_pool.py", "repo_id": "promptflow", "token_count": 10244 }
55
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json from pathlib import Path import pytest from promptflow.azure._entities._flow import Flow from .._azure_utils import DEFAULT_TEST_TIMEOUT, PYTEST_TIMEOUT_METHOD from ..recording_utilities import is_live tests_root_dir = Path(__file__).parent.parent.parent flow_test_dir = tests_root_dir / "test_configs/flows" data_dir = tests_root_dir / "test_configs/datas" @pytest.mark.timeout(timeout=DEFAULT_TEST_TIMEOUT, method=PYTEST_TIMEOUT_METHOD) @pytest.mark.e2etest @pytest.mark.usefixtures( "mock_set_headers_with_user_aml_token", "single_worker_thread_pool", "vcr_recording", ) class TestFlow: def test_create_flow(self, created_flow: Flow): # most of the assertions are in the fixture itself assert isinstance(created_flow, Flow) def test_get_flow(self, pf, created_flow: Flow): result = pf.flows.get(name=created_flow.name) # assert created flow is the same as the one retrieved attributes = vars(result) for attr in attributes: assert getattr(result, attr) == getattr(created_flow, attr), f"Assertion failed for attribute: {attr!r}" @pytest.mark.skipif( condition=not is_live(), reason="Complicated test combining `pf flow test` and global config", ) def test_flow_test_with_config(self, remote_workspace_resource_id): from promptflow import PFClient client = PFClient(config={"connection.provider": remote_workspace_resource_id}) output = client.test(flow=flow_test_dir / "web_classification") assert output.keys() == {"category", "evidence"} @pytest.mark.usefixtures("mock_get_user_identity_info") def test_list_flows(self, pf): flows = pf.flows.list(max_results=3) for flow in flows: print(json.dumps(flow._to_dict(), indent=4)) assert len(flows) == 3
promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_flow_operations.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_flow_operations.py", "repo_id": "promptflow", "token_count": 751 }
56
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path from unittest.mock import patch import pytest from promptflow._sdk._errors import FlowOperationError from promptflow.exceptions import UserErrorException tests_root_dir = Path(__file__).parent.parent.parent flow_test_dir = tests_root_dir / "test_configs/flows" data_dir = tests_root_dir / "test_configs/datas" @pytest.mark.unittest class TestFlowOperations: def test_create_flow_with_invalid_parameters(self, pf): with pytest.raises(UserErrorException, match=r"Flow source must be a directory with"): pf.flows.create_or_update(flow="fake_source") flow_source = flow_test_dir / "web_classification/" with pytest.raises(UserErrorException, match="Not a valid string"): pf.flows.create_or_update(flow=flow_source, display_name=False) with pytest.raises(UserErrorException, match="Must be one of: standard, evaluation, chat"): pf.flows.create_or_update(flow=flow_source, type="unknown") with pytest.raises(UserErrorException, match="Not a valid string"): pf.flows.create_or_update(flow=flow_source, description=False) with pytest.raises(UserErrorException, match="Not a valid string"): pf.flows.create_or_update(flow=flow_source, tags={"key": False}) @pytest.mark.usefixtures("enable_logger_propagate") def test_create_flow_with_warnings(self, pf, caplog): flow_source = flow_test_dir / "web_classification/" pf.flows._validate_flow_creation_parameters(source=flow_source, random="random") assert "random: Unknown field" in caplog.text def test_list_flows_invalid_cases(self, pf): with pytest.raises(FlowOperationError, match="'max_results' must be a positive integer"): pf.flows.list(max_results=0) with pytest.raises(FlowOperationError, match="'flow_type' must be one of"): pf.flows.list(flow_type="unknown") with pytest.raises(FlowOperationError, match="Invalid list view type"): pf.flows.list(list_view_type="invalid") def test_get_user_identity_info(self): # we have a fixture "mock_get_user_identity_info" to mock this function during record and replay # as we don't want to deal with token in these modes; meanwhile, considering coverage, add this # unit test to try to cover this code path. import jwt from promptflow.azure._restclient.flow_service_caller import FlowServiceCaller mock_oid, mock_tid = "mock_oid", "mock_tid" def mock_init(*args, **kwargs) -> str: self = args[0] self._credential = None def mock_get_arm_token(*args, **kwargs) -> str: return jwt.encode( payload={ "oid": mock_oid, "tid": mock_tid, }, key="", ) with patch( "promptflow.azure._restclient.flow_service_caller.get_arm_token", new=mock_get_arm_token, ): with patch.object(FlowServiceCaller, "__init__", new=mock_init): service_caller = FlowServiceCaller(workspace=None, credential=None, operation_scope=None) user_object_id, user_tenant_id = service_caller._get_user_identity_info() assert user_object_id == mock_oid assert user_tenant_id == mock_tid
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_flow_operations.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_flow_operations.py", "repo_id": "promptflow", "token_count": 1471 }
57
import uuid from pathlib import Path import pydash import pytest from promptflow._sdk._constants import SCRUBBED_VALUE from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities import AzureOpenAIConnection, CustomConnection _client = PFClient() TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.cli_test @pytest.mark.e2etest class TestConnection: def test_connection_operations(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = AzureOpenAIConnection(name=name, api_key="test", api_base="test") # Create _client.connections.create_or_update(conn) # Get result = _client.connections.get(name) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "azure_open_ai", "api_key": "******", "api_base": "test", "api_type": "azure", "api_version": "2023-07-01-preview", } # Update conn.api_base = "test2" result = _client.connections.create_or_update(conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "azure_open_ai", "api_key": "******", "api_base": "test2", "api_type": "azure", "api_version": "2023-07-01-preview", } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = AzureOpenAIConnection(name=name, api_key="test", api_base="test") result = _client.connections.create_or_update(conn) assert result.api_key == SCRUBBED_VALUE # Update api_base only Assert no exception result.api_base = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) def test_custom_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = CustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) result = _client.connections.create_or_update(conn) assert result.secrets["api_key"] == SCRUBBED_VALUE # Update api_base only Assert no exception result.configs["api_base"] = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["configs"]["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) @pytest.mark.parametrize( "file_name, expected_updated_item, expected_secret_item", [ ("azure_openai_connection.yaml", ("api_base", "new_value"), ("api_key", "<to-be-replaced>")), ("custom_connection.yaml", ("key1", "new_value"), ("key2", "test2")), ], ) def test_upsert_connection_from_file(self, file_name, expected_updated_item, expected_secret_item): from promptflow._cli._pf._connection import _upsert_connection_from_file name = f"Connection_{str(uuid.uuid4())[:4]}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / file_name, params_override=[{"name": name}]) assert result is not None update_file_name = f"update_{file_name}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / update_file_name, params_override=[{"name": name}]) # Test secrets not updated, and configs updated assert ( result.configs[expected_updated_item[0]] == expected_updated_item[1] ), "Assert configs updated failed, expected: {}, actual: {}".format( expected_updated_item[1], result.configs[expected_updated_item[0]] ) assert ( result._secrets[expected_secret_item[0]] == expected_secret_item[1] ), "Assert secrets not updated failed, expected: {}, actual: {}".format( expected_secret_item[1], result._secrets[expected_secret_item[0]] )
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_connection.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_connection.py", "repo_id": "promptflow", "token_count": 2245 }
58
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json name: my_custom_connection type: custom configs: key1: "test1" secrets: # must-have key2: "test2"
promptflow/src/promptflow/tests/test_configs/connections/custom_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/custom_connection.yaml", "repo_id": "promptflow", "token_count": 76 }
59
{"input_val": "input1"}
promptflow/src/promptflow/tests/test_configs/datas/simple_eager_flow_data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/datas/simple_eager_flow_data.jsonl", "repo_id": "promptflow", "token_count": 10 }
60
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Experiment.schema.json description: Basic experiment without script node data: - name: my_data path: ../../flows/web_classification/data.jsonl inputs: - name: my_input type: int default: 1 nodes: - name: main type: flow path: ../../flows/web_classification/flow.dag.yaml inputs: url: ${data.my_data.url} variant: ${summarize_text_content.variant_0} environment_variables: {} connections: {} - name: eval type: flow path: ../../flows/eval-classification-accuracy inputs: groundtruth: ${data.my_data.answer} # No node can be named with "data" prediction: ${main.outputs.category} environment_variables: {} connections: {}
promptflow/src/promptflow/tests/test_configs/experiments/basic-no-script-template/basic.exp.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/experiments/basic-no-script-template/basic.exp.yaml", "repo_id": "promptflow", "token_count": 301 }
61
{"groundtruth": "Tomorrow's weather will be sunny.","prediction": "The weather will be sunny tomorrow."} {"groundtruth": "Hello,","prediction": "World."} {"groundtruth": "Promptflow is a super easy-to-use tool, right?","prediction": "Yes!"}
promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/data.jsonl", "repo_id": "promptflow", "token_count": 70 }
62
[{"text": "Hello World!"}]
promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/samples.json", "repo_id": "promptflow", "token_count": 11 }
63
from promptflow import tool @tool def show_answer(chat_answer: str): print("print:", chat_answer) return chat_answer
promptflow/src/promptflow/tests/test_configs/flows/chat_flow/show_answer.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat_flow/show_answer.py", "repo_id": "promptflow", "token_count": 43 }
64
inputs: chat_history: type: list is_chat_history: true question: type: string is_chat_input: true outputs: answer: type: string reference: ${stream.output.answer} is_chat_output: true nodes: - name: stream type: python source: type: code path: stream.py inputs: chat_history: ${inputs.chat_history} question: ${inputs.question}
promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/flow.dag.yaml", "repo_id": "promptflow", "token_count": 154 }
65
{ "input1": "False", "input2": "False", "input3": "False", "input4": "False" }
promptflow/src/promptflow/tests/test_configs/flows/concurrent_execution_flow/inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/concurrent_execution_flow/inputs.json", "repo_id": "promptflow", "token_count": 39 }
66
from promptflow import tool from promptflow import log_metric @tool def average(input: list): avg, cnt = 0, 0 for num in input: if num!=None: avg += num cnt += 1 if len(input) > 0: avg = avg/cnt log_metric("average", avg) return avg
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/aggregation_node.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/aggregation_node.py", "repo_id": "promptflow", "token_count": 108 }
67
#! /bin/bash CONDA_ENV_PATH="$(conda info --base)/envs/promptflow-serve" export PATH="$CONDA_ENV_PATH/bin:$PATH" ls ls /connections pf connection create --file /connections/custom_connection.yaml echo "start promptflow serving with worker_num: 8, worker_threads: 1" cd /flow gunicorn -w 8 --threads 1 -b "0.0.0.0:8080" --timeout 300 "promptflow._sdk._serving.app:create_app()"
promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit/promptflow-serve/run/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit/promptflow-serve/run", "repo_id": "promptflow", "token_count": 147 }
68
from promptflow import tool @tool def get_dict_val(key): # get from env var print(key) if not isinstance(key, dict): raise TypeError(f"key must be a dict, got {type(key)}") return {"value": f"{key}: {type(key)}", "origin_value": key}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input/get_dict_val.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input/get_dict_val.py", "repo_id": "promptflow", "token_count": 103 }
69
inputs: text: type: string outputs: output_prompt: type: string reference: ${echo_my_prompt.output} nodes: - inputs: text: ${inputs.text} name: echo_my_prompt type: python source: type: code path: hello.py node_variants: {}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/flow.dag.yaml", "repo_id": "promptflow", "token_count": 111 }
70
inputs: text: type: string default: Hello! outputs: out: type: string reference: ${My_First_Tool_00f8.output} nodes: - name: My_Second_Tool_usi3 type: python source: type: package tool: my_tool_package.tools.my_tool_2.MyTool.my_tool inputs: connection: custom_strong_type_connection input_text: ${inputs.text} - name: My_First_Tool_00f8 type: python source: type: package tool: my_tool_package.tools.my_tool_1.my_tool inputs: connection: custom_strong_type_connection input_text: ${My_Second_Tool_usi3.output}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_strong_type_connection/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_strong_type_connection/flow.dag.yaml", "repo_id": "promptflow", "token_count": 237 }
71
import asyncio from time import sleep from promptflow import tool, trace @trace async def is_valid_name(name): await asyncio.sleep(0.5) return len(name) > 0 @trace async def get_user_name(user_id): await asyncio.sleep(0.5) user_name = f"User {user_id}" if not await is_valid_name(user_name): raise ValueError(f"Invalid user name: {user_name}") return user_name @trace async def format_greeting(user_name): await asyncio.sleep(0.5) return f"Hello, {user_name}!" @tool async def greetings(user_id): user_name = await get_user_name(user_id) greeting = await format_greeting(user_name) print(greeting) return {"greeting": greeting}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_trace_async/greetings.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_trace_async/greetings.py", "repo_id": "promptflow", "token_count": 276 }
72
import time from promptflow import tool def f1(): time.sleep(61) return 0 def f2(): return f1() @tool def long_run_func(): return f2()
promptflow/src/promptflow/tests/test_configs/flows/long_run/long_run.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/long_run/long_run.py", "repo_id": "promptflow", "token_count": 65 }
73
from promptflow import tool import random @tool def my_python_tool(idx: int) -> int: return idx
promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool.py", "repo_id": "promptflow", "token_count": 35 }
74
{ "text": "Hello World!" }
promptflow/src/promptflow/tests/test_configs/flows/python_stream_tools/inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_stream_tools/inputs.json", "repo_id": "promptflow", "token_count": 14 }
75
inputs: image: type: image default: "" outputs: output: type: image reference: ${python_node_2.output} nodes: - name: python_node type: python source: type: code path: pick_an_image.py inputs: image_1: ${inputs.image} image_2: logo_2.png - name: python_node_2 type: python source: type: code path: pick_an_image.py inputs: image_1: ${python_node.output} image_2: logo_2.png
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_invalid_default_value/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_invalid_default_value/flow.dag.yaml", "repo_id": "promptflow", "token_count": 193 }
76
from pathlib import Path from promptflow import tool print(f"The script is {__file__}") assert Path(__file__).is_absolute(), f"__file__ should be absolute path, got {__file__}" @tool def my_python_tool(input1: str) -> str: from pathlib import Path assert Path(__file__).name == "script_with___file__.py" assert __name__ == "__pf_main__" print(f"Prompt: {input1} {__file__}") return f"Prompt: {input1} {__file__}"
promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/script_with___file__.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/script_with___file__.py", "repo_id": "promptflow", "token_count": 165 }
77
{"num": "hello"}
promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool/inputs.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool/inputs.jsonl", "repo_id": "promptflow", "token_count": 6 }
78
from promptflow import tool from promptflow.contracts.types import AssistantDefinition @tool def test_assistant_definition(message: str, assistant_definition: AssistantDefinition): assert assistant_definition.model == "mock_model" assert assistant_definition.instructions == "mock_instructions" invoker = assistant_definition.init_tool_invoker() openai_definition = invoker.to_openai_tools() assert len(openai_definition) == 1 assert openai_definition[0]["function"]["description"] == "This tool is used to echo the message back." assert openai_definition[0]["function"]["parameters"]["properties"] == { "message": {"description": "The message to echo.", "type": "string"} } assert openai_definition[0]["function"]["parameters"]["required"] == ["message"] assert invoker.invoke_tool("echo", {"message": message}) == "Hello World!" return assistant_definition.serialize()
promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/test_assistant_definition.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/test_assistant_definition.py", "repo_id": "promptflow", "token_count": 283 }
79
{"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"}
promptflow/src/promptflow/tests/test_configs/flows/web_classification_input_dir/details.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_input_dir/details.jsonl", "repo_id": "promptflow", "token_count": 120 }
80
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.032' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.073' status: code: 200 message: OK - request: body: '{"filters": [{"field": "type", "operator": "eq", "values": ["flows"]}, {"field": "annotations/isArchived", "operator": "eq", "values": ["false"]}, {"field": "properties/creationContext/createdBy/userTenantId", "operator": "eq", "values": ["00000000-0000-0000-0000-000000000000"]}, {"field": "properties/creationContext/createdBy/userObjectId", "operator": "eq", "values": ["00000000-0000-0000-0000-000000000000"]}], "freeTextSearch": "", "order": [{"direction": "Desc", "field": "properties/creationContext/createdTime"}], "pageSize": 3, "skip": 0, "includeTotalResultCount": true, "searchBuilder": "AppendPrefix"}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '614' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/index/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/entities response: body: string: '{"totalCount": 23, "value": [{"relevancyScore": 1.0, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "b5db529c-c91d-5e96-8288-f175dd87470d", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/flows/objectId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:2e039c90-c69a-4c52-9754-d3a93c6eaa7e", "kind": "Unversioned", "annotations": {"archived": false, "tags": {"owner": "sdk-test"}, "flowName": "7c7f43f9-9b23-424f-b93e-1852d5e3dc9e", "createdDate": "2024-01-17T07:08:35.8574809Z", "lastModifiedDate": "2024-01-17T07:08:35.8574809Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "isArchived": false, "vmSize": null, "maxIdleTimeSeconds": null, "name": null, "description": "test flow description"}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2024-01-17T07:08:35.8574809+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "creationSource": null}, "flowId": "2e039c90-c69a-4c52-9754-d3a93c6eaa7e", "experimentId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "flowType": "Default", "flowDefinitionFilePath": "Users/unknown_user/promptflow/simple_hello_world-01-17-2024-15-08-13/flow.dag.yaml"}, "internal": {}, "updateSequence": 638410721158574809, "type": "flows", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:2e039c90-c69a-4c52-9754-d3a93c6eaa7e", "resourceType": "Workspace", "relationships": []}, {"relevancyScore": 1.0, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "b5db529c-c91d-5e96-8288-f175dd87470d", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/flows/objectId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:7b4314f4-2f4f-43bf-af55-e64d9e7d5361", "kind": "Unversioned", "annotations": {"archived": false, "tags": {"owner": "sdk-test"}, "flowName": "1d41d299-f9e5-4405-8bac-569f3ea1141b", "createdDate": "2024-01-17T07:07:45.269399Z", "lastModifiedDate": "2024-01-17T07:07:45.2693991Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "isArchived": false, "vmSize": null, "maxIdleTimeSeconds": null, "name": null, "description": "test flow description"}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2024-01-17T07:07:45.269399+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "creationSource": null}, "flowId": "7b4314f4-2f4f-43bf-af55-e64d9e7d5361", "experimentId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "flowType": "Default", "flowDefinitionFilePath": "Users/unknown_user/promptflow/simple_hello_world-01-17-2024-15-07-23/flow.dag.yaml"}, "internal": {}, "updateSequence": 638410720652693991, "type": "flows", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:7b4314f4-2f4f-43bf-af55-e64d9e7d5361", "resourceType": "Workspace", "relationships": []}, {"relevancyScore": 1.0, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "b5db529c-c91d-5e96-8288-f175dd87470d", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/flows/objectId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:b28c9746-fac1-40ed-9d65-f93857d05655", "kind": "Unversioned", "annotations": {"archived": false, "tags": {"owner": "sdk-test"}, "flowName": "b9a89f25-0efa-40ad-86cd-15e16c739f42", "createdDate": "2024-01-17T07:06:54.5784734Z", "lastModifiedDate": "2024-01-17T07:06:54.5784735Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "isArchived": false, "vmSize": null, "maxIdleTimeSeconds": null, "name": null, "description": "test flow description"}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2024-01-17T07:06:54.5784734+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Zhengfei Wang", "userPrincipalName": null}, "creationSource": null}, "flowId": "b28c9746-fac1-40ed-9d65-f93857d05655", "experimentId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "flowType": "Default", "flowDefinitionFilePath": "Users/unknown_user/promptflow/simple_hello_world-01-17-2024-15-06-31/flow.dag.yaml"}, "internal": {}, "updateSequence": 638410720145784735, "type": "flows", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:b28c9746-fac1-40ed-9d65-f93857d05655", "resourceType": "Workspace", "relationships": []}], "nextSkip": 3, "entityContainerIdsToEntityContainerMetadata": {"3e123da1-f9a5-4c91-9234-8d9ffbb39ff5": {"resourceId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "subscriptionId": "96aede12-2f73-41cb-b983-6d11a904839b", "resourceGroup": "promptflow", "resourceName": "promptflow-eastus", "entityContainerType": "Workspace", "regions": [{"regionName": "eastus", "isPrimaryRegion": true}], "tenantId": "00000000-0000-0000-0000-000000000000", "immutableResourceId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "isPublicResource": false}}, "resourcesNotQueriedReasons": {}, "numberOfEntityContainersNotQueried": 0, "fanoutData": {"Multitenant": {"nextSkip": 3, "isShardDone": false, "didShardFail": false, "totalCount": 23, "resourceIdsOnShardThisPage": ["3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"]}}, "regionalFanoutState": {"shardFanoutStates": [{"shardId": "Multitenant", "nextSkip": 3, "isPlanExecutionDone": false, "didPlanExecutionFail": false, "totalCount": 23, "resourceIdsOnShardThisPage": ["3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"]}], "firstPageStartTime": null}, "shardErrors": {}, "canSupportSkip": true}' headers: connection: - keep-alive content-length: - '6309' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.114' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_flow_operations_TestFlow_test_list_flows.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_flow_operations_TestFlow_test_list_flows.yaml", "repo_id": "promptflow", "token_count": 5582 }
81
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.029' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.059' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.099' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.125' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:29 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/numbers.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '290' content-md5: - O6LvdPMlN/PM6b7fPh75Jw== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 09:52:29 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:52:29 GMT x-ms-meta-name: - 229ce463-c199-4588-a9c4-c30e7a4bd25c x-ms-meta-upload_status: - completed x-ms-meta-version: - 4cda6a90-97ca-4ad5-b420-5e347369f614 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:30 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/numbers.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.082' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:34 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/two/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '242' content-md5: - ySItjr6//pwsGdjLZfgq0A== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 09:53:17 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:52:31 GMT x-ms-meta-name: - 5b163be8-ab29-4f62-bef0-cd64d56ab269 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:53:35 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/two/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/two/flow.dag.yaml", "runId": "run1", "runDisplayName": "run1", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/numbers.jsonl"}, "inputsMapping": {"number": "${data.value}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '783' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"run1"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.387' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.458' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.472' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.262' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.273' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.576' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.422' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_two", "type": "python", "source": {"type": "code", "path": "mod_two.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_two.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_two.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_two.py", "function": "mod_two", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_two.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run1/flowRuns/run1", "flowRunId": "run1", "flowRunDisplayName": "run1", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${data.value}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run1/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "studioPortalEndpoint": "https://ml.azure.com/runs/run1?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12860' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.279' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "run1_2", "status": "Completed", "error": null, "inputs": {"number": 2, "line_number": 2}, "output": {"output": 2}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.36557Z", "end_time": "2024-01-12T08:53:58.379665Z", "index": 2, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 2}, "output": {"value": 2}, "start_time": 1705049638.376116, "end_time": 1705049638.377043, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.014095, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 2}, "upload_metrics": false}, {"run_id": "run1_1", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 1, "line_number": 1}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.382319Z", "end_time": "2024-01-12T08:53:58.499971Z", "index": 1, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 1}, "output": null, "start_time": 1705049638.40109, "end_time": 1705049638.401905, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.117652, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_0", "status": "Completed", "error": null, "inputs": {"number": 0, "line_number": 0}, "output": {"output": 0}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.298983Z", "end_time": "2024-01-12T08:53:58.326471Z", "index": 0, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 0}, "output": {"value": 0}, "start_time": 1705049638.316181, "end_time": 1705049638.316979, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.027488, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 0}, "upload_metrics": false}, {"run_id": "run1_4", "status": "Completed", "error": null, "inputs": {"number": 4, "line_number": 4}, "output": {"output": 4}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.445979Z", "end_time": "2024-01-12T08:53:58.472475Z", "index": 4, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 4}, "output": {"value": 4}, "start_time": 1705049638.469504, "end_time": 1705049638.470396, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.026496, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 4}, "upload_metrics": false}, {"run_id": "run1_3", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 3, "line_number": 3}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.440354Z", "end_time": "2024-01-12T08:53:58.453661Z", "index": 3, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 3}, "output": null, "start_time": 1705049638.445455, "end_time": 1705049638.448284, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.013307, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_7", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 7, "line_number": 7}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.508983Z", "end_time": "2024-01-12T08:53:58.621053Z", "index": 7, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 7}, "output": null, "start_time": 1705049638.512829, "end_time": 1705049638.513634, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.11207, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_8", "status": "Completed", "error": null, "inputs": {"number": 8, "line_number": 8}, "output": {"output": 8}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.529121Z", "end_time": "2024-01-12T08:53:58.538356Z", "index": 8, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 8}, "output": {"value": 8}, "start_time": 1705049638.535074, "end_time": 1705049638.535882, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.009235, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 8}, "upload_metrics": false}, {"run_id": "run1_6", "status": "Completed", "error": null, "inputs": {"number": 6, "line_number": 6}, "output": {"output": 6}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.481907Z", "end_time": "2024-01-12T08:53:58.489299Z", "index": 6, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 6}, "output": {"value": 6}, "start_time": 1705049638.486027, "end_time": 1705049638.487006, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007392, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 6}, "upload_metrics": false}, {"run_id": "run1_9", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 9, "line_number": 9}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.529591Z", "end_time": "2024-01-12T08:53:58.643284Z", "index": 9, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 9}, "output": null, "start_time": 1705049638.534116, "end_time": 1705049638.535141, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.113693, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_10", "status": "Completed", "error": null, "inputs": {"number": 10, "line_number": 10}, "output": {"output": 10}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.567671Z", "end_time": "2024-01-12T08:53:58.573553Z", "index": 10, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 10}, "output": {"value": 10}, "start_time": 1705049638.570297, "end_time": 1705049638.571094, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005882, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 10}, "upload_metrics": false}, {"run_id": "run1_11", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 11, "line_number": 11}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.623786Z", "end_time": "2024-01-12T08:53:58.634409Z", "index": 11, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 11}, "output": null, "start_time": 1705049638.627165, "end_time": 1705049638.629035, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.010623, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_5", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 5, "line_number": 5}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.478106Z", "end_time": "2024-01-12T08:53:58.485903Z", "index": 5, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 5}, "output": null, "start_time": 1705049638.480935, "end_time": 1705049638.481815, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007797, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_12", "status": "Completed", "error": null, "inputs": {"number": 12, "line_number": 12}, "output": {"output": 12}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:58.857735Z", "end_time": "2024-01-12T08:53:58.8594Z", "index": 12, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 12}, "output": {"value": 12}, "start_time": 1705049638.85876, "end_time": 1705049638.858846, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.001665, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 12}, "upload_metrics": false}, {"run_id": "run1_13", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 13, "line_number": 13}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.081618Z", "end_time": "2024-01-12T08:53:59.084304Z", "index": 13, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 13}, "output": null, "start_time": 1705049639.082711, "end_time": 1705049639.082963, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002686, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_14", "status": "Completed", "error": null, "inputs": {"number": 14, "line_number": 14}, "output": {"output": 14}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.095533Z", "end_time": "2024-01-12T08:53:59.097688Z", "index": 14, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 14}, "output": {"value": 14}, "start_time": 1705049639.096824, "end_time": 1705049639.096905, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002155, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 14}, "upload_metrics": false}, {"run_id": "run1_15", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 15, "line_number": 15}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.11042Z", "end_time": "2024-01-12T08:53:59.112899Z", "index": 15, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 15}, "output": null, "start_time": 1705049639.111395, "end_time": 1705049639.111456, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002479, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_16", "status": "Completed", "error": null, "inputs": {"number": 16, "line_number": 16}, "output": {"output": 16}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.122603Z", "end_time": "2024-01-12T08:53:59.125415Z", "index": 16, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 16}, "output": {"value": 16}, "start_time": 1705049639.123932, "end_time": 1705049639.124128, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002812, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 16}, "upload_metrics": false}, {"run_id": "run1_17", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 17, "line_number": 17}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.201596Z", "end_time": "2024-01-12T08:53:59.204779Z", "index": 17, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 17}, "output": null, "start_time": 1705049639.202943, "end_time": 1705049639.203028, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.003183, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run1_18", "status": "Completed", "error": null, "inputs": {"number": 18, "line_number": 18}, "output": {"output": 18}, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.216109Z", "end_time": "2024-01-12T08:53:59.21858Z", "index": 18, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 18}, "output": {"value": 18}, "start_time": 1705049639.217608, "end_time": 1705049639.217688, "error": null, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.002471, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 18}, "upload_metrics": false}, {"run_id": "run1_19", "status": "Failed", "error": {"message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null}}}, "inputs": {"number": 19, "line_number": 19}, "output": null, "metrics": null, "request": null, "parent_run_id": "run1", "root_run_id": "run1", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:53:59.231917Z", "end_time": "2024-01-12T08:53:59.267557Z", "index": 19, "api_calls": [{"name": "mod_two", "type": "Tool", "inputs": {"number": 19}, "output": null, "start_time": 1705049639.233619, "end_time": 1705049639.233699, "error": {"message": "cannot mod 2!", "type": "Exception"}, "children": null, "node_name": "mod_two"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.03564, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '57297' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.805' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.746' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.077' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.118' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:55:07 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/three/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '248' content-md5: - B3pfhMEmUOazTzjlKaw6Sw== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 10:04:33 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 09:54:37 GMT x-ms-meta-name: - 613ead8f-69ca-4c47-9cba-01f0dd473279 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:55:08 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/three/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/three/flow.dag.yaml", "runId": "run2", "runDisplayName": "run2", "runExperimentName": "", "variantRunId": "run1", "batchDataInput": {}, "inputsMapping": {"number": "${run.outputs.output}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '734' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"run2"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.653' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.225' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.496' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.245' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.381' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.410' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.408' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2 response: body: string: '{"flowGraph": {"nodes": [{"name": "mod_three", "type": "python", "source": {"type": "code", "path": "mod_three.py"}, "inputs": {"number": "${inputs.number}"}, "tool": "mod_three.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "mod_three.py", "type": "python", "inputs": {"number": {"type": ["int"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "mod_three.py", "function": "mod_three", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"number": {"type": "int", "is_chat_input": false}}, "outputs": {"output": {"type": "int", "reference": "${mod_three.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/run2/flowRuns/run2", "flowRunId": "run2", "flowRunDisplayName": "run2", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"number": "${run.outputs.output}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/run2/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "a25bab13-d2d7-4c36-83bf-96979de95507", "studioPortalEndpoint": "https://ml.azure.com/runs/run2?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12766' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.451' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "run2_0", "status": "Completed", "error": null, "inputs": {"number": 0, "line_number": 0}, "output": {"output": 0}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.465237Z", "end_time": "2024-01-12T08:55:31.475743Z", "index": 0, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 0}, "output": {"value": 0}, "start_time": 1705049731.472262, "end_time": 1705049731.473128, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.010506, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 0}, "upload_metrics": false}, {"run_id": "run2_12", "status": "Completed", "error": null, "inputs": {"number": 12, "line_number": 12}, "output": {"output": 12}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.656075Z", "end_time": "2024-01-12T08:55:31.661754Z", "index": 12, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 12}, "output": {"value": 12}, "start_time": 1705049731.658932, "end_time": 1705049731.659931, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005679, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 12}, "upload_metrics": false}, {"run_id": "run2_2", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 2, "line_number": 2}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.490355Z", "end_time": "2024-01-12T08:55:31.575384Z", "index": 2, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 2}, "output": null, "start_time": 1705049731.497823, "end_time": 1705049731.498797, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.085029, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_4", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 4, "line_number": 4}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.535972Z", "end_time": "2024-01-12T08:55:31.773764Z", "index": 4, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 4}, "output": null, "start_time": 1705049731.548995, "end_time": 1705049731.550238, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.237792, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_8", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 8, "line_number": 8}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.559578Z", "end_time": "2024-01-12T08:55:31.789137Z", "index": 8, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 8}, "output": null, "start_time": 1705049731.584465, "end_time": 1705049731.585312, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.229559, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_6", "status": "Completed", "error": null, "inputs": {"number": 6, "line_number": 6}, "output": {"output": 6}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.555822Z", "end_time": "2024-01-12T08:55:31.564102Z", "index": 6, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 6}, "output": {"value": 6}, "start_time": 1705049731.561458, "end_time": 1705049731.562356, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.00828, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 6}, "upload_metrics": false}, {"run_id": "run2_16", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 16, "line_number": 16}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.744907Z", "end_time": "2024-01-12T08:55:31.817842Z", "index": 16, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 16}, "output": null, "start_time": 1705049731.747285, "end_time": 1705049731.747465, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.072935, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_10", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 10, "line_number": 10}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.59072Z", "end_time": "2024-01-12T08:55:31.604864Z", "index": 10, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 10}, "output": null, "start_time": 1705049731.59849, "end_time": 1705049731.600113, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.014144, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_14", "status": "Failed", "error": {"message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "Execution failure in ''{node_name}'': {error_type_and_message}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "code": "UserError", "innerError": {"code": "ToolExecutionError", "innerError": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}], "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null}}}, "inputs": {"number": 14, "line_number": 14}, "output": null, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.736285Z", "end_time": "2024-01-12T08:55:31.745117Z", "index": 14, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 14}, "output": null, "start_time": 1705049731.739545, "end_time": 1705049731.740525, "error": {"message": "cannot mod 3!", "type": "Exception"}, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.008832, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": null, "upload_metrics": false}, {"run_id": "run2_18", "status": "Completed", "error": null, "inputs": {"number": 18, "line_number": 18}, "output": {"output": 18}, "metrics": null, "request": null, "parent_run_id": "run2", "root_run_id": "run2", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T08:55:31.890045Z", "end_time": "2024-01-12T08:55:31.891993Z", "index": 18, "api_calls": [{"name": "mod_three", "type": "Tool", "inputs": {"number": 18}, "output": {"value": 18}, "start_time": 1705049731.891255, "end_time": 1705049731.891333, "error": null, "children": null, "node_name": "mod_three"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.001948, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": 18}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '32873' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.930' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.727' status: code: 200 message: OK - request: body: '{"runId": "run1", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049621, "rootRunId": "run1", "createdUtc": "2024-01-12T08:53:41.7311265+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "messageFormat": "{\"totalChildRuns\": 20, \"userErrorChildRuns\": 10, \"systemErrorChildRuns\": 0, \"errorDetails\": [{\"code\": \"UserError/ToolExecutionError\", \"messageFormat\": \"Execution failure in ''{node_name}'': {error_type_and_message}\", \"count\": 10}]}", "messageParameters": {"node_name": "mod_two", "error_type_and_message": "(Exception) cannot mod 2!"