text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
from promptflow import tool @tool def my_python_tool(input1: str) -> str: return 'hello ' + input1
promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/node_a.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/node_a.py", "repo_id": "promptflow", "token_count": 37 }
60
import asyncio import json from openai import AsyncOpenAI from openai.types.beta.threads import MessageContentImageFile, MessageContentText from promptflow import tool, trace from promptflow.connections import OpenAIConnection from promptflow.contracts.multimedia import Image from promptflow.contracts.types import AssistantDefinition from promptflow.exceptions import SystemErrorException from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker URL_PREFIX = "https://platform.openai.com/files/" RUN_STATUS_POLLING_INTERVAL_IN_MILSEC = 1000 @tool async def add_message_and_run( conn: OpenAIConnection, assistant_id: str, thread_id: str, message: list, assistant_definition: AssistantDefinition, download_images: bool, ): cli = await get_openai_api_client(conn) invoker = await get_assisant_tool_invoker(assistant_definition) # Check if assistant id is valid. If not, create a new assistant. # Note: tool registration at run creation, rather than at assistant creation. if not assistant_id: assistant = await create_assistant(cli, assistant_definition) assistant_id = assistant.id await add_message(cli, message, thread_id) run = await start_run(cli, assistant_id, thread_id, assistant_definition, invoker) await wait_for_run_complete(cli, thread_id, invoker, run) messages = await get_message(cli, thread_id) file_id_references = await get_openai_file_references(messages.data[0].content, download_images, conn) return {"content": to_pf_content(messages.data[0].content), "file_id_references": file_id_references} @trace async def get_openai_api_client(conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) return cli @trace async def get_assisant_tool_invoker(assistant_definition: AssistantDefinition): invoker = AssistantToolInvoker.init(assistant_definition.tools) return invoker @trace async def create_assistant(cli: AsyncOpenAI, assistant_definition: AssistantDefinition): assistant = await cli.beta.assistants.create( instructions=assistant_definition.instructions, model=assistant_definition.model ) print(f"Created assistant: {assistant.id}") return assistant @trace async def add_message(cli: AsyncOpenAI, message: list, thread_id: str): content = extract_text_from_message(message) file_ids = await extract_file_ids_from_message(cli, message) msg = await cli.beta.threads.messages.create(thread_id=thread_id, role="user", content=content, file_ids=file_ids) print("Created message message_id: {msg.id}, assistant_id: {assistant_id}, thread_id: {thread_id}") return msg @trace async def start_run( cli: AsyncOpenAI, assistant_id: str, thread_id: str, assistant_definition: AssistantDefinition, invoker: AssistantToolInvoker, ): tools = invoker.to_openai_tools() run = await cli.beta.threads.runs.create( assistant_id=assistant_id, thread_id=thread_id, model=assistant_definition.model, instructions=assistant_definition.instructions, tools=tools, ) print(f"Assistant_id: {assistant_id}, thread_id: {thread_id}, run_id: {run.id}") return run async def wait_for_status_check(): await asyncio.sleep(RUN_STATUS_POLLING_INTERVAL_IN_MILSEC / 1000.0) async def get_run_status(cli: AsyncOpenAI, thread_id: str, run_id: str): run = await cli.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id) print(f"Run status: {run.status}") return run @trace async def get_tool_calls_outputs(invoker: AssistantToolInvoker, run): tool_calls = run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tool_call in tool_calls: tool_name = tool_call.function.name tool_args = json.loads(tool_call.function.arguments) print(f"Invoking tool: {tool_call.function.name} with args: {tool_args}") output = invoker.invoke_tool(tool_name, tool_args) tool_outputs.append( { "tool_call_id": tool_call.id, "output": str(output), } ) print(f"Tool output: {str(output)}") return tool_outputs @trace async def submit_tool_calls_outputs(cli: AsyncOpenAI, thread_id: str, run_id: str, tool_outputs: list): await cli.beta.threads.runs.submit_tool_outputs(thread_id=thread_id, run_id=run_id, tool_outputs=tool_outputs) print(f"Submitted all required resonses for run: {run_id}") @trace async def require_actions(cli: AsyncOpenAI, thread_id: str, run, invoker: AssistantToolInvoker): tool_outputs = await get_tool_calls_outputs(invoker, run) await submit_tool_calls_outputs(cli, thread_id, run.id, tool_outputs) @trace async def wait_for_run_complete(cli: AsyncOpenAI, thread_id: str, invoker: AssistantToolInvoker, run): while run.status != "completed": await wait_for_status_check() run = await get_run_status(cli, thread_id, run.id) if run.status == "requires_action": await require_actions(cli, thread_id, run, invoker) elif run.status == "in_progress" or run.status == "completed": continue else: raise Exception(f"The assistant tool runs in '{run.status}' status. Message: {run.last_error.message}") @trace async def get_run_steps(cli: AsyncOpenAI, thread_id: str, run_id: str): run_steps = await cli.beta.threads.runs.steps.list(thread_id=thread_id, run_id=run_id) print("step details: \n") for step_data in run_steps.data: print(step_data.step_details) @trace async def get_message(cli: AsyncOpenAI, thread_id: str): messages = await cli.beta.threads.messages.list(thread_id=thread_id) return messages def extract_text_from_message(message: list): content = [] for m in message: if isinstance(m, str): content.append(m) continue message_type = m.get("type", "") if message_type == "text" and "text" in m: content.append(m["text"]) return "\n".join(content) async def extract_file_ids_from_message(cli: AsyncOpenAI, message: list): file_ids = [] for m in message: if isinstance(m, str): continue message_type = m.get("type", "") if message_type == "file_path" and "file_path" in m: path = m["file_path"].get("path", "") if path: file = await cli.files.create(file=open(path, "rb"), purpose="assistants") file_ids.append(file.id) return file_ids async def get_openai_file_references(content: list, download_image: bool, conn: OpenAIConnection): file_id_references = {} for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id if download_image: file_id_references[file_id] = { "content": await download_openai_image(file_id, conn), "url": URL_PREFIX + file_id, } else: file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif isinstance(item, MessageContentText): for annotation in item.text.annotations: if annotation.type == "file_path": file_id = annotation.file_path.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif annotation.type == "file_citation": file_id = annotation.file_citation.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} else: raise Exception(f"Unsupported content type: '{type(item)}'.") return file_id_references def to_pf_content(content: list): pf_content = [] for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id pf_content.append({"type": "image_file", "image_file": {"file_id": file_id}}) elif isinstance(item, MessageContentText): text_dict = {"type": "text", "text": {"value": item.text.value, "annotations": []}} for annotation in item.text.annotations: annotation_dict = { "type": "file_path", "text": annotation.text, "start_index": annotation.start_index, "end_index": annotation.end_index, } if annotation.type == "file_path": annotation_dict["file_path"] = {"file_id": annotation.file_path.file_id} elif annotation.type == "file_citation": annotation_dict["file_citation"] = {"file_id": annotation.file_citation.file_id} text_dict["text"]["annotations"].append(annotation_dict) pf_content.append(text_dict) else: raise SystemErrorException(f"Unsupported content type: {type(item)}") return pf_content async def download_openai_image(file_id: str, conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) image_data = await cli.files.content(file_id) return Image(image_data.read())
promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/add_message_and_run.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/add_message_and_run.py", "repo_id": "promptflow", "token_count": 3874 }
61
{# Please replace the template with your own prompt. #} system: You task is to generate what I ask user: Write a simple {{text}} program that displays the greeting message when executed.
promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/hello.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/hello.jinja2", "repo_id": "promptflow", "token_count": 45 }
62
from promptflow import tool from promptflow.contracts.multimedia import Image @tool def mock_chat(chat_history: list, question: list): ensure_image_in_list(question, "question") for item in chat_history: ensure_image_in_list(item["inputs"]["question"], "inputs of chat history") ensure_image_in_list(item["outputs"]["answer"], "outputs of chat history") res = [] for item in question: if isinstance(item, Image): res.append(item) res.append("text response") return res def ensure_image_in_list(value: list, name: str): include_image = False for item in value: if isinstance(item, Image): include_image = True if not include_image: raise Exception(f"No image found in {name}, you should include at least one image in your {name}.")
promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_image/mock_chat.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_image/mock_chat.py", "repo_id": "promptflow", "token_count": 310 }
63
from promptflow import tool @tool def grade(groundtruth: str, prediction: str): groundtruth = groundtruth.lower().strip('"') prediction = prediction.lower().strip('"') return "Correct" if groundtruth == prediction else "Incorrect"
promptflow/src/promptflow/tests/test_configs/flows/classification_accuracy_evaluation/grade.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/classification_accuracy_evaluation/grade.py", "repo_id": "promptflow", "token_count": 71 }
64
from promptflow import tool @tool def kql_retriever(content: str) -> str: return "KQL: " + content
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/kql_tsg_retriever.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/kql_tsg_retriever.py", "repo_id": "promptflow", "token_count": 35 }
65
inputs: image: type: image default: logo.jpg outputs: output: type: image reference: ${python_node.output} nodes: - name: python_node type: python source: type: code path: pick_an_image.py inputs: image_1: ${inputs.image} image_2: data:image/png;path: logo_2.png - name: aggregate type: python source: type: code path: merge_images.py inputs: image_1: - data:image/jpg;path: logo.jpg image_2: ${inputs.image} image_3: ${python_node.output} aggregation: true
promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_simple_image/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_simple_image/flow.dag.yaml", "repo_id": "promptflow", "token_count": 231 }
66
from promptflow import tool from promptflow.connections import CustomConnection @tool def my_python_tool(text: str, connection: CustomConnection) -> dict: return connection._to_dict()
promptflow/src/promptflow/tests/test_configs/flows/flow_with_custom_connection/hello.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_custom_connection/hello.py", "repo_id": "promptflow", "token_count": 51 }
67
id: web_classification inputs: url: default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h is_chat_input: false type: string nodes: - inputs: url: ${inputs.url} name: fetch_text_content_from_url reduce: false source: path: fetch_text_content_from_url.py type: code type: python outputs: text: evaluation_only: false is_chat_output: false reference: ${fetch_text_content_from_url.output} type: string
promptflow/src/promptflow/tests/test_configs/flows/flow_with_ignore_file/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_ignore_file/flow.dag.yaml", "repo_id": "promptflow", "token_count": 219 }
68
{"text": "Hello World!"}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_connection/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_connection/data.jsonl", "repo_id": "promptflow", "token_count": 9 }
69
inputs: user_id: type: int default: 1 outputs: output: type: string reference: ${greetings.output.greeting} nodes: - name: greetings type: python source: type: code path: greetings.py inputs: user_id: ${inputs.user_id}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_trace/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_trace/flow.dag.yaml", "repo_id": "promptflow", "token_count": 111 }
70
inputs: text: type: string outputs: output_prompt: type: string reference: ${llm_tool_with_duplicated_inputs.output} nodes: - name: llm_tool_with_duplicated_inputs type: llm provider: AzureOpenAI api: completion module: promptflow.tools.aoai connection: azure_open_ai_connection source: type: code path: prompt_with_duplicated_inputs.jinja2 inputs: deployment_name: text-ada-001 max_tokens: 16 text: ${inputs.text}
promptflow/src/promptflow/tests/test_configs/flows/llm_tool_with_duplicated_inputs/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/llm_tool_with_duplicated_inputs/flow.dag.yaml", "repo_id": "promptflow", "token_count": 189 }
71
from promptflow import tool @tool def stringify_num(): print("hello world")
promptflow/src/promptflow/tests/test_configs/flows/no_inputs_outputs/say_hello.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/no_inputs_outputs/say_hello.py", "repo_id": "promptflow", "token_count": 26 }
72
{"key": "no"} {"key": "raise"} {"key": "matter"}
promptflow/src/promptflow/tests/test_configs/flows/partial_fail/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/partial_fail/data.jsonl", "repo_id": "promptflow", "token_count": 21 }
73
{ "name": "summarize_text_content_prompt", "type": "prompt", "inputs": { "text": { "type": [ "string" ] }, "image1": { "type": [ "image" ] }, "image2": { "type": [ "image" ] }, "image3": { "type": [ "image" ] }, "image4": { "type": [ "image" ] }, "video1": { "type": [ "string" ] } }, "source": "summarize_text_content_prompt.jinja2" }
promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/summarize_text_content_prompt.meta.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/summarize_text_content_prompt.meta.json", "repo_id": "promptflow", "token_count": 311 }
74
inputs: image: type: image default: logo.jpg outputs: output: type: image reference: ${python_node.output} nodes: - name: python_node type: python source: type: code path: passthrough.py inputs: image: ${inputs.image}
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_image_nested_api_calls/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_image_nested_api_calls/flow.dag.yaml", "repo_id": "promptflow", "token_count": 106 }
75
[ { "image_2": { "data:image/png;path": "logo.jpg" } }, { "image_2": { "data:image/png;path": "logo_2.png" } } ]
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image_with_default/inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image_with_default/inputs.json", "repo_id": "promptflow", "token_count": 125 }
76
from promptflow import tool print(f"The script is {__file__}") @tool def my_python_tool(input1: str) -> str: from pathlib import Path assert Path(__file__).as_posix().endswith("folder/another-tool.py") assert __name__ == "__pf_main__" return f"Prompt: {input1} {__file__}"
promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/folder/another-tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/folder/another-tool.py", "repo_id": "promptflow", "token_count": 114 }
77
model: mock_model instructions: mock_instructions tools: - type: function tool_type: python source: type: code path: echo.py
promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/assistant_definition.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/assistant_definition.yaml", "repo_id": "promptflow", "token_count": 51 }
78
Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. Text: {{text}} Summary:
promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants/.promptflow/lkg_sources/summarize_text_content.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants/.promptflow/lkg_sources/summarize_text_content.jinja2", "repo_id": "promptflow", "token_count": 35 }
79
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.10.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/api-version=2023-06-01-preview response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}}' headers: cache-control: - no-cache content-length: - '3519' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.019' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.10.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?api-version=2023-04-01-preview&count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.063' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Connections/specs response: body: string: '[{"connectionCategory": 15, "flowValueType": "AzureContentSafetyConnection", "connectionType": "AzureContentSafety", "connectionTypeDisplayName": "Azure content safety", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "endpoint", "displayName": "Endpoint", "configValueType": "String", "isOptional": false}, {"name": "api_version", "displayName": "API version", "configValueType": "String", "defaultValue": "2023-04-30-preview", "isOptional": false}, {"name": "api_type", "displayName": "API type", "configValueType": "String", "defaultValue": "Content Safety", "isOptional": false}], "module": "promptflow.connections"}, {"connectionCategory": 13, "flowValueType": "AzureOpenAIConnection", "connectionType": "AzureOpenAI", "connectionTypeDisplayName": "Azure OpenAI", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "api_base", "displayName": "API base", "configValueType": "String", "isOptional": false}, {"name": "api_type", "displayName": "API type", "configValueType": "String", "defaultValue": "azure", "isOptional": false}, {"name": "api_version", "displayName": "API version", "configValueType": "String", "defaultValue": "2023-07-01-preview", "isOptional": false}, {"name": "resource_id", "displayName": "Resource id", "configValueType": "String", "isOptional": false}], "module": "promptflow.connections"}, {"connectionCategory": 14, "flowValueType": "CognitiveSearchConnection", "connectionType": "CognitiveSearch", "connectionTypeDisplayName": "Cognitive search", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "api_base", "displayName": "API base", "configValueType": "String", "isOptional": false}, {"name": "api_version", "displayName": "API version", "configValueType": "String", "defaultValue": "2023-07-01-Preview", "isOptional": false}], "module": "promptflow.connections"}, {"connectionCategory": 16, "flowValueType": "CustomConnection", "connectionType": "Custom", "connectionTypeDisplayName": "Custom", "module": "promptflow.connections"}, {"connectionCategory": 16, "flowValueType": "OpenAIConnection", "connectionType": "OpenAI", "connectionTypeDisplayName": "OpenAI", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "organization", "displayName": "Organization", "configValueType": "String", "isOptional": true}], "module": "promptflow.connections"}, {"connectionCategory": 16, "flowValueType": "QdrantConnection", "connectionType": "Qdrant", "connectionTypeDisplayName": "Qdrant", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "api_base", "displayName": "API base", "configValueType": "String", "isOptional": false}], "module": "promptflow_vectordb.connections.qdrant"}, {"connectionCategory": 16, "flowValueType": "SerpConnection", "connectionType": "Serp", "connectionTypeDisplayName": "Serp", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}], "module": "promptflow.connections"}, {"connectionCategory": 16, "flowValueType": "WeaviateConnection", "connectionType": "Weaviate", "connectionTypeDisplayName": "Weaviate", "configSpecs": [{"name": "api_key", "displayName": "API key", "configValueType": "Secret", "isOptional": false}, {"name": "api_base", "displayName": "API base", "configValueType": "String", "isOptional": false}], "module": "promptflow_vectordb.connections.weaviate"}]' headers: connection: - keep-alive content-length: - '3402' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.769' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_connection_operations_TestConnectionOperations_test_list_connection_spec.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_connection_operations_TestConnectionOperations_test_list_connection_spec.yaml", "repo_id": "promptflow", "token_count": 3527 }
80
inputs: text: type: string outputs: output: type: string reference: ${summarize_text_content.output} nodes: - name: summarize_text_content source: type: code path: summarize_text_content__variant_1.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '256' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${inputs.text} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai
promptflow/src/promptflow/tests/test_configs/wrong_flows/tool_type_missing/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/tool_type_missing/flow.dag.yaml", "repo_id": "promptflow", "token_count": 272 }
81
# Frequency asked questions (FAQ) ## Troubleshooting ## ### Token expired when run pfazure cmd If hit error "AADSTS700082: The refresh token has expired due to inactivity." when running pfazure cmd, it's caused by local cached token expired. Please clear the cached token under "%LOCALAPPDATA%/.IdentityService/msal.cache". Then run below command to login again: ```sh az login ```
promptflow/docs/cloud/azureai/faq.md/0
{ "file_path": "promptflow/docs/cloud/azureai/faq.md", "repo_id": "promptflow", "token_count": 108 }
0
# Deploy a flow using development server :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: Once you have created and thoroughly tested a flow, you can use it as an HTTP endpoint. ::::{tab-set} :::{tab-item} CLI :sync: CLI We are going to use the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) as an example to show how to deploy a flow. Please ensure you have [create the connection](../manage-connections.md#create-a-connection) required by flow, if not, you could refer to [Setup connection for web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification). Note: We will use relevant environment variable ({connection_name}_{key_name}) to override connection configurations in serving mode, white space in connection name will be removed directly from environment variable name. For instance, if there is a custom connection named 'custom_connection' with a configuration key called 'chat_deployment_name,' the function will attempt to retrieve 'chat_deployment_name' from the environment variable 'CUSTOM_CONNECTION_CHAT_DEPLOYMENT_NAME' by default. If the environment variable is not set, it will use the original value as a fallback. The following CLI commands allows you serve a flow folder as an endpoint. By running this command, a [flask](https://flask.palletsprojects.com/en/) app will start in the environment where command is executed, please ensure all prerequisites required by flow have been installed. ```bash # Serve the flow at localhost:8080 pf flow serve --source <path-to-your-flow-folder> --port 8080 --host localhost ``` The expected result is as follows if the flow served successfully, and the process will keep alive until it be killed manually. ![img](../../media/how-to-guides/deploy_flow.png) ::: :::{tab-item} VS Code Extension :sync: VSC In visual editor, choose: ![img](../../media/how-to-guides/vscode_export.png) then choose format: ![img](../../media/how-to-guides/vscode_export_as_local_app.png) then in yaml editor: ![img](../../media/how-to-guides/vscode_start_local_app.png) ::: :::: ## Test endpoint ::::{tab-set} :::{tab-item} Bash You could open another terminal to test the endpoint with the following command: ```bash curl http://localhost:8080/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` ::: :::{tab-item} PowerShell You could open another terminal to test the endpoint with the following command: ```powershell Invoke-WebRequest -URI http://localhost:8080/score -Body '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -Method POST -ContentType "application/json" ``` ::: :::{tab-item} Test Page The development server has a built-in web page you can use to test the flow. Open 'http://localhost:8080' in your browser. ![img](../../media/how-to-guides/deploy_flow_test_page.png) ::: :::: ## Next steps - Try the example [here](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/). - See how to [deploy a flow using docker](deploy-using-docker.md). - See how to [deploy a flow using kubernetes](deploy-using-kubernetes.md).
promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-dev-server.md/0
{ "file_path": "promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-dev-server.md", "repo_id": "promptflow", "token_count": 999 }
1
# Customizing an LLM Tool In this document, we will guide you through the process of customizing an LLM tool, allowing users to seamlessly connect to a large language model with prompt tuning experience using a `PromptTemplate`. ## Prerequisites - Please ensure that your [Prompt flow for VS Code](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow) is updated to version 1.2.0 or later. ## How to customize an LLM tool Here we use [an existing tool package](https://github.com/microsoft/promptflow/tree/main/examples/tools/tool-package-quickstart/my_tool_package) as an example. If you want to create your own tool, please refer to [create and use tool package](create-and-use-tool-package.md). 1. Develop the tool code as in [this example](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_custom_llm_type.py). - Add a `CustomConnection` input to the tool, which is used to authenticate and establish a connection to the large language model. - Add a `PromptTemplate` input to the tool, which serves as an argument to be passed into the large language model. ```python from jinja2 import Template from promptflow import tool from promptflow.connections import CustomConnection from promptflow.contracts.types import PromptTemplate @tool def my_tool(connection: CustomConnection, prompt: PromptTemplate, **kwargs) -> str: # Customize your own code to use the connection and prompt here. rendered_prompt = Template(prompt, trim_blocks=True, keep_trailing_newline=True).render(**kwargs) return rendered_prompt ``` 2. Generate the custom LLM tool YAML. Run the command below in your tool project directory to automatically generate your tool YAML, use _-t "custom_llm"_ or _--tool-type "custom_llm"_ to indicate this is a custom LLM tool: ``` python <promptflow github repo>\scripts\tool\generate_package_tool_meta.py -m <tool_module> -o <tool_yaml_path> -t "custom_llm" ``` Here we use [an existing tool](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_custom_llm_type.yaml) as an example. ``` cd D:\proj\github\promptflow\examples\tools\tool-package-quickstart python D:\proj\github\promptflow\scripts\tool\generate_package_tool_meta.py -m my_tool_package.tools.tool_with_custom_llm_type -o my_tool_package\yamls\tool_with_custom_llm_type.yaml -n "My Custom LLM Tool" -d "This is a tool to demonstrate how to customize an LLM tool with a PromptTemplate." -t "custom_llm" ``` This command will generate a YAML file as follows: ```yaml my_tool_package.tools.tool_with_custom_llm_type.my_tool: name: My Custom LLM Tool description: This is a tool to demonstrate how to customize an LLM tool with a PromptTemplate. # The type is custom_llm. type: custom_llm module: my_tool_package.tools.tool_with_custom_llm_type function: my_tool inputs: connection: type: - CustomConnection ``` ## Use the tool in VS Code Follow the steps to [build and install your tool package](create-and-use-tool-package.md#build-and-share-the-tool-package) and [use your tool from VS Code extension](create-and-use-tool-package.md#use-your-tool-from-vscode-extension). Here we use an existing flow to demonstrate the experience, open [this flow](https://github.com/microsoft/promptflow/blob/main/examples/tools/use-cases/custom_llm_tool_showcase/flow.dag.yaml) in VS Code extension. - There is a node named "my_custom_llm_tool" with a prompt template file. You can either use an existing file or create a new one as the prompt template file. ![use_my_custom_llm_tool](../../media/how-to-guides/develop-a-tool/use_my_custom_llm_tool.png)
promptflow/docs/how-to-guides/develop-a-tool/customize_an_llm_tool.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-tool/customize_an_llm_tool.md", "repo_id": "promptflow", "token_count": 1277 }
2
--- myst: html_meta: "description lang=en": "Prompt flow Doc" "google-site-verification": "rEZN-2h5TVqEco07aaMpqNcDx4bjr2czx1Hwfoxydrg" html_theme.sidebar_secondary.remove: true --- # Prompt flow [**Prompt flow**](https://github.com/microsoft/promptflow) is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With prompt flow, you will be able to: - **Create [flows](./concepts/concept-flows.md)** that link [LLMs](./reference/tools-reference/llm-tool.md), [prompts](./reference/tools-reference/prompt-tool.md), [Python](./reference/tools-reference/python-tool.md) code and other [tools](./concepts/concept-tools.md) together in a executable workflow. - **Debug and iterate your flows**, especially the interaction with LLMs with ease. - **Evaluate your flows**, calculate quality and performance metrics with larger datasets. - **Integrate the testing and evaluation into your CI/CD system** to ensure quality of your flow. - **Deploy your flows** to the serving platform you choose or integrate into your app's code base easily. - (Optional but highly recommended) **Collaborate with your team** by leveraging the cloud version of [Prompt flow in Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow?view=azureml-api-2). > Welcome to join us to make prompt flow better by > participating [discussions](https://github.com/microsoft/promptflow/discussions), > opening [issues](https://github.com/microsoft/promptflow/issues/new/choose), > submitting [PRs](https://github.com/microsoft/promptflow/pulls). This documentation site contains guides for prompt flow [sdk, cli](https://pypi.org/project/promptflow/) and [vscode extension](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow) users. ```{gallery-grid} :grid-columns: 1 2 2 2 - header: "🚀 Quick Start" content: " Quick start and end-to-end tutorials.<br/><br/> - [Getting started with prompt flow](how-to-guides/quick-start.md)<br/> - [E2E development tutorial: chat with PDF](https://github.com/microsoft/promptflow/blob/main/examples/tutorials/e2e-development/chat-with-pdf.md)<br/> - Find more: [tutorials & samples](tutorials/index.md)<br/> " - header: "📒 How-to Guides" content: " Articles guide user to complete a specific task in prompt flow.<br/><br/> - [Develop a flow](how-to-guides/develop-a-flow/index.md)<br/> - [Initialize and test a flow](how-to-guides/init-and-test-a-flow.md)<br/> - [Run and evaluate a flow](how-to-guides/run-and-evaluate-a-flow/index.md)<br/> - [Tune prompts using variants](how-to-guides/tune-prompts-with-variants.md)<br/> - [Develop custom tool](how-to-guides/develop-a-tool/create-and-use-tool-package.md)<br/> - [Deploy a flow](how-to-guides/deploy-a-flow/index.md)<br/> - [Process image in flow](how-to-guides/process-image-in-flow.md) " ``` ```{gallery-grid} :grid-columns: 1 2 2 2 - header: "📑 Concepts" content: " Introduction of key concepts of prompt flow.<br/><br/> - [Flows](concepts/concept-flows.md)<br/> - [Tools](concepts/concept-tools.md)<br/> - [Connections](concepts/concept-connections.md)<br/> - [Design principles](concepts/design-principles.md)<br/> " - header: "🔍 Reference" content: " Reference provides technical information about prompt flow API.<br/><br/> - Command line Interface reference: [pf](reference/pf-command-reference.md)<br/> - Python library reference: [promptflow](reference/python-library-reference/promptflow.md)<br/> - Tool reference: [LLM Tool](reference/tools-reference/llm-tool.md), [Python Tool](reference/tools-reference/python-tool.md), [Prompt Tool](reference/tools-reference/prompt-tool.md)<br/> " ``` ```{toctree} :hidden: :maxdepth: 1 how-to-guides/quick-start ``` ```{toctree} :hidden: :maxdepth: 1 how-to-guides/index ``` ```{toctree} :hidden: :maxdepth: 1 tutorials/index ``` ```{toctree} :hidden: :maxdepth: 2 concepts/index ``` ```{toctree} :hidden: :maxdepth: 1 reference/index ``` ```{toctree} :hidden: :maxdepth: 1 cloud/index ``` ```{toctree} :hidden: :maxdepth: 1 integrations/index ```
promptflow/docs/index.md/0
{ "file_path": "promptflow/docs/index.md", "repo_id": "promptflow", "token_count": 1541 }
3
# OpenAI GPT-4V ## Introduction OpenAI GPT-4V tool enables you to leverage OpenAI's GPT-4 with vision, also referred to as GPT-4V or gpt-4-vision-preview in the API, to take images as input and answer questions about them. ## Prerequisites - Create OpenAI resources Sign up account [OpenAI website](https://openai.com/) Login and [Find personal API key](https://platform.openai.com/account/api-keys) - Get Access to GPT-4 API To use GPT-4 with vision, you need access to GPT-4 API. Learn more about [How to get access to GPT-4 API](https://help.openai.com/en/articles/7102672-how-can-i-access-gpt-4) ## Connection Setup connections to provisioned resources in prompt flow. | Type | Name | API KEY | |-------------|----------|----------| | OpenAI | Required | Required | ## Inputs | Name | Type | Description | Required | |------------------------|-------------|------------------------------------------------------------------------------------------------|----------| | connection | OpenAI | the OpenAI connection to be used in the tool | Yes | | model | string | the language model to use, currently only support gpt-4-vision-preview | Yes | | prompt | string | The text prompt that the language model will use to generate it's response. | Yes | | max\_tokens | integer | the maximum number of tokens to generate in the response. Default is 512. | No | | temperature | float | the randomness of the generated text. Default is 1. | No | | stop | list | the stopping sequence for the generated text. Default is null. | No | | top_p | float | the probability of using the top choice from the generated tokens. Default is 1. | No | | presence\_penalty | float | value that controls the model's behavior with regards to repeating phrases. Default is 0. | No | | frequency\_penalty | float | value that controls the model's behavior with regards to generating rare phrases. Default is 0. | No | ## Outputs | Return Type | Description | |-------------|------------------------------------------| | string | The text of one response of conversation |
promptflow/docs/reference/tools-reference/openai-gpt-4v-tool.md/0
{ "file_path": "promptflow/docs/reference/tools-reference/openai-gpt-4v-tool.md", "repo_id": "promptflow", "token_count": 1118 }
4
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json name: open_ai_connection type: open_ai api_key: "<user-input>" organization: "" # optional
promptflow/examples/connections/openai.yml/0
{ "file_path": "promptflow/examples/connections/openai.yml", "repo_id": "promptflow", "token_count": 68 }
5
from promptflow import tool import json import re # The inputs section will change based on the arguments of the tool function, after you save the code # Adding type to arguments and return value will help the system show the types properly # Please update the function name/signature per need @tool def my_python_tool(input1: str) -> str: input1 = re.sub(r'[$\\!]', '', input1) try: json_answer = json.loads(input1) answer = json_answer['answer'] except Exception: answer = input1 return answer
promptflow/examples/flows/chat/chat-math-variant/extract_result.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-math-variant/extract_result.py", "repo_id": "promptflow", "token_count": 172 }
6
import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__)))
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/__init__.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/__init__.py", "repo_id": "promptflow", "token_count": 33 }
7
from typing import Tuple, Union, Optional, Type import functools import time import random def retry_and_handle_exceptions( exception_to_check: Union[Type[Exception], Tuple[Type[Exception], ...]], max_retries: int = 3, initial_delay: float = 1, exponential_base: float = 2, jitter: bool = False, extract_delay_from_error_message: Optional[any] = None, ): def deco_retry(func): @functools.wraps(func) def wrapper(*args, **kwargs): delay = initial_delay for i in range(max_retries): try: return func(*args, **kwargs) except exception_to_check as e: if i == max_retries - 1: raise Exception( "Func execution failed after {0} retries: {1}".format( max_retries, e ) ) delay *= exponential_base * (1 + jitter * random.random()) delay_from_error_message = None if extract_delay_from_error_message is not None: delay_from_error_message = extract_delay_from_error_message( str(e) ) final_delay = ( delay_from_error_message if delay_from_error_message else delay ) print( "Func execution failed. Retrying in {0} seconds: {1}".format( final_delay, e ) ) time.sleep(final_delay) return wrapper return deco_retry def retry_and_handle_exceptions_for_generator( exception_to_check: Union[Type[Exception], Tuple[Type[Exception], ...]], max_retries: int = 3, initial_delay: float = 1, exponential_base: float = 2, jitter: bool = False, extract_delay_from_error_message: Optional[any] = None, ): def deco_retry(func): @functools.wraps(func) def wrapper(*args, **kwargs): delay = initial_delay for i in range(max_retries): try: for value in func(*args, **kwargs): yield value break except exception_to_check as e: if i == max_retries - 1: raise Exception( "Func execution failed after {0} retries: {1}".format( max_retries, e ) ) delay *= exponential_base * (1 + jitter * random.random()) delay_from_error_message = None if extract_delay_from_error_message is not None: delay_from_error_message = extract_delay_from_error_message( str(e) ) final_delay = ( delay_from_error_message if delay_from_error_message else delay ) print( "Func execution failed. Retrying in {0} seconds: {1}".format( final_delay, e ) ) time.sleep(final_delay) return wrapper return deco_retry
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/utils/retry.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/utils/retry.py", "repo_id": "promptflow", "token_count": 1963 }
8
import os from typing import Union from promptflow import tool from promptflow.connections import AzureOpenAIConnection, OpenAIConnection from chat_with_pdf.utils.lock import acquire_lock BASE_DIR = os.path.dirname(os.path.abspath(__file__)) + "/chat_with_pdf/" @tool def setup_env(connection: Union[AzureOpenAIConnection, OpenAIConnection], config: dict): if not connection or not config: return if isinstance(connection, AzureOpenAIConnection): os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = connection.api_base os.environ["OPENAI_API_KEY"] = connection.api_key os.environ["OPENAI_API_VERSION"] = connection.api_version if isinstance(connection, OpenAIConnection): os.environ["OPENAI_API_KEY"] = connection.api_key if connection.organization is not None: os.environ["OPENAI_ORG_ID"] = connection.organization for key in config: os.environ[key] = str(config[key]) with acquire_lock(BASE_DIR + "create_folder.lock"): if not os.path.exists(BASE_DIR + ".pdfs"): os.mkdir(BASE_DIR + ".pdfs") if not os.path.exists(BASE_DIR + ".index/.pdfs"): os.makedirs(BASE_DIR + ".index/.pdfs") return "Ready"
promptflow/examples/flows/chat/chat-with-pdf/setup_env.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/setup_env.py", "repo_id": "promptflow", "token_count": 531 }
9
inputs: groundtruth: type: string default: "10" is_chat_input: false prediction: type: string default: "10" is_chat_input: false outputs: score: type: string reference: ${line_process.output} nodes: - name: line_process type: python source: type: code path: line_process.py inputs: groundtruth: ${inputs.groundtruth} prediction: ${inputs.prediction} use_variants: false - name: aggregate type: python source: type: code path: aggregate.py inputs: processed_results: ${line_process.output} aggregation: true use_variants: false node_variants: {} $schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json
promptflow/examples/flows/evaluation/eval-chat-math/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-chat-math/flow.dag.yaml", "repo_id": "promptflow", "token_count": 273 }
10
from promptflow import tool import numpy as np from numpy.linalg import norm @tool def compute_ada_cosine_similarity(a, b) -> float: return np.dot(a, b)/(norm(a)*norm(b))
promptflow/examples/flows/evaluation/eval-qna-non-rag/ada_cosine_similarity_score.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-non-rag/ada_cosine_similarity_score.py", "repo_id": "promptflow", "token_count": 67 }
11
from promptflow import tool import numpy as np @tool def concat_results(rag_retrieval_score: dict = None, rag_grounding_score: dict = None, rag_generation_score: dict = None): load_list = [{'name': 'gpt_groundedness', 'result': rag_grounding_score}, {'name': 'gpt_retrieval_score', 'result': rag_retrieval_score}, {'name': 'gpt_relevance', 'result': rag_generation_score}] score_list = [] errors = [] for item in load_list: if item['result']: try: score = float(item['result']["quality_score"]) except Exception as e: score = np.nan errors.append({"name": item["name"], "msg": str(e), "data": item['result']}) reasoning = item['result']['quality_reasoning'] else: score = np.nan reasoning = None score_list.append({"name": item["name"], "score": score, "quality_reasoning": reasoning}) variant_level_result = {} for item in score_list: item_name = str(item["name"]) variant_level_result[item_name] = item["score"] return variant_level_result
promptflow/examples/flows/evaluation/eval-qna-rag-metrics/concat_scores.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-rag-metrics/concat_scores.py", "repo_id": "promptflow", "token_count": 529 }
12
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: name: type: string default: "FilmTriviaGPT" goals: type: list default: ["Introduce 'Lord of the Rings' film trilogy including the film title, release year, director, current age of the director, production company and a brief summary of the film."] role: type: string default: "an AI specialized in film trivia that provides accurate and up-to-date information about movies, directors, actors, and more." outputs: output: type: string reference: ${autogpt_easy_start.output} nodes: - name: autogpt_easy_start type: python source: type: code path: autogpt_easy_start.py inputs: connection: open_ai_connection functions: ${functions.output} model_or_deployment_name: gpt-4 system_prompt: ${system_prompt.output} triggering_prompt: ${triggering_prompt.output} user_prompt: ${user_prompt.output} - name: system_prompt type: prompt source: type: code path: system_prompt.jinja2 inputs: name: ${inputs.name} role: ${inputs.role} - name: user_prompt type: prompt source: type: code path: user_prompt.jinja2 inputs: goals: ${generate_goal.output} - name: triggering_prompt type: prompt source: type: code path: triggering_prompt.jinja2 - name: functions type: python source: type: code path: functions.py - name: generate_goal type: python source: type: code path: generate_goal.py inputs: items: ${inputs.goals} environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/standard/autonomous-agent/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/flow.dag.yaml", "repo_id": "promptflow", "token_count": 591 }
13
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json name: basic_custom_connection type: custom configs: api_type: azure api_version: 2023-03-15-preview api_base: https://<to-be-replaced>.openai.azure.com/ secrets: # must-have api_key: <to-be-replaced>
promptflow/examples/flows/standard/basic-with-connection/custom.yml/0
{ "file_path": "promptflow/examples/flows/standard/basic-with-connection/custom.yml", "repo_id": "promptflow", "token_count": 119 }
14
from promptflow import tool @tool def product_info(query: str) -> str: print(f"Your query is {query}.\nLooking for product information...") return "This product is produced by Microsoft."
promptflow/examples/flows/standard/conditional-flow-for-switch/product_info.py/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-switch/product_info.py", "repo_id": "promptflow", "token_count": 58 }
15
import unittest from cleansing import cleansing class CleansingTest(unittest.TestCase): def test_normal(self): self.assertEqual(cleansing("a, b, c"), ["a", "b", "c"]) self.assertEqual(cleansing("a, b, (425)137-98-25, "), ["a", "b", "(425)137-98-25"]) self.assertEqual(cleansing("a, b, F. Scott Fitzgerald., d"), ["a", "b", "F. Scott Fitzgerald", "d"]) self.assertEqual(cleansing("a, b, c, None., "), ["a", "b", "c", "None"]) self.assertEqual(cleansing(",,"), []) self.assertEqual(cleansing(""), [])
promptflow/examples/flows/standard/named-entity-recognition/cleansing_test.py/0
{ "file_path": "promptflow/examples/flows/standard/named-entity-recognition/cleansing_test.py", "repo_id": "promptflow", "token_count": 252 }
16
system: Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. user: Text: {{text}} Summary:
promptflow/examples/flows/standard/web-classification/summarize_text_content.jinja2/0
{ "file_path": "promptflow/examples/flows/standard/web-classification/summarize_text_content.jinja2", "repo_id": "promptflow", "token_count": 42 }
17
import importlib from pathlib import Path from promptflow import tool from promptflow.contracts.types import FilePath @tool def my_tool(input_file: FilePath, input_text: str) -> str: # customise your own code to handle and use the input_file here new_module = importlib.import_module(Path(input_file).stem) return new_module.hello(input_text)
promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_file_path_input.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_file_path_input.py", "repo_id": "promptflow", "token_count": 111 }
18
import pytest import unittest from promptflow.connections import CustomConnection from my_tool_package.tools.tool_with_custom_llm_type import my_tool @pytest.fixture def my_custom_connection() -> CustomConnection: my_custom_connection = CustomConnection( { "api-key" : "my-api-key", "api-secret" : "my-api-secret", "api-url" : "my-api-url" } ) return my_custom_connection class TestToolWithCustomLLMType: def test_tool_with_custom_llm_type(self, my_custom_connection): result = my_tool(my_custom_connection, "Hello {{text}}", text="Microsoft") assert result == "Hello Microsoft" # Run the unit tests if __name__ == "__main__": unittest.main()
promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_custom_llm_type.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/tests/test_tool_with_custom_llm_type.py", "repo_id": "promptflow", "token_count": 295 }
19
{"text": "Python Hello World!"} {"text": "C Hello World!"} {"text": "C# Hello World!"}
promptflow/examples/tools/use-cases/custom-strong-type-connection-script-tool-showcase/data.jsonl/0
{ "file_path": "promptflow/examples/tools/use-cases/custom-strong-type-connection-script-tool-showcase/data.jsonl", "repo_id": "promptflow", "token_count": 31 }
20
--- resources: examples/connections/azure_openai.yml, examples/flows/standard/web-classification --- # Deploy a flow using Docker This example demos how to deploy flow as a docker app. We will use [web-classification](../../../flows/standard/web-classification/README.md) as example in this tutorial. ## Build a flow as docker format app Note that all dependent connections must be created before building as docker. ```bash # create connection if not created before pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as docker format app: ```bash pf flow build --source ../../../flows/standard/web-classification --output dist --format docker ``` ## Deploy with Docker ### Build Docker image Like other Dockerfile, you need to build the image first. You can tag the image with any name you want. In this example, we use `promptflow-serve`. Run the command below to build image: ```shell docker build dist -t web-classification-serve ``` ### Run Docker image Run the docker image will start a service to serve the flow inside the container. #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in containers. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` You'll need to set up the environment variables in the container to make the connections work. ### Run with `docker run` You can run the docker image directly set via below commands: ```shell # The started service will listen on port 8080.You can map the port to any port on the host machine as you want. docker run -p 8080:8080 -e OPEN_AI_CONNECTION_API_KEY=<secret-value> web-classification-serve ``` ### Test the endpoint After start the service, you can use curl to test it: ```shell curl http://localhost:8080/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ```
promptflow/examples/tutorials/flow-deploy/docker/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/docker/README.md", "repo_id": "promptflow", "token_count": 672 }
21
import argparse import json from pathlib import Path from azure.keyvault.secrets import SecretClient from azure.identity import ClientSecretCredential, DefaultAzureCredential CONNECTION_FILE_NAME = "connections.json" CONNECTION_TPL_FILE_PATH = Path(".") / "src/promptflow" / "dev-connections.json.example" def get_secret_client( tenant_id: str, client_id: str, client_secret: str ) -> SecretClient: try: if (tenant_id is None) or (client_id is None) or (client_secret is None): credential = DefaultAzureCredential() client = SecretClient( vault_url="https://promptflowprod.vault.azure.net/", credential=credential, ) else: credential = ClientSecretCredential(tenant_id, client_id, client_secret) client = SecretClient( vault_url="https://github-promptflow.vault.azure.net/", credential=credential, ) except Exception as e: print(e) return client def get_secret(secret_name: str, client: SecretClient): secret = client.get_secret(secret_name) return secret.value def list_secret_names(client: SecretClient) -> list: secret_properties = client.list_properties_of_secrets() return [secret.name for secret in secret_properties] def fill_key_to_dict(template_dict, keys_dict): if not isinstance(template_dict, dict): return for key, val in template_dict.items(): if isinstance(val, str) and val in keys_dict: template_dict[key] = keys_dict[val] continue fill_key_to_dict(val, keys_dict) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--tenant_id", type=str, help="The tenant id of the service principal" ) parser.add_argument( "--client_id", type=str, help="The client id of the service principal" ) parser.add_argument( "--client_secret", type=str, help="The client secret of the service principal" ) parser.add_argument( "--target_folder", type=str, help="The target folder to save the generated file" ) args = parser.parse_args() template_dict = json.loads( open(CONNECTION_TPL_FILE_PATH.resolve().absolute(), "r").read() ) file_path = ( (Path(".") / args.target_folder / CONNECTION_FILE_NAME) .resolve() .absolute() .as_posix() ) print(f"file_path: {file_path}") client = get_secret_client( tenant_id=args.tenant_id, client_id=args.client_id, client_secret=args.client_secret, ) all_secret_names = list_secret_names(client) data = { secret_name: get_secret(secret_name, client) for secret_name in all_secret_names } fill_key_to_dict(template_dict, data) with open(file_path, "w") as f: json.dump(template_dict, f)
promptflow/scripts/building/generate_connection_config.py/0
{ "file_path": "promptflow/scripts/building/generate_connection_config.py", "repo_id": "promptflow", "token_count": 1219 }
22
"""A directive to generate a gallery of images from structured data. Generating a gallery of images that are all the same size is a common pattern in documentation, and this can be cumbersome if the gallery is generated programmatically. This directive wraps this particular use-case in a helper-directive to generate it with a single YAML configuration file. It currently exists for maintainers of the pydata-sphinx-theme, but might be abstracted into a standalone package if it proves useful. """ from yaml import safe_load from typing import List from pathlib import Path from docutils import nodes from docutils.parsers.rst import directives from sphinx.util.docutils import SphinxDirective from sphinx.util import logging logger = logging.getLogger(__name__) TEMPLATE_GRID = """ `````{{grid}} {grid_columns} {container_options} {content} ````` """ GRID_CARD = """ ````{{grid-item-card}} {title} {card_options} {content} ```` """ class GalleryDirective(SphinxDirective): """A directive to show a gallery of images and links in a grid.""" name = "gallery-grid" has_content = True required_arguments = 0 optional_arguments = 1 final_argument_whitespace = True option_spec = { # A class to be added to the resulting container "grid-columns": directives.unchanged, "class-container": directives.unchanged, "class-card": directives.unchanged, } def run(self) -> List[nodes.Node]: # noqa: C901 if self.arguments: # If an argument is given, assume it's a path to a YAML file # Parse it and load it into the directive content path_data_rel = Path(self.arguments[0]) path_doc, _ = self.get_source_info() path_doc = Path(path_doc).parent path_data = (path_doc / path_data_rel).resolve() if not path_data.exists(): logger.warn(f"Could not find grid data at {path_data}.") nodes.text("No grid data found at {path_data}.") return yaml_string = path_data.read_text() else: yaml_string = "\n".join(self.content) # Read in YAML so we can generate the gallery grid_data = safe_load(yaml_string) grid_items = [] for item in grid_data: # Grid card parameters options = {} if "website" in item: options["link"] = item["website"] if "class-card" in self.options: options["class-card"] = self.options["class-card"] if "img-background" in item: options["img-background"] = item["img-background"] if "img-top" in item: options["img-top"] = item["img-top"] if "img-bottom" in item: options["img-bottom"] = item["img-bottom"] options_str = "\n".join(f":{k}: {v}" for k, v in options.items()) + "\n\n" # Grid card content content_str = "" if "header" in item: content_str += f"{item['header']}\n\n^^^\n\n" if "image" in item: content_str += f"![Gallery image]({item['image']})\n\n" if "content" in item: content_str += f"{item['content']}\n\n" if "footer" in item: content_str += f"+++\n\n{item['footer']}\n\n" title = item.get("title", "") content_str += "\n" grid_items.append( GRID_CARD.format( card_options=options_str, content=content_str, title=title ) ) # Parse the template with Sphinx Design to create an output container = nodes.container() # Prep the options for the template grid container_options = {"gutter": 2, "class-container": "gallery-directive"} if "class-container" in self.options: container_options[ "class-container" ] += f' {self.options["class-container"]}' container_options_str = "\n".join( f":{k}: {v}" for k, v in container_options.items() ) # Create the directive string for the grid grid_directive = TEMPLATE_GRID.format( grid_columns=self.options.get("grid-columns", "1 2 3 4"), container_options=container_options_str, content="\n".join(grid_items), ) # Parse content as a directive so Sphinx Design processes it self.state.nested_parse([grid_directive], 0, container) # Sphinx Design outputs a container too, so just use that container = container.children[0] # Add extra classes if self.options.get("container-class", []): container.attributes["classes"] += self.options.get("class", []) return [container]
promptflow/scripts/docs/gallery_directive/__init__.py/0
{ "file_path": "promptflow/scripts/docs/gallery_directive/__init__.py", "repo_id": "promptflow", "token_count": 2104 }
23
@echo off setlocal set MAIN_EXE=%~dp0.\pfcli.exe "%MAIN_EXE%" pfsvc %*
promptflow/scripts/installer/windows/scripts/pfsvc.bat/0
{ "file_path": "promptflow/scripts/installer/windows/scripts/pfsvc.bat", "repo_id": "promptflow", "token_count": 40 }
24
from pathlib import Path from typing import List import markdown import nbformat from .readme_step import ReadmeStepsManage RESOURCES_KEY_NAME = "resources" RESOURCES_KEY_ERROR_MESSAGE = ( "Please follow examples contributing guide to declare tutorial resources: " "https://github.com/microsoft/promptflow/blob/main/examples/CONTRIBUTING.md" ) def _parse_resources_string_from_notebook(path: Path) -> str: with open(path, "r", encoding="utf-8") as f: nb = nbformat.read(f, as_version=4) if RESOURCES_KEY_NAME not in nb.metadata: raise Exception(RESOURCES_KEY_ERROR_MESSAGE) return nb.metadata[RESOURCES_KEY_NAME] def _parse_resources_string_from_markdown(path: Path) -> str: markdown_content = path.read_text(encoding="utf-8") md = markdown.Markdown(extensions=["meta"]) md.convert(markdown_content) if RESOURCES_KEY_NAME not in md.Meta: raise Exception(RESOURCES_KEY_ERROR_MESSAGE) return md.Meta[RESOURCES_KEY_NAME][0] def _parse_resources(path: Path) -> List[str]: if path.suffix == ".ipynb": resources_string = _parse_resources_string_from_notebook(path) elif path.suffix == ".md": resources_string = _parse_resources_string_from_markdown(path) else: raise Exception(f"Unknown file type: {path.suffix!r}") return [resource.strip() for resource in resources_string.split(",")] def resolve_tutorial_resource(workflow_name: str, resource_path: Path) -> str: """Resolve tutorial resources, so that workflow can be triggered more precisely. A tutorial workflow should listen to changes of: 1. working directory 2. resources declared in notebook/markdown metadata 3. workflow file 4. examples/requirements.txt (for release verification) 5. examples/connections/azure_openai.yml (fall back as it is the most basic and common connection) """ # working directory git_base_dir = Path(ReadmeStepsManage.git_base_dir()) working_dir = resource_path.parent.relative_to(git_base_dir).as_posix() path_filter_list = [f"{working_dir}/**"] # resources declared in text file resources = _parse_resources(resource_path) for resource in resources: # skip empty line if len(resource) == 0: continue # validate resource path exists resource_path = (git_base_dir / resource).resolve() if not resource_path.exists(): raise FileNotFoundError("Please declare tutorial resources path whose base is the git repo root.") elif resource_path.is_file(): path_filter_list.append(resource) else: path_filter_list.append(f"{resource}/**") # workflow file path_filter_list.append(f".github/workflows/{workflow_name}.yml") # manually add examples/requirements.txt if not exists examples_req = "examples/requirements.txt" if examples_req not in path_filter_list: path_filter_list.append(examples_req) # manually add examples/connections/azure_openai.yml if not exists aoai_conn = "examples/connections/azure_openai.yml" if aoai_conn not in path_filter_list: path_filter_list.append(aoai_conn) return "[ " + ", ".join(path_filter_list) + " ]"
promptflow/scripts/readme/ghactions_driver/resource_resolver.py/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/resource_resolver.py", "repo_id": "promptflow", "token_count": 1216 }
25
{% extends "workflow_skeleton.yml.jinja2" %} {% block steps %} runs-on: ubuntu-latest steps: - name: Checkout repository uses: actions/checkout@v4 - name: Generate config.json for canary workspace (scheduled runs only) if: github.event_name == 'schedule' run: echo '${{ '{{' }} secrets.TEST_WORKSPACE_CONFIG_JSON_CANARY }}' > ${{ '{{' }} github.workspace }}/examples/config.json - name: Generate config.json for production workspace if: github.event_name != 'schedule' run: echo '${{ '{{' }} secrets.EXAMPLE_WORKSPACE_CONFIG_JSON_PROD }}' > ${{ '{{' }} github.workspace }}/examples/config.json - name: Setup Python 3.9 environment uses: actions/setup-python@v4 with: python-version: "3.9" - name: Prepare sample requirements working-directory: {{ gh_working_dir }} run: | python -m pip install --upgrade pip pip install -r requirements.txt - name: Prepare requirements run: | python -m pip install --upgrade pip pip install -r ${{ '{{' }} github.workspace }}/examples/requirements.txt pip install -r ${{ '{{' }} github.workspace }}/examples/dev_requirements.txt - name: Create Chat With PDF Custom Connection working-directory: {{ gh_working_dir }} run: | AOAI_API_KEY=${{ '{{' }} secrets.AOAI_API_KEY_TEST }} AOAI_API_ENDPOINT=${{ '{{' }} secrets.AOAI_API_ENDPOINT_TEST }} AOAI_API_ENDPOINT=$(echo ${AOAI_API_ENDPOINT//\//\\/}) if [[ -e .env.example ]]; then echo "env replacement" sed -i -e "s/<your_AOAI_key>/$AOAI_API_KEY/g" -e "s/<your_AOAI_endpoint>/$AOAI_API_ENDPOINT/g" .env.example mv .env.example .env pf connection create --file .env --name chat_with_pdf_custom_connection fi - name: Create AOAI Connection working-directory: examples/connections run: | AOAI_API_KEY=${{ '{{' }} secrets.AOAI_API_KEY_TEST }} AOAI_API_ENDPOINT=${{ '{{' }} secrets.AOAI_API_ENDPOINT_TEST }} if [[ -e azure_openai.yml ]]; then pf connection create --file azure_openai.yml --set api_key=$AOAI_API_KEY api_base=$AOAI_API_ENDPOINT fi - name: Azure Login uses: azure/login@v1 with: creds: ${{ '{{' }} secrets.AZURE_CREDENTIALS }} - name: Test Notebook working-directory: {{ gh_working_dir }} run: | papermill -k python {{ name }}.ipynb {{ name }}.output.ipynb - name: Upload artifact if: ${{ '{{' }} always() }} uses: actions/upload-artifact@v3 with: name: artifact path: {{ gh_working_dir }} {% endblock steps %}
promptflow/scripts/readme/ghactions_driver/workflow_templates/pdf_workflow.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_templates/pdf_workflow.yml.jinja2", "repo_id": "promptflow", "token_count": 1069 }
26
import argparse import json from pathlib import Path from utils.secret_manager import get_secret, get_secret_client, list_secret_names CONNECTION_FILE_NAME = "connections.json" PROMPTFLOW_TOOLS_ROOT = Path(__file__) / "../../../src/promptflow-tools" CONNECTION_TPL_FILE_PATH = PROMPTFLOW_TOOLS_ROOT / "connections.json.example" def fill_key_to_dict(template_dict, keys_dict): if not isinstance(template_dict, dict): return for key, val in template_dict.items(): if isinstance(val, str) and val in keys_dict: template_dict[key] = keys_dict[val] continue fill_key_to_dict(val, keys_dict) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tenant_id", type=str, help="The tenant id of the service principal") parser.add_argument("--client_id", type=str, help="The client id of the service principal") parser.add_argument("--client_secret", type=str, help="The client secret of the service principal") parser.add_argument("--local", action='store_true', help="local debug mode") args = parser.parse_args() template_dict = json.loads(open(CONNECTION_TPL_FILE_PATH.resolve().absolute(), "r").read()) file_path = (PROMPTFLOW_TOOLS_ROOT / CONNECTION_FILE_NAME).resolve().absolute().as_posix() print(f"file_path: {file_path}") if not args.local: client = get_secret_client(tenant_id=args.tenant_id, client_id=args.client_id, client_secret=args.client_secret) all_secret_names = list_secret_names(client) data = {secret_name: get_secret(secret_name, client) for secret_name in all_secret_names} fill_key_to_dict(template_dict, data) with open(file_path, "w") as f: json.dump(template_dict, f)
promptflow/scripts/tool/generate_connection_config.py/0
{ "file_path": "promptflow/scripts/tool/generate_connection_config.py", "repo_id": "promptflow", "token_count": 677 }
27
""" This file can generate a meta file for the given prompt template or a python file. """ import inspect import types from dataclasses import asdict from utils.tool_utils import function_to_interface from promptflow.contracts.tool import Tool, ToolType # Avoid circular dependencies: Use import 'from promptflow._internal' instead of 'from promptflow' # since the code here is in promptflow namespace as well from promptflow._internal import ToolProvider from promptflow.exceptions import ErrorTarget, UserErrorException def asdict_without_none(obj): return asdict(obj, dict_factory=lambda x: {k: v for (k, v) in x if v}) def asdict_with_advanced_features_without_none(obj, **advanced_features): dict_without_none = asdict_without_none(obj) dict_without_none.update({k: v for k, v in advanced_features.items() if v}) return dict_without_none def is_tool(f): if not isinstance(f, types.FunctionType): return False if not hasattr(f, "__tool"): return False return True def collect_tool_functions_in_module(m): tools = [] for _, obj in inspect.getmembers(m): if is_tool(obj): # Note that the tool should be in defined in exec but not imported in exec, # so it should also have the same module with the current function. if getattr(obj, "__module__", "") != m.__name__: continue tools.append(obj) return tools def collect_tool_methods_in_module(m): tools = [] for _, obj in inspect.getmembers(m): if isinstance(obj, type) and issubclass(obj, ToolProvider) and obj.__module__ == m.__name__: for _, method in inspect.getmembers(obj): if is_tool(method): initialize_inputs = obj.get_initialize_inputs() tools.append((method, initialize_inputs)) return tools def _parse_tool_from_function(f, initialize_inputs=None, tool_type=ToolType.PYTHON, name=None, description=None): if hasattr(f, "__tool") and isinstance(f.__tool, Tool): return f.__tool if hasattr(f, "__original_function"): f = f.__original_function try: inputs, _, _ = function_to_interface(f, tool_type=tool_type, initialize_inputs=initialize_inputs) except Exception as e: raise BadFunctionInterface(f"Failed to parse interface for tool {f.__name__}, reason: {e}") from e class_name = None if "." in f.__qualname__: class_name = f.__qualname__.replace(f".{f.__name__}", "") # Construct the Tool structure return Tool( name=name or f.__qualname__, description=description or inspect.getdoc(f), inputs=inputs, type=tool_type, class_name=class_name, function=f.__name__, module=f.__module__, ) def generate_python_tools_in_module(module, name, description): tool_functions = collect_tool_functions_in_module(module) tool_methods = collect_tool_methods_in_module(module) return [_parse_tool_from_function(f, name=name, description=description) for f in tool_functions] + [ _parse_tool_from_function(f, initialize_inputs, name=name, description=description) for (f, initialize_inputs) in tool_methods ] def generate_python_tools_in_module_as_dict(module, name=None, description=None, **advanced_features): tools = generate_python_tools_in_module(module, name, description) return _construct_tool_dict(tools, **advanced_features) def generate_custom_llm_tools_in_module(module, name, description): tool_functions = collect_tool_functions_in_module(module) tool_methods = collect_tool_methods_in_module(module) return [ _parse_tool_from_function(f, tool_type=ToolType.CUSTOM_LLM, name=name, description=description) for f in tool_functions ] + [ _parse_tool_from_function( f, initialize_inputs, tool_type=ToolType.CUSTOM_LLM, name=name, description=description ) for (f, initialize_inputs) in tool_methods ] def generate_custom_llm_tools_in_module_as_dict(module, name=None, description=None, **advanced_features): tools = generate_custom_llm_tools_in_module(module, name, description) return _construct_tool_dict(tools, **advanced_features) def _construct_tool_dict(tools, **advanced_features): return { f"{t.module}.{t.class_name}.{t.function}" if t.class_name is not None else f"{t.module}.{t.function}": asdict_with_advanced_features_without_none(t, **advanced_features) for t in tools } class ToolValidationError(UserErrorException): """Base exception raised when failed to validate tool.""" def __init__(self, message): super().__init__(message, target=ErrorTarget.TOOL) class PythonParsingError(ToolValidationError): pass class BadFunctionInterface(PythonParsingError): pass
promptflow/scripts/tool/utils/generate_tool_meta_utils.py/0
{ "file_path": "promptflow/scripts/tool/utils/generate_tool_meta_utils.py", "repo_id": "promptflow", "token_count": 1865 }
28
import functools import json import re import sys import time from typing import List, Mapping from jinja2 import Template from openai import APIConnectionError, APIStatusError, OpenAIError, RateLimitError, APITimeoutError from promptflow.tools.exception import ChatAPIInvalidRole, WrappedOpenAIError, LLMError, JinjaTemplateError, \ ExceedMaxRetryTimes, ChatAPIInvalidFunctions, FunctionCallNotSupportedInStreamMode, \ ChatAPIFunctionRoleInvalidFormat, InvalidConnectionType from promptflow.connections import AzureOpenAIConnection, OpenAIConnection from promptflow.exceptions import SystemErrorException, UserErrorException class ChatInputList(list): """ ChatInputList is a list of ChatInput objects. It is used to override the __str__ method of list to return a string that can be easily parsed as message list. """ def __init__(self, iterable=None): super().__init__(iterable or []) def __str__(self): return "\n".join(map(str, self)) def validate_role(role: str, valid_roles: List[str] = None): if not valid_roles: valid_roles = ["assistant", "function", "user", "system"] if role not in valid_roles: valid_roles_str = ','.join([f'\'{role}:\\n\'' for role in valid_roles]) error_message = ( f"The Chat API requires a specific format for prompt definition, and the prompt should include separate " f"lines as role delimiters: {valid_roles_str}. Current parsed role '{role}'" f" does not meet the requirement. If you intend to use the Completion API, please select the appropriate" f" API type and deployment name. If you do intend to use the Chat API, please refer to the guideline at " f"https://aka.ms/pfdoc/chat-prompt or view the samples in our gallery that contain 'Chat' in the name." ) raise ChatAPIInvalidRole(message=error_message) def validate_functions(functions): function_example = json.dumps({ "name": "function_name", "parameters": { "type": "object", "properties": { "parameter_name": { "type": "integer", "description": "parameter_description" } } }, "description": "function_description" }) common_tsg = f"Here is a valid function example: {function_example}. See more details at " \ "https://platform.openai.com/docs/api-reference/chat/create#chat/create-functions " \ "or view sample 'How to use functions with chat models' in our gallery." if len(functions) == 0: raise ChatAPIInvalidFunctions(message=f"functions cannot be an empty list. {common_tsg}") else: for i, function in enumerate(functions): # validate if the function is a dict if not isinstance(function, dict): raise ChatAPIInvalidFunctions(message=f"function {i} '{function}' is not a dict. {common_tsg}") # validate if has required keys for key in ["name", "parameters"]: if key not in function.keys(): raise ChatAPIInvalidFunctions( message=f"function {i} '{function}' does not have '{key}' property. {common_tsg}") # validate if the parameters is a dict if not isinstance(function["parameters"], dict): raise ChatAPIInvalidFunctions( message=f"function {i} '{function['name']}' parameters '{function['parameters']}' " f"should be described as a JSON Schema object. {common_tsg}") # validate if the parameters has required keys for key in ["type", "properties"]: if key not in function["parameters"].keys(): raise ChatAPIInvalidFunctions( message=f"function {i} '{function['name']}' parameters '{function['parameters']}' " f"does not have '{key}' property. {common_tsg}") # validate if the parameters type is object if function["parameters"]["type"] != "object": raise ChatAPIInvalidFunctions( message=f"function {i} '{function['name']}' parameters 'type' " f"should be 'object'. {common_tsg}") # validate if the parameters properties is a dict if not isinstance(function["parameters"]["properties"], dict): raise ChatAPIInvalidFunctions( message=f"function {i} '{function['name']}' parameters 'properties' " f"should be described as a JSON Schema object. {common_tsg}") def try_parse_name_and_content(role_prompt): # customer can add ## in front of name/content for markdown highlight. # and we still support name/content without ## prefix for backward compatibility. pattern = r"\n*#{0,2}\s*name:\n+\s*(\S+)\s*\n*#{0,2}\s*content:\n?(.*)" match = re.search(pattern, role_prompt, re.DOTALL) if match: return match.group(1), match.group(2) return None def parse_chat(chat_str, images: List = None, valid_roles: List[str] = None): if not valid_roles: valid_roles = ["system", "user", "assistant", "function"] # openai chat api only supports below roles. # customer can add single # in front of role name for markdown highlight. # and we still support role name without # prefix for backward compatibility. separator = r"(?i)^\s*#?\s*(" + "|".join(valid_roles) + r")\s*:\s*\n" images = images or [] hash2images = {str(x): x for x in images} chunks = re.split(separator, chat_str, flags=re.MULTILINE) chat_list = [] for chunk in chunks: last_message = chat_list[-1] if len(chat_list) > 0 else None if last_message and "role" in last_message and "content" not in last_message: parsed_result = try_parse_name_and_content(chunk) if parsed_result is None: # "name" is required if the role is "function" if last_message["role"] == "function": raise ChatAPIFunctionRoleInvalidFormat( message="Failed to parse function role prompt. Please make sure the prompt follows the " "format: 'name:\\nfunction_name\\ncontent:\\nfunction_content'. " "'name' is required if role is function, and it should be the name of the function " "whose response is in the content. May contain a-z, A-Z, 0-9, and underscores, " "with a maximum length of 64 characters. See more details in " "https://platform.openai.com/docs/api-reference/chat/create#chat/create-name " "or view sample 'How to use functions with chat models' in our gallery.") # "name" is optional for other role types. else: last_message["content"] = to_content_str_or_list(chunk, hash2images) else: last_message["name"] = parsed_result[0] last_message["content"] = to_content_str_or_list(parsed_result[1], hash2images) else: if chunk.strip() == "": continue # Check if prompt follows chat api message format and has valid role. # References: https://platform.openai.com/docs/api-reference/chat/create. role = chunk.strip().lower() validate_role(role, valid_roles=valid_roles) new_message = {"role": role} chat_list.append(new_message) return chat_list def to_content_str_or_list(chat_str: str, hash2images: Mapping): chat_str = chat_str.strip() chunks = chat_str.split("\n") include_image = False result = [] for chunk in chunks: if chunk.strip() in hash2images: image_message = {} image_message["type"] = "image_url" image_url = hash2images[chunk.strip()].source_url \ if hasattr(hash2images[chunk.strip()], "source_url") else None if not image_url: image_bs64 = hash2images[chunk.strip()].to_base64() image_mine_type = hash2images[chunk.strip()]._mime_type image_url = {"url": f"data:{image_mine_type};base64,{image_bs64}"} image_message["image_url"] = image_url result.append(image_message) include_image = True elif chunk.strip() == "": continue else: result.append({"type": "text", "text": chunk}) return result if include_image else chat_str def handle_openai_error(tries: int = 10, delay: float = 8.0): """ A decorator function that used to handle OpenAI error. OpenAI Error falls into retriable vs non-retriable ones. For retriable error, the decorator use below parameters to control its retry activity with exponential backoff: `tries` : max times for the function invocation, type is int 'delay': base delay seconds for exponential delay, type is float """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): for i in range(tries + 1): try: return func(*args, **kwargs) except (SystemErrorException, UserErrorException) as e: # Throw inner wrapped exception directly raise e except (APIStatusError, APIConnectionError) as e: # Handle retriable exception, please refer to # https://platform.openai.com/docs/guides/error-codes/api-errors print(f"Exception occurs: {type(e).__name__}: {str(e)}", file=sys.stderr) if isinstance(e, APIConnectionError) and not isinstance(e, APITimeoutError) \ and "connection aborted" not in str(e).lower(): raise WrappedOpenAIError(e) # Retry InternalServerError(>=500), RateLimitError(429), UnprocessableEntityError(422) if isinstance(e, APIStatusError): status_code = e.response.status_code if status_code < 500 and status_code not in [429, 422]: raise WrappedOpenAIError(e) if isinstance(e, RateLimitError) and getattr(e, "type", None) == "insufficient_quota": # Exit retry if this is quota insufficient error print(f"{type(e).__name__} with insufficient quota. Throw user error.", file=sys.stderr) raise WrappedOpenAIError(e) if i == tries: # Exit retry if max retry reached print(f"{type(e).__name__} reached max retry. Exit retry with user error.", file=sys.stderr) raise ExceedMaxRetryTimes(e) if hasattr(e, 'response') and e.response is not None: retry_after_in_header = e.response.headers.get("retry-after", None) else: retry_after_in_header = None if not retry_after_in_header: retry_after_seconds = delay * (2 ** i) msg = ( f"{type(e).__name__} #{i}, but no Retry-After header, " + f"Back off {retry_after_seconds} seconds for retry." ) print(msg, file=sys.stderr) else: retry_after_seconds = float(retry_after_in_header) * (2 ** i) msg = ( f"{type(e).__name__} #{i}, Retry-After={retry_after_in_header}, " f"Back off {retry_after_seconds} seconds for retry." ) print(msg, file=sys.stderr) time.sleep(retry_after_seconds) except OpenAIError as e: # For other non-retriable errors from OpenAIError, # For example, AuthenticationError, APIConnectionError, BadRequestError, NotFoundError # Mark UserError for all the non-retriable OpenAIError print(f"Exception occurs: {type(e).__name__}: {str(e)}", file=sys.stderr) raise WrappedOpenAIError(e) except Exception as e: print(f"Exception occurs: {type(e).__name__}: {str(e)}", file=sys.stderr) error_message = f"OpenAI API hits exception: {type(e).__name__}: {str(e)}" raise LLMError(message=error_message) return wrapper return decorator def to_bool(value) -> bool: return str(value).lower() == "true" def render_jinja_template(prompt, trim_blocks=True, keep_trailing_newline=True, **kwargs): try: return Template(prompt, trim_blocks=trim_blocks, keep_trailing_newline=keep_trailing_newline).render(**kwargs) except Exception as e: # For exceptions raised by jinja2 module, mark UserError print(f"Exception occurs: {type(e).__name__}: {str(e)}", file=sys.stderr) error_message = f"Failed to render jinja template: {type(e).__name__}: {str(e)}. " \ + "Please modify your prompt to fix the issue." raise JinjaTemplateError(message=error_message) from e def process_function_call(function_call): if function_call is None: param = "auto" elif function_call == "auto" or function_call == "none": param = function_call else: function_call_example = json.dumps({"name": "function_name"}) common_tsg = f"Here is a valid example: {function_call_example}. See the guide at " \ "https://platform.openai.com/docs/api-reference/chat/create#chat/create-function_call " \ "or view sample 'How to call functions with chat models' in our gallery." param = function_call if not isinstance(param, dict): raise ChatAPIInvalidFunctions( message=f"function_call parameter '{param}' must be a dict, but not {type(function_call)}. {common_tsg}" ) else: if "name" not in function_call: raise ChatAPIInvalidFunctions( message=f'function_call parameter {json.dumps(param)} must contain "name" field. {common_tsg}' ) return param def post_process_chat_api_response(completion, stream, functions): if stream: if functions is not None: error_message = "Function calling has not been supported by stream mode yet." raise FunctionCallNotSupportedInStreamMode(message=error_message) def generator(): for chunk in completion: if chunk.choices: yield chunk.choices[0].delta.content if hasattr(chunk.choices[0].delta, 'content') and \ chunk.choices[0].delta.content is not None else "" # We must return the generator object, not using yield directly here. # Otherwise, the function itself will become a generator, despite whether stream is True or False. return generator() else: # When calling function, function_call response will be returned as a field in message, so we need return # message directly. Otherwise, we only return content. if functions is not None: return completion.model_dump()["choices"][0]["message"] else: # chat api may return message with no content. return getattr(completion.choices[0].message, "content", "") def preprocess_template_string(template_string: str) -> str: """Remove the image input decorator from the template string and place the image input in a new line.""" pattern = re.compile(r'\!\[(\s*image\s*)\]\(\{\{(\s*[^\s{}]+\s*)\}\}\)') # Find all matches in the input string matches = pattern.findall(template_string) # Perform substitutions for match in matches: original = f"![{match[0]}]({{{{{match[1]}}}}})" replacement = f"\n{{{{{match[1]}}}}}\n" template_string = template_string.replace(original, replacement) return template_string def convert_to_chat_list(obj): if isinstance(obj, dict): return {key: convert_to_chat_list(value) for key, value in obj.items()} elif isinstance(obj, list): return ChatInputList([convert_to_chat_list(item) for item in obj]) else: return obj def add_referenced_images_to_set(value, image_set, image_type): if isinstance(value, image_type): image_set.add(value) elif isinstance(value, list): for item in value: add_referenced_images_to_set(item, image_set, image_type) elif isinstance(value, dict): for _, item in value.items(): add_referenced_images_to_set(item, image_set, image_type) def find_referenced_image_set(kwargs: dict): referenced_images = set() try: from promptflow.contracts.multimedia import Image for _, value in kwargs.items(): add_referenced_images_to_set(value, referenced_images, Image) except ImportError: pass return referenced_images def normalize_connection_config(connection): """ Normalizes the configuration of a given connection object for compatibility. This function takes a connection object and normalizes its configuration, ensuring it is compatible and standardized for use. """ if isinstance(connection, AzureOpenAIConnection): return { "api_key": connection.api_key, "api_version": connection.api_version, "azure_endpoint": connection.api_base } elif isinstance(connection, OpenAIConnection): return { "api_key": connection.api_key, "organization": connection.organization, "base_url": connection.base_url } else: error_message = f"Not Support connection type '{type(connection).__name__}'. " \ f"Connection type should be in [AzureOpenAIConnection, OpenAIConnection]." raise InvalidConnectionType(message=error_message)