}, "referenceCode": "Tool/__pf_main__", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ToolExecutionError", "innerError": null}, "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_two'': (Exception) cannot mod 2!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 2!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\n", "innerException": null, "data": null, "errorResponse": null}, "data": null, "errorResponse": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 2!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n", "filename": "/mnt/host/service/app/39649/requests/run1/mod_two.py", "lineno": 7, "name": "mod_two"}}]}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:54:32.157997+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "08457cff-a0cf-4b93-8b58-24b47e6e2f06", "parentRunUuid": null, "rootRunUuid": "08457cff-a0cf-4b93-8b58-24b47e6e2f06", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:34.5206194", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:54:31.4291957+00:00", "duration": "00:00:34.5206194", "cancelationReason": null, "currentAttemptId": 1, "runId": "run1", "parentRunId": null, "experimentId": "f65cb39a-0d28-4b06-9ef9-b962ed9df8d0", "status": "Completed", "startTimeUtc": "2024-01-12T08:53:57.8643652+00:00", "endTimeUtc": "2024-01-12T08:54:32.3849846+00:00", "scheduleId": null, "displayName": "run1", "name": null, "dataContainerId": "dcid.run1", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "357876c0a66919ba9791ba9723d3eb045181f10b65c806ea", "azureml.promptflow.flow_lineage_id": "3df9ed48cf83e1a38799b0a91f06e0825173b507d07391d1d91ec0253c1cda5c", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/ceb856845f8689bdee2da5a26bd95bab/two/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl", "azureml.promptflow.inputs_mapping": "{\"number\":\"${data.value}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "d15d3732-36a4-45ac-b53b-e1fe695b2e77", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '9907' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.053' status: code: 200 message: OK - request: body: '{"runId": "run2", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705049714, "rootRunId": "run2", "createdUtc": "2024-01-12T08:55:14.362818+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": {"error": {"code": "UserError", "severity": null, "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "messageFormat": "{\"totalChildRuns\": 10, \"userErrorChildRuns\": 6, \"systemErrorChildRuns\": 0, \"errorDetails\": [{\"code\": \"UserError/ToolExecutionError\", \"messageFormat\": \"Execution failure in ''{node_name}'': {error_type_and_message}\", \"count\": 6}]}", "messageParameters": {"node_name": "mod_three", "error_type_and_message": "(Exception) cannot mod 3!"}, "referenceCode": "Tool/__pf_main__", "detailsUri": null, "target": null, "details": [], "innerError": {"code": "ToolExecutionError", "innerError": null}, "debugInfo": {"type": "ToolExecutionError", "message": "Execution failure in ''mod_three'': (Exception) cannot mod 3!", "stackTrace": "\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 451, in result\n return self.__get_result()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/_base.py\", line 403, in __get_result\n raise self._exception\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/concurrent/futures/thread.py\", line 58, in run\n result = self.fn(*self.args, **self.kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 111, in _exec_single_node_in_thread\n result = context.invoke_tool(node, f, kwargs=kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\n", "innerException": {"type": "Exception", "message": "cannot mod 3!", "stackTrace": "Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\n", "innerException": null, "data": null, "errorResponse": null}, "data": null, "errorResponse": null}, "additionalInfo": [{"type": "ToolExecutionErrorDetails", "info": {"type": "Exception", "message": "cannot mod 3!", "traceback": "Traceback (most recent call last):\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n", "filename": "/mnt/host/service/app/39649/requests/run2/mod_three.py", "lineno": 7, "name": "mod_three"}}]}, "correlation": null, "environment": null, "location": null, "time": "2024-01-12T08:56:05.377066+00:00", "componentName": "promptflow-runtime/20231204.v4 Designer/1.0 promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) promptflow/1.2.0rc1"}, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "b80a9962-ed21-4dfb-85b0-2548b1649f39", "parentRunUuid": null, "rootRunUuid": "b80a9962-ed21-4dfb-85b0-2548b1649f39", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:34.5231338", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:56:04.2209326+00:00", "duration": "00:00:34.5231338", "cancelationReason": null, "currentAttemptId": 1, "runId": "run2", "parentRunId": null, "experimentId": "3a00e270-37b9-49be-a74e-ac675487979e", "status": "Completed", "startTimeUtc": "2024-01-12T08:55:31.0651672+00:00", "endTimeUtc": "2024-01-12T08:56:05.588301+00:00", "scheduleId": null, "displayName": "run2", "name": null, "dataContainerId": "dcid.run2", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "c9399af7028d644e85f3624a0b026432068432621519ab8f", "azureml.promptflow.flow_lineage_id": "77a36a2606b22ee30674046884962374e57e822acdeccac7750905d98e944580", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/f0722e3fb27e86b101670dbb5e85554c/three/flow.dag.yaml", "azureml.promptflow.input_run_id": "run1", "azureml.promptflow.inputs_mapping": "{\"number\":\"${run.outputs.output}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "a25bab13-d2d7-4c36-83bf-96979de95507", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '9865' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.037' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run1/logContent response: body: string: '"2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO [run1] Receiving v2 bulk run request e51d6436-3ed9-4576-b848-1967710c148c: {\"flow_id\": \"run1\", \"flow_run_id\": \"run1\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"d15d3732-36a4-45ac-b53b-e1fe695b2e77\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.run1/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A43%3A40Z&ske=2024-01-13T16%3A53%3A40Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A43%3A44Z&se=2024-01-12T16%3A53%3A44Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/7e5ac781513436b66626132fefb20d1f/numbers.jsonl\"}, \"inputs_mapping\": {\"number\": \"${data.value}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/run1\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A53%3A45Z&ske=2024-01-19T08%3A53%3A45Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A53%3A45Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Updating run1 to Status.Preparing...\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/run1\n2024-01-12 08:53:45 +0000 49 promptflow-runtime INFO Get snapshot sas url for d15d3732-36a4-45ac-b53b-e1fe695b2e77...\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Downloading snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/d15d3732-36a4-45ac-b53b-e1fe695b2e77.zip...\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/run1/d15d3732-36a4-45ac-b53b-e1fe695b2e77.zip with size 509 for snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Download snapshot d15d3732-36a4-45ac-b53b-e1fe695b2e77 completed.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/run1\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Starting to check process 6280 status for run run1\n2024-01-12 08:53:52 +0000 49 promptflow-runtime INFO Start checking run status for run run1\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO [49--6280] Start processing flowV2......\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:53:56 +0000 6280 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:53:57 +0000 6280 promptflow-runtime INFO Resolve data from url finished in 0.6618335284292698 seconds\n2024-01-12 08:53:57 +0000 6280 promptflow-runtime INFO Starting the aml run ''run1''...\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Using fork, process count: 16\n2024-01-12 08:53:58 +0000 6335 execution.bulk INFO Process 6335 started.\n2024-01-12 08:53:58 +0000 6351 execution.bulk INFO Process 6351 started.\n2024-01-12 08:53:58 +0000 6345 execution.bulk INFO Process 6345 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 0 start execution.\n2024-01-12 08:53:58 +0000 6379 execution.bulk INFO Process 6379 started.\n2024-01-12 08:53:58 +0000 6382 execution.bulk INFO Process 6382 started.\n2024-01-12 08:53:58 +0000 6387 execution.bulk INFO Process 6387 started.\n2024-01-12 08:53:58 +0000 6351 execution ERROR Node mod_two in line 1 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6362 execution.bulk INFO Process 6362 started.\n2024-01-12 08:53:58 +0000 6369 execution.bulk INFO Process 6369 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 1 start execution.\n2024-01-12 08:53:58 +0000 6351 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6367 execution.bulk INFO Process 6367 started.\n2024-01-12 08:53:58 +0000 6398 execution.bulk INFO Process 6398 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 2 start execution.\n2024-01-12 08:53:58 +0000 6422 execution.bulk INFO Process 6422 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 3 start execution.\n2024-01-12 08:53:58 +0000 6369 execution ERROR Node mod_two in line 7 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6391 execution.bulk INFO Process 6391 started.\n2024-01-12 08:53:58 +0000 6367 execution ERROR Node mod_two in line 9 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 4 start execution.\n2024-01-12 08:53:58 +0000 6369 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6439 execution.bulk INFO Process 6439 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 5 start execution.\n2024-01-12 08:53:58 +0000 6367 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:58 +0000 6403 execution.bulk INFO Process 6403 started.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:7, Process id: 6362, Line number: 6 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 7 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:11, Process id: 6398, Line number: 8 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:5, Process id: 6367, Line number: 9 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:14, Process id: 6422, Line number: 10 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 11 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 2 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 1 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 4 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 3 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 0 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 7 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 6 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 6 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:7, Process id: 6362, Line number: 6 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:11, Process id: 6398, Line number: 8 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:5, Process id: 6367, Line number: 9 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 12 start execution.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:14, Process id: 6422, Line number: 10 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 10 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 11 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 1.54 seconds.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 5 completed.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 1.54 seconds.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:58 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 12 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.7 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:9, Process id: 6382, Line number: 12 completed.\n2024-01-12 08:53:59 +0000 6369 execution ERROR Node mod_two in line 19 failed. Exception: Execution failure in ''mod_two'': (Exception) cannot mod 2!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run1/mod_two.py\", line 7, in mod_two\n raise Exception(\"cannot mod 2!\")\nException: cannot mod 2!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 13 start execution.\n2024-01-12 08:53:59 +0000 6369 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_two.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 14 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 15 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 16 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.56 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 17 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 18 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 19 start execution.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:12, Process id: 6391, Line number: 13 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:3, Process id: 6345, Line number: 14 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:10, Process id: 6387, Line number: 15 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:6, Process id: 6351, Line number: 16 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:8, Process id: 6379, Line number: 17 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 18 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:2, Process id: 6335, Line number: 18 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Process name: ForkProcess-62:4, Process id: 6369, Line number: 19 completed.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.14 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Finished 20 / 20 lines.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:53:59 +0000 6280 execution.bulk INFO Average execution time for completed lines: 0.07 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:54:29 +0000 6280 execution ERROR 10/20 flow run failed, indexes: [1,3,5,7,9,11,13,15,17,19], exception of index 1: Execution failure in ''mod_two'': (Exception) cannot mod 2!\n2024-01-12 08:54:31 +0000 6280 execution.bulk INFO Upload status summary metrics for run run1 finished in 1.6117610009387136 seconds\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''run1''\n2024-01-12 08:54:31 +0000 6280 execution.bulk INFO Upload RH properties for run run1 finished in 0.08309784904122353 seconds\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating unregistered output Asset for Run run1...\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_debug_info/versions/1\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating unregistered output Asset for Run run1...\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1\n2024-01-12 08:54:31 +0000 6280 promptflow-runtime INFO Creating Artifact for Run run1...\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Patching run1...\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime WARNING [run1] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n [REDACTED: External StackTrace]\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n [REDACTED: External StackTrace]\n\n2024-01-12 08:54:32 +0000 6280 promptflow-runtime INFO Ending the aml run ''run1'' with status ''Completed''...\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO Process 6280 finished\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO [run1] End processing bulk run\n2024-01-12 08:54:33 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/run1 for bulk run\n"' headers: connection: - keep-alive content-length: - '26914' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.063' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/run2/logContent response: body: string: '"2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO [run2] Receiving v2 bulk run request fb3450a2-5971-497b-9704-9f15f2716d12: {\"flow_id\": \"run2\", \"flow_run_id\": \"run2\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"a25bab13-d2d7-4c36-83bf-96979de95507\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.run2/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A44%3A44Z&ske=2024-01-13T15%3A54%3A44Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A45%3A18Z&se=2024-01-12T16%3A55%3A18Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"run.outputs\": \"azureml:/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/data/azureml_run1_output_data_flow_outputs/versions/1\"}, \"inputs_mapping\": {\"number\": \"${run.outputs.output}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/run2\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A55%3A18Z&ske=2024-01-19T08%3A55%3A18Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A55%3A18Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:55:18 +0000 49 promptflow-runtime INFO Updating run2 to Status.Preparing...\n2024-01-12 08:55:19 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/run2\n2024-01-12 08:55:19 +0000 49 promptflow-runtime INFO Get snapshot sas url for a25bab13-d2d7-4c36-83bf-96979de95507...\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Downloading snapshot a25bab13-d2d7-4c36-83bf-96979de95507 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/a25bab13-d2d7-4c36-83bf-96979de95507.zip...\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/run2/a25bab13-d2d7-4c36-83bf-96979de95507.zip with size 515 for snapshot a25bab13-d2d7-4c36-83bf-96979de95507.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Download snapshot a25bab13-d2d7-4c36-83bf-96979de95507 completed.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/run2\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Starting to check process 6515 status for run run2\n2024-01-12 08:55:25 +0000 49 promptflow-runtime INFO Start checking run status for run run2\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO [49--6515] Start processing flowV2......\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:55:29 +0000 6515 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Resolve data from url finished in 0.5992864752188325 seconds\n2024-01-12 08:55:30 +0000 6515 promptflow-runtime INFO Starting the aml run ''run2''...\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Using fork, process count: 10\n2024-01-12 08:55:31 +0000 6565 execution.bulk INFO Process 6565 started.\n2024-01-12 08:55:31 +0000 6570 execution.bulk INFO Process 6570 started.\n2024-01-12 08:55:31 +0000 6579 execution.bulk INFO Process 6579 started.\n2024-01-12 08:55:31 +0000 6585 execution.bulk INFO Process 6585 started.\n2024-01-12 08:55:31 +0000 6592 execution.bulk INFO Process 6592 started.\n2024-01-12 08:55:31 +0000 6570 execution ERROR Node mod_three in line 2 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6570 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 0 start execution.\n2024-01-12 08:55:31 +0000 6605 execution.bulk INFO Process 6605 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:4, Process id: 6570, Line number: 2 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:3, Process id: 6579, Line number: 4 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:5, Process id: 6585, Line number: 6 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:6, Process id: 6592, Line number: 8 start execution.\n2024-01-12 08:55:31 +0000 6622 execution.bulk INFO Process 6622 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:9, Process id: 6605, Line number: 10 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 12 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 0 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 1 / 10 lines.\n2024-01-12 08:55:31 +0000 6614 execution.bulk INFO Process 6614 started.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.36 seconds. Estimated time for incomplete lines: 3.24 seconds.\n2024-01-12 08:55:31 +0000 6579 execution ERROR Node mod_three in line 4 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:11, Process id: 6614, Line number: 14 start execution.\n2024-01-12 08:55:31 +0000 6592 execution ERROR Node mod_three in line 8 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6579 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 16 start execution.\n2024-01-12 08:55:31 +0000 6592 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6565 execution ERROR Node mod_three in line 16 failed. Exception: Execution failure in ''mod_three'': (Exception) cannot mod 3!.\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n File \"/mnt/host/service/app/39649/requests/run2/mod_three.py\", line 7, in mod_three\n raise Exception(\"cannot mod 3!\")\nException: cannot mod 3!\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 89, in invoke_tool\n result = self._invoke_tool_with_timer(node, f, kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 196, in _invoke_tool_with_timer\n raise ToolExecutionError(node_name=node_name, module=module) from e\npromptflow._core._errors.ToolExecutionError: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 12 completed.\n2024-01-12 08:55:31 +0000 6565 execution ERROR Execution of one node has failed. Cancelling all running nodes: mod_three.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:4, Process id: 6570, Line number: 2 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 3 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 3 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.15 seconds. Estimated time for incomplete lines: 1.05 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:6, Process id: 6592, Line number: 8 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:3, Process id: 6579, Line number: 4 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.16 seconds. Estimated time for incomplete lines: 1.12 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:5, Process id: 6585, Line number: 6 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 18 start execution.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 6 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 6 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:9, Process id: 6605, Line number: 10 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:2, Process id: 6565, Line number: 16 completed.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.09 seconds. Estimated time for incomplete lines: 0.36 seconds.\n2024-01-12 08:55:31 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.1 seconds. Estimated time for incomplete lines: 0.4 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 8 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.16 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:11, Process id: 6614, Line number: 14 completed.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Process name: ForkProcess-64:10, Process id: 6622, Line number: 18 completed.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.16 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.09 seconds. Estimated time for incomplete lines: 0.18 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 10 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Finished 10 / 10 lines.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:55:32 +0000 6515 execution.bulk INFO Average execution time for completed lines: 0.08 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:56:02 +0000 6515 execution ERROR 6/10 flow run failed, indexes: [1,2,4,5,7,8], exception of index 1: Execution failure in ''mod_three'': (Exception) cannot mod 3!\n2024-01-12 08:56:04 +0000 6515 execution.bulk INFO Upload status summary metrics for run run2 finished in 1.3678363300859928 seconds\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''run2''\n2024-01-12 08:56:04 +0000 6515 execution.bulk INFO Upload RH properties for run run2 finished in 0.07642840500921011 seconds\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Creating unregistered output Asset for Run run2...\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_debug_info/versions/1\n2024-01-12 08:56:04 +0000 6515 promptflow-runtime INFO Creating unregistered output Asset for Run run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_run2_output_data_flow_outputs/versions/1\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Creating Artifact for Run run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Patching run2...\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime WARNING [run2] Run failed. Execution stackTrace: Traceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/flow_execution_context.py\", line 185, in _invoke_tool_with_timer\n return f(**kwargs)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/_core/tool.py\", line 106, in decorated_tool\n output = func(*args, **kwargs)\n [REDACTED: External StackTrace]\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 804, in _exec\n output, nodes_outputs = self._traverse_nodes(inputs, context)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 890, in _traverse_nodes\n nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes)\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/flow_executor.py\", line 910, in _submit_to_scheduler\n return FlowNodesScheduler(self._tools_manager, inputs, nodes, self._node_concurrency, context).execute()\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 69, in execute\n raise e\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 58, in execute\n self._dag_manager.complete_nodes(self._collect_outputs(completed_futures))\n File \"/azureml-envs/prompt-flow/runtime/lib/python3.10/site-packages/promptflow/executor/_flow_nodes_scheduler.py\", line 90, in _collect_outputs\n each_node_result = each_future.result()\n [REDACTED: External StackTrace]\n\n2024-01-12 08:56:05 +0000 6515 promptflow-runtime INFO Ending the aml run ''run2'' with status ''Completed''...\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO Process 6515 finished\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO [run2] End processing bulk run\n2024-01-12 08:56:06 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/run2 for bulk run\n"' headers: connection: - keep-alive content-length: - '22442' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.427' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_get_details_against_partial_completed_run.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_get_details_against_partial_completed_run.yaml", "repo_id": "promptflow", "token_count": 175043 }
82
name: flow_run_20230629_101205 description: sample bulk run # invalid remote flow format should not be supported. flow: invalid_remote_flow data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file
promptflow/src/promptflow/tests/test_configs/runs/bulk_run_invalid_remote_flow_str.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/bulk_run_invalid_remote_flow_str.yaml", "repo_id": "promptflow", "token_count": 105 }
83
{ "test_tool.tool_with_generated_by_input.my_tool": { "name": "Tool with Generated By Input", "type": "python", "inputs": { "index_json": { "type": [ "string" ], "generated_by": { "func_path": "test_tool.tool_with_generated_by_input.generate_index_json", "func_kwargs": [ { "name": "index_type", "type": [ "string" ], "reference": "${inputs.index_type}", "optional": false }, { "name": "index", "type": [ "string" ], "reference": "${inputs.index}", "optional": true }, { "name": "index_connection", "type": [ "CognitiveSearchConnection" ], "reference": "${inputs.index_connection}", "optional": true }, { "name": "index_name", "type": [ "string" ], "reference": "${inputs.index_name}", "optional": true }, { "name": "content_field", "type": [ "string" ], "reference": "${inputs.content_field}", "optional": true }, { "name": "embedding_field", "type": [ "string" ], "reference": "${inputs.embedding_field}", "optional": true }, { "name": "metadata_field", "type": [ "string" ], "reference": "${inputs.metadata_field}", "optional": true }, { "name": "semantic_configuration", "type": [ "string" ], "reference": "${inputs.semantic_configuration}", "optional": true }, { "name": "embedding_connection", "type": [ "AzureOpenAIConnection", "OpenAIConnection" ], "reference": "${inputs.embedding_connection}", "optional": true }, { "name": "embedding_deployment", "type": [ "string" ], "reference": "${inputs.embedding_deployment}", "optional": true } ], "reverse_func_path": "test_tool.tool_with_generated_by_input.reverse_generate_index_json" } }, "queries": { "type": [ "string" ] }, "top_k": { "type": [ "int" ] }, "index_type": { "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_index_types" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "index": { "enabled_by": "index_type", "enabled_by_value": [ "Workspace MLIndex" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_indexes" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "index_connection": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "type": [ "CognitiveSearchConnection" ], "input_type": "uionly_hidden" }, "index_name": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "type": [ "string" ], "input_type": "uionly_hidden" }, "content_field": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_fields" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "embedding_field": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_fields" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "metadata_field": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_fields" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "semantic_configuration": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_semantic_configuration" }, "type": [ "string" ], "input_type": "uionly_hidden" }, "embedding_connection": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "type": [ "AzureOpenAIConnection", "OpenAIConnection" ], "input_type": "uionly_hidden" }, "embedding_deployment": { "enabled_by": "index_type", "enabled_by_value": [ "Azure Cognitive Search" ], "dynamic_list": { "func_path": "test_tool.tool_with_generated_by_input.list_embedding_deployment", "func_kwargs": [ { "name": "embedding_connection", "type": [ "string" ], "reference": "${inputs.embedding_connection}", "optional": false } ] }, "type": [ "string" ], "input_type": "uionly_hidden" } }, "description": "This is a tool with generated by input", "module": "test_tool.tool_with_generated_by_input", "function": "my_tool" } }
promptflow/src/promptflow/tests/test_configs/tools/expected_generated_by_meta.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/tools/expected_generated_by_meta.json", "repo_id": "promptflow", "token_count": 3786 }
84
inputs: num: type: int outputs: content: type: string reference: ${divide_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${inputs.num} - name: divide_num_1 type: python source: type: code path: divide_num.py inputs: num: ${divide_num.output} - name: divide_num_2 type: python source: type: code path: divide_num.py inputs: num: ${divide_num_3.output}
promptflow/src/promptflow/tests/test_configs/wrong_flows/node_reference_not_found/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/node_reference_not_found/flow.dag.yaml", "repo_id": "promptflow", "token_count": 209 }
85
# Run prompt flow in Azure AI :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../../how-to-guides/faq.md#stable-vs-experimental). ::: Assuming you have learned how to create and run a flow following [Quick start](../../how-to-guides/quick-start.md). This guide will walk you through the main process of how to submit a promptflow run to [Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow?view=azureml-api-2). Benefits of use Azure AI comparison to just run locally: - **Designed for team collaboration**: Portal UI is a better fix for sharing & presentation your flow and runs. And workspace can better organize team shared resources like connections. - **Enterprise Readiness Solutions**: prompt flow leverages Azure AI's robust enterprise readiness solutions, providing a secure, scalable, and reliable foundation for the development, experimentation, and deployment of flows. ## Prerequisites 1. An Azure account with an active subscription - [Create an account for free](https://azure.microsoft.com/free/?WT.mc_id=A261C142F) 2. An Azure AI ML workspace - [Create workspace resources you need to get started with Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/quickstart-create-resources). 3. A python environment, `python=3.9` or higher version like 3.10 is recommended. 4. Install `promptflow` with extra dependencies and `promptflow-tools`. ```sh pip install promptflow[azure] promptflow-tools ``` 5. Clone the sample repo and check flows in folder [examples/flows](https://github.com/microsoft/promptflow/tree/main/examples/flows). ```sh git clone https://github.com/microsoft/promptflow.git ``` ## Create necessary connections Connection helps securely store and manage secret keys or other sensitive credentials required for interacting with LLM and other external tools for example Azure Content Safety. In this guide, we will use flow `web-classification` which uses connection `open_ai_connection` inside, we need to set up the connection if we haven't added it before. Please go to workspace portal, click `Prompt flow` -> `Connections` -> `Create`, then follow the instruction to create your own connections. Learn more on [connections](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/concept-connections?view=azureml-api-2). ## Submit a run to workspace Assuming you are in working directory `<path-to-the-sample-repo>/examples/flows/standard/` ::::{tab-set} :::{tab-item} CLI :sync: CLI Use `az login` to login so promptflow can get your credential. ```sh az login ``` Submit a run to workspace. ```sh pfazure run create --subscription <my_sub> -g <my_resource_group> -w <my_workspace> --flow web-classification --data web-classification/data.jsonl --stream ``` **Default subscription/resource-group/workspace** Note `--subscription`, `-g` and `-w` can be omitted if you have installed the [Azure CLI](https://learn.microsoft.com/en-us/cli/azure/install-azure-cli) and [set the default configurations](https://learn.microsoft.com/en-us/cli/azure/azure-cli-configuration). ```sh az account set --subscription <my-sub> az configure --defaults group=<my_resource_group> workspace=<my_workspace> ``` **Serverless runtime and named runtime** Runtimes serve as computing resources so that the flow can be executed in workspace. Above command does not specify any runtime which means it will run in serverless mode. In this mode the workspace will automatically create a runtime and you can use it as the default runtime for any flow run later. Instead, you can also [create a runtime](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/how-to-create-manage-runtime?view=azureml-api-2) and use it with `--runtime <my-runtime>`: ```sh pfazure run create --flow web-classification --data web-classification/data.jsonl --stream --runtime <my-runtime> ``` **Specify run name and view a run** You can also name the run by specifying `--name my_first_cloud_run` in the run create command, otherwise the run name will be generated in a certain pattern which has timestamp inside. With a run name, you can easily stream or view the run details using below commands: ```sh pfazure run stream -n my_first_cloud_run # same as "--stream" in command "run create" pfazure run show-details -n my_first_cloud_run pfazure run visualize -n my_first_cloud_run ``` More details can be found in [CLI reference: pfazure](../../reference/pfazure-command-reference.md) ::: :::{tab-item} SDK :sync: SDK 1. Import the required libraries ```python from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential # azure version promptflow apis from promptflow.azure import PFClient ``` 2. Get credential ```python try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception as ex: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() ``` 3. Get a handle to the workspace ```python # Get a handle to workspace pf = PFClient( credential=credential, subscription_id="<SUBSCRIPTION_ID>", # this will look like xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx resource_group_name="<RESOURCE_GROUP>", workspace_name="<AML_WORKSPACE_NAME>", ) ``` 4. Submit the flow run ```python # load flow flow = "web-classification" data = "web-classification/data.jsonl" runtime = "example-runtime-ci" # assume you have existing runtime with this name provisioned # runtime = None # un-comment use automatic runtime # create run base_run = pf.run( flow=flow, data=data, runtime=runtime, ) pf.stream(base_run) ``` 5. View the run info ```python details = pf.get_details(base_run) details.head(10) pf.visualize(base_run) ``` ::: :::: ## View the run in workspace At the end of stream logs, you can find the `portal_url` of the submitted run, click it to view the run in the workspace. ![c_0](../../media/cloud/azureml/local-to-cloud-run-webview.png) ### Run snapshot of the flow with additional includes Flows that enabled [additional include](../../how-to-guides/develop-a-flow/referencing-external-files-or-folders-in-a-flow.md) files can also be submitted for execution in the workspace. Please note that the specific additional include files or folders will be uploaded and organized within the **Files** folder of the run snapshot in the cloud. ![img](../../media/cloud/azureml/run-with-additional-includes.png) ## Next steps Learn more about: - [CLI reference: pfazure](../../reference/pfazure-command-reference.md)
promptflow/docs/cloud/azureai/quick-start.md/0
{ "file_path": "promptflow/docs/cloud/azureai/quick-start.md", "repo_id": "promptflow", "token_count": 2002 }
0
# Deploy a flow using Kubernetes :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: There are four steps to deploy a flow using Kubernetes: 1. Build the flow as docker format. 2. Build the docker image. 3. Create Kubernetes deployment yaml. 4. Apply the deployment. ## Build a flow as docker format ::::{tab-set} :::{tab-item} CLI :sync: CLI Note that all dependent connections must be created before building as docker. ```bash # create connection if not created before pf connection create --file ../../../examples/connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as docker format: ```bash pf flow build --source <path-to-your-flow-folder> --output <your-output-dir> --format docker ``` ::: :::{tab-item} VS Code Extension :sync: VSC Click the button below to build a flow as docker format: ![img](../../media/how-to-guides/vscode_export_as_docker.png) ::: :::: Note that all dependent connections must be created before exporting as docker. ### Docker format folder structure Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - Dockerfile: the dockerfile to build the image - start.sh: the script used in `CMD` of `Dockerfile` to start the service - runit: the folder contains all the runit scripts - ... - settings.json: a json file to store the settings of the docker image - README.md: Simple introduction of the files ## Deploy with Kubernetes We are going to use the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) as an example to show how to deploy with Kubernetes. Please ensure you have [create the connection](../manage-connections.md#create-a-connection) required by flow, if not, you could refer to [Setup connection for web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification). Additionally, please ensure that you have installed all the required dependencies. You can refer to the "Prerequisites" section in the README of the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) for a comprehensive list of prerequisites and installation instructions. ### Build Docker image Like other Dockerfile, you need to build the image first. You can tag the image with any name you want. In this example, we use `web-classification-serve`. Then run the command below: ```bash cd <your-output-dir> docker build . -t web-classification-serve ``` ### Create Kubernetes deployment yaml. The Kubernetes deployment yaml file acts as a guide for managing your docker container in a Kubernetes pod. It clearly specifies important information like the container image, port configurations, environment variables, and various settings. Below, you'll find a simple deployment template that you can easily customize to meet your needs. **Note**: You need encode the secret using base64 firstly and input the <encoded_secret> as 'open-ai-connection-api-key' in the deployment configuration. For example, you can run below commands in linux: ```bash encoded_secret=$(echo -n <your_api_key> | base64) ``` ```yaml --- kind: Namespace apiVersion: v1 metadata: name: <your-namespace> --- apiVersion: v1 kind: Secret metadata: name: open-ai-connection-api-key namespace: <your-namespace> type: Opaque data: open-ai-connection-api-key: <encoded_secret> --- apiVersion: v1 kind: Service metadata: name: web-classification-service namespace: <your-namespace> spec: type: NodePort ports: - name: http port: 8080 targetPort: 8080 nodePort: 30123 selector: app: web-classification-serve-app --- apiVersion: apps/v1 kind: Deployment metadata: name: web-classification-serve-app namespace: <your-namespace> spec: selector: matchLabels: app: web-classification-serve-app template: metadata: labels: app: web-classification-serve-app spec: containers: - name: web-classification-serve-container image: <your-docker-image> imagePullPolicy: Never ports: - containerPort: 8080 env: - name: OPEN_AI_CONNECTION_API_KEY valueFrom: secretKeyRef: name: open-ai-connection-api-key key: open-ai-connection-api-key ``` ### Apply the deployment. Before you can deploy your application, ensure that you have set up a Kubernetes cluster and installed [kubectl](https://kubernetes.io/docs/reference/kubectl/) if it's not already installed. In this documentation, we will use [Minikube](https://minikube.sigs.k8s.io/docs/) as an example. To start the cluster, execute the following command: ```bash minikube start ``` Once your Kubernetes cluster is up and running, you can proceed to deploy your application by using the following command: ```bash kubectl apply -f deployment.yaml ``` This command will create the necessary pods to run your application within the cluster. **Note**: You need replace <pod_name> below with your specific pod_name. You can retrieve it by running `kubectl get pods -n web-classification`. ### Retrieve flow service logs of the container The kubectl logs command is used to retrieve the logs of a container running within a pod, which can be useful for debugging, monitoring, and troubleshooting applications deployed in a Kubernetes cluster. ```bash kubectl -n <your-namespace> logs <pod-name> ``` #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in containers. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` You'll need to set up the environment variables in the container to make the connections work. ### Test the endpoint - Option1: Once you've started the service, you can establish a connection between a local port and a port on the pod. This allows you to conveniently test the endpoint from your local terminal. To achieve this, execute the following command: ```bash kubectl port-forward <pod_name> <local_port>:<container_port> -n <your-namespace> ``` With the port forwarding in place, you can use the curl command to initiate the endpoint test: ```bash curl http://localhost:<local_port>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` - Option2: `minikube service web-classification-service --url -n <your-namespace>` runs as a process, creating a tunnel to the cluster. The command exposes the service directly to any program running on the host operating system. The command above will retrieve the URL of a service running within a Minikube Kubernetes cluster (e.g. http://<ip>:<assigned_port>), which you can click to interact with the flow service in your web browser. Alternatively, you can use the following command to test the endpoint: **Note**: Minikube will use its own external port instead of nodePort to listen to the service. So please substitute <assigned_port> with the port obtained above. ```bash curl http://localhost:<assigned_port>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` ## Next steps - Try the example [here](https://github.com/microsoft/promptflow/tree/main/examples/tutorials/flow-deploy/kubernetes).
promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-kubernetes.md/0
{ "file_path": "promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-kubernetes.md", "repo_id": "promptflow", "token_count": 2398 }
1
# Using File Path as Tool Input Users sometimes need to reference local files within a tool to implement specific logic. To simplify this, we've introduced the `FilePath` input type. This input type enables users to either select an existing file or create a new one, then pass it to a tool, allowing the tool to access the file's content. In this guide, we will provide a detailed walkthrough on how to use `FilePath` as a tool input. We will also demonstrate the user experience when utilizing this type of tool within a flow. ## Prerequisites - Please install promptflow package and ensure that its version is 0.1.0b8 or later. ``` pip install promptflow>=0.1.0b8 ``` - Please ensure that your [Prompt flow for VS Code](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow) is updated to version 1.1.0 or later. ## Using File Path as Package Tool Input ### How to create a package tool with file path input Here we use [an existing tool package](https://github.com/microsoft/promptflow/tree/main/examples/tools/tool-package-quickstart/my_tool_package) as an example. If you want to create your own tool, please refer to [create and use tool package](create-and-use-tool-package.md#create-custom-tool-package). 1. Add a `FilePath` input for your tool, like in [this example](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_file_path_input.py). ```python import importlib from pathlib import Path from promptflow import tool # 1. import the FilePath type from promptflow.contracts.types import FilePath # 2. add a FilePath input for your tool method @tool def my_tool(input_file: FilePath, input_text: str) -> str: # 3. customise your own code to handle and use the input_file here new_module = importlib.import_module(Path(input_file).stem) return new_module.hello(input_text) ``` 2. `FilePath` input format in a tool YAML, like in [this example](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_file_path_input.yaml). ```yaml my_tool_package.tools.tool_with_file_path_input.my_tool: function: my_tool inputs: # yaml format for FilePath input input_file: type: - file_path input_text: type: - string module: my_tool_package.tools.tool_with_file_path_input name: Tool with FilePath Input description: This is a tool to demonstrate the usage of FilePath input type: python ``` > [!Note] tool yaml file can be generated using a python script. For further details, please refer to [create custom tool package](create-and-use-tool-package.md#create-custom-tool-package). ### Use tool with a file path input in VS Code extension Follow steps to [build and install your tool package](create-and-use-tool-package.md#build-and-share-the-tool-package) and [use your tool from VS Code extension](create-and-use-tool-package.md#use-your-tool-from-vscode-extension). Here we use an existing flow to demonstrate the experience, open [this flow](https://github.com/microsoft/promptflow/blob/main/examples/tools/use-cases/filepath-input-tool-showcase/flow.dag.yaml) in VS Code extension: - There is a node named "Tool_with_FilePath_Input" with a `file_path` type input called `input_file`. - Click the picker icon to open the UI for selecting an existing file or creating a new file to use as input. ![use file path in flow](../../media/how-to-guides/develop-a-tool/use_file_path_in_flow.png) ## Using File Path as Script Tool Input We can also utilize the `FilePath` input type directly in a script tool, eliminating the need to create a package tool. 1. Initiate an empty flow in the VS Code extension and add a python node titled 'python_node_with_filepath' into it in the Visual Editor page. 2. Select the link `python_node_with_filepath.py` in the node to modify the python method to include a `FilePath` input as shown below, and save the code change. ```python import importlib from pathlib import Path from promptflow import tool # 1. import the FilePath type from promptflow.contracts.types import FilePath # 2. add a FilePath input for your tool method @tool def my_tool(input_file: FilePath, input_text: str) -> str: # 3. customise your own code to handle and use the input_file here new_module = importlib.import_module(Path(input_file).stem) return new_module.hello(input_text) ``` 3. Return to the flow Visual Editor page, click the picker icon to launch the UI for selecting an existing file or creating a new file to use as input, here we select [this file](https://github.com/microsoft/promptflow/blob/main/examples/tools/use-cases/filepath-input-tool-showcase/hello_method.py) as an example. ![use file path in script tool](../../media/how-to-guides/develop-a-tool/use_file_path_in_script_tool.png) ## FAQ ### What are some practical use cases for this feature? The `FilePath` input enables several useful workflows: 1. **Dynamically load modules** - As shown in the demo, you can load a Python module from a specific script file selected by the user. This allows flexible custom logic. 2. **Load arbitrary data files** - The tool can load data from files like .csv, .txt, .json, etc. This provides an easy way to inject external data into a tool. So in summary, `FilePath` input gives tools flexible access to external files provided by users at runtime. This unlocks many useful scenarios like the ones above.
promptflow/docs/how-to-guides/develop-a-tool/use-file-path-as-tool-input.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-tool/use-file-path-as-tool-input.md", "repo_id": "promptflow", "token_count": 1804 }
2
# Alternative LLMs This section provides tutorials on incorporating alternative large language models into prompt flow. ```{toctree} :maxdepth: 1 :hidden: ```
promptflow/docs/integrations/llms/index.md/0
{ "file_path": "promptflow/docs/integrations/llms/index.md", "repo_id": "promptflow", "token_count": 43 }
3
# Python ## Introduction Users are empowered by the Python Tool to offer customized code snippets as self-contained executable nodes in PromptFlow. Users can effortlessly create Python tools, edit code, and verify results with ease. ## Inputs | Name | Type | Description | Required | |--------|--------|------------------------------------------------------|---------| | Code | string | Python code snippet | Yes | | Inputs | - | List of tool function parameters and its assignments | - | ### Types | Type | Python example | Description | |-----------------------------------------------------|---------------------------------|--------------------------------------------| | int | param: int | Integer type | | bool | param: bool | Boolean type | | string | param: str | String type | | double | param: float | Double type | | list | param: list or param: List[T] | List type | | object | param: dict or param: Dict[K, V] | Object type | | [Connection](../../concepts/concept-connections.md) | param: CustomConnection | Connection type, will be handled specially | Parameters with `Connection` type annotation will be treated as connection inputs, which means: - Promptflow extension will show a selector to select the connection. - During execution time, promptflow will try to find the connection with the name same from parameter value passed in. Note that `Union[...]` type annotation is supported **ONLY** for connection type, for example, `param: Union[CustomConnection, OpenAIConnection]`. ## Outputs The return of the python tool function. ## How to write Python Tool? ### Guidelines 1. Python Tool Code should consist of a complete Python code, including any necessary module imports. 2. Python Tool Code must contain a function decorated with @tool (tool function), serving as the entry point for execution. The @tool decorator should be applied only once within the snippet. _Below sample defines python tool "my_python_tool", decorated with @tool_ 3. Python tool function parameters must be assigned in 'Inputs' section _Below sample defines inputs "message" and assign with "world"_ 4. Python tool function shall have return _Below sample returns a concatenated string_ ### Code The snippet below shows the basic structure of a tool function. Promptflow will read the function and extract inputs from function parameters and type annotations. ```python from promptflow import tool from promptflow.connections import CustomConnection # The inputs section will change based on the arguments of the tool function, after you save the code # Adding type to arguments and return value will help the system show the types properly # Please update the function name/signature per need @tool def my_python_tool(message: str, my_conn: CustomConnection) -> str: my_conn_dict = dict(my_conn) # Do some function call with my_conn_dict... return 'hello ' + message ``` ### Inputs | Name | Type | Sample Value in Flow Yaml | Value passed to function| |---------|--------|-------------------------| ------------------------| | message | string | "world" | "world" | | my_conn | CustomConnection | "my_conn" | CustomConnection object | Promptflow will try to find the connection named 'my_conn' during execution time. ### outputs ```python "hello world" ``` ### Keyword Arguments Support Starting from version 1.0.0 of PromptFlow and version 1.4.0 of [Prompt flow for VS Code](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow), we have introduced support for keyword arguments (kwargs) in the Python tool. ```python from promptflow import tool @tool def print_test(normal_input: str, **kwargs): for key, value in kwargs.items(): print(f"Key {key}'s value is {value}") return len(kwargs) ``` When you add `kwargs` in your python tool like above code, you can insert variable number of inputs by the `+Add input` button. ![Screenshot of the kwargs On VScode Prompt Flow extension](../../media/reference/tools-reference/python_tool_kwargs.png)
promptflow/docs/reference/tools-reference/python-tool.md/0
{ "file_path": "promptflow/docs/reference/tools-reference/python-tool.md", "repo_id": "promptflow", "token_count": 1821 }
4
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/SerpConnection.schema.json name: serp_connection type: serp api_key: "<to-be-replaced>"
promptflow/examples/connections/serp.yml/0
{ "file_path": "promptflow/examples/connections/serp.yml", "repo_id": "promptflow", "token_count": 59 }
5
import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) PDF_DIR = os.path.join(BASE_DIR, ".pdfs") INDEX_DIR = os.path.join(BASE_DIR, ".index/.pdfs/")
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/constants.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/constants.py", "repo_id": "promptflow", "token_count": 73 }
6
import unittest import os import time import traceback class BaseTest(unittest.TestCase): def setUp(self): root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../") self.flow_path = os.path.join(root, "chat-with-pdf") self.data_path = os.path.join( self.flow_path, "data/bert-paper-qna-3-line.jsonl" ) self.eval_groundedness_flow_path = os.path.join( root, "../evaluation/eval-groundedness" ) self.eval_perceived_intelligence_flow_path = os.path.join( root, "../evaluation/eval-perceived-intelligence" ) self.all_runs_generated = [] self.config_3k_context = { "EMBEDDING_MODEL_DEPLOYMENT_NAME": "text-embedding-ada-002", "CHAT_MODEL_DEPLOYMENT_NAME": "gpt-35-turbo", "PROMPT_TOKEN_LIMIT": 3000, "MAX_COMPLETION_TOKENS": 256, "VERBOSE": True, "CHUNK_SIZE": 1024, "CHUNK_OVERLAP": 64, } self.config_2k_context = { "EMBEDDING_MODEL_DEPLOYMENT_NAME": "text-embedding-ada-002", "CHAT_MODEL_DEPLOYMENT_NAME": "gpt-35-turbo", "PROMPT_TOKEN_LIMIT": 2000, "MAX_COMPLETION_TOKENS": 256, "VERBOSE": True, "CHUNK_SIZE": 1024, "CHUNK_OVERLAP": 64, } # Switch current working directory to the folder of this file self.cwd = os.getcwd() os.chdir(os.path.dirname(os.path.abspath(__file__))) def tearDown(self): # Switch back to the original working directory os.chdir(self.cwd) for run in self.all_runs_generated: try: self.pf.runs.archive(run.name) except Exception as e: print(e) traceback.print_exc() def create_chat_run( self, data=None, column_mapping=None, connections=None, display_name="chat_run", stream=True, ): if column_mapping is None: column_mapping = { "chat_history": "${data.chat_history}", "pdf_url": "${data.pdf_url}", "question": "${data.question}", "config": self.config_2k_context, } data = self.data_path if data is None else data run = self.pf.run( flow=self.flow_path, data=data, column_mapping=column_mapping, connections=connections, display_name=display_name, tags={"unittest": "true"}, stream=stream, ) self.all_runs_generated.append(run) self.check_run_basics(run, display_name) return run def create_eval_run( self, eval_flow_path, base_run, column_mapping, connections=None, display_name_postfix="", ): display_name = eval_flow_path.split("/")[-1] + display_name_postfix eval = self.pf.run( flow=eval_flow_path, run=base_run, column_mapping=column_mapping, connections=connections, display_name=display_name, tags={"unittest": "true"}, stream=True, ) self.all_runs_generated.append(eval) self.check_run_basics(eval, display_name) return eval def check_run_basics(self, run, display_name=None): self.assertTrue(run is not None) if display_name is not None: self.assertTrue(run.display_name.find(display_name) != -1) self.assertEqual(run.tags["unittest"], "true") def run_eval_with_config(self, config: dict, display_name: str = None): run = self.create_chat_run( column_mapping={ "question": "${data.question}", "pdf_url": "${data.pdf_url}", "chat_history": "${data.chat_history}", "config": config, }, display_name=display_name, ) self.pf.stream(run) # wait for completion self.check_run_basics(run) eval_groundedness = self.create_eval_run( self.eval_groundedness_flow_path, run, { "question": "${run.inputs.question}", "answer": "${run.outputs.answer}", "context": "${run.outputs.context}", }, display_name_postfix="_" + display_name, ) self.pf.stream(eval_groundedness) # wait for completion self.check_run_basics(eval_groundedness) details = self.pf.get_details(eval_groundedness) self.assertGreater(details.shape[0], 2) metrics, elapsed = self.wait_for_metrics(eval_groundedness) self.assertGreaterEqual(metrics["groundedness"], 0.0) self.assertLessEqual(elapsed, 5) # metrics should be available within 5 seconds eval_pi = self.create_eval_run( self.eval_perceived_intelligence_flow_path, run, { "question": "${run.inputs.question}", "answer": "${run.outputs.answer}", "context": "${run.outputs.context}", }, display_name_postfix="_" + display_name, ) self.pf.stream(eval_pi) # wait for completion self.check_run_basics(eval_pi) details = self.pf.get_details(eval_pi) self.assertGreater(details.shape[0], 2) metrics, elapsed = self.wait_for_metrics(eval_pi) self.assertGreaterEqual(metrics["perceived_intelligence_score"], 0.0) self.assertLessEqual(elapsed, 5) # metrics should be available within 5 seconds return run, eval_groundedness, eval_pi def wait_for_metrics(self, run): start = time.time() metrics = self.pf.get_metrics(run) cnt = 3 while len(metrics) == 0 and cnt > 0: time.sleep(5) metrics = self.pf.get_metrics(run) cnt -= 1 end = time.time() return metrics, end - start
promptflow/examples/flows/chat/chat-with-pdf/tests/base_test.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/tests/base_test.py", "repo_id": "promptflow", "token_count": 3126 }
7
from typing import List from promptflow import tool @tool def aggregate(groundedness_scores: List[float]): """ This tool aggregates the processed result of all lines to the variant level and log metric for each variant. :param processed_results: List of the output of line_process node. :param variant_ids: List of variant ids that can be used to group the results by variant. :param line_numbers: List of line numbers of the variants. If provided, this can be used to group the results by line number. """ aggregated_results = {"groundedness": 0.0, "count": 0} # Calculate average groundedness score for each variant for i in range(len(groundedness_scores)): aggregated_results["groundedness"] += groundedness_scores[i] aggregated_results["count"] += 1 aggregated_results["groundedness"] /= aggregated_results["count"] # Log metric for each variant from promptflow import log_metric log_metric(key="groundedness", value=aggregated_results["groundedness"]) return aggregated_results
promptflow/examples/flows/evaluation/eval-groundedness/aggregate.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-groundedness/aggregate.py", "repo_id": "promptflow", "token_count": 350 }
8
from promptflow import tool import numpy as np import re @tool def concat_results(gpt_coherence_score: str = None, gpt_similarity_score: str = None, gpt_fluency_score: str = None, gpt_relevance_score: str = None, gpt_groundedness_score: str = None, f1_score: float = None, ada_cosine_similarity: float = None): load_list = [{'name': 'gpt_coherence', 'score': gpt_coherence_score}, {'name': 'gpt_similarity', 'score': gpt_similarity_score}, {'name': 'gpt_fluency', 'score': gpt_fluency_score}, {'name': 'gpt_relevance', 'score': gpt_relevance_score}, {'name': 'gpt_groundedness', 'score': gpt_groundedness_score}, {'name': 'f1_score', 'score': f1_score}, {'name': 'ada_similarity', 'score': ada_cosine_similarity}] scalar_metrics = ["f1_score", "ada_similarity"] score_list = [] errors = [] for item in load_list: if item["name"] in scalar_metrics: try: score = float(item["score"]) except Exception as e: score = np.nan errors.append({"name": item["name"], "msg": str(e), "data": item["score"]}) else: if item['score']: try: score = item["score"] match = re.search(r'\d', score) if match: score = float(match.group()) else: score = np.nan except Exception as e: score = np.nan errors.append({"name": item["name"], "msg": str(e), "data": item["score"]}) else: score = np.nan score_list.append({"name": item["name"], "score": score}) variant_level_result = {} for item in score_list: item_name = str(item["name"]) variant_level_result[item_name] = item["score"] if 'gpt' in item_name: variant_level_result[item_name + '_pass_rate'] = 1 if item["score"] > 3 else 0 return variant_level_result
promptflow/examples/flows/evaluation/eval-qna-non-rag/concat_scores.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-non-rag/concat_scores.py", "repo_id": "promptflow", "token_count": 1177 }
9
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: metrics: type: string default: gpt_groundedness,gpt_relevance,gpt_retrieval_score is_chat_input: false answer: type: string default: Of the tents mentioned in the retrieved documents, the Alpine Explorer Tent has the highest waterproof rating of 3000mm for its rainfly. is_chat_input: false question: type: string default: Which tent is the most waterproof? is_chat_input: false documents: type: string default: "{\"documents\": [{\"content\":\"<h1 id=\\\"information-about-product-item_number-1\\\">Information about product item_number: 1</h1>\\n<p>TrailMaster X4 Tent, price $250,</p>\\n<h2 id=\\\"brand\\\">Brand</h2>\\n<p>OutdoorLiving</p>\\n<h2 id=\\\"category\\\">Category</h2>\\n<p>Tents</p>\\n<h2 id=\\\"features\\\">Features</h2>\\n<ul>\\n<li>Polyester material for durability</li>\\n<li>Spacious interior to accommodate multiple people</li>\\n<li>Easy setup with included instructions</li>\\n<li>Water-resistant construction to withstand light rain</li>\\n<li>Mesh panels for ventilation and insect protection</li>\\n<li>Rainfly included for added weather protection</li>\\n<li>Multiple doors for convenient entry and exit</li>\\n<li>Interior pockets for organizing small items</li>\\n<li>Reflective guy lines for improved visibility at night</li>\\n<li>Freestanding design for easy setup and relocation</li>\\n<li>Carry bag included for convenient storage and transportation</li>\\n</ul>\\n<h2 id=\\\"technical-specs\\\">Technical Specs</h2>\\n<p><strong>Best Use</strong>: Camping<br />\\n<strong>Capacity</strong>: 4-person<br />\\n<strong>Season Rating</strong>: 3-season<br />\\n<strong>Setup</strong>: Freestanding<br />\\n<strong>Material</strong>: Polyester<br />\\n<strong>Waterproof</strong>: Yes<br />\\n<strong>Floor Area</strong>: 80 square feet<br />\\n<strong>Peak Height</strong>: 6 feet<br />\\n<strong>Number of Doors</strong>: 2<br />\\n<strong>Color</strong>: Green<br />\\n<strong>Rainfly</strong>: Included<br />\\n<strong>Rainfly Waterproof Rating</strong>: 2000mm<br />\\n<strong>Tent Poles</strong>: Aluminum<br />\\n<strong>Pole Diameter</strong>: 9mm<br />\\n<strong>Ventilation</strong>: Mesh panels and adjustable vents<br />\\n<strong>Interior Pockets</strong>: Yes (4 pockets)<br />\\n<strong>Gear Loft</strong>: Included<br />\\n<strong>Footprint</strong>: Sold separately<br />\\n<strong>Guy Lines</strong>: Reflective<br />\\n<strong>Stakes</strong>: Aluminum<br />\\n<strong>Carry Bag</strong>: Included<br />\\n<strong>Dimensions</strong>: 10ft x 8ft x 6ft (length x width x peak height)<br />\\n<strong>Packed Size</strong>: 24 inches x 8 inches<br />\\n<strong>Weight</strong>: 12 lbs </p>\\n<h2 id=\\\"trailmaster-x4-tent-user-guide\\\">TrailMaster X4 Tent User Guide</h2>\\n<h3 id=\\\"introduction\\\">Introduction</h3>\\n<p>Thank you for choosing the TrailMaster X4 Tent. This user guide provides instructions on how to set up, use, and maintain your tent effectively. Please read this guide thoroughly before using the tent.</p>\\n<h3 id=\\\"package-contents\\\">Package Contents</h3>\\n<p>Ensure that the package includes the following components:</p>\\n<ul>\\n<li>TrailMaster X4 Tent body</li>\\n<li>Tent poles</li>\\n<li>Rainfly (if applicable)</li>\\n<li>Stakes and guy lines</li>\\n<li>Carry bag</li>\\n<li>User Guide</li>\\n</ul>\\n<p>If any components are missing or damaged, please contact our customer support immediately.</p>\\n<h3 id=\\\"tent-setup\\\">Tent Setup</h3>\\n<h4 id=\\\"step-1-selecting-a-suitable-location\\\">Step 1: Selecting a Suitable Location</h4>\\n<ul>\\n<li>Find a level and clear area for pitching the tent.</li>\\n<li>Remove any sharp objects or debris that could damage the tent floor.</li>\\n</ul>\\n<h4 id=\\\"step-2-unpacking-and-organizing-components\\\">Step 2: Unpacking and Organizing Components</h4>\\n<ul>\\n<li>Lay out all the tent components on the ground.</li>\\n<li>Familiarize yourself with each part, including the tent body, poles, rainfly, stakes, and guy lines.</li>\\n</ul>\\n<h4 id=\\\"step-3-assembling-the-tent-poles\\\">Step 3: Assembling the Tent Poles</h4>\\n<ul>\\n<li>Connect the tent poles according to their designated color codes or numbering.</li>\\n<li>Slide the connected poles through the pole sleeves or attach them to the tent body clips.</li>\\n</ul>\\n<h4 id=\\\"step-4-setting-up-the-tent-body\\\">Step 4: Setting up the Tent Body</h4>\\n<ul>\\n<li>Begin at one end and raise the tent body by pushing up the poles.</li>\\n<li>Ensure that the tent body is evenly stretched and centered.</li>\\n<li>Secure the tent body to the ground using stakes and guy lines as needed.</li>\\n</ul>\\n<h4 id=\\\"step-5-attaching-the-rainfly-if-applicable\\\">Step 5: Attaching the Rainfly (if applicable)</h4>\\n<ul>\\n<li>If your tent includes a rainfly, spread it over the tent body.</li>\\n<li>Attach the rainfly to the tent corners and secure it with the provided buckles or clips.</li>\\n<li>Adjust the tension of the rainfly to ensure proper airflow and weather protection.</li>\\n</ul>\\n<h4 id=\\\"step-6-securing-the-tent\\\">Step 6: Securing the Tent</h4>\\n<ul>\\n<li>Stake down the tent corners and guy out the guy lines for additional stability.</li>\\n<li>Adjust the tension of the guy lines to provide optimal stability and wind resistance.</li>\\n</ul>\\n<h3 id=\\\"tent-takedown-and-storage\\\">Tent Takedown and Storage</h3>\\n<h4 id=\\\"step-1-removing-stakes-and-guy-lines\\\">Step 1: Removing Stakes and Guy Lines</h4>\\n<ul>\\n<li>Remove all stakes from the ground.</li>\\n<li>Untie or disconnect the guy lines from the tent and store them separately.</li>\\n</ul>\",\"id\":null,\"title\":\"Information about product item_number: 1\",\"filepath\":\"product_info_1.md\",\"url\":\"https://amipateldemo.blo\ b.core.windows.net/fileupload-my-product-info/product_info_1.md\",\"metad\ ata\":{\"chunking\":\"orignal document size=1544. Scores=3.739763Org Highlight count=75.\"},\"chunk_id\":\"1\"},{\"content\":\"<h1 id=\\\"information-about-product-item_number-8\\\">Information about product item_number: 8</h1>\\n<p>Alpine Explorer Tent, price $350,</p>\\n<h2 id=\\\"brand\\\">Brand</h2>\\n<p>AlpineGear</p>\\n<h2 id=\\\"category\\\">Category</h2>\\n<p>Tents</p>\\n<h3 id=\\\"features\\\">Features</h3>\\n<ul>\\n<li>Waterproof: Provides reliable protection against rain and moisture.</li>\\n<li>Easy Setup: Simple and quick assembly process, making it convenient for camping.</li>\\n<li>Room Divider: Includes a detachable divider to create separate living spaces within the tent.</li>\\n<li>Excellent Ventilation: Multiple mesh windows and vents promote airflow and reduce condensation.</li>\\n<li>Gear Loft: Built-in gear loft or storage pockets for organizing and storing camping gear.</li>\\n</ul>\\n<h2 id=\\\"technical-specs\\\">Technical Specs</h2>\\n<p><strong>Best Use</strong>: Camping<br />\\n<strong>Capacity</strong>: 8-person<br />\\n<strong>Season Rating</strong>: 3-season<br />\\n<strong>Setup</strong>: Freestanding<br />\\n<strong>Material</strong>: Polyester<br />\\n<strong>Waterproof</strong>: Yes<br />\\n<strong>Floor Area</strong>: 120 square feet<br />\\n<strong>Peak Height</strong>: 6.5 feet<br />\\n<strong>Number of Doors</strong>: 2<br />\\n<strong>Color</strong>: Orange<br />\\n<strong>Rainfly</strong>: Included<br />\\n<strong>Rainfly Waterproof Rating</strong>: 3000mm<br />\\n<strong>Tent Poles</strong>: Aluminum<br />\\n<strong>Pole Diameter</strong>: 12mm<br />\\n<strong>Ventilation</strong>: Mesh panels and adjustable vents<br />\\n<strong>Interior Pockets</strong>: 4 pockets<br />\\n<strong>Gear Loft</strong>: Included<br />\\n<strong>Footprint</strong>: Sold separately<br />\\n<strong>Guy Lines</strong>: Reflective<br />\\n<strong>Stakes</strong>: Aluminum<br />\\n<strong>Carry Bag</strong>: Included<br />\\n<strong>Dimensions</strong>: 12ft x 10ft x 7ft (Length x Width x Peak Height)<br />\\n<strong>Packed Size</strong>: 24 inches x 10 inches<br />\\n<strong>Weight</strong>: 17 lbs</p>\\n<h2 id=\\\"alpine-explorer-tent-user-guide\\\">Alpine Explorer Tent User Guide</h2>\\n<p>Thank you for choosing the Alpine Explorer Tent. This user guide provides instructions on how to set up, use, and maintain your tent effectively. Please read this guide thoroughly before using the tent.</p>\\n<h3 id=\\\"package-contents\\\">Package Contents</h3>\\n<p>Ensure that the package includes the following components:</p>\\n<ul>\\n<li>Alpine Explorer Tent body</li>\\n<li>Tent poles</li>\\n<li>Rainfly</li>\\n<li>Stakes and guy lines</li>\\n<li>Carry bag</li>\\n<li>User Guide</li>\\n</ul>\\n<p>If any components are missing or damaged, please contact our customer support immediately.</p>\\n<h3 id=\\\"tent-setup\\\">Tent Setup</h3>\\n<p><strong>Step 1: Selecting a Suitable Location</strong></p>\\n<ul>\\n<li>Find a level and clear area for pitching the tent.</li>\\n<li>Remove any sharp objects or debris that could damage the tent floor.</li>\\n</ul>\\n<p><strong>Step 2: Unpacking and Organizing Components</strong></p>\\n<ul>\\n<li>Lay out all the tent components on the ground.</li>\\n<li>Familiarize yourself with each part, including the tent body, poles, rainfly, stakes, and guy lines.</li>\\n</ul>\\n<p><strong>Step 3: Assembling the Tent Poles</strong></p>\\n<ul>\\n<li>Connect the tent poles according to their designated color codes or numbering.</li>\\n<li>Slide the connected poles through the pole sleeves or attach them to the tent body clips.</li>\\n</ul>\\n<p><strong>Step 4: Setting up the Tent Body</strong></p>\\n<ul>\\n<li>Begin at one end and raise the tent body by pushing up the poles.</li>\\n<li>Ensure that the tent body is evenly stretched and centered.</li>\\n<li>Secure the tent body to the ground using stakes and guy lines as needed.</li>\\n</ul>\\n<p><strong>Step 5: Attaching the Rainfly</strong></p>\\n<ul>\\n<li>Spread the rainfly over the tent body.</li>\\n<li>Attach the rainfly to the tent corners and secure it with the provided buckles or clips.</li>\\n<li>Adjust the tension of the rainfly to ensure proper airflow and weather protection.</li>\\n</ul>\\n<p><strong>Step 6: Securing the Tent</strong></p>\\n<ul>\\n<li>Stake down the tent corners and guy out the guy lines for additional stability.</li>\\n<li>Adjust the tension of the guy lines to provide optimal stability and wind resistance.</li>\\n</ul>\\n<h3 id=\\\"tent-takedown-and-storage\\\">Tent Takedown and Storage</h3>\\n<p><strong>Step 1: Removing Stakes and Guy Lines</strong></p>\\n<ul>\\n<li>Remove all stakes from the ground.</li>\\n<li>Untie or disconnect the guy lines from the tent and store them separately.</li>\\n</ul>\\n<p><strong>Step 2: Taking Down the Tent Body</strong></p>\\n<ul>\\n<li>Start by collapsing the tent poles carefully.</li>\\n<li>Remove the poles from the pole sleeves or clips.</li>\\n</ul>\",\"id\":null,\"title\":\"Information about product item_number: 8\",\"filepath\":\"product_info_8.md\",\"url\":\"https://amipateldemo.blo\ b.core.windows.net/fileupload-my-product-info/product_info_8.md\",\"metad\ ata\":{\"chunking\":\"orignal document size=1419. Scores=3.8508284Org Highlight count=77.\"},\"chunk_id\":\"1\"},{\"content\":\"<h1 id=\\\"information-about-product-item_number-15\\\">Information about product item_number: 15</h1>\\n<p>SkyView 2-Person Tent, price $200,</p>\\n<h2 id=\\\"brand\\\">Brand</h2>\\n<p>OutdoorLiving</p>\\n<h2 id=\\\"category\\\">Category</h2>\\n<p>Tents</p>\\n<h2 id=\\\"features\\\">Features</h2>\\n<ul>\\n<li>Spacious interior comfortably accommodates two people</li>\\n<li>Durable and waterproof materials for reliable protection against the elements</li>\\n<li>Easy and quick setup with color-coded poles and intuitive design</li>\\n<li>Two large doors for convenient entry and exit</li>\\n<li>Vestibules provide extra storage space for gear</li>\\n<li>Mesh panels for enhanced ventilation and reduced condensation</li>\\n<li>Rainfly included for added weather protection</li>\\n<li>Freestanding design allows for versatile placement</li>\\n<li>Multiple interior pockets for organizing small items</li>\\n<li>Reflective guy lines and stake points for improved visibility at night</li>\\n<li>Compact and lightweight for easy transportation and storage</li>\\n<li>Double-stitched seams for increased durability</li>\\n<li>Comes with a carrying bag for convenient portability</li>\\n</ul>\\n<h2 id=\\\"technical-specs\\\">Technical Specs</h2>\\n<ul>\\n<li><strong>Best Use</strong>: Camping, Hiking</li>\\n<li><strong>Capacity</strong>: 2-person</li>\\n<li><strong>Seasons</strong>: 3-season</li>\\n<li><strong>Packed Weight</strong>: Approx. 8 lbs</li>\\n<li><strong>Number of Doors</strong>: 2</li>\\n<li><strong>Number of Vestibules</strong>: 2</li>\\n<li><strong>Vestibule Area</strong>: Approx. 8 square feet per vestibule</li>\\n<li><strong>Rainfly</strong>: Included</li>\\n<li><strong>Pole Material</strong>: Lightweight aluminum</li>\\n<li><strong>Freestanding</strong>: Yes</li>\\n<li><strong>Footprint Included</strong>: No</li>\\n<li><strong>Tent Bag Dimensions</strong>: 7ft x 5ft x 4ft</li>\\n<li><strong>Packed Size</strong>: Compact</li>\\n<li><strong>Color:</strong> Blue</li>\\n<li><strong>Warranty</strong>: Manufacturer's warranty included</li>\\n</ul>\\n<h2 id=\\\"user-guidemanual\\\">User Guide/Manual</h2>\\n<ol>\\n<li>Tent Components</li>\\n</ol>\\n<p>The SkyView 2-Person Tent includes the following components:\\n- Tent body\\n- Rainfly\\n- Aluminum tent poles\\n- Tent stakes\\n- Guy lines\\n- Tent bag</p>\\n<ol start=\\\"2\\\">\\n<li>Tent Setup</li>\\n</ol>\\n<p>Follow these steps to set up your SkyView 2-Person Tent:</p>\\n<p>Step 1: Find a suitable camping site with a level ground and clear of debris.\\nStep 2: Lay out the tent body on the ground, aligning the doors and vestibules as desired.\\nStep 3: Assemble the tent poles and insert them into the corresponding pole sleeves or grommets on the tent body.\\nStep 4: Attach the rainfly over the tent body, ensuring a secure fit.\\nStep 5: Stake down the tent and rainfly using the provided tent stakes, ensuring a taut pitch.\\nStep 6: Adjust the guy lines as needed to enhance stability and ventilation.\\nStep 7: Once the tent is properly set up, organize your gear inside and enjoy your camping experience.</p>\\n<ol start=\\\"3\\\">\\n<li>Tent Takedown</li>\\n</ol>\\n<p>To dismantle and pack up your SkyView 2-Person Tent, follow these steps:</p>\\n<p>Step 1: Remove all gear and belongings from the tent.\\nStep 2: Remove the stakes and guy lines from the ground.\\nStep 3: Detach the rainfly from the tent body.\\nStep 4: Disassemble the tent poles and remove them from the tent body.\\nStep 5: Fold and roll up the tent body, rainfly, and poles separately.\\nStep 6: Place all components back into the tent bag, ensuring a compact and organized packing.</p>\\n<ol start=\\\"4\\\">\\n<li>Tent Care and Maintenance</li>\\n</ol>\\n<p>To extend the lifespan of your SkyView 2-Person Tent, follow these care and maintenance guidelines:</p>\\n<ul>\\n<li>Always clean and dry the tent before storing it.</li>\\n<li>Avoid folding or storing the tent when it is wet or damp to prevent mold or mildew growth.</li>\\n<li>Use a mild soap and water solution to clean the tent if necessary, and avoid using harsh chemicals or solvents.</li>\\n<li>Inspect the tent regularly for any damages such as tears, punctures, or broken components. Repair or replace as needed.</li>\\n<li>Store the tent in a cool, dry place away from direct sunlight and extreme temperatures.</li>\\n<li>Avoid placing sharp objects or excessive weight on the tent, as this may cause damage.</li>\\n<li>Follow the manufacturer's recommendations for seam sealing or re-waterproofing the tent if necessary.</li>\\n</ul>\\n<ol start=\\\"5\\\">\\n<li>Safety Precautions</li>\\n</ol>\\n<ul>\\n<li>Always choose a safe and suitable camping location, considering factors such as terrain, weather conditions, and potential hazards.