promptflow/src/promptflow-tools/promptflow/tools/common.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/common.py", "repo_id": "promptflow", "token_count": 8205 }
29
import httpx import pytest from jinja2.exceptions import TemplateSyntaxError from openai import ( APIConnectionError, RateLimitError, AuthenticationError, BadRequestError, APITimeoutError, InternalServerError, UnprocessableEntityError ) from promptflow.tools.aoai import chat, completion from promptflow.tools.common import handle_openai_error from promptflow.tools.exception import ChatAPIInvalidRole, WrappedOpenAIError, to_openai_error_message, \ JinjaTemplateError, LLMError, ChatAPIFunctionRoleInvalidFormat from promptflow.tools.openai import chat as openai_chat from promptflow.tools.aoai_gpt4v import AzureOpenAI as AzureOpenAIVision from pytest_mock import MockerFixture from promptflow.exceptions import UserErrorException @pytest.mark.usefixtures("use_secrets_config_file") class TestHandleOpenAIError: def test_aoai_chat_message_invalid_format(self, aoai_provider): # chat api prompt should follow the format of "system:\nmessage1\nuser:\nmessage2". prompt = "what is your name" error_codes = "UserError/ToolValidationError/ChatAPIInvalidRole" with pytest.raises(ChatAPIInvalidRole, match="The Chat API requires a specific format for prompt") as exc_info: aoai_provider.chat(prompt=prompt, deployment_name="gpt-35-turbo") assert exc_info.value.error_codes == error_codes.split("/") def test_aoai_authentication_error_with_bad_api_key(self, azure_open_ai_connection): azure_open_ai_connection.api_key = "hello" prompt_template = "please complete this sentence: world war II " raw_message = ( "Unauthorized. Access token is missing, invalid" ) error_codes = "UserError/OpenAIError/AuthenticationError" with pytest.raises(WrappedOpenAIError) as exc_info: chat(azure_open_ai_connection, prompt=f"user:\n{prompt_template}", deployment_name="gpt-35-turbo") assert raw_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_aoai_connection_error_with_bad_api_base(self, azure_open_ai_connection): azure_open_ai_connection.api_base = "https://gpt-test-eus11.openai.azure.com/" prompt_template = "please complete this sentence: world war II " error_codes = "UserError/OpenAIError/APIConnectionError" with pytest.raises(WrappedOpenAIError) as exc_info: chat(azure_open_ai_connection, prompt=f"user:\n{prompt_template}", deployment_name="gpt-35-turbo") assert "Connection error." in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_aoai_not_found_error_with_bad_api_version(self, azure_open_ai_connection): """NotFoundError: Resource not found""" azure_open_ai_connection.api_version = "2022-12-23" prompt_template = "please complete this sentence: world war II " raw_message = "Resource not found" error_codes = "UserError/OpenAIError/NotFoundError" # Chat will throw: Exception occurs: NotFoundError: Resource not found with pytest.raises(WrappedOpenAIError) as exc_info: chat(azure_open_ai_connection, prompt=f"user:\n{prompt_template}", deployment_name="gpt-35-turbo") assert raw_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_aoai_not_found_error_with_bad_deployment(self, aoai_provider): """ NotFoundError: The API deployment for this resource does not exist. If you created the deployment within the last 5 minutes, please wait a moment and try again. """ # This will throw InvalidRequestError prompt_template = "please complete this sentence: world war II " deployment = "hello" raw_message = ( "The API deployment for this resource does not exist. If you created the deployment " "within the last 5 minutes, please wait a moment and try again." ) error_codes = "UserError/OpenAIError/NotFoundError" with pytest.raises(WrappedOpenAIError) as exc_info: aoai_provider.chat(prompt=f"user:\n{prompt_template}", deployment_name=deployment) assert raw_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_rate_limit_error_insufficient_quota(self, azure_open_ai_connection, mocker: MockerFixture): dummyEx = RateLimitError("Something went wrong", response=httpx.Response( 429, request=httpx.Request('GET', 'https://www.example.com')), body={"type": "insufficient_quota"}) mock_method = mocker.patch("openai.resources.Completions.create", side_effect=dummyEx) error_codes = "UserError/OpenAIError/RateLimitError" with pytest.raises(WrappedOpenAIError) as exc_info: completion(connection=azure_open_ai_connection, prompt="hello", deployment_name="text-ada-001") assert to_openai_error_message(dummyEx) == exc_info.value.message assert mock_method.call_count == 1 assert exc_info.value.error_codes == error_codes.split("/") @pytest.mark.parametrize( "dummyExceptionList", [ ( [ RateLimitError("Something went wrong", response=httpx.Response( 429, request=httpx.Request('GET', 'https://www.example.com')), body=None), APITimeoutError(request=httpx.Request('GET', 'https://www.example.com')), APIConnectionError( message="('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))", request=httpx.Request('GET', 'https://www.example.com')), InternalServerError("Something went wrong", response=httpx.Response( 503, request=httpx.Request('GET', 'https://www.example.com')), body=None), UnprocessableEntityError("Something went wrong", response=httpx.Response( 422, request=httpx.Request('GET', 'https://www.example.com')), body=None) ] ), ], ) def test_retriable_openai_error_handle(self, mocker: MockerFixture, dummyExceptionList): for dummyEx in dummyExceptionList: # Patch the test_method to throw the desired exception patched_test_method = mocker.patch("openai.resources.Completions.create", side_effect=dummyEx) # Apply the retry decorator to the patched test_method max_retry = 2 delay = 0.2 decorated_test_method = handle_openai_error(tries=max_retry, delay=delay)(patched_test_method) mock_sleep = mocker.patch("time.sleep") # Create a separate mock for time.sleep with pytest.raises(UserErrorException) as exc_info: decorated_test_method() assert patched_test_method.call_count == max_retry + 1 assert "Exceed max retry times. " + to_openai_error_message(dummyEx) == exc_info.value.message error_codes = "UserError/OpenAIError/" + type(dummyEx).__name__ assert exc_info.value.error_codes == error_codes.split("/") expected_calls = [ mocker.call(delay), mocker.call(delay * 2), ] mock_sleep.assert_has_calls(expected_calls) @pytest.mark.parametrize( "dummyExceptionList", [ ( [ RateLimitError("Something went wrong", response=httpx.Response( 429, request=httpx.Request('GET', 'https://www.example.com'), headers={"retry-after": "0.3"}), body=None), InternalServerError("Something went wrong", response=httpx.Response( 503, request=httpx.Request('GET', 'https://www.example.com'), headers={"retry-after": "0.3"}), body=None), UnprocessableEntityError("Something went wrong", response=httpx.Response( 422, request=httpx.Request('GET', 'https://www.example.com'), headers={"retry-after": "0.3"}), body=None) ] ), ], ) def test_retriable_openai_error_handle_with_header( self, mocker: MockerFixture, dummyExceptionList ): for dummyEx in dummyExceptionList: # Patch the test_method to throw the desired exception patched_test_method = mocker.patch("promptflow.tools.aoai.completion", side_effect=dummyEx) # Apply the retry decorator to the patched test_method max_retry = 2 delay = 0.2 header_delay = 0.3 decorated_test_method = handle_openai_error(tries=max_retry, delay=delay)(patched_test_method) mock_sleep = mocker.patch("time.sleep") # Create a separate mock for time.sleep with pytest.raises(UserErrorException) as exc_info: decorated_test_method() assert patched_test_method.call_count == max_retry + 1 assert "Exceed max retry times. " + to_openai_error_message(dummyEx) == exc_info.value.message error_codes = "UserError/OpenAIError/" + type(dummyEx).__name__ assert exc_info.value.error_codes == error_codes.split("/") expected_calls = [ mocker.call(header_delay), mocker.call(header_delay * 2), ] mock_sleep.assert_has_calls(expected_calls) @pytest.mark.parametrize( "dummyExceptionList", [ ( [ AuthenticationError("Something went wrong", response=httpx.get('https://www.example.com'), body=None), BadRequestError("Something went wrong", response=httpx.get('https://www.example.com'), body=None), APIConnectionError(message="Something went wrong", request=httpx.Request('GET', 'https://www.example.com')), ] ), ], ) def test_non_retriable_openai_error_handle( self, azure_open_ai_connection, mocker: MockerFixture, dummyExceptionList ): for dummyEx in dummyExceptionList: mock_method = mocker.patch("openai.resources.Completions.create", side_effect=dummyEx) with pytest.raises(UserErrorException) as exc_info: completion(connection=azure_open_ai_connection, prompt="hello", deployment_name="text-ada-001") assert to_openai_error_message(dummyEx) == exc_info.value.message error_codes = "UserError/OpenAIError/" + type(dummyEx).__name__ assert exc_info.value.error_codes == error_codes.split("/") assert mock_method.call_count == 1 def test_unexpected_error_handle(self, azure_open_ai_connection, mocker: MockerFixture): dummyEx = Exception("Something went wrong") chat(connection=azure_open_ai_connection, prompt="user:\nhello", deployment_name="gpt-35-turbo") mock_method = mocker.patch("openai.resources.chat.Completions.create", side_effect=dummyEx) error_codes = "UserError/LLMError" with pytest.raises(LLMError) as exc_info: chat(connection=azure_open_ai_connection, prompt="user:\nhello", deployment_name="gpt-35-turbo") assert to_openai_error_message(dummyEx) != exc_info.value.args[0] assert "OpenAI API hits exception: Exception: Something went wrong" == exc_info.value.message assert mock_method.call_count == 1 assert exc_info.value.error_codes == error_codes.split("/") def test_template_syntax_error_handle(self, azure_open_ai_connection, mocker: MockerFixture): dummyEx = TemplateSyntaxError(message="Something went wrong", lineno=1) mock_method = mocker.patch("jinja2.Template.__new__", side_effect=dummyEx) error_codes = "UserError/ToolValidationError/JinjaTemplateError" with pytest.raises(JinjaTemplateError) as exc_info: chat(connection=azure_open_ai_connection, prompt="user:\nhello", deployment_name="gpt-35-turbo") error_message = "Failed to render jinja template: TemplateSyntaxError: Something went wrong\n line 1. " \ + "Please modify your prompt to fix the issue." assert error_message == exc_info.value.message assert mock_method.call_count == 1 assert exc_info.value.error_codes == error_codes.split("/") @pytest.mark.skip_if_no_api_key("open_ai_connection") def test_model_not_accept_functions_as_param( self, open_ai_connection, example_prompt_template, functions): with pytest.raises(WrappedOpenAIError) as exc_info: openai_chat( connection=open_ai_connection, prompt=example_prompt_template, model="gpt-3.5-turbo-0301", functions=functions ) assert "Current model does not support the `functions` parameter" in exc_info.value.message def test_input_invalid_function_role_prompt(self, azure_open_ai_connection): with pytest.raises(ChatAPIFunctionRoleInvalidFormat) as exc_info: chat( connection=azure_open_ai_connection, prompt="function:\n This is function role prompt", deployment_name="gpt-35-turbo" ) assert "'name' is required if role is function," in exc_info.value.message def test_completion_with_chat_model(self, azure_open_ai_connection): with pytest.raises(UserErrorException) as exc_info: completion(connection=azure_open_ai_connection, prompt="hello", deployment_name="gpt-35-turbo") msg = "Completion API is a legacy api and is going to be deprecated soon. " \ "Please change to use Chat API for current model." assert msg in exc_info.value.message def test_model_not_support_image_input( self, azure_open_ai_connection, example_prompt_template_with_image, example_image): aoai = AzureOpenAIVision(azure_open_ai_connection) with pytest.raises(WrappedOpenAIError) as exc_info: aoai.chat( prompt=example_prompt_template_with_image, deployment_name="gpt-35-turbo", max_tokens=480, temperature=0, question="which number did you see in this picture?", image_input=example_image, ) assert "Current model does not support the image input" in exc_info.value.message @pytest.mark.parametrize( "max_tokens, error_message, error_codes, exception", [ (0, "0 is less than the minimum of 1", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), (-1, "-1 is less than the minimum of 1", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), ("asd", "ValueError: invalid literal for int()", "UserError/LLMError", LLMError) ] ) def test_aoai_invalid_max_tokens( self, azure_open_ai_connection, example_prompt_template, chat_history, max_tokens, error_message, error_codes, exception): with pytest.raises(exception) as exc_info: chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo", max_tokens=max_tokens, temperature=0, user_input="Write a slogan for product X", chat_history=chat_history, ) assert error_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/")
promptflow/src/promptflow-tools/tests/test_handle_openai_error.py/0
{ "file_path": "promptflow/src/promptflow-tools/tests/test_handle_openai_error.py", "repo_id": "promptflow", "token_count": 7049 }
30
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import functools import json from typing import Dict, List, Optional from promptflow._cli._params import ( add_param_all_results, add_param_archived_only, add_param_include_archived, add_param_max_results, add_param_output, add_param_output_format, add_param_overwrite, add_param_run_name, add_param_set, base_params, ) from promptflow._cli._pf._run import _parse_metadata_args, add_run_create_common, create_run from promptflow._cli._pf_azure._utils import _get_azure_pf_client from promptflow._cli._utils import ( _output_result_list_with_format, _set_workspace_argument_for_subparsers, activate_action, exception_handler, pretty_print_dataframe_as_table, ) from promptflow._sdk._constants import MAX_SHOW_DETAILS_RESULTS, ListViewType from promptflow._sdk._errors import InvalidRunStatusError from promptflow._sdk._utils import print_red_error from promptflow.azure._restclient.flow_service_caller import FlowRequestException def add_parser_run(subparsers): """Add run parser to the pfazure subparsers.""" run_parser = subparsers.add_parser( "run", description="A CLI tool to manage cloud runs for prompt flow.", help="Manage prompt flow runs." ) subparsers = run_parser.add_subparsers() add_run_create_cloud(subparsers) add_parser_run_list(subparsers) add_parser_run_stream(subparsers) add_parser_run_show(subparsers) add_parser_run_show_details(subparsers) add_parser_run_show_metrics(subparsers) add_parser_run_cancel(subparsers) add_parser_run_visualize(subparsers) add_parser_run_archive(subparsers) add_parser_run_restore(subparsers) add_parser_run_update(subparsers) add_parser_run_download(subparsers) run_parser.set_defaults(action="run") def add_run_create_cloud(subparsers): epilog = """ Example: # Create a run with YAML file: pfazure run create -f <yaml-filename> # Create a run from flow directory and reference a run: pfazure run create --flow <path-to-flow-directory> --data <path-to-data-file> --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run <run-name> --variant "${summarize_text_content.variant_0}" --stream # Create a run from existing workspace flow pfazure run create --flow azureml:<flow-name> --data <path-to-data-file> --column-mapping <key-value-pair> # Create a run from existing registry flow pfazure run create --flow azureml://registries/<registry-name>/models/<flow-name>/versions/<version> --data <path-to-data-file> --column-mapping <key-value-pair> """ # noqa: E501 def add_param_data(parser): # cloud pf can also accept remote data parser.add_argument( "--data", type=str, help="Local path to the data file or remote data. e.g. azureml:name:version." ) add_param_runtime = lambda parser: parser.add_argument("--runtime", type=str, help=argparse.SUPPRESS) # noqa: E731 add_param_reset = lambda parser: parser.add_argument( # noqa: E731 "--reset-runtime", action="store_true", help=argparse.SUPPRESS ) add_run_create_common( subparsers, [add_param_data, add_param_runtime, add_param_reset, _set_workspace_argument_for_subparsers], epilog=epilog, ) def add_parser_run_list(subparsers): """Add run list parser to the pfazure subparsers.""" epilog = """ Examples: # List runs status: pfazure run list # List most recent 10 runs status: pfazure run list --max-results 10 # List active and archived runs status: pfazure run list --include-archived # List archived runs status only: pfazure run list --archived-only # List all runs status as table: pfazure run list --output table """ add_params = [ add_param_max_results, add_param_archived_only, add_param_include_archived, add_param_output_format, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="list", description="A CLI tool to List all runs.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="List runs in a workspace.", action_param_name="sub_action", ) def add_parser_run_stream(subparsers): """Add run stream parser to the pfazure subparsers.""" epilog = """ Example: # Stream run logs: pfazure run stream --name <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="stream", description="A CLI tool to stream run logs to the console.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Stream run logs to the console.", action_param_name="sub_action", ) def add_parser_run_show(subparsers): """Add run show parser to the pfazure subparsers.""" epilog = """ Example: # Show the status of a run: pfazure run show --name <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="show", description="A CLI tool to show a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Show a run.", action_param_name="sub_action", ) def add_parser_run_show_details(subparsers): """Add run show details parser to the pfazure subparsers.""" epilog = """ Example: # View input(s) and output(s) of a run: pfazure run show-details --name <name> """ add_param_max_results = lambda parser: parser.add_argument( # noqa: E731 "-r", "--max-results", dest="max_results", type=int, default=MAX_SHOW_DETAILS_RESULTS, help=f"Number of lines to show. Default is {MAX_SHOW_DETAILS_RESULTS}.", ) add_params = [ add_param_max_results, add_param_run_name, add_param_all_results, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="show-details", description="A CLI tool to show a run details.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Show a run details.", action_param_name="sub_action", ) def add_parser_run_show_metrics(subparsers): """Add run show metrics parser to the pfazure subparsers.""" epilog = """ Example: # View metrics of a run: pfazure run show-metrics --name <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="show-metrics", description="A CLI tool to show run metrics.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Show run metrics.", action_param_name="sub_action", ) def add_parser_run_cancel(subparsers): """Add run cancel parser to the pfazure subparsers.""" epilog = """ Example: # Cancel a run: pfazure run cancel --name <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="cancel", description="A CLI tool to cancel a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Cancel a run.", action_param_name="sub_action", ) def add_parser_run_visualize(subparsers): """Add run visualize parser to the pfazure subparsers.""" epilog = """ Examples: # Visualize a run: pfazure run visualize -n <name> # Visualize runs: pfazure run visualize --names "<name1,name2>" pfazure run visualize --names "<name1>, <name2>" """ add_param_name = lambda parser: parser.add_argument( # noqa: E731 "-n", "--names", type=str, required=True, help="Name of the runs, comma separated." ) add_param_html_path = lambda parser: parser.add_argument( # noqa: E731 "--html-path", type=str, default=None, help=argparse.SUPPRESS ) add_params = [ add_param_name, add_param_html_path, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="visualize", description="A CLI tool to visualize a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Visualize a run.", action_param_name="sub_action", ) def add_parser_run_archive(subparsers): """Add run archive parser to the pfazure subparsers.""" epilog = """ Examples: # Archive a run: pfazure run archive -n <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="archive", description="A CLI tool to archive a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Archive a run.", action_param_name="sub_action", ) def add_parser_run_restore(subparsers): """Add run restore parser to the pfazure subparsers.""" epilog = """ Examples: # Restore an archived run: pfazure run restore -n <name> """ add_params = [ add_param_run_name, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="restore", description="A CLI tool to restore a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Restore a run.", action_param_name="sub_action", ) def add_parser_run_update(subparsers): """Add run update parser to the pfazure subparsers.""" epilog = """ Example: # Update a run metadata: pfazure run update --name <name> --set display_name="<display-name>" description="<description>" tags.key="<value>" """ add_params = [ add_param_run_name, add_param_set, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="update", description="A CLI tool to update a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Update a run.", action_param_name="sub_action", ) def add_parser_run_download(subparsers): """Add run download parser to the pfazure subparsers.""" epilog = """ Example: # Download a run data to local: pfazure run download --name <name> --output <output-folder-path> """ add_params = [ add_param_run_name, add_param_output, add_param_overwrite, _set_workspace_argument_for_subparsers, ] + base_params activate_action( name="download", description="A CLI tool to download a run.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Download a run.", action_param_name="sub_action", ) def dispatch_run_commands(args: argparse.Namespace): if args.sub_action == "create": pf = _get_azure_pf_client(args.subscription, args.resource_group, args.workspace_name, debug=args.debug) create_run( create_func=functools.partial( pf.runs.create_or_update, runtime=args.runtime, reset_runtime=args.reset_runtime ), args=args, ) elif args.sub_action == "list": list_runs( args.subscription, args.resource_group, args.workspace_name, args.max_results, args.archived_only, args.include_archived, args.output, ) elif args.sub_action == "show": show_run(args.subscription, args.resource_group, args.workspace_name, args.name) elif args.sub_action == "show-details": show_run_details( args.subscription, args.resource_group, args.workspace_name, args.name, args.max_results, args.all_results, args.debug, ) elif args.sub_action == "show-metrics": show_metrics(args.subscription, args.resource_group, args.workspace_name, args.name) elif args.sub_action == "stream": stream_run(args.subscription, args.resource_group, args.workspace_name, args.name, args.debug) elif args.sub_action == "visualize": visualize( args.subscription, args.resource_group, args.workspace_name, args.names, args.html_path, args.debug, ) elif args.sub_action == "archive": archive_run(args.subscription, args.resource_group, args.workspace_name, args.name) elif args.sub_action == "restore": restore_run(args.subscription, args.resource_group, args.workspace_name, args.name) elif args.sub_action == "update": update_run(args.subscription, args.resource_group, args.workspace_name, args.name, params=args.params_override) elif args.sub_action == "download": download_run(args) elif args.sub_action == "cancel": cancel_run(args) @exception_handler("List runs") def list_runs( subscription_id, resource_group, workspace_name, max_results, archived_only, include_archived, output, ): """List all runs from cloud.""" if max_results < 1: raise ValueError(f"'max_results' must be a positive integer, got {max_results!r}") # Default list_view_type is ACTIVE_ONLY if archived_only and include_archived: raise ValueError("Cannot specify both 'archived_only' and 'include_archived'") list_view_type = ListViewType.ACTIVE_ONLY if archived_only: list_view_type = ListViewType.ARCHIVED_ONLY if include_archived: list_view_type = ListViewType.ALL pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) runs = pf.runs.list(max_results=max_results, list_view_type=list_view_type) # hide additional info, debug info and properties in run list for better user experience run_list = [ run._to_dict(exclude_additional_info=True, exclude_debug_info=True, exclude_properties=True) for run in runs ] _output_result_list_with_format(result_list=run_list, output_format=output) return runs @exception_handler("Show run") def show_run(subscription_id, resource_group, workspace_name, run_name): """Show a run from cloud.""" pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) run = pf.runs.get(run=run_name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Show run details") def show_run_details(subscription_id, resource_group, workspace_name, run_name, max_results, all_results, debug=False): """Show a run details from cloud.""" pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name, debug=debug) details = pf.runs.get_details(run=run_name, max_results=max_results, all_results=all_results) details.fillna(value="(Failed)", inplace=True) # replace nan with explicit prompt pretty_print_dataframe_as_table(details) @exception_handler("Show run metrics") def show_metrics(subscription_id, resource_group, workspace_name, run_name): """Show run metrics from cloud.""" pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) metrics = pf.runs.get_metrics(run=run_name) print(json.dumps(metrics, indent=4)) @exception_handler("Stream run") def stream_run(subscription_id, resource_group, workspace_name, run_name, debug=False): """Stream run logs from cloud.""" pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name, debug=debug) run = pf.runs.stream(run_name) print("\n") print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Visualize run") def visualize( subscription_id: str, resource_group: str, workspace_name: str, names: str, html_path: Optional[str] = None, debug: bool = False, ): run_names = [name.strip() for name in names.split(",")] pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name, debug=debug) try: pf.runs.visualize(run_names, html_path=html_path) except FlowRequestException as e: error_message = f"Visualize failed, request service error: {str(e)}" print_red_error(error_message) except InvalidRunStatusError as e: error_message = f"Visualize failed: {str(e)}" print_red_error(error_message) @exception_handler("Archive run") def archive_run( subscription_id: str, resource_group: str, workspace_name: str, run_name: str, ): pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) run = pf.runs.archive(run=run_name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Restore run") def restore_run( subscription_id: str, resource_group: str, workspace_name: str, run_name: str, ): pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) run = pf.runs.restore(run=run_name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Update run") def update_run( subscription_id: str, resource_group: str, workspace_name: str, run_name: str, params: List[Dict[str, str]], ): # params_override can have multiple items when user specifies with # `--set key1=value1 key2=value` # so we need to merge them first. display_name, description, tags = _parse_metadata_args(params) pf = _get_azure_pf_client(subscription_id, resource_group, workspace_name) run = pf.runs.update(run=run_name, display_name=display_name, description=description, tags=tags) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Download run") def download_run(args: argparse.Namespace): pf = _get_azure_pf_client(args.subscription, args.resource_group, args.workspace_name, debug=args.debug) pf.runs.download(run=args.name, output=args.output, overwrite=args.overwrite) @exception_handler("Cancel run") def cancel_run(args: argparse.Namespace): pf = _get_azure_pf_client(args.subscription, args.resource_group, args.workspace_name, debug=args.debug) pf.runs.cancel(run=args.name)
promptflow/src/promptflow/promptflow/_cli/_pf_azure/_run.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf_azure/_run.py", "repo_id": "promptflow", "token_count": 7636 }
31
{ "package": {}, "code": { "line_process.py": { "type": "python", "inputs": { "groundtruth": { "type": [ "string" ] }, "prediction": { "type": [ "string" ] } }, "function": "line_process" }, "aggregate.py": { "type": "python", "inputs": { "processed_results": { "type": [ "object" ] } }, "function": "aggregate" } } }
promptflow/src/promptflow/promptflow/_cli/data/evaluation_flow/.promptflow/flow.tools.json/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/evaluation_flow/.promptflow/flow.tools.json", "repo_id": "promptflow", "token_count": 328 }
32
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- CONNECTION_NAME_PROPERTY = "__connection_name" CONNECTION_SECRET_KEYS = "__secret_keys" PROMPTFLOW_CONNECTIONS = "PROMPTFLOW_CONNECTIONS" PROMPTFLOW_SECRETS_FILE = "PROMPTFLOW_SECRETS_FILE" PF_NO_INTERACTIVE_LOGIN = "PF_NO_INTERACTIVE_LOGIN" PF_LOGGING_LEVEL = "PF_LOGGING_LEVEL" OPENAI_API_KEY = "openai-api-key" BING_API_KEY = "bing-api-key" AOAI_API_KEY = "aoai-api-key" SERPAPI_API_KEY = "serpapi-api-key" CONTENT_SAFETY_API_KEY = "content-safety-api-key" ERROR_RESPONSE_COMPONENT_NAME = "promptflow" EXTENSION_UA = "prompt-flow-extension" LANGUAGE_KEY = "language" DEFAULT_ENCODING = "utf-8" # Constants related to execution LINE_NUMBER_KEY = "line_number" # Using the same key with portal. LINE_TIMEOUT_SEC = 600 class FlowLanguage: """The enum of tool source type.""" Python = "python" CSharp = "csharp" class AvailableIDE: VS = "vs" VS_CODE = "vsc" USER_AGENT = "USER_AGENT" PF_USER_AGENT = "PF_USER_AGENT" CLI_PACKAGE_NAME = 'promptflow' CURRENT_VERSION = 'current_version' LATEST_VERSION = 'latest_version' LAST_HINT_TIME = 'last_hint_time' LAST_CHECK_TIME = 'last_check_time' PF_VERSION_CHECK = "pf_version_check.json" HINT_INTERVAL_DAY = 7 GET_PYPI_INTERVAL_DAY = 7 _ENV_PF_INSTALLER = 'PF_INSTALLER'
promptflow/src/promptflow/promptflow/_constants.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_constants.py", "repo_id": "promptflow", "token_count": 565 }
33
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import importlib import importlib.util import inspect import logging import traceback import types from functools import partial from pathlib import Path from typing import Callable, Dict, List, Mapping, Optional, Tuple, Union from promptflow._core._errors import ( InputTypeMismatch, InvalidSource, MissingRequiredInputs, PackageToolNotFoundError, ToolLoadError, ) from promptflow._core.tool_meta_generator import ( _parse_tool_from_function, collect_tool_function_in_module, load_python_module_from_file, ) from promptflow._utils.connection_utils import ( generate_custom_strong_type_connection_spec, generate_custom_strong_type_connection_template, ) from promptflow._utils.tool_utils import ( _DEPRECATED_TOOLS, DynamicListError, RetrieveToolFuncResultError, _find_deprecated_tools, append_workspace_triple_to_func_input_params, function_to_tool_definition, get_prompt_param_name_from_func, load_function_from_function_path, validate_dynamic_list_func_response_type, validate_tool_func_result, ) from promptflow._utils.yaml_utils import load_yaml from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSourceType from promptflow.contracts.tool import ConnectionType, Tool, ToolType from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException, ValidationException module_logger = logging.getLogger(__name__) PACKAGE_TOOLS_ENTRY = "package_tools" def collect_tools_from_directory(base_dir) -> dict: tools = {} for f in Path(base_dir).glob("**/*.yaml"): with open(f, "r") as f: tools_in_file = load_yaml(f) for identifier, tool in tools_in_file.items(): tools[identifier] = tool return tools def _get_entry_points_by_group(group): # lazy load to improve performance for scenarios that don't need to load package tools import importlib.metadata # In python3.10 and later, the entry_points() method returns a SelectableView of EntryPoint objects, # which allows us to select entry points by group. In the previous versions, the entry_points() method # returns a dictionary-like object, we can use group name directly as a key. entry_points = importlib.metadata.entry_points() if isinstance(entry_points, list): return entry_points.select(group=group) else: return entry_points.get(group, []) def collect_package_tools(keys: Optional[List[str]] = None) -> dict: """Collect all tools from all installed packages.""" all_package_tools = {} if keys is not None: keys = set(keys) entry_points = _get_entry_points_by_group(PACKAGE_TOOLS_ENTRY) for entry_point in entry_points: try: list_tool_func = entry_point.load() package_tools = list_tool_func() for identifier, tool in package_tools.items(): # Only load required tools to avoid unnecessary loading when keys is provided if isinstance(keys, set) and identifier not in keys: # Support to collect new tool id if node source tool is a deprecated tool. deprecated_tool_ids = tool.get(_DEPRECATED_TOOLS, []) if not set(deprecated_tool_ids).intersection(keys): continue m = tool["module"] importlib.import_module(m) # Import the module to make sure it is valid tool["package"] = entry_point.dist.metadata["Name"] tool["package_version"] = entry_point.dist.version all_package_tools[identifier] = tool except Exception as e: msg = ( f"Failed to load tools from package {entry_point.dist.metadata['Name']}: {e}," + f" traceback: {traceback.format_exc()}" ) module_logger.warning(msg) return all_package_tools def collect_package_tools_and_connections(keys: Optional[List[str]] = None) -> dict: """Collect all tools and custom strong type connections from all installed packages.""" all_package_tools = {} all_package_connection_specs = {} all_package_connection_templates = {} if keys is not None: keys = set(keys) entry_points = _get_entry_points_by_group(PACKAGE_TOOLS_ENTRY) for entry_point in entry_points: try: list_tool_func = entry_point.load() package_tools = list_tool_func() for identifier, tool in package_tools.items(): # Only load required tools to avoid unnecessary loading when keys is provided if isinstance(keys, set) and identifier not in keys: continue m = tool["module"] module = importlib.import_module(m) # Import the module to make sure it is valid tool["package"] = entry_point.dist.metadata["Name"] tool["package_version"] = entry_point.dist.version all_package_tools[identifier] = tool # Get custom strong type connection definition custom_strong_type_connections_classes = [ obj for name, obj in inspect.getmembers(module) if inspect.isclass(obj) and ConnectionType.is_custom_strong_type(obj) and (not ConnectionType.is_connection_class_name(name)) ] if custom_strong_type_connections_classes: for cls in custom_strong_type_connections_classes: identifier = f"{cls.__module__}.{cls.__name__}" connection_spec = generate_custom_strong_type_connection_spec( cls, entry_point.dist.metadata["Name"], entry_point.dist.version ) all_package_connection_specs[identifier] = connection_spec all_package_connection_templates[identifier] = generate_custom_strong_type_connection_template( cls, connection_spec, entry_point.dist.metadata["Name"], entry_point.dist.version ) except Exception as e: msg = ( f"Failed to load tools from package {entry_point.dist.metadata['Name']}: {e}," + f" traceback: {traceback.format_exc()}" ) module_logger.warning(msg) return all_package_tools, all_package_connection_specs, all_package_connection_templates def retrieve_tool_func_result( func_call_scenario: str, func_path: str, func_input_params_dict: Dict, ws_triple_dict: Dict[str, str] = {} ): func = load_function_from_function_path(func_path) # get param names from func signature. func_sig_params = inspect.signature(func).parameters module_logger.warning(f"func_sig_params of func_path is: '{func_sig_params}'") module_logger.warning(f"func_input_params_dict is: '{func_input_params_dict}'") # Append workspace triple to func input params if func signature has kwargs param. # Or append ws_triple_dict params that are in func signature. combined_func_input_params = append_workspace_triple_to_func_input_params( func_sig_params, func_input_params_dict, ws_triple_dict ) try: result = func(**combined_func_input_params) except Exception as e: raise RetrieveToolFuncResultError(f"Error when calling function {func_path}: {e}") validate_tool_func_result(func_call_scenario, result) return result def gen_dynamic_list(func_path: str, func_input_params_dict: Dict, ws_triple_dict: Dict[str, str] = {}): func = load_function_from_function_path(func_path) # get param names from func signature. func_sig_params = inspect.signature(func).parameters module_logger.warning(f"func_sig_params of func_path is: '{func_sig_params}'") module_logger.warning(f"func_input_params_dict is: '{func_input_params_dict}'") combined_func_input_params = append_workspace_triple_to_func_input_params( func_sig_params, func_input_params_dict, ws_triple_dict ) try: result = func(**combined_func_input_params) except Exception as e: raise DynamicListError(f"Error when calling function {func_path}: {e}") # validate response is of required format. Throw correct message if response is empty. validate_dynamic_list_func_response_type(result, func.__name__) return result class BuiltinsManager: def __init__(self) -> None: pass @staticmethod def _load_llm_api(api_name: str) -> Tool: result = apis.get(api_name) if result is None: raise APINotFound( message=f"The API '{api_name}' is not found.", target=ErrorTarget.EXECUTOR, ) return result def load_builtin( self, tool: Tool, node_inputs: Optional[dict] = None, ) -> Tuple[Callable, dict]: return BuiltinsManager._load_package_tool(tool.name, tool.module, tool.class_name, tool.function, node_inputs) @staticmethod def _load_package_tool(tool_name, module_name, class_name, method_name, node_inputs): module = importlib.import_module(module_name) return BuiltinsManager._load_tool_from_module( module, tool_name, module_name, class_name, method_name, node_inputs ) @staticmethod def _load_tool_from_module( module, tool_name, module_name, class_name, method_name, node_inputs: Mapping[str, InputAssignment] ): """Load tool from given module with node inputs.""" if class_name is None: return getattr(module, method_name), {} provider_class = getattr(module, class_name) # Note: v -- type is InputAssignment init_inputs = provider_class.get_initialize_inputs() init_inputs_values = {} for k, v in node_inputs.items(): if k not in init_inputs: continue if v.value_type != InputValueType.LITERAL: raise InputTypeMismatch( message_format=( "Invalid input for '{tool_name}': Initialization input '{input_name}' requires a literal " "value, but {input_value} was received." ), tool_name=tool_name, input_name=k, input_value=v.serialize(), target=ErrorTarget.EXECUTOR, ) init_inputs_values[k] = v.value missing_inputs = set(provider_class.get_required_initialize_inputs()) - set(init_inputs_values) if missing_inputs: raise MissingRequiredInputs( message=f"Required inputs {list(missing_inputs)} are not provided for tool '{tool_name}'.", target=ErrorTarget.EXECUTOR, ) try: api = getattr(provider_class(**init_inputs_values), method_name) except Exception as ex: error_type_and_message = f"({ex.__class__.__name__}) {ex}" raise ToolLoadError( module=module_name, message_format="Failed to load package tool '{tool_name}': {error_type_and_message}", tool_name=tool_name, error_type_and_message=error_type_and_message, ) from ex # Return the init_inputs to update node inputs in the afterward steps return api, init_inputs @staticmethod def load_tool_by_api_name(api_name: str) -> Tool: if api_name is None: return None return BuiltinsManager._load_llm_api(api_name) def load_prompt_with_api(self, tool: Tool, api: Tool, node_inputs: Optional[dict] = None) -> Tuple[Callable, dict]: """Load a prompt template tool with action.""" # Load provider action function api_func, init_inputs = self.load_builtin(api, node_inputs) # Find the prompt template parameter name and parse tool code to it. prompt_tpl_param_name = get_prompt_param_name_from_func(api_func) api_func = partial(api_func, **{prompt_tpl_param_name: tool.code}) if prompt_tpl_param_name else api_func # Return the init_inputs to update node inputs in the afterward steps return api_func, init_inputs def load_prompt_rendering(self, tool: Tool): if not tool.code: tool.code = "" from promptflow.tools.template_rendering import render_template_jinja2 return partial(render_template_jinja2, template=tool.code) @staticmethod def parse_builtin_tool_method(tool: Tool) -> tuple: module_name = tool.module class_name = tool.class_name method_name = tool.function return module_name, class_name, method_name @staticmethod def is_builtin(tool: Tool) -> bool: """Check if the tool is a builtin tool.""" return tool.type == ToolType.PYTHON and tool.code is None and tool.source is None @staticmethod def is_llm(tool: Tool) -> bool: """Check if the tool is a LLM tool.""" return tool.type == ToolType.LLM @staticmethod def is_custom_python(tool: Tool) -> bool: """Check if the tool is a custom python tool.""" return tool.type == ToolType.PYTHON and not BuiltinsManager.is_builtin(tool) class ToolsManager: """Manage all builtins and user-defined tools.""" def __init__( self, loaded_tools: Optional[Mapping[str, Callable]] = None, ) -> None: loaded_tools = loaded_tools or {} self._tools = {k: v for k, v in loaded_tools.items()} def load_tools(self, tools: Mapping[str, Callable]) -> None: """Load new tools to the manager.""" self._tools.update(tools) def loaded(self, tool: str) -> bool: return tool in self._tools def get_tool(self, key: str) -> Callable: if key not in self._tools: raise ValueError(f"Tool for {key} is not loaded") return self._tools[key] def wrap_tool(self, key: str, wrapper: Callable): """Wraps the tool with specific name by a given wrapper. Sometimes we may want to wrap the tool with a decorator, but we don't want to modify the original tool. i.e. We may want to pass additional arguments to the tool by wrapping it with a decorator, such as turning on the stream response for AzureOpenAI.chat() by adding a "stream=True" argument. """ tool = self.get_tool(key) self._tools.update({key: wrapper(tool)}) def assert_loaded(self, tool: str): if tool not in self._tools: raise ValueError(f"Tool {tool} is not loaded") # TODO: Remove this method. The code path will not be used in code-first experience. # Customers are familiar with the term "node", so we use it in error message. @staticmethod def _load_custom_tool(tool: Tool, node_name: str) -> Callable: func_name = tool.function or tool.name if tool.source and Path(tool.source).exists(): # If source file is provided, load the function from the file m = load_python_module_from_file(tool.source) if m is None: raise CustomToolSourceLoadError(f"Cannot load module from source {tool.source} for node {node_name}.") return getattr(m, func_name) if not tool.code: raise EmptyCodeInCustomTool(f"Missing code in node {node_name}.") func_code = tool.code try: f_globals = {} exec(func_code, f_globals) except Exception as e: raise CustomPythonToolLoadError(f"Error when loading code of node {node_name}: {e}") from e if func_name not in f_globals: raise MissingTargetFunction(f"Cannot find function {func_name} in the code of node {node_name}.") return f_globals[func_name] class ToolLoader: def __init__(self, working_dir: str, package_tool_keys: Optional[List[str]] = None) -> None: self._working_dir = working_dir self._package_tools = collect_package_tools(package_tool_keys) if package_tool_keys else {} # Used to handle backward compatibility of tool ID changes. self._deprecated_tools = _find_deprecated_tools(self._package_tools) # TODO: Replace NotImplementedError with NotSupported in the future. def load_tool_for_node(self, node: Node) -> Tool: if node.source is None: raise UserErrorException(f"Node {node.name} does not have source defined.") if node.type == ToolType.PYTHON: if node.source.type == ToolSourceType.Package: return self.load_tool_for_package_node(node) elif node.source.type == ToolSourceType.Code: _, tool = self.load_tool_for_script_node(node) return tool raise NotImplementedError(f"Tool source type {node.source.type} for python tool is not supported yet.") elif node.type == ToolType.CUSTOM_LLM: if node.source.type == ToolSourceType.PackageWithPrompt: return self.load_tool_for_package_node(node) raise NotImplementedError(f"Tool source type {node.source.type} for custom_llm tool is not supported yet.") else: raise NotImplementedError(f"Tool type {node.type} is not supported yet.") def load_tool_for_package_node(self, node: Node) -> Tool: if node.source.tool in self._package_tools: return Tool.deserialize(self._package_tools[node.source.tool]) # If node source tool is not in package tools, try to find the tool ID in deprecated tools. # If found, load the tool with the new tool ID for backward compatibility. if node.source.tool in self._deprecated_tools: new_tool_id = self._deprecated_tools[node.source.tool] # Used to collect deprecated tool usage and warn user to replace the deprecated tool with the new one. module_logger.warning(f"Tool ID '{node.source.tool}' is deprecated. Please use '{new_tool_id}' instead.") return Tool.deserialize(self._package_tools[new_tool_id]) raise PackageToolNotFoundError( f"Package tool '{node.source.tool}' is not found in the current environment. " f"All available package tools are: {list(self._package_tools.keys())}.", target=ErrorTarget.EXECUTOR, ) def load_tool_for_script_node(self, node: Node) -> Tuple[types.ModuleType, Tool]: if node.source.path is None: raise InvalidSource( target=ErrorTarget.EXECUTOR, message_format="Load tool failed for node '{node_name}'. The source path is 'None'.", node_name=node.name, ) path = node.source.path if not (self._working_dir / path).is_file(): raise InvalidSource( target=ErrorTarget.EXECUTOR, message_format="Load tool failed for node '{node_name}'. Tool file '{source_path}' can not be found.", source_path=path, node_name=node.name, ) m = load_python_module_from_file(self._working_dir / path) if m is None: raise CustomToolSourceLoadError(f"Cannot load module from {path}.") f, init_inputs = collect_tool_function_in_module(m) return m, _parse_tool_from_function(f, init_inputs, gen_custom_type_conn=True) def load_tool_for_llm_node(self, node: Node) -> Tool: api_name = f"{node.provider}.{node.api}" return BuiltinsManager._load_llm_api(api_name) builtins = {} apis = {} connections = {} connection_type_to_api_mapping = {} def _register(provider_cls, collection, type): from promptflow._core.tool import ToolProvider if not issubclass(provider_cls, ToolProvider): raise Exception(f"Class {provider_cls.__name__!r} must be a subclass of promptflow.ToolProvider.") initialize_inputs = provider_cls.get_initialize_inputs() # Build tool/provider definition for name, value in provider_cls.__dict__.items(): if hasattr(value, "__original_function"): name = value.__original_function.__qualname__ value.__tool = function_to_tool_definition(value, type=type, initialize_inputs=initialize_inputs) collection[name] = value.__tool module_logger.debug(f"Registered {name} as a builtin function") # Get the connection type - provider name mapping for execution use # Tools/Providers related connection must have been imported for param in initialize_inputs.values(): if not param.annotation: continue annotation_type_name = param.annotation.__name__ if annotation_type_name in connections: api_name = provider_cls.__name__ module_logger.debug(f"Add connection type {annotation_type_name} to api {api_name} mapping") connection_type_to_api_mapping[annotation_type_name] = api_name break def _register_method(provider_method, collection, type): name = provider_method.__qualname__ provider_method.__tool = function_to_tool_definition(provider_method, type=type) collection[name] = provider_method.__tool module_logger.debug(f"Registered {name} as {type} function") def register_builtins(provider_cls): _register(provider_cls, builtins, ToolType.PYTHON) def register_apis(provider_cls): _register(provider_cls, apis, ToolType._ACTION) def register_builtin_method(provider_method): _register_method(provider_method, builtins, ToolType.PYTHON) def register_api_method(provider_method): _register_method(provider_method, apis, ToolType._ACTION) def register_connections(connection_classes: Union[type, List[type]]): connection_classes = [connection_classes] if not isinstance(connection_classes, list) else connection_classes connections.update({cls.__name__: cls for cls in connection_classes}) class CustomToolSourceLoadError(SystemErrorException): pass class CustomToolError(UserErrorException): """Base exception raised when failed to validate tool.""" def __init__(self, message): super().__init__(message, target=ErrorTarget.TOOL) class EmptyCodeInCustomTool(CustomToolError): pass class CustomPythonToolLoadError(CustomToolError): pass class MissingTargetFunction(CustomToolError): pass class APINotFound(ValidationException): pass
promptflow/src/promptflow/promptflow/_core/tools_manager.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/tools_manager.py", "repo_id": "promptflow", "token_count": 9268 }
34
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from os import PathLike from typing import IO, AnyStr, Union from promptflow._sdk._load_functions import load_run from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities._run import Run def _create_run(run: Run, **kwargs): client = PFClient() return client.runs.create_or_update(run=run, **kwargs) def create_yaml_run(source: Union[str, PathLike, IO[AnyStr]], params_override: list = None, **kwargs): """Create a run from a yaml file. Should only call from CLI.""" run = load_run(source, params_override=params_override, **kwargs) return _create_run(run=run, **kwargs)
promptflow/src/promptflow/promptflow/_sdk/_run_functions.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_run_functions.py", "repo_id": "promptflow", "token_count": 236 }
35
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow.exceptions import ErrorTarget, UserErrorException class BadRequest(UserErrorException): pass class JsonPayloadRequiredForMultipleInputFields(BadRequest): pass class MissingRequiredFlowInput(BadRequest): pass class FlowConnectionError(UserErrorException): pass class UnsupportedConnectionProvider(FlowConnectionError): def __init__(self, provider): super().__init__( message_format="Unsupported connection provider {provider}, " "supported are 'local' and typing.Callable.", provider=provider, target=ErrorTarget.FLOW_INVOKER, ) class MissingConnectionProvider(FlowConnectionError): pass class InvalidConnectionData(FlowConnectionError): def __init__(self, connection_name): super().__init__( message_format="Invalid connection data detected while overriding connection {connection_name}.", connection_name=connection_name, target=ErrorTarget.FLOW_INVOKER) class UnexpectedConnectionProviderReturn(FlowConnectionError): pass class MultipleStreamOutputFieldsNotSupported(UserErrorException): def __init__(self): super().__init__( "Multiple stream output fields not supported.", target=ErrorTarget.SERVING_APP, ) class NotAcceptable(UserErrorException): def __init__(self, media_type, supported_media_types): super().__init__( message_format="Media type {media_type} in Accept header is not acceptable. " "Supported media type(s) - {supported_media_types}", media_type=media_type, supported_media_types=supported_media_types, target=ErrorTarget.SERVING_APP, )
promptflow/src/promptflow/promptflow/_sdk/_serving/_errors.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/_errors.py", "repo_id": "promptflow", "token_count": 655 }
36
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import time from types import GeneratorType from flask import Response, jsonify from werkzeug.datastructures import MIMEAccept from promptflow._sdk._serving._errors import MultipleStreamOutputFieldsNotSupported, NotAcceptable class ResponseCreator: """Generates http response from flow run result.""" def __init__( self, flow_run_result, accept_mimetypes, stream_start_callback_func=None, stream_end_callback_func=None, stream_event_callback_func=None ): # Fields that are with GeneratorType are streaming outputs. stream_fields = [k for k, v in flow_run_result.items() if isinstance(v, GeneratorType)] if len(stream_fields) > 1: raise MultipleStreamOutputFieldsNotSupported() self.stream_field_name = stream_fields[0] if stream_fields else None self.stream_iterator = flow_run_result.pop(self.stream_field_name, None) self.non_stream_fields = flow_run_result # According to RFC2616, if "Accept" header is not specified, # then it is assumed that the client accepts all media types. # Set */* as the default value here. # https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html if not accept_mimetypes: accept_mimetypes = MIMEAccept([("*/*", 1)]) self.accept_mimetypes = accept_mimetypes self._on_stream_start = stream_start_callback_func self._on_stream_end = stream_end_callback_func self._on_stream_event = stream_event_callback_func @property def has_stream_field(self): return self.stream_field_name is not None @property def text_stream_specified_explicitly(self): """Returns True only when text/event-stream is specified explicitly. For other cases like */* or text/*, it will return False. """ return "text/event-stream" in self.accept_mimetypes.values() @property def accept_json(self): """Returns True if the Accept header includes application/json. It also returns True when specified with */* or application/*. """ return self.accept_mimetypes.accept_json def create_text_stream_response(self): def format_event(data): return f"data: {json.dumps(data)}\n\n" def generate(): start_time = time.time() if self._on_stream_start: self._on_stream_start() # If there are non streaming fields, yield them firstly. if self.non_stream_fields: yield format_event(self.non_stream_fields) # If there is stream field, read and yield data until the end. if self.stream_iterator is not None: for chunk in self.stream_iterator: if self._on_stream_event: self._on_stream_event(chunk) yield format_event({self.stream_field_name: chunk}) if self._on_stream_end: duration = (time.time() - start_time) * 1000 self._on_stream_end(duration) return Response(generate(), mimetype="text/event-stream") def create_json_response(self): # If there is stream field, iterate over it and get the merged result. if self.stream_iterator is not None: merged_text = "".join(self.stream_iterator) self.non_stream_fields[self.stream_field_name] = merged_text return jsonify(self.non_stream_fields) def create_response(self): if self.has_stream_field: if self.text_stream_specified_explicitly: return self.create_text_stream_response() elif self.accept_json: return self.create_json_response() else: raise NotAcceptable( media_type=self.accept_mimetypes, supported_media_types="text/event-stream, application/json" ) else: if self.accept_json: return self.create_json_response() else: raise NotAcceptable(media_type=self.accept_mimetypes, supported_media_types="application/json")
promptflow/src/promptflow/promptflow/_sdk/_serving/response_creator.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/response_creator.py", "repo_id": "promptflow", "token_count": 1813 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from ._asset_utils import IgnoreFile, get_ignore_file, get_upload_files_from_folder __all__ = ["get_ignore_file", "IgnoreFile", "get_upload_files_from_folder"]
promptflow/src/promptflow/promptflow/_sdk/_vendor/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_vendor/__init__.py", "repo_id": "promptflow", "token_count": 79 }
38
import os import sys from promptflow._cli._pf._connection import create_connection from streamlit.web import cli as st_cli from streamlit.runtime import exists from main import start def is_yaml_file(file_path): # Get the file extension _, file_extension = os.path.splitext(file_path) # Check if the file extension is ".yaml" or ".yml" return file_extension.lower() in ('.yaml', '.yml') def create_connections(directory_path) -> None: for root, dirs, files in os.walk(directory_path): for file in files: file_path = os.path.join(root, file) if is_yaml_file(file_path): create_connection(file_path) if __name__ == "__main__": create_connections(os.path.join(os.path.dirname(__file__), "connections")) if exists(): start() else: main_script = os.path.join(os.path.dirname(__file__), "main.py") sys.argv = ["streamlit", "run", main_script, "--global.developmentMode=false", "--client.toolbarMode=viewer", "--browser.gatherUsageStats=false"] st_cli.main(prog_name="streamlit")
promptflow/src/promptflow/promptflow/_sdk/data/executable/app.py.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/executable/app.py.jinja2", "repo_id": "promptflow", "token_count": 435 }
39
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # pylint: disable=protected-access import copy import json import os.path import typing from pathlib import Path from typing import Dict, List, Optional import pydash import strictyaml from marshmallow import ValidationError from promptflow._utils.logger_utils import get_cli_sdk_logger logger = get_cli_sdk_logger() class _ValidationStatus: """Validation status class. Validation status is used to indicate the status of an validation result. It can be one of the following values: Succeeded, Failed. """ SUCCEEDED = "Succeeded" """Succeeded.""" FAILED = "Failed" """Failed.""" class Diagnostic(object): """Represents a diagnostic of an asset validation error with the location info.""" def __init__(self, yaml_path: str, message: str, error_code: str, **kwargs) -> None: """Init Diagnostic. :keyword yaml_path: A dash path from root to the target element of the diagnostic. :paramtype yaml_path: str :keyword message: Error message of diagnostic. :paramtype message: str :keyword error_code: Error code of diagnostic. :paramtype error_code: str """ self.yaml_path = yaml_path self.message = message self.error_code = error_code self.local_path, self.value = None, None self._key = kwargs.pop("key", "yaml_path") # Set extra info to attribute for k, v in kwargs.items(): if not k.startswith("_"): setattr(self, k, v) def __repr__(self) -> str: """The asset friendly name and error message. :return: The formatted diagnostic :rtype: str """ return "{}: {}".format(getattr(self, self._key), self.message) @classmethod def create_instance( cls, yaml_path: str, message: Optional[str] = None, error_code: Optional[str] = None, **kwargs, ): """Create a diagnostic instance. :param yaml_path: A dash path from root to the target element of the diagnostic. :type yaml_path: str :param message: Error message of diagnostic. :type message: str :param error_code: Error code of diagnostic. :type error_code: str :return: The created instance :rtype: Diagnostic """ return cls( yaml_path=yaml_path, message=message, error_code=error_code, **kwargs, ) class ValidationResult(object): """Represents the result of validation. This class is used to organize and parse diagnostics from both client & server side before expose them. The result is immutable. """ def __init__(self) -> None: self._target_obj = None self._errors = [] self._warnings = [] self._kwargs = {} def _set_extra_info(self, key, value): self._kwargs[key] = value def _get_extra_info(self, key, default=None): return self._kwargs.get(key, default) @property def error_messages(self) -> Dict: """ Return all messages of errors in the validation result. :return: A dictionary of error messages. The key is the yaml path of the error, and the value is the error message. :rtype: dict """ messages = {} for diagnostic in self._errors: message_key = getattr(diagnostic, diagnostic._key) if message_key not in messages: messages[message_key] = diagnostic.message else: messages[message_key] += "; " + diagnostic.message return messages @property def passed(self) -> bool: """Returns boolean indicating whether any errors were found. :return: True if the validation passed, False otherwise. :rtype: bool """ return not self._errors def _to_dict(self) -> typing.Dict[str, typing.Any]: result = { "result": _ValidationStatus.SUCCEEDED if self.passed else _ValidationStatus.FAILED, } result.update(self._kwargs) for diagnostic_type, diagnostics in [ ("errors", self._errors), ("warnings", self._warnings), ]: messages = [] for diagnostic in diagnostics: message = { "message": diagnostic.message, "path": diagnostic.yaml_path, "value": pydash.get(self._target_obj, diagnostic.yaml_path, diagnostic.value), } if diagnostic.local_path: message["location"] = str(diagnostic.local_path) for attr in dir(diagnostic): if attr not in message and not attr.startswith("_") and not callable(getattr(diagnostic, attr)): message[attr] = getattr(diagnostic, attr) message = {k: v for k, v in message.items() if v is not None} messages.append(message) if messages: result[diagnostic_type] = messages return result def __repr__(self) -> str: """Get the string representation of the validation result. :return: The string representation :rtype: str """ return json.dumps(self._to_dict(), indent=2) class MutableValidationResult(ValidationResult): """Used by the client side to construct a validation result. The result is mutable and should not be exposed to the user. """ def __init__(self, target_obj: Optional[typing.Dict[str, typing.Any]] = None): super().__init__() self._target_obj = target_obj def merge_with( self, target: ValidationResult, field_name: Optional[str] = None, condition_skip: Optional[typing.Callable] = None, overwrite: bool = False, ): """Merge errors & warnings in another validation results into current one. Will update current validation result. If field_name is not None, then yaml_path in the other validation result will be updated accordingly. * => field_name, a.b => field_name.a.b e.g.. If None, then no update. :param target: Validation result to merge. :type target: ValidationResult :param field_name: The base field name for the target to merge. :type field_name: str :param condition_skip: A function to determine whether to skip the merge of a diagnostic in the target. :type condition_skip: typing.Callable :param overwrite: Whether to overwrite the current validation result. If False, all diagnostics will be kept; if True, current diagnostics with the same yaml_path will be dropped. :type overwrite: bool :return: The current validation result. :rtype: MutableValidationResult """ for source_diagnostics, target_diagnostics in [ (target._errors, self._errors), (target._warnings, self._warnings), ]: if overwrite: keys_to_remove = set(map(lambda x: x.yaml_path, source_diagnostics)) target_diagnostics[:] = [ diagnostic for diagnostic in target_diagnostics if diagnostic.yaml_path not in keys_to_remove ] for diagnostic in source_diagnostics: if condition_skip and condition_skip(diagnostic): continue new_diagnostic = copy.deepcopy(diagnostic) if field_name: if new_diagnostic.yaml_path == "*": new_diagnostic.yaml_path = field_name else: new_diagnostic.yaml_path = field_name + "." + new_diagnostic.yaml_path target_diagnostics.append(new_diagnostic) return self def try_raise( self, raise_error: bool = True, *, error_func: typing.Callable[[str, str], Exception] = None, ) -> "MutableValidationResult": """Try to raise an error from the validation result. If the validation is passed or raise_error is False, this method will return the validation result. :param raise_error: Whether to raise the error. :type raise_error: bool :keyword error_func: A function to create the error. If None, a marshmallow.ValidationError will be created. The first parameter of the function is the string representation of the validation result, and the second parameter is the error message without personal data. :type error_func: typing.Callable[[str, str], Exception] :return: The current validation result. :rtype: MutableValidationResult """ # pylint: disable=logging-not-lazy if raise_error is False: return self if self._warnings: logger.warning("Schema validation warnings: %s" % str(self._warnings)) if not self.passed: if error_func is None: def error_func(msg, _): return ValidationError(message=msg) raise error_func( self.__repr__(), f"Schema validation failed: {self.error_messages}", ) return self def append_error( self, yaml_path: str = "*", message: Optional[str] = None, error_code: Optional[str] = None, **kwargs, ): """Append an error to the validation result. :param yaml_path: The yaml path of the error. :type yaml_path: str :param message: The message of the error. :type message: str :param error_code: The error code of the error. :type error_code: str :return: The current validation result. :rtype: MutableValidationResult """ self._errors.append( Diagnostic.create_instance( yaml_path=yaml_path, message=message, error_code=error_code, **kwargs, ) ) return self def resolve_location_for_diagnostics(self, source_path: str, resolve_value: bool = False): """Resolve location/value for diagnostics based on the source path where the validatable object is loaded. Location includes local path of the exact file (can be different from the source path) & line number of the invalid field. Value of a diagnostic is resolved from the validatable object in transfering to a dict by default; however, when the validatable object is not available for the validation result, validation result is created from marshmallow.ValidationError.messages e.g., it can be resolved from the source path. :param source_path: The path of the source file. :type source_path: str :param resolve_value: Whether to resolve the value of the invalid field from source file. :type resolve_value: bool """ resolver = _YamlLocationResolver(source_path) for diagnostic in self._errors + self._warnings: diagnostic.local_path, value = resolver.resolve(diagnostic.yaml_path) if value is not None and resolve_value: diagnostic.value = value def append_warning( self, yaml_path: str = "*", message: Optional[str] = None, error_code: Optional[str] = None, **kwargs, ): """Append a warning to the validation result. :param yaml_path: The yaml path of the warning. :type yaml_path: str :param message: The message of the warning. :type message: str :param error_code: The error code of the warning. :type error_code: str :return: The current validation result. :rtype: MutableValidationResult """ self._warnings.append( Diagnostic.create_instance( yaml_path=yaml_path, message=message, error_code=error_code, **kwargs, ) ) return self class ValidationResultBuilder: """A helper class to create a validation result.""" UNKNOWN_MESSAGE = "Unknown field." def __init__(self): pass @classmethod def success(cls) -> MutableValidationResult: """Create a validation result with success status. :return: A validation result :rtype: MutableValidationResult """ return MutableValidationResult() @classmethod def from_single_message( cls, singular_error_message: Optional[str] = None, yaml_path: str = "*", data: Optional[dict] = None ): """Create a validation result with only 1 diagnostic. :param singular_error_message: diagnostic.message. :type singular_error_message: Optional[str] :param yaml_path: diagnostic.yaml_path. :type yaml_path: str :param data: serializedvalidation target. :type data: Optional[Dict] :return: The validation result :rtype: MutableValidationResult """ obj = MutableValidationResult(target_obj=data) if singular_error_message: obj.append_error(message=singular_error_message, yaml_path=yaml_path) return obj @classmethod def from_validation_error( cls, error: ValidationError, *, source_path: Optional[str] = None, error_on_unknown_field=False ) -> MutableValidationResult: """Create a validation result from a ValidationError, which will be raised in marshmallow.Schema.load. Please use this function only for exception in loading file. :param error: ValidationError raised by marshmallow.Schema.load. :type error: ValidationError :keyword error_on_unknown_field: whether to raise error if there are unknown field diagnostics. :paramtype error_on_unknown_field: bool :return: The validation result :rtype: MutableValidationResult """ obj = cls.from_validation_messages( error.messages, data=error.data, error_on_unknown_field=error_on_unknown_field ) if source_path: obj.resolve_location_for_diagnostics(source_path, resolve_value=True) return obj @classmethod def from_validation_messages( cls, errors: typing.Dict, data: typing.Dict, *, error_on_unknown_field: bool = False ) -> MutableValidationResult: """Create a validation result from error messages, which will be returned by marshmallow.Schema.validate. :param errors: error message returned by marshmallow.Schema.validate. :type errors: dict :param data: serialized data to validate :type data: dict :keyword error_on_unknown_field: whether to raise error if there are unknown field diagnostics. :paramtype error_on_unknown_field: bool :return: The validation result :rtype: MutableValidationResult """ instance = MutableValidationResult(target_obj=data) errors = copy.deepcopy(errors) cls._from_validation_messages_recursively(errors, [], instance, error_on_unknown_field=error_on_unknown_field) return instance @classmethod def _from_validation_messages_recursively( cls, errors: typing.Union[typing.Dict, typing.List, str], path_stack: typing.List[str], instance: MutableValidationResult, error_on_unknown_field: bool, ): cur_path = ".".join(path_stack) if path_stack else "*" # single error message if isinstance(errors, dict) and "_schema" in errors: instance.append_error( message=";".join(errors["_schema"]), yaml_path=cur_path, ) # errors on attributes elif isinstance(errors, dict): for field, msgs in errors.items(): # fields.Dict if field in ["key", "value"]: cls._from_validation_messages_recursively(msgs, path_stack, instance, error_on_unknown_field) else: # Todo: Add hack logic here to deal with error message in nested TypeSensitiveUnionField in # DataTransfer: will be a nested dict with None field as dictionary key. # open a item to track: https://msdata.visualstudio.com/Vienna/_workitems/edit/2244262/ if field is None: cls._from_validation_messages_recursively(msgs, path_stack, instance, error_on_unknown_field) else: path_stack.append(field) cls._from_validation_messages_recursively(msgs, path_stack, instance, error_on_unknown_field) path_stack.pop() # detailed error message elif isinstance(errors, list) and all(isinstance(msg, str) for msg in errors): if cls.UNKNOWN_MESSAGE in errors and not error_on_unknown_field: # Unknown field is not a real error, so we should remove it and append a warning. errors.remove(cls.UNKNOWN_MESSAGE) instance.append_warning(message=cls.UNKNOWN_MESSAGE, yaml_path=cur_path) if errors: instance.append_error(message=";".join(errors), yaml_path=cur_path) # union field elif isinstance(errors, list): def msg2str(msg): if isinstance(msg, str): return msg if isinstance(msg, dict) and len(msg) == 1 and "_schema" in msg and len(msg["_schema"]) == 1: return msg["_schema"][0] return str(msg) instance.append_error(message="; ".join([msg2str(x) for x in errors]), yaml_path=cur_path) # unknown error else: instance.append_error(message=str(errors), yaml_path=cur_path) class _YamlLocationResolver: def __init__(self, source_path): self._source_path = source_path def resolve(self, yaml_path, source_path=None): """Resolve the location & value of a yaml path starting from source_path. :param yaml_path: yaml path. :type yaml_path: str :param source_path: source path. :type source_path: str :return: the location & value of the yaml path based on source_path. :rtype: Tuple[str, str] """ source_path = source_path or self._source_path if source_path is None or not os.path.isfile(source_path): return None, None if yaml_path is None or yaml_path == "*": return source_path, None attrs = yaml_path.split(".") attrs.reverse() return self._resolve_recursively(attrs, Path(source_path)) def _resolve_recursively(self, attrs: List[str], source_path: Path): with open(source_path, encoding="utf-8") as f: try: loaded_yaml = strictyaml.load(f.read()) except Exception as e: # pylint: disable=broad-except msg = "Can't load source file %s as a strict yaml:\n%s" % (source_path, str(e)) logger.debug(msg) return None, None while attrs: attr = attrs[-1] if loaded_yaml.is_mapping() and attr in loaded_yaml: loaded_yaml = loaded_yaml.get(attr) attrs.pop() elif loaded_yaml.is_sequence() and attr.isdigit() and 0 <= int(attr) < len(loaded_yaml): loaded_yaml = loaded_yaml[int(attr)] attrs.pop() else: try: # if current object is a path of a valid yaml file, try to resolve location in new source file next_path = Path(loaded_yaml.value) if not next_path.is_absolute(): next_path = source_path.parent / next_path if next_path.is_file(): return self._resolve_recursively(attrs, source_path=next_path) except OSError: pass except TypeError: pass # if not, return current section break return ( f"{source_path.resolve().absolute()}#line {loaded_yaml.start_line}", None if attrs else loaded_yaml.value, )