</li>\\n</ul>\",\"id\":null,\"title\":\"Information about product item_number: 15\",\"filepath\":\"product_info_15.md\",\"url\":\"https://amipateldemo.b\ lob.core.windows.net/fileupload-my-product-info/product_info_15.md\",\"me\ tadata\":{\"chunking\":\"orignal document size=1342. Scores=3.4607773Org Highlight count=70.\"},\"chunk_id\":\"1\"},{\"content\":\"<ul>\\n<li><strong>If Membership status \\\"None \\\":</strong> Returns are accepted within 30 days of purchase, provided the tent is unused, undamaged and in its original packaging. Customer is responsible for the cost of return shipping. Once the returned item is received, a refund will be issued for the cost of the item minus a 10% restocking fee. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n<li><strong>If Membership status \\\"Gold\\\":</strong> Returns are accepted within 60 days of purchase, provided the tent is unused, undamaged and in its original packaging. Free return shipping is provided. Once the returned item is received, a full refund will be issued. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n<li><strong>If Membership status \\\"Platinum\\\":</strong> Returns are accepted within 90 days of purchase, provided the tent is unused, undamaged and in its original packaging. Free return shipping is provided, and a full refund will be issued. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n</ul>\\n<h2 id=\\\"reviews\\\">Reviews</h2>\\n<p>36) <strong>Rating:</strong> 5\\n <strong>Review:</strong> The Alpine Explorer Tent is amazing! It's easy to set up, has excellent ventilation, and the room divider is a great feature for added privacy. Highly recommend it for family camping trips!</p>\\n<p>37) <strong>Rating:</strong> 4\\n <strong>Review:</strong> I bought the Alpine Explorer Tent, and while it's waterproof and spacious, I wish it had more storage pockets. Overall, it's a good tent for camping.</p>\\n<p>38) <strong>Rating:</strong> 5\\n <strong>Review:</strong> The Alpine Explorer Tent is perfect for my family's camping adventures. It's easy to set up, has great ventilation, and the gear loft is an excellent addition. Love it!</p>\\n<p>39) <strong>Rating:</strong> 4\\n <strong>Review:</strong> I like the Alpine Explorer Tent, but I wish it came with a footprint. It's comfortable and has many useful features, but a footprint would make it even better. Overall, it's a great tent.</p>\\n<p>40) <strong>Rating:</strong> 5\\n <strong>Review:</strong> This tent is perfect for our family camping trips. It's spacious, easy to set up, and the room divider is a great feature for added privacy. The gear loft is a nice bonus for extra storage.</p>\\n<h2 id=\\\"faq\\\">FAQ</h2>\\n<p>34) How easy is it to set up the Alpine Explorer Tent?\\n The Alpine Explorer Tent features a quick and easy setup, thanks to color-coded poles and intuitive design. Most users can set it up in just a few minutes.</p>\\n<p>35) Can the Alpine Explorer Tent accommodate two queen-sized air mattresses?\\n Yes, the Alpine Explorer Tent is spacious enough to accommodate two queen-sized air mattresses, making it an ideal choice for comfortable family camping.</p>\\n<p>36) What is the purpose of the room divider in the Alpine Explorer Tent?\\n The room divider in the Alpine Explorer Tent allows you to create separate sleeping and living spaces, providing privacy and organization for your camping experience.</p>\\n<p>37) How does the gear loft in the Alpine Explorer Tent work?\\n The gear loft in the Alpine Explorer Tent is a suspended mesh shelf that provides additional storage space for small items, keeping them organized and easily accessible.</p>\\n<p>38) Can the Alpine Explorer Tent be used in snowy conditions?\\n The Alpine Explorer Tent is designed primarily for three-season use. While it can withstand light snowfall, it may not provide adequate structural support and insulation during heavy snow or extreme winter conditions.</p>\",\"id\":null,\"title\":\"Information about product item_number: 8\",\"filepath\":\"product_info_8.md\",\"url\":\"https://amipateldemo.blo\ b.core.windows.net/fileupload-my-product-info/product_info_8.md\",\"metad\ ata\":{\"chunking\":\"orignal document size=906. Scores=5.568323Org Highlight count=85.\"},\"chunk_id\":\"0\"},{\"content\":\"<p>If you have any questions or need further assistance, please contact our customer support:</p>\\n<ul>\\n<li>Customer Support Phone: +1-800-123-4567</li>\\n<li>Customer Support Email: [email protected]</li>\\n</ul>\\n<h2 id=\\\"return-policy\\\">Return Policy</h2>\\n<ul>\\n<li><strong>If Membership status \\\"None \\\":</strong> Returns are accepted within 30 days of purchase, provided the tent is unused, undamaged and in its original packaging. Customer is responsible for the cost of return shipping. Once the returned item is received, a refund will be issued for the cost of the item minus a 10% restocking fee. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n<li><strong>If Membership status \\\"Gold\\\":</strong> Returns are accepted within 60 days of purchase, provided the tent is unused, undamaged and in its original packaging. Free return shipping is provided. Once the returned item is received, a full refund will be issued. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n<li><strong>If Membership status \\\"Platinum\\\":</strong> Returns are accepted within 90 days of purchase, provided the tent is unused, undamaged and in its original packaging. Free return shipping is provided, and a full refund will be issued. If the item was damaged during shipping or if there is a defect, the customer should contact customer service within 7 days of receiving the item.</li>\\n</ul>\\n<h2 id=\\\"reviews\\\">Reviews</h2>\\n<p>1) <strong>Rating:</strong> 5\\n <strong>Review:</strong> I am extremely happy with my TrailMaster X4 Tent! It's spacious, easy to set up, and kept me dry during a storm. The UV protection is a great addition too. Highly recommend it to anyone who loves camping!</p>\\n<p>2) <strong>Rating:</strong> 3\\n <strong>Review:</strong> I bought the TrailMaster X4 Tent, and while it's waterproof and has a spacious interior, I found it a bit difficult to set up. It's a decent tent, but I wish it were easier to assemble.</p>\\n<p>3) <strong>Rating:</strong> 5\\n <strong>Review:</strong> The TrailMaster X4 Tent is a fantastic investment for any serious camper. The easy setup and spacious interior make it perfect for extended trips, and the waterproof design kept us dry in heavy rain.</p>\\n<p>4) <strong>Rating:</strong> 4\\n <strong>Review:</strong> I like the TrailMaster X4 Tent, but I wish it came in more colors. It's comfortable and has many useful features, but the green color just isn't my favorite. Overall, it's a good tent.</p>\\n<p>5) <strong>Rating:</strong> 5\\n <strong>Review:</strong> This tent is perfect for my family camping trips. The spacious interior and convenient storage pocket make it easy to stay organized. It's also super easy to set up, making it a great addition to our gear.</p>\\n<h2 id=\\\"faq\\\">FAQ</h2>\\n<p>1) Can the TrailMaster X4 Tent be used in winter conditions?\\n The TrailMaster X4 Tent is designed for 3-season use and may not be suitable for extreme winter conditions with heavy snow and freezing temperatures.</p>\\n<p>2) How many people can comfortably sleep in the TrailMaster X4 Tent?\\n The TrailMaster X4 Tent can comfortably accommodate up to 4 people with room for their gear.</p>\\n<p>3) Is there a warranty on the TrailMaster X4 Tent?\\n Yes, the TrailMaster X4 Tent comes with a 2-year limited warranty against manufacturing defects.</p>\\n<p>4) Are there any additional accessories included with the TrailMaster X4 Tent?\\n The TrailMaster X4 Tent includes a rainfly, tent stakes, guy lines, and a carry bag for easy transport.</p>\\n<p>5) Can the TrailMaster X4 Tent be easily carried during hikes?\\n Yes, the TrailMaster X4 Tent weighs just 12lbs, and when packed in its carry bag, it can be comfortably carried during hikes.</p>\",\"id\":null,\"title\":\"Information about product item_number: 1\",\"filepath\":\"product_info_1.md\",\"url\":\"https://amipateldemo.blo\ b.core.windows.net/fileupload-my-product-info/product_info_1.md\",\"metad\ ata\":{\"chunking\":\"orignal document size=981. Scores=4.0350547Org Highlight count=74.\"},\"chunk_id\":\"0\"}]}" is_chat_input: false outputs: gpt_relevance: type: string reference: ${concat_scores.output.gpt_relevance} gpt_groundedness: type: string reference: ${concat_scores.output.gpt_groundedness} gpt_retrieval_score: type: string reference: ${concat_scores.output.gpt_retrieval_score} nodes: - name: concat_scores type: python source: type: code path: concat_scores.py inputs: rag_generation_score: ${parse_generation_score.output} rag_grounding_score: ${parse_grounding_score.output} rag_retrieval_score: ${parse_retrieval_score.output} use_variants: false - name: aggregate_variants_results type: python source: type: code path: aggregate_variants_results.py inputs: metrics: ${inputs.metrics} results: ${concat_scores.output} aggregation: true use_variants: false - name: gpt_groundedness type: llm source: type: code path: rag_groundedness_prompt.jinja2 inputs: deployment_name: gpt-4 temperature: 0 top_p: 1 stop: "" max_tokens: 1000 presence_penalty: 0 frequency_penalty: 0 logit_bias: "" FullBody: ${inputs.documents} answer: ${inputs.answer} question: ${inputs.question} provider: AzureOpenAI connection: open_ai_connection api: chat module: promptflow.tools.aoai activate: when: ${validate_input.output.gpt_groundedness} is: true use_variants: false - name: gpt_retrieval_score type: llm source: type: code path: rag_retrieval_prompt.jinja2 inputs: deployment_name: gpt-4 temperature: 0 top_p: 1 stop: "" max_tokens: 1000 presence_penalty: 0 frequency_penalty: 0 logit_bias: "" FullBody: ${inputs.documents} question: ${inputs.question} provider: AzureOpenAI connection: open_ai_connection api: chat module: promptflow.tools.aoai activate: when: ${validate_input.output.gpt_retrieval_score} is: true use_variants: false - name: gpt_relevance type: llm source: type: code path: rag_generation_prompt.jinja2 inputs: deployment_name: gpt-4 temperature: 0 top_p: 1 stop: "" max_tokens: 1000 presence_penalty: 0 frequency_penalty: 0 logit_bias: "" FullBody: ${inputs.documents} answer: ${inputs.answer} question: ${inputs.question} provider: AzureOpenAI connection: open_ai_connection api: chat module: promptflow.tools.aoai activate: when: ${validate_input.output.gpt_relevance} is: true use_variants: false - name: parse_generation_score type: python source: type: code path: parse_generation_score.py inputs: rag_generation_score: ${gpt_relevance.output} use_variants: false - name: parse_retrieval_score type: python source: type: code path: parse_retrival_score.py inputs: retrieval_output: ${gpt_retrieval_score.output} use_variants: false - name: parse_grounding_score type: python source: type: code path: parse_groundedness_score.py inputs: rag_grounding_score: ${gpt_groundedness.output} use_variants: false - name: select_metrics type: python source: type: code path: select_metrics.py inputs: metrics: ${inputs.metrics} use_variants: false - name: validate_input type: python source: type: code path: validate_input.py inputs: answer: ${inputs.answer} documents: ${inputs.documents} question: ${inputs.question} selected_metrics: ${select_metrics.output} use_variants: false node_variants: {} environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/evaluation/eval-qna-rag-metrics/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-rag-metrics/flow.dag.yaml", "repo_id": "promptflow", "token_count": 11138 }
10
from promptflow import tool @tool def parse_translation(translation_results: dict, language: str) -> str: return translation_results[language]
promptflow/examples/flows/integrations/azure-ai-language/analyze_documents/parse_translation.py/0
{ "file_path": "promptflow/examples/flows/integrations/azure-ai-language/analyze_documents/parse_translation.py", "repo_id": "promptflow", "token_count": 40 }
11
from promptflow import tool @tool def generate_goal(items: list = []) -> str: """ Generate a numbered list from given items based on the item_type. Args: items (list): A list of items to be numbered. Returns: str: The formatted numbered list. """ return "\n".join(f"{i + 1}. {item}" for i, item in enumerate(items))
promptflow/examples/flows/standard/autonomous-agent/generate_goal.py/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/generate_goal.py", "repo_id": "promptflow", "token_count": 132 }
12
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Hello World! outputs: output: type: string reference: ${llm.output} nodes: - name: hello_prompt type: prompt source: type: code path: hello.jinja2 inputs: text: ${inputs.text} - name: llm type: python source: type: code path: hello.py inputs: connection: basic_custom_connection deployment_name: text-davinci-003 max_tokens: "120" prompt: ${hello_prompt.output} environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/standard/basic-with-connection/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/basic-with-connection/flow.dag.yaml", "repo_id": "promptflow", "token_count": 243 }
13
{"question": "What is Prompt flow?"} {"question": "What is ChatGPT?"}
promptflow/examples/flows/standard/conditional-flow-for-if-else/data.jsonl/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-if-else/data.jsonl", "repo_id": "promptflow", "token_count": 22 }
14
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: question: type: string default: Please describe this image. input_image: type: image default: https://developer.microsoft.com/_devcom/images/logo-ms-social.png outputs: answer: type: string reference: ${question_on_image.output} output_image: type: string reference: ${flip_image.output} nodes: - name: flip_image type: python source: type: code path: flip_image.py inputs: input_image: ${inputs.input_image} - name: question_on_image type: custom_llm source: type: package_with_prompt tool: promptflow.tools.aoai_gpt4v.AzureOpenAI.chat path: question_on_image.jinja2 inputs: connection: aoai_gpt4v_connection deployment_name: gpt-4v max_tokens: 512 question: ${inputs.question} test_image: ${flip_image.output}
promptflow/examples/flows/standard/describe-image/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/describe-image/flow.dag.yaml", "repo_id": "promptflow", "token_count": 359 }
15
import asyncio import logging import time import uuid from typing import List from openai.version import VERSION as OPENAI_VERSION import os from abc import ABC, abstractmethod import tiktoken from dotenv import load_dotenv from prompt import PromptLimitException class AOAI(ABC): def __init__(self, **kwargs): if OPENAI_VERSION.startswith("0."): raise Exception( "Please upgrade your OpenAI package to version >= 1.0.0 or " "using the command: pip install --upgrade openai." ) init_params = {} api_type = os.environ.get("API_TYPE") if os.getenv("OPENAI_API_VERSION") is not None: init_params["api_version"] = os.environ.get("OPENAI_API_VERSION") if os.getenv("OPENAI_ORG_ID") is not None: init_params["organization"] = os.environ.get("OPENAI_ORG_ID") if os.getenv("OPENAI_API_KEY") is None: raise ValueError("OPENAI_API_KEY is not set in environment variables") if os.getenv("OPENAI_API_BASE") is not None: if api_type == "azure": init_params["azure_endpoint"] = os.environ.get("OPENAI_API_BASE") else: init_params["base_url"] = os.environ.get("OPENAI_API_BASE") init_params["api_key"] = os.environ.get("OPENAI_API_KEY") # A few sanity checks if api_type == "azure": if init_params.get("azure_endpoint") is None: raise ValueError( "OPENAI_API_BASE is not set in environment variables, this is required when api_type==azure" ) if init_params.get("api_version") is None: raise ValueError( "OPENAI_API_VERSION is not set in environment variables, this is required when api_type==azure" ) if init_params["api_key"].startswith("sk-"): raise ValueError( "OPENAI_API_KEY should not start with sk- when api_type==azure, " "are you using openai key by mistake?" ) from openai import AzureOpenAI as Client from openai import AsyncAzureOpenAI as AsyncClient else: from openai import OpenAI as Client from openai import AsyncClient as AsyncClient self.client = Client(**init_params) self.async_client = AsyncClient(**init_params) self.default_engine = None self.engine = kwargs.pop('model', None) or os.environ.get("MODEL") self.total_tokens = 4000 self.max_tokens = kwargs.pop('max_tokens', None) or os.environ.get("MAX_TOKENS") or 1200 if self.engine == "gpt-4-32k": self.total_tokens = 31000 if self.engine == "gpt-4": self.total_tokens = 7000 if self.engine == "gpt-3.5-turbo-16k": self.total_tokens = 15000 if self.max_tokens > self.total_tokens: raise ValueError(f"max_tokens must be less than total_tokens, " f"total_tokens is {self.total_tokens}, max_tokens is {self.max_tokens}") self.tokens_limit = self.total_tokens - self.max_tokens def count_tokens(self, text: str) -> int: try: encoding = tiktoken.encoding_for_model(self.engine) except KeyError: encoding = tiktoken.encoding_for_model(self.default_engine) return len(encoding.encode(text)) def query(self, text, **kwargs): stream = kwargs.pop("stream", False) for i in range(3): try: if not stream: return self.query_with_no_stream(text, **kwargs) else: return "".join(self.query_with_stream(text, **kwargs)) except Exception as e: logging.error(f"Query failed, message={e}, " f"will retry request llm after {(i + 1) * (i + 1)} seconds.") time.sleep((i + 1) * (i + 1)) raise Exception("Query failed, and retry 3 times, but still failed.") async def async_query(self, text, **kwargs): stream = kwargs.pop("stream", False) for i in range(3): try: if not stream: res = await self.async_query_with_no_stream(text, **kwargs) return res else: res = await self.async_query_with_stream(text, **kwargs) return "".join(res) except Exception as e: logging.error(f"llm response error, message={e}, " f"will retry request llm after {(i + 1) * (i + 1)} seconds.") await asyncio.sleep((i + 1) * (i + 1)) raise Exception("llm response error, and retry 3 times, but still failed.") @abstractmethod def query_with_no_stream(self, text, **kwargs): pass @abstractmethod def query_with_stream(self, text, **kwargs): pass @abstractmethod async def async_query_with_no_stream(self, text, **kwargs): pass @abstractmethod async def async_query_with_stream(self, text, **kwargs): pass class ChatLLM(AOAI): def __init__(self, **kwargs): super().__init__(**kwargs) self.default_engine = "gpt-3.5-turbo" self.engine = self.engine or self.default_engine self.system_prompt = "You are a Python engineer." self.conversation = dict() def query_with_no_stream(self, text, **kwargs): conversation_id = kwargs.pop('conversation', None) messages = self.create_prompt(text, conversation_id) self.validate_tokens(messages) temperature = kwargs.pop("temperature", 0.1) response = self.client.chat.completions.create( model=self.engine, messages=messages, temperature=temperature, max_tokens=self.max_tokens, stream=False, **kwargs, ) response_role = response.choices[0].message.role full_response = response.choices[0].message.content self.add_to_conversation(text, "user", conversation_id=conversation_id) self.add_to_conversation(full_response, response_role, conversation_id=conversation_id) return full_response def query_with_stream(self, text, **kwargs): conversation_id = kwargs.pop('conversation', None) messages = self.create_prompt(text, conversation_id) self.validate_tokens(messages) temperature = kwargs.pop("temperature", 0.1) response = self.client.chat.completions.create( model=self.engine, messages=messages, temperature=temperature, max_tokens=self.max_tokens, stream=True, **kwargs, ) response_role = None full_response = "" for chunk in response: delta = chunk.choices[0].delta response_role = delta.role if delta.content: content = delta.content full_response += content yield content self.add_to_conversation(text, "user", conversation_id=conversation_id) self.add_to_conversation(full_response, response_role, conversation_id=conversation_id) async def async_query_with_no_stream(self, text, **kwargs): conversation_id = kwargs.pop('conversation', None) messages = self.create_prompt(text, conversation_id) self.validate_tokens(messages) temperature = kwargs.pop("temperature", 0.1) response = await self.async_client.chat.completions.create( model=self.engine, messages=messages, temperature=temperature, max_tokens=self.max_tokens, stream=False, **kwargs, ) response_role = response.choices[0].message.role full_response = response.choices[0].message.content self.add_to_conversation(text, "user", conversation_id=conversation_id) self.add_to_conversation(full_response, response_role, conversation_id=conversation_id) return full_response async def async_query_with_stream(self, text, **kwargs): conversation_id = kwargs.pop('conversation', None) messages = self.create_prompt(text, conversation_id) self.validate_tokens(messages) temperature = kwargs.pop("temperature", 0.1) response = await self.async_client.chat.completions.create( model=self.engine, messages=messages, temperature=temperature, max_tokens=self.max_tokens, stream=True, **kwargs, ) response_role = None full_response = "" for chunk in response: delta = chunk.choices[0].delta response_role = delta.role if delta.content: content = delta.content full_response += content yield content self.add_to_conversation(text, "user", conversation_id=conversation_id) self.add_to_conversation(full_response, response_role, conversation_id=conversation_id) def get_unique_conversation_id(self): return str(uuid.uuid4()).replace('-', '') def add_to_conversation(self, message: str, role: str, conversation_id: str) -> None: """ Add a message to the conversation """ if type(conversation_id) is str: self.conversation[conversation_id].append({"role": role, "content": message}) def del_conversation(self, conversation_id: str) -> None: if conversation_id in self.conversation: del self.conversation[conversation_id] def init_conversation(self, conversation_id: str, system_prompt) -> None: """ Init a new conversation """ if type(conversation_id) is str: self.conversation[conversation_id] = [{"role": "system", "content": system_prompt}] def get_tokens_count(self, messages: List[dict]) -> int: """ Get token count """ num_tokens = 0 for message in messages: # every message follows <im_start>{role/name}\n{content}<im_end>\n num_tokens += 5 for key, value in message.items(): if value: num_tokens += self.count_tokens(value) if key == "name": # if there's a name, the role is omitted num_tokens += 5 # role is always required and always 1 token num_tokens += 5 # every reply is primed with <im_start>assistant return num_tokens def validate_tokens(self, messages: List[dict]) -> None: total_tokens = self.get_tokens_count(messages) if total_tokens > self.tokens_limit: message = f"token count {total_tokens} exceeds limit {self.tokens_limit}" raise PromptLimitException(message) def create_prompt(self, text: str, conversation_id: str = None): unique_conversation_id = self.get_unique_conversation_id() conversation_id = conversation_id or unique_conversation_id if conversation_id not in self.conversation: self.init_conversation(conversation_id=conversation_id, system_prompt=self.system_prompt) _conversation = self.conversation[conversation_id] + [{"role": "user", "content": text}] while self.get_tokens_count(_conversation) > self.tokens_limit and len(_conversation) > 2: _conversation.pop(1) if unique_conversation_id == conversation_id: self.del_conversation(conversation_id=unique_conversation_id) return _conversation if __name__ == "__main__": load_dotenv() llm = ChatLLM() print(llm.query(text='how are you?')) res = llm.query_with_stream(text='how are you?') for item in res: print(item)
promptflow/examples/flows/standard/gen-docstring/azure_open_ai.py/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/azure_open_ai.py", "repo_id": "promptflow", "token_count": 5578 }
16
# Math to Code Math to Code is a project that utilizes the power of the chatGPT model to generate code that models math questions and then executes the generated code to obtain the final numerical answer. > [!NOTE] > > Building a system that generates executable code from user input with LLM is [a complex problem with potential security risks]( https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/ ), this example is more of a demonstration rather than something you can directly use in production. To build such system correctly, you should address key security considerations like input validation, additional sanitization of the code generated or better run the generated code in a sandbox environment. Tools used in this flow: - `python` tool - built-in `llm` tool Connections used in this flow: - `open_ai` connection ## Prerequisites Install promptflow sdk and other dependencies: ```cmd pip install -r requirements.txt ``` ## Setup connection Prepare your Azure Open AI resource follow this [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) and get your `api_key` if you don't have one. Note in this example, we are using [chat api](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions), please use `gpt-35-turbo` or `gpt-4` model deployment. Create connection if you haven't done that. Ensure you have put your azure open ai endpoint key in [azure_openai.yml](azure_openai.yml) file. ```bash # Override keys with --set to avoid yaml file changes pf connection create -f ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> ``` Ensure you have created `open_ai_connection` connection. ```bash pf connection show -n open_ai_connection ``` ## Run flow in local ### Run locally with single line input ```bash # test with default input value in flow.dag.yaml pf flow test --flow . # test with specific input pf flow test --flow . --inputs math_question='If a rectangle has a length of 10 and width of 5, what is the area?' ``` ### Run with multiple lines data - create run ```bash # create a random run name run_name="math_to_code_"$(openssl rand -hex 12) pf run create --flow . --data ./math_data.jsonl --column-mapping math_question='${data.question}' --name $run_name --stream ``` ### Get the accuracy using evaluation flow Use [eval-accuracy-maths-to-code](../../evaluation/eval-accuracy-maths-to-code/) to evaluate accuracy and error rate metrics against the math-to-code flow. - accuracy: if the generated code can be correctly executed and got final number answer, it will be compare with the groundtruth in the test data. For single instance, it's True if the final number equals to the groundtruth, False otherwise. Accuracy is to measure the correct percentage against test data. - error_rate: some case the flow cannot get number answer, for example, the generated code cannot be executed due to code parsing error of dependent package not available in conda env. Error rate is to measure the percentage of this case in test data. ```bash # create a random eval run name eval_run_name="math_to_code_eval_run_"$(openssl rand -hex 12) # invoke accuracy and error rate evaluation against math-to-code batch run pf run create --flow ../../evaluation/eval-accuracy-maths-to-code/ --data ./math_data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.answer}' --run $run_name --name $eval_run_name --stream # view the run details pf run show-details -n $eval_run_name pf run show-metrics -n $eval_run_name ```
promptflow/examples/flows/standard/maths-to-code/README.md/0
{ "file_path": "promptflow/examples/flows/standard/maths-to-code/README.md", "repo_id": "promptflow", "token_count": 1060 }
17
import unittest import traceback import os import promptflow.azure as azure from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential import promptflow class BaseTest(unittest.TestCase): def setUp(self) -> None: root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../") self.flow_path = os.path.join(root, "named-entity-recognition") self.data_path = os.path.join(self.flow_path, "data.jsonl") self.eval_match_rate_flow_path = os.path.join(root, "../evaluation/eval-entity-match-rate") self.all_runs_generated = [] return super().setUp() def tearDown(self): for run in self.all_runs_generated: try: self.pf.runs.archive(run.name) except Exception as e: print(e) traceback.print_exc() return super().setUp() def check_run_basics(self, run, name): self.assertTrue(run is not None) self.assertEqual(run.display_name, name) self.assertEqual(run.tags["unittest"], "true") class TestEvalAzure(BaseTest): def setUp(self) -> None: try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() self.pf = azure.PFClient.from_config(credential=credential) return super().setUp() def test_bulk_run_and_eval(self): run = self.pf.run( flow=self.flow_path, data=self.data_path, column_mapping={ "text": "${data.text}", "entity_type": "${data.entity_type}" }, connections={"NER_LLM": {"connection": "open_ai_connection"}}, display_name="ner_bulk_run", tags={"unittest": "true"}, stream=True) self.all_runs_generated.append(run) self.check_run_basics(run, "ner_bulk_run") eval = self.pf.run( flow=self.eval_match_rate_flow_path, run=run, data=self.data_path, column_mapping={ "entities": "${run.outputs.entities}", "ground_truth": "${data.results}" }, display_name="eval_match_rate", tags={"unittest": "true"}, stream=True) self.all_runs_generated.append(eval) self.check_run_basics(eval, "eval_match_rate") return eval class TestEval(BaseTest): def setUp(self) -> None: self.pf = promptflow.PFClient() return super().setUp() def test_bulk_run_and_eval(self): run = self.pf.run( flow=self.flow_path, data=self.data_path, column_mapping={ "text": "${data.text}", "entity_type": "${data.entity_type}" }, display_name="ner_bulk_run", tags={"unittest": "true"}, stream=True) self.all_runs_generated.append(run) self.check_run_basics(run, "ner_bulk_run") eval = self.pf.run( flow=self.eval_match_rate_flow_path, run=run, data=self.data_path, column_mapping={ "entities": "${run.outputs.entities}", "ground_truth": "${data.results}" }, display_name="eval_match_rate", tags={"unittest": "true"}, stream=True) self.all_runs_generated.append(eval) self.check_run_basics(eval, "eval_match_rate") return eval
promptflow/examples/flows/standard/named-entity-recognition/eval_test.py/0
{ "file_path": "promptflow/examples/flows/standard/named-entity-recognition/eval_test.py", "repo_id": "promptflow", "token_count": 1876 }
18
from pathlib import Path from ruamel.yaml import YAML def collect_tools_from_directory(base_dir) -> dict: tools = {} yaml = YAML() for f in Path(base_dir).glob("**/*.yaml"): with open(f, "r") as f: tools_in_file = yaml.load(f) for identifier, tool in tools_in_file.items(): tools[identifier] = tool return tools def list_package_tools(): """List package tools""" yaml_dir = Path(__file__).parents[1] / "yamls" return collect_tools_from_directory(yaml_dir)
promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/utils.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/utils.py", "repo_id": "promptflow", "token_count": 236 }
19
from my_tool_package.tools.tool_with_dynamic_list_input import my_tool, my_list_func def test_my_tool(): result = my_tool(input_text=["apple", "banana"], input_prefix="My") assert result == 'Hello My apple,banana' def test_my_list_func(): result = my_list_func(prefix="My") assert len(result) == 10 assert "value" in result[0]
promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_dynamic_input.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_dynamic_input.py", "repo_id": "promptflow", "token_count": 132 }
20
--- resources: examples/connections/azure_openai.yml, examples/flows/standard/web-classification --- # Deploy flow using Azure App Service This example demos how to deploy a flow using Azure App Service. [Azure App Service](https://learn.microsoft.com/azure/app-service/) is an HTTP-based service for hosting web applications, REST APIs, and mobile back ends. The scripts (`deploy.sh` for bash and `deploy.ps1` for powershell) under this folder are here to help deploy the docker image to Azure App Service. We will use [web-classification](../../../flows/standard/web-classification/README.md) as example in this tutorial. ## Build a flow as docker format app Note that all dependent connections must be created before building as docker. ```bash # create connection if not created before pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as docker format app: ```bash pf flow build --source ../../../flows/standard/web-classification --output dist --format docker ``` ## Deploy with Azure App Service The two scripts will do the following things: 1. Create a resource group if not exists. 2. Build and push the image to docker registry. 3. Create an app service plan with the give sku. 4. Create an app with specified name, set the deployment container image to the pushed docker image. 5. Set up the environment variables for the app. Example command to use bash script: ```shell bash deploy.sh --path dist -i <image_tag> --name my_app_23d8m -r <docker registry> -g <resource_group> ``` Example command to use powershell script: ```powershell .\deploy.ps1 dist -i <image_tag> -n my-app-23d8m -r <docker registry> -g <resource_group> ``` Note that the `name` will produce a unique FQDN as AppName.azurewebsites.net. See the full parameters by `bash deploy.sh -h` or `.\deploy.ps1 -h`. ## View and test the web app The web app can be found via [azure portal](https://portal.azure.com/) ![img](assets/azure_portal_img.png) After the app created, you will need to go to https://portal.azure.com/ find the app and set up the environment variables at (Settings>Configuration) or (Settings>Environment variables), then restart the app. ![img](assets/set_env_var.png) Browse the app at Overview and see the test page: ![img](assets/test_page.png) You can also test the app by sending a POST request to the app like: ```shell curl http://<Default-domain-of-app-service>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` Tips: - Reach deployment logs at (Deployment>Deployment Central) and app logs at (Monitoring>Log stream). - Reach advanced deployment tools at https://$name.scm.azurewebsites.net/. - Reach more details about app service at https://learn.microsoft.com/azure/app-service/.