promptflow/src/promptflow/promptflow/_sdk/entities/_validation/core.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_validation/core.py", "repo_id": "promptflow", "token_count": 9020 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import copy import typing from pathlib import Path from marshmallow import fields from marshmallow.exceptions import FieldInstanceResolutionError, ValidationError from marshmallow.fields import _T, Field, Nested from marshmallow.utils import RAISE, resolve_field_instance from promptflow._sdk._constants import BASE_PATH_CONTEXT_KEY from promptflow._sdk.schemas._base import PathAwareSchema from promptflow._utils.logger_utils import LoggerFactory # pylint: disable=unused-argument,no-self-use,protected-access module_logger = LoggerFactory.get_logger(__name__) class StringTransformedEnum(Field): def __init__(self, **kwargs): # pop marshmallow unknown args to avoid warnings self.allowed_values = kwargs.pop("allowed_values", None) self.casing_transform = kwargs.pop("casing_transform", lambda x: x.lower()) self.pass_original = kwargs.pop("pass_original", False) super().__init__(**kwargs) if isinstance(self.allowed_values, str): self.allowed_values = [self.allowed_values] self.allowed_values = [self.casing_transform(x) for x in self.allowed_values] def _jsonschema_type_mapping(self): schema = {"type": "string", "enum": self.allowed_values} if self.name is not None: schema["title"] = self.name if self.dump_only: schema["readonly"] = True return schema def _serialize(self, value, attr, obj, **kwargs): if not value: return if isinstance(value, str) and self.casing_transform(value) in self.allowed_values: return value if self.pass_original else self.casing_transform(value) raise ValidationError(f"Value {value!r} passed is not in set {self.allowed_values}") def _deserialize(self, value, attr, data, **kwargs): if isinstance(value, str) and self.casing_transform(value) in self.allowed_values: return value if self.pass_original else self.casing_transform(value) raise ValidationError(f"Value {value!r} passed is not in set {self.allowed_values}") class LocalPathField(fields.Str): """A field that validates that the input is a local path. Can only be used as fields of PathAwareSchema. """ default_error_messages = { "invalid_path": "The filename, directory name, or volume label syntax is incorrect.", "path_not_exist": "Can't find {allow_type} in resolved absolute path: {path}.", } def __init__(self, allow_dir=True, allow_file=True, **kwargs): self._allow_dir = allow_dir self._allow_file = allow_file self._pattern = kwargs.get("pattern", None) super().__init__(**kwargs) def _resolve_path(self, value) -> Path: """Resolve path to absolute path based on base_path in context. Will resolve the path if it's already an absolute path. """ try: result = Path(value) base_path = Path(self.context[BASE_PATH_CONTEXT_KEY]) if not result.is_absolute(): result = base_path / result # for non-path string like "azureml:/xxx", OSError can be raised in either # resolve() or is_dir() or is_file() result = result.resolve() if (self._allow_dir and result.is_dir()) or (self._allow_file and result.is_file()): return result except OSError: raise self.make_error("invalid_path") raise self.make_error("path_not_exist", path=result.as_posix(), allow_type=self.allowed_path_type) @property def allowed_path_type(self) -> str: if self._allow_dir and self._allow_file: return "directory or file" if self._allow_dir: return "directory" return "file" def _validate(self, value): # inherited validations like required, allow_none, etc. super(LocalPathField, self)._validate(value) if value is None: return self._resolve_path(value) def _serialize(self, value, attr, obj, **kwargs) -> typing.Optional[str]: # do not block serializing None even if required or not allow_none. if value is None: return None # always dump path as absolute path in string as base_path will be dropped after serialization return super(LocalPathField, self)._serialize(self._resolve_path(value).as_posix(), attr, obj, **kwargs) def _deserialize(self, value, attr, data, **kwargs): # resolve to absolute path if value is None: return None return super()._deserialize(self._resolve_path(value).as_posix(), attr, data, **kwargs) # Note: Currently contains a bug where the order in which fields are inputted can potentially cause a bug # Example, the first line below works, but the second one fails upon calling load_from_dict # with the error " AttributeError: 'list' object has no attribute 'get'" # inputs = UnionField([fields.List(NestedField(DataSchema)), NestedField(DataSchema)]) # inputs = UnionField([NestedField(DataSchema), fields.List(NestedField(DataSchema))]) class UnionField(fields.Field): def __init__(self, union_fields: typing.List[fields.Field], is_strict=False, **kwargs): super().__init__(**kwargs) try: # add the validation and make sure union_fields must be subclasses or instances of # marshmallow.base.FieldABC self._union_fields = [resolve_field_instance(cls_or_instance) for cls_or_instance in union_fields] # TODO: make serialization/de-serialization work in the same way as json schema when is_strict is True self.is_strict = is_strict # S\When True, combine fields with oneOf instead of anyOf at schema generation except FieldInstanceResolutionError as error: raise ValueError( 'Elements of "union_fields" must be subclasses or ' "instances of marshmallow.base.FieldABC." ) from error @property def union_fields(self): return iter(self._union_fields) def insert_union_field(self, field): self._union_fields.insert(0, field) # This sets the parent for the schema and also handles nesting. def _bind_to_schema(self, field_name, schema): super()._bind_to_schema(field_name, schema) self._union_fields = self._create_bind_fields(self._union_fields, field_name) def _create_bind_fields(self, _fields, field_name): new_union_fields = [] for field in _fields: field = copy.deepcopy(field) field._bind_to_schema(field_name, self) new_union_fields.append(field) return new_union_fields def _serialize(self, value, attr, obj, **kwargs): if value is None: return None errors = [] for field in self._union_fields: try: return field._serialize(value, attr, obj, **kwargs) except ValidationError as e: errors.extend(e.messages) except (TypeError, ValueError, AttributeError) as e: errors.extend([str(e)]) raise ValidationError(message=errors, field_name=attr) def _deserialize(self, value, attr, data, **kwargs): errors = [] for schema in self._union_fields: try: return schema.deserialize(value, attr, data, **kwargs) except ValidationError as e: errors.append(e.normalized_messages()) except (FileNotFoundError, TypeError) as e: errors.append([str(e)]) finally: # Revert base path to original path when job schema fail to deserialize job. For example, when load # parallel job with component file reference starting with FILE prefix, maybe first CommandSchema will # load component yaml according to AnonymousCommandComponentSchema, and YamlFileSchema will update base # path. When CommandSchema fail to load, then Parallelschema will load component yaml according to # AnonymousParallelComponentSchema, but base path now is incorrect, and will raise path not found error # when load component yaml file. if ( hasattr(schema, "name") and schema.name == "jobs" and hasattr(schema, "schema") and isinstance(schema.schema, PathAwareSchema) ): # use old base path to recover original base path schema.schema.context[BASE_PATH_CONTEXT_KEY] = schema.schema.old_base_path # recover base path of parent schema schema.context[BASE_PATH_CONTEXT_KEY] = schema.schema.context[BASE_PATH_CONTEXT_KEY] raise ValidationError(errors, field_name=attr) class NestedField(Nested): """anticipates the default coming in next marshmallow version, unknown=True.""" def __init__(self, *args, **kwargs): if kwargs.get("unknown") is None: kwargs["unknown"] = RAISE super().__init__(*args, **kwargs) class DumpableIntegerField(fields.Integer): """An int field that cannot serialize other type of values to int if self.strict.""" def _serialize(self, value, attr, obj, **kwargs) -> typing.Optional[typing.Union[str, _T]]: if self.strict and not isinstance(value, int): # this implementation can serialize bool to bool raise self.make_error("invalid", input=value) return super()._serialize(value, attr, obj, **kwargs) class DumpableFloatField(fields.Float): """A float field that cannot serialize other type of values to float if self.strict.""" def __init__( self, *, strict: bool = False, allow_nan: bool = False, as_string: bool = False, **kwargs, ): self.strict = strict super().__init__(allow_nan=allow_nan, as_string=as_string, **kwargs) def _validated(self, value): if self.strict and not isinstance(value, float): raise self.make_error("invalid", input=value) return super()._validated(value) def _serialize(self, value, attr, obj, **kwargs) -> typing.Optional[typing.Union[str, _T]]: return super()._serialize(self._validated(value), attr, obj, **kwargs) def PrimitiveValueField(**kwargs): """Function to return a union field for primitive value. :return: The primitive value field :rtype: Field """ return UnionField( [ # Note: order matters here - to make sure value parsed correctly. # By default, when strict is false, marshmallow downcasts float to int. # Setting it to true will throw a validation error when loading a float to int. # https://github.com/marshmallow-code/marshmallow/pull/755 # Use DumpableIntegerField to make sure there will be validation error when # loading/dumping a float to int. # note that this field can serialize bool instance but cannot deserialize bool instance. DumpableIntegerField(strict=True), # Use DumpableFloatField with strict of True to avoid '1'(str) serialized to 1.0(float) DumpableFloatField(strict=True), # put string schema after Int and Float to make sure they won't dump to string fields.Str(), # fields.Bool comes last since it'll parse anything non-falsy to True fields.Bool(), ], **kwargs, )
promptflow/src/promptflow/promptflow/_sdk/schemas/_fields.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/schemas/_fields.py", "repo_id": "promptflow", "token_count": 4708 }
41
import re from dataclasses import dataclass from enum import Enum from functools import partial from pathlib import Path from typing import Any, Callable from promptflow._utils.multimedia_utils import is_multimedia_dict class ResourceType(Enum): """ Enumeration of different types of multimedia resources. We support path, URL, and base64 data. """ PATH = "path" URL = "url" BASE64 = "base64" @dataclass class MultimediaInfo: """ Data class that holds information about a multimedia resource. """ mime_type: str # The MIME type of the multimedia resource. resource_type: ResourceType # The type of the resource as defined in ResourceType. content: str # The content of the multimedia resource (path, URL, or base64 string). class AbstractMultimediaFormatAdapter: """ Abstract base class for adapting multimedia formats. This class provides an interface for extracting multimedia information from various data formats or constructing data formats from multimedia information. Subclasses should implement methods for specific contract version. A MultimediaInfo object contains the mime_type, resource_type, and the actual content of the multimedia resource. The multimedia data is typically represented as a dictionary with keys and values conforming to a specific multimedia data contract. One multimedia data example from 20231201 version: {"data:image/jpg;path": "logo.jpg"} """ # Check if the original_data is a multimedia format according to the current contract version. def is_valid_format(self, original_data: Any): raise NotImplementedError() def extract_info(self, original_data: Any) -> MultimediaInfo: """ Get the MultimediaInfo from the original data. Will include mime_type, resource_type, and content. Below is an example for the 20231201 version: {"data:image/jpg;path": "logo.jpg"} -> "image/jpg", "path", "logo.jpg" """ raise NotImplementedError() def create_data(self, info: MultimediaInfo) -> Any: """ Create multimedia data from info. Below is an example for the 20231201 version: "image/jpg", "path", "logo.jpg" -> {"data:image/jpg;path": "logo.jpg"} """ raise NotImplementedError() class MultimediaFormatAdapter20231201(AbstractMultimediaFormatAdapter): """ 20231201 version is our first contract's version, supports text and images (path/url/base64). 20231201 is the version number assigned by the customer in the YAML file. Path format example: {"data:image/jpg;path": "logo.jpg"} Url format example: {"data:image/jpg;url": "https://example.com/logo.jpg"} Base64 format example: {"data:image/jpg;base64": "base64 string"} """ MIME_PATTERN = re.compile(r"^data:(.*);(path|base64|url)$") def is_valid_format(self, original_data: Any): return isinstance(original_data, dict) and is_multimedia_dict(original_data) def extract_info(self, original_data: Any) -> MultimediaInfo: if not self.is_valid_format(original_data): return None for key in original_data: match = re.match(self.MIME_PATTERN, key) if match: mime_type, resource_type = match.group(1), match.group(2) content = original_data[key] return MultimediaInfo(mime_type, ResourceType(resource_type), content) return None def create_data(self, info: MultimediaInfo): return {f"data:{info.mime_type};{info.resource_type.value}": info.content} class AbstractMultimediaInfoConverter: def convert(self, info: MultimediaInfo) -> MultimediaInfo: """ Change info's mime type/resource type/content based on the client's logic. For cases that do not need to be changed, just return the original info. :param info: The MultimediaInfo to be converted. :type info: MultimediaInfo :return: The converted MultimediaInfo. :rtype: MultimediaInfo """ raise NotImplementedError() class MultimediaConverter: def __init__(self, flow_file: Path): """ Initialize the MultimediaConverter. :param flow_file: The path to the YAML file. The YAML content will be used to determine the contract version. :type flow_file: Path """ # TODO: check yaml content to determine the current contract version. # Different contract version will have different multimedia format. # The version exists in the yaml file, so we need to load the yaml to get version and init converter. self.format_adapter = MultimediaFormatAdapter20231201() def convert_content_recursively(self, content: Any, client_converter: AbstractMultimediaInfoConverter): """ Recursively converts multimedia data format in content. :param content: The object that may contain multimedia data. :type content: Any :param client_converter: The converter to modify multimedia info based on the client's logic. :type client_converter: AbstractMultimediaInfoConverter :return: The content with changed multimedia format. :rtype: Any """ process_func = partial(self._convert_content, converter=client_converter) return self._process_content_recursively(content, process_func=process_func) def _convert_content(self, original_data: Any, converter: AbstractMultimediaInfoConverter): if not self.format_adapter.is_valid_format(original_data): return original_data info = self.format_adapter.extract_info(original_data) # When can't extract multimedia info from original_data, return original_data directly. if info is None: return original_data info = converter.convert(info) return self.format_adapter.create_data(info) def _process_content_recursively(self, content: Any, process_func: Callable): if isinstance(content, list): return [self._process_content_recursively(item, process_func) for item in content] elif isinstance(content, dict): if self.format_adapter.is_valid_format(content): return process_func(original_data=content) else: return {k: self._process_content_recursively(v, process_func) for k, v in content.items()} else: return content
promptflow/src/promptflow/promptflow/_utils/multimedia_data_converter.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/multimedia_data_converter.py", "repo_id": "promptflow", "token_count": 2299 }
42
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import asdict, dataclass from promptflow.azure._restclient.flow.models import ConnectionConfigSpec as RestConnectionConfigSpec from promptflow.azure._restclient.flow.models import WorkspaceConnectionSpec as RestWorkspaceConnectionSpec @dataclass class ConnectionConfigSpec: name: str display_name: str config_value_type: str default_value: str = None description: str = None enum_values: list = None is_optional: bool = False @classmethod def _from_rest_object(cls, rest_obj: RestConnectionConfigSpec): return cls( name=rest_obj.name, display_name=rest_obj.display_name, config_value_type=rest_obj.config_value_type, default_value=rest_obj.default_value, description=rest_obj.description, enum_values=rest_obj.enum_values, is_optional=rest_obj.is_optional, ) def _to_dict(self): return asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if v is not None}) @dataclass class WorkspaceConnectionSpec: module: str connection_type: str # Connection type example: AzureOpenAI flow_value_type: str # Flow value type is the input.type on node, example: AzureOpenAIConnection config_specs: list = None @classmethod def _from_rest_object(cls, rest_obj: RestWorkspaceConnectionSpec): return cls( config_specs=[ ConnectionConfigSpec._from_rest_object(config_spec) for config_spec in (rest_obj.config_specs or []) ], module=rest_obj.module, connection_type=rest_obj.connection_type, flow_value_type=rest_obj.flow_value_type, ) def _to_dict(self): return asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if v is not None})
promptflow/src/promptflow/promptflow/azure/_entities/_workspace_connection_spec.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_entities/_workspace_connection_spec.py", "repo_id": "promptflow", "token_count": 771 }
43
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ... import models as _models from ..._vendor import _convert_request from ...operations._bulk_runs_operations import build_cancel_flow_run_request, build_clone_flow_from_flow_run_request, build_get_flow_child_runs_request, build_get_flow_node_run_base_path_request, build_get_flow_node_runs_request, build_get_flow_run_info_request, build_get_flow_run_log_content_request, build_submit_bulk_run_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class BulkRunsOperations: """BulkRunsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def submit_bulk_run( self, subscription_id: str, resource_group_name: str, workspace_name: str, body: Optional["_models.SubmitBulkRunRequest"] = None, **kwargs: Any ) -> str: """submit_bulk_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.SubmitBulkRunRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'SubmitBulkRunRequest') else: _json = None request = build_submit_bulk_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.submit_bulk_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('str', pipeline_response) if response.status_code == 204: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized submit_bulk_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/submit'} # type: ignore @distributed_trace_async async def cancel_flow_run( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, **kwargs: Any ) -> str: """cancel_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_cancel_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.cancel_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized cancel_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/cancel'} # type: ignore @distributed_trace_async async def clone_flow_from_flow_run( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, body: Optional["_models.CreateFlowRequest"] = None, **kwargs: Any ) -> "_models.FlowDto": """clone_flow_from_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_clone_flow_from_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, content_type=content_type, json=_json, template_url=self.clone_flow_from_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clone_flow_from_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/clone'} # type: ignore @distributed_trace_async async def get_flow_run_info( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, **kwargs: Any ) -> "_models.FlowRunInfo": """get_flow_run_info. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunInfo, or the result of cls(response) :rtype: ~flow.models.FlowRunInfo :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunInfo"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_info_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.get_flow_run_info.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunInfo', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_info.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}'} # type: ignore @distributed_trace_async async def get_flow_child_runs( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, index: Optional[int] = None, start_index: Optional[int] = None, end_index: Optional[int] = None, **kwargs: Any ) -> List[Any]: """get_flow_child_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_child_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, index=index, start_index=start_index, end_index=end_index, template_url=self.get_flow_child_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_child_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/childRuns'} # type: ignore @distributed_trace_async async def get_flow_node_runs( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, node_name: str, index: Optional[int] = None, start_index: Optional[int] = None, end_index: Optional[int] = None, aggregation: Optional[bool] = False, **kwargs: Any ) -> List[Any]: """get_flow_node_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :param aggregation: :type aggregation: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, node_name=node_name, index=index, start_index=start_index, end_index=end_index, aggregation=aggregation, template_url=self.get_flow_node_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}'} # type: ignore @distributed_trace_async async def get_flow_node_run_base_path( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, node_name: str, **kwargs: Any ) -> "_models.FlowRunBasePath": """get_flow_node_run_base_path. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunBasePath, or the result of cls(response) :rtype: ~flow.models.FlowRunBasePath :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunBasePath"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_run_base_path_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, node_name=node_name, template_url=self.get_flow_node_run_base_path.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunBasePath', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_run_base_path.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}/basePath'} # type: ignore @distributed_trace_async async def get_flow_run_log_content( self, subscription_id: str, resource_group_name: str, workspace_name: str, flow_run_id: str, **kwargs: Any ) -> str: """get_flow_run_log_content. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_log_content_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.get_flow_run_log_content.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_log_content.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/logContent'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_bulk_runs_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_bulk_runs_operations.py", "repo_id": "promptflow", "token_count": 9909 }
44
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_submit_bulk_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/submit') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_cancel_flow_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "text/plain, application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/cancel') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_clone_flow_from_flow_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/clone') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_flow_run_info_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_get_flow_child_runs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest index = kwargs.pop('index', None) # type: Optional[int] start_index = kwargs.pop('start_index', None) # type: Optional[int] end_index = kwargs.pop('end_index', None) # type: Optional[int] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/childRuns') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if index is not None: query_parameters['index'] = _SERIALIZER.query("index", index, 'int') if start_index is not None: query_parameters['startIndex'] = _SERIALIZER.query("start_index", start_index, 'int') if end_index is not None: query_parameters['endIndex'] = _SERIALIZER.query("end_index", end_index, 'int') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_node_runs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest index = kwargs.pop('index', None) # type: Optional[int] start_index = kwargs.pop('start_index', None) # type: Optional[int] end_index = kwargs.pop('end_index', None) # type: Optional[int] aggregation = kwargs.pop('aggregation', False) # type: Optional[bool] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), "nodeName": _SERIALIZER.url("node_name", node_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if index is not None: query_parameters['index'] = _SERIALIZER.query("index", index, 'int') if start_index is not None: query_parameters['startIndex'] = _SERIALIZER.query("start_index", start_index, 'int') if end_index is not None: query_parameters['endIndex'] = _SERIALIZER.query("end_index", end_index, 'int') if aggregation is not None: query_parameters['aggregation'] = _SERIALIZER.query("aggregation", aggregation, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_node_run_base_path_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}/basePath') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), "nodeName": _SERIALIZER.url("node_name", node_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_get_flow_run_log_content_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/logContent') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) # fmt: on class BulkRunsOperations(object): """BulkRunsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def submit_bulk_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.SubmitBulkRunRequest"] **kwargs # type: Any ): # type: (...) -> str """submit_bulk_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.SubmitBulkRunRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'SubmitBulkRunRequest') else: _json = None request = build_submit_bulk_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.submit_bulk_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('str', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('str', pipeline_response) if response.status_code == 204: deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized submit_bulk_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/submit'} # type: ignore @distributed_trace def cancel_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """cancel_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_cancel_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.cancel_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized cancel_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/cancel'} # type: ignore @distributed_trace def clone_flow_from_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """clone_flow_from_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_clone_flow_from_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, content_type=content_type, json=_json, template_url=self.clone_flow_from_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clone_flow_from_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/clone'} # type: ignore @distributed_trace def get_flow_run_info( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowRunInfo" """get_flow_run_info. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunInfo, or the result of cls(response) :rtype: ~flow.models.FlowRunInfo :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunInfo"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_info_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.get_flow_run_info.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunInfo', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_info.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}'} # type: ignore @distributed_trace def get_flow_child_runs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str index=None, # type: Optional[int] start_index=None, # type: Optional[int] end_index=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> List[Any] """get_flow_child_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_child_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, index=index, start_index=start_index, end_index=end_index, template_url=self.get_flow_child_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_child_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/childRuns'} # type: ignore @distributed_trace def get_flow_node_runs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str node_name, # type: str index=None, # type: Optional[int] start_index=None, # type: Optional[int] end_index=None, # type: Optional[int] aggregation=False, # type: Optional[bool] **kwargs # type: Any ): # type: (...) -> List[Any] """get_flow_node_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :param aggregation: :type aggregation: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, node_name=node_name, index=index, start_index=start_index, end_index=end_index, aggregation=aggregation, template_url=self.get_flow_node_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}'} # type: ignore @distributed_trace def get_flow_node_run_base_path( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowRunBasePath" """get_flow_node_run_base_path. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunBasePath, or the result of cls(response) :rtype: ~flow.models.FlowRunBasePath :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunBasePath"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_run_base_path_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, node_name=node_name, template_url=self.get_flow_node_run_base_path.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunBasePath', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_run_base_path.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/nodeRuns/{nodeName}/basePath'} # type: ignore @distributed_trace def get_flow_run_log_content( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """get_flow_run_log_content. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_log_content_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.get_flow_run_log_content.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_log_content.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/BulkRuns/{flowRunId}/logContent'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_bulk_runs_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_bulk_runs_operations.py", "repo_id": "promptflow", "token_count": 14864 }
45
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json from pathlib import Path from azure.ai.ml._schema import UnionField, YamlFileSchema from azure.ai.ml._schema.core.fields import LocalPathField from marshmallow import fields, post_load from promptflow._utils.logger_utils import LoggerFactory module_logger = LoggerFactory.get_logger(__name__) class FlowSchema(YamlFileSchema): name = fields.Str(attribute="name") id = fields.Str(attribute="id") description = fields.Str(attribute="description") tags = fields.Dict(keys=fields.Str, attribute="tags") path = UnionField( [ LocalPathField(), fields.Str(), ], ) display_name = fields.Str(attribute="display_name") type = fields.Str(attribute="type") properties = fields.Dict(keys=fields.Str, attribute="properties") @post_load def update_properties(self, dct, **kwargs): folder = Path(self.context["base_path"]) flow_type = dct.get("type") if flow_type: mapping = { "standard": "default", "evaluate": "evaluation", } dct["type"] = mapping[flow_type] properties = dct.get("properties") if properties and "promptflow.batch_inputs" in properties: input_path = properties["promptflow.batch_inputs"] samples_file = folder / input_path if samples_file.exists(): with open(samples_file, "r", encoding="utf-8") as fp: properties["promptflow.batch_inputs"] = json.loads(fp.read()) return dct
promptflow/src/promptflow/promptflow/azure/_schemas/_flow_schema.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_schemas/_flow_schema.py", "repo_id": "promptflow", "token_count": 684 }
46
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import re from pathlib import Path from typing import Any, Dict, List, Mapping, Optional from promptflow._constants import LINE_NUMBER_KEY from promptflow._core._errors import UnexpectedError from promptflow._utils.load_data import load_data from promptflow._utils.logger_utils import logger from promptflow._utils.multimedia_utils import resolve_multimedia_data_recursively from promptflow._utils.utils import resolve_dir_to_absolute from promptflow.batch._errors import EmptyInputsData, InputMappingError from promptflow.contracts.flow import FlowInputDefinition class BatchInputsProcessor: def __init__( self, working_dir: Path, flow_inputs: Mapping[str, FlowInputDefinition], max_lines_count: Optional[int] = None, ): self._working_dir = working_dir self._max_lines_count = max_lines_count self._flow_inputs = flow_inputs self._default_inputs_mapping = {key: f"${{data.{key}}}" for key in flow_inputs} def process_batch_inputs(self, input_dirs: Dict[str, str], inputs_mapping: Dict[str, str]): input_dicts = self._resolve_input_data(input_dirs) no_input_data = all(len(data) == 0 for data in input_dicts.values()) if no_input_data: input_dirs_str = "\n".join(f"{input}: {Path(path).as_posix()}" for input, path in input_dirs.items()) message_format = ( "Couldn't find any inputs data at the given input paths. Please review the provided path " "and consider resubmitting.\n{input_dirs}" ) raise EmptyInputsData(message_format=message_format, input_dirs=input_dirs_str) return self._validate_and_apply_inputs_mapping(input_dicts, inputs_mapping) def _resolve_input_data(self, input_dirs: Dict[str, str]): """Resolve input data from input dirs""" result = {} for input_key, input_dir in input_dirs.items(): input_dir = resolve_dir_to_absolute(self._working_dir, input_dir) result[input_key] = self._resolve_data_from_input_path(input_dir) return result def _resolve_data_from_input_path(self, input_path: Path): """Resolve input data from directory""" result = [] if input_path.is_file(): result.extend(resolve_multimedia_data_recursively( input_path.parent, load_data(local_path=input_path, max_rows_count=self._max_lines_count)) ) else: for input_file in input_path.rglob("*"): if input_file.is_file(): result.extend(resolve_multimedia_data_recursively( input_file.parent, load_data(local_path=input_file, max_rows_count=self._max_lines_count)) ) if self._max_lines_count and len(result) >= self._max_lines_count: break if self._max_lines_count and len(result) >= self._max_lines_count: logger.warning( ( "The data provided exceeds the maximum lines limit. Currently, only the first " f"{self._max_lines_count} lines are processed." ) ) return result[: self._max_lines_count] return result def _validate_and_apply_inputs_mapping(self, inputs, inputs_mapping) -> List[Dict[str, Any]]: """Validate and apply inputs mapping for all lines in the flow. :param inputs: The inputs to the flow. :type inputs: Any :param inputs_mapping: The mapping of input names to their corresponding values. :type inputs_mapping: Dict[str, Any] :return: A list of dictionaries containing the resolved inputs for each line in the flow. :rtype: List[Dict[str, Any]] """ if not inputs_mapping: logger.warning( msg=( "Starting run without column mapping may lead to unexpected results. " "Please consult the following documentation for more information: https://aka.ms/pf/column-mapping" ) ) inputs_mapping = self._complete_inputs_mapping_by_default_value(inputs_mapping) resolved_inputs = self._apply_inputs_mapping_for_all_lines(inputs, inputs_mapping) return resolved_inputs def _complete_inputs_mapping_by_default_value(self, inputs_mapping): inputs_mapping = inputs_mapping or {} result_mapping = self._default_inputs_mapping # For input has default value, we don't try to read data from default mapping. # Default value is in higher priority than default mapping. for key, value in self._flow_inputs.items(): if value and value.default is not None: del result_mapping[key] result_mapping.update(inputs_mapping) return result_mapping def _apply_inputs_mapping_for_all_lines( self, input_dict: Mapping[str, List[Mapping[str, Any]]], inputs_mapping: Mapping[str, str], ) -> List[Dict[str, Any]]: """Apply input mapping to all input lines. For example: input_dict = { 'data': [{'question': 'q1', 'answer': 'ans1'}, {'question': 'q2', 'answer': 'ans2'}], 'baseline': [{'answer': 'baseline_ans1'}, {'answer': 'baseline_ans2'}], 'output': [{'answer': 'output_ans1', 'line_number': 0}, {'answer': 'output_ans2', 'line_number': 1}], } inputs_mapping: { "question": "${data.question}", # Question from the data "groundtruth": "${data.answer}", # Answer from the data "baseline": "${baseline.answer}", # Answer from the baseline "deployment_name": "text-davinci-003", # literal value "answer": "${output.answer}", # Answer from the output "line_number": "${output.line_number}", # Answer from the output } Returns: [{ "question": "q1", "groundtruth": "ans1", "baseline": "baseline_ans1", "answer": "output_ans1", "deployment_name": "text-davinci-003", "line_number": 0, }, { "question": "q2", "groundtruth": "ans2", "baseline": "baseline_ans2", "answer": "output_ans2", "deployment_name": "text-davinci-003", "line_number": 1, }] """ if inputs_mapping is None: # This exception should not happen since developers need to use _default_inputs_mapping for None input. # So, this exception is one system error. raise UnexpectedError( message_format=( "The input for batch run is incorrect. Please make sure to set up a proper input mapping before " "proceeding. If you need additional help, feel free to contact support for further assistance." ) ) merged_list = self._merge_input_dicts_by_line(input_dict) if len(merged_list) == 0: raise InputMappingError( message_format=( "The input for batch run is incorrect. Could not find one complete line on the provided input. " "Please ensure that you supply data on the same line to resolve this issue." ) ) result = [apply_inputs_mapping(item, inputs_mapping) for item in merged_list] return result def _merge_input_dicts_by_line( self, input_dict: Mapping[str, List[Mapping[str, Any]]], ) -> List[Mapping[str, Mapping[str, Any]]]: for input_key, list_of_one_input in input_dict.items(): if not list_of_one_input: raise InputMappingError( message_format=( "The input for batch run is incorrect. Input from key '{input_key}' is an empty list, " "which means we cannot generate a single line input for the flow run. " "Please rectify the input and try again." ), input_key=input_key, ) # Check if line numbers are aligned. all_lengths_without_line_number = { input_key: len(list_of_one_input) for input_key, list_of_one_input in input_dict.items() if not any(LINE_NUMBER_KEY in one_item for one_item in list_of_one_input) } if len(set(all_lengths_without_line_number.values())) > 1: raise InputMappingError( message_format=( "The input for batch run is incorrect. Line numbers are not aligned. " "Some lists have dictionaries missing the 'line_number' key, " "and the lengths of these lists are different. " "List lengths are: {all_lengths_without_line_number}. " "Please make sure these lists have the same length or add 'line_number' key to each dictionary." ), all_lengths_without_line_number=all_lengths_without_line_number, ) # Collect each line item from each input. tmp_dict = {} for input_key, list_of_one_input in input_dict.items(): if input_key in all_lengths_without_line_number: # Assume line_number start from 0. for index, one_line_item in enumerate(list_of_one_input): if index not in tmp_dict: tmp_dict[index] = {} tmp_dict[index][input_key] = one_line_item else: for one_line_item in list_of_one_input: if LINE_NUMBER_KEY in one_line_item: index = one_line_item[LINE_NUMBER_KEY] if index not in tmp_dict: tmp_dict[index] = {} tmp_dict[index][input_key] = one_line_item result = [] for line, values_for_one_line in tmp_dict.items(): # Missing input is not acceptable line. if len(values_for_one_line) != len(input_dict): continue values_for_one_line[LINE_NUMBER_KEY] = line result.append(values_for_one_line) return result def apply_inputs_mapping( inputs: Mapping[str, Mapping[str, Any]], inputs_mapping: Mapping[str, str], ) -> Dict[str, Any]: """Apply input mapping to inputs for new contract. .. admonition:: Examples .. code-block:: python inputs: { "data": {"answer": "I'm fine, thank you.", "question": "How are you?"}, "baseline": {"answer": "The weather is good."}, } inputs_mapping: { "question": "${data.question}", "groundtruth": "${data.answer}", "baseline": "${baseline.answer}", "deployment_name": "literal_value", } Returns: { "question": "How are you?", "groundtruth": "I'm fine, thank you." "baseline": "The weather is good.", "deployment_name": "literal_value", } :param inputs: A mapping of input keys to their corresponding values. :type inputs: Mapping[str, Mapping[str, Any]] :param inputs_mapping: A mapping of input keys to their corresponding mapping expressions. :type inputs_mapping: Mapping[str, str] :return: A dictionary of input keys to their corresponding mapped values. :rtype: Dict[str, Any] :raises InputMappingError: If any of the input mapping relations are not found in the inputs. """ result = {} notfound_mapping_relations = [] for map_to_key, map_value in inputs_mapping.items(): # Ignore reserved key configuration from input mapping. if map_to_key == LINE_NUMBER_KEY: continue if not isinstance(map_value, str): # All non-string values are literal values. result[map_to_key] = map_value continue match = re.search(r"^\${([^{}]+)}$", map_value) if match is not None: pattern = match.group(1) # Could also try each pair of key value from inputs to match the pattern. # But split pattern by '.' is one deterministic way. # So, give key with less '.' higher priority. splitted_str = pattern.split(".") find_match = False for i in range(1, len(splitted_str)): key = ".".join(splitted_str[:i]) source = ".".join(splitted_str[i:]) if key in inputs and source in inputs[key]: find_match = True result[map_to_key] = inputs[key][source] break if not find_match: notfound_mapping_relations.append(map_value) else: result[map_to_key] = map_value # Literal value # Return all not found mapping relations in one exception to provide better debug experience. if notfound_mapping_relations: invalid_relations = ", ".join(notfound_mapping_relations) raise InputMappingError( message_format=( "The input for batch run is incorrect. Couldn't find these mapping relations: {invalid_relations}. " "Please make sure your input mapping keys and values match your YAML input section and input data. " "For more information, refer to the following documentation: https://aka.ms/pf/column-mapping" ), invalid_relations=invalid_relations, ) # For PRS scenario, apply_inputs_mapping will be used for exec_line and line_number is not necessary. if LINE_NUMBER_KEY in inputs: result[LINE_NUMBER_KEY] = inputs[LINE_NUMBER_KEY] return result
promptflow/src/promptflow/promptflow/batch/_batch_inputs_processor.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/batch/_batch_inputs_processor.py", "repo_id": "promptflow", "token_count": 6425 }
47
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # isort: skip_file # skip to avoid circular import __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore from promptflow._sdk.entities._connection import ( AzureContentSafetyConnection, AzureOpenAIConnection, CognitiveSearchConnection, CustomConnection, OpenAIConnection, SerpConnection, QdrantConnection, FormRecognizerConnection, ) from promptflow._sdk.entities._run import Run from promptflow._core.tool import InputSetting, DynamicList from promptflow._sdk.entities._flow import FlowContext __all__ = [ # region Connection "AzureContentSafetyConnection", "AzureOpenAIConnection", "OpenAIConnection", "CustomConnection", "CognitiveSearchConnection", "SerpConnection", "QdrantConnection", "FormRecognizerConnection", # endregion # region Run "Run", # endregion # region Tool "InputSetting", "DynamicList", # endregion # region Flow "FlowContext", # endregion ]
promptflow/src/promptflow/promptflow/entities/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/entities/__init__.py", "repo_id": "promptflow", "token_count": 384 }
48
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import copy import functools import inspect import os import uuid from pathlib import Path from threading import current_thread from types import GeneratorType from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple from promptflow._constants import LINE_NUMBER_KEY from promptflow._core._errors import NotSupported, UnexpectedError from promptflow._core.cache_manager import AbstractCacheManager from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow._core.metric_logger import add_metric_logger, remove_metric_logger from promptflow._core.openai_injector import inject_openai_api from promptflow._core.operation_context import OperationContext from promptflow._core.run_tracker import RunTracker from promptflow._core.tool import STREAMING_OPTION_PARAMETER_ATTR from promptflow._core.tools_manager import ToolsManager from promptflow._utils.context_utils import _change_working_dir from promptflow._utils.execution_utils import ( apply_default_value_for_input, collect_lines, get_aggregation_inputs_properties, ) from promptflow._utils.logger_utils import flow_logger, logger from promptflow._utils.multimedia_utils import ( load_multimedia_data, load_multimedia_data_recursively, persist_multimedia_data, ) from promptflow._utils.utils import get_int_env_var, transpose from promptflow._utils.yaml_utils import load_yaml from promptflow.contracts.flow import Flow, FlowInputDefinition, InputAssignment, InputValueType, Node from promptflow.contracts.run_info import FlowRunInfo, Status from promptflow.contracts.run_mode import RunMode from promptflow.exceptions import PromptflowException from promptflow.executor import _input_assignment_parser from promptflow.executor._async_nodes_scheduler import AsyncNodesScheduler from promptflow.executor._errors import ( InvalidFlowFileError, NodeOutputNotFound, OutputReferenceNotExist, SingleNodeValidationError, ) from promptflow.executor._flow_nodes_scheduler import ( DEFAULT_CONCURRENCY_BULK, DEFAULT_CONCURRENCY_FLOW, FlowNodesScheduler, ) from promptflow.executor._result import AggregationResult, LineResult from promptflow.executor._tool_resolver import ToolResolver from promptflow.executor.flow_validator import FlowValidator from promptflow.storage import AbstractRunStorage from promptflow.storage._run_storage import DefaultRunStorage class FlowExecutor: """This class is used to execute a single flow for different inputs. :param flow: The flow to be executed. :type flow: ~promptflow.contracts.flow.Flow :param connections: The connections to be used for the flow. :type connections: dict :param run_tracker: The run tracker to be used for the flow. :type run_tracker: ~promptflow._core.run_tracker.RunTracker :param cache_manager: The cache manager to be used for the flow. :type cache_manager: ~promptflow._core.cache_manager.AbstractCacheManager :param loaded_tools: The loaded tools to be used for the flow. :type loaded_tools: Mapping[str, Callable] :param worker_count: The number of workers to be used for the flow. Default is 16. :type worker_count: Optional[int] :param raise_ex: Whether to raise exceptions or not. Default is False. :type raise_ex: Optional[bool] :param working_dir: The working directory to be used for the flow. Default is None. :type working_dir: Optional[str] :param line_timeout_sec: The line timeout in seconds to be used for the flow. Default is LINE_TIMEOUT_SEC. :type line_timeout_sec: Optional[int] :param flow_file: The flow file to be used for the flow. Default is None. :type flow_file: Optional[Path] """ def __init__( self, flow: Flow, connections: dict, run_tracker: RunTracker, cache_manager: AbstractCacheManager, loaded_tools: Mapping[str, Callable], *, entry: Optional[str] = None, raise_ex: bool = False, working_dir=None, line_timeout_sec=None, flow_file=None, ): """Initialize a FlowExecutor object. :param flow: The Flow object to execute. :type flow: ~promptflow.contracts.flow.Flow :param connections: The connections between nodes in the Flow. :type connections: dict :param run_tracker: The RunTracker object to track the execution of the Flow. :type run_tracker: ~promptflow._core.run_tracker.RunTracker :param cache_manager: The AbstractCacheManager object to manage caching of results. :type cache_manager: ~promptflow._core.cache_manager.AbstractCacheManager :param loaded_tools: A mapping of tool names to their corresponding functions. :type loaded_tools: Mapping[str, Callable] :param raise_ex: Whether to raise an exception if an error occurs during execution. :type raise_ex: bool :param working_dir: The working directory to use for execution. :type working_dir: str or None :param line_timeout_sec: The maximum time to wait for a line of output from a node. :type line_timeout_sec: int or None :param flow_file: The path to the file containing the Flow definition. :type flow_file: str or None """ # Inject OpenAI API to make sure traces and headers injection works and # update OpenAI API configs from environment variables. inject_openai_api() self._flow = flow self._flow_id = flow.id or str(uuid.uuid4()) self._connections = connections self._aggregation_inputs_references = get_aggregation_inputs_properties(flow) self._aggregation_nodes = {node.name for node in self._flow.nodes if node.aggregation} self._run_tracker = run_tracker self._cache_manager = cache_manager self._loaded_tools = loaded_tools self._working_dir = working_dir self._line_timeout_sec = line_timeout_sec or get_int_env_var("PF_LINE_TIMEOUT_SEC") self._flow_file = flow_file try: self._tools_manager = ToolsManager(loaded_tools) tool_to_meta = {tool.name: tool for tool in flow.tools} custom_tools = { node.name: self._tools_manager._load_custom_tool(tool_to_meta[node.tool], node.name) for node in flow.nodes if not self._tools_manager.loaded(node.name) } self._tools_manager.load_tools(custom_tools) except PromptflowException as e: # For PromptflowException, we don't wrap it, because need generate ErrorResponse by inner exception. # Will try to find one common way to handle this case. raise e except Exception as e: raise ValueError(f"Failed to load custom tools for flow due to exception:\n {e}.") from e for node in flow.nodes: self._tools_manager.assert_loaded(node.name) self._entry = entry self._raise_ex = raise_ex self._log_interval = 60 self._processing_idx = None self._completed_idx = None # TODO: Improve the experience about configuring node concurrency. self._node_concurrency = DEFAULT_CONCURRENCY_BULK @classmethod def create( cls, flow_file: Path, connections: dict, working_dir: Optional[Path] = None, *, entry: Optional[str] = None, storage: Optional[AbstractRunStorage] = None, raise_ex: bool = True, node_override: Optional[Dict[str, Dict[str, Any]]] = None, line_timeout_sec: Optional[int] = None, ) -> "FlowExecutor": """Create a new instance of FlowExecutor. :param flow_file: The path to the flow file. :type flow_file: Path :param connections: The connections to be used for the flow. :type connections: dict :param working_dir: The working directory to be used for the flow. Default is None. :type working_dir: Optional[str] :param func: The function to be used for the flow if .py is provided. Default is None. :type func: Optional[str] :param storage: The storage to be used for the flow. Default is None. :type storage: Optional[~promptflow.storage.AbstractRunStorage] :param raise_ex: Whether to raise exceptions or not. Default is True. :type raise_ex: Optional[bool] :param node_override: The node overrides to be used for the flow. Default is None. :type node_override: Optional[Dict[str, Dict[str, Any]]] :param line_timeout_sec: The line timeout in seconds to be used for the flow. Default is LINE_TIMEOUT_SEC. :type line_timeout_sec: Optional[int] :return: A new instance of FlowExecutor. :rtype: ~promptflow.executor.flow_executor.FlowExecutor """ if cls._is_eager_flow_yaml(flow_file, working_dir): if Path(flow_file).suffix.lower() in [".yml", ".yaml"]: entry, path = cls._parse_eager_flow_yaml(flow_file, working_dir) flow_file = Path(path) from ._script_executor import ScriptExecutor return ScriptExecutor( flow_file=flow_file, entry=entry, working_dir=working_dir, storage=storage, ) elif Path(flow_file).suffix.lower() in [".yml", ".yaml"]: flow = Flow.from_yaml(flow_file, working_dir=working_dir) return cls._create_from_flow( flow_file=flow_file, flow=flow, connections=connections, working_dir=working_dir, entry=entry, storage=storage, raise_ex=raise_ex, node_override=node_override, line_timeout_sec=line_timeout_sec, ) else: raise InvalidFlowFileError(message_format="Unsupported flow file type: {flow_file}.", flow_file=flow_file) @classmethod def _create_from_flow( cls, flow: Flow, connections: dict, working_dir: Optional[Path], *, flow_file: Optional[Path] = None, entry: Optional[str] = None, storage: Optional[AbstractRunStorage] = None, raise_ex: bool = True, node_override: Optional[Dict[str, Dict[str, Any]]] = None, line_timeout_sec: Optional[int] = None, ): logger.debug("Start initializing the flow executor.") working_dir = Flow._resolve_working_dir(flow_file, working_dir) if node_override: flow = flow._apply_node_overrides(node_override) flow = flow._apply_default_node_variants() package_tool_keys = [node.source.tool for node in flow.nodes if node.source and node.source.tool] tool_resolver = ToolResolver(working_dir, connections, package_tool_keys) with _change_working_dir(working_dir): resolved_tools = [tool_resolver.resolve_tool_by_node(node) for node in flow.nodes] flow = Flow( flow.id, flow.name, [r.node for r in resolved_tools], inputs=flow.inputs, outputs=flow.outputs, tools=[] ) # ensure_flow_valid including validation + resolve # Todo: 1) split pure validation + resolve from below method 2) provide completed validation() flow = FlowValidator._validate_nodes_topology(flow) flow.outputs = FlowValidator._ensure_outputs_valid(flow) if storage is None: storage = DefaultRunStorage() run_tracker = RunTracker(storage) cache_manager = AbstractCacheManager.init_from_env() executor = FlowExecutor( flow=flow, connections=connections, run_tracker=run_tracker, cache_manager=cache_manager, loaded_tools={r.node.name: r.callable for r in resolved_tools}, entry=entry, raise_ex=raise_ex, working_dir=working_dir, line_timeout_sec=line_timeout_sec, flow_file=flow_file, ) logger.debug("The flow executor is initialized successfully.") return executor @classmethod def _is_eager_flow_yaml(cls, flow_file: Path, working_dir: Optional[Path] = None): if Path(flow_file).suffix.lower() == ".py": return True elif Path(flow_file).suffix.lower() in [".yaml", ".yml"]: flow_file = working_dir / flow_file if working_dir else flow_file with open(flow_file, "r", encoding="utf-8") as fin: flow_dag = load_yaml(fin) if "entry" in flow_dag: return True return False @classmethod def _parse_eager_flow_yaml(cls, flow_file: Path, working_dir: Optional[Path] = None): flow_file = working_dir / flow_file if working_dir else flow_file with open(flow_file, "r", encoding="utf-8") as fin: flow_dag = load_yaml(fin) return flow_dag.get("entry", ""), flow_dag.get("path", "") @classmethod def load_and_exec_node( cls, flow_file: Path, node_name: str, *, storage: AbstractRunStorage = None, output_sub_dir: Optional[str] = None, flow_inputs: Optional[Mapping[str, Any]] = None, dependency_nodes_outputs: Optional[Mapping[str, Any]] = None, connections: Optional[dict] = None, working_dir: Optional[Path] = None, raise_ex: bool = False, ): """Load and execute a single node from the flow. :param flow_file: The path to the flow file. :type flow_file: Path :param node_name: The name of the node to be executed. :type node_name: str :param storage: The storage to be used for the flow. :type storage: Optional[~promptflow.storage.AbstractRunStorage] :param output_sub_dir: The directory to persist image for the flow. Keep it only for backward compatibility. :type output_sub_dir: Optional[str] :param flow_inputs: The inputs to be used for the flow. Default is None. :type flow_inputs: Optional[Mapping[str, Any]] :param dependency_nodes_outputs: The outputs of the dependency nodes. Default is None. :type dependency_nodes_outputs: Optional[Mapping[str, Any] :param connections: The connections to be used for the flow. Default is None. :type connections: Optional[dict] :param working_dir: The working directory to be used for the flow. Default is None. :type working_dir: Optional[str] :param raise_ex: Whether to raise exceptions or not. Default is False. :type raise_ex: Optional[bool] """ # Inject OpenAI API to make sure traces and headers injection works and # update OpenAI API configs from environment variables. inject_openai_api() OperationContext.get_instance().run_mode = RunMode.SingleNode.name dependency_nodes_outputs = dependency_nodes_outputs or {} # Load the node from the flow file working_dir = Flow._resolve_working_dir(flow_file, working_dir) with open(working_dir / flow_file, "r") as fin: flow = Flow.deserialize(load_yaml(fin)) node = flow.get_node(node_name) if node is None: raise SingleNodeValidationError( message_format=( "Validation failed when attempting to execute the node. " "Node '{node_name}' is not found in flow '{flow_file}'. " "Please change node name or correct the flow file." ), node_name=node_name, flow_file=flow_file, ) if not node.source or not node.type: raise SingleNodeValidationError( message_format=( "Validation failed when attempting to execute the node. " "Properties 'source' or 'type' are not specified for Node '{node_name}' in flow '{flow_file}'. " "Please make sure these properties are in place and try again." ), node_name=node_name, flow_file=flow_file, ) # Only load the node's referenced flow inputs node_referenced_flow_inputs = FlowExecutor._get_node_referenced_flow_inputs(node, flow.inputs) inputs_with_default_value = apply_default_value_for_input(node_referenced_flow_inputs, flow_inputs) converted_flow_inputs_for_node = FlowValidator.convert_flow_inputs_for_node( flow, node, inputs_with_default_value ) inputs = load_multimedia_data(node_referenced_flow_inputs, converted_flow_inputs_for_node) dependency_nodes_outputs = load_multimedia_data_recursively(dependency_nodes_outputs) package_tool_keys = [node.source.tool] if node.source and node.source.tool else [] tool_resolver = ToolResolver(working_dir, connections, package_tool_keys) resolved_node = tool_resolver.resolve_tool_by_node(node) # Prepare callable and real inputs here resolved_inputs = {} for k, v in resolved_node.node.inputs.items(): value = _input_assignment_parser.parse_value(v, dependency_nodes_outputs, inputs) resolved_inputs[k] = value if resolved_node.node.aggregation: # For aggregation node, we need to convert value to list. if ( v.value_type == InputValueType.FLOW_INPUT or v.value_type == InputValueType.NODE_REFERENCE and flow.is_normal_node(v.value) ): resolved_inputs[k] = [value] # Note that the init args are only used when resolving the tool, # so we need to remove them from the inputs before invoking. resolved_inputs = {k: v for k, v in resolved_inputs.items() if k not in resolved_node.init_args} if storage is None: sub_dir = "." if output_sub_dir is None else output_sub_dir storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path(sub_dir)) run_tracker = RunTracker(storage) with run_tracker.node_log_manager: # Will generate node run in context context = FlowExecutionContext( name=flow.name, run_tracker=run_tracker, cache_manager=AbstractCacheManager.init_from_env(), ) try: if inspect.iscoroutinefunction(resolved_node.callable): asyncio.run( context.invoke_tool_async(resolved_node.node, resolved_node.callable, kwargs=resolved_inputs), ) else: context.invoke_tool(resolved_node.node, resolved_node.callable, kwargs=resolved_inputs) except Exception: if raise_ex: # Only raise exception when raise_ex is True raise node_runs = run_tracker.collect_node_runs() if len(node_runs) != 1: # Should not happen except there is bug in run_tracker or thread control. raise UnexpectedError( message_format=( "Single node execution failed. Expected one node result, " "but received {node_result_num}. Please contact support for further assistance." ), node_result_num=len(node_runs), ) return node_runs[0] @staticmethod def update_environment_variables_with_connections(connections: dict): """Update environment variables with connections. :param connections: A dictionary containing connection information. :type connections: dict :return: A dictionary containing updated environment variables. :rtype: dict """ from promptflow._sdk._utils import update_environment_variables_with_connections return update_environment_variables_with_connections(connections) def convert_flow_input_types(self, inputs: dict) -> Mapping[str, Any]: """Convert the input types of the given inputs dictionary to match the expected types of the flow. :param inputs: A dictionary containing the inputs to the flow. :type inputs: dict :return: A dictionary containing the converted inputs. :rtype: Mapping[str, Any] """ return FlowValidator.resolve_flow_inputs_type(self._flow, inputs) @property def _default_inputs_mapping(self): return {key: f"${{data.{key}}}" for key in self._flow.inputs} @property def has_aggregation_node(self) -> bool: """Check if the flow executor has any aggregation nodes. :return: True if the flow executor has at least one aggregation node, False otherwise. :rtype: bool """ return len(self._aggregation_nodes) > 0 @property def aggregation_nodes(self): """Get the aggregation nodes of the flow executor. :return: A list of aggregation nodes. :rtype: list """ return self._aggregation_nodes def _fill_lines(self, indexes, values, nlines): """Fill the values into the result list according to the indexes.""" result = [None] * nlines for idx, value in zip(indexes, values): result[idx] = value return result def _exec_aggregation_with_bulk_results( self, batch_inputs: List[dict], results: List[LineResult], run_id=None, ) -> AggregationResult: if not self.aggregation_nodes: return AggregationResult({}, {}, {}) logger.info("Executing aggregation nodes...") run_infos = [r.run_info for r in results] succeeded = [i for i, r in enumerate(run_infos) if r.status == Status.Completed] succeeded_batch_inputs = [batch_inputs[i] for i in succeeded] resolved_succeeded_batch_inputs = [ FlowValidator.ensure_flow_inputs_type(flow=self._flow, inputs=input) for input in succeeded_batch_inputs ] succeeded_inputs = transpose(resolved_succeeded_batch_inputs, keys=list(self._flow.inputs.keys())) aggregation_inputs = transpose( [result.aggregation_inputs for result in results], keys=self._aggregation_inputs_references, ) succeeded_aggregation_inputs = collect_lines(succeeded, aggregation_inputs) try: aggr_results = self._exec_aggregation(succeeded_inputs, succeeded_aggregation_inputs, run_id) logger.info("Finish executing aggregation nodes.") return aggr_results except PromptflowException as e: # For PromptflowException, we already do classification, so throw directly. raise e except Exception as e: error_type_and_message = f"({e.__class__.__name__}) {e}" raise UnexpectedError( message_format=( "Unexpected error occurred while executing the aggregated nodes. " "Please fix or contact support for assistance. The error details: {error_type_and_message}." ), error_type_and_message=error_type_and_message, ) from e @staticmethod def _try_get_aggregation_input(val: InputAssignment, aggregation_inputs: dict): if val.value_type != InputValueType.NODE_REFERENCE: return val serialized_val = val.serialize() if serialized_val not in aggregation_inputs: return val return InputAssignment(value=aggregation_inputs[serialized_val]) def get_status_summary(self, run_id: str): """Get a summary of the status of a given run. :param run_id: The ID of the run to get the status summary for. :type run_id: str :return: A summary of the status of the given run. :rtype: str """ return self._run_tracker.get_status_summary(run_id) def exec_aggregation( self, inputs: Mapping[str, Any], aggregation_inputs: Mapping[str, Any], run_id=None, node_concurrency=DEFAULT_CONCURRENCY_FLOW, ) -> AggregationResult: """Execute the aggregation node of the flow. :param inputs: A mapping of input names to their values. :type inputs: Mapping[str, Any] :param aggregation_inputs: A mapping of aggregation input names to their values. :type aggregation_inputs: Mapping[str, Any] :param run_id: The ID of the current run, if any. :type run_id: Optional[str] :param node_concurrency: The maximum number of nodes that can be executed concurrently. :type node_concurrency: int :return: The result of the aggregation node. :rtype: ~promptflow.executor._result.AggregationResult :raises: FlowError if the inputs or aggregation_inputs are invalid. """ self._node_concurrency = node_concurrency aggregated_flow_inputs = dict(inputs or {}) aggregation_inputs = dict(aggregation_inputs or {}) FlowValidator._validate_aggregation_inputs(aggregated_flow_inputs, aggregation_inputs) aggregated_flow_inputs = self._apply_default_value_for_aggregation_input( self._flow.inputs, aggregated_flow_inputs, aggregation_inputs ) # Resolve aggregated_flow_inputs from list of strings to list of objects, whose type is specified in yaml file. # TODO: For now, we resolve type for batch run's aggregation input in _exec_aggregation_with_bulk_results. # If we decide to merge the resolve logic into one place, remember to take care of index for batch run. resolved_aggregated_flow_inputs = FlowValidator.resolve_aggregated_flow_inputs_type( self._flow, aggregated_flow_inputs ) with self._run_tracker.node_log_manager: return self._exec_aggregation(resolved_aggregated_flow_inputs, aggregation_inputs, run_id) @staticmethod def _apply_default_value_for_aggregation_input( inputs: Dict[str, FlowInputDefinition], aggregated_flow_inputs: Mapping[str, Any], aggregation_inputs: Mapping[str, Any], ): aggregation_lines = 1 if aggregated_flow_inputs.values(): one_input_value = list(aggregated_flow_inputs.values())[0] aggregation_lines = len(one_input_value) # If aggregated_flow_inputs is empty, we should use aggregation_inputs to get the length. elif aggregation_inputs.values(): one_input_value = list(aggregation_inputs.values())[0] aggregation_lines = len(one_input_value) for key, value in inputs.items(): if key not in aggregated_flow_inputs and (value and value.default is not None): aggregated_flow_inputs[key] = [value.default] * aggregation_lines return aggregated_flow_inputs def _exec_aggregation( self, inputs: Mapping[str, Any], aggregation_inputs: Mapping[str, Any], run_id=None, ) -> AggregationResult: if not self._flow.has_aggregation_node: return AggregationResult({}, {}, {}) run_id = run_id or str(uuid.uuid4()) nodes = [copy.deepcopy(node) for node in self._flow.nodes if node.aggregation] # Update the inputs of the aggregation nodes with the aggregation inputs. for node in nodes: node.inputs = { k: FlowExecutor._try_get_aggregation_input(v, aggregation_inputs) for k, v in node.inputs.items() } # Load multimedia data for the flow inputs of aggregation nodes. inputs = load_multimedia_data(self._flow.inputs, inputs) # TODO: Use a new run tracker to avoid memory increase infinitely. run_tracker = self._run_tracker context = FlowExecutionContext( name=self._flow.name, run_tracker=run_tracker, cache_manager=self._cache_manager, run_id=run_id, flow_id=self._flow_id, ) metrics = {} def _log_metric(key, value): metrics[key] = value add_metric_logger(_log_metric) try: self._submit_to_scheduler(context, inputs, nodes) node_run_infos = run_tracker.collect_child_node_runs(run_id) # Output is set as an empty dict, because the aggregation outputs story is not finalized. return AggregationResult({}, metrics, {run.node: run for run in node_run_infos}) except Exception: if self._raise_ex: raise node_run_infos = run_tracker.collect_child_node_runs(run_id) return AggregationResult({}, metrics, {run.node: run for run in node_run_infos}) finally: remove_metric_logger(_log_metric) def exec(self, inputs: dict, node_concurrency=DEFAULT_CONCURRENCY_FLOW) -> dict: """Executes the flow with the given inputs and returns the output. :param inputs: A dictionary containing the input values for the flow. :type inputs: dict :param node_concurrency: The maximum number of nodes that can be executed concurrently. :type node_concurrency: int :return: A dictionary containing the output values of the flow. :rtype: dict """ self._node_concurrency = node_concurrency inputs = apply_default_value_for_input(self._flow.inputs, inputs) result = self._exec(inputs) # TODO: remove this line once serving directly calling self.exec_line self._add_line_results([result]) return result.output or {} def _exec_in_thread(self, args) -> LineResult: inputs, run_id, line_number, variant_id, validate_inputs = args thread_name = current_thread().name self._processing_idx[line_number] = thread_name self._run_tracker._activate_in_context() results = self._exec( inputs, run_id=run_id, line_number=line_number, variant_id=variant_id, validate_inputs=validate_inputs ) self._run_tracker._deactivate_in_context() self._processing_idx.pop(line_number) self._completed_idx[line_number] = thread_name return results def _extract_aggregation_inputs(self, nodes_outputs: dict): return { prop: self._extract_aggregation_input(nodes_outputs, prop) for prop in self._aggregation_inputs_references } def _extract_aggregation_input(self, nodes_outputs: dict, aggregation_input_property: str): assign = InputAssignment.deserialize(aggregation_input_property) return _input_assignment_parser.parse_value(assign, nodes_outputs, {}) def exec_line( self, inputs: Mapping[str, Any], index: Optional[int] = None, run_id: Optional[str] = None, variant_id: str = "", validate_inputs: bool = True, node_concurrency=DEFAULT_CONCURRENCY_FLOW, allow_generator_output: bool = False, line_timeout_sec: Optional[int] = None, ) -> LineResult: """Execute a single line of the flow. :param inputs: The input values for the line. :type inputs: Mapping[str, Any] :param index: The index of the line to execute. :type index: Optional[int] :param run_id: The ID of the flow run. :type run_id: Optional[str] :param variant_id: The ID of the variant to execute. :type variant_id: str :param validate_inputs: Whether to validate the input values. :type validate_inputs: bool :param node_concurrency: The maximum number of nodes that can be executed concurrently. :type node_concurrency: int :param allow_generator_output: Whether to allow generator output. :type allow_generator_output: bool :param line_timeout_sec: The maximum time to wait for a line of output. :type line_timeout_sec: Optional[int] :return: The result of executing the line. :rtype: ~promptflow.executor._result.LineResult """ self._node_concurrency = node_concurrency # TODO: Pass line_timeout_sec to flow node scheduler instead of updating self._line_timeout_sec self._line_timeout_sec = line_timeout_sec or self._line_timeout_sec inputs = apply_default_value_for_input(self._flow.inputs, inputs) # For flow run, validate inputs as default with self._run_tracker.node_log_manager: # exec_line interface may be called when executing a batch run, so we only set run_mode as flow run when # it is not set. operation_context = OperationContext.get_instance() operation_context.run_mode = operation_context.get("run_mode", None) or RunMode.Test.name line_result = self._exec( inputs, run_id=run_id, line_number=index, variant_id=variant_id, validate_inputs=validate_inputs, allow_generator_output=allow_generator_output, ) # Return line result with index if index is not None and isinstance(line_result.output, dict): line_result.output[LINE_NUMBER_KEY] = index return line_result def _add_line_results(self, line_results: List[LineResult], run_tracker: Optional[RunTracker] = None): run_tracker = run_tracker or self._run_tracker run_tracker._flow_runs.update({result.run_info.run_id: result.run_info for result in line_results}) run_tracker._node_runs.update( { node_run_info.run_id: node_run_info for result in line_results for node_run_info in result.node_run_infos.values() } ) @staticmethod def _get_node_referenced_flow_inputs( node, flow_inputs: Dict[str, FlowInputDefinition] ) -> Dict[str, FlowInputDefinition]: node_referenced_flow_inputs = {} for _, value in node.inputs.items(): # Only add flow input to node_referenced_flow_inputs when it is exist and referenced by node. # If flow input is not exist, we will raise exception in FlowValidator.convert_flow_inputs_for_node. if