promptflow/examples/tutorials/flow-deploy/azure-app-service/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/azure-app-service/README.md", "repo_id": "promptflow", "token_count": 872 }
21
--- kind: Namespace apiVersion: v1 metadata: name: web-classification --- apiVersion: v1 kind: Secret metadata: name: open-ai-connection-api-key namespace: web-classification type: Opaque data: open-ai-connection-api-key: <encoded_secret> --- apiVersion: v1 kind: Service metadata: name: web-classification-service namespace: web-classification spec: type: NodePort ports: - name: http port: 8080 targetPort: 8080 nodePort: 30123 selector: app: web-classification-serve-app --- apiVersion: apps/v1 kind: Deployment metadata: name: web-classification-serve-app namespace: web-classification spec: selector: matchLabels: app: web-classification-serve-app template: metadata: labels: app: web-classification-serve-app spec: containers: - name: web-classification-serve-container image: web-classification-serve imagePullPolicy: Never ports: - containerPort: 8080 env: - name: OPEN_AI_CONNECTION_API_KEY valueFrom: secretKeyRef: name: open-ai-connection-api-key key: open-ai-connection-api-key
promptflow/examples/tutorials/flow-deploy/kubernetes/deployment.yaml/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/kubernetes/deployment.yaml", "repo_id": "promptflow", "token_count": 487 }
22
import argparse import os import sys from pathlib import Path from utils import Color, run_command, print_red if __name__ == "__main__": parser = argparse.ArgumentParser(description=Color.RED + "Test Coverage for Promptflow!" + Color.END + "\n") parser.add_argument("-p", required=True, nargs="+", help="The paths to calculate code coverage") parser.add_argument("-t", required=True, nargs="+", help="The path to the tests") parser.add_argument("-l", required=True, help="Location to run tests in") parser.add_argument( "-m", required=True, help="Pytest marker to identify the tests to run", default="all", ) parser.add_argument( "-o", required=False, help="Pytest output file name", default="test-results.xml", ) parser.add_argument("-n", help="Pytest number of process to run the tests", default="auto") parser.add_argument( "--model-name", help="The model file name to run the tests", type=str, default="", ) parser.add_argument("--timeout", help="Timeout for individual tests (seconds)", type=str, default="") parser.add_argument( "--coverage-config", help="The path of code coverage config file", type=str, default="", ) parser.add_argument( "--disable-cov-branch", action="store_true", help="Whether to enable branch coverage calculation", ) parser.add_argument( "--ignore-glob", help="The path of ignored test file", type=str, default="", ) args = parser.parse_args() print("Working directory: " + str(os.getcwd())) print("Args.p: " + str(args.p)) print("Args.t: " + str(args.t)) print("Args.l: " + str(args.l)) print("Args.m: " + str(args.m)) print("Args.n: " + str(args.n)) print("Args.o: " + str(args.o)) print("Args.model-name: " + str(args.model_name)) print("Args.timeout: " + str(args.timeout)) print("Args.coverage-config: " + str(args.coverage_config)) print("Args.ignore-glob: " + str(args.ignore_glob)) print("Args.disable-cov-branch: " + str(args.disable_cov_branch)) test_paths_list = [str(Path(path).absolute()) for path in args.t] # display a list of all Python packages installed in the current Python environment run_command(["pip", "list"]) run_command(["pip", "show", "promptflow", "promptflow-sdk"]) pytest_command = ["pytest", f"--junitxml={args.o}"] pytest_command += test_paths_list if args.coverage_config: if args.p: cov_path_list = [f"--cov={path}" for path in args.p] pytest_command += cov_path_list if not args.disable_cov_branch: pytest_command += ["--cov-branch"] pytest_command += [ # noqa: W503 "--cov-report=term", "--cov-report=html", "--cov-report=xml", ] pytest_command = pytest_command + [f"--cov-config={args.coverage_config}"] if args.ignore_glob: pytest_command = pytest_command + [f"--ignore-glob={args.ignore_glob}"] pytest_command += [ "-n", args.n, "--dist", "loadfile", "--log-level=info", "--log-format=%(asctime)s %(levelname)s %(message)s", "--log-date-format=[%Y-%m-%d %H:%M:%S]", "--durations=5", "-ra", "-vv", ] if args.timeout: pytest_command = pytest_command + [ "--timeout", args.timeout, "--timeout_method", "thread", ] if args.m != "all": pytest_command = pytest_command + ["-m", args.m] if args.model_name: pytest_command = pytest_command + ["--model-name", args.model_name] # pytest --junit-xml=test-results.xml --cov=azure.ai.ml --cov-report=html --cov-report=xml -ra ./tests/*/unittests/ error_code, _ = run_command(pytest_command, throw_on_retcode=False) # https://docs.pytest.org/en/7.1.x/reference/exit-codes.html if error_code == 1: print_red("Tests were collected and run but some of the tests failed.") elif error_code == 2: print_red("Test execution was interrupted by the user.") elif error_code == 3: print_red("Internal error happened while executing tests.") elif error_code == 4: print_red("pytest command line usage error.") elif error_code == 5: print_red("No tests were collected.") sys.exit(error_code)
promptflow/scripts/building/run_coverage_tests.py/0
{ "file_path": "promptflow/scripts/building/run_coverage_tests.py", "repo_id": "promptflow", "token_count": 1969 }
23
# Curl Install Script Information The scripts in this directory are used for installing through curl and they point to the packages on PyPI. ## Install or update promptflow curl https://promptflowartifact.blob.core.windows.net/linux-install-scripts/install | bash The script can also be downloaded and run locally. You may have to restart your shell in order for the changes to take effect. ## Uninstall promptflow Uninstall the promptflow by directly deleting the files from the location chosen at the time of installation. 1. Remove the installed CLI files. ```bash # The default install/executable location is the user's home directory ($HOME). rm -r $HOME/lib/promptflow rm $HOME/bin/pf rm $HOME/bin/pfs rm $HOME/bin/pfazure ``` 2. Modify your `$HOME/.bash_profile` or `$HOME/.bashrc` file to remove the following line: ```text export PATH=$PATH:$HOME/bin ``` 3. If using `bash` or `zsh`, reload your shell's command cache. ```bash hash -r ```
promptflow/scripts/installer/curl_install_pypi/README.md/0
{ "file_path": "promptflow/scripts/installer/curl_install_pypi/README.md", "repo_id": "promptflow", "token_count": 305 }
24
DIM objshell set objshell = wscript.createobject("wscript.shell") iReturn = objshell.run("pfs.bat start --force", 0, true)
promptflow/scripts/installer/windows/scripts/promptflow_service.vbs/0
{ "file_path": "promptflow/scripts/installer/windows/scripts/promptflow_service.vbs", "repo_id": "promptflow", "token_count": 41 }
25
- name: {{ step_name }} uses: azure/login@v1 with: creds: ${{ '{{' }} secrets.AZURE_CREDENTIALS }}
promptflow/scripts/readme/ghactions_driver/workflow_steps/step_azure_login.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_steps/step_azure_login.yml.jinja2", "repo_id": "promptflow", "token_count": 47 }
26
# This code is autogenerated. # Code is generated by running custom script: python3 readme.py # Any manual changes to this file may cause incorrect behavior. # Any manual changes will be overwritten if the code is regenerated. name: {{ workflow_name }} on: schedule: - cron: "{{ crontab }}" # {{ crontab_comment }} pull_request: branches: [ main ] paths: {{ path_filter }} workflow_dispatch: env: IS_IN_CI_PIPELINE: "true" jobs: {{ workflow_name }}: {%- filter indent(width=4) -%} {% block steps %} {% endblock steps %} {%- endfilter -%}
promptflow/scripts/readme/ghactions_driver/workflow_templates/workflow_skeleton.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_templates/workflow_skeleton.yml.jinja2", "repo_id": "promptflow", "token_count": 195 }
27
import argparse import os import re from jinja2 import Environment, FileSystemLoader def make_pythonic_variable_name(input_string): variable_name = input_string.strip() variable_name = re.sub(r'\W|^(?=\d)', '_', variable_name) if not variable_name[0].isalpha() and variable_name[0] != '_': variable_name = f'_{variable_name}' return variable_name def convert_tool_name_to_class_name(tool_name): return ''.join(word.title() for word in tool_name.split('_')) def create_file(path): with open(path, 'w'): pass def create_folder(path): os.makedirs(path, exist_ok=True) def create_tool_project_structure(destination: str, package_name: str, tool_name: str, function_name: str, is_class_way=False): if is_class_way: class_name = convert_tool_name_to_class_name(tool_name) # Load templates templates_abs_path = os.path.join(os.path.dirname(__file__), "templates") file_loader = FileSystemLoader(templates_abs_path) env = Environment(loader=file_loader) # Create new directory if os.path.exists(destination): print("Destination already exists. Please choose another one.") return os.makedirs(destination, exist_ok=True) # Generate setup.py template = env.get_template('setup.py.j2') output = template.render(package_name=package_name, tool_name=tool_name) with open(os.path.join(destination, 'setup.py'), 'w') as f: f.write(output) # Generate MANIFEST.in template = env.get_template('MANIFEST.in.j2') output = template.render(package_name=package_name) with open(os.path.join(destination, 'MANIFEST.in'), 'w') as f: f.write(output) # Create tools folder and __init__.py, tool.py inside it tools_dir = os.path.join(destination, package_name, 'tools') create_folder(tools_dir) create_file(os.path.join(tools_dir, '__init__.py')) with open(os.path.join(tools_dir, '__init__.py'), 'w') as f: f.write('__path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore\n') # Generate tool.py if is_class_way: template = env.get_template('tool2.py.j2') output = template.render(class_name=class_name, function_name=function_name) else: template = env.get_template('tool.py.j2') output = template.render(function_name=function_name) with open(os.path.join(tools_dir, f'{tool_name}.py'), 'w') as f: f.write(output) # Generate utils.py template = env.get_template('utils.py.j2') output = template.render() with open(os.path.join(tools_dir, 'utils.py'), 'w') as f: f.write(output) create_file(os.path.join(destination, package_name, '__init__.py')) with open(os.path.join(destination, package_name, '__init__.py'), 'w') as f: f.write('__path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore\n') # Create yamls folder and __init__.py inside it yamls_dir = os.path.join(destination, package_name, 'yamls') create_folder(yamls_dir) # Create tool yaml if is_class_way: template = env.get_template('tool2.yaml.j2') output = template.render(package_name=package_name, tool_name=tool_name, class_name=class_name, function_name=function_name) else: template = env.get_template('tool.yaml.j2') output = template.render(package_name=package_name, tool_name=tool_name, function_name=function_name) with open(os.path.join(yamls_dir, f'{tool_name}.yaml'), 'w') as f: f.write(output) # Create test folder and __init__.py inside it tests_dir = os.path.join(destination, 'tests') create_folder(tests_dir) create_file(os.path.join(tests_dir, '__init__.py')) # Create test_tool.py if is_class_way: template = env.get_template('test_tool2.py.j2') output = template.render(package_name=package_name, tool_name=tool_name, class_name=class_name, function_name=function_name) else: template = env.get_template('test_tool.py.j2') output = template.render(package_name=package_name, tool_name=tool_name, function_name=function_name) with open(os.path.join(tests_dir, f'test_{tool_name}.py'), 'w') as f: f.write(output) print(f'Generated tool package template for {package_name} at {destination}') if __name__ == "__main__": parser = argparse.ArgumentParser(description="promptflow tool template generation arguments.") parser.add_argument("--package-name", "-p", type=str, help="your tool package's name", required=True) parser.add_argument("--destination", "-d", type=str, help="target folder you want to place the generated template", required=True) parser.add_argument("--tool-name", "-t", type=str, help="your tool's name, by default is hello_world_tool", required=False) parser.add_argument("--function-name", "-f", type=str, help="your tool's function name, by default is your tool's name", required=False) parser.add_argument("--use-class", action='store_true', help="Specify whether to use a class implementation way.") args = parser.parse_args() destination = args.destination package_name = make_pythonic_variable_name(args.package_name) package_name = package_name.lower() if args.tool_name: tool_name = make_pythonic_variable_name(args.tool_name) else: tool_name = 'hello_world_tool' tool_name = tool_name.lower() if args.function_name: function_name = make_pythonic_variable_name(args.function_name) else: function_name = tool_name function_name = function_name.lower() create_tool_project_structure(destination, package_name, tool_name, function_name, args.use_class)
promptflow/scripts/tool/generate_tool_package_template.py/0
{ "file_path": "promptflow/scripts/tool/generate_tool_package_template.py", "repo_id": "promptflow", "token_count": 2385 }
28
import re from azure.core.exceptions import HttpResponseError, ResourceExistsError from azure.identity import ClientSecretCredential from azure.keyvault.secrets import SecretClient from exceptions import ( SecretNameAlreadyExistsException, SecretNameInvalidException, SecretNoSetPermissionException, ) key_vault_name = "github-promptflow" container_name = "tools" KVUri = f"https://{key_vault_name}.vault.azure.net" def init_used_secret_names(client: SecretClient): global reserved_secret_names reserved_secret_names = list_secret_names(client) def get_secret_client( tenant_id: str, client_id: str, client_secret: str ) -> SecretClient: credential = ClientSecretCredential(tenant_id, client_id, client_secret) client = SecretClient(vault_url=KVUri, credential=credential) return client reserved_secret_names = [] def get_secret(secret_name: str, client: SecretClient): secret = client.get_secret(secret_name) return secret.value def list_secret_names(client: SecretClient) -> list: secret_properties = client.list_properties_of_secrets() return [secret.name for secret in secret_properties] def validate_secret_name(secret_name: str): # Check if secret name is valid. Secret name can only contain alphanumeric characters and dashes. pattern = "^[a-zA-Z0-9-]+$" if not re.match(pattern, secret_name): raise SecretNameInvalidException( "Secret name can only contain alphanumeric characters and dashes" ) # Check if secret name is one of the reserved names if secret_name in reserved_secret_names: raise SecretNameAlreadyExistsException( f"Secret name {secret_name} already exists" ) def upload_secret(client: SecretClient, secret_name: str, secret_value: str): try: client.set_secret(secret_name, secret_value) except ResourceExistsError as ex: if "in a deleted but recoverable state" in str(ex): raise SecretNameAlreadyExistsException( f"Secret name {secret_name} is deleted but recoverable, and its name cannot be reused" ) except HttpResponseError as ex: if ( ex.status_code == 403 and "does not have secrets set permission on key vault" in str(ex) ): raise SecretNoSetPermissionException( f"No set permission on key vault {key_vault_name}" ) print("Done.")
promptflow/scripts/tool/utils/secret_manager.py/0
{ "file_path": "promptflow/scripts/tool/utils/secret_manager.py", "repo_id": "promptflow", "token_count": 894 }
29
from openai import OpenAIError from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException openai_error_code_ref_message = "Error reference: https://platform.openai.com/docs/guides/error-codes/api-errors" def to_openai_error_message(e: Exception) -> str: ex_type = type(e).__name__ if str(e) == "<empty message>": msg = "The api key is invalid or revoked. " \ "You can correct or regenerate the api key of your connection." return f"OpenAI API hits {ex_type}: {msg}" # for models that do not support the `functions` parameter. elif "Unrecognized request argument supplied: functions" in str(e): msg = "Current model does not support the `functions` parameter. If you are using openai connection, then " \ "please use gpt-3.5-turbo, gpt-4, gpt-4-32k, gpt-3.5-turbo-0613 or gpt-4-0613. You can refer to " \ "https://platform.openai.com/docs/guides/gpt/function-calling. If you are using azure openai " \ "connection, then please first go to your Azure OpenAI resource, deploy model 'gpt-35-turbo' or " \ "'gpt-4' with version 0613, then go to prompt flow connection page, upgrade connection api version to " \ "'2023-07-01-preview'. You can refer to " \ "https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/function-calling." return f"OpenAI API hits {ex_type}: {msg}" elif "The completion operation does not work with the specified model" in str(e) or \ "logprobs, best_of and echo parameters are not available" in str(e): msg = "The completion operation does not work with the current model. " \ "Completion API is a legacy api and is going to be deprecated soon. " \ "Please change to use Chat API for current model. " \ "You could refer to guideline at https://aka.ms/pfdoc/chat-prompt " \ "or view the samples in our gallery that contain 'Chat' in the name." return f"OpenAI API hits {ex_type}: {msg}" elif "Invalid content type. image_url is only supported by certain models" in str(e): msg = "Current model does not support the image input. If you are using openai connection, then please use " \ "gpt-4-vision-preview. You can refer to https://platform.openai.com/docs/guides/vision." \ "If you are using azure openai connection, then please first go to your Azure OpenAI resource, " \ "create a GPT-4 Turbo with Vision deployment by selecting model name: \"gpt-4\" and "\ "model version \"vision-preview\". You can refer to " \ "https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/gpt-with-vision" return f"OpenAI API hits {ex_type}: {msg}" elif ("\'response_format\' of type" in str(e) and "is not supported with this model." in str(e))\ or ("Additional properties are not allowed" in str(e) and "unexpected) - \'response_format\'" in str(e)): msg = "The response_format parameter needs to be a dictionary such as {\"type\": \"text\"}. " \ "The value associated with the type key should be either 'text' or 'json_object' " \ "If you are using openai connection, you can only set response_format to { \"type\": \"json_object\" } " \ "when calling gpt-3.5-turbo-1106 or gpt-4-1106-preview to enable JSON mode. You can refer to " \ "https://platform.openai.com/docs/guides/text-generation/json-mode. If you are using azure openai " \ "connection, then please first go to your Azure OpenAI resource, deploy model 'gpt-35-turbo-1106' or " \ "'gpt-4-1106-preview'. You can refer to " \ "https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/json-mode?tabs=python." return f"OpenAI API hits {ex_type}: {msg}" else: return f"OpenAI API hits {ex_type}: {str(e)} [{openai_error_code_ref_message}]" class WrappedOpenAIError(UserErrorException): """Refine error messages on top of native openai errors.""" def __init__(self, ex: OpenAIError, **kwargs): self._ex = ex super().__init__(target=ErrorTarget.TOOL, **kwargs) @property def message(self): return str(to_openai_error_message(self._ex)) @property def error_codes(self): """The hierarchy of the error codes. We follow the "Microsoft REST API Guidelines" to define error codes in a hierarchy style. See the below link for details: https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses This list will be converted into an error code hierarchy by the prompt flow framework. For this case, it will be converted into a data structure that equivalent to: { "code": "UserError", "innerError": { "code": "OpenAIError", "innerError": { "code": self._ex.__class__.__name__, "innerError": None } } } """ return ["UserError", "OpenAIError", self._ex.__class__.__name__] class ExceedMaxRetryTimes(WrappedOpenAIError): """Base exception raised when retry exceeds max times.""" @property def message(self): return "Exceed max retry times. " + super().message class ToolValidationError(UserErrorException): """Base exception raised when failed to validate tool.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class LLMError(UserErrorException): """Base exception raised when failed to call openai api with non-OpenAIError.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class JinjaTemplateError(ToolValidationError): """Base exception raised when failed to render jinja template.""" pass class ChatAPIInvalidRole(ToolValidationError): """Base exception raised when failed to validate chat api role.""" pass class ChatAPIFunctionRoleInvalidFormat(ToolValidationError): """Base exception raised when failed to validate chat api function role format.""" pass class ChatAPIInvalidFunctions(ToolValidationError): """Base exception raised when failed to validate functions when call chat api.""" pass class FunctionCallNotSupportedInStreamMode(ToolValidationError): """Base exception raised when use functions parameter in stream mode when call chat api.""" pass class InvalidConnectionType(ToolValidationError): """Base exception raised when failed to pass invalid connection type.""" pass class SerpAPISystemError(SystemErrorException): """Base exception raised when failed to call serp api with system error.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class SerpAPIUserError(UserErrorException): """Base exception raised when failed to call serp api with user error.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class OpenModelLLMOnlineEndpointError(UserErrorException): """Base exception raised when the call to an online endpoint failed.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class OpenModelLLMUserError(UserErrorException): """Base exception raised when the call to Open Model LLM failed with a user error.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class OpenModelLLMKeyValidationError(ToolValidationError): """Base exception raised when failed to validate functions when call chat api.""" def __init__(self, **kwargs): super().__init__(**kwargs) class AzureContentSafetyInputValueError(UserErrorException): """Base exception raised when the input type of Azure Content Safety is invalid.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL) class AzureContentSafetySystemError(SystemErrorException): """Base exception raised when failed to call Azure Content Safety api with system error.""" def __init__(self, **kwargs): super().__init__(**kwargs, target=ErrorTarget.TOOL)
promptflow/src/promptflow-tools/promptflow/tools/exception.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/exception.py", "repo_id": "promptflow", "token_count": 3068 }
30
import pytest import json from promptflow.tools.openai import chat, completion, OpenAI from promptflow.tools.exception import WrappedOpenAIError @pytest.fixture def openai_provider(open_ai_connection) -> OpenAI: return OpenAI(open_ai_connection) @pytest.mark.usefixtures("use_secrets_config_file") @pytest.mark.skip_if_no_api_key("open_ai_connection") class TestOpenAI: def test_openai_completion(self, openai_provider): prompt_template = "please complete this sentence: world war II " openai_provider.completion(prompt=prompt_template) def test_openai_stream_completion(self, openai_provider): prompt_template = "please complete this sentence: world war II " openai_provider.completion(prompt=prompt_template, stream=True) def test_openai_completion_api(self, open_ai_connection): prompt_template = "please complete this sentence: world war II " completion(open_ai_connection, prompt=prompt_template) def test_openai_chat(self, openai_provider, example_prompt_template, chat_history): result = openai_provider.chat( prompt=example_prompt_template, model="gpt-3.5-turbo", max_tokens=32, temperature=0, user_input="Fill in more details about trend 2.", chat_history=chat_history, ) assert "trend 2" in result.lower() def test_openai_stream_chat(self, openai_provider, example_prompt_template, chat_history): result = openai_provider.chat( prompt=example_prompt_template, model="gpt-3.5-turbo", max_tokens=32, temperature=0, user_input="Fill in more details about trend 2.", chat_history=chat_history, stream=True, ) answer = "" while True: try: answer += next(result) except Exception: break assert "trend 2" in answer.lower() def test_openai_chat_api(self, open_ai_connection, example_prompt_template, chat_history): result = chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-3.5-turbo", max_tokens="inF", temperature=0, user_input="Write a slogan for product X", chat_history=chat_history, ) assert "Product X".lower() in result.lower() def test_openai_prompt_with_function( self, open_ai_connection, example_prompt_template_with_function, functions): result = chat( connection=open_ai_connection, prompt=example_prompt_template_with_function, model="gpt-3.5-turbo", temperature=0, # test input functions. functions=functions, # test input prompt containing function role. name="get_location", result=json.dumps({"location": "Austin"}), question="What is the weather in Boston?", prev_question="Where is Boston?" ) assert result["function_call"]["name"] == "get_current_weather" def test_openai_chat_with_response_format(self, open_ai_connection, example_prompt_template, chat_history): result = chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-4-1106-preview", temperature=0, user_input="Write a slogan for product X, please reponse with json.", chat_history=chat_history, response_format={"type": "json_object"} ) assert "Product X".lower() in result.lower() @pytest.mark.parametrize( "response_format, user_input, error_message, error_codes, exception", [ ({"type": "json"}, "Write a slogan for product X, please reponse with json.", "\'json\' is not one of [\'json_object\', \'text\']", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), ({"type": "json_object"}, "Write a slogan for product X", "\'messages\' must contain the word \'json\' in some form", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), ({"types": "json_object"}, "Write a slogan for product X", "The response_format parameter needs to be a dictionary such as {\"type\": \"text\"}", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError) ] ) def test_openai_chat_with_invalid_response_format( self, open_ai_connection, example_prompt_template, chat_history, response_format, user_input, error_message, error_codes, exception ): with pytest.raises(exception) as exc_info: chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-4-1106-preview", temperature=0, user_input=user_input, chat_history=chat_history, response_format=response_format ) assert error_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_openai_chat_with_not_support_response_format_json_mode_model( self, open_ai_connection, example_prompt_template, chat_history ): with pytest.raises(WrappedOpenAIError) as exc_info: chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-3.5-turbo", temperature=0, user_input="Write a slogan for product X, please reponse with json.", chat_history=chat_history, response_format={"type": "json_object"} ) error_message = "The response_format parameter needs to be a dictionary such as {\"type\": \"text\"}." assert error_message in exc_info.value.message assert exc_info.value.error_codes == "UserError/OpenAIError/BadRequestError".split("/") def test_openai_chat_with_response_format_text_mode( self, open_ai_connection, example_prompt_template, chat_history ): result = chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-3.5-turbo", temperature=0, user_input="Write a slogan for product X.", chat_history=chat_history, response_format={"type": "text"} ) assert "Product X".lower() in result.lower()
promptflow/src/promptflow-tools/tests/test_openai.py/0
{ "file_path": "promptflow/src/promptflow-tools/tests/test_openai.py", "repo_id": "promptflow", "token_count": 3123 }
31
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # pylint: disable=wrong-import-position import json import time from promptflow._cli._pf.help import show_privacy_statement, show_welcome_message from promptflow._cli._user_agent import USER_AGENT from promptflow._cli._utils import _get_cli_activity_name, get_client_info_for_cli from promptflow._sdk._telemetry import ActivityType, get_telemetry_logger, log_activity # Log the start time start_time = time.perf_counter() # E402 module level import not at top of file import argparse # noqa: E402 import logging # noqa: E402 import sys # noqa: E402 from promptflow._cli._pf_azure._flow import add_parser_flow, dispatch_flow_commands # noqa: E402 from promptflow._cli._pf_azure._run import add_parser_run, dispatch_run_commands # noqa: E402 from promptflow._sdk._utils import ( # noqa: E402 get_promptflow_sdk_version, print_pf_version, setup_user_agent_to_operation_context, ) from promptflow._utils.logger_utils import get_cli_sdk_logger # noqa: E402 # get logger for CLI logger = get_cli_sdk_logger() def run_command(args): # Log the init finish time init_finish_time = time.perf_counter() try: # --verbose, enable info logging if hasattr(args, "verbose") and args.verbose: for handler in logger.handlers: handler.setLevel(logging.INFO) # --debug, enable debug logging if hasattr(args, "debug") and args.debug: for handler in logger.handlers: handler.setLevel(logging.DEBUG) if args.version: print_pf_version() elif args.action == "run": dispatch_run_commands(args) elif args.action == "flow": dispatch_flow_commands(args) except KeyboardInterrupt as ex: logger.debug("Keyboard interrupt is captured.") raise ex except SystemExit as ex: # some code directly call sys.exit, this is to make sure command metadata is logged exit_code = ex.code if ex.code is not None else 1 logger.debug(f"Code directly call sys.exit with code {exit_code}") raise ex except Exception as ex: logger.debug(f"Command {args} execute failed. {str(ex)}") raise ex finally: # Log the invoke finish time invoke_finish_time = time.perf_counter() logger.info( "Command ran in %.3f seconds (init: %.3f, invoke: %.3f)", invoke_finish_time - start_time, init_finish_time - start_time, invoke_finish_time - init_finish_time, ) def get_parser_args(argv): parser = argparse.ArgumentParser( prog="pfazure", formatter_class=argparse.RawDescriptionHelpFormatter, description="pfazure: manage prompt flow assets in azure. Learn more: https://microsoft.github.io/promptflow.", ) parser.add_argument( "-v", "--version", dest="version", action="store_true", help="show current CLI version and exit" ) subparsers = parser.add_subparsers() add_parser_run(subparsers) add_parser_flow(subparsers) return parser.prog, parser.parse_args(argv) def _get_workspace_info(args): try: subscription_id, resource_group_name, workspace_name = get_client_info_for_cli( subscription_id=args.subscription, resource_group_name=args.resource_group, workspace_name=args.workspace_name, ) return { "subscription_id": subscription_id, "resource_group_name": resource_group_name, "workspace_name": workspace_name, } except Exception: # fall back to empty dict if workspace info is not available return {} def entry(argv): """ Control plane CLI tools for promptflow cloud version. """ prog, args = get_parser_args(argv) if hasattr(args, "user_agent"): setup_user_agent_to_operation_context(args.user_agent) logger = get_telemetry_logger() custom_dimensions = _get_workspace_info(args) with log_activity( logger, _get_cli_activity_name(cli=prog, args=args), activity_type=ActivityType.PUBLICAPI, custom_dimensions=custom_dimensions, ): run_command(args) def main(): """Entrance of pf CLI.""" command_args = sys.argv[1:] if len(command_args) == 1 and command_args[0] == "version": version_dict = {"promptflow": get_promptflow_sdk_version()} return json.dumps(version_dict, ensure_ascii=False, indent=2, sort_keys=True, separators=(",", ": ")) + "\n" if len(command_args) == 0: # print privacy statement & welcome message like azure-cli show_privacy_statement() show_welcome_message() command_args.append("-h") elif len(command_args) == 1: # pfazure only has "pf --version" with 1 layer if command_args[0] not in ["--version", "-v"]: command_args.append("-h") setup_user_agent_to_operation_context(USER_AGENT) entry(command_args) if __name__ == "__main__": main()
promptflow/src/promptflow/promptflow/_cli/_pf_azure/entry.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf_azure/entry.py", "repo_id": "promptflow", "token_count": 2094 }
32
{"groundtruth": "App", "prediction": "App"}
promptflow/src/promptflow/promptflow/_cli/data/evaluation_flow/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/evaluation_flow/data.jsonl", "repo_id": "promptflow", "token_count": 15 }
33
from traceback import TracebackException from promptflow._utils.exception_utils import ( ADDITIONAL_INFO_USER_EXECUTION_ERROR, is_pf_core_frame, last_frame_info, remove_suffix, ) from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException, ValidationException class UnexpectedError(SystemErrorException): """Exception raised for unexpected errors that should not occur under normal circumstances.""" pass class NotSupported(UserErrorException): """This exception should be raised when a feature is not supported by the package or product. Customers should take action, such as upgrading the package or using the product in the correct way, to resolve it. """ pass class PackageToolNotFoundError(ValidationException): """Exception raised when package tool is not found in the current runtime environment.""" pass class MissingRequiredInputs(ValidationException): pass class InputTypeMismatch(ValidationException): pass class ToolCanceledError(UserErrorException): """Exception raised when tool execution is canceled.""" pass class InvalidSource(ValidationException): pass class ToolLoadError(UserErrorException): """Exception raised when tool load failed.""" def __init__(self, module: str = None, **kwargs): super().__init__(target=ErrorTarget.TOOL, module=module, **kwargs) class ToolExecutionError(UserErrorException): """Exception raised when tool execution failed.""" def __init__(self, *, node_name: str, module: str = None): self._node_name = node_name super().__init__(target=ErrorTarget.TOOL, module=module) @property def message(self): if self.inner_exception: error_type_and_message = f"({self.inner_exception.__class__.__name__}) {self.inner_exception}" return remove_suffix(self._message, ".") + f": {error_type_and_message}" else: return self._message @property def message_format(self): return "Execution failure in '{node_name}'." @property def message_parameters(self): return {"node_name": self._node_name} @property def tool_last_frame_info(self): """Return the line number inside the tool where the error occurred.""" return last_frame_info(self.inner_exception) @property def tool_traceback(self): """Return the traceback inside the tool's source code scope. The traceback inside the promptflow's internal code will be taken off. """ exc = self.inner_exception if exc and exc.__traceback__ is not None: tb = exc.__traceback__.tb_next if tb is not None: # The first frames are always our code invoking the tool. # We do not want to dump it to user code's traceback. # So, skip these frames from pf core module. while is_pf_core_frame(tb.tb_frame) and tb.tb_next is not None: tb = tb.tb_next # We don't use traceback.format_exception since its interface differs between 3.8 and 3.10. # Use this internal class to adapt to different python versions. te = TracebackException(type(exc), exc, tb) formatted_tb = "".join(te.format()) return formatted_tb return None @property def additional_info(self): """Set the tool exception details as additional info.""" if not self.inner_exception: # Only populate additional info when inner exception is present. return None info = { "type": self.inner_exception.__class__.__name__, "message": str(self.inner_exception), "traceback": self.tool_traceback, } info.update(self.tool_last_frame_info) return { ADDITIONAL_INFO_USER_EXECUTION_ERROR: info, } class GenerateMetaUserError(UserErrorException): """Base exception raised when failed to validate tool.""" def __init__(self, **kwargs): super().__init__(target=ErrorTarget.EXECUTOR, **kwargs) class MetaFileNotFound(GenerateMetaUserError): pass class MetaFileReadError(GenerateMetaUserError): pass class RunRecordNotFound(SystemErrorException): pass class FlowOutputUnserializable(UserErrorException): pass class ProcessPoolError(SystemErrorException): pass class DuplicateToolMappingError(ValidationException): """Exception raised when multiple tools are linked to the same deprecated tool id.""" pass
promptflow/src/promptflow/promptflow/_core/_errors.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/_errors.py", "repo_id": "promptflow", "token_count": 1699 }
34
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore # flake8: noqa """Put some imports here for internal packages to minimize the effort of refactoring.""" from promptflow._constants import PROMPTFLOW_CONNECTIONS from promptflow._core._errors import GenerateMetaUserError, PackageToolNotFoundError, ToolExecutionError from promptflow._core.cache_manager import AbstractCacheManager, CacheManager, enable_cache from promptflow._core.connection_manager import ConnectionManager from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow._core.log_manager import NodeLogManager, NodeLogWriter from promptflow._core.metric_logger import add_metric_logger from promptflow._core.openai_injector import inject_openai_api from promptflow._core.operation_context import OperationContext from promptflow._core.run_tracker import RunRecordNotFound, RunTracker from promptflow._core.tool import ToolInvoker, ToolProvider, tool from promptflow._core.tool_meta_generator import ( JinjaParsingError, MultipleToolsDefined, NoToolDefined, PythonParsingError, ReservedVariableCannotBeUsed, generate_prompt_meta, generate_python_meta, generate_tool_meta_dict_by_file, is_tool, ) from promptflow._core.tools_manager import ( BuiltinsManager, CustomPythonToolLoadError, EmptyCodeInCustomTool, MissingTargetFunction, ToolsManager, builtins, collect_package_tools, gen_dynamic_list, register_apis, register_builtins, register_connections, retrieve_tool_func_result, ) from promptflow._core.tracer import Tracer from promptflow._sdk._constants import LOCAL_MGMT_DB_PATH from promptflow._sdk._serving.response_creator import ResponseCreator from promptflow._sdk._serving.swagger import generate_swagger from promptflow._sdk._serving.utils import ( get_output_fields_to_remove, get_sample_json, handle_error_to_response, load_request_data, streaming_response_required, validate_request_data, ) from promptflow._sdk._utils import ( get_used_connection_names_from_environment_variables, setup_user_agent_to_operation_context, update_environment_variables_with_connections, ) from promptflow._utils.context_utils import _change_working_dir, inject_sys_path from promptflow._utils.credential_scrubber import CredentialScrubber from promptflow._utils.dataclass_serializer import deserialize_dataclass, serialize from promptflow._utils.exception_utils import ( ErrorResponse, ExceptionPresenter, JsonSerializedPromptflowException, RootErrorCode, infer_error_code_from_class, ) from promptflow._utils.execution_utils import handle_line_failures from promptflow._utils.feature_utils import Feature, FeatureState, get_feature_list from promptflow._utils.logger_utils import ( DATETIME_FORMAT, LOG_FORMAT, CredentialScrubberFormatter, FileHandler, FileHandlerConcurrentWrapper, LogContext, bulk_logger, flow_logger, get_logger, logger, update_log_path, ) from promptflow._utils.multimedia_data_converter import ( AbstractMultimediaInfoConverter, MultimediaConverter, MultimediaInfo, ResourceType, ) from promptflow._utils.multimedia_utils import ( _create_image_from_file, convert_multimedia_data_to_base64, is_multimedia_dict, persist_multimedia_data, resolve_multimedia_data_recursively, ) from promptflow._utils.utils import ( AttrDict, camel_to_snake, count_and_log_progress, load_json, reverse_transpose, set_context, transpose, ) from promptflow._version import VERSION from promptflow.batch._batch_inputs_processor import apply_inputs_mapping from promptflow.executor._errors import InputNotFound from promptflow.executor._tool_invoker import DefaultToolInvoker from promptflow.storage._run_storage import DefaultRunStorage
promptflow/src/promptflow/promptflow/_internal/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_internal/__init__.py", "repo_id": "promptflow", "token_count": 1306 }
35
# Prompt Flow Service This document will describe the usage of pfs(prompt flow service) CLI. ### Start prompt flow service (optional) If you don't install pfs as a service, you need to start pfs manually. pfs CLI provides **start** command to start service. You can also use this command to specify the service port. ```commandline usage: pfs [-h] [-p PORT] Start prompt flow service. optional arguments: -h, --help show this help message and exit -p PORT, --port PORT port of the promptflow service ``` If you don't specify a port to start service, pfs will first use the port in the configure file in "~/.promptflow/pfs.port". If not found port configuration or the port is used, pfs will use a random port to start the service. ### Swagger of service After start the service, it will provide Swagger UI documentation, served from "http://localhost:your-port/v1.0/swagger.json". For details, please refer to [swagger.json](./swagger.json). #### Generate C# client 1. Right click the project, Add -> Rest API Client... -> Generate with OpenAPI Generator 2. It will open a dialog, fill in the file name and swagger url, it will generate the client under the project. For details, please refer to [REST API Client Code Generator](https://marketplace.visualstudio.com/items?itemName=ChristianResmaHelle.ApiClientCodeGenerator2022).
promptflow/src/promptflow/promptflow/_sdk/_service/README.md/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/README.md", "repo_id": "promptflow", "token_count": 387 }
36
# --------------------------------------------------------- # Copyright (c) 2013-2022 Caleb P. Burns credits dahlia <https://github.com/dahlia> # Licensed under the MPLv2 License. See License.txt in the project root for # license information. # --------------------------------------------------------- """ This file code has been vendored from pathspec repo. Please do not edit it, unless really necessary """ import dataclasses import os import posixpath import re import warnings from typing import Any, AnyStr, Iterable, Iterator from typing import Match as MatchHint from typing import Optional from typing import Pattern as PatternHint from typing import Tuple, Union NORMALIZE_PATH_SEPS = [sep for sep in [os.sep, os.altsep] if sep and sep != posixpath.sep] # The encoding to use when parsing a byte string pattern. # This provides the base definition for patterns. _BYTES_ENCODING = "latin1" class Pattern(object): """ The :class:`Pattern` class is the abstract definition of a pattern. """ # Make the class dict-less. __slots__ = ("include",) def __init__(self, include: Optional[bool]) -> None: """ Initializes the :class:`Pattern` instance. *include* (:class:`bool` or :data:`None`) is whether the matched files should be included (:data:`True`), excluded (:data:`False`), or is a null-operation (:data:`None`). """ self.include = include """ *include* (:class:`bool` or :data:`None`) is whether the matched files should be included (:data:`True`), excluded (:data:`False`), or is a null-operation (:data:`None`). """ def match(self, files: Iterable[str]) -> Iterator[str]: """ DEPRECATED: This method is no longer used and has been replaced by :meth:`.match_file`. Use the :meth:`.match_file` method with a loop for similar results. Matches this pattern against the specified files. *files* (:class:`~collections.abc.Iterable` of :class:`str`) contains each file relative to the root directory (e.g., :data:`"relative/path/to/file"`). Returns an :class:`~collections.abc.Iterable` yielding each matched file path (:class:`str`). """ warnings.warn( ( "{0.__module__}.{0.__qualname__}.match() is deprecated. Use " "{0.__module__}.{0.__qualname__}.match_file() with a loop for " "similar results." ).format(self.__class__), DeprecationWarning, stacklevel=2, ) for file in files: if self.match_file(file) is not None: yield file def match_file(self, file: str) -> Optional[Any]: """ Matches this pattern against the specified file. *file* (:class:`str`) is the normalized file path to match against. Returns the match result if *file* matched; otherwise, :data:`None`. """ raise NotImplementedError( ("{0.__module__}.{0.__qualname__} must override match_file().").format(self.__class__) ) class RegexPattern(Pattern): """ The :class:`RegexPattern` class is an implementation of a pattern using regular expressions. """ # Keep the class dict-less. __slots__ = ("regex",) def __init__( self, pattern: Union[AnyStr, PatternHint], include: Optional[bool] = None, ) -> None: """ Initializes the :class:`RegexPattern` instance. *pattern* (:class:`str`, :class:`bytes`, :class:`re.Pattern`, or :data:`None`) is the pattern to compile into a regular expression. *include* (:class:`bool` or :data:`None`) must be :data:`None` unless *pattern* is a precompiled regular expression (:class:`re.Pattern`) in which case it is whether matched files should be included (:data:`True`), excluded (:data:`False`), or is a null operation (:data:`None`). .. NOTE:: Subclasses do not need to support the *include* parameter. """ if isinstance(pattern, (str, bytes)): assert include is None, ("include:{!r} must be null when pattern:{!r} is a string.").format( include, pattern ) regex, include = self.pattern_to_regex(pattern) # NOTE: Make sure to allow a null regular expression to be # returned for a null-operation. if include is not None: regex = re.compile(regex) elif pattern is not None and hasattr(pattern, "match"): # Assume pattern is a precompiled regular expression. # - NOTE: Used specified *include*. regex = pattern elif pattern is None: # NOTE: Make sure to allow a null pattern to be passed for a # null-operation. assert include is None, ("include:{!r} must be null when pattern:{!r} is null.").format(include, pattern) else: raise TypeError("pattern:{!r} is not a string, re.Pattern, or None.".format(pattern)) super(RegexPattern, self).__init__(include) self.regex: PatternHint = regex """ *regex* (:class:`re.Pattern`) is the regular expression for the pattern. """ def __eq__(self, other: "RegexPattern") -> bool: """ Tests the equality of this regex pattern with *other* (:class:`RegexPattern`) by comparing their :attr:`~Pattern.include` and :attr:`~RegexPattern.regex` attributes. """ if isinstance(other, RegexPattern): return self.include == other.include and self.regex == other.regex return NotImplemented def match_file(self, file: str) -> Optional["RegexMatchResult"]: """ Matches this pattern against the specified file. *file* (:class:`str`) contains each file relative to the root directory (e.g., "relative/path/to/file"). Returns the match result (:class:`RegexMatchResult`) if *file* matched; otherwise, :data:`None`. """ if self.include is not None: match = self.regex.match(file) if match is not None: return RegexMatchResult(match) return None @classmethod def pattern_to_regex(cls, pattern: str) -> Tuple[str, bool]: """ Convert the pattern into an un-compiled regular expression. *pattern* (:class:`str`) is the pattern to convert into a regular expression. Returns the un-compiled regular expression (:class:`str` or :data:`None`), and whether matched files should be included (:data:`True`), excluded (:data:`False`), or is a null-operation (:data:`None`). .. NOTE:: The default implementation simply returns *pattern* and :data:`True`. """ return pattern, True @dataclasses.dataclass() class RegexMatchResult(object): """ The :class:`RegexMatchResult` data class is used to return information about the matched regular expression. """ # Keep the class dict-less. __slots__ = ("match",) match: MatchHint """ *match* (:class:`re.Match`) is the regex match result. """ class GitWildMatchPatternError(ValueError): """ The :class:`GitWildMatchPatternError` indicates an invalid git wild match pattern. """ class GitWildMatchPattern(RegexPattern): """ The :class:`GitWildMatchPattern` class represents a compiled Git wildmatch pattern. """ # Keep the dict-less class hierarchy. __slots__ = () @classmethod # pylint: disable=too-many-branches,too-many-statements def pattern_to_regex( cls, pattern: AnyStr, ) -> Tuple[Optional[AnyStr], Optional[bool]]: """ Convert the pattern into a regular expression. *pattern* (:class:`str` or :class:`bytes`) is the pattern to convert into a regular expression. Returns the un-compiled regular expression (:class:`str`, :class:`bytes`, or :data:`None`); and whether matched files should be included (:data:`True`), excluded (:data:`False`), or if it is a null-operation (:data:`None`). """ if isinstance(pattern, str): return_type = str elif isinstance(pattern, bytes): return_type = bytes pattern = pattern.decode(_BYTES_ENCODING) else: raise TypeError(f"pattern:{pattern!r} is not a unicode or byte string.") original_pattern = pattern pattern = pattern.strip() if pattern.startswith("#"): # A pattern starting with a hash ('#') serves as a comment # (neither includes nor excludes files). Escape the hash with a # back-slash to match a literal hash (i.e., '\#'). regex = None include = None elif pattern == "/": # EDGE CASE: According to `git check-ignore` (v2.4.1), a single # '/' does not match any file. regex = None include = None elif pattern: if pattern.startswith("!"): # A pattern starting with an exclamation mark ('!') negates the # pattern (exclude instead of include). Escape the exclamation # mark with a back-slash to match a literal exclamation mark # (i.e., '\!'). include = False # Remove leading exclamation mark. pattern = pattern[1:] else: include = True # Allow a regex override for edge cases that cannot be handled # through normalization. override_regex = None # Split pattern into segments. pattern_segments = pattern.split("/") # Normalize pattern to make processing easier. # EDGE CASE: Deal with duplicate double-asterisk sequences. # Collapse each sequence down to one double-asterisk. Iterate over # the segments in reverse and remove the duplicate double # asterisks as we go. for i in range(len(pattern_segments) - 1, 0, -1): prev = pattern_segments[i - 1] seg = pattern_segments[i] if prev == "**" and seg == "**": del pattern_segments[i] if len(pattern_segments) == 2 and pattern_segments[0] == "**" and not pattern_segments[1]: # EDGE CASE: The '**/' pattern should match everything except # individual files in the root directory. This case cannot be # adequately handled through normalization. Use the override. override_regex = "^.+(?P<ps_d>/).*$" if not pattern_segments[0]: # A pattern beginning with a slash ('/') will only match paths # directly on the root directory instead of any descendant # paths. So, remove empty first segment to make pattern relative # to root. del pattern_segments[0] elif len(pattern_segments) == 1 or (len(pattern_segments) == 2 and not pattern_segments[1]): # A single pattern without a beginning slash ('/') will match # any descendant path. This is equivalent to "**/{pattern}". So, # prepend with double-asterisks to make pattern relative to # root. # EDGE CASE: This also holds for a single pattern with a # trailing slash (e.g. dir/). if pattern_segments[0] != "**": pattern_segments.insert(0, "**") else: # EDGE CASE: A pattern without a beginning slash ('/') but # contains at least one prepended directory (e.g. # "dir/{pattern}") should not match "**/dir/{pattern}", # according to `git check-ignore` (v2.4.1). pass if not pattern_segments: # After resolving the edge cases, we end up with no pattern at # all. This must be because the pattern is invalid. raise GitWildMatchPatternError(f"Invalid git pattern: {original_pattern!r}") if not pattern_segments[-1] and len(pattern_segments) > 1: # A pattern ending with a slash ('/') will match all descendant # paths if it is a directory but not if it is a regular file. # This is equivalent to "{pattern}/**". So, set last segment to # a double-asterisk to include all descendants. pattern_segments[-1] = "**" if override_regex is None: # Build regular expression from pattern. output = ["^"] need_slash = False end = len(pattern_segments) - 1 for i, seg in enumerate(pattern_segments): if seg == "**": if i == 0 and i == end: # A pattern consisting solely of double-asterisks ('**') # will match every path. output.append(".+") elif i == 0: # A normalized pattern beginning with double-asterisks # ('**') will match any leading path segments. output.append("(?:.+/)?") need_slash = False elif i == end: # A normalized pattern ending with double-asterisks ('**') # will match any trailing path segments. output.append("(?P<ps_d>/).*") else: # A pattern with inner double-asterisks ('**') will match # multiple (or zero) inner path segments. output.append("(?:/.+)?") need_slash = True elif seg == "*": # Match single path segment. if need_slash: output.append("/") output.append("[^/]+") if i == end: # A pattern ending without a slash ('/') will match a file # or a directory (with paths underneath it). E.g., "foo" # matches "foo", "foo/bar", "foo/bar/baz", etc. output.append("(?:(?P<ps_d>/).*)?") need_slash = True else: # Match segment glob pattern. if need_slash: output.append("/") try: output.append(cls._translate_segment_glob(seg)) except ValueError as e: raise GitWildMatchPatternError(f"Invalid git pattern: {original_pattern!r}") from e if i == end: # A pattern ending without a slash ('/') will match a file # or a directory (with paths underneath it). E.g., "foo" # matches "foo", "foo/bar", "foo/bar/baz", etc. output.append("(?:(?P<ps_d>/).*)?") need_slash = True output.append("$") regex = "".join(output) else: # Use regex override. regex = override_regex else: # A blank pattern is a null-operation (neither includes nor # excludes files). regex = None include = None if regex is not None and return_type is bytes: regex = regex.encode(_BYTES_ENCODING) return regex, include @staticmethod def _translate_segment_glob(pattern: str) -> str: """ Translates the glob pattern to a regular expression. This is used in the constructor to translate a path segment glob pattern to its corresponding regular expression. *pattern* (:class:`str`) is the glob pattern. Returns the regular expression (:class:`str`). """ # NOTE: This is derived from `fnmatch.translate()` and is similar to # the POSIX function `fnmatch()` with the `FNM_PATHNAME` flag set. escape = False regex = "" i, end = 0, len(pattern) while i < end: # Get next character. char = pattern[i] i += 1 if escape: # Escape the character. escape = False regex += re.escape(char) elif char == "\\": # Escape character, escape next character. escape = True elif char == "*": # Multi-character wildcard. Match any string (except slashes), # including an empty string. regex += "[^/]*" elif char == "?": # Single-character wildcard. Match any single character (except # a slash). regex += "[^/]" elif char == "[": # Bracket expression wildcard. Except for the beginning # exclamation mark, the whole bracket expression can be used # directly as regex but we have to find where the expression # ends. # - "[][!]" matches ']', '[' and '!'. # - "[]-]" matches ']' and '-'. # - "[!]a-]" matches any character except ']', 'a' and '-'. j = i # Pass back expression negation. if j < end and pattern[j] == "!": j += 1 # Pass first closing bracket if it is at the beginning of the # expression. if j < end and pattern[j] == "]": j += 1 # Find closing bracket. Stop once we reach the end or find it. while j < end and pattern[j] != "]": j += 1 if j < end: # Found end of bracket expression. Increment j to be one past # the closing bracket: # # [...] # ^ ^ # i j # j += 1 expr = "[" if pattern[i] == "!": # Bracket expression needs to be negated. expr += "^" i += 1 elif pattern[i] == "^": # POSIX declares that the regex bracket expression negation # "[^...]" is undefined in a glob pattern. Python's # `fnmatch.translate()` escapes the caret ('^') as a # literal. To maintain consistency with undefined behavior, # I am escaping the '^' as well. expr += "\\^" i += 1 # Build regex bracket expression. Escape slashes so they are # treated as literal slashes by regex as defined by POSIX. expr += pattern[i:j].replace("\\", "\\\\") # Add regex bracket expression to regex result. regex += expr # Set i to one past the closing bracket. i = j else: # Failed to find closing bracket, treat opening bracket as a # bracket literal instead of as an expression. regex += "\\[" else: # Regular character, escape it for regex. regex += re.escape(char) if escape: raise ValueError(f"Escape character found with no next character to escape: {pattern!r}") return regex @staticmethod def escape(s: AnyStr) -> AnyStr: """ Escape special characters in the given string. *s* (:class:`str` or :class:`bytes`) a filename or a string that you want to escape, usually before adding it to a ".gitignore". Returns the escaped string (:class:`str` or :class:`bytes`). """ if isinstance(s, str): return_type = str string = s elif isinstance(s, bytes): return_type = bytes string = s.decode(_BYTES_ENCODING) else: raise TypeError(f"s:{s!r} is not a unicode or byte string.") # Reference: https://git-scm.com/docs/gitignore#_pattern_format meta_characters = r"[]!*#?" out_string = "".join("\\" + x if x in meta_characters else x for x in string) if return_type is bytes: return out_string.encode(_BYTES_ENCODING) return out_string def normalize_file(file, separators=None): # type - (Union[Text, PathLike], Optional[Collection[Text]]) -> Text """ Normalizes the file path to use the POSIX path separator (i.e., ``'/'``), and make the paths relative (remove leading ``'/'``). *file* (:class:`str` or :class:`pathlib.PurePath`) is the file path. *separators* (:class:`~collections.abc.Collection` of :class:`str`; or :data:`None`) optionally contains the path separators to normalize. This does not need to include the POSIX path separator (``'/'``), but including it will not affect the results. Default is :data:`None` for :data:`NORMALIZE_PATH_SEPS`. To prevent normalization, pass an empty container (e.g., an empty tuple ``()``). Returns the normalized file path (:class:`str`). """ # Normalize path separators. if separators is None: separators = NORMALIZE_PATH_SEPS # Convert path object to string. norm_file = str(file) for sep in separators: norm_file = norm_file.replace(sep, posixpath.sep) if norm_file.startswith("/"): # Make path relative. norm_file = norm_file[1:] elif norm_file.startswith("./"): # Remove current directory prefix. norm_file = norm_file[2:] return norm_file
promptflow/src/promptflow/promptflow/_sdk/_vendor/_pathspec.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_vendor/_pathspec.py", "repo_id": "promptflow", "token_count": 10455 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import abc from typing import Dict, Optional from promptflow._sdk._constants import BASE_PATH_CONTEXT_KEY, CommonYamlFields from promptflow._sdk._utils import load_from_dict from promptflow._utils.yaml_utils import dump_yaml class YAMLTranslatableMixin(abc.ABC): @classmethod # pylint: disable=unused-argument def _resolve_cls_and_type(cls, data, params_override: Optional[list]): """Resolve the class to use for deserializing the data. Return current class if no override is provided. :param data: Data to deserialize. :type data: dict :param params_override: Parameters to override, defaults to None :type params_override: typing.Optional[list] :return: Class to use for deserializing the data & its "type". Type will be None if no override is provided. :rtype: tuple[class, typing.Optional[str]] """ @classmethod def _get_schema_cls(self): pass def _to_dict(self) -> Dict: schema_cls = self._get_schema_cls() return schema_cls(context={BASE_PATH_CONTEXT_KEY: "./"}).dump(self) def _to_yaml(self) -> str: return dump_yaml(self._to_dict()) def __str__(self): try: return self._to_yaml() except BaseException: # pylint: disable=broad-except return super(YAMLTranslatableMixin, self).__str__() @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str, **kwargs): schema_cls = cls._get_schema_cls() loaded_data = load_from_dict(schema_cls, data, context, additional_message, **kwargs) # pop the type field since it already exists in class init loaded_data.pop(CommonYamlFields.TYPE, None) return cls(base_path=context[BASE_PATH_CONTEXT_KEY], **loaded_data)
promptflow/src/promptflow/promptflow/_sdk/entities/_yaml_translatable.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_yaml_translatable.py", "repo_id": "promptflow", "token_count": 744 }
38
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os.path from dotenv import dotenv_values from marshmallow import fields, post_load, pre_load from promptflow._sdk._utils import is_remote_uri from promptflow._sdk.schemas._base import PatchedSchemaMeta, YamlFileSchema from promptflow._sdk.schemas._fields import LocalPathField, NestedField, UnionField from promptflow._utils.logger_utils import get_cli_sdk_logger logger = get_cli_sdk_logger() def _resolve_dot_env_file(data, **kwargs): """Resolve .env file to environment variables.""" env_var = data.get("environment_variables", None) try: if env_var and os.path.exists(env_var): env_dict = dotenv_values(env_var) data["environment_variables"] = env_dict except TypeError: pass return data class ResourcesSchema(metaclass=PatchedSchemaMeta): """Schema for resources.""" instance_type = fields.Str() idle_time_before_shutdown_minutes = fields.Int() class RemotePathStr(fields.Str): default_error_messages = { "invalid_path": "Invalid remote path. " "Currently only azureml://xxx or public URL(e.g. https://xxx) are supported.", } def _validate(self, value): # inherited validations like required, allow_none, etc. super(RemotePathStr, self)._validate(value) if value is None: return if not is_remote_uri(value): raise self.make_error( "invalid_path", ) class RemoteFlowStr(fields.Str): default_error_messages = { "invalid_path": "Invalid remote flow path. Currently only azureml:<flow-name> is supported", } def _validate(self, value): # inherited validations like required, allow_none, etc. super(RemoteFlowStr, self)._validate(value) if value is None: return if not isinstance(value, str) or not value.startswith("azureml:"): raise self.make_error( "invalid_path", ) class RunSchema(YamlFileSchema): """Base schema for all run schemas.""" # TODO(2898455): support directly write path/flow + entry in run.yaml # region: common fields name = fields.Str() display_name = fields.Str(required=False) tags = fields.Dict(keys=fields.Str(), values=fields.Str(allow_none=True)) status = fields.Str(dump_only=True) description = fields.Str(attribute="description") properties = fields.Dict(keys=fields.Str(), values=fields.Str(allow_none=True)) # endregion: common fields flow = UnionField([LocalPathField(required=True), RemoteFlowStr(required=True)]) # inputs field data = UnionField([LocalPathField(), RemotePathStr()]) column_mapping = fields.Dict(keys=fields.Str) # runtime field, only available for cloud run runtime = fields.Str() resources = NestedField(ResourcesSchema) run = fields.Str() # region: context variant = fields.Str() environment_variables = UnionField( [ fields.Dict(keys=fields.Str(), values=fields.Str()), # support load environment variables from .env file LocalPathField(), ] ) connections = fields.Dict(keys=fields.Str(), values=fields.Dict(keys=fields.Str())) # endregion: context # region: command node command = fields.Str(dump_only=True) outputs = fields.Dict(key=fields.Str(), dump_only=True) # endregion: command node @post_load def resolve_dot_env_file(self, data, **kwargs): return _resolve_dot_env_file(data, **kwargs) @pre_load def warning_unknown_fields(self, data, **kwargs): # log warnings for unknown schema fields unknown_fields = set(data) - set(self.fields) if unknown_fields: logger.warning("Run schema validation warnings. Unknown fields found: %s", unknown_fields) return data
promptflow/src/promptflow/promptflow/_sdk/schemas/_run.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/schemas/_run.py", "repo_id": "promptflow", "token_count": 1523 }
39
import tiktoken from importlib.metadata import version from promptflow.exceptions import UserErrorException IS_LEGACY_OPENAI = version("openai").startswith("0.") class OpenAIMetricsCalculator: def __init__(self, logger=None) -> None: self._logger = logger def get_openai_metrics_from_api_call(self, api_call: dict): total_metrics = {} if self._need_collect_metrics(api_call): try: metrics = self._get_openai_metrics_for_signal_api(api_call) self.merge_metrics_dict(total_metrics, metrics) except Exception as ex: self._log_warning(f"Failed to calculate metrics due to exception: {ex}.") children = api_call.get("children") if children is not None: for child in children: child_metrics = self.get_openai_metrics_from_api_call(child) self.merge_metrics_dict(total_metrics, child_metrics) api_call["system_metrics"] = total_metrics return total_metrics def _need_collect_metrics(self, api_call: dict): if api_call.get("type") != "LLM": return False output = api_call.get("output") if not isinstance(output, dict) and not isinstance(output, list): return False inputs = api_call.get("inputs") if not isinstance(inputs, dict): return False return True def _get_openai_metrics_for_signal_api(self, api_call: dict): output = api_call.get("output") if isinstance(output, dict): usage = output.get("usage") if isinstance(usage, dict): return usage self._log_warning( "Cannot find openai metrics in output, " "will calculate metrics from response data directly." ) name = api_call.get("name") # Support both legacy api and OpenAI v1 api # Legacy api: # https://github.com/openai/openai-python/blob/v0.28.1/openai/api_resources/chat_completion.py # https://github.com/openai/openai-python/blob/v0.28.1/openai/api_resources/completion.py # OpenAI v1 api: # https://github.com/openai/openai-python/blob/main/src/openai/resources/chat/completions.py # https://github.com/openai/openai-python/blob/main/src/openai/resources/completions.py if ( name == "openai.api_resources.chat_completion.ChatCompletion.create" or name == "openai.resources.chat.completions.Completions.create" # openai v1 ): return self._get_openai_metrics_for_chat_api(api_call) elif ( name == "openai.api_resources.completion.Completion.create" or name == "openai.resources.completions.Completions.create" # openai v1 ): return self._get_openai_metrics_for_completion_api(api_call) else: raise CalculatingMetricsError(f"Calculating metrics for api {name} is not supported.") def _try_get_model(self, inputs, output): if IS_LEGACY_OPENAI: api_type = inputs.get("api_type") if not api_type: raise CalculatingMetricsError("Cannot calculate metrics for none or empty api_type.") if api_type == "azure": model = inputs.get("engine") else: model = inputs.get("model") else: if isinstance(output, dict): model = output.get("model") else: model = output[0].model if len(output) > 0 and hasattr(output[0], "model") else None if not model: model = inputs.get("model") if not model: raise CalculatingMetricsError( "Cannot get a valid model to calculate metrics. " "Please specify a engine for AzureOpenAI API or a model for OpenAI API." ) return model def _get_openai_metrics_for_chat_api(self, api_call): inputs = api_call.get("inputs") output = api_call.get("output") metrics = {} enc, tokens_per_message, tokens_per_name = self._get_encoding_for_chat_api(self._try_get_model(inputs, output)) metrics["prompt_tokens"] = self._get_prompt_tokens_from_messages( inputs["messages"], enc, tokens_per_message, tokens_per_name ) if isinstance(output, list): if IS_LEGACY_OPENAI: metrics["completion_tokens"] = len(output) else: metrics["completion_tokens"] = len( [chunk for chunk in output if chunk.choices and chunk.choices[0].delta.content] ) else: metrics["completion_tokens"] = self._get_completion_tokens_for_chat_api(output, enc) metrics["total_tokens"] = metrics["prompt_tokens"] + metrics["completion_tokens"] return metrics def _get_encoding_for_chat_api(self, model): try: enc = tiktoken.encoding_for_model(model) except KeyError: enc = tiktoken.get_encoding("cl100k_base") if model == "gpt-35-turbo-0301": tokens_per_message = 4 tokens_per_name = -1 elif "gpt-35-turbo" in model or "gpt-3.5-turbo" in model or "gpt-4" in model: tokens_per_message = 3 tokens_per_name = 1 else: raise CalculatingMetricsError(f"Calculating metrics for model {model} is not supported.") return enc, tokens_per_message, tokens_per_name def _get_prompt_tokens_from_messages(self, messages, enc, tokens_per_message, tokens_per_name): prompt_tokens = 0 for message in messages: prompt_tokens += tokens_per_message for key, value in message.items(): prompt_tokens += len(enc.encode(value)) if key == "name": prompt_tokens += tokens_per_name prompt_tokens += 3 return prompt_tokens def _get_completion_tokens_for_chat_api(self, output, enc): completion_tokens = 0 choices = output.get("choices") if isinstance(choices, list): for ch in choices: if isinstance(ch, dict): message = ch.get("message") if isinstance(message, dict): content = message.get("content") if isinstance(content, str): completion_tokens += len(enc.encode(content)) return completion_tokens def _get_openai_metrics_for_completion_api(self, api_call: dict): metrics = {} inputs = api_call.get("inputs") output = api_call.get("output") enc = self._get_encoding_for_completion_api(self._try_get_model(inputs, output)) metrics["prompt_tokens"] = 0 prompt = inputs.get("prompt") if isinstance(prompt, str): metrics["prompt_tokens"] = len(enc.encode(prompt)) elif isinstance(prompt, list): for pro in prompt: metrics["prompt_tokens"] += len(enc.encode(pro)) if isinstance(output, list): if IS_LEGACY_OPENAI: metrics["completion_tokens"] = len(output) else: metrics["completion_tokens"] = len( [chunk for chunk in output if chunk.choices and chunk.choices[0].text] ) else: metrics["completion_tokens"] = self._get_completion_tokens_for_completion_api(output, enc) metrics["total_tokens"] = metrics["prompt_tokens"] + metrics["completion_tokens"] return metrics def _get_encoding_for_completion_api(self, model): try: return tiktoken.encoding_for_model(model) except KeyError: return tiktoken.get_encoding("p50k_base") def _get_completion_tokens_for_completion_api(self, output, enc): completion_tokens = 0 choices = output.get("choices") if isinstance(choices, list): for ch in choices: if isinstance(ch, dict): text = ch.get("text") if isinstance(text, str): completion_tokens += len(enc.encode(text)) return completion_tokens def merge_metrics_dict(self, metrics: dict, metrics_to_merge: dict): for k, v in metrics_to_merge.items(): metrics[k] = metrics.get(k, 0) + v def _log_warning(self, msg): if self._logger: self._logger.warning(msg) class CalculatingMetricsError(UserErrorException): """The exception that is raised when calculating metrics failed.""" pass
promptflow/src/promptflow/promptflow/_utils/openai_metrics_calculator.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/openai_metrics_calculator.py", "repo_id": "promptflow", "token_count": 4184 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """ This file stores functions and objects that will be used in prompt-flow sdk. DO NOT change the module names in "all" list, add new modules if needed. """ class _DummyCallableClassForLazyImportError: """This class is used to put off ImportError until the imported class or function is called.""" @classmethod def _get_message(cls): return "azure-ai-ml is not installed. Please install azure-ai-ml to use this feature." def __init__(self, *args, **kwargs): raise ImportError(self._get_message()) def __call__(self, *args, **kwargs): raise ImportError(self._get_message()) # TODO: avoid import azure.ai.ml if promptflow.azure.configure is not called try: from azure.ai.ml import MLClient, load_component from azure.ai.ml.entities import Component from azure.ai.ml.entities._assets import Code from azure.ai.ml.entities._component._additional_includes import AdditionalIncludesMixin from azure.ai.ml.entities._load_functions import load_common except ImportError: class load_component(_DummyCallableClassForLazyImportError): pass class Component(_DummyCallableClassForLazyImportError): pass class MLClient(_DummyCallableClassForLazyImportError): pass class load_common(_DummyCallableClassForLazyImportError): pass class Code(_DummyCallableClassForLazyImportError): pass class AdditionalIncludesMixin(_DummyCallableClassForLazyImportError): pass __all__ = [ "load_component", "Component", "MLClient", "load_common", "Code", "AdditionalIncludesMixin", ]
promptflow/src/promptflow/promptflow/azure/_ml/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_ml/__init__.py", "repo_id": "promptflow", "token_count": 593 }
41