value.value_type == InputValueType.FLOW_INPUT and value.value in flow_inputs: node_referenced_flow_inputs[value.value] = flow_inputs[value.value] return node_referenced_flow_inputs def _exec( self, inputs: Mapping[str, Any], run_id: Optional[str] = None, line_number: Optional[int] = None, variant_id: str = "", validate_inputs: bool = False, allow_generator_output: bool = False, ) -> LineResult: """execute line run Args: inputs (Mapping): flow inputs run_id: the id to identify the flow run line_number: line number for batch inputs validate_inputs: Flag to indicate if input validation needed. It is used along with "_raise_ex" to define if exception shall be raised if inputs validation (type check, etc) failed The flag is True for Flow Run, False for bulk run as default allow_generator_output: Flag to indicate if generator output is allowed. Returns: LineResult: Line run result """ run_id = run_id or str(uuid.uuid4()) line_run_id = run_id if line_number is None else f"{run_id}_{line_number}" run_tracker = RunTracker( self._run_tracker._storage, self._run_tracker._run_mode, self._run_tracker.node_log_manager ) # We need to copy the allow_generator_types from the original run_tracker. run_tracker.allow_generator_types = self._run_tracker.allow_generator_types run_info: FlowRunInfo = run_tracker.start_flow_run( flow_id=self._flow_id, root_run_id=run_id, run_id=line_run_id, parent_run_id=run_id, inputs={k: inputs[k] for k in self._flow.inputs if k in inputs}, index=line_number, variant_id=variant_id, ) context = FlowExecutionContext( name=self._flow.name, run_tracker=run_tracker, cache_manager=self._cache_manager, run_id=run_id, flow_id=self._flow_id, line_number=line_number, variant_id=variant_id, ) output = {} aggregation_inputs = {} try: if validate_inputs: inputs = FlowValidator.ensure_flow_inputs_type(flow=self._flow, inputs=inputs, idx=line_number) inputs = load_multimedia_data(self._flow.inputs, inputs) # Make sure the run_info with converted inputs results rather than original inputs run_info.inputs = inputs output, nodes_outputs = self._traverse_nodes(inputs, context) output = self._stringify_generator_output(output) if not allow_generator_output else output # Persist the node runs for the nodes that have a generator output generator_output_nodes = [ nodename for nodename, output in nodes_outputs.items() if isinstance(output, GeneratorType) ] run_tracker.persist_selected_node_runs(run_info, generator_output_nodes) run_tracker.allow_generator_types = allow_generator_output run_tracker.end_run(line_run_id, result=output) aggregation_inputs = self._extract_aggregation_inputs(nodes_outputs) except KeyboardInterrupt as ex: # Run will be cancelled when the process receives a SIGINT signal. # KeyboardInterrupt will be raised after asyncio finishes its signal handling # End run with the KeyboardInterrupt exception, so that its status will be Canceled flow_logger.info("Received KeyboardInterrupt, cancel the run.") run_tracker.end_run(line_run_id, ex=ex) raise except Exception as e: run_tracker.end_run(line_run_id, ex=e) if self._raise_ex: raise finally: run_tracker._update_flow_run_info_with_node_runs(run_info) run_tracker.persist_flow_run(run_info) node_run_infos = run_tracker.collect_child_node_runs(line_run_id) node_runs = {node_run.node: node_run for node_run in node_run_infos} return LineResult(output, aggregation_inputs, run_info, node_runs) def _extract_outputs(self, nodes_outputs, bypassed_nodes, flow_inputs): outputs = {} for name, output in self._flow.outputs.items(): if output.reference.value_type == InputValueType.LITERAL: outputs[name] = output.reference.value continue if output.reference.value_type == InputValueType.FLOW_INPUT: outputs[name] = flow_inputs[output.reference.value] continue if output.reference.value_type != InputValueType.NODE_REFERENCE: raise NotSupported( message_format=( "The output type '{output_type}' is currently unsupported. " "Please choose from available types: '{supported_output_type}' and try again." ), output_type=output.reference.value_type.value if hasattr(output.reference.value_type, "value") else output.reference.value_type, supported_output_type=[output_type.value for output_type in InputValueType], ) node = next((n for n in self._flow.nodes if n.name == output.reference.value), None) if not node: raise OutputReferenceNotExist( message_format=( "The output '{output_name}' for flow is incorrect. The node '{node_name}' " "referenced by the output '{output_name}' can not found in flow. " "Please rectify the error in your flow and try again." ), node_name=output.reference.value, output_name=name, ) if node.aggregation: # Note that the reduce node referenced in the output is not supported. continue if node.name not in nodes_outputs: raise NodeOutputNotFound( message_format=( "The output '{output_name}' for flow is incorrect. " "No outputs found for node '{node_name}'. Please review the problematic " "output and rectify the error." ), output_name=name, node_name=node.name, ) if output.reference.value in bypassed_nodes: flow_logger.warning( f"The node referenced by output:'{output.reference.value}' is bypassed, which is not recommended." ) node_result = nodes_outputs[output.reference.value] outputs[name] = _input_assignment_parser.parse_node_property( output.reference.value, node_result, output.reference.property ) return outputs def _should_use_async(self): return ( all(inspect.iscoroutinefunction(f) for f in self._tools_manager._tools.values()) or os.environ.get("PF_USE_ASYNC", "false").lower() == "true" ) def _traverse_nodes(self, inputs, context: FlowExecutionContext) -> Tuple[dict, dict]: batch_nodes = [node for node in self._flow.nodes if not node.aggregation] outputs = {} # TODO: Use a mixed scheduler to support both async and thread pool mode. if self._should_use_async(): flow_logger.info("Start executing nodes in async mode.") scheduler = AsyncNodesScheduler(self._tools_manager, self._node_concurrency) nodes_outputs, bypassed_nodes = asyncio.run(scheduler.execute(batch_nodes, inputs, context)) else: flow_logger.info("Start executing nodes in thread pool mode.") nodes_outputs, bypassed_nodes = self._submit_to_scheduler(context, inputs, batch_nodes) outputs = self._extract_outputs(nodes_outputs, bypassed_nodes, inputs) return outputs, nodes_outputs def _stringify_generator_output(self, outputs: dict): for k, v in outputs.items(): if isinstance(v, GeneratorType): outputs[k] = "".join(str(chuck) for chuck in v) return outputs def _submit_to_scheduler(self, context: FlowExecutionContext, inputs, nodes: List[Node]) -> Tuple[dict, dict]: if not isinstance(self._node_concurrency, int): raise UnexpectedError( message_format=( "Flow execution failed. To proceed, ensure that a valid node concurrency value is set. " "The current value is {current_value}. Please contact support for further assistance." ), current_value=self._node_concurrency, ) return FlowNodesScheduler( self._tools_manager, inputs, nodes, self._node_concurrency, context, ).execute(self._line_timeout_sec) @staticmethod def apply_inputs_mapping( inputs: Mapping[str, Mapping[str, Any]], inputs_mapping: Mapping[str, str], ) -> Dict[str, Any]: # TODO: This function will be removed after the batch engine refactoring is completed. from promptflow.batch._batch_inputs_processor import apply_inputs_mapping return apply_inputs_mapping(inputs, inputs_mapping) def enable_streaming_for_llm_flow(self, stream_required: Callable[[], bool]): """Enable the LLM node that is connected to output to return streaming results controlled by `stream_required`. If the stream_required callback returns True, the LLM node will return a generator of strings. Otherwise, the LLM node will return a string. :param stream_required: A callback that takes no arguments and returns a boolean value indicating whether \ streaming results should be enabled for the LLM node. :type stream_required: Callable[[], bool] :return: None """ for node in self._flow.nodes: streaming_option_parameter = self._parse_streaming_option_parameter(node) if ( streaming_option_parameter is not None and self._flow.is_referenced_by_flow_output(node) and not self._flow.is_referenced_by_other_node(node) ): wrapper = _inject_stream_options(stream_required, streaming_option_parameter) self._tools_manager.wrap_tool(node.name, wrapper=wrapper) def _parse_streaming_option_parameter(self, node: Node) -> Optional[str]: if self._flow.is_llm_node(node): return "stream" tool_function = self._tools_manager.get_tool(node.name) return getattr(tool_function, STREAMING_OPTION_PARAMETER_ATTR, None) def ensure_flow_is_serializable(self): """Ensure that the flow is serializable. Some of the nodes may return a generator of strings to create streaming outputs. This is useful when the flow is deployed as a web service. However, in the interactive mode, the executor assumes that the node result is JSON serializable. This method adds a wrapper to each node in the flow to consume the streaming outputs and merge them into a string for executor usage. :return: None """ for node in self._flow.nodes: self._tools_manager.wrap_tool(node.name, wrapper=_ensure_node_result_is_serializable) def _inject_stream_options(should_stream: Callable[[], bool], streaming_option_parameter="stream"): """Inject the stream options to the decorated function. AzureOpenAI.completion and AzureOpenAI.chat tools support both stream and non-stream mode. The stream mode is controlled by the "stream" parameter. """ def stream_option_decorator(f): # We only wrap the function if it has a "stream" parameter signature = inspect.signature(f) if streaming_option_parameter not in signature.parameters: return f @functools.wraps(f) def wrapper(*args, **kwargs): kwargs = kwargs or {} kwargs.update({streaming_option_parameter: should_stream()}) return f(*args, **kwargs) return wrapper return stream_option_decorator def enable_streaming_for_llm_tool(f): """Enable the stream mode for LLM tools that support it. :param f: The function to wrap. :type f: function :return: The wrapped function. :rtype: function AzureOpenAI.completion and AzureOpenAI.chat tools support both stream and non-stream mode. The stream mode is turned off by default. Use this wrapper to turn it on. """ # We only wrap the function if it has a "stream" parameter signature = inspect.signature(f) if "stream" not in signature.parameters: return f @functools.wraps(f) def wrapper(*args, **kwargs): kwargs = kwargs or {} kwargs.update(stream=True) return f(*args, **kwargs) return wrapper def _ensure_node_result_is_serializable(f): """Ensure the node result is serializable. Some of the nodes may return a generator of strings to create streaming outputs. This is useful when the flow is deployed as a web service. However, in the interactive mode, the executor assumes that the node result is JSON serializable. This wrapper ensures the node result is serializable by consuming the data from the generator and merging them into a string. """ @functools.wraps(f) def wrapper(*args, **kwargs): result = f(*args, **kwargs) if isinstance(result, GeneratorType): result = "".join(str(trunk) for trunk in result) return result return wrapper def execute_flow( flow_file: Path, working_dir: Path, output_dir: Path, connections: dict, inputs: Mapping[str, Any], *, run_aggregation: bool = True, enable_stream_output: bool = False, allow_generator_output: bool = False, # TODO: remove this **kwargs, ) -> LineResult: """Execute the flow, including aggregation nodes. :param flow_file: The path to the flow file. :type flow_file: Path :param working_dir: The working directory of the flow. :type working_dir: Path :param output_dir: Relative path relative to working_dir. :type output_dir: Path :param connections: A dictionary containing connection information. :type connections: dict :param inputs: A dictionary containing the input values for the flow. :type inputs: Mapping[str, Any] :param enable_stream_output: Whether to allow stream (generator) output for flow output. Default is False. :type enable_stream_output: Optional[bool] :param kwargs: Other keyword arguments to create flow executor. :type kwargs: Any :return: The line result of executing the flow. :rtype: ~promptflow.executor._result.LineResult """ flow_executor = FlowExecutor.create(flow_file, connections, working_dir, raise_ex=False, **kwargs) flow_executor.enable_streaming_for_llm_flow(lambda: enable_stream_output) with _change_working_dir(working_dir): # execute nodes in the flow except the aggregation nodes # TODO: remove index=0 after UX no longer requires a run id similar to batch runs # (run_id_index, eg. xxx_0) for displaying the interface line_result = flow_executor.exec_line(inputs, index=0, allow_generator_output=allow_generator_output) # persist the output to the output directory line_result.output = persist_multimedia_data(line_result.output, base_dir=working_dir, sub_dir=output_dir) if run_aggregation and line_result.aggregation_inputs: # convert inputs of aggregation to list type flow_inputs = {k: [v] for k, v in inputs.items()} aggregation_inputs = {k: [v] for k, v in line_result.aggregation_inputs.items()} aggregation_results = flow_executor.exec_aggregation(flow_inputs, aggregation_inputs=aggregation_inputs) line_result.node_run_infos = {**line_result.node_run_infos, **aggregation_results.node_run_infos} line_result.run_info.metrics = aggregation_results.metrics if isinstance(line_result.output, dict): # remove line_number from output line_result.output.pop(LINE_NUMBER_KEY, None) return line_result
promptflow/src/promptflow/promptflow/executor/flow_executor.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/flow_executor.py", "repo_id": "promptflow", "token_count": 21318 }
49
from types import GeneratorType import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from ..utils import get_yaml_file @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorTraces: def validate_openai_apicall(self, apicall: dict): """Validates an apicall dict. Ensure that the trace output of openai api is a list of dicts. Args: apicall (dict): A dictionary representing apicall. Raises: AssertionError: If the API call is invalid. """ get_trace = False if apicall.get("name", "") in ( "openai.api_resources.chat_completion.ChatCompletion.create", "openai.api_resources.completion.Completion.create", "openai.api_resources.embedding.Embedding.create", "openai.resources.completions.Completions.create", # openai>=1.0.0 "openai.resources.chat.completions.Completions.create", # openai>=1.0.0 ): get_trace = True output = apicall.get("output") assert not isinstance(output, str) assert isinstance(output, (list, dict)) if isinstance(output, list): assert all(isinstance(item, dict) for item in output) children = apicall.get("children", []) if children is not None: for child in children: get_trace = get_trace or self.validate_openai_apicall(child) return get_trace def get_chat_input(stream): return { "question": "What is the capital of the United States of America?", "chat_history": [], "stream": stream, } def get_comletion_input(stream): return {"prompt": "What is the capital of the United States of America?", "stream": stream} @pytest.mark.parametrize( "flow_folder, inputs", [ ("openai_chat_api_flow", get_chat_input(False)), ("openai_chat_api_flow", get_chat_input(True)), ("openai_completion_api_flow", get_comletion_input(False)), ("openai_completion_api_flow", get_comletion_input(True)), ("llm_tool", {"topic": "Hello", "stream": False}), ("llm_tool", {"topic": "Hello", "stream": True}), ], ) def test_executor_openai_api_flow(self, flow_folder, inputs, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None assert "total_tokens" in flow_result.run_info.system_metrics assert flow_result.run_info.system_metrics["total_tokens"] > 0 get_traced = False for api_call in flow_result.run_info.api_calls: get_traced = get_traced or self.validate_openai_apicall(serialize(api_call)) assert get_traced is True def test_executor_generator_tools(self, dev_connections): executor = FlowExecutor.create(get_yaml_file("generator_tools"), dev_connections) inputs = {"text": "This is a test"} flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_trace = tool_trace.get("children")[0] assert generator_trace is not None output = generator_trace.get("output") assert isinstance(output, list) @pytest.mark.parametrize("allow_generator_output", [False, True]) def test_trace_behavior_with_generator_node(self, dev_connections, allow_generator_output): """Test to verify the trace output list behavior for a flow with a generator node. This test checks the trace output list in two scenarios based on the 'allow_generator_output' flag: - When 'allow_generator_output' is True, the output list should initially be empty until the generator is consumed. - When 'allow_generator_output' is False, the output list should contain items produced by the generator node. The test ensures that the trace accurately reflects the generator's consumption status and helps in monitoring and debugging flow execution. """ # Set up executor with a flow that contains a generator node executor = FlowExecutor.create(get_yaml_file("generator_nodes"), dev_connections) inputs = {"text": "This is a test"} # Execute the flow with the given inputs and 'allow_generator_output' setting flow_result = executor.exec_line(inputs, allow_generator_output=allow_generator_output) # Verify that the flow execution result is a dictionary and the flow has completed successfully assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Extract the trace for the generator node tool_trace = flow_result.run_info.api_calls[0]["children"][0] generator_output_trace = tool_trace.get("output") # Verify that the trace output is a list assert isinstance(generator_output_trace, list) if allow_generator_output: # If generator output is allowed, the trace list should be empty before consumption assert not generator_output_trace # Obtain the generator from the flow result answer_gen = flow_result.output.get("answer") assert isinstance(answer_gen, GeneratorType) # Consume the generator and check that it yields text try: generated_text = next(answer_gen) assert isinstance(generated_text, str) # Verify the trace list contains the most recently generated item assert generator_output_trace[-1] == generated_text except StopIteration: assert False, "Generator did not generate any text" else: # If generator output is not allowed, the trace list should contain generated items assert generator_output_trace assert all(isinstance(item, str) for item in generator_output_trace) @pytest.mark.parametrize("flow_file", ["flow_with_trace", "flow_with_trace_async"]) def test_flow_with_trace(self, flow_file, dev_connections): """Tests to verify the flows that contains @trace marks. They should generate traces with "Function" type and nested in the "Tool" traces. This test case is to verify a flow like following structure, both sync and async mode: .. code-block:: flow (Flow, 1.5s) greetings (Tool, 1.5s) get_user_name (Function, 1.0s) is_valid_name (Function, 0.5s) format_greeting (Function, 0.5s) """ executor = FlowExecutor.create(get_yaml_file(flow_file), dev_connections) inputs = {"user_id": 1} flow_result = executor.exec_line(inputs) # Assert the run status is completed assert flow_result.output == {"output": "Hello, User 1!"} assert flow_result.run_info.status == Status.Completed assert flow_result.run_info.api_calls is not None # Verify the traces are as expected api_calls = flow_result.run_info.api_calls assert len(api_calls) == 1 # Assert the "flow" root level trace flow_trace = api_calls[0] assert flow_trace["name"] == "flow" assert flow_trace["type"] == "Flow" assert flow_trace["end_time"] - flow_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(flow_trace["children"]) == 1 assert flow_trace["system_metrics"]["duration"] == pytest.approx(1.5, abs=0.3) assert flow_trace["system_metrics"]["prompt_tokens"] == 0 assert flow_trace["system_metrics"]["completion_tokens"] == 0 assert flow_trace["system_metrics"]["total_tokens"] == 0 # TODO: These assertions should be fixed after added these fields to the top level trace assert "inputs" not in flow_trace assert "output" not in flow_trace assert "error" not in flow_trace # Assert the "greetings" tool greetings_trace = flow_trace["children"][0] assert greetings_trace["name"] == "greetings" assert greetings_trace["type"] == "Tool" assert greetings_trace["inputs"] == inputs assert greetings_trace["output"] == {"greeting": "Hello, User 1!"} assert greetings_trace["error"] is None assert greetings_trace["children"] is not None assert greetings_trace["end_time"] - greetings_trace["start_time"] == pytest.approx(1.5, abs=0.3) assert len(greetings_trace["children"]) == 2 # TODO: to verfiy the system metrics. This might need to be fixed. assert greetings_trace["system_metrics"] == {} # Assert the "get_user_name" function get_user_name_trace = greetings_trace["children"][0] assert get_user_name_trace["name"] == "get_user_name" assert get_user_name_trace["type"] == "Function" assert get_user_name_trace["inputs"] == {"user_id": 1} assert get_user_name_trace["output"] == "User 1" assert get_user_name_trace["error"] is None assert get_user_name_trace["end_time"] - get_user_name_trace["start_time"] == pytest.approx(1.0, abs=0.2) assert len(get_user_name_trace["children"]) == 1 # TODO: to verfiy the system metrics. This might need to be fixed. assert get_user_name_trace["system_metrics"] == {} # Assert the "get_user_name/is_valid_name" function is_valid_name_trace = get_user_name_trace["children"][0] assert is_valid_name_trace["name"] == "is_valid_name" assert is_valid_name_trace["type"] == "Function" assert is_valid_name_trace["inputs"] == {"name": "User 1"} assert is_valid_name_trace["output"] is True assert is_valid_name_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert is_valid_name_trace["end_time"] - is_valid_name_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert is_valid_name_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert is_valid_name_trace["system_metrics"] == {} # Assert the "format_greeting" function format_greeting_trace = greetings_trace["children"][1] assert format_greeting_trace["name"] == "format_greeting" assert format_greeting_trace["type"] == "Function" assert format_greeting_trace["inputs"] == {"user_name": "User 1"} assert format_greeting_trace["output"] == "Hello, User 1!" assert format_greeting_trace["error"] is None # When running tests in MacOS, it will take longer. So we adjust abs to 0.15 and see if it needs to be extended. assert format_greeting_trace["end_time"] - format_greeting_trace["start_time"] == pytest.approx(0.5, abs=0.15) assert format_greeting_trace["children"] == [] # TODO: to verfiy the system metrics. This might need to be fixed. assert format_greeting_trace["system_metrics"] == {}
promptflow/src/promptflow/tests/executor/e2etests/test_traces.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_traces.py", "repo_id": "promptflow", "token_count": 4733 }
50
{ "tool_with_init_error": { "class_name": "TestLoadErrorTool", "function": "tool", "inputs": { "name": {"type": ["string"]} }, "module": "tool_with_init_error", "name": "Tool with init error", "type": "python" } }
promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/package_tool_definition.json/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/tool_with_init_error/package_tool_definition.json", "repo_id": "promptflow", "token_count": 151 }
51
import pytest from datetime import datetime from dataclasses import dataclass from typing import Dict, List from promptflow._core.generator_proxy import GeneratorProxy from promptflow._utils.dataclass_serializer import \ get_type, serialize, deserialize_dataclass, deserialize_value, assertEqual from promptflow.contracts.run_info import RunInfo, Status from promptflow._core.connection_manager import ConnectionManager from promptflow.storage.run_records import NodeRunRecord from unittest.mock import patch, Mock import sys def get_connection_dict(): return { "azure_open_ai_connection": { "type": "AzureOpenAIConnection", "value": { "api_key": "<azure-openai-key>", "api_base": "<aoai-api-endpoint>", "api_type": "azure", "api_version": "2023-07-01-preview", }, }, "custom_connection": { "type": "CustomConnection", "value": { "api_key": "<your-key>", "url": "<connection-endpoint>", }, "module": "promptflow.connections", "secret_keys": ["api_key"], }, } @pytest.mark.unittest @pytest.mark.parametrize( "type_input, expected", [ (NodeRunRecord, NodeRunRecord), ([NodeRunRecord], List[NodeRunRecord]), (dict(a=NodeRunRecord), Dict[str, NodeRunRecord]), (int, int), (str, str), ] ) def test_get_type(type_input, expected): assert get_type(type_input) == expected @pytest.mark.unittest def test_serialize_dataclass(): start_time = datetime(2023, 9, 4) end_time = datetime(2023, 9, 4) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) serialized_info = serialize(node_run_info) serialized_record = serialize(node_record) # test dataclass without serialize attribute assert serialized_info['status'] == "Completed" assert serialized_info['start_time'] == "2023-09-04T00:00:00Z" assert deserialize_value(serialized_info, RunInfo) == node_run_info # test dataclass with serialize attribute assert serialized_record == node_record.serialize() @pytest.mark.unittest @pytest.mark.parametrize( "value, value_type, expected", [ (datetime(2023, 9, 4), datetime, "2023-09-04T00:00:00Z"), (Status.Completed, Status, "Completed"), ([1, 2, 3], List[int], [1, 2, 3]), ({"a": 1, "b": 2}, Dict[str, int], {"a": 1, "b": 2}), (1, int, 1), ("a", str, "a"), ] ) def test_serialize_value(value, value_type, expected): assert serialize(value) == expected assert deserialize_value(serialize(value), value_type) == value @pytest.mark.unittest def test_serialize_remove_null(): value = {"a": 1, "b": None} value_type = Dict[str, int] assert deserialize_value(serialize(value, remove_null=True), value_type) == {"a": 1, "b": None} @dataclass class DummyDataClass: name: str age: int assert serialize(DummyDataClass("Dummy", None), remove_null=True) == {'name': 'Dummy'} @pytest.mark.unittest def test_serialize_connection(): new_connection = get_connection_dict() connection_manager = ConnectionManager(new_connection) assert serialize(connection_manager.get("azure_open_ai_connection")) == "azure_open_ai_connection" @pytest.mark.unittest def test_serialize_generator(): def generator(): for i in range(3): yield i g = GeneratorProxy(generator()) next(g) assert serialize(g) == [0] @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': None}) def test_import_pydantic_error(): # mock pydantic is not installed class DummyClass: def __init__(self, name, age): self.name = name self.age = age dummy = DummyClass('Test', 20) assert serialize(dummy) == dummy @pytest.mark.unittest @patch.dict('sys.modules', {'pydantic': Mock()}) def test_import_pydantic(): # mock pydantic is installed class MockBaseModel: def dict(self): return {"key": "value"} mock_value = MockBaseModel() sys.modules['pydantic'].BaseModel = MockBaseModel assert serialize(mock_value) == mock_value.dict() assert serialize(123) == 123 @pytest.mark.unittest def test_deserialize_dataclass(): # test when cls is not dataclass with pytest.raises(ValueError): deserialize_dataclass(int, 1) # test when data is not a dict with pytest.raises(ValueError): deserialize_dataclass(NodeRunRecord, "NodeRunRecord") @dataclass class DummyDataClassWithDefault: name: str = "Default Name" age: int = 0 # test deserialize dataclass with default value data = {"age": 25} obj = deserialize_dataclass(DummyDataClassWithDefault, data) assert obj.name == "Default Name" assert obj.age == 25 @pytest.mark.unittest @pytest.mark.parametrize( "a, b, expected", [ (1, 2, 1), (Status.Completed, Status, Status.Completed), (None, datetime, None), ("2022-01-01T00:00:00", datetime, datetime.fromisoformat("2022-01-01T00:00:00")), ] ) def test_deserialize_value(a, b, expected): assert deserialize_value(a, b) == expected @pytest.mark.unittest @pytest.mark.parametrize( "a, b, path, are_equal", [ # Test with identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key2': 'value2'}, \ "unittests/_utils/test_dataclass_serializer", True), # Test with non-identical dicts ({'key1': 'value1', 'key2': 'value2'}, {'key1': 'value1', 'key3': 'value3'}, \ "unittests/_utils/test_dataclass_serializer", False), # Test with identical lists (['item1', 'item2'], ['item1', 'item2'], "", True), # Test with non-identical lists (['item1', 'item2'], ['item1', 'item3'], "", False), # Test with other types (1, 1, "", True), (1, 2, "", False), ('string', 'string', "", True), ('string1', 'string2', "", False), ] ) def test_assertEqual(a, b, path, are_equal): if are_equal: assertEqual(a, b, path) else: with pytest.raises(AssertionError): assertEqual(a, b, path)
promptflow/src/promptflow/tests/executor/unittests/_utils/test_dataclass_serializer.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_dataclass_serializer.py", "repo_id": "promptflow", "token_count": 2910 }
52
from datetime import datetime import pytest from promptflow.batch._result import BatchResult, ErrorSummary, LineError, SystemMetrics from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo from promptflow.contracts.run_info import Status from promptflow.executor._result import AggregationResult, LineResult def get_node_run_infos(node_dict: dict, index=None, api_calls=None, system_metrics=None): return { k: NodeRunInfo( node=k, flow_run_id="flow_run_id", run_id=f"{index}_run_id_{k}", status=v, inputs=[], output={}, metrics={}, error={"code": "UserError", "message": "test message"} if v == Status.Failed else None, parent_run_id="", start_time=None, end_time=None, index=index, api_calls=api_calls, system_metrics=system_metrics, ) for k, v in node_dict.items() } def get_flow_run_info(status_dict: dict, index: int): status = Status.Failed if any(status == Status.Failed for status in status_dict.values()) else Status.Completed error = {"code": "UserError", "message": "test message"} if status == Status.Failed else None return FlowRunInfo( run_id=f"{index}_run_id", status=status, error=error, inputs={}, output={}, metrics={}, request=None, parent_run_id="", root_run_id="", source_run_id="", flow_id="", start_time=datetime.utcnow(), end_time=datetime.utcnow(), index=index, ) def get_line_results(line_dict: dict, api_calls=None, system_metrics=None): return [ LineResult( output={}, aggregation_inputs={}, run_info=get_flow_run_info(status_dict=v, index=k), node_run_infos=get_node_run_infos(node_dict=v, index=k, api_calls=api_calls, system_metrics=system_metrics), ) for k, v in line_dict.items() ] def get_aggregation_result(aggr_dict: dict, api_calls=None, system_metrics=None): return AggregationResult( output={}, metrics={}, node_run_infos=get_node_run_infos(node_dict=aggr_dict, api_calls=api_calls, system_metrics=system_metrics), ) def get_batch_result(line_dict, aggr_dict, line_api_calls=None, aggr_api_calls=None): line_results = get_line_results(line_dict=line_dict, api_calls=line_api_calls) aggr_result = get_aggregation_result(aggr_dict=aggr_dict, api_calls=aggr_api_calls) return BatchResult.create(datetime.utcnow(), datetime.utcnow(), line_results=line_results, aggr_result=aggr_result) def get_api_call(type, name, inputs={}, output={}, children=None): return {"type": type, "name": name, "inputs": inputs, "output": output, "children": children} @pytest.mark.unittest class TestBatchResult: def test_node_status(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed} batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.completed_lines == 2 assert batch_result.failed_lines == 1 assert batch_result.node_status == { "node_0.completed": 3, "node_1.completed": 2, "node_1.failed": 1, "node_2.completed": 2, "node_2.bypassed": 1, "aggr_0.completed": 1, "aggr_1.failed": 1, "aggr_2.bypassed": 1, } def test_system_metrics(self): from openai.types.completion import Completion, CompletionChoice line_dict = {0: {"node_0": Status.Completed}} aggr_dict = {"aggr_0": Status.Completed} api_call_1 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={"prompt": "Please tell me a joke.", "model": "text-davinci-003"}, output={"choices": [{"text": "text"}]}, ) api_call_2 = get_api_call( "LLM", "openai.resources.completions.Completions.create", inputs={ "prompt": ["Please tell me a joke.", "Please tell me a joke about fruit."], "model": "text-davinci-003", }, output=[ Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), Completion( choices=[CompletionChoice(text="text", finish_reason="stop", index=0, logprobs=None)], id="id", created=0, model="model", object="text_completion", ), ], ) line_api_calls = get_api_call("Chain", "Chain", children=[api_call_1, api_call_2]) aggr_api_call = get_api_call( "LLM", "openai.resources.chat.completions.Completions.create", inputs={ "messages": [{"system": "You are a helpful assistant.", "user": "Please tell me a joke."}], "model": "gpt-35-turbo", }, output={"choices": [{"message": {"content": "content"}}]}, ) batch_result = get_batch_result( line_dict=line_dict, aggr_dict=aggr_dict, line_api_calls=[line_api_calls], aggr_api_calls=[aggr_api_call] ) assert batch_result.system_metrics.total_tokens == 42 assert batch_result.system_metrics.prompt_tokens == 38 assert batch_result.system_metrics.completion_tokens == 4 system_metrics_dict = { "total_tokens": 42, "prompt_tokens": 38, "completion_tokens": 4, } assert system_metrics_dict.items() <= batch_result.system_metrics.to_dict().items() @pytest.mark.parametrize( "api_call", [ get_api_call("LLM", "Completion", inputs="invalid"), get_api_call("LLM", "Completion", output="invalid"), get_api_call("LLM", "Invalid"), get_api_call("LLM", "Completion"), get_api_call("LLM", "Completion", inputs={"api_type": "azure"}), get_api_call("LLM", "ChatCompletion", inputs={"api_type": "azure", "engine": "invalid"}), ], ) def test_invalid_api_calls(self, api_call): line_dict = {0: {"node_0": Status.Completed}} batch_result = get_batch_result(line_dict=line_dict, aggr_dict={}, line_api_calls=[api_call]) assert batch_result.system_metrics.total_tokens == 0 assert batch_result.system_metrics.completion_tokens == 0 assert batch_result.system_metrics.prompt_tokens == 0 def test_error_summary(self): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, 2: {"node_0": Status.Completed, "node_1": Status.Completed, "node_2": Status.Bypassed}, } aggr_dict = { "aggr_0": Status.Completed, "aggr_1": Status.Failed, "aggr_2": Status.Bypassed, "aggr_4": Status.Failed, } batch_result = get_batch_result(line_dict=line_dict, aggr_dict=aggr_dict) assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.error_summary.failed_system_error_lines == 0 assert batch_result.error_summary.failed_user_error_lines == 1 assert batch_result.error_summary.error_list == [ LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert batch_result.error_summary.error_list[0].to_dict() == { "line_number": 1, "error": { "code": "UserError", "message": "test message", }, } assert batch_result.error_summary.aggr_error_dict == { "aggr_1": {"code": "UserError", "message": "test message"}, "aggr_4": {"code": "UserError", "message": "test message"}, } @pytest.mark.unittest class TestErrorSummary: def test_create(self): line_dict = { 0: {"node_0": Status.Failed, "node_1": Status.Completed, "node_2": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Failed, "node_2": Status.Completed}, } line_results = get_line_results(line_dict) line_results[0].run_info.error = {"code": "SystemError", "message": "test system error message"} aggr_dict = {"aggr_0": Status.Completed, "aggr_1": Status.Failed} aggr_result = get_aggregation_result(aggr_dict) error_summary = ErrorSummary.create(line_results, aggr_result) assert error_summary.failed_user_error_lines == 1 assert error_summary.failed_system_error_lines == 1 assert error_summary.error_list == [ LineError(line_number=0, error={"code": "SystemError", "message": "test system error message"}), LineError(line_number=1, error={"code": "UserError", "message": "test message"}), ] assert error_summary.aggr_error_dict == {"aggr_1": {"code": "UserError", "message": "test message"}} @pytest.mark.unittest class TestSystemMetrics: def test_create(slef): line_dict = { 0: {"node_0": Status.Completed, "node_1": Status.Completed}, 1: {"node_0": Status.Completed, "node_1": Status.Completed}, } line_system_metrics = { "total_tokens": 5, "prompt_tokens": 3, "completion_tokens": 2, } line_results = get_line_results(line_dict, system_metrics=line_system_metrics) aggr_dict = {"aggr_0": Status.Completed} # invalid system metrics aggr_system_metrics = { "total_tokens": 10, "prompt_tokens": 6, } aggr_result = get_aggregation_result(aggr_dict, system_metrics=aggr_system_metrics) system_metrics = SystemMetrics.create(datetime.utcnow(), datetime.utcnow(), line_results, aggr_result) assert system_metrics.total_tokens == 20 assert system_metrics.prompt_tokens == 12 assert system_metrics.completion_tokens == 8 system_metrics_dict = { "total_tokens": 20, "prompt_tokens": 12, "completion_tokens": 8, } assert system_metrics_dict.items() <= system_metrics.to_dict().items()