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ... import models as _models from ..._vendor import _convert_request from ...operations._connections_operations import build_create_connection_request, build_delete_connection_request, build_get_connection_request, build_get_connection_with_secrets_request, build_list_azure_open_ai_deployments_request, build_list_connection_specs_request, build_list_connections_request, build_update_connection_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ConnectionsOperations: """ConnectionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def create_connection( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, body: Optional["_models.CreateOrUpdateConnectionRequestDto"] = None, **kwargs: Any ) -> "_models.ConnectionDto": """create_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :param body: :type body: ~flow.models.CreateOrUpdateConnectionRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateOrUpdateConnectionRequestDto') else: _json = None request = build_create_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, content_type=content_type, json=_json, template_url=self.create_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace_async async def update_connection( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, body: Optional["_models.CreateOrUpdateConnectionRequestDto"] = None, **kwargs: Any ) -> "_models.ConnectionDto": """update_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :param body: :type body: ~flow.models.CreateOrUpdateConnectionRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateOrUpdateConnectionRequestDto') else: _json = None request = build_update_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, content_type=content_type, json=_json, template_url=self.update_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace_async async def get_connection( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, **kwargs: Any ) -> "_models.ConnectionDto": """get_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.get_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace_async async def delete_connection( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, **kwargs: Any ) -> "_models.ConnectionDto": """delete_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.delete_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized delete_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace_async async def get_connection_with_secrets( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, **kwargs: Any ) -> "_models.ConnectionDto": """get_connection_with_secrets. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_connection_with_secrets_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.get_connection_with_secrets.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_connection_with_secrets.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/listsecrets'} # type: ignore @distributed_trace_async async def list_connections( self, subscription_id: str, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> List["_models.ConnectionDto"]: """list_connections. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of ConnectionDto, or the result of cls(response) :rtype: list[~flow.models.ConnectionDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ConnectionDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_connections_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.list_connections.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[ConnectionDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_connections.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections'} # type: ignore @distributed_trace_async async def list_connection_specs( self, subscription_id: str, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> List["_models.WorkspaceConnectionSpec"]: """list_connection_specs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of WorkspaceConnectionSpec, or the result of cls(response) :rtype: list[~flow.models.WorkspaceConnectionSpec] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.WorkspaceConnectionSpec"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_connection_specs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.list_connection_specs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[WorkspaceConnectionSpec]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_connection_specs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/specs'} # type: ignore @distributed_trace_async async def list_azure_open_ai_deployments( self, subscription_id: str, resource_group_name: str, workspace_name: str, connection_name: str, **kwargs: Any ) -> List["_models.AzureOpenAIDeploymentDto"]: """list_azure_open_ai_deployments. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of AzureOpenAIDeploymentDto, or the result of cls(response) :rtype: list[~flow.models.AzureOpenAIDeploymentDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.AzureOpenAIDeploymentDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_azure_open_ai_deployments_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.list_azure_open_ai_deployments.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[AzureOpenAIDeploymentDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_azure_open_ai_deployments.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/AzureOpenAIDeployments'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_connections_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_connections_operations.py", "repo_id": "promptflow", "token_count": 9090 }
42
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_create_connection_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_update_connection_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, headers=header_parameters, **kwargs ) def build_get_connection_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_delete_connection_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=url, headers=header_parameters, **kwargs ) def build_get_connection_with_secrets_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/listsecrets') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_list_connections_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_list_connection_specs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/specs') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_list_azure_open_ai_deployments_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/AzureOpenAIDeployments') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "connectionName": _SERIALIZER.url("connection_name", connection_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) # fmt: on class ConnectionsOperations(object): """ConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def create_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str body=None, # type: Optional["_models.CreateOrUpdateConnectionRequestDto"] **kwargs # type: Any ): # type: (...) -> "_models.ConnectionDto" """create_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :param body: :type body: ~flow.models.CreateOrUpdateConnectionRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateOrUpdateConnectionRequestDto') else: _json = None request = build_create_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, content_type=content_type, json=_json, template_url=self.create_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace def update_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str body=None, # type: Optional["_models.CreateOrUpdateConnectionRequestDto"] **kwargs # type: Any ): # type: (...) -> "_models.ConnectionDto" """update_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :param body: :type body: ~flow.models.CreateOrUpdateConnectionRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateOrUpdateConnectionRequestDto') else: _json = None request = build_update_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, content_type=content_type, json=_json, template_url=self.update_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace def get_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionDto" """get_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.get_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace def delete_connection( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionDto" """delete_connection. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_connection_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.delete_connection.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized delete_connection.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}'} # type: ignore @distributed_trace def get_connection_with_secrets( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionDto" """get_connection_with_secrets. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionDto, or the result of cls(response) :rtype: ~flow.models.ConnectionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_connection_with_secrets_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.get_connection_with_secrets.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('ConnectionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_connection_with_secrets.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/listsecrets'} # type: ignore @distributed_trace def list_connections( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> List["_models.ConnectionDto"] """list_connections. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of ConnectionDto, or the result of cls(response) :rtype: list[~flow.models.ConnectionDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ConnectionDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_connections_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.list_connections.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[ConnectionDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_connections.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections'} # type: ignore @distributed_trace def list_connection_specs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> List["_models.WorkspaceConnectionSpec"] """list_connection_specs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of WorkspaceConnectionSpec, or the result of cls(response) :rtype: list[~flow.models.WorkspaceConnectionSpec] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.WorkspaceConnectionSpec"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_connection_specs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.list_connection_specs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[WorkspaceConnectionSpec]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_connection_specs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/specs'} # type: ignore @distributed_trace def list_azure_open_ai_deployments( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> List["_models.AzureOpenAIDeploymentDto"] """list_azure_open_ai_deployments. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param connection_name: :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of AzureOpenAIDeploymentDto, or the result of cls(response) :rtype: list[~flow.models.AzureOpenAIDeploymentDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.AzureOpenAIDeploymentDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_azure_open_ai_deployments_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, connection_name=connection_name, template_url=self.list_azure_open_ai_deployments.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[AzureOpenAIDeploymentDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_azure_open_ai_deployments.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Connections/{connectionName}/AzureOpenAIDeployments'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_connections_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_connections_operations.py", "repo_id": "promptflow", "token_count": 13181 }
43
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import re class BulkRunURL: """Parser for a flow run URL.""" REGEX_PATTERN = ".*prompts/flow/([^/]+)/([^/]+)/bulktest/([^/]+).*" RUN_URL_FORMAT = ( "https://ml.azure.com/prompts/flow/{}/{}/bulktest/{}/details?wsid=" "/subscriptions/{}/resourcegroups/{}/providers/Microsoft.MachineLearningServices/workspaces/{}" ) def __init__(self, url: str): if url: match = re.match(self.REGEX_PATTERN, url) if match: self.experiment_id = match.group(1) self.flow_id = match.group(2) self.bulk_test_id = match.group(3) else: raise ValueError("Invalid flow run URL: {}".format(url)) @classmethod def get_url(cls, experiment_id, flow_id, bulk_test_id, subscription_id, resource_group, workspace_name): return cls.RUN_URL_FORMAT.format( experiment_id, flow_id, bulk_test_id, subscription_id, resource_group, workspace_name ) class BulkRunId: """Parser for a flow run ID.""" REGEX_PATTERN = "azureml://experiment/([^/]+)/flow/([^/]+)/bulktest/([^/]+)(/run/[^/]+)?" RUN_ID_FORMAT = "azureml://experiment/{}/flow/{}/bulktest/{}" def __init__(self, arm_id: str): if arm_id: match = re.match(self.REGEX_PATTERN, arm_id) if match: self.experiment_id = match.group(1) self.flow_id = match.group(2) self.bulk_test_id = match.group(3) if len(match.groups()) > 3: self.run_id = match.group(4).split("/")[-1].strip() else: self.run_id = None else: raise ValueError("Invalid flow run ID: {}".format(arm_id)) @classmethod def get_url(cls, experiment_id, flow_id, bulk_test_id, *, run_id=None): arm_id = cls.RUN_ID_FORMAT.format(experiment_id, flow_id, bulk_test_id) if run_id: arm_id += "/run/{}".format(run_id) return arm_id
promptflow/src/promptflow/promptflow/azure/_utils/_url_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_utils/_url_utils.py", "repo_id": "promptflow", "token_count": 1057 }
44
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException, ValidationException class InputMappingError(ValidationException): def __init__(self, target: ErrorTarget = ErrorTarget.EXECUTOR, **kwargs): super().__init__(target=target, **kwargs) class EmptyInputsData(UserErrorException): pass class ExecutorServiceUnhealthy(SystemErrorException): pass
promptflow/src/promptflow/promptflow/batch/_errors.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/batch/_errors.py", "repo_id": "promptflow", "token_count": 143 }
45
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # flake8: noqa from .flow_executor import FlowExecutor from .flow_validator import FlowValidator
promptflow/src/promptflow/promptflow/executor/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/__init__.py", "repo_id": "promptflow", "token_count": 54 }
46
import os import pytest from promptflow.executor import FlowExecutor from ..utils import get_flow_folder, get_yaml_file @pytest.mark.e2etest class TestAsync: @pytest.mark.parametrize( "folder_name, concurrency_levels, expected_concurrency", [ ("async_tools", [1, 2, 3], [1, 2, 2]), ("async_tools_with_sync_tools", [1, 2, 3], [1, 2, 2]), ], ) def test_executor_node_concurrency(self, folder_name, concurrency_levels, expected_concurrency): os.chdir(get_flow_folder(folder_name)) executor = FlowExecutor.create(get_yaml_file(folder_name), {}) def calculate_max_concurrency(flow_result): timeline = [] api_calls = flow_result.run_info.api_calls[0]["children"] for api_call in api_calls: timeline.append(("start", api_call["start_time"])) timeline.append(("end", api_call["end_time"])) timeline.sort(key=lambda x: x[1]) current_concurrency = 0 max_concurrency = 0 for event, _ in timeline: if event == "start": current_concurrency += 1 max_concurrency = max(max_concurrency, current_concurrency) elif event == "end": current_concurrency -= 1 return max_concurrency for i in range(len(concurrency_levels)): concurrency = concurrency_levels[i] flow_result = executor.exec_line({"input_str": "Hello"}, node_concurrency=concurrency) max_concurrency = calculate_max_concurrency(flow_result) assert max_concurrency == expected_concurrency[i] assert max_concurrency <= concurrency
promptflow/src/promptflow/tests/executor/e2etests/test_async.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_async.py", "repo_id": "promptflow", "token_count": 809 }
47
from jinja2 import Template from promptflow import ToolProvider, tool from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.types import PromptTemplate class TestCustomLLMTool(ToolProvider): def __init__(self, connection: AzureOpenAIConnection): super().__init__() self.connection = connection @tool def call(self, connection_2: AzureOpenAIConnection, api: str, template: PromptTemplate, **kwargs): prompt = Template(template, trim_blocks=True, keep_trailing_newline=True).render(**kwargs) assert isinstance(self.connection, AzureOpenAIConnection) assert isinstance(connection_2, AzureOpenAIConnection) assert api in ["completion", "chat"] return prompt
promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool.py", "repo_id": "promptflow", "token_count": 257 }
48
import pytest from promptflow._utils.execution_utils import apply_default_value_for_input from promptflow.contracts.flow import FlowInputDefinition from promptflow.contracts.tool import ValueType @pytest.mark.unittest class TestFlowExecutor: @pytest.mark.parametrize( "flow_inputs, inputs, expected_inputs", [ ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, None, # Could handle None input {"input_from_default": "default_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {}, {"input_from_default": "default_value"}, ), ( { "input_no_default": FlowInputDefinition(type=ValueType.STRING), }, {}, {}, # No default value for input. ), ( { "input_from_default": FlowInputDefinition(type=ValueType.STRING, default="default_value"), }, {"input_from_default": "input_value", "another_key": "input_value"}, {"input_from_default": "input_value", "another_key": "input_value"}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.BOOL, default=False), }, {}, {"input_from_default": False}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.LIST, default=[]), }, {}, {"input_from_default": []}, ), ( { "input_from_default": FlowInputDefinition(type=ValueType.OBJECT, default={}), }, {}, {"input_from_default": {}}, ), ], ) def test_apply_default_value_for_input(self, flow_inputs, inputs, expected_inputs): result = apply_default_value_for_input(flow_inputs, inputs) assert result == expected_inputs
promptflow/src/promptflow/tests/executor/unittests/_utils/test_execution_utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_execution_utils.py", "repo_id": "promptflow", "token_count": 1270 }
49
from pathlib import Path import pytest from promptflow._sdk.entities._connection import AzureContentSafetyConnection from promptflow.contracts._errors import FailedToImportModule from promptflow.contracts.flow import ( Flow, FlowInputAssignment, FlowInputDefinition, FlowOutputDefinition, InputAssignment, InputValueType, Node, NodeVariant, NodeVariants, ToolSource, ToolSourceType, ) from promptflow.contracts.tool import Tool, ToolType, ValueType from ...utils import EAGER_FLOWS_ROOT, FLOW_ROOT, get_flow_folder, get_flow_package_tool_definition, get_yaml_file PACKAGE_TOOL_BASE = Path(__file__).parent.parent.parent / "package_tools" @pytest.mark.e2etest class TestFlowContract: @pytest.mark.parametrize( "flow_folder, expected_connection_names", [ ("web_classification", {"azure_open_ai_connection"}), ("basic-with-connection", {"azure_open_ai_connection"}), ("flow_with_dict_input_with_variant", {"mock_custom_connection"}), ], ) def test_flow_get_connection_names(self, flow_folder, expected_connection_names): flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_names() == expected_connection_names def test_flow_get_connection_input_names_for_node_with_variants(self): # Connection input exists only in python node flow_folder = "flow_with_dict_input_with_variant" flow_yaml = get_yaml_file(flow_folder) flow = Flow.from_yaml(flow_yaml) assert flow.get_connection_input_names_for_node("print_val") == ["conn"] def test_flow_get_connection_names_with_package_tool(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_names() assert connection_names == {"azure_open_ai_connection"} def test_flow_get_connection_input_names_for_node(self, mocker): flow_folder = PACKAGE_TOOL_BASE / "custom_llm_tool" flow_file = flow_folder / "flow.dag.yaml" package_tool_definition = get_flow_package_tool_definition(flow_folder) mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tool_definition) flow = Flow.from_yaml(flow_file) connection_names = flow.get_connection_input_names_for_node(flow.nodes[0].name) assert connection_names == ["connection", "connection_2"] assert flow.get_connection_input_names_for_node("not_exist") == [] @pytest.mark.parametrize( "flow_folder_name, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), ], ) def test_flow_get_environment_variables_with_overrides( self, flow_folder_name, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name) flow_file = "flow.dag.yaml" flow = Flow.from_yaml(flow_file=flow_file, working_dir=flow_folder) merged_environment_variables = flow.get_environment_variables_with_overrides( environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.parametrize( "flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables", [ pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, { "env1": "2", "env2": "runtime_env2", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', "env10": "aaaaa", }, id="LoadEnvVariablesWithOverrides", ), pytest.param( "flow_with_environment_variables", FLOW_ROOT, "flow.dag.yaml", None, { "env1": "2", "env2": "spawn", "env3": "[1, 2, 3, 4, 5]", "env4": '{"a": 1, "b": "2"}', }, id="LoadEnvVariablesWithoutOverrides", ), pytest.param( "simple_hello_world", FLOW_ROOT, "flow.dag.yaml", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesWithoutYamlLevelEnvVariables", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", None, {}, id="LoadEnvVariablesForEagerFlow", ), pytest.param( "simple_with_yaml", EAGER_FLOWS_ROOT, "entry.py", {"env2": "runtime_env2", "env10": "aaaaa"}, {"env2": "runtime_env2", "env10": "aaaaa"}, id="LoadEnvVariablesForEagerFlowWithOverrides", ), ], ) def test_load_env_variables( self, flow_folder_name, folder_root, flow_file, environment_variables_overrides, except_environment_variables ): flow_folder = get_flow_folder(flow_folder_name, folder_root) merged_environment_variables = Flow.load_env_variables( flow_file=flow_file, working_dir=flow_folder, environment_variables_overrides=environment_variables_overrides, ) assert merged_environment_variables == except_environment_variables @pytest.mark.unittest class TestFlow: @pytest.mark.parametrize( "flow, expected_value", [ ( Flow(id="flow_id", name="flow_name", nodes=[], inputs={}, outputs={}, tools=[]), { "id": "flow_id", "name": "flow_name", "nodes": [], "inputs": {}, "outputs": {}, "tools": [], "language": "python", }, ), ( Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={"input1": FlowInputDefinition(type=ValueType.STRING)}, outputs={"output1": FlowOutputDefinition(type=ValueType.STRING, reference=None)}, tools=[], ), { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], "language": "python", }, ), ], ) def test_flow_serialize(self, flow, expected_value): assert flow.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "id": "flow_id", "name": "flow_name", "nodes": [{"name": "node1", "tool": "tool1", "inputs": {}, "outputs": {}}], "inputs": {"input1": {"type": ValueType.STRING.value}}, "outputs": {"output1": {"type": ValueType.STRING.value}}, "tools": [], }, Flow( id="flow_id", name="flow_name", nodes=[Node(name="node1", tool="tool1", inputs={})], inputs={ "input1": FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ) }, outputs={ "output1": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment( value="", value_type=InputValueType.LITERAL, section="", property="" ), description="", evaluation_only=False, is_chat_output=False, ) }, tools=[], node_variants={}, program_language="python", environment_variables={}, ), ), ], ) def test_flow_deserialize(self, data, expected_value): assert Flow.deserialize(data) == expected_value def test_import_requisites(self): tool1 = Tool(name="tool1", type=ToolType.PYTHON, inputs={}, module="yaml") tool2 = Tool(name="tool2", type=ToolType.PYTHON, inputs={}, module="module") node1 = Node(name="node1", tool="tool1", inputs={}, module="yaml") node2 = Node(name="node2", tool="tool2", inputs={}, module="module") with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool1], [node2]) assert str(e.value).startswith( "Failed to import modules with error: Import node 'node2' provider module 'module' failed." ) with pytest.raises(FailedToImportModule) as e: Flow._import_requisites([tool2], [node1]) assert str(e.value).startswith( "Failed to import modules with error: Import tool 'tool2' module 'module' failed." ) def test_apply_default_node_variants(self): node_variant = NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}, use_variants=False), description=None, ) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": node_variant}, ) } flow1 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is True flow1._apply_default_node_variants() assert flow1.nodes[0].use_variants is False assert flow1.nodes[0].inputs.keys() == {"input2"} assert flow1.nodes[0].name == "print_val" flow2 = Flow( id="test_flow_id", name="test_flow", nodes=[Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=False)], inputs={}, outputs={}, tools=[], node_variants=node_variants, ) # test when node.use_variants is False tmp_nodes = flow2.nodes flow2._apply_default_node_variants() assert flow2.nodes == tmp_nodes @pytest.mark.parametrize( "node_variants", [ (None), ( { "test": NodeVariants( default_variant_id="variant1", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ( { "print_val": NodeVariants( default_variant_id="test", variants={ "variant1": NodeVariant( node=Node(name="print_val_variant", tool=None, inputs={"input2": None}) ) }, ) } ), ], ) def test_apply_default_node_variant(self, node_variants): node = Node(name="print_val", tool=None, inputs={"input1": None}, use_variants=True) assert Flow._apply_default_node_variant(node, node_variants) == node def test_apply_node_overrides(self): llm_node = Node(name="llm_node", tool=None, inputs={}, connection="open_ai_connection") test_node = Node( name="test_node", tool=None, inputs={"test": InputAssignment("test_value1", InputValueType.LITERAL)} ) flow = Flow(id="test_flow_id", name="test_flow", nodes=[llm_node, test_node], inputs={}, outputs={}, tools=[]) assert flow == flow._apply_node_overrides(None) assert flow == flow._apply_node_overrides({}) node_overrides = { "other_node.connection": "some_connection", } with pytest.raises(ValueError): flow._apply_node_overrides(node_overrides) node_overrides = { "llm_node.connection": "custom_connection", "test_node.test": "test_value2", } flow = flow._apply_node_overrides(node_overrides) assert flow.nodes[0].connection == "custom_connection" assert flow.nodes[1].inputs["test"].value == "test_value2" def test_has_aggregation_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow1 = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert not flow1.has_aggregation_node() flow2 = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow2.has_aggregation_node() def test_get_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) flow = Flow(id="id", name="name", nodes=[llm_node], inputs={}, outputs={}, tools=[]) assert flow.get_node("llm_node") is llm_node assert flow.get_node("other_node") is None def test_get_tool(self): tool = Tool(name="tool", type=ToolType.PYTHON, inputs={}) flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[tool]) assert flow.get_tool("tool") is tool assert flow.get_tool("other_tool") is None def test_is_reduce_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_reduce_node("llm_node") assert flow.is_reduce_node("aggre_node") def test_is_normal_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_normal_node("llm_node") assert not flow.is_normal_node("aggre_node") def test_is_llm_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}, type=ToolType.LLM) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert flow.is_llm_node(llm_node) assert not flow.is_llm_node(aggre_node) def test_is_referenced_by_flow_output(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node(name="aggre_node", tool=None, inputs={}, aggregation=True) output = { "output": FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("llm_node", InputValueType.NODE_REFERENCE, "output") ) } flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs=output, tools=[]) assert flow.is_referenced_by_flow_output(llm_node) assert not flow.is_referenced_by_flow_output(aggre_node) def test_is_node_referenced_by(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_node_referenced_by(aggre_node, llm_node) assert flow.is_node_referenced_by(llm_node, aggre_node) def test_is_referenced_by_other_node(self): llm_node = Node(name="llm_node", tool=None, inputs={}) aggre_node = Node( name="aggre_node", tool=None, inputs={"input": InputAssignment(value="llm_node", value_type=InputValueType.NODE_REFERENCE)}, aggregation=True, ) flow = Flow(id="id", name="name", nodes=[llm_node, aggre_node], inputs={}, outputs={}, tools=[]) assert not flow.is_referenced_by_other_node(aggre_node) assert flow.is_referenced_by_other_node(llm_node) def test_is_chat_flow(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert not standard_flow.is_chat_flow() assert chat_flow.is_chat_flow() def test_get_chat_input_name(self): chat_input = {"question": FlowInputDefinition(type=ValueType.STRING, is_chat_input=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs=chat_input, outputs={}, tools=[]) assert standard_flow.get_chat_input_name() is None assert chat_flow.get_chat_input_name() == "question" def test_get_chat_output_name(self): chat_output = {"answer": FlowOutputDefinition(type=ValueType.STRING, reference=None, is_chat_output=True)} standard_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs={}, tools=[]) chat_flow = Flow(id="id", name="name", nodes=[], inputs={}, outputs=chat_output, tools=[]) assert standard_flow.get_chat_output_name() is None assert chat_flow.get_chat_output_name() == "answer" def test_replace_with_variant(self): node0 = Node(name="node0", tool=None, inputs={"input0": None}, use_variants=True) node1 = Node(name="node1", tool="tool1", inputs={"input1": None}, use_variants=False) node2 = Node(name="node2", tool="tool2", inputs={"input2": None}, use_variants=False) node_variant = Node(name="node0", tool="tool3", inputs={"input3": None}, use_variants=False) node_variants = { "print_val": NodeVariants( default_variant_id="variant1", variants={"variant1": NodeVariant(node_variant, None)}, ) } flow = Flow("test_flow_id", "test_flow", [node0, node1, node2], {}, {}, [], node_variants) # flow = Flow.from_yaml(get_yaml_file("web_classification")) tool_cnt = len(flow.tools) flow._replace_with_variant(node_variant, [flow.nodes[1].tool, flow.nodes[2].tool]) assert "input3" in flow.nodes[0].inputs assert flow.nodes[0].tool == "tool3" assert len(flow.tools) == tool_cnt + 2 @pytest.mark.unittest class TestInputAssignment: @pytest.mark.parametrize( "value, expected_value", [ (InputAssignment("value", InputValueType.LITERAL), "value"), (InputAssignment("value", InputValueType.FLOW_INPUT), "${flow.value}"), (InputAssignment("value", InputValueType.NODE_REFERENCE, "section"), "${value.section}"), ( InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), "${value.section.property}", ), (InputAssignment(AzureContentSafetyConnection, InputValueType.LITERAL, "section", "property"), "ABCMeta"), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "serialized_value, expected_value", [ ( "${value.section.property}", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property"), ), ( "${flow.section.property}", FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT), ), ("${value}", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("$value", InputAssignment("$value", InputValueType.LITERAL)), ("value", InputAssignment("value", InputValueType.LITERAL)), ], ) def test_deserialize(self, serialized_value, expected_value): input_assignment = InputAssignment.deserialize(serialized_value) assert input_assignment == expected_value @pytest.mark.parametrize( "serialized_reference, expected_value", [ ("input", InputAssignment("input", InputValueType.NODE_REFERENCE, "output")), ("flow.section", FlowInputAssignment("section", value_type=InputValueType.FLOW_INPUT, prefix="flow.")), ( "flow.section.property", FlowInputAssignment("section.property", value_type=InputValueType.FLOW_INPUT, prefix="flow."), ), ], ) def test_deserialize_reference(self, serialized_reference, expected_value): assert InputAssignment.deserialize_reference(serialized_reference) == expected_value @pytest.mark.parametrize( "serialized_node_reference, expected_value", [ ("value", InputAssignment("value", InputValueType.NODE_REFERENCE, "output")), ("value.section", InputAssignment("value", InputValueType.NODE_REFERENCE, "section")), ("value.section.property", InputAssignment("value", InputValueType.NODE_REFERENCE, "section", "property")), ], ) def test_deserialize_node_reference(self, serialized_node_reference, expected_value): assert InputAssignment.deserialize_node_reference(serialized_node_reference) == expected_value @pytest.mark.unittest class TestFlowInputAssignment: @pytest.mark.parametrize( "input_value, expected_value", [ ("flow.section.property", True), ("inputs.section.property", True), ("section.property", False), ("", False), ], ) def test_is_flow_input(self, input_value, expected_value): assert FlowInputAssignment.is_flow_input(input_value) == expected_value def test_deserialize(self): expected_input = FlowInputAssignment("section.property", prefix="inputs.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("inputs.section.property") == expected_input expected_flow = FlowInputAssignment("section.property", prefix="flow.", value_type=InputValueType.FLOW_INPUT) assert FlowInputAssignment.deserialize("flow.section.property") == expected_flow with pytest.raises(ValueError): FlowInputAssignment.deserialize("value") @pytest.mark.unittest class TestToolSource: @pytest.mark.parametrize( "tool_source, expected_value", [ ({}, ToolSource(type=ToolSourceType.Code)), ({"type": ToolSourceType.Code.value}, ToolSource(type=ToolSourceType.Code)), ( {"type": ToolSourceType.Package.value, "tool": "tool", "path": "path"}, ToolSource(type=ToolSourceType.Package, tool="tool", path="path"), ), ], ) def test_deserialize(self, tool_source, expected_value): assert ToolSource.deserialize(tool_source) == expected_value @pytest.mark.unittest class TestNode: @pytest.mark.parametrize( "node, expected_value", [ ( Node(name="test_node", tool="test_tool", inputs={}), {"name": "test_node", "tool": "test_tool", "inputs": {}}, ), ( Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True, "reduce": True}, ), ], ) def test_serialize(self, node, expected_value): assert node.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( {"name": "test_node", "tool": "test_tool", "inputs": {}}, Node(name="test_node", tool="test_tool", inputs={}), ), ( {"name": "test_node", "tool": "test_tool", "inputs": {}, "aggregation": True}, Node(name="test_node", tool="test_tool", inputs={}, aggregation=True), ), ], ) def test_deserialize(self, data, expected_value): assert Node.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowInputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowInputDefinition(type=ValueType.BOOL), {"type": ValueType.BOOL.value}), ( FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), { "type": ValueType.STRING.value, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, "default": "default", "description": "description", "enum": ["enum1", "enum2"], "is_chat_input": True, "is_chat_history": True, }, FlowInputDefinition( type=ValueType.STRING, default="default", description="description", enum=["enum1", "enum2"], is_chat_input=True, is_chat_history=True, ), ), ( { "type": ValueType.STRING, }, FlowInputDefinition( type=ValueType.STRING, description="", enum=[], is_chat_input=False, is_chat_history=None ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowInputDefinition.deserialize(data) == expected_value @pytest.mark.unittest class TestFlowOutputDefinition: @pytest.mark.parametrize( "value, expected_value", [ (FlowOutputDefinition(type=ValueType.BOOL, reference=None), {"type": ValueType.BOOL.value}), ( FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("value", InputValueType.NODE_REFERENCE), description="description", evaluation_only=True, is_chat_output=True, ), { "type": ValueType.STRING.value, "reference": "${value.}", "description": "description", "evaluation_only": True, "is_chat_output": True, }, ), ], ) def test_serialize(self, value, expected_value): assert value.serialize() == expected_value @pytest.mark.parametrize( "data, expected_value", [ ( { "type": ValueType.STRING, }, FlowOutputDefinition( type=ValueType.STRING, reference=InputAssignment("", InputValueType.LITERAL), ), ), ], ) def test_deserialize(self, data, expected_value): assert FlowOutputDefinition.deserialize(data) == expected_value
promptflow/src/promptflow/tests/executor/unittests/contracts/test_flow.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/contracts/test_flow.py", "repo_id": "promptflow", "token_count": 15418 }
50
import re import sys from pathlib import Path from typing import List from unittest.mock import mock_open import pytest from jinja2 import TemplateSyntaxError from promptflow._core._errors import InvalidSource from promptflow._core.tools_manager import ToolLoader from promptflow._internal import tool from promptflow._sdk.entities import CustomConnection, CustomStrongTypeConnection from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import AssistantDefinition, InputDefinition, Secret, Tool, ToolType, ValueType from promptflow.contracts.types import PromptTemplate from promptflow.exceptions import UserErrorException from promptflow.executor._errors import ( ConnectionNotFound, InvalidConnectionType, NodeInputValidationError, ResolveToolError, ValueTypeUnresolved, ) from promptflow.executor._tool_resolver import ResolvedTool, ToolResolver from ...utils import DATA_ROOT, FLOW_ROOT TEST_ROOT = Path(__file__).parent.parent.parent REQUESTS_PATH = TEST_ROOT / "test_configs/executor_api_requests" WRONG_REQUESTS_PATH = TEST_ROOT / "test_configs/executor_wrong_requests" class MyFirstCSTConnection(CustomStrongTypeConnection): api_key: Secret api_base: str @tool(streaming_option_parameter="stream_enabled") def mock_package_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt @pytest.mark.unittest class TestToolResolver: @pytest.fixture def resolver(self): return ToolResolver(working_dir=None, connections={}) def test_resolve_tool_by_node_with_diff_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) mocker.patch.object( resolver, "_resolve_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_script_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_prompt_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_resolve_llm_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) mocker.patch.object( resolver, "_integrate_prompt_in_package_node", return_value=mocker.Mock(node=node, definition=None, callable=None, init_args=None), ) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Package) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) resolver.resolve_tool_by_node(node) resolver._resolve_script_node.assert_called_once() node.type = ToolType.PROMPT resolver.resolve_tool_by_node(node) resolver._resolve_prompt_node.assert_called_once() node.type = ToolType.LLM resolver.resolve_tool_by_node(node) resolver._resolve_llm_node.assert_called_once() resolver._resolve_package_node.reset_mock() node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=ToolSourceType.PackageWithPrompt) resolver.resolve_tool_by_node(node) resolver._resolve_package_node.assert_called_once() resolver._integrate_prompt_in_package_node.assert_called_once() def test_resolve_tool_by_node_with_invalid_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool type" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_source_type(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message node.type = ToolType.CUSTOM_LLM node.source = mocker.Mock(type=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NotImplementedError) assert "Tool source type" in exec_info.value.message def test_resolve_tool_by_node_with_no_source(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.source = None with pytest.raises(ResolveToolError) as ex: resolver.resolve_tool_by_node(node) assert isinstance(ex.value.inner_exception, UserErrorException) def test_resolve_tool_by_node_with_no_source_path(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT node.source = mocker.Mock(type=ToolSourceType.Package, path=None) with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, InvalidSource) assert "Node source path" in exec_info.value.message def test_resolve_tool_by_node_with_duplicated_inputs(self, resolver, mocker): node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{template}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, NodeInputValidationError) assert "These inputs are duplicated" in exec_info.value.message def test_resolve_tool_by_node_with_invalid_template(self, resolver, mocker): node = mocker.Mock(tool=None, inputs={}) node.name = "node" node.type = ToolType.PROMPT mocker.patch.object(resolver, "_load_source_content", return_value="{{current context}}") with pytest.raises(ResolveToolError) as exec_info: resolver.resolve_tool_by_node(node) assert isinstance(exec_info.value.inner_exception, TemplateSyntaxError) expected_message = ( "Tool load failed in 'node': Jinja parsing failed at line 1: " "(TemplateSyntaxError) expected token 'end of print statement', got 'context'" ) assert expected_message in exec_info.value.message def test_convert_node_literal_input_types_with_invalid_case(self): # Case 1: conn_name not in connections, should raise conn_name not found error tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 2: conn_name in connections, but type not matched connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._convert_node_literal_input_types(node, tool) message = "'AzureOpenAIConnection' is not supported, valid types ['CustomConnection']" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 3: Literal value, type mismatch tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=[ValueType.INT])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "value 'invalid' is not type int" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 4: Unresolved value, like newly added type not in old version ValueType enum tool = Tool(name="mock", type="python", inputs={"int_input": InputDefinition(type=["A_good_type"])}) node = Node( name="mock", tool=tool, inputs={"int_input": InputAssignment(value="invalid", value_type=InputValueType.LITERAL)}, ) with pytest.raises(ValueTypeUnresolved): tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) # Case 5: Literal value, invalid image in list tool = Tool(name="mock", type="python", inputs={"list_input": InputDefinition(type=[ValueType.LIST])}) invalid_image = {"data:image/jpg;base64": "invalid_image"} node = Node( name="mock", tool=tool, inputs={"list_input": InputAssignment(value=[invalid_image], value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) message = "Invalid base64 image" assert message in exe_info.value.message, "Expected: {}, Actual: {}".format(message, exe_info.value.message) # Case 6: Literal value, invalid assistant definition path tool = Tool( name="mock", type="python", inputs={"assistant_definition": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])}, ) node = Node( name="mock", tool=tool, inputs={"assistant_definition": InputAssignment(value="invalid_path", value_type=InputValueType.LITERAL)}, ) with pytest.raises(NodeInputValidationError) as exe_info: tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._convert_node_literal_input_types(node, tool) assert ( "Failed to load assistant definition" in exe_info.value.message and "is not a valid path" in exe_info.value.message ), "Expected: {}, Actual: {}".format(message, exe_info.value.message) def test_resolve_llm_connection_to_inputs(self): # Case 1: node.connection is not specified tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 2: node.connection is not found from connection manager tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name1", ) connections = {} with pytest.raises(ConnectionNotFound): tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) # Case 3: Tool definition with bad input type list tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["int"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Connection type can not be resolved for tool" in exe_info.value.message # Case 4: Tool type not match the connection manager return tool = Tool(name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection"])}) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} with pytest.raises(InvalidConnectionType) as exe_info: tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert "Invalid connection" in exe_info.value.message # Case 5: Normal case tool = Tool( name="mock", type="python", inputs={"conn": InputDefinition(type=["OpenAIConnection", "AzureOpenAIConnection"])}, ) node = Node( name="mock", tool=tool, inputs={"conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL)}, connection="conn_name", ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) key, conn = tool_resolver._resolve_llm_connection_to_inputs(node, tool) assert key == "conn" assert isinstance(conn, AzureOpenAIConnection) def test_resolve_llm_node(self, mocker): def mock_llm_api_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.LLM, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_llm_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_llm_api_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader mocker.patch.object(tool_resolver, "_load_source_content", return_value="{{text}}![image]({{image}})") node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), "image": InputAssignment(value=str(DATA_ROOT / "logo.jpg"), value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_llm_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} pattern = re.compile(r"^Hello World!!\[image\]\(Image\([a-z0-9]{8}\)\)$") prompt = resolved_tool.callable(**kwargs) assert re.match(pattern, prompt) def test_resolve_script_node(self, mocker): def mock_python_func(prompt: PromptTemplate, **kwargs): for k, v in kwargs.items(): prompt = prompt.replace(f"{{{{{k}}}}}", str(v)) return prompt tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_resolve_script_node_with_assistant_definition(self, mocker): def mock_python_func(input: AssistantDefinition): if input.model == "model" and input.instructions == "instructions" and input.tools == []: return True return False tool_loader = ToolLoader(working_dir=None) tool = Tool( name="mock", type=ToolType.PYTHON, inputs={"input": InputDefinition(type=[ValueType.ASSISTANT_DEFINITION])} ) mocker.patch.object(tool_loader, "load_tool_for_script_node", return_value=(None, tool)) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_tool_from_module", return_value=(mock_python_func, {}), ) tool_resolver = ToolResolver(working_dir=Path(__file__).parent, connections={}) tool_resolver._tool_loader = tool_loader mocker.patch("builtins.open", mock_open()) mocker.patch( "ruamel.yaml.YAML.load", return_value={"model": "model", "instructions": "instructions", "tools": []} ) node = Node( name="mock", tool=None, inputs={"input": InputAssignment(value="test_tool_resolver.py", value_type=InputValueType.LITERAL)}, ) resolved_tool = tool_resolver._resolve_script_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 1 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) def test_resolve_package_node(self, mocker): tool_loader = ToolLoader(working_dir=None) tool = Tool(name="mock", type=ToolType.PYTHON, inputs={"conn": InputDefinition(type=["AzureOpenAIConnection"])}) mocker.patch.object(tool_loader, "load_tool_for_package_node", return_value=tool) mocker.patch( "promptflow._core.tools_manager.BuiltinsManager._load_package_tool", return_value=(mock_package_func, {"conn": AzureOpenAIConnection}), ) connections = {"conn_name": {"type": "AzureOpenAIConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) tool_resolver._tool_loader = tool_loader node = Node( name="mock", tool=None, inputs={ "conn": InputAssignment(value="conn_name", value_type=InputValueType.LITERAL), "prompt": InputAssignment(value="{{text}}", value_type=InputValueType.LITERAL), "text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL), }, connection="conn_name", provider="mock", ) resolved_tool = tool_resolver._resolve_package_node(node, convert_input_types=True) assert len(resolved_tool.node.inputs) == 2 kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" def test_integrate_prompt_in_package_node(self, mocker): tool_resolver = ToolResolver(working_dir=None, connections={}) mocker.patch.object( tool_resolver, "_load_source_content", return_value="{{text}}", ) tool = Tool(name="mock", type=ToolType.CUSTOM_LLM, inputs={"prompt": InputDefinition(type=["PromptTemplate"])}) node = Node( name="mock", tool=None, inputs={"text": InputAssignment(value="Hello World!", value_type=InputValueType.LITERAL)}, connection="conn_name", provider="mock", ) resolved_tool = ResolvedTool(node=node, callable=mock_package_func, definition=tool, init_args=None) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" resolved_tool = tool_resolver._integrate_prompt_in_package_node(resolved_tool) assert resolved_tool.callable._streaming_option_parameter == "stream_enabled" kwargs = {k: v.value for k, v in resolved_tool.node.inputs.items()} assert resolved_tool.callable(**kwargs) == "Hello World!" @pytest.mark.parametrize( "conn_types, expected_type", [ (["MyFirstCSTConnection"], MyFirstCSTConnection), (["CustomConnection", "MyFirstCSTConnection"], CustomConnection), (["CustomConnection", "MyFirstCSTConnection", "MySecondCSTConnection"], CustomConnection), (["MyFirstCSTConnection", "MySecondCSTConnection"], MyFirstCSTConnection), ], ) def test_convert_to_custom_strong_type_connection_value(self, conn_types: List[str], expected_type, mocker): connections = {"conn_name": {"type": "CustomConnection", "value": {"api_key": "mock", "api_base": "mock"}}} tool_resolver = ToolResolver(working_dir=None, connections=connections) node = mocker.Mock(name="node", tool=None, inputs={}) node.type = ToolType.PYTHON node.source = mocker.Mock(type=ToolSourceType.Code) tool = Tool(name="tool", type="python", inputs={"conn": InputDefinition(type=["CustomConnection"])}) m = sys.modules[__name__] v = InputAssignment(value="conn_name", value_type=InputValueType.LITERAL) actual = tool_resolver._convert_to_custom_strong_type_connection_value( "conn_name", v, node, tool, conn_types, m ) assert isinstance(actual, expected_type) assert actual.api_base == "mock" def test_load_source(self): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=ToolSource()) node.source.path = "./script_with_special_character/script_with_special_character.py" resolver = ToolResolver(FLOW_ROOT) result = resolver._load_source_content(node) assert "https://www.bing.com/\ue000\ue001/" in result @pytest.mark.parametrize( "source", [ None, ToolSource(path=None), # Then will try to read one directory. ToolSource(path=""), # Then will try to read one directory. ToolSource(path="NotExistPath.py"), ], ) def test_load_source_error(self, source): # Create a mock Node object with a valid source path node = Node(name="mock", tool=None, inputs={}, source=source) resolver = ToolResolver(FLOW_ROOT) with pytest.raises(InvalidSource) as _: resolver._load_source_content(node)
promptflow/src/promptflow/tests/executor/unittests/executor/test_tool_resolver.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/executor/test_tool_resolver.py", "repo_id": "promptflow", "token_count": 10851 }
51
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import contextlib import os import sys import uuid from typing import Callable import pytest from mock.mock import patch from promptflow._constants import PF_USER_AGENT from promptflow._core.operation_context import OperationContext from promptflow._sdk._utils import ClientUserAgentUtil from promptflow._sdk.entities import Run from promptflow._utils.utils import environment_variable_overwrite, parse_ua_to_dict from promptflow.azure import PFClient from .._azure_utils import DEFAULT_TEST_TIMEOUT, PYTEST_TIMEOUT_METHOD from ..recording_utilities import is_live FLOWS_DIR = "./tests/test_configs/flows" DATAS_DIR = "./tests/test_configs/datas" RUNS_DIR = "./tests/test_configs/runs" # TODO: move this to a shared utility module def run_pf_command(*args, pf, runtime=None, cwd=None): from promptflow._cli._pf_azure.entry import main origin_argv, origin_cwd = sys.argv, os.path.abspath(os.curdir) try: sys.argv = ( ["pfazure"] + list(args) + [ "--subscription", pf._ml_client.subscription_id, "--resource-group", pf._ml_client.resource_group_name, "--workspace-name", pf._ml_client.workspace_name, ] ) if runtime: sys.argv += ["--runtime", runtime] if cwd: os.chdir(cwd) main() finally: sys.argv = origin_argv os.chdir(origin_cwd) @pytest.mark.timeout(timeout=DEFAULT_TEST_TIMEOUT, method=PYTEST_TIMEOUT_METHOD) @pytest.mark.e2etest @pytest.mark.usefixtures( "mock_get_azure_pf_client", "mock_set_headers_with_user_aml_token", "single_worker_thread_pool", "vcr_recording", ) class TestCliWithAzure: def test_basic_flow_run_bulk_without_env(self, pf, runtime: str, randstr: Callable[[str], str]) -> None: name = randstr("name") run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/web_classification", "--data", f"{DATAS_DIR}/webClassification3.jsonl", "--name", name, pf=pf, runtime=runtime, ) run = pf.runs.get(run=name) assert isinstance(run, Run) @pytest.mark.skip("Custom tool pkg and promptprompt pkg with CustomStrongTypeConnection not installed on runtime.") def test_basic_flow_with_package_tool_with_custom_strong_type_connection(self, pf, runtime) -> None: name = str(uuid.uuid4()) run_pf_command( "run", "create", "--flow", f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection", "--data", f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection/data.jsonl", "--name", name, pf=pf, runtime=runtime, ) run = pf.runs.get(run=name) assert isinstance(run, Run) def test_run_with_remote_data( self, pf, runtime: str, remote_web_classification_data, randstr: Callable[[str], str] ) -> None: # run with arm id name = randstr("name1") run_pf_command( "run", "create", "--flow", "web_classification", "--data", f"azureml:{remote_web_classification_data.id}", "--name", name, pf=pf, runtime=runtime, cwd=f"{FLOWS_DIR}", ) run = pf.runs.get(run=name) assert isinstance(run, Run) # run with name version name = randstr("name2") run_pf_command( "run", "create", "--flow", "web_classification", "--data", f"azureml:{remote_web_classification_data.name}:{remote_web_classification_data.version}", "--name", name, pf=pf, runtime=runtime, cwd=f"{FLOWS_DIR}", ) run = pf.runs.get(run=name) assert isinstance(run, Run) def test_run_file_with_set(self, pf, runtime: str, randstr: Callable[[str], str]) -> None: name = randstr("name") run_pf_command( "run", "create", "--file", f"{RUNS_DIR}/run_with_env.yaml", "--set", f"runtime={runtime}", "--name", name, pf=pf, ) run = pf.runs.get(run=name) assert isinstance(run, Run) assert run.properties["azureml.promptflow.runtime_name"] == runtime @pytest.mark.skipif(condition=not is_live(), reason="This test requires an actual PFClient") def test_azure_cli_ua(self, pf: PFClient): # clear user agent before test context = OperationContext().get_instance() context.user_agent = "" with environment_variable_overwrite(PF_USER_AGENT, ""): with pytest.raises(SystemExit): run_pf_command( "run", "show", "--name", "not_exist", pf=pf, ) user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk", "promptflow-cli"} def test_cli_telemetry(self, pf, runtime: str, randstr: Callable[[str], str]) -> None: name = randstr("name") @contextlib.contextmanager def check_workspace_info(*args, **kwargs): if "custom_dimensions" in kwargs: assert kwargs["custom_dimensions"]["workspace_name"] == pf._ml_client.workspace_name assert kwargs["custom_dimensions"]["resource_group_name"] == pf._ml_client.resource_group_name assert kwargs["custom_dimensions"]["subscription_id"] == pf._ml_client.subscription_id yield None with patch("promptflow._sdk._telemetry.activity.log_activity") as mock_log_activity: mock_log_activity.side_effect = check_workspace_info run_pf_command( "run", "create", "--file", f"{RUNS_DIR}/run_with_env.yaml", "--set", f"runtime={runtime}", "--name", name, pf=pf, )
promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_cli_with_azure.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_cli_with_azure.py", "repo_id": "promptflow", "token_count": 3368 }
52
import contextlib import os import sys from pathlib import Path from typing import List from unittest.mock import MagicMock, patch import pandas as pd import pytest from pytest_mock import MockFixture from promptflow._sdk._constants import VIS_PORTAL_URL_TMPL tests_root_dir = Path(__file__).parent.parent.parent flow_test_dir = tests_root_dir / "test_configs/flows" data_dir = tests_root_dir / "test_configs/datas" def run_pf_command(*args, cwd=None): from promptflow._cli._pf_azure.entry import main origin_argv, origin_cwd = sys.argv, os.path.abspath(os.curdir) try: sys.argv = ["pfazure"] + list(args) if cwd: os.chdir(cwd) main() finally: sys.argv = origin_argv os.chdir(origin_cwd) @pytest.fixture def operation_scope_args(subscription_id: str, resource_group_name: str, workspace_name: str): return [ "--subscription", subscription_id, "--resource-group", resource_group_name, "--workspace-name", workspace_name, ] @pytest.mark.usefixtures("mock_get_azure_pf_client") @pytest.mark.unittest class TestAzureCli: def test_pf_azure_version(self, capfd): run_pf_command("--version") out, err = capfd.readouterr() assert "0.0.1\n" in out def test_run_show(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "get") # show_run will print the run object, so we need to mock the return value mocked.return_value._to_dict.return_value = {"name": "test_run"} run_pf_command( "run", "show", "--name", "test_run", *operation_scope_args, ) mocked.assert_called_once() def test_run_show_details(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "get_details") # show_run_details will print details, so we need to mock the return value mocked.return_value = pd.DataFrame([{"input": "input_value", "output": "output_value"}]) run_pf_command( "run", "show-details", "--name", "test_run", "--max-results", "10", "--all-results", *operation_scope_args, ) mocked.assert_called_once() def test_run_show_metrics(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "get_metrics") # show_metrics will print the metrics, so we need to mock the return value mocked.return_value = {"accuracy": 0.9} run_pf_command( "run", "show-metrics", "--name", "test_run", *operation_scope_args, ) mocked.assert_called_once() def test_run_list_runs( self, mocker: MockFixture, operation_scope_args, subscription_id: str, resource_group_name: str, workspace_name: str, ): from promptflow.azure.operations._run_operations import RunOperations mocked_run = MagicMock() mocked_run._to_dict.return_value = {"name": "test_run"} mocked = mocker.patch.object(RunOperations, "list") # list_runs will print the run list, so we need to mock the return value mocked.return_value = [mocked_run] run_pf_command( "run", "list", "--max-results", "10", "--include-archived", *operation_scope_args, ) run_pf_command( "run", "list", "--max-results", "10", "--include-archived", "--output", "table", *operation_scope_args, ) mocker.patch.dict( os.environ, { "AZUREML_ARM_WORKSPACE_NAME": workspace_name, "AZUREML_ARM_SUBSCRIPTION": subscription_id, "AZUREML_ARM_RESOURCEGROUP": resource_group_name, }, ) run_pf_command( "run", "list", "--max-results", "10", "--include-archived", ) assert mocked.call_count == 3 def test_run_visualize( self, operation_scope_args: List[str], capfd: pytest.CaptureFixture, subscription_id: str, resource_group_name: str, workspace_name: str, ) -> None: # cloud version visualize is actually a string concatenation names = "name1,name2,name3" run_pf_command( "run", "visualize", "--names", names, *operation_scope_args, ) captured = capfd.readouterr() expected_portal_url = VIS_PORTAL_URL_TMPL.format( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, names=names, ) assert expected_portal_url in captured.out def test_run_archive( self, mocker: MockFixture, operation_scope_args, ): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "archive") mocked.return_value._to_dict.return_value = {"name": "test_run"} run_pf_command( "run", "archive", "--name", "test_run", *operation_scope_args, ) mocked.assert_called_once() def test_run_restore( self, mocker: MockFixture, operation_scope_args, ): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "restore") mocked.return_value._to_dict.return_value = {"name": "test_run"} run_pf_command( "run", "restore", "--name", "test_run", *operation_scope_args, ) mocked.assert_called_once() def test_run_update( self, mocker: MockFixture, operation_scope_args, ): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "update") mocked.return_value._to_dict.return_value = {"name": "test_run"} run_pf_command( "run", "update", "--name", "test_run", "--set", "display_name=test_run", "description='test_description'", "tags.key1=value1", *operation_scope_args, ) mocked.assert_called_once() def test_flow_create( self, mocker: MockFixture, operation_scope_args, ): from promptflow.azure.operations._flow_operations import FlowOperations mocked = mocker.patch.object(FlowOperations, "create_or_update") mocked.return_value._to_dict.return_value = {"name": "test_run"} flow_dir = Path(flow_test_dir, "web_classification").resolve().as_posix() run_pf_command( "flow", "create", "--flow", flow_dir, "--set", "display_name=test_flow", "type=standard", "description='test_description'", "tags.key1=value1", *operation_scope_args, ) mocked.assert_called_with( flow=flow_dir, display_name="test_flow", type="standard", description="test_description", tags={"key1": "value1"}, ) def test_flow_create_with_unknown_field(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._flow_operations import FlowOperations mocked = mocker.patch.object(FlowOperations, "create_or_update") mocked.return_value._to_dict.return_value = {"name": "test_run"} flow_dir = Path(flow_test_dir, "web_classification").resolve().as_posix() run_pf_command( "flow", "create", "--flow", flow_dir, "--set", "random_key=random_value", *operation_scope_args, ) mocked.assert_called_with(flow=flow_dir, random_key="random_value") def test_flow_list( self, mocker: MockFixture, operation_scope_args, ): from promptflow.azure.operations._flow_operations import FlowOperations mocked_flow = MagicMock() mocked_flow._to_dict.return_value = {"name": "test_flow"} mocked = mocker.patch.object(FlowOperations, "list") mocked.return_value = [mocked_flow] run_pf_command( "flow", "list", "--max-results", "10", "--include-archived", "--type", "standard", "--include-others", "--output", "table", *operation_scope_args, ) mocked.assert_called_once() def test_run_telemetry( self, mocker: MockFixture, operation_scope_args, subscription_id: str, resource_group_name: str, workspace_name: str, ): from promptflow.azure.operations._run_operations import RunOperations mocked_run = MagicMock() mocked_run._to_dict.return_value = {"name": "test_run"} mocked = mocker.patch.object(RunOperations, "list") # list_runs will print the run list, so we need to mock the return value mocked.return_value = [mocked_run] mocker.patch.dict( os.environ, { "AZUREML_ARM_WORKSPACE_NAME": workspace_name, "AZUREML_ARM_SUBSCRIPTION": subscription_id, "AZUREML_ARM_RESOURCEGROUP": resource_group_name, }, ) @contextlib.contextmanager def check_workspace_info(*args, **kwargs): if "custom_dimensions" in kwargs: assert kwargs["custom_dimensions"]["workspace_name"] == workspace_name assert kwargs["custom_dimensions"]["resource_group_name"] == resource_group_name assert kwargs["custom_dimensions"]["subscription_id"] == subscription_id yield None with patch("promptflow._sdk._telemetry.activity.log_activity") as mock_log_activity: mock_log_activity.side_effect = check_workspace_info run_pf_command( "run", "list", "--max-results", "10", "--include-archived", *operation_scope_args, ) def test_run_download(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "download") mocked.return_value = "fake_output_run_dir" run_pf_command( "run", "download", "--name", "test_run", "--output", "fake_output_dir", "--overwrite", *operation_scope_args, ) mocked.assert_called_once() def test_run_cancel(self, mocker: MockFixture, operation_scope_args): from promptflow.azure.operations._run_operations import RunOperations mocked = mocker.patch.object(RunOperations, "cancel") run_pf_command( "run", "cancel", "--name", "test_run", *operation_scope_args, ) mocked.assert_called_once()
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_cli.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_cli.py", "repo_id": "promptflow", "token_count": 5953 }
53
ENVIRON_TEST_MODE = "PROMPT_FLOW_TEST_MODE" class RecordMode: LIVE = "live" RECORD = "record" REPLAY = "replay"
promptflow/src/promptflow/tests/sdk_cli_test/recording_utilities/constants.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/recording_utilities/constants.py", "repo_id": "promptflow", "token_count": 60 }
54
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import importlib.util from pathlib import Path import pytest TOOL_DIR = Path("./tests/test_configs/tools") @pytest.mark.unittest class TestTool: def get_tool_meta_by_path(self, client, tool_path, module_name): # Load the module from the file path spec = importlib.util.spec_from_file_location(module_name, tool_path) tool_module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(tool_module) # List meta data of tools tool_meta = client.tools._generate_tool_meta(tool_module) return tool_meta def test_python_tool_meta(self, pf): tool_path = TOOL_DIR / "python_tool.py" tools_meta, _ = self.get_tool_meta_by_path(pf, tool_path, "python_tool") # Get python script tool meta expect_tools_meta = { "python_tool.my_python_tool": { "name": "python_tool", "type": "python", "inputs": {"input1": {"type": ["string"]}}, "module": "python_tool", "function": "my_python_tool", }, "python_tool.my_python_tool_without_name": { "name": "my_python_tool_without_name", "type": "python", "inputs": {"input1": {"type": ["string"]}}, "module": "python_tool", "function": "my_python_tool_without_name", }, "python_tool.PythonTool.python_tool": { "name": "PythonTool.python_tool", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "input1": {"type": ["string"]}}, "module": "python_tool", "class_name": "PythonTool", "function": "python_tool", }, } assert tools_meta == expect_tools_meta def test_custom_tool_meta(self, pf): tool_path = TOOL_DIR / "custom_llm_tool.py" tools_meta, _ = self.get_tool_meta_by_path(pf, tool_path, "custom_llm_tool") expect_meta = { "custom_llm_tool.TestCustomLLMTool.tool_func": { "class_name": "TestCustomLLMTool", "description": "This is a tool to demonstrate the custom_llm tool type", "enable_kwargs": True, "function": "tool_func", "inputs": {"api": {"type": ["string"]}, "connection": {"type": ["AzureOpenAIConnection"]}}, "module": "custom_llm_tool", "name": "My Custom LLM Tool", "type": "custom_llm", }, "custom_llm_tool.my_tool": { "description": "This is a tool to demonstrate the custom_llm tool type", "enable_kwargs": True, "function": "my_tool", "inputs": {"connection": {"type": ["CustomConnection"]}}, "module": "custom_llm_tool", "name": "My Custom LLM Tool", "type": "custom_llm", }, } assert tools_meta == expect_meta
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_tool.py", "repo_id": "promptflow", "token_count": 1585 }
55
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/AzureContentSafetyConnection.schema.json name: my_azure_content_safety_connection type: azure_content_safety # snake case api_key: "<to-be-replaced>" endpoint: "endpoint" api_version: "2023-04-30-preview" api_type: Content Safety
promptflow/src/promptflow/tests/test_configs/connections/azure_content_safety_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/azure_content_safety_connection.yaml", "repo_id": "promptflow", "token_count": 106 }
56
{"key": {"key": "value in data"}}
promptflow/src/promptflow/tests/test_configs/datas/dictInput1.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/datas/dictInput1.jsonl", "repo_id": "promptflow", "token_count": 13 }
57
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(): """Simple flow without yaml.""" print("Hello world!")
promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_environment/entry.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_environment/entry.py", "repo_id": "promptflow", "token_count": 52 }
58
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val: str = "gpt") -> str: """Simple flow without yaml.""" return f"Hello world! {input_val}"
promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_yaml/entry.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_yaml/entry.py", "repo_id": "promptflow", "token_count": 70 }
59