promptflow/src/promptflow/tests/executor/unittests/batch/test_result.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/batch/test_result.py", "repo_id": "promptflow", "token_count": 5308 }
53
import pytest from promptflow.contracts.flow import Flow, FlowInputDefinition from promptflow.contracts.tool import ValueType from promptflow.executor._errors import InputParseError, InputTypeError, InvalidAggregationInput, InvalidFlowRequest from promptflow.executor.flow_validator import FlowValidator from ...utils import WRONG_FLOW_ROOT, get_flow_from_folder @pytest.mark.unittest class TestFlowValidator: @pytest.mark.parametrize( "flow_folder, expected_node_order", [ ("unordered_nodes", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_skip", ["first_node", "second_node", "third_node"]), ("unordered_nodes_with_activate", ["first_node", "second_node", "third_node"]), ], ) def test_ensure_nodes_order(self, flow_folder, expected_node_order): flow = get_flow_from_folder(flow_folder) flow = FlowValidator._ensure_nodes_order(flow) node_order = [node.name for node in flow.nodes] assert node_order == expected_node_order @pytest.mark.parametrize( "flow_folder, error_message", [ ( "nodes_cycle", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships for the nodes " "['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "nodes_cycle_with_activate", ( "Invalid node definitions found in the flow graph. Node circular dependency has been detected " "among the nodes in your flow. Kindly review the reference relationships " "for the nodes ['first_node', 'second_node'] and resolve the circular reference issue in the flow." ), ), ( "wrong_node_reference", ( "Invalid node definitions found in the flow graph. Node 'second_node' references a non-existent " "node 'third_node' in your flow. Please review your flow to ensure that the node " "name is accurately specified." ), ), ( "non_aggregation_reference_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregate node 'test_node' " "cannot reference aggregate nodes {'calculate_accuracy'}. Please review and rectify " "the node reference." ), ), ( "aggregation_activate_reference_non_aggregation", ( "Invalid node definitions found in the flow graph. Non-aggregation node 'grade' cannot be " "referenced in the activate config of the aggregation node 'calculate_accuracy'. Please " "review and rectify the node reference." ), ), ], ) def test_ensure_nodes_order_with_exception(self, flow_folder, error_message): flow = get_flow_from_folder(flow_folder, root=WRONG_FLOW_ROOT) with pytest.raises(InvalidFlowRequest) as e: FlowValidator._ensure_nodes_order(flow) assert str(e.value) == error_message, "Expected: {}, Actual: {}".format(error_message, str(e.value)) @pytest.mark.parametrize( "aggregated_flow_inputs, aggregation_inputs, error_message", [ ( {}, { "input1": "value1", }, "The input for aggregation is incorrect. " "The value for aggregated reference input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( { "input1": "value1", }, {}, "The input for aggregation is incorrect. " "The value for aggregated flow input 'input1' should be a list, " "but received str. Please adjust the input value to match the expected format.", ), ( {"input1": ["value1_1", "value1_2"]}, {"input_2": ["value2_1"]}, "The input for aggregation is incorrect. The length of all aggregated inputs should be the same. " "Current input lengths are: {'input1': 2, 'input_2': 1}. " "Please adjust the input value in your input data.", ), ( { "input1": "value1", }, { "input1": "value1", }, "The input for aggregation is incorrect. " "The input 'input1' appears in both aggregated flow input and aggregated reference input. " "Please remove one of them and try the operation again.", ), ], ) def test_validate_aggregation_inputs_error(self, aggregated_flow_inputs, aggregation_inputs, error_message): with pytest.raises(InvalidAggregationInput) as e: FlowValidator._validate_aggregation_inputs(aggregated_flow_inputs, aggregation_inputs) assert str(e.value) == error_message @pytest.mark.parametrize( "flow_folder", ["simple_flow_with_python_tool_and_aggregate"], ) def test_ensure_outputs_valid_with_aggregation(self, flow_folder): flow = get_flow_from_folder(flow_folder) assert flow.outputs["content"] is not None assert flow.outputs["aggregate_content"] is not None flow.outputs = FlowValidator._ensure_outputs_valid(flow) print(flow.outputs) assert flow.outputs["content"] is not None assert flow.outputs.get("aggregate_content") is None @pytest.mark.parametrize( "flow_folder, inputs, index, error_type, error_message", [ ( "flow_with_list_input", {"key": "['hello']"}, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ( "flow_with_list_input", {"key": "['hello']"}, 0, InputParseError, ( "Failed to parse the flow input. The value for flow input 'key' in line 0 of input data was " "interpreted as JSON string since its type is 'list'. However, the value " "'['hello']' is invalid for JSON parsing. Error details: (JSONDecodeError) " "Expecting value: line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_resolve_flow_inputs_type_json_error_for_list_type( self, flow_folder, inputs, index, error_type, error_message ): flow = get_flow_from_folder(flow_folder) with pytest.raises(error_type) as exe_info: FlowValidator.resolve_flow_inputs_type(flow, inputs, idx=index) assert error_message == exe_info.value.message @pytest.mark.parametrize( "inputs, expected_result", [({"test_input": ["1", "2"]}, {"test_input": [1, 2]})], ) def test_resolve_aggregated_flow_inputs_type(self, inputs, expected_result): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) result = FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert result == expected_result @pytest.mark.parametrize( "inputs, expected_message", [ ( {"test_input": ["1", "str"]}, ( "The input for flow is incorrect. The value for flow input 'test_input' in line 1 of input data " "does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ) ], ) def test_resolve_aggregated_flow_inputs_type_error(self, inputs, expected_message): flow = Flow( id="fakeId", name=None, nodes=[], inputs={"test_input": FlowInputDefinition(type=ValueType.INT)}, outputs=None, tools=[], ) with pytest.raises(InputTypeError) as ex: FlowValidator.resolve_aggregated_flow_inputs_type(flow, inputs) assert expected_message == str(ex.value) @pytest.mark.parametrize( "input, type, expected_result", [ ("1", ValueType.INT, 1), ('["1", "2"]', ValueType.LIST, ["1", "2"]), ], ) def test_parse_input_value(self, input, type, expected_result): input_key = "test_input" result = FlowValidator._parse_input_value(input_key, input, type) assert result == expected_result @pytest.mark.parametrize( "input, type, index, error_type, expected_message", [ ( "str", ValueType.INT, None, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' does not match the expected " "type 'int'. Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, None, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' was interpreted as JSON " "string since its type is 'list'. However, the value '['1', '2']' is invalid for JSON parsing. " "Error details: (JSONDecodeError) Expecting value: line 1 column 2 (char 1). " "Please make sure your inputs are properly formatted." ), ), ( "str", ValueType.INT, 10, InputTypeError, ( "The input for flow is incorrect. The value for flow input 'my_input' in line 10 of " "input data does not match the expected type 'int'. " "Please change flow input type or adjust the input value in your input data." ), ), ( "['1', '2']", ValueType.LIST, 10, InputParseError, ( "Failed to parse the flow input. The value for flow input 'my_input' in line 10 of input data " "was interpreted as JSON string since its type is 'list'. However, the value '['1', '2']' is " "invalid for JSON parsing. Error details: (JSONDecodeError) Expecting value: " "line 1 column 2 (char 1). Please make sure your inputs are properly formatted." ), ), ], ) def test_parse_input_value_error(self, input, type, index, error_type, expected_message): input_key = "my_input" with pytest.raises(error_type) as ex: FlowValidator._parse_input_value(input_key, input, type, index) assert expected_message == str(ex.value)
promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_validator.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/executor/test_flow_validator.py", "repo_id": "promptflow", "token_count": 5912 }
54
import os import sys import timeit from typing import Callable from unittest import mock import pytest from promptflow._cli._user_agent import USER_AGENT as CLI_USER_AGENT # noqa: E402 from promptflow._sdk._telemetry import log_activity from promptflow._sdk._utils import ClientUserAgentUtil from sdk_cli_azure_test.recording_utilities import is_replay FLOWS_DIR = "./tests/test_configs/flows" DATAS_DIR = "./tests/test_configs/datas" def mock_log_activity(*args, **kwargs): custom_message = "github run: https://github.com/microsoft/promptflow/actions/runs/{0}".format( os.environ.get("GITHUB_RUN_ID") ) if len(args) == 4: if args[3] is not None: args[3]["custom_message"] = custom_message else: args = list(args) args[3] = {"custom_message": custom_message} elif "custom_dimensions" in kwargs and kwargs["custom_dimensions"] is not None: kwargs["custom_dimensions"]["custom_message"] = custom_message else: kwargs["custom_dimensions"] = {"custom_message": custom_message} return log_activity(*args, **kwargs) def run_cli_command(cmd, time_limit=3600): from promptflow._cli._pf_azure.entry import main sys.argv = list(cmd) st = timeit.default_timer() with mock.patch.object(ClientUserAgentUtil, "get_user_agent") as get_user_agent_fun, mock.patch( "promptflow._sdk._telemetry.activity.log_activity", side_effect=mock_log_activity ), mock.patch("promptflow._cli._pf_azure.entry.log_activity", side_effect=mock_log_activity): # Client side will modify user agent only through ClientUserAgentUtil to avoid impact executor/runtime. get_user_agent_fun.return_value = f"{CLI_USER_AGENT} perf_monitor/1.0" user_agent = ClientUserAgentUtil.get_user_agent() assert user_agent == f"{CLI_USER_AGENT} perf_monitor/1.0" main() ed = timeit.default_timer() print(f"{cmd}, \nTotal time: {ed - st}s") if is_replay(): assert ed - st < time_limit, f"The time limit is {time_limit}s, but it took {ed - st}s." @pytest.fixture def operation_scope_args(subscription_id: str, resource_group_name: str, workspace_name: str): return [ "--subscription", subscription_id, "--resource-group", resource_group_name, "--workspace-name", workspace_name, ] @pytest.mark.perf_monitor_test @pytest.mark.usefixtures( "mock_get_azure_pf_client", "mock_set_headers_with_user_aml_token", "single_worker_thread_pool", "vcr_recording", ) class TestAzureCliPerf: def test_pfazure_run_create(self, operation_scope_args, randstr: Callable[[str], str], time_limit=15): name = randstr("name") run_cli_command( cmd=( "pfazure", "run", "create", "--flow", f"{FLOWS_DIR}/print_input_flow", "--data", f"{DATAS_DIR}/print_input_flow.jsonl", "--name", name, *operation_scope_args, ), time_limit=time_limit, ) def test_pfazure_run_update(self, operation_scope_args, time_limit=15): run_cli_command( cmd=( "pfazure", "run", "update", "--name", "test_run", "--set", "display_name=test_run", "description='test_description'", "tags.key1=value1", *operation_scope_args, ), time_limit=time_limit, ) def test_run_restore(self, operation_scope_args, time_limit=15): run_cli_command( cmd=( "pfazure", "run", "restore", "--name", "test_run", *operation_scope_args, ), time_limit=time_limit, )
promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_azure_cli_perf.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_azure_cli_perf.py", "repo_id": "promptflow", "token_count": 1950 }
55
import copy import pytest def build_from_data_and_assert(data, expected): from azure.ai.ml._restclient.v2023_06_01_preview.models import WorkspaceConnectionPropertiesV2BasicResource from promptflow.azure.operations._arm_connection_operations import ArmConnectionOperations data = copy.deepcopy(data) obj = WorkspaceConnectionPropertiesV2BasicResource.deserialize(data) assert ArmConnectionOperations.build_connection_dict_from_rest_object("mock", obj) == expected @pytest.mark.unittest def test_build_azure_openai_connection_from_rest_object(): # Test on ApiKey type with AzureOpenAI category data = { "id": "mock_id", "name": "azure_open_ai_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "AzureOpenAI", "target": "<api-base>", "metadata": { "azureml.flow.connection_type": "AzureOpenAI", "azureml.flow.module": "promptflow.connections", "apiType": "azure", "ApiVersion": "2023-07-01-preview", "ResourceId": "mock_id", }, }, } expected = { "type": "AzureOpenAIConnection", "module": "promptflow.connections", "value": { "api_base": "<api-base>", "api_key": "***", "api_type": "azure", "api_version": "2023-07-01-preview", "resource_id": "mock_id", }, } build_from_data_and_assert(data, expected) @pytest.mark.unittest def test_build_default_azure_openai_connection_missing_metadata(): # Test on ApiKey type with AzureOpenAI category data = { "id": "mock_id", "name": "azure_open_ai_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "AzureOpenAI", "target": "<api-base>", "metadata": { # Missing ApiType and ApiVersion # "ApiType": "azure", # "ApiVersion": "2023-07-01-preview", }, }, } expected = { "type": "AzureOpenAIConnection", "module": "promptflow.connections", "value": { "api_base": "<api-base>", "api_key": "***", # Assert below keys are filtered out # "api_type": None, # "api_version": None, }, } build_from_data_and_assert(data, expected) @pytest.mark.unittest def test_build_custom_keys_connection_from_rest_object(): # Test on CustomKeys type with CustomConnection category data = { "id": "mock_id", "name": "custom_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "CustomKeys", "credentials": {"keys": {"my_key1": "***", "my_key2": "***"}}, "category": "CustomKeys", "target": "<api-base>", "metadata": { "azureml.flow.connection_type": "Custom", "azureml.flow.module": "promptflow.connections", "general_key": "general_value", }, }, } expected = { "type": "CustomConnection", "module": "promptflow.connections", "value": {"my_key1": "***", "my_key2": "***", "general_key": "general_value"}, "secret_keys": ["my_key1", "my_key2"], } build_from_data_and_assert(data, expected) @pytest.mark.unittest def test_build_cognitive_search_connection_from_rest_object(): # Test on ApiKey type with CognitiveSearch category data = { "tags": None, "location": None, "id": "mock_id", "name": "test", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "CognitiveSearch", "expiryTime": None, "target": "mock_target", "metadata": { "azureml.flow.connection_type": "CognitiveSearch", "azureml.flow.module": "promptflow.connections", "ApiVersion": "2023-07-01-Preview", }, }, } expected = { "type": "CognitiveSearchConnection", "module": "promptflow.connections", "value": {"api_key": "***", "api_base": "mock_target", "api_version": "2023-07-01-Preview"}, } build_from_data_and_assert(data, expected) @pytest.mark.unittest def test_build_cognitive_service_category_connection_from_rest_object(): # Test on Api type with CognitiveService category data = { "id": "mock_id", "name": "ACS_Connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "CognitiveService", "target": "mock_target", "metadata": { "azureml.flow.connection_type": "AzureContentSafety", "azureml.flow.module": "promptflow.connections", "Kind": "Content Safety", "ApiVersion": "2023-04-30-preview", }, }, } expected = { "type": "AzureContentSafetyConnection", "module": "promptflow.connections", "value": {"api_key": "***", "endpoint": "mock_target", "api_version": "2023-04-30-preview"}, } build_from_data_and_assert(data, expected) # Test category + kind as connection type del data["properties"]["metadata"]["azureml.flow.connection_type"] build_from_data_and_assert(data, expected) @pytest.mark.unittest def test_build_connection_missing_metadata(): data = { "id": "mock_id", "name": "ACS_Connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "CognitiveService", "target": "mock_target", "metadata": { "ApiVersion": "2023-04-30-preview", }, }, } with pytest.raises(Exception) as e: build_from_data_and_assert(data, {}) assert "is not recognized in PromptFlow" in str(e.value) @pytest.mark.unittest def test_build_connection_unknown_category(): data = { "id": "mock_id", "name": "ACS_Connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": {"key": "***"}, "category": "Unknown", "target": "mock_target", "metadata": { "azureml.flow.connection_type": "AzureContentSafety", "azureml.flow.module": "promptflow.connections", "Kind": "Content Safety", "ApiVersion": "2023-04-30-preview", }, }, } with pytest.raises(Exception) as e: build_from_data_and_assert(data, {}) assert "Unknown connection mock category Unknown" in str(e.value)
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_arm_connection_build.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_arm_connection_build.py", "repo_id": "promptflow", "token_count": 3536 }
56
import importlib.util import json import sys from pathlib import Path from unittest.mock import patch import pytest from promptflow import ToolProvider, tool from promptflow._core.tool_meta_generator import ToolValidationError from promptflow._sdk._pf_client import PFClient from promptflow.entities import DynamicList, InputSetting from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent TOOL_ROOT = TEST_ROOT / "test_configs/tools" _client = PFClient() @pytest.mark.e2etest class TestTool: def get_tool_meta(self, tool_path): module_name = f"test_tool.{Path(tool_path).stem}" # Load the module from the file path spec = importlib.util.spec_from_file_location(module_name, tool_path) module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(module) tools_meta, _ = _client.tools._generate_tool_meta(module) return tools_meta def test_python_tool_meta(self): tool_path = TOOL_ROOT / "python_tool.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.python_tool.PythonTool.python_tool": { "class_name": "PythonTool", "function": "python_tool", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "PythonTool.python_tool", "type": "python", }, "test_tool.python_tool.my_python_tool": { "function": "my_python_tool", "inputs": {"input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "python_tool", "type": "python", }, "test_tool.python_tool.my_python_tool_without_name": { "function": "my_python_tool_without_name", "inputs": {"input1": {"type": ["string"]}}, "module": "test_tool.python_tool", "name": "my_python_tool_without_name", "type": "python", }, } assert tool_meta == expect_tool_meta def test_llm_tool_meta(self): tool_path = TOOL_ROOT / "custom_llm_tool.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.custom_llm_tool.my_tool": { "name": "My Custom LLM Tool", "type": "custom_llm", "inputs": {"connection": {"type": ["CustomConnection"]}}, "description": "This is a tool to demonstrate the custom_llm tool type", "module": "test_tool.custom_llm_tool", "function": "my_tool", "enable_kwargs": True, }, "test_tool.custom_llm_tool.TestCustomLLMTool.tool_func": { "name": "My Custom LLM Tool", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}}, "description": "This is a tool to demonstrate the custom_llm tool type", "module": "test_tool.custom_llm_tool", "class_name": "TestCustomLLMTool", "function": "tool_func", "enable_kwargs": True, }, } assert tool_meta == expect_tool_meta def test_invalid_tool_type(self): with pytest.raises(UserErrorException) as exception: @tool(name="invalid_tool_type", type="invalid_type") def invalid_tool_type(): pass assert exception.value.message == "Tool type invalid_type is not supported yet." def test_tool_with_custom_connection(self): tool_path = TOOL_ROOT / "tool_with_custom_connection.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_custom_connection.MyTool.my_tool": { "name": "My Second Tool", "type": "python", "inputs": {"connection": {"type": ["CustomConnection"]}, "input_text": {"type": ["string"]}}, "description": "This is my second tool", "module": "test_tool.tool_with_custom_connection", "class_name": "MyTool", "function": "my_tool", } } assert tool_meta == expect_tool_meta tool_path = TOOL_ROOT / "tool_with_custom_strong_type_connection.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_custom_strong_type_connection.my_tool": { "name": "Tool With Custom Strong Type Connection", "type": "python", "inputs": { "connection": {"type": ["CustomConnection"], "custom_type": ["MyCustomConnection"]}, "input_text": {"type": ["string"]}, }, "description": "This is my tool with custom strong type connection.", "module": "test_tool.tool_with_custom_strong_type_connection", "function": "my_tool", } } assert tool_meta == expect_tool_meta def test_tool_with_input_settings(self): tool_path = TOOL_ROOT / "tool_with_dynamic_list_input.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_dynamic_list_input.my_tool": { "description": "This is my tool with dynamic list input", "function": "my_tool", "inputs": { "endpoint_name": { "dynamic_list": { "func_kwargs": [ { "default": "", "name": "prefix", "optional": True, "reference": "${inputs.input_prefix}", "type": ["string"], } ], "func_path": "test_tool.tool_with_dynamic_list_input.list_endpoint_names", }, "type": ["string"], }, "input_prefix": {"type": ["string"]}, "input_text": { "allow_manual_entry": True, "dynamic_list": { "func_kwargs": [ { "default": "", "name": "prefix", "optional": True, "reference": "${inputs.input_prefix}", "type": ["string"], }, {"default": 10, "name": "size", "optional": True, "type": ["int"]}, ], "func_path": "test_tool.tool_with_dynamic_list_input.my_list_func", }, "is_multi_select": True, "type": ["list"], }, }, "module": "test_tool.tool_with_dynamic_list_input", "name": "My Tool with Dynamic List Input", "type": "python", } } assert tool_meta == expect_tool_meta tool_path = TOOL_ROOT / "tool_with_enabled_by_value.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_enabled_by_value.my_tool": { "name": "My Tool with Enabled By Value", "type": "python", "inputs": { "user_type": {"type": ["string"], "enum": ["student", "teacher"]}, "student_id": {"type": ["string"], "enabled_by": "user_type", "enabled_by_value": ["student"]}, "teacher_id": {"type": ["string"], "enabled_by": "user_type", "enabled_by_value": ["teacher"]}, }, "description": "This is my tool with enabled by value", "module": "test_tool.tool_with_enabled_by_value", "function": "my_tool", } } assert tool_meta == expect_tool_meta def test_dynamic_list_with_invalid_reference(self): def my_list_func(prefix: str, size: int = 10): pass # value in reference doesn't exist in tool inputs invalid_dynamic_list_setting = DynamicList(function=my_list_func, input_mapping={"prefix": "invalid_input"}) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, allow_manual_entry=True, is_multi_select=True ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Cannot find invalid_input in the tool inputs." in exception.value.message # invalid dynamic func input invalid_dynamic_list_setting = DynamicList( function=my_list_func, input_mapping={"invalid_input": "input_prefix"} ) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, allow_manual_entry=True, is_multi_select=True ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Cannot find invalid_input in the inputs of dynamic_list func" in exception.value.message # check required inputs of dynamic list func invalid_dynamic_list_setting = DynamicList(function=my_list_func, input_mapping={"size": "input_prefix"}) input_settings = { "input_text": InputSetting( dynamic_list=invalid_dynamic_list_setting, ) } @tool( name="My Tool with Dynamic List Input", description="This is my tool with dynamic list input", input_settings=input_settings, ) def my_tool(input_text: list, input_prefix: str) -> str: return f"Hello {input_prefix} {','.join(input_text)}" with pytest.raises(ToolValidationError) as exception: _client.tools.validate(my_tool, raise_error=True) assert "Missing required input(s) of dynamic_list function: ['prefix']" in exception.value.message def test_enabled_by_with_invalid_input(self): # value in enabled_by_value doesn't exist in tool inputs input1_settings = InputSetting(enabled_by="invalid_input") @tool(name="enabled_by_with_invalid_input", input_settings={"input1": input1_settings}) def enabled_by_with_invalid_input(input1: str, input2: str): pass with pytest.raises(ToolValidationError) as exception: _client.tools.validate(enabled_by_with_invalid_input, raise_error=True) assert 'Cannot find the input \\"invalid_input\\"' in exception.value.message def test_tool_with_file_path_input(self): tool_path = TOOL_ROOT / "tool_with_file_path_input.py" tool_meta = self.get_tool_meta(tool_path) expect_tool_meta = { "test_tool.tool_with_file_path_input.my_tool": { "name": "Tool with FilePath Input", "type": "python", "inputs": {"input_file": {"type": ["file_path"]}, "input_text": {"type": ["string"]}}, "description": "This is a tool to demonstrate the usage of FilePath input", "module": "test_tool.tool_with_file_path_input", "function": "my_tool", } } assert expect_tool_meta == tool_meta def test_tool_with_generated_by_input(self): tool_path = TOOL_ROOT / "tool_with_generated_by_input.py" tool_meta = self.get_tool_meta(tool_path) with open(TOOL_ROOT / "expected_generated_by_meta.json", "r") as f: expect_tool_meta = json.load(f) assert expect_tool_meta == tool_meta def test_validate_tool_script(self): tool_script_path = TOOL_ROOT / "custom_llm_tool.py" result = _client.tools.validate(tool_script_path) assert result.passed tool_script_path = TOOL_ROOT / "tool_with_dynamic_list_input.py" result = _client.tools.validate(tool_script_path) assert result.passed tool_script_path = TOOL_ROOT / "invalid_tool.py" result = _client.tools.validate(tool_script_path) assert len(result._errors) == 4 assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert ( "Cannot provide both `icon` and `icon_light` or `icon_dark`." in result.error_messages["invalid_tool_icon"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of teacher_id.' in result.error_messages["invalid_input_settings"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of student_id.' in result.error_messages["invalid_input_settings"] ) assert all(str(tool_script_path) == item.location for item in result._errors) with pytest.raises(ToolValidationError): _client.tools.validate(TOOL_ROOT / "invalid_tool.py", raise_error=True) def test_validate_tool_func(self): def load_module_by_path(source): module_name = Path(source).stem spec = importlib.util.spec_from_file_location(module_name, source) module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(module) return module tool_script_path = TOOL_ROOT / "custom_llm_tool.py" module = load_module_by_path(tool_script_path) tool_func = getattr(module, "my_tool") result = _client.tools.validate(tool_func) assert result.passed tool_script_path = TOOL_ROOT / "invalid_tool.py" module = load_module_by_path(tool_script_path) tool_func = getattr(module, "invalid_schema_type") result = _client.tools.validate(tool_func) assert "invalid_schema_type" in result.error_messages assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert "invalid_schema_type" == result._errors[0].function_name assert str(tool_script_path) == result._errors[0].location with pytest.raises(ToolValidationError): _client.tools.validate(tool_func, raise_error=True) def test_validate_package_tool(self): package_tool_path = TOOL_ROOT / "tool_package" sys.path.append(str(package_tool_path.resolve())) import tool_package with patch("promptflow._sdk.operations._tool_operations.ToolOperations._is_package_tool", return_value=True): result = _client.tools.validate(tool_package) assert len(result._errors) == 4 assert "1 is not of type 'string'" in result.error_messages["invalid_schema_type"] assert ( "Cannot provide both `icon` and `icon_light` or `icon_dark`." in result.error_messages["invalid_tool_icon"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of teacher_id.' in result.error_messages["invalid_input_settings"] ) assert ( 'Cannot find the input "invalid_input" for the enabled_by of student_id.' in result.error_messages["invalid_input_settings"] ) def test_validate_tool_class(self): from promptflow.tools.serpapi import SerpAPI result = _client.tools.validate(SerpAPI) assert result.passed class InvalidToolClass(ToolProvider): def __init__(self): super().__init__() @tool(name="My Custom Tool") def tool_func(self, api: str): pass @tool(name=1) def invalid_tool_func(self, api: str): pass result = _client.tools.validate(InvalidToolClass) assert not result.passed assert result._kwargs["total_count"] == 2 assert result._kwargs["invalid_count"] == 1 assert len(result._errors) == 1 assert "1 is not of type 'string'" in result._errors[0].message
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_tool.py", "repo_id": "promptflow", "token_count": 8463 }
57
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from promptflow import PFClient from promptflow._sdk._utils import ClientUserAgentUtil @pytest.mark.sdk_test @pytest.mark.e2etest class TestPFClient: def test_pf_client_user_agent(self): PFClient() assert "promptflow-sdk" in ClientUserAgentUtil.get_user_agent() assert "promptflow/" not in ClientUserAgentUtil.get_user_agent()
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_pf_client.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_pf_client.py", "repo_id": "promptflow", "token_count": 166 }
58
{ "subscription_id": "", "resource_group": "", "workspace_name": "" }
promptflow/src/promptflow/tests/test_configs/configs/mock_flow_empty_config/.azureml/config.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/configs/mock_flow_empty_config/.azureml/config.json", "repo_id": "promptflow", "token_count": 37 }
59
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/WeaviateConnection.schema.json name: my_weaviate_connection type: weaviate api_key: "<to-be-replaced>" api_base: "endpoint"
promptflow/src/promptflow/tests/test_configs/connections/weaviate_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/weaviate_connection.yaml", "repo_id": "promptflow", "token_count": 73 }
60
path: ./entry.py entry: my_flow
promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_dataclass_output/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/flow_with_dataclass_output/flow.dag.yaml", "repo_id": "promptflow", "token_count": 12 }
61
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- def my_flow(input_val) -> str: """Simple flow with yaml.""" print(f"Hello world! {input_val}") return f"Hello world! {input_val}"
promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_req/entry.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/simple_with_req/entry.py", "repo_id": "promptflow", "token_count": 81 }
62
inputs: text: type: string outputs: text: type: string reference: ${node_a.output} nodes: - name: node_a type: python source: type: code path: node_a.py inputs: input1: ${inputs.text} - name: node_b type: python source: type: code path: node_b.py inputs: {} activate: when: ${node_a.output} is: hello world
promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/flow.dag.yaml", "repo_id": "promptflow", "token_count": 162 }
63
from promptflow import tool @tool def test(text: str): return text + "hello world!"
promptflow/src/promptflow/tests/test_configs/flows/all_nodes_bypassed/test.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/all_nodes_bypassed/test.py", "repo_id": "promptflow", "token_count": 29 }
64
{"text": "Hello World!"} {"text": "Hello PromptFlow!"}
promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/basic-with-connection/data.jsonl", "repo_id": "promptflow", "token_count": 19 }
65
from openai import AsyncOpenAI from promptflow import tool from promptflow.connections import OpenAIConnection @tool async def get_or_create_thread(conn: OpenAIConnection, thread_id: str): if thread_id: return thread_id cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) thread = await cli.beta.threads.create() return thread.id
promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_or_create_thread.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_or_create_thread.py", "repo_id": "promptflow", "token_count": 136 }
66
{ "grade.completed": 3, "calculate_accuracy.completed": 1, "aggregation_assert.completed": 1 }
promptflow/src/promptflow/tests/test_configs/flows/classification_accuracy_evaluation/expected_status_summary.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/classification_accuracy_evaluation/expected_status_summary.json", "repo_id": "promptflow", "token_count": 46 }
67
system: You are a helpful assistant. user: When an incident occurs, there have 3 ways to deal with it, please choose one. 1. {{first_method}} 2. {{second_method}} 3. {{third_method}}
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/investigation_steps.jinja2/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/investigation_steps.jinja2", "repo_id": "promptflow", "token_count": 55 }
68
{"question": "What's promptflow1?"} {"question": "What's promptflow2?"} {"question": "What's promptflow3?"}
promptflow/src/promptflow/tests/test_configs/flows/csharp_flow/inputs.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/csharp_flow/inputs.jsonl", "repo_id": "promptflow", "token_count": 35 }
69
from promptflow import tool from promptflow.contracts.multimedia import Image @tool def merge_images(image_list: list, image_dict: list): res = set() for item in image_list[0]: res.add(item) for _, v in image_dict[0].items(): res.add(v) assert all(isinstance(item, Image) for item in res) return list(res)
promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_composite_image/merge_images.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_composite_image/merge_images.py", "repo_id": "promptflow", "token_count": 134 }
70
import os from promptflow import tool @tool def get_env_var(key: str): from tensorflow import __version__ print(__version__) print(os.environ.get(key)) # get from env var return {"value": os.environ.get(key)}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_additional_include_req/print_env.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_additional_include_req/print_env.py", "repo_id": "promptflow", "token_count": 89 }
71
ignored_folder *.ignored
promptflow/src/promptflow/tests/test_configs/flows/flow_with_ignore_file/.amlignore/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_ignore_file/.amlignore", "repo_id": "promptflow", "token_count": 8 }
72
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Hello 日本語 outputs: output: type: string reference: ${hello_prompt.output} nodes: - name: hello_prompt type: prompt source: type: code path: hello.jinja2 inputs: text: ${inputs.text}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_non_english_input/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_non_english_input/flow.dag.yaml", "repo_id": "promptflow", "token_count": 144 }
73
inputs: text: type: string outputs: output_prompt: type: string reference: ${echo_my_prompt.output} nodes: - inputs: input1: ${inputs.text} name: echo_my_prompt type: python source: type: code path: hello.py
promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject/flow.dag.yaml", "repo_id": "promptflow", "token_count": 105 }
74
inputs: topic: type: string default: hello world is_chat_input: false stream: type: bool default: false is_chat_input: false outputs: joke: type: string reference: ${echo.output} nodes: - name: echo type: python source: type: code path: echo.py inputs: input: ${joke.output} use_variants: false - name: joke type: llm source: type: code path: joke.jinja2 inputs: deployment_name: gpt-35-turbo temperature: 1 top_p: 1 max_tokens: 256 presence_penalty: 0 frequency_penalty: 0 stream: ${inputs.stream} topic: ${inputs.topic} provider: AzureOpenAI connection: azure_open_ai_connection api: chat module: promptflow.tools.aoai use_variants: false
promptflow/src/promptflow/tests/test_configs/flows/llm_tool/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/llm_tool/flow.dag.yaml", "repo_id": "promptflow", "token_count": 313 }
75
from promptflow import tool @tool def mod_two(number: int): if number % 2 != 0: raise Exception("cannot mod 2!") return {"value": number}
promptflow/src/promptflow/tests/test_configs/flows/mod-n/two/mod_two.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/mod-n/two/mod_two.py", "repo_id": "promptflow", "token_count": 58 }
76
{ "prompt": "What is the capital of the United States of America?" }
promptflow/src/promptflow/tests/test_configs/flows/openai_completion_api_flow/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/openai_completion_api_flow/samples.json", "repo_id": "promptflow", "token_count": 24 